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Foreword

It’s an honor for me to present to you this timely new addition to the Professional
Ruby Series, one that fills a crucially important gap in the ongoing evolution of all
professional Rubyists and couldn’t come a moment sooner! It is authored by one of
the brightest minds of our international Ruby community, Paul Dix, described as
“genius” and “A-list” by his peers. Paul is no stranger to the Ruby world, a fixture at
our conferences and involved in some of the earliest Rails project work dating back to
2005. He’s also the author of Typhoeus, a successful high-performance HTTP library
that is an essential part of the service-oriented ecosystem in Ruby.

Why is this book so timely? Serious Ruby adoption in large companies and proj-
ect settings inevitably necessitates service-oriented approaches to system design. Prop-
erly designed large applications, partitioned into cooperating services, can be far more
agile than monolithic applications. Services make it easy to scale team size. As the code
base of an application gets larger, it gets harder to introduce new developers to the
project. When applications are split into services, developers can be assigned to a spe-
cific service or two. They only need to be familiar with their section of the application
and the working groups can remain small and nimble.

There’s also the fact that we live in the age of The Programmable Web, the boom
of web applications, APIs, and innovation over the past few years that is directly attrib-
utable to the rise of interoperable web services like those described in this book. Appli-
cations that rely on web resources present unique challenges for development teams.
Service-oriented traits impact various aspects of how applications should be designed
and the level of attention that needs to be paid to how the application performs and
behaves if those services are unavailable or otherwise limited.

My own teams at Hashrocket have run into challenges where we could have used
the knowledge in this book, both in our Twitter applications as well as our large client
projects, some of which we have been working on for years. In a couple of notable
cases, we have looked back in regret, wishing we had taken a service-oriented approach

xiii



sooner. I assure you that this book will be on the required-reading list for all Rocketeers
in the future.

Like Hashrocket, many of you buying this book already have big monolithic Rails
applications in production. Like us, you might have concerns about how to migrate
your existing work to a service-oriented architecture. Paul covers four different strate-
gies for application partitioning in depth: Iteration Speed, Logical Function, Read/
Write Frequency, and Join Frequency. Specific examples are used to explore the chal-
lenges and benefits of each strategy. The recurring case study is referred to often, to
ensure the discussion is grounded in real, not imaginary or irrelevant situations.

Paul doesn’t limit himself to theory either, which makes this a well-rounded and
practical book. He gives us important facts to consider when running in a production
environment, from load balancing and caching to authentication, authorization, and
encryption to blocking I/O to parallelism, and how to tackle these problems in Ruby
1.8, 1.9, Rubinius, and JRuby.

Overall, I’m proud to assure you that Paul has given us a very readable and useful
book. It is accurate and current, bringing in Rack, Sinatra, and key features of Rails 3,
such as its new routing and ActiveModel libraries. At the same time, the book achieves
a timeless feeling, via its concise descriptions of service-oriented techniques and
broadly applicable sample code that I’m sure will beautifully serve application archi-
tects and library authors alike for years to come.

—Obie Fernandez
Author of The Rails Way
Series Editor of the Addison-Wesley Professional Ruby Series
CEO & Founder of Hashrocket
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Preface

As existing Ruby on Rails deployments grow in size and adoption expands into larger
application environments, new methods are required to interface with heterogeneous
systems and to operate at scale. While the word scalability with respect to Rails has
been a hotly debated topic both inside and outside the community, the meaning of
the word scale in this text is two fold. First, the traditional definition of “handling
large numbers of requests” is applicable and something that the service-oriented
approach is meant to tackle. Second, scale refers to managing code bases and teams
that continue to grow in size and complexity. This book presents a service-oriented
design approach that offers a solution to deal with both of these cases.

Recent developments in the Ruby community make it an ideal environment for
not only creating services but consuming them as well. This book covers technolo-
gies and best practices for creating application architectures composed of services.
These could be written in Ruby and tied together through a frontend Rails applica-
tion, or services could be written in any language, with Ruby acting as the glue to
combine them into a greater whole. This book covers how to properly design and cre-
ate services in Ruby and how to consume these and other services from within the
Rails environment.

Who This Book Is For
This book is written with web application and infrastructure developers in mind.
Specific examples cover technologies in the Ruby programming ecosystem. While the
code in this book is aimed at a Ruby audience, the design principles are applicable to
environments with multiple programming languages in use. In fact, one of the
advantages of the service-oriented approach is that it enables teams to implement
pieces of application logic in the programming language best suited for the task at
hand. Meanwhile, programmers in any other language can take advantage of these
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services through a common public interface. Ultimately, Ruby could serve simply at
the application level to pull together logic from many services to render web requests
through Rails or another preferred web application framework.

If you’re reading this book, you should be familiar with web development con-
cepts. Code examples mainly cover the usage of available open source Ruby libraries,
such as Ruby on Rails, ActiveRecord, Sinatra, Nokogiri, and Typhoeus. If you are new
to Ruby, you should be able to absorb the material as long as you have covered the lan-
guage basics elsewhere and are generally familiar with web development. While the
topic of service-oriented design is usually targeted at application architects, this book
aims to present the material for regular web developers to take advantage of service-
based approaches.

If you are interested in how Ruby can play a role in combining multiple pieces
within an enterprise application stack, you will find many examples in this book to
help achieve your goals. Further, if you are a Rails developer looking to expand the
possibilities of your environment beyond a single monolithic application, you will see
how this is not only possible but desirable. You can create systems where larger teams
of developers can operate together and deploy improvements without the problem of
updating the entire application at large.

The sections on API design, architecture, and data backends examine design prin-
ciples and best practices for creating services that scale and are easy to interface with
for internal and external customers. Sections on connecting to web services and pars-
ing responses provide examples for those looking to write API wrappers around exter-
nal services such as SimpleDB, CouchDB, or third-party services, in addition to
internal services designed by the developer.

What This Book Covers
This book covers Ruby libraries for building and consuming RESTful web services.
This generally refers to services that respond to HTTP requests. Further, the APIs of
these services are defined by the URIs requested and the method (GET, PUT, POST,
DELETE) used. While the focus is on a RESTful approach, some sections deviate from
a purist style. In these cases, the goal is to provide clarity for a service API or flexibil-
ity in a proposed service.

The primary topics covered in this book are as follows:

• REST, HTTP verbs, and response codes
• API design
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• Building services in Ruby
• Connecting to services
• Consuming JSON- and XML-based services 
• Architecture design 
• Messaging and AMQP
• Securing services

What This Book Doesn’t Cover
Service-oriented architectures have been around for over a decade. During this time,
many approaches have been taken. These include technologies with acronyms and buzz-
words such as SOAP, WSDL, WS-*, and XML-RPC. Generally, these require greater
overhead, more configuration, and the creation of complex schema files. Chapter 9,
“Parsing XML for Legacy Services,” provides brief coverage of consuming XML and
SOAP services. However, SOAP, XML-RPC, and related technologies are beyond the
scope of this book. The services you’ll create in this book are lightweight and flexible,
like the Ruby language itself.

This book also does not cover other methods for building complex architectures.
For example, it does not cover batch processing frameworks such as MapReduce or
communications backends such as Thrift. While these technologies can be used in con-
junction with a web services approach, they are not the focus. However, Chapter 11,
“Messaging,” briefly covers messaging systems and message queues.

Additional Resources
Code examples are used heavily throughout this book. While every effort has been
made to keep examples current, the open source world moves fast, so the examples
may contain code that is a little out-of-date. The best place to find up-to-date source
code is on GitHub, at the following address:

http://github.com/pauldix/service-oriented-design-with-ruby

In addition, you can subscribe to a mailing list to discuss the code, text, services
design, and general questions on the topic of service-oriented design. You can join here:

http://groups.google.com/group/service-oriented-design-

with-ruby
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CHAPTER 2
An Introduction to 
Service-Oriented Design

Service-oriented design is about creating systems that group functionality around
logical function and business practices. Services should be designed to be interoperable
and reusable. The goal of service-oriented design is to split up the parts of an applica-
tion or system into components that can be iterated on, improved, and fixed without
having to test and verify all the other components when an individual is updated.
Achieving these goals usually entails a trade-off between complexity and iteration
speed. However, large and mature applications are ill-served when built in Rails mono-
lithic style. It is necessary to segment complex or large applications into parts that can
be tested and deployed separately. This chapter explores the basic goals of service-
oriented design and design guidelines for splitting applications into separate services.

Use of Service-Oriented Design in the Wild
Organizations such as eBay, Amazon, LinkedIn, and other large web-based companies
use layers of services to bring their applications together. While many of these envi-
ronments are based in Java, the advantages that come from their approaches to archi-
tecture design can be applied to web applications and systems written in Ruby.

The architecture of Amazon most exemplifies the advantages of good service-
oriented design. In May 2006 the Association for Computing Machinery (ACM)
published an interview between Jim Gray and Amazon CTO Werner Vogels titled
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“A Conversation with Werner Vogels.’’1 In the interview Mr. Vogels states that when
a user goes to the Amazon.com home page, the application calls out to more than
100 services to construct the page.

Mr. Vogels goes on to say that the move from a monolithic two-tier (database and
web application) architecture to a service-oriented approach provides many advan-
tages. These include improvements such as scalability, isolation, and developer own-
ership of production systems. Further, Vogels states that this has led to improved
processes and increased organizational agility to develop new services and features.
Amazon’s service-oriented architecture has enabled the introduction of new applica-
tions and services without requiring reconfiguration of the entire system.

Amazon’s approach to its internal systems has driven and informed the develop-
ment of the Amazon Web Services (AWS) platforms. Every piece of the AWS archi-
tecture is exposed as a web service. Here’s a breakdown of Amazon’s current services:

• S3 (Simple Storage Service)—A service for storing files.
• SQS (Simple Queue Service)—A service-based messaging queue.
• SimpleDB—A scalable service-based database.
• CloudFront—A service-based content delivery network.
• EC2 (Elastic Compute Cloud)—A service for provisioning virtual private servers.

The AWS platform represents an example of low-level system components exposed
through a services layer. A service-oriented design can take advantage of these types of
lower-level components as well as services that operate a little further up the stack that
provide functionality for a specific application. Higher-level services might include a
user system, a comments service, a video transcoding service, and many others.

Service-Oriented Design Versus Service-Oriented
Architecture Versus RESTful-Oriented Architecture
There are many approaches to designing a service-oriented application. This book
takes an approach slightly different than those espoused in Java books on service-
oriented architecture (SOA) or even other books that focus on REST. Within the
community of professionals building service-based systems there is a bit of debate
about the proper use of terminology and what qualifies as best practices.
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SOA has become a loaded term. To many people, it implies the use of tools such
as SOAP, WSDL, WS-*, or XML-RPC. This implication is why the title of this book
uses the word design as opposed to architecture. Even so, this book does focus on archi-
tecture. The real goal of service-oriented design is to create simple and agile services lay-
ers that can be consumed without the use of generators or strict schemas. In this regard,
the style in this book is more in line with REST-based web services than with SOA.

In the book RESTful Web Services,2 Leonard Richardson and Sam Ruby discuss
the details for a concept they call resource-oriented architecture (ROA). ROA repre-
sents their approach for HTTP-based RESTful design and architecture. Richardson
and Ruby lay out the concepts of resources, URIs, representations, and links. They
also state that ROA has properties of addressability, statelessness, and connectedness,
as well as a uniform interface. When it comes to the design of specific services, this
book follows Richardson and Ruby’s guidelines. (The appendix, “RESTful Primer,’’
provides an overview of REST.)

The real difference between the focus of this book and that of RESTful Web Ser-
vices lies in the interaction points—that is, how services interact with each other to
create a complete working application. The focus of this book is on internal services
instead of external ones. While some of an application’s services can be exposed to
external consumers, their real purpose is to serve other developers working within a
single organization. In this regard, this book has more similarity to what one would
commonly refer to as SOA. This book also includes a more specific focus on deploy-
ing and developing with Rails, Sinatra, and other Ruby libraries and tools.

Of course, SOA, ROA, and RESTful are all meant as guidelines. In the real world,
it makes sense to flex a design with the needs of the application rather than adhere to
the dogma of a prescribed approach such as REST or SOA. This book takes a prag-
matist’s view and focuses on what these things mean for a Ruby environment that uses
services as part of the core infrastructure for delivering an application or a web page
to a user.

Making the Case for Service-Oriented Design
Service-oriented design can appear daunting and complex. It requires more thought
up front and decisions about how to separate logic and data in an application. For
Rails developers, the idea of designing a complex system ahead of development may
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seem like heresy. One of the biggest advantages of Rails is the ability to quickly add a
few models to an application and see results immediately. The Rails development style
is all about quick iterations.

However, there’s more to the story. Up-front design and services give developers
the ability to build apps that support greater complexity and larger team sizes. Service-
oriented systems sacrifice iteration speed for stability, reuse, and robustness. The key
to pairing Rails applications with services is to use Rails for its strengths and switch
over to services when a more stable approach is required. A perfect example of this
involves creating a new application. Most new applications have many unknowns in
terms of exactly what features will be supported and how popular portions of the
application will be (thus informing their need for scale). In the early stages, it is best
to use the normal Rails tool set. However, as parts of an application mature, their
interfaces and requirements become more concrete. These are the sections that can
gain the most from services. Utilizing services is best for sections of an application
that have stable, well-defined, and well-understood requirements. The following sec-
tions discuss the advantages of using services rather than using a typical monolithic
application.

Isolation
Many of the benefits of a service-oriented design stem from the concept of isolation. Iso-
lation makes a service much easier to manage and optimize. Isolated components can be
tested separately from other parts of an application. Using isolated components provides
an easy way of organizing larger teams. Developers can focus on isolated components.
Optimally, this refers to a service running on its own systems, with self-contained busi-
ness logic and a self-contained data store. The separation of a service from other areas
of an application enables increased testability and code reuse. There are multiple levels
of isolation, including business logic, shared system, and full isolation.

Business Logic Isolation

Services that isolate based on business logic generally have their own application code,
with a shared data store and shared systems. From an organizational perspective, this
can be advantageous because the business logic for parts of the system is contained in
one place, without leaking into other sections of the application code base. Separation
of business logic makes it easier to segment a larger group of workers into teams that
can work separately. Services isolated on business logic can share data sources with
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other systems. Generally, this is more common within a legacy system where multiple
services must interface with the same database.

Figure 2.1 shows what business logic isolation might look like for the interactions
between separate components. The application servers would probably reside on the
same physical server, with the database on another. To achieve true business logic
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isolation, the two services should have separate code bases. Further, they should not
communicate with each other through the database. It’s too easy to bleed business
logic from the two services together through the shared database. Ideally, using serv-
ices would achieve better isolation. However, for the purposes of migrating existing
Rails applications to services, the shared database approach may be necessary in the
early stages.

The business logic can be isolated through the use of two services, which share a
database. The Rails application can still sit on top of those services. In the Rails MVC
view of the world, these services occupy the Model level of the stack. The controllers
and views can still be contained within the Rails application.

Shared System Isolation

Shared system isolation refers to separate services running inside their own application
instances. This is like multiple Rails applications or Sinatra services running in Pas-
senger or multiple Mongrels on the same system. Each would have its own databases,
but they would be running on the same hardware. This type of system provides clean
separation of business logic and data layers that is ideal. However, it changes your scal-
ing strategy because of the shared system resources.

Figure 2.2 shows the interaction for two services that implement a shared system
level of isolation. The difference between this separation and the business logic isola-
tion just discussed is the separation of the databases. Now, each of the services com-
municates only with its own database and the external interface of the other service.
A typical configuration would have the two databases actually residing on the same
database server and the two services running on the same application server. A shared
hosting environment is an example of this kind of setup. However, with shared host-
ing, the two services are actually two different customer applications that have noth-
ing to do with each other.

The disadvantage with shared system isolation is that shared system resources can
be tricky to manage. Further, shared system isolation adds complexity with upgrading
libraries or running other system-level applications. Thus, improvements to shared
system services require testing against other services when making system changes.

Full Isolation

Ideally, services should run in full isolation. With full isolation, they have their own
server or virtual private server instances, completely separate code bases and reposito-
ries, and their own data stores. Over time, a system could phase from one form of
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Figure 2.2 Shared systems with isolated services.
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isolation to another. Migrating from a typical monolithic Rails application could start
with a migration to a shared database and systems, then to isolated databases, and
finally to completely isolated systems.



Testing in Isolation

Within the framework of testing, isolation provides the advantage of having a single
testable interface. A public service API can be checked and agreed upon. Changes
within the service need not affect how the API responds to commands. The testing of
a service’s interface is very much like unit or model testing within a Rails application.
The only difference is that the callable methods are HTTP methods that can be called
by any application. All the details of the business logic and how data is stored or opti-
mized are hidden behind the service interface.

The big advantage isolation provides with regard to testing is in the time required
to run the test suite. Rails developers working on mature projects with large code bases
routinely have to wait longer than 15 minutes for their test suites to run to comple-
tion. In fact, it’s not entirely uncommon for some teams to work with large code bases
that take longer than 40 minutes to run their entire suite of tests. This becomes a
major problem when you want to change something small. After even a small change,
the full suite of tests must be run to ensure that the change didn’t break anything.

With isolated application components, testing to make sure other parts of an
application are functioning properly becomes a much smaller problem. For example,
consider an application code base that takes 20 minutes to run the full suite of tests.
Then break that application into four fairly evenly sized, separate, isolated compo-
nents. Now the test time for a single change to one of these components is cut down
to one-fourth of what was previously needed. If a change is made to one of the new
components, it isn’t necessary to run the test suite for everything. Only the tests for
the single component need to be run, and in this example, that would take roughly
5 minutes rather than 20. As long as the public-facing interface for the component is
well tested, changes can be deployed without concern that the other three-fourths of
the application still works. Of course, if the API of a service changes, then each con-
sumer must be tested to ensure proper operation.

Robustness
Services that are well designed provide an application with a robust architecture. That
is, the architecture is able to withstand stress on the system and changes in the oper-
ating environment without loss of functionality. The underlying environment in
which services run can change while a service continues to operate without the serv-
ice consumers having any knowledge of these changes.

For those familiar with object-oriented design, the robustness advantages of serv-
ices may sound similar to the advantages of encapsulation. Indeed, with services, the
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aim is to achieve encapsulation for entire sections of an application. In object-oriented
design, encapsulation means that the underlying implementation can be changed
without the API consumer’s knowledge. For services, such changes can include code
changes and more drastic changes, such as moving to a different type of database.

For example, consider a user management service. To start with, it includes only
basic functionality, such as a user model, authentication, profile data, and a light-
weight social network (where people can be friend each other). The initial implemen-
tation could use ActiveRecord and a MySQL database. As the load on the service picks
up, it starts to outgrow the limits of the regular SQL solution. Because there is a clearly
defined services interface, this can be modified without a single change to the rest of
the application.

Switching underlying data stores could go something like this: After some hand
wringing and careful research, you might decide to move the user data to some
NoSQL data store, such as CouchDB, Redis, or MongoDB. First, you would update
the implementation to use the new data store, along with migration scripts to move
the data from MySQL to the new NoSQL database. Once a new server or two or three
have been set up, you could migrate the code and data. When this migration is com-
plete, the other sections of the application are still able to access the user management
service without ever knowing about the complete change of the underlying data store.

Scalability
Experienced Rails developers tend to roll their eyes when people mention scalability.
People outside the Rails community advise against using Rails because they say it isn’t
scalable. Meanwhile, Rails developers know that Rails itself isn’t the problem. While
it’s true that scalability in general is difficult, the problem usually comes down to
the database. A services approach provides more tools and ability to deal with scal-
ing. Specifically, using services makes it easy to scale portions of an application indi-
vidually. Data can be split across services, and the performance under load can be
optimized for each service.

A partitioned data strategy is part of service-oriented system design. When fully
isolating services, you need to make decisions about putting data in one service or
another. Once data has been partitioned, changes can be made to the individual serv-
ices based on their scaling needs. While one service may need to optimize for data
writes, another may optimize for many reads. The advantage of a good service design
is that these needs can be handled on a case-by-case basis instead of requiring
optimization of a single database for all cases.
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Services also make it easier to scale team size. When a programming team is larger
than six people, it gets hard to coordinate changes in an application. One developer’s
change may step on another’s. Further, as the code base of the application gets larger,
it gets harder to introduce new developers to the system as a whole. When an appli-
cation is split into services, developers can be assigned to a specific service or two.
Thus, they need to be familiar only with their section of the application, and the
working groups can remain small.

Finally, using services makes it easier to scale the absolute size of an application in
terms of the code base. Larger applications have too much code for anyone to be
familiar with it all at any given time. In addition, their tests take longer to run. For
example, when developing Rails applications, a developer doesn’t usually have to dig
into the Rails code base. Rails provides a layer of abstraction that doesn’t often need
to be penetrated. Services can provide this same layer of abstraction for code and for
actual production systems.

Agility
When thinking about complex architectures, agility is not the word that comes to
mind. However, properly designed services can be far more agile than monolithic
applications. Changes to the underlying nature of the services can be made without
concern for the rest of the application. The pains of deployment can also be eased
because deployments don’t require the entire application to be updated with each
change.

The ability to change underlying service implementations without affecting the
rest of the application provides implementation agility. Switching databases or chang-
ing message queues or even changing languages can be done without worrying about
the rest of the system. This kind of agility is often overlooked in the Rails community,
but it becomes a huge asset to applications that mature over a period of years.
Using services allows for changing or updating underlying libraries without having
to dig through every part of the application code base to make sure everything is
still working as expected.

In the Ruby community, a good example of an advantage offered by services is the
planning for migration to Ruby 1.9. Services provide greater agility in making these
kinds of updates. Services can be upgraded to 1.9 as the libraries they use are confirmed
to work. Thus, services can take a phased approach to upgrading to use Ruby 1.9 and
take advantage of its features.

36 Chapter 2. An Introduction to Service-Oriented Design



One of the keys to maintaining agility in a service environment is proper ver-
sioning. Each service interface should be versioned when an update includes a break-
ing change. As long as the design includes the ability to run multiple versions of a
service simultaneously, it’s possible to keep somewhat agile with respect to interface
changes. If an update to the service API is additive—that is, it doesn’t change existing
calls and only adds new functionality—the service can remain at the same version.

Interoperability
For large heterogeneous environments, interoperability is an important requirement.
When working with multiple languages or interface with legacy databases, legacy sys-
tems, or external vendors, using services is a great way to connect with these systems.
Web-based interfaces to these systems can provide the ability to flex with changes
without breaking sections of an application. The HTTP interface also prevents being
tied to a specific messaging implementation that might otherwise be used to commu-
nicate with these systems. Services ease interoperation with internal and external
systems and with systems written in languages other than Ruby.

Internal interoperability refers to interfacing with systems written in different lan-
guages within an environment. Some of these systems already expose their functional-
ity through a web API. Apache Solr, a Java-based indexing and search server, is a great
example of a system that provides a service interface. By interacting with this interface,
Ruby developers can take advantage of all the work done on this project without hav-
ing to call into the Java code directly by using something like JRuby. The Solr interface
is usually called by other services and applications within an environment.

External interoperability refers to the need to interface with external systems such
as those from vendors. Many external services also provide a web-based interface for
their customers. Examples include SimpleDB, SQS, SalesForce, Github, Lighthouse,
Twitter, Facebook, and countless others. Writing clean, performant Ruby client
libraries is key to bringing these services into an application. Writing client libraries is
covered in detail in Chapter 6, “Connecting to Services,’’ and Chapter 7, “Develop-
ing Service Client Libraries.’’

Environments with multiple languages in use benefit from the use of HTTP-
based services. While Ruby is a great programming language, it isn’t always the best
tool for every job. If a section of an application would benefit from being imple-
mented in Erlang, Scala, or even Java, HTTP services can provide the message bus for
interaction between these disparate setups.
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Reuse
After a service has been developed and deployed, it can be reused across the entire sys-
tem. The argument for reuse is strongest in environments where multiple applications
have common shared functionality, such as consultancies and large corporate envi-
ronments that develop multiple internal applications for different users.

Consultancies that develop and host applications for their clients could reuse serv-
ices. Currently, the most common model of code reuse across these applications is
through the development of plug-ins or gems. Specific examples include user authen-
tication, tagging systems, commenting systems, and searching. However, many of
these could be developed and deployed as services. One of the possible gains to taking
the service approach is the reuse of system resources across all clients. For example, a
user management system could be implemented as a service (as in the example in
Chapter 1, “Implementing and Consuming Your First Service’’). This system could
then be used across all client systems. If this is repeated for other shared functionality,
new applications will have to implement and deploy only anything that is custom to
their environment.

Providing public-facing APIs is another area where the services used to build a sys-
tem internally can be reused. If services are created for internal use, they can be
exposed later for general use. The popularity of the Twitter API shows that it can be
advantageous to expose parts of an application through a RESTful HTTP interface.
With the services approach, exposing application functionality to the outside world
becomes as easy as simply opening up an already existing internal API to the public.

Conclusion
Hopefully, this introduction has whetted your appetite for exploring the service-
oriented approach covered in this book. The extra design work and communication
overhead of creating and using multiple services takes a little more effort than creat-
ing a typical Rails application. However, the benefits of a service-oriented design can
far outweigh the costs associated with inter service communication and more up-front
design.

Here’s a quick recap of the benefits of service-oriented design:

• Isolation—Robustness, scalability, and improved testing strategies all stem from
the concept of isolation. Isolation gives an application architecture many of the
advantages that encapsulation provides in object-oriented design.
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• Robustness—Services are robust because their underlying implementation can
change with shifting load requirements, libraries, and languages without detri-
ment to the rest of the application.

• Scalability—When using services, you need to think up front about how to sep-
arate data and manage interaction. This partitioning of logic and data provides
the ability to scale the size of the code base and team in addition to the number
of requests to process.

• Agility—Upgrades to underlying system components are easier with services.
Further, new versions of existing services and completely new services can be
implemented outside the full architecture. This can provide much-needed agility
for mature code bases where changes are typically expensive to verify with the rest
of an app.

• Interoperability—Using HTTP-based services is a great way to expose the
functionality of legacy applications or external vendors.

• Reuse—Service-oriented design enables reuse of components across multiple
applications or clients.
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