

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, market-
ing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Dix, Paul, 1977-
Service-oriented design with Ruby and Rails / Paul Dix.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-65936-8 (pbk. : alk. paper) 1. Web services.

2. Service-oriented architecture (Computer science) 3. Web sites—Design.
4. Ruby on rails (Electronic resource) I. Title.

TK5105.88813.D593 2010
006.7’8—dc22

2010021623

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-65936-1
ISBN-10: 0-321-65936-8
Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.

First printing, August 2010

Associate Publisher
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Kitty Wilson

Indexer
Jack Lewis

Proofreader
Carol Lallier

Technical Reviewers
Jennifer Lindner,
Trotter Cashion

Cover Designer
Chuti Prasertsith

Compositor
LaserWords

Contents

Foreword xiii

Preface xv

Acknowledgments xix

About the Author xxi

1 Implementing and Consuming Your First Service 1
What’s a Service? 1
Service Requirements 2
The Ruby Tool Set 2

Sinatra 2
ActiveRecord 3
JSON 3
Typhoeus 4
Rspec 4

The User Service Implementation 5
Using GET 6
POSTing a User 11
PUTing a User 13
Deleting a User 15
Verifying a User 16

Implementing the Client Library 18
Finding a User 18
Creating a User 21
Updating a User 22
Destroying a User 24
Verifying a User 24

Putting It All Together 26
Conclusion 26

vii

2 An Introduction to Service-Oriented Design 27
Use of Service-Oriented Design in the Wild 27
Service-Oriented Design Versus Service-Oriented Architecture Versus
RESTful-Oriented Architecture 28
Making the Case for Service-Oriented Design 29

Isolation 30
Robustness 34
Scalability 35
Agility 36
Interoperability 37
Reuse 38

Conclusion 38

3 Case Study: Social Feed Reader 41
A Typical Rails Application 41
The Rails Social Feed Reader Application 45

Features 46
Current Setup 46

Converting to Services 54
Segmenting into Services 54
Breaking Up the Application into Services 54

Conclusion 58

4 Service and API Design 59
Partitioning Functionality into Separate Services 59

Partitioning on Iteration Speed 60
Partitioning on Logical Function 61
Partitioning on Read/Write Frequencies 62
Partitioning on Join Frequency 63

Versioning Services 64
Including a Version in URIs 64
Using Accept Headers for Versioning 65

URIs and Interface Design 66
Successful Responses 68

HTTP Status Codes 68
HTTP Caching 69
Successful Response Bodies 70

viii Contents

Error Responses 72
HTTP Status Codes 72
Error Response Bodies 72

Handling Joins 73
Storing References 73
Joining at the Highest Level 74
Beware of Call Depth 75

API Complexity 75
Atomic APIs 76
Multi-Gets 76
Multiple Models 77

Conclusion 78

5 Implementing Services 79
The Vote Service 79

A Multi-Get Interface 81
The Vote Interface 82
API Design Guidelines 85

Models 86
Rails 88

Rails 2.3 Routes 88
Rails 3 Routes 89
The Rails Controller 90

Sinatra 95
Rack 100
Conclusion 106

6 Connecting to Services 107
Blocking I/O, Threading, and Parallelism 107

Asynchronous I/O 108
Multi-threading 108

Typhoeus 109
Making Single Requests 109
Making Simultaneous Requests 111

Multi-threaded Requests 113
JRuby 115
Logging for Performance 117

ixContents

Handling Error Conditions 118
Testing and Mocking Service Calls 119
Requests in Development Environments 121
Conclusion 121

7 Developing Service Client Libraries 123
Packaging 123

Jeweler 124
Building and Deploying a Library 127

Parsing Logic 127
The JSON Gem 128
YAJL Ruby 129
Wrapping Parsed Results 130

ActiveModel 132
Validations 132
Serialization 134

Connection and Request Logic 136
Data Reads 136
Data Writes 142

Mocks, Stubs, and Tests 143
Conclusion 146

8 Load Balancing and Caching 147
Latency and Throughput 147
Load Balancing 148

Load Balancing Algorithms 148
Implementing Load Balancing 152

Caching with Memcached 155
The Memcached Client and ActiveRecord 156
Time-Based Expiration 158
Manual Expiration 159
Generational Cache Keys 160

HTTP Caching 162
Expiration-Based Caching 162
Validation-Based Caching 163
Implementing HTTP Caching 165

Conclusion 166

x Contents

9 Parsing XML for Legacy Services 167
XML 167

REXML 170
Nokogiri 174

SOAP 177
Exploring Web Services with a WSDL File 177
Making Requests 180

Conclusion 184

10 Security 185
Authentication 185

HTTP Authentication 186
Signing Requests 187
SSL for Authentication 198
Authentication for Rails Applications 199

Authorization 201
Firewalls 201
An RBAC Authorization Service 203

Encryption 209
SSL for Encryption 210
Public/Private Key Pairs for Encryption 210

Conclusion 214

11 Messaging 215
What Is Messaging? 215

Synchronous Versus Asynchronous Messaging 216
Queues 217
Message Formats 217

RabbitMQ and AMQP 217
Queues in RabbitMQ 218
Exchanges and Bindings 218
Durability and Persistence 223
Client Libraries 224

Synchronous Reads, Asynchronous Writes 227
HTTP-Based Reads 227
Messaging-Based Writes 227

The CAP Theorem 230
Eventual Consistency 231
Designing Around Consistency 232

xiContents

Data Is the API 234
Operations on Fields 234
Modifications to Field Operations 235

Conclusion 236

12 Web Hooks and External Services 237
Web Hooks 238

PubSubHubbub 239
Receiving Web Hooks 240
Providing Web Hooks 242
Strategies for Dealing with Failure 244

OAuth 245
Implementing an OAuth Consumer 246
Implementing an OAuth Provider 249

Integrating with External Services 251
Consuming Data 251
Pushing Data 253
The Request Lifecycle 254
Worker Processes 254

Ensuring Performance and Reliability 258
Segregating Queues 259
Metrics 259
Throttling and Quotas 260

Conclusion 261

Appendix RESTful Primer 263
Roy Fielding’s REST 263

Constraints 264
Architectural Elements 264
Architectural Views 265

REST and Resources 265
URIs and Addressability 266
Representations 267

HTTP and the Uniform Interface 268
HTTP Methods 268
HTTP Headers 271
HTTP Status Codes 274

Conclusion 275

Index 277

xii Contents

Foreword

It’s an honor for me to present to you this timely new addition to the Professional
Ruby Series, one that fills a crucially important gap in the ongoing evolution of all
professional Rubyists and couldn’t come a moment sooner! It is authored by one of
the brightest minds of our international Ruby community, Paul Dix, described as
“genius” and “A-list” by his peers. Paul is no stranger to the Ruby world, a fixture at
our conferences and involved in some of the earliest Rails project work dating back to
2005. He’s also the author of Typhoeus, a successful high-performance HTTP library
that is an essential part of the service-oriented ecosystem in Ruby.

Why is this book so timely? Serious Ruby adoption in large companies and proj-
ect settings inevitably necessitates service-oriented approaches to system design. Prop-
erly designed large applications, partitioned into cooperating services, can be far more
agile than monolithic applications. Services make it easy to scale team size. As the code
base of an application gets larger, it gets harder to introduce new developers to the
project. When applications are split into services, developers can be assigned to a spe-
cific service or two. They only need to be familiar with their section of the application
and the working groups can remain small and nimble.

There’s also the fact that we live in the age of The Programmable Web, the boom
of web applications, APIs, and innovation over the past few years that is directly attrib-
utable to the rise of interoperable web services like those described in this book. Appli-
cations that rely on web resources present unique challenges for development teams.
Service-oriented traits impact various aspects of how applications should be designed
and the level of attention that needs to be paid to how the application performs and
behaves if those services are unavailable or otherwise limited.

My own teams at Hashrocket have run into challenges where we could have used
the knowledge in this book, both in our Twitter applications as well as our large client
projects, some of which we have been working on for years. In a couple of notable
cases, we have looked back in regret, wishing we had taken a service-oriented approach

xiii

sooner. I assure you that this book will be on the required-reading list for all Rocketeers
in the future.

Like Hashrocket, many of you buying this book already have big monolithic Rails
applications in production. Like us, you might have concerns about how to migrate
your existing work to a service-oriented architecture. Paul covers four different strate-
gies for application partitioning in depth: Iteration Speed, Logical Function, Read/
Write Frequency, and Join Frequency. Specific examples are used to explore the chal-
lenges and benefits of each strategy. The recurring case study is referred to often, to
ensure the discussion is grounded in real, not imaginary or irrelevant situations.

Paul doesn’t limit himself to theory either, which makes this a well-rounded and
practical book. He gives us important facts to consider when running in a production
environment, from load balancing and caching to authentication, authorization, and
encryption to blocking I/O to parallelism, and how to tackle these problems in Ruby
1.8, 1.9, Rubinius, and JRuby.

Overall, I’m proud to assure you that Paul has given us a very readable and useful
book. It is accurate and current, bringing in Rack, Sinatra, and key features of Rails 3,
such as its new routing and ActiveModel libraries. At the same time, the book achieves
a timeless feeling, via its concise descriptions of service-oriented techniques and
broadly applicable sample code that I’m sure will beautifully serve application archi-
tects and library authors alike for years to come.

—Obie Fernandez
Author of The Rails Way
Series Editor of the Addison-Wesley Professional Ruby Series
CEO & Founder of Hashrocket

xiv Foreword

Preface

As existing Ruby on Rails deployments grow in size and adoption expands into larger
application environments, new methods are required to interface with heterogeneous
systems and to operate at scale. While the word scalability with respect to Rails has
been a hotly debated topic both inside and outside the community, the meaning of
the word scale in this text is two fold. First, the traditional definition of “handling
large numbers of requests” is applicable and something that the service-oriented
approach is meant to tackle. Second, scale refers to managing code bases and teams
that continue to grow in size and complexity. This book presents a service-oriented
design approach that offers a solution to deal with both of these cases.

Recent developments in the Ruby community make it an ideal environment for
not only creating services but consuming them as well. This book covers technolo-
gies and best practices for creating application architectures composed of services.
These could be written in Ruby and tied together through a frontend Rails applica-
tion, or services could be written in any language, with Ruby acting as the glue to
combine them into a greater whole. This book covers how to properly design and cre-
ate services in Ruby and how to consume these and other services from within the
Rails environment.

Who This Book Is For
This book is written with web application and infrastructure developers in mind.
Specific examples cover technologies in the Ruby programming ecosystem. While the
code in this book is aimed at a Ruby audience, the design principles are applicable to
environments with multiple programming languages in use. In fact, one of the
advantages of the service-oriented approach is that it enables teams to implement
pieces of application logic in the programming language best suited for the task at
hand. Meanwhile, programmers in any other language can take advantage of these

xv

services through a common public interface. Ultimately, Ruby could serve simply at
the application level to pull together logic from many services to render web requests
through Rails or another preferred web application framework.

If you’re reading this book, you should be familiar with web development con-
cepts. Code examples mainly cover the usage of available open source Ruby libraries,
such as Ruby on Rails, ActiveRecord, Sinatra, Nokogiri, and Typhoeus. If you are new
to Ruby, you should be able to absorb the material as long as you have covered the lan-
guage basics elsewhere and are generally familiar with web development. While the
topic of service-oriented design is usually targeted at application architects, this book
aims to present the material for regular web developers to take advantage of service-
based approaches.

If you are interested in how Ruby can play a role in combining multiple pieces
within an enterprise application stack, you will find many examples in this book to
help achieve your goals. Further, if you are a Rails developer looking to expand the
possibilities of your environment beyond a single monolithic application, you will see
how this is not only possible but desirable. You can create systems where larger teams
of developers can operate together and deploy improvements without the problem of
updating the entire application at large.

The sections on API design, architecture, and data backends examine design prin-
ciples and best practices for creating services that scale and are easy to interface with
for internal and external customers. Sections on connecting to web services and pars-
ing responses provide examples for those looking to write API wrappers around exter-
nal services such as SimpleDB, CouchDB, or third-party services, in addition to
internal services designed by the developer.

What This Book Covers
This book covers Ruby libraries for building and consuming RESTful web services.
This generally refers to services that respond to HTTP requests. Further, the APIs of
these services are defined by the URIs requested and the method (GET, PUT, POST,
DELETE) used. While the focus is on a RESTful approach, some sections deviate from
a purist style. In these cases, the goal is to provide clarity for a service API or flexibil-
ity in a proposed service.

The primary topics covered in this book are as follows:

• REST, HTTP verbs, and response codes
• API design

xvi Preface

• Building services in Ruby
• Connecting to services
• Consuming JSON- and XML-based services
• Architecture design
• Messaging and AMQP
• Securing services

What This Book Doesn’t Cover
Service-oriented architectures have been around for over a decade. During this time,
many approaches have been taken. These include technologies with acronyms and buzz-
words such as SOAP, WSDL, WS-*, and XML-RPC. Generally, these require greater
overhead, more configuration, and the creation of complex schema files. Chapter 9,
“Parsing XML for Legacy Services,” provides brief coverage of consuming XML and
SOAP services. However, SOAP, XML-RPC, and related technologies are beyond the
scope of this book. The services you’ll create in this book are lightweight and flexible,
like the Ruby language itself.

This book also does not cover other methods for building complex architectures.
For example, it does not cover batch processing frameworks such as MapReduce or
communications backends such as Thrift. While these technologies can be used in con-
junction with a web services approach, they are not the focus. However, Chapter 11,
“Messaging,” briefly covers messaging systems and message queues.

Additional Resources
Code examples are used heavily throughout this book. While every effort has been
made to keep examples current, the open source world moves fast, so the examples
may contain code that is a little out-of-date. The best place to find up-to-date source
code is on GitHub, at the following address:

http://github.com/pauldix/service-oriented-design-with-ruby

In addition, you can subscribe to a mailing list to discuss the code, text, services
design, and general questions on the topic of service-oriented design. You can join here:

http://groups.google.com/group/service-oriented-design-

with-ruby

xviiPreface

CHAPTER 2
An Introduction to
Service-Oriented Design

Service-oriented design is about creating systems that group functionality around
logical function and business practices. Services should be designed to be interoperable
and reusable. The goal of service-oriented design is to split up the parts of an applica-
tion or system into components that can be iterated on, improved, and fixed without
having to test and verify all the other components when an individual is updated.
Achieving these goals usually entails a trade-off between complexity and iteration
speed. However, large and mature applications are ill-served when built in Rails mono-
lithic style. It is necessary to segment complex or large applications into parts that can
be tested and deployed separately. This chapter explores the basic goals of service-
oriented design and design guidelines for splitting applications into separate services.

Use of Service-Oriented Design in the Wild
Organizations such as eBay, Amazon, LinkedIn, and other large web-based companies
use layers of services to bring their applications together. While many of these envi-
ronments are based in Java, the advantages that come from their approaches to archi-
tecture design can be applied to web applications and systems written in Ruby.

The architecture of Amazon most exemplifies the advantages of good service-
oriented design. In May 2006 the Association for Computing Machinery (ACM)
published an interview between Jim Gray and Amazon CTO Werner Vogels titled

27

“A Conversation with Werner Vogels.’’1 In the interview Mr. Vogels states that when
a user goes to the Amazon.com home page, the application calls out to more than
100 services to construct the page.

Mr. Vogels goes on to say that the move from a monolithic two-tier (database and
web application) architecture to a service-oriented approach provides many advan-
tages. These include improvements such as scalability, isolation, and developer own-
ership of production systems. Further, Vogels states that this has led to improved
processes and increased organizational agility to develop new services and features.
Amazon’s service-oriented architecture has enabled the introduction of new applica-
tions and services without requiring reconfiguration of the entire system.

Amazon’s approach to its internal systems has driven and informed the develop-
ment of the Amazon Web Services (AWS) platforms. Every piece of the AWS archi-
tecture is exposed as a web service. Here’s a breakdown of Amazon’s current services:

• S3 (Simple Storage Service)—A service for storing files.
• SQS (Simple Queue Service)—A service-based messaging queue.
• SimpleDB—A scalable service-based database.
• CloudFront—A service-based content delivery network.
• EC2 (Elastic Compute Cloud)—A service for provisioning virtual private servers.

The AWS platform represents an example of low-level system components exposed
through a services layer. A service-oriented design can take advantage of these types of
lower-level components as well as services that operate a little further up the stack that
provide functionality for a specific application. Higher-level services might include a
user system, a comments service, a video transcoding service, and many others.

Service-Oriented Design Versus Service-Oriented
Architecture Versus RESTful-Oriented Architecture
There are many approaches to designing a service-oriented application. This book
takes an approach slightly different than those espoused in Java books on service-
oriented architecture (SOA) or even other books that focus on REST. Within the
community of professionals building service-based systems there is a bit of debate
about the proper use of terminology and what qualifies as best practices.

28 Chapter 2. An Introduction to Service-Oriented Design

1O’Hanlon, Charlene. “A Conversation with Werner Vogels.’’ ACM Queue. Volume 4, Issue 4, May
2006, pp. 14–22. http://queue.acm.org/detail.cfm?id=1142065.

http://queue.acm.org/detail.cfm?id=1142065

SOA has become a loaded term. To many people, it implies the use of tools such
as SOAP, WSDL, WS-*, or XML-RPC. This implication is why the title of this book
uses the word design as opposed to architecture. Even so, this book does focus on archi-
tecture. The real goal of service-oriented design is to create simple and agile services lay-
ers that can be consumed without the use of generators or strict schemas. In this regard,
the style in this book is more in line with REST-based web services than with SOA.

In the book RESTful Web Services,2 Leonard Richardson and Sam Ruby discuss
the details for a concept they call resource-oriented architecture (ROA). ROA repre-
sents their approach for HTTP-based RESTful design and architecture. Richardson
and Ruby lay out the concepts of resources, URIs, representations, and links. They
also state that ROA has properties of addressability, statelessness, and connectedness,
as well as a uniform interface. When it comes to the design of specific services, this
book follows Richardson and Ruby’s guidelines. (The appendix, “RESTful Primer,’’
provides an overview of REST.)

The real difference between the focus of this book and that of RESTful Web Ser-
vices lies in the interaction points—that is, how services interact with each other to
create a complete working application. The focus of this book is on internal services
instead of external ones. While some of an application’s services can be exposed to
external consumers, their real purpose is to serve other developers working within a
single organization. In this regard, this book has more similarity to what one would
commonly refer to as SOA. This book also includes a more specific focus on deploy-
ing and developing with Rails, Sinatra, and other Ruby libraries and tools.

Of course, SOA, ROA, and RESTful are all meant as guidelines. In the real world,
it makes sense to flex a design with the needs of the application rather than adhere to
the dogma of a prescribed approach such as REST or SOA. This book takes a prag-
matist’s view and focuses on what these things mean for a Ruby environment that uses
services as part of the core infrastructure for delivering an application or a web page
to a user.

Making the Case for Service-Oriented Design
Service-oriented design can appear daunting and complex. It requires more thought
up front and decisions about how to separate logic and data in an application. For
Rails developers, the idea of designing a complex system ahead of development may

29Making the Case for Service-Oriented Design

2Richardson, Leonard, and Ruby, Sam. RESTful Web Services. Sebastopol, CA: O’Reilly, 2007.

seem like heresy. One of the biggest advantages of Rails is the ability to quickly add a
few models to an application and see results immediately. The Rails development style
is all about quick iterations.

However, there’s more to the story. Up-front design and services give developers
the ability to build apps that support greater complexity and larger team sizes. Service-
oriented systems sacrifice iteration speed for stability, reuse, and robustness. The key
to pairing Rails applications with services is to use Rails for its strengths and switch
over to services when a more stable approach is required. A perfect example of this
involves creating a new application. Most new applications have many unknowns in
terms of exactly what features will be supported and how popular portions of the
application will be (thus informing their need for scale). In the early stages, it is best
to use the normal Rails tool set. However, as parts of an application mature, their
interfaces and requirements become more concrete. These are the sections that can
gain the most from services. Utilizing services is best for sections of an application
that have stable, well-defined, and well-understood requirements. The following sec-
tions discuss the advantages of using services rather than using a typical monolithic
application.

Isolation
Many of the benefits of a service-oriented design stem from the concept of isolation. Iso-
lation makes a service much easier to manage and optimize. Isolated components can be
tested separately from other parts of an application. Using isolated components provides
an easy way of organizing larger teams. Developers can focus on isolated components.
Optimally, this refers to a service running on its own systems, with self-contained busi-
ness logic and a self-contained data store. The separation of a service from other areas
of an application enables increased testability and code reuse. There are multiple levels
of isolation, including business logic, shared system, and full isolation.

Business Logic Isolation

Services that isolate based on business logic generally have their own application code,
with a shared data store and shared systems. From an organizational perspective, this
can be advantageous because the business logic for parts of the system is contained in
one place, without leaking into other sections of the application code base. Separation
of business logic makes it easier to segment a larger group of workers into teams that
can work separately. Services isolated on business logic can share data sources with

30 Chapter 2. An Introduction to Service-Oriented Design

other systems. Generally, this is more common within a legacy system where multiple
services must interface with the same database.

Figure 2.1 shows what business logic isolation might look like for the interactions
between separate components. The application servers would probably reside on the
same physical server, with the database on another. To achieve true business logic

31Making the Case for Service-Oriented Design

Figure 2.1 Services with separate business logic and a shared database.

Rails Application

Service A Service B

DB

isolation, the two services should have separate code bases. Further, they should not
communicate with each other through the database. It’s too easy to bleed business
logic from the two services together through the shared database. Ideally, using serv-
ices would achieve better isolation. However, for the purposes of migrating existing
Rails applications to services, the shared database approach may be necessary in the
early stages.

The business logic can be isolated through the use of two services, which share a
database. The Rails application can still sit on top of those services. In the Rails MVC
view of the world, these services occupy the Model level of the stack. The controllers
and views can still be contained within the Rails application.

Shared System Isolation

Shared system isolation refers to separate services running inside their own application
instances. This is like multiple Rails applications or Sinatra services running in Pas-
senger or multiple Mongrels on the same system. Each would have its own databases,
but they would be running on the same hardware. This type of system provides clean
separation of business logic and data layers that is ideal. However, it changes your scal-
ing strategy because of the shared system resources.

Figure 2.2 shows the interaction for two services that implement a shared system
level of isolation. The difference between this separation and the business logic isola-
tion just discussed is the separation of the databases. Now, each of the services com-
municates only with its own database and the external interface of the other service.
A typical configuration would have the two databases actually residing on the same
database server and the two services running on the same application server. A shared
hosting environment is an example of this kind of setup. However, with shared host-
ing, the two services are actually two different customer applications that have noth-
ing to do with each other.

The disadvantage with shared system isolation is that shared system resources can
be tricky to manage. Further, shared system isolation adds complexity with upgrading
libraries or running other system-level applications. Thus, improvements to shared
system services require testing against other services when making system changes.

Full Isolation

Ideally, services should run in full isolation. With full isolation, they have their own
server or virtual private server instances, completely separate code bases and reposito-
ries, and their own data stores. Over time, a system could phase from one form of

32 Chapter 2. An Introduction to Service-Oriented Design

33Making the Case for Service-Oriented Design

Figure 2.2 Shared systems with isolated services.

Server

Server

Rails Application

Service A Service B

DB DB

isolation to another. Migrating from a typical monolithic Rails application could start
with a migration to a shared database and systems, then to isolated databases, and
finally to completely isolated systems.

Testing in Isolation

Within the framework of testing, isolation provides the advantage of having a single
testable interface. A public service API can be checked and agreed upon. Changes
within the service need not affect how the API responds to commands. The testing of
a service’s interface is very much like unit or model testing within a Rails application.
The only difference is that the callable methods are HTTP methods that can be called
by any application. All the details of the business logic and how data is stored or opti-
mized are hidden behind the service interface.

The big advantage isolation provides with regard to testing is in the time required
to run the test suite. Rails developers working on mature projects with large code bases
routinely have to wait longer than 15 minutes for their test suites to run to comple-
tion. In fact, it’s not entirely uncommon for some teams to work with large code bases
that take longer than 40 minutes to run their entire suite of tests. This becomes a
major problem when you want to change something small. After even a small change,
the full suite of tests must be run to ensure that the change didn’t break anything.

With isolated application components, testing to make sure other parts of an
application are functioning properly becomes a much smaller problem. For example,
consider an application code base that takes 20 minutes to run the full suite of tests.
Then break that application into four fairly evenly sized, separate, isolated compo-
nents. Now the test time for a single change to one of these components is cut down
to one-fourth of what was previously needed. If a change is made to one of the new
components, it isn’t necessary to run the test suite for everything. Only the tests for
the single component need to be run, and in this example, that would take roughly
5 minutes rather than 20. As long as the public-facing interface for the component is
well tested, changes can be deployed without concern that the other three-fourths of
the application still works. Of course, if the API of a service changes, then each con-
sumer must be tested to ensure proper operation.

Robustness
Services that are well designed provide an application with a robust architecture. That
is, the architecture is able to withstand stress on the system and changes in the oper-
ating environment without loss of functionality. The underlying environment in
which services run can change while a service continues to operate without the serv-
ice consumers having any knowledge of these changes.

For those familiar with object-oriented design, the robustness advantages of serv-
ices may sound similar to the advantages of encapsulation. Indeed, with services, the

34 Chapter 2. An Introduction to Service-Oriented Design

aim is to achieve encapsulation for entire sections of an application. In object-oriented
design, encapsulation means that the underlying implementation can be changed
without the API consumer’s knowledge. For services, such changes can include code
changes and more drastic changes, such as moving to a different type of database.

For example, consider a user management service. To start with, it includes only
basic functionality, such as a user model, authentication, profile data, and a light-
weight social network (where people can be friend each other). The initial implemen-
tation could use ActiveRecord and a MySQL database. As the load on the service picks
up, it starts to outgrow the limits of the regular SQL solution. Because there is a clearly
defined services interface, this can be modified without a single change to the rest of
the application.

Switching underlying data stores could go something like this: After some hand
wringing and careful research, you might decide to move the user data to some
NoSQL data store, such as CouchDB, Redis, or MongoDB. First, you would update
the implementation to use the new data store, along with migration scripts to move
the data from MySQL to the new NoSQL database. Once a new server or two or three
have been set up, you could migrate the code and data. When this migration is com-
plete, the other sections of the application are still able to access the user management
service without ever knowing about the complete change of the underlying data store.

Scalability
Experienced Rails developers tend to roll their eyes when people mention scalability.
People outside the Rails community advise against using Rails because they say it isn’t
scalable. Meanwhile, Rails developers know that Rails itself isn’t the problem. While
it’s true that scalability in general is difficult, the problem usually comes down to
the database. A services approach provides more tools and ability to deal with scal-
ing. Specifically, using services makes it easy to scale portions of an application indi-
vidually. Data can be split across services, and the performance under load can be
optimized for each service.

A partitioned data strategy is part of service-oriented system design. When fully
isolating services, you need to make decisions about putting data in one service or
another. Once data has been partitioned, changes can be made to the individual serv-
ices based on their scaling needs. While one service may need to optimize for data
writes, another may optimize for many reads. The advantage of a good service design
is that these needs can be handled on a case-by-case basis instead of requiring
optimization of a single database for all cases.

35Making the Case for Service-Oriented Design

Services also make it easier to scale team size. When a programming team is larger
than six people, it gets hard to coordinate changes in an application. One developer’s
change may step on another’s. Further, as the code base of the application gets larger,
it gets harder to introduce new developers to the system as a whole. When an appli-
cation is split into services, developers can be assigned to a specific service or two.
Thus, they need to be familiar only with their section of the application, and the
working groups can remain small.

Finally, using services makes it easier to scale the absolute size of an application in
terms of the code base. Larger applications have too much code for anyone to be
familiar with it all at any given time. In addition, their tests take longer to run. For
example, when developing Rails applications, a developer doesn’t usually have to dig
into the Rails code base. Rails provides a layer of abstraction that doesn’t often need
to be penetrated. Services can provide this same layer of abstraction for code and for
actual production systems.

Agility
When thinking about complex architectures, agility is not the word that comes to
mind. However, properly designed services can be far more agile than monolithic
applications. Changes to the underlying nature of the services can be made without
concern for the rest of the application. The pains of deployment can also be eased
because deployments don’t require the entire application to be updated with each
change.

The ability to change underlying service implementations without affecting the
rest of the application provides implementation agility. Switching databases or chang-
ing message queues or even changing languages can be done without worrying about
the rest of the system. This kind of agility is often overlooked in the Rails community,
but it becomes a huge asset to applications that mature over a period of years.
Using services allows for changing or updating underlying libraries without having
to dig through every part of the application code base to make sure everything is
still working as expected.

In the Ruby community, a good example of an advantage offered by services is the
planning for migration to Ruby 1.9. Services provide greater agility in making these
kinds of updates. Services can be upgraded to 1.9 as the libraries they use are confirmed
to work. Thus, services can take a phased approach to upgrading to use Ruby 1.9 and
take advantage of its features.

36 Chapter 2. An Introduction to Service-Oriented Design

One of the keys to maintaining agility in a service environment is proper ver-
sioning. Each service interface should be versioned when an update includes a break-
ing change. As long as the design includes the ability to run multiple versions of a
service simultaneously, it’s possible to keep somewhat agile with respect to interface
changes. If an update to the service API is additive—that is, it doesn’t change existing
calls and only adds new functionality—the service can remain at the same version.

Interoperability
For large heterogeneous environments, interoperability is an important requirement.
When working with multiple languages or interface with legacy databases, legacy sys-
tems, or external vendors, using services is a great way to connect with these systems.
Web-based interfaces to these systems can provide the ability to flex with changes
without breaking sections of an application. The HTTP interface also prevents being
tied to a specific messaging implementation that might otherwise be used to commu-
nicate with these systems. Services ease interoperation with internal and external
systems and with systems written in languages other than Ruby.

Internal interoperability refers to interfacing with systems written in different lan-
guages within an environment. Some of these systems already expose their functional-
ity through a web API. Apache Solr, a Java-based indexing and search server, is a great
example of a system that provides a service interface. By interacting with this interface,
Ruby developers can take advantage of all the work done on this project without hav-
ing to call into the Java code directly by using something like JRuby. The Solr interface
is usually called by other services and applications within an environment.

External interoperability refers to the need to interface with external systems such
as those from vendors. Many external services also provide a web-based interface for
their customers. Examples include SimpleDB, SQS, SalesForce, Github, Lighthouse,
Twitter, Facebook, and countless others. Writing clean, performant Ruby client
libraries is key to bringing these services into an application. Writing client libraries is
covered in detail in Chapter 6, “Connecting to Services,’’ and Chapter 7, “Develop-
ing Service Client Libraries.’’

Environments with multiple languages in use benefit from the use of HTTP-
based services. While Ruby is a great programming language, it isn’t always the best
tool for every job. If a section of an application would benefit from being imple-
mented in Erlang, Scala, or even Java, HTTP services can provide the message bus for
interaction between these disparate setups.

37Making the Case for Service-Oriented Design

Reuse
After a service has been developed and deployed, it can be reused across the entire sys-
tem. The argument for reuse is strongest in environments where multiple applications
have common shared functionality, such as consultancies and large corporate envi-
ronments that develop multiple internal applications for different users.

Consultancies that develop and host applications for their clients could reuse serv-
ices. Currently, the most common model of code reuse across these applications is
through the development of plug-ins or gems. Specific examples include user authen-
tication, tagging systems, commenting systems, and searching. However, many of
these could be developed and deployed as services. One of the possible gains to taking
the service approach is the reuse of system resources across all clients. For example, a
user management system could be implemented as a service (as in the example in
Chapter 1, “Implementing and Consuming Your First Service’’). This system could
then be used across all client systems. If this is repeated for other shared functionality,
new applications will have to implement and deploy only anything that is custom to
their environment.

Providing public-facing APIs is another area where the services used to build a sys-
tem internally can be reused. If services are created for internal use, they can be
exposed later for general use. The popularity of the Twitter API shows that it can be
advantageous to expose parts of an application through a RESTful HTTP interface.
With the services approach, exposing application functionality to the outside world
becomes as easy as simply opening up an already existing internal API to the public.

Conclusion
Hopefully, this introduction has whetted your appetite for exploring the service-
oriented approach covered in this book. The extra design work and communication
overhead of creating and using multiple services takes a little more effort than creat-
ing a typical Rails application. However, the benefits of a service-oriented design can
far outweigh the costs associated with inter service communication and more up-front
design.

Here’s a quick recap of the benefits of service-oriented design:

• Isolation—Robustness, scalability, and improved testing strategies all stem from
the concept of isolation. Isolation gives an application architecture many of the
advantages that encapsulation provides in object-oriented design.

38 Chapter 2. An Introduction to Service-Oriented Design

• Robustness—Services are robust because their underlying implementation can
change with shifting load requirements, libraries, and languages without detri-
ment to the rest of the application.

• Scalability—When using services, you need to think up front about how to sep-
arate data and manage interaction. This partitioning of logic and data provides
the ability to scale the size of the code base and team in addition to the number
of requests to process.

• Agility—Upgrades to underlying system components are easier with services.
Further, new versions of existing services and completely new services can be
implemented outside the full architecture. This can provide much-needed agility
for mature code bases where changes are typically expensive to verify with the rest
of an app.

• Interoperability—Using HTTP-based services is a great way to expose the
functionality of legacy applications or external vendors.

• Reuse—Service-oriented design enables reuse of components across multiple
applications or clients.

39Conclusion

Numbers

1xx, HTTP status code, 275
2xx, HTTP status code, 275
3xx, HTTP status code, 275
4xx, HTTP status code, 275
5xx, HTTP status code, 275
200 -OK, HTTP status code, 68
201 -Created, HTTP status code, 69
202 -Accepted, HTTP status code, 69
304- Not Modified, HTTP status code, 69,

164–165
400 errors, 72, 118
401 Unauthorized error response, 72
404 Not Found error response, 72
405 Method Not Allowed error

response, 72
406 Not Acceptable error response, 72
409 Conflict error response, 72

A

Accept headers
406 Not Acceptable error response and, 72

defining routes for service with Rails 3, 90
using for versioning, 65–66

access authorization screen,
OAuth, 248

access key ID, AWS, 182, 192
access token, OAuth

consuming data from external services,
251–252

implementing, 249
pushing data into external service,

253–254
ActiveModel library

overview of, 132
serialization, 134–136
validations, 132–134

ActiveSupport library, 134–136
activity model, Rails social feed reader, 48–49
activity streams, Rails social feed reader

features, 46
addressability, URIs and, 266
after_create

creating subscription activities with, 51
initiating tasks or callbacks, 238
Memcached time-based

expiration, 160
after_save callback, 238
after_validation callback, 238

277

Index

agility
achieving with REST. See REST

(Representational State Transfer)
defined, 39
of service-oriented design, 36–37
SOA increasing organizational, 28

AJAX widget, 254
algorithms, load balancing, 148–152
Amazon Web Services. See AWS (Amazon

Web Services)
AMQP (Advanced Message Queuing

Protocol)
client library, 224–227
defined, 217
RabbitMQ and. See RabbitMQ and

AMQP
AMQP.start, AMQP client, 225
Apache Commons HTTPClient library, 117
Apache web server

SSL encryption for, 210
URI length limit in, 82

API (application programming interfaces).
See also service and API design

data is, in messaging systems, 234–236
design guidelines, 85–86
designing multi-get requests, 81–82
designing service interface, 82–85
overview of, 79–81

architectural constraints, REST as set of,
263–264

architectural elements, REST, 265
architectural views, REST, 265
asterisk (*) wildcard operator, AMQP topic

exchanges, 220–223
asynchronous communications

messaging creating more robust, 215
in RabbitMQ with EventMachine, 224
synchronous vs., 216–217
using queues for messaging in, 217

asynchronous I/O, 108–109
asynchronous writes

field value checking and, 232
overview of, 227–230

Atom feeds, 50, 239
atomic APIs, 75–76
attributes method, ActiveModel

serialization, 134
attributes= method, ActiveModel

serialization, 134–136
authentication

defined, 185
HTTP, 186–187
and message signing, 187
and message signing, public/private key

pairs, 192–196
and message signing, shared secrets with

HMAC, 187–192
and message signing, what to sign, 197
OAuth for. See OAuth
overview of, 185–186
for Rails applications, 199–200
SSL certificates for, 198–199

Authlogic, 10
authorization

defined, 185
firewalls, 201–203
overview of, 201
RBAC, 203–209

availability
CAP theorem and, 231
eventual consistency and, 231–232

AWS (Amazon Web Services)
access key ID/secret authorization, 192
development of, 28
parsing XML with EC2 Query API,

168–174
service-oriented design of, 27–28
SOAP requests, 180–184
WSDL in, 178–180

B

backend processes, and load balancing
least-connections, 150–151
overview of, 148

278 Index

round-robin, 149–150
URI-based, 151–152

background processes
current Rails social feed reader setup, 46
with Delayed Job, 43–44
full Rails deployment with, 44–45
simple Rails deployment with, 41–43

before_save callback, 238
before_validation callback, 238
belongs_to relationships, Rails social feed

reader
activity model, 48–49
comment model, 53
entry model, 51
follow model, 49–50
subscription model, 51
vote model, 52

BERT-RPC messaging standard, 216
bindings, AMQP

direct exchanges with, 219
exchanges copying messages to all queues

with, 219
fanout exchanges with, 220
topic exchanges with, 220–223
using AMQP client, 225

blocking I/O, 107–109
browsers, URI length limits of, 82
Bundler, 124
Bunny client library, 226–227
business logic isolation, service-oriented

design, 30–32

C

cacert.pem, SSL authentication, 198
cache constraint, REST design, 264
Cache-Control header, expiration-based

caching, 162
Cache-Control: public, HTTP cache

header, 69
cache hit ratios, 152
cache keys, generational, 160–161

caching
with Bundler, 124
defined, 147, 155
expiration-based, 158–160, 162–163
headers for service APIs, 69
highest level joins and, 74–75
with HTTP. See HTTP caching
with Memcached. See Memcached
multi-get APIs and, 77
partitioning services on read/write

frequencies, 62
call depth, 75
Callable interface, 116
callbacks

overview of, 238
web hook. See web hooks

canonicalized_params, message
signing, 197

CAP (consistency, availability, and partition
tolerance) theorem, 230–234

capacity, 147–148
case study

conclusion, 58
converting to services, 54–58
typical Rails application, 41–45

case study, Rails social feed reader
application, 45–54

activity model, 48–49
comment model, 53–54
current setup overview, 46
entry model, 51–52
features, 46
feed model, 50
follow model, 49–50
overview of, 45
subscription model, 51
user model, 47–48
vote model, 52–53

certificates, SSL. See SSL certificates
client libraries

AMQP client, 224–226
Apache Commons HTTPClient

library, 117

279Index

Bunny client, 226–227
memcache-client, 156–158
parsing XML, 167
reactor, 108
working with SOAP in Ruby, 177
yajl-ruby. See yajl-ruby library

client libraries, developing for services
with ActiveModel, 132–136
with ActiveSupport, 134–136
connecting to services. See connection

and request logic, client libraries
mock, stubs, and tests, 143–146
overview of, 123
packaging, 123–127
parsing logic, 127–131
summary review, 146

client library implementation
creating user, 21–22
defined, 18
destroying user, 24
finding user, 18–21
updating user, 22–23
verifying user, 24–26

client/server constraint, REST design, 264
client.rb file

implementing User.create, 22
implementing User.destroy, 24
implementing User.find, 20
implementing User.login, 25–26
implementing User.update, 23

client_spec.rb file
spec’ing User.create, 21–22
spec’ing User.find, 19–20
spec’ing User.login, 25
spec’ing User.update, 23

CloudFront, Amazon Web Services, 28
code base, developing Rails in single, 41
code-on-demand constraint, REST

design, 264
code, scalability of service-oriented design

and, 36
comment model, 53–54

comments
activity model, 49
features of, 46
partitioning on logical function, 62
reuse of services for, 38
successful response bodies for, 70–71
URIs and interface design, 67
user model, 48

components, as REST architectural
elements, 265

config.ru file
accessing RBAC with Rack adapter,

208–209
implementing Rack: :Throttle,

260–261
Sinatra directory structure, 95–96
user service implementation, 5

confirmation page, OAuth consumer
registration, 247

CONNECT method, 268
connecting to services, 107–121

blocking I/O, threading and parallelism,
107–109

client libraries, 136–143
handling error conditions, 118–119
with JRuby, 115–117
logging for performance, 117–118
with multi-threaded requests, 113–115
overview of, 107
requests in development environments,

121
summary review, 121
testing and mocking service calls,

119–120
with Typhoeus, 109–113

connection and request logic, client
libraries

overview of, 136
performing data reads, 136–142
performing data writes, 142–143

connector view, REST, 265
connectors, RESTful web services design, 265

280 Index

consistency
CAP theorem and, 231
designing around eventual, 232–234
eventual, 231–232

constraints, architectural. See REST
(Representational State Transfer)

consumers, AMQP
AMQP client library, 224–226
Bunny client library, 227
function of, 218
message acknowledgements, 224
pushing messages to, 224
saving persistent messages until pushed

off to, 223
consumers, OAuth, 246–249
consuming data, from external services,

251–252
continuous integration servers, web hooks

utilized by, 240–241
controllers

breaking up into services, 55–58
current setup, 46
implementing services with Rails, 90–95
partitioning on logical function, 62
quick iterations and, 60

counter caches
comment model, Rails social feed reader,

52–53
customizing in Rack: :Throttle,

260–261
vote model, Rails social feed reader using,

52–53
credentials

encryption preventing attack on, 213
implementing HTTP authentication,

186–187
implementing user verification, 17
Twitter OAuth consumer application, 247
verification of user, 16–17, 24–25

CRUD (create, update, delete) operations
service requirements, 2
URIs and interface design, 67

cryptographic hashes, for signed
messages, 187

CSS selectors, Nokogiri support for,
174–177

Curb library, 107
curl commands, implementing RBAC, 209

D

data elements, RESTful architecture, 265
data models. See models
data reads, performing

developing client libraries, 136–142
routing through messaging system, 227

data stores, using write exchange, 228
data view, REST, 265
data writes, performing

in eventually consistent system, 231–234
service client libraries and, 142–143
through RESTful HTTP services,

227–230
database server

shared system isolation and, 32
simple Rails deployment, 41–42

Delayed Job, 42–44
DELETE method

client library implementation, 24
as idempotent action, 245
as idempotent method, 268–269
implementing HMAC signing, 189
RESTful services design utilizing, 271
single requests in Typhoeus, 111
in URIs and interface design, 67
user service implementation, 15–16

delete method, Sinatra, 16
denormalization, Rails social feed reader

activity model, 48–49
migrating model to, 87
minimizing joins with, 64
service-oriented design vs., 34–35

281Index

dependencies, managing with Bundler, 124
deployment, service-oriented design

for, 36
desktop applications, authentication. See

OAuth
destroying user, client library

implementation, 24
development environments, requests in, 121
direct exchanges, RabbitMQ and AMQP,

218–220
directory structure

Rack, 100
service client libraries, 123–127
Sinatra, 95–96

Distributed Ruby (DRb), 216
down votes, Rails social feed reader,

52–53
DRb (Distributed Ruby), 216
durability, RabbitMQ and AMQP, 223

E

EC2 (Elastic Compute Cloud), AWS, 28
Edge side includes (ESI), 56–58
email notifications, Rails social feed reader,

46, 61
encapsulation

adding to underlying model over
time, 88

parsing JSON in Ruby, 131
encryption

defined, 185
overview of, 209–210
public/private keys for, 210–213
SSL for, 210

entitystore, Rack-Cache gateway
cache, 166

Entry class, ReadingList service, 141
entry model, Rails social feed reader,

51–52
env variable, Rack, 106

:environment task, implementing user
service, 6

Ernie, messaging standard, 216
error responses

handling general data, 118–119
handling with PUT method, 15
implementing service with Rails controller

code, 93–94
service API standards for, 72–73

ESI (Edge side includes), 56–58
ETag header, HTTP, 69, 163–165
EventMachine, 108, 224–226
eventual consistency, 231–234
exchanges, RabbitMQ and AMQP

direct exchanges, 218–220
durable, 223
fanout exchanges, 220
overview of, 218
topic exchanges, 220–223

Executors class, 116
expiration-based caching
Expires header, HTTP, 69
HTTP, 162–163
manual, with Memcached, 159–160
time-based, with Memcached, 158–159

exponential backoff, for callback
receivers, 245

external interoperability, service-oriented
design, 37

external services
authenticating with OAuth, 245–251
consuming data, 251–252
dealing with failure, 244–245
ensuring performance and reliability,

258–261
overview of, 237
pushing data, 253–254
request lifecycle, 254
summary review, 261
worker processes, 254–258
working with web hooks. See web

hooks

282 Index

F

failover
load balancing ensuring, 148
request lifecycle of external services and, 254
round-robin load balancer providing, 149

FakeWeb, 120
fanout exchanges, RabbitMQ and

AMQP, 220
feed-crawling system, Rails, 68
feed model, Rails, 50, 60
field operations, messaging systems,

234–236
field value checking, in eventually

consistent system, 232
Fielding, Roy, 263–265, 270–271
FIFO (first-in, first-out) data

structure, 217
files structure, service client libraries,

123–127
Firefox, URI length limit of, 82
firewalls, 201–203
first-in, first-out (FIFO) data

structure, 217
follow model, Rails social feed reader,

49–50, 67
formats

message, 217
for resources, as representations,

267–268
from_xml method, parsing XML, 172–173,

175–176
full isolation, service-oriented design,

32–33
Future class, 116–117

G

.gem files, 124, 127
gem install command

ActiveRecord, 3
building/deploying library with

RubyGems, 127
JSON Ruby, 4
Typhoeus, 4

gemcutter gems, installing Jeweler, 125
gems

creating with gemspec file, 124
creating with Jeweler, 124–125
parsing JSON in Ruby with JSON,

128–129
performing data reads, 136–142
reusing services with, 38

gemspec file, Jeweler, 124
Gem::Specification documentation

page, 124
GenerateKeys

encryption with public/private key
pairs, 211

public/private key pairs for RSA
authentication, 193–194

generational cache keys, Memcached,
160–161

GET method
atomic APIs and, 76
HEAD method vs., 271
in HMAC signing, 189
as idempotent action, 245
as idempotent method, 268
multi-get APIs and, 76–77, 81–82
in Rails controller code, 94
in ReadingList service, 140
in requests in Typhoeus, 111–112
RESTful services design

utilizing, 269
as safe method, 268
in URIs and interface design, 67–68
user service implementation, 6–11

git gems, Jeweler, 125
Github, 240–242
global interpreter lock (GIL), 109, 113
Google Gmail, 254

283Index

H

Handsoap library, 177
HAProxy load balancer, 153–155
hardware load balancers, 152–155
Hash-based Message Authentication Code

(HMAC) signing, 180–184,
187–192

has_many relationships, Rail social feed
reader

entry model, 51
feed model, 50
user model, 47

has_many: through relationship, user
model, 47–48

HEAD method
as idempotent method, 245, 268
rare use of, 268
RESTful services design utilizing, 271
as safe method, 268

headers, HTTP, 271–274
highest level, joining at, 74–75
HMAC (Hash-based Message

Authentication Code) signing,
180–184, 187–192

HMAC::SHA256 signer, 189
HmacSignature, 189–191
HOOK: INCOMING TRAFFIC, firewalls, 202
host object, data reads, 137–138
Hpricot, 174
.html file, sepcifying representations, 267
HTTP authentication, 186–187
HTTP-based services, 1–2
HTTP caching

expiration-based, 162–163
HTTP-based data reads, 227
implementing with Rack-Cache, 165–166
implementing with Squid and

Varnish, 166
overview of, 162
validation-based, 163–165

HTTP headers, RESTful services design,
271–274

HTTP libraries
defined, 4
as message transport protocol in SOA, 215
service API standards for responses,

68–73
service interface design methods, 82–85
Typhoeus as preferred, 21

HTTP methods, RESTful services design,
268–271

HTTP requests
in development environments, 121
logging for performance, 117–118
multiple-threaded, 113–115
in parallel with JRuby, 115–117
services responding to, 1
Typhoeus simultaneous, 111–113
Typhoeus single, 109–111

HTTP status codes
RESTful services design, 274–275
service API standards for errors, 72,

93–94, 117–118
service API standards for successful

responses, 68–69, 94
hybrid system, designing application as,

60–61
hydra class

defined, 137
logging for performance, 117–118
making single requests, 109–110
performing data reads, 137–139
pushing data into external service,

253–254

I

idempotent methods
defined, 245
overview of, 268–269

284 Index

info routing key, AMQP direct
exchanges, 220

integration servers, web hooks utilized by,
240–242

Integrity integration server, 240
interface design, and URIs, 66–68
internal interoperability, service-oriented

design, 37
Internet Explorer, URI length limit of, 82
interoperability

achieving with REST. See REST
(Representational State Transfer)

service-oriented design and, 37, 39
invalid credentials, testing for, 17
invalidation, cache, 158–161
IP addresses, and firewalls, 201–203
iprange filter, firewalls, 202
iptables, firewalls, 201–202
iptables-restore command, firewalls, 203
iptables-save command, firewalls, 203
isolation

achieving with REST. See REST
(Representational State Transfer)

business logic, 30–32
full, 32–33
service-oriented design and, 38
shared system, 32
testing in, 34

iteration speed, partitioning services on,
60–61

J

Jeweler, 123–126
jeweler-help command, 125
jgem command, 128–129
joins

call depth issues, 75
at highest level, 74–75
overview of, 73

partitioning services by minimizing,
63–64

performing data reads, 137
storing references, 73–74
URIs and interface design, 67

JRuby
connecting to services, 115–117
installing JSON gem on, 128
Nokogiri compatibility with, 174
running requests in parallel with,

115–117
using kernel-level threads, 109

JSON
ActiveModel serialization module for,

134–136
implementing service with Sinatra, 96–100
overview of, 3–4
parsing in request body, 94
parsing in Ruby. See parsing JSON in

Ruby
parsing with yajl-ruby library, 94
serialization standard, 216
spec’ing POST user, 12

.json file, sepcifying representations, 267
JSON.parse call, 129

K

key/value stores, Memcached, 156

L

languages
interoperability of service-oriented

design, 37
specifying for representation of resources,

267–268
Last-Modified header, HTTP caching, 69,

163–165

285Index

latency
caching increasing, 155
least-connections load balancer

improving, 150
load balancing maintaining, 148
overview of, 147–148

layered system constraint, REST design, 264
least-connections load balancers, 150–151
least-recently used (LRU) eviction

algorithm, 160–161
legacy services. See parsing XML, for legacy

services
libcurl, 4, 109
libcurl-multi libraries, 4, 109
libraries. See client libraries
libxml library, installing Nokogiri, 174
LibXml-Ruby, 174
libxslt library, installing Nokogiri, 174
LimitRequestLine directive, Apache, 82
load balancing

defined, 147
implementing, 152–155
least-connections, 150–151
overview of, 148
round-robin, 149–150
URI-based, 151–152

lock service, enforcing uniqueness, 233
logging

handling error conditions, 118
for performance, 117–118
using AMQP client, 225

logical function, partitioning on, 61–62
lower-level services, partitioning, 61–62
LRU (least-recently used) eviction

algorithm, 160–161

M

man-in-the-middle attacks, preventing,
187, 209–210

manual expiration, Memcached, 159–160

mapping, Ruby objects with ActiveRecord, 3
Marshal module, memcache-client library,

157–158
memcache-client library, 156–158
Memcached, 155–161

deploying Rails with background
processes, 44–45

generational cache keys, 160–161
manual expiration, 159–160
Memcached client and ActiveRecord,

156–158
overview of, 155–156
time-based expiration, 158–159

memory, caching objects in. See
Memcached

message signing
authentication using, 187
public/private key pairs with RSA,

192–196
shared secrets with HMAC, 187–192
what to sign, 197

messaging, 215–236
benefits of signing, 185
CAP theorem and, 230–234
creating systems tolerant of usage spikes, 143
data as API, 234–236
formats, 217
moving outside request life cycle with,

243–244
queues, 217
RabbitMQ and AMQP. See RabbitMQ

and AMQP
summary review, 236
synchronous vs. asynchronous, 216–217,

227–230
understanding, 215–216

metastore option, Rack-Cache, 166
methods, HTTP, 268–271
metrics, performance of services, 259–260
migration. See also Rails social feed reader

application
agility of service-oriented design for, 36
creating user model with, 9–10

286 Index

MIME types, indicating service versions,
65–66

mocking
service calls, 119–120
service client libraries, 143–146

model file, 9–10
models

breaking up into into services, 55–58
creating user model, 47–48
current setup, 46
implementing services with, 86–88
quick iterations and, 60

mod_ssl, SSL for encryption, 210
Mongrel, HAProxy with, 154–156
monitoring

latency of services, 147
partitioning on logical function, 61

multi-get APIs, 75–77
multi-get requests, 81–82
multi-threaded requests, connecting to

services, 113–115
multiple-model APIs, 77–78
multithreaded I/O, 107–109

N

named scopes, creating models, 86–87
naming conventions

creating gems with Jeweler, 125–126
specifying representation of requested

resources, 267
URIs and, 266

native (kernel-level) threads
achieving parallelism, 108–109
thread pools for, 115

NeverBlock library, 108
next page functionality

creating pagination, 94
implementing services, 91–92, 97–98,

103–104
performing data reads, 140

Nginx web server
enabling SSL for encryption, 210
URI length limit of, 82

Nokogiri, 167
notifications, receiving, 228–230
notify exchange, messaging-based writes,

228–230

O

OAuth
consuming data from external services,

251–252
implementing consumer, 246–249
implementing provider, 249–251
overview of, 245

object/relational mapper (ORM), 3
objects, JSON, 127–128
on_complete handler

logging for performance, 117–118
ReadingList service, 140–141
simultaneous requests in Typhoeus,

112–113
single requests in Typhoeus, 110

online references
ActiveModel built-in validators, 134
ActiveRecord, 3
Amazon EC2 Query API documentation,

168–170
Amazon’s Product Advertising API, 178
AMQP, 218
AMQP client, 224
Apache Commons HTTPClient library, 117
Bundler, 124
Bunny client library, 226–227
creating gem with gemspec file, 124
Delayed Job, 43
ESI (Edge side includes), 57
EventMachine, 224
Gem::Specification documentation

page, 124

287Index

HTTP request headers, 273
Jeweler, 124–127
JSON, 4, 94
libcurl installation, Typhoeus, 109
libraries for working with SOAP, 177
messaging standards for Ruby, 216
mocking service calls, 120
performing data reads, 137
presenter pattern, 94
PubSubHubbub, 239
Rack: :Throttle, 260
reactor design pattern implementations, 108
receiving web hooks, 240
REST concept, 263
REXML, 170
Rspec, 4
ruby-hmac gem, 187
Ruby on Rails guide to security, 200
Sinatra, 3
Typhoeus, 4
vendor tree, 66
worker processes for servolux

library, 254
WSDL file, 178
XPath, 170
yajl-ruby project, 129

openssl, public/private key pairs, 193
optimistic locking, for uniqueness, 233
optimistic systems, for transactions, 233
OPTIONS method

rare use of, 268
RESTful services design utilizing, 271

ORM (object/relational mapper), 3

P

packaging library
organizing structure of files and

directories, 123–126
with RubyGems, 127

parallel request method, atomic APIs, 76

parallelism
with asynchronous I/O, 108
for data read requests, 136
with JRuby, 115–117
with multiple-threaded requests, 113–115
with multithreaded I/O, 107–109
overview of, 107–108
with Typhoeus, 109

params hash
implementing GET user, 11
pushing data into external service,

253–254
parsing JSON in Ruby

with JSON gem, 128–129
overview of, 127–128
wrapping parsed results, 130–131
yajl-ruby library, 94, 129–130

parsing XML, for legacy services
summary review, 184
using Nokogiri, 174–177
using REXML, 170–174
writing classes using SOAP calls, 177–184
XML, 167–170

partition tolerance, 231–232
partitioning into separate services

on iteration speed, 60–61
on join frequency, 63–64
on logical function, 61–62
on read/write frequencies, 62–63
scalability of service-oriented design, 35
transactions using, 234

passwords
HTTP authentication, 186–187
user authentication, 185
user verification, 16–18
validating user model, 10

patterns, AMQP topic exchanges messages
based on, 220–223

performance
external services and, 254, 258–261
logging for, 117–118
multiple-threaded requests for, 113–115
persistency slowing, 223

288 Index

RabbitMQ and AMQP, 223
Squid and Varnish benefits, 166
threaded I/O and, 109
typical Rails issues, 45

persistency, RabbitMQ and AMQP, 223
Phusion Passenger load balancer, 153
pings, PubSubHubbub, 239
plugins

RBAC, 203
reuse of services, 38

ports, restricting with firewalls, 202–203
POST body

encryption with public/private key pairs,
210–211

message signing, 197
POST method

designing service interface, 85
HMAC signing, 189
implementing service with multi-get

interface, 81–82
pushing data into external service, 253–254
RESTful services design utilizing, 269
single requests in Typhoeus, 111
URIs and interface design, 67–68
user service implementation, 11–13

post-receive hooks, web hooks, 240–242
pound sign (#) wildcard operator, AMQP

topic exchanges, 220–223
presenter pattern, 94
previous page functionality

creating pagination, 94
implementing services, 91–92, 97–98,

103–104
performing data reads, 140

process view, REST, 265
producer, AMQP, 219
profiles, Rails social feed reader, 46
The Programmable Web, 237
provider, implementing OAuth, 249–251
public-facing APIs, reusing services with, 38
public/private key pairs

for encryption, 210–212
generating with RSA, 192–196

PubSubHubbub, 239
pushing data, into external services, 224,

253–254
PUT method

designing service interface, 85
HMAC signing and, 189
as idempotent action, 245
as idempotent method, 268–269
implementing User.update, 23
RESTful services design utilizing, 269–271
single requests in Typhoeus, 111
URIs and interface design, 67
user service implementation, 13–15

Q

query strings
authentication with, 195
encryption with, 210–213
signing, 197
signing requests using HMAC, 187,

190–191
querying user authentication, RBAC

service, 204–206, 209
queues

acknowledgement in AMQP-based, 245
basic metrics in, 259
messaging, 217
RabbitMQ and AMQP, 218, 223, 225
running multiple-threaded requests in,

114–115
segregating by service, 259
using worker processes, 254–258

quotas, monitoring external services, 260

R

RabbitMQ and AMQP
acknowledgement, 245
client libraries, 224–227

289Index

durability and persistence, 223–224
exchanges and bindings, 218–223
moving work outside request life cycle,

243–244
overview of, 217–218
queues in RabbitMQ, 218

Rack
HTTP authentication in, 186–187
implementing services with, 100–106
Rails and Sinatra built on top of, 79, 95
throttling in, 260

Rack adapter
implementing encryption, 212–213
implementing HMAC signing,

190–192
implementing RBAC, 206–209

Rack-Cache gateway cache, HTTP caching,
165–166

Rack: :Throttle, 260–261
Rack::SignatureValidator, 191–192
rackup file, Rack, 100–106
Rails applications

authentication for, 199–200
implementing service with, 79
implementing service with Sinatra vs., 100
Rails 2.3 routes, 88–89
Rails 3 routes, 89–90
Rails controller code, 90–95
typical, 41–45

Rails social feed reader application
activity model, 48–49
breaking up into services, 54–58
comment model, 53–54
current set up, 46
entry model, 51–52
features, 46
feed model, 50
follow model, 49–50
overview of, 45
segmenting into services, 54
service and API design. See service and

API design

subscription model, 51
summary review, 58
user model, 47–48
vote model, 52–53

ratings
ActiveModel serialization, 135–136
ActiveModel validation, 132–134
data reads, 137
data writes, 142–143
simultaneous requests in Typhoeus, 113

RBAC authorization service
overview of, 203–206
Rack adapter, 206–209

reactor design pattern, 108
read/write frequencies, partitioning services

on, 62–63
read_attribute_for_validation method,

ActiveModel, 133
reading data

logic for, 136–142
from queue in RabbitMQ, 218

ReadingList service, 137–142
recording failures, 245
references, storing joined data, 73–74
registration, OAuth, 246
relationships, Rails social feed reader

comment model, 54
current setup, 46
entry model, 52
feed model, 50
subscription model, 51
user model, 47–48
vote model, 53

reliability, external services, 258–261
replay attacks, preventing, 189
replicated data, minimizing joins with, 64
representation headers, RESTful services

design, 273
representations, REST and, 267–268
request class, 109–110, 116
request headers, RESTful services design,

272–273

290 Index

request lifecycle, external services, 254, 258
request objects, ReadingList service, 142
request signing

authentication and, 187
public/private key pairs with RSA,

192–196
shared secrets with HMAC, 187–192
what to sign, 197

request token, OAuth, 248–249
Request wrapper, Rack, 106
requests, SOAP, 180–184
Resource class, RBAC, 204
resource-oriented architecture (ROA), 29
resources

RBAC roles for, 203–206
REST and, 265–268

response bodies, 70–73
response codes, customizing in Rack:

:Throttle, 262
response headers, RESTful services

design, 274
response object, Typhoeus, 109–110
response time, 147–148
REST (Representational State Transfer)

service versions, 65
sessions as resources in, 17
SOA vs. service-oriented design vs., 28–29
this book focusing on services for, 2
using HTTP APIs for messaging, 215

REST (Representational State Transfer),
understanding

architectural elements, 264–265
architectural views, 265
constraints, 264
HTTP headers, 271–274
HTTP methods, 268–271
HTTP status codes, 274–275
overview of, 263–264
and resources, 265–268
uniform interface of, 268

RESTful Web Services (Richardson and
Ruby), 29

retry logic
designing callback receivers, 245
handling error conditions, 119

reuse, 38–39
Revactor library, 108
REXML, 167, 170–174
ROA (resource-oriented architecture), 29
robust architecture, service-oriented design,

34–35
robustness, 39
RoleBased class, RBAC, 204
roles, RBAC, 203–206
round-robin load balancers, 149–150
routers, exchanges vs., 218
routes, defining for services

Rails 2.3, 88–89
Rails 3, 89–90
Sinatra vs. Rails, 100

routes.rb, 88–90
routing keys, RabbitMQ and AMQP

defined, 218
in direct exchanges, 218–220
in fanout exchanges, 220
modifications to field operations,

235–236
in topic exchanges, 220–223

RSA algorithm, public/private key pairs
with, 192–196

Rspec, testing library, 4
RSS feeds, 50, 239
rssCloud, 239
Ruby bindings to YAJL, 4
ruby-hmac gem, implementing HMAC, 187
Ruby tool set

ActiveRecord, 3
JSON, 3–4
Rspec, 4
Sinatra, 2–3
Typhoeus, 4

RubyGems
building/deploying library, 127
installing memcache-client library, 156–157

291Index

structuring library files/directories,
123–126

run call, Typhoeus, 110

S

safe methods, 268
save method, data writes, 142–143
Savon library, 177–178
Savon:Client object, SOAP requests, 183
Savon:Result object, SOAP requests, 182
scalability

achieving with REST. See REST
(Representational State Transfer)

defined, 39
load balancing allowing, 148
Rails applications issues, 45
round-robin load balancer providing, 149
in service-oriented design, 35–36

searching, reusing services in, 38
security

authentication. See authentication
authorization. See authorization
encryption, 209–213
overview of, 185
password. See passwords
for SOAP requests, 180

segregating queues by service, 259
serialization

ActiveModel, 134–136
as goal of message formats, 216
JSON. See JSON
XML as format for, 167

service and API design, 59–78
API complexity and, 75–78
handling error responses, 72–73
handling joins, 73–75
partitioning on iteration speed, 60–61
partitioning on join frequency, 63–64
partitioning on logical function, 61–62

partitioning on read/write frequencies,
62–63

successful responses, 68–71
summary review, 78
URIs and interface design, 66–68
versioning, 64–66

Service class, 96, 100
service library, 55–58
service-oriented architecture (SOA)

comparing with other design strategies,
28–29

HTTP in, 215
service-oriented design

agility, 36–37
case study. See case study
interoperability, 37
isolation, 30–34
making case for, 29–30
reuse, 38
robustness, 34–35
scalability, 35–36
SOA vs. RESTFUL architecture vs.,

28–29
summary review, 38–39
understanding, 27
uses of, 27–28

service.rb file
implementing DELETE user, 15–16
implementing GET user, 10–11
implementing POST user, 12–13
implementing PUT user, 14–15
implementing service with Sinatra, 96–100
implementing user verification, 17–18
spec’ing User.destroy, 24
spec’ing User.find, 18–20

service.ru file, 100
services

breaking up Rails application into, 54–58
requirements, 2
Ruby tool set, 2–4
segmenting Rails application into, 54
understanding, 1–2

292 Index

services, implementing
API design guidelines, 85–86
creating data models, 86–88
creating full Rails application, 88–95
multi-get interface, 81–82
summary review, 106
using raw Rack interface, 100–106
using Sinatra interface, 95–100
vote interface, 82–85
vote service. See vote service

service_spec.rb file
spec’ing DELETE user, 15
spec’ing GET user, 6–9
spec’ing POST user, 12
spec’ing PUT user, 13
spec’ing user verification, 16

servolux library, worker processes, 254–258
shared key value store, partitioning, 61–62
shared messaging system, partitioning,

61–62
shared secret key, SOAP requests, 182
shared secrets, HMAC signing, 187–192
shared system isolation, service-oriented

design, 32–33
SIGHUP, worker processes, 257–258
signature class, creating HMAC, 188–189
signature_is_valid? HMAC signing, 190
SIGTERM, worker processes, 257–258
Simple Object Access Protocol. See SOAP

(Simple Object Access Protocol)
Simple Queue Service (SQS), Amazon Web

Services, 28, 62
Simple Storage Service (S3), Amazon Web

Services, 28, 62
SimpleDB, AWS, 28
simultaneous HTTP requests, Typhoeus,

111–113
Sinatra

defined, 79, 95
handling RBAC service users/roles, 205–206
implementing services with, 95–100
overview of, 2–3

single HTTP requests, Typhoeus, 109–111
single-table inheritance (STI), 49, 52
SOA (service-oriented architecture)

comparing with other design strategies,
28–29

HTTP in, 215
SOAP (Simple Object Access Protocol)

making requests, 180–184
as messaging format, 215–216
overview of, 177
with WSDL file, 177–180

soap4r library, 177
social feed reader case study. See Rails social

feed reader application
software load balancers, 152–155
specs, user service implementation
DELETE user, 15
GET user, 6–9
POST user, 12
PUT user, 13–14
User.destroy, 24
User.login, 25
verification, 16–17

SQS (Simple Queue Service), Amazon Web
Services, 28, 62

Squid gateway cache, 166
SR/AW (synchronous reads, asynchronous

writes)
field value checking and, 232
HTTP-based reads, 227
messaging-based writes, 227–230
understanding, 227
and value uniqueness, 233

SSL certificates
authentication with, 198–200
encryption with, 210
using basic HTTP authentication

with, 187
stateless constraint, REST design, 264
status codes. See HTTP status codes
status update, Twitter, 253–254
STI (single-table inheritance), 49, 52

293Index

storage service
feed entry, 60–61
requirements, 2

strings, Memcached storing types other
than, 157–158

stubbing, service client libraries, 143–146
subscribe blocks, consumers for Bunny

client library, 227
subscriptions

activity model, 48–49
queues in RabbitMQ, 218, 225
Rails social feed reader, 49, 51
synchronous reads, asynchronous writes

and, 229
user model, 47

successful responses, service API standards,
68–71

synchronous communications, 216–217
synchronous reads, asynchronous writes.

See SR/AW (synchronous reads,
asynchronous writes)

T

tagging systems, reusing services, 38
TCP requests, firewalls, 202
team size

Rails applications issues, 45
scalability of service-oriented design, 36

testing
GET user, 8–9
in isolation, 34
Rails applications, 41
Rspec as preferred library for, 4
service calls, 119–120
service client libraries, 143–146

Thin, HAProxy with, 154
thread pools, 114–117
threading

achieving parallelism with, 108–109

running multiple-threaded requests,
113–115

throttling, monitoring external
services, 260

throughput, 147–148
time-based expiration-based caching,

Memcached, 158–159, 160
time sensitivity, request lifecycle of external

services, 254
time value

HMAC signing in Rack, 191
preventing replay attacks, 189

timestamp_and_signature method, HMAC
signing, 182

tokens
OAuth provider, 249–251
OAuth requests, 248–249

topic exchange, RabbitMQ and AMQP,
220–223, 228

topics, PubSubHubbub, 239
TRACE method, 268
transactions, in eventually consistent

system, 233–234
tweet, pushing data into Twitter,

253–254
TweetSender module, 256–257
Twitter

consuming data, 251–252
open access of, 251
pushing data into, 253–254
request lifecycle, 254
using OAuth authentication, 245–251
worker processes, 254–258

Typhoeus
defined, 109
HTTP authentication, 186
as HTTP library, 4
logging for performance, 117–118
making simultaneous requests, 111–113
making single requests, 109–111
mocking service calls, 119–120
using re-try logic, 118–119

294 Index

U

Unicorn load balancer, 153–155
uniform interface constraint

HTTP headers, 271–274
HTTP methods, 268–271
HTTP status codes, 274–275
in REST design, 264

uniqueness, eventually consistent systems,
232–233

up votes, Rails social feed reader, 52–53
updates, user

agility of service-oriented design for, 36
client library implementation, 23
PUT method for, 13–15

updating service versions, 64–65
URI-based load balancers, 151–152
URIs (uniform resource identifiers)

defining for Sinatra, 100
GET limitation on length of, 82
handling joins, 73–74
interface design and, 66–68
ReadingList service, 140
REST and, 266
service design implementation, 80–81
service interface design, 82–85
service version indicated in, 64–65
specifying representation of requested

resources, 267
spec’ing user verification, 17
successful response bodies and, 70

URLs
messaging, 215
RBAC service implementation, 205

user authentication
HTTP, 186–187
messaging signing for, 185
overview of, 185
for Rails, 199–200
request signing for, 187
reuse of services for, 38

User class, RBAC, 204
user-level threads, 108–109, 113
user login verification, 2
user model

creating, 9–10
Rails social feed reader, 47–48

user name
HTTP authentication, 186–187
implementing user verification, 17–18
as simplest form of user authentication, 185
spec’ing user verification, 16–17

user profiles, 46
user-service directory, 5, 10–11
user service implementation

for authentication, 199–200
deleting user, 15–16
overview of, 5–6
POSTing user, 11–13
PUTing user, 13–15
using GET, 6–11
verifying user, 16–18

User.create, 21–22
User.destroy, 24
User.find, 18–21
User.login, 25–26
user.notify exchange, 229–230
users

client library implementation. See client
library implementation

creating/authorizing roles for, 203–206
/users/:name/authorization, 205
User.update, 23
user.write exchange, 229–230
UUIDs, multi-get, 82

V

valid credentials, testing for, 17
validates_acceptance_of,

ActiveModel, 133

295Index

validates_confirmation_of,
ActiveModel, 133

validates_exclusion_of, ActiveModel, 134
validates_format_of, ActiveModel, 134
validates_inclusion_of, ActiveModel, 134
validates_length_of, ActiveModel, 134
validates_numericality_of,

ActiveModel, 134
validates_presence_of, ActiveModel, 134
validates_uniqueness_of, 134
validates_with, ActiveModel, 134
validation. See also authentication

ActiveModel, 132–134
creating model, 86–87
creating user model, 10
HTTP caching based on, 163–164
not occuring in client library, 22
with Rails controller code, 93
verifying user credentials, 24–26

Validations module, ActiveModel, 132–134
value uniqueness, eventually consistent

systems, 232–233
Varnish gateway cache, 166
vendor tree, defining application MIME

types, 66
vendors, interoperability of service-oriented

design, 37
verification, user

client library implementation, 25–26
user service implementation, 16–18

versioning services
agility and, 37
overview of, 64–65

version.rb file, Jeweler, 126
views

breaking up into services, 55–58
current setup, 46
partitioning on logical function, 62
quick iterations and, 60
REST architectural, 265

Vogels, Werner, 27–28
vote model, Rails social feed reader, 52–53

vote service
API design guidelines, 85–86
creating data models, 86–88
multi-get interface, 81–82
overview of, 79–81
with Rack, 100–106
with Rails, 88–95
with Sinatra, 95–100
summary review, 106
vote interface, 82–85

votes
activity model, 49
features, 46
partitioning services on read/write

frequencies, 63
vote model, Rails social feed reader,

52–53
VotesService class, 105–106

W

web hooks
overview of, 237
providing, 242–244
PubSubHubbub, 239
receiving, 240–242
strategies for dealing with failure,

244–245
summary review, 261
understanding, 238–239

web server
full Rails deployment with, 43–45
simple Rails deployment with,

41–43
Web Services Description Language. See

WSDL (Web Services Description
Language)

WebhookCallback model, 243–244
wildcards, for AMQP topic exchanges,

220–223

296 Index

worker processes, external services,
254–258

WorkerPool module, 255–258
wrapping parsed results, JSON, 130–131
write exchange

and field value checking, 232
with minimal writes, 236
overview of, 228–230

writing
classes that make SOAP calls. See SOAP

(Simple Object Access Protocol)
classes to parse service responses. See

parsing XML, for legacy services
messaging-based writes, 228–230
partitioning services on read/write

frequencies, 62–63
performing data writes, 142–143

WSDL (Web Services Description
Language)

constructing requests without, 183–184
exploring web services, 177–180
making requests, 180–182

WSSE (WS-Security), SOAP
requests, 180

X

X-Auth-Sig header
HMAC signing, 189
using public/private key pairs, 194

X-Auth-User header
HMAC signing, 190
using public/private key pairs, 194

XML
implementing web services. See SOAP

(Simple Object Access Protocol)
parsing. See parsing XML, for legacy

services
.xml file, sepcifying representations, 267
XPath

defined, 170
REXML full support for, 170

Y

yajl-ruby library, 94, 129–130

297Index

	Contents
	Foreword
	Preface
	2 An Introduction to Service-Oriented Design
	Use of Service-Oriented Design in the Wild
	Service-Oriented Design Versus Service-Oriented Architecture Versus RESTful-Oriented Architecture
	Making the Case for Service-Oriented Design
	Isolation
	Robustness
	Scalability
	Agility
	Interoperability
	Reuse

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

