

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Wagner, Bill.
Effective C# : 50 specific ways to improve your C# / Bill Wagner.–2nd ed.

p. cm.
Includes index.
ISBN 978-0-321-65870-8 (pbk. : alk. paper)

1. C# (Computer program language) 2. Database management. 3. Microsoft .NET Framework.
I. Title.

QA76.73.C154W343 2010
005.13'3–dc22

2009052199

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-65870-8
ISBN-10: 0-321-65870-1
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, March 2010

❘ Introduction

xiii

The C# community is very different in 2010 than it was in 2004 when the
first edition of Effective C# was published. There are many more develop-
ers using C#. A large contingent of the C# community is now seeing C# as
their first professional language. They aren’t approaching C# with a set of
ingrained habits formed using a different language. The community has a
much broader range of experience. New graduates all the way to profes-
sionals with decades of experience are using C#.

The C# language has also grown in the last five years. The language I cov-
ered in the first edition did not have generics, lambda expressions, LINQ,
and many of the other features we now take for granted. C# 4.0 adds new
features that change our toolset again. And yet, even with all the growth in
the C# language, much of the original advice is as relevant now as it was
in the C# 1.x days. Viewed in hindsight, the changes to the C# language
appear to be natural and obvious extensions to what we had in C# 1.0.
New editions give us new ways of solving problems, without invalidating
previous idioms.

I organized this second edition of Effective C# by taking into account both
the changes in the language and the changes in the C# community. Effec-
tive C# does not take you on a historical journey through the changes in
the language. Rather, I provide advice on how to use the current C# lan-
guage. The items that have been removed from this second edition are
those that aren’t as relevant in today’s C# language. The new items cover
the new language and framework features, and those practices the com-
munity has learned from building several versions of software products
using C#. Overall, these items are a set of recommendations that will help
you use C# 4.0 more effectively as a professional developer.

This book covers C# 4.0, but it is not an exhaustive treatment of the new
language features. Like all books in the Effective Software Development
Series, this book offers practical advice on how to use these features to
solve problems you’re likely to encounter every day. Many of the items are
equally valid in the 3.0 and even earlier versions of the language.

xiv ❘ Introduction

Who Should Read This Book?

Effective C# was written for professional developers who use C# as part of
their daily toolset. It assumes you are familiar with the C# syntax and the
language’s features. The second edition assumes you understand the new
syntax added in C# 4.0, as well as the syntax available in the previous ver-
sions of the language. This book does not include tutorial instruction on
language features. Instead, this book discusses how you can integrate all the
features of the current version of the C# language into your everyday
development.

In addition to language features, I assume you have some knowledge of
the Common Language Runtime (CLR) and Just-In-Time (JIT) compiler.

About the Content

There are language constructs you’ll use every day in almost every C# pro-
gram you write. Chapter 1, “C# Language Idioms,” covers those language
idioms you’ll use so often they should feel like well-worn tools in your
hands. These are the building blocks of every type you create and every
algorithm you implement.

Working in a managed environment doesn’t mean the environment
absolves you of all your responsibilities. You still must work with the envi-
ronment to create correct programs that satisfy the stated performance
requirements. It’s not just about performance testing and performance
tuning. Chapter 2, “.NET Resource Management,” teaches you the design
idioms that enable you to work with the environment to achieve those
goals before detailed optimization begins.

In many ways, we write programs to satisfy human readers rather than a
compiler. All the compiler cares about is that a program is valid. Our col-
leagues want to understand our intent as well. Chapter 3, “Expressing
Designs in C#,” discusses how the C# language can be applied to express
your design intent. There are always several ways to solve a problem. The
recommendations in Chapter 3 will help you choose the solution that best
expresses your design intent to fellow developers.

C# is a small language, supported by a rich framework library. Chapter 4,
“Working with the Framework,” covers the portions of the .NET Base
Class Library (BCL) that support your core algorithms. In addition, I cover

some of the common idioms that you’ll encounter throughout the frame-
work. Multicore processors are a way of life, and the Parallel Task Library
provides a step forward in creating multithreaded programs on the .NET
platform. I cover the most common practices for the Parallel Task Library
in this chapter.

Chapter 5, “Dynamic Programming in C#,” discusses how to use C# as a
dynamic language. C# is a strongly typed, statically typed language. How-
ever, more and more programs contain both dynamic and static typing. C#
provides ways for you to leverage dynamic programming idioms without
losing the benefits of static typing throughout your entire program. You’ll
learn how to use dynamic features and how to avoid having dynamic types
leak through your entire program.

Chapter 6, “Miscellaneous,” covers those items that somehow continue to
defy classification. These are the techniques you’ll use often to create
robust programs that are easier to maintain and extend.

Code Conventions

We no longer look at code in monochrome, and we shouldn’t in books
either. While it’s impossible to replicate the experience of using a modern
IDE on paper, I’ve tried to provide a better experience reading the code in
the book. Where the medium supports it, the code samples use the stan-
dard Visual Studio IDE colors for all code elements. Where I am pointing
to particular changes in samples, those changes are highlighted.

Showing code in a book still requires making some compromises for space
and clarity. I’ve tried to distill the samples down to illustrate the particu-
lar point of the sample. Often that means eliding other portions of a class
or a method. Sometimes that will include eliding error recovery code for
space. Public methods should validate their parameters and other inputs,
but that code is usually elided for space. Similar space considerations
remove validation of method calls, and try/finally clauses that would
often be included in complicated algorithms.

I also usually assume most developers can find the appropriate namespace
when samples use one of the common namespaces. You can safely assume
that every sample implicitly includes the following using statements:

using System;

using System.Collections.Generic;

Introduction ❘ xv

using System.Linq;

using System.Text;

using System.Dynamic;

using System.Threading;

Finally, I use the #region/#endregion directives to denote interface imple-
mentations. While that’s not necessary, and some dislike the region direc-
tive in code, it does make it easy to see which methods implement interface
methods in static text. Any other option would be nonstandard and take
more space.

Providing Feedback

Despite my best efforts, and the efforts of the people who have reviewed
the text, errors may have crept into the text or samples. If you believe you
have found an error, please contact me at bill.wagner@srtsolutions.com.
Errata will be posted at http://srtsolutions.com/blogs/effectivecsharp. Many
of the items in this book, and More Effective C#, are the result of email
conversations with other C# developers. If you have questions or comments
about the recommendations, please contact me. Discussions of general inter-
est will be covered on my blog at http://srtsolutions.com/blogs/billwagner.

Acknowledgments

There are many people to whom I owe thanks for their contributions to
this book. I’ve been privileged to be part of an amazing C# community
over the years. Everyone on the C# Insiders mailing list (whether inside or
outside Microsoft) has contributed ideas and conversations that made this
a better book.

I must single out a few members of the C# community who directly helped
me with ideas, and with turning ideas into concrete recommendations.
Conversations with Charlie Calvert, Eric DeCarufel, Justin Etheredge,
Marc Gravell, Mike Gold, and Doug Holland are the basis for many new
ideas in this edition.

I also had great email conversations with Stephen Toub and Michael Wood
on the Parallel Task Library and its implications on C# idioms.

I had a wonderful team of technical reviewers for this edition. Jason Bock,
Claudio Lassala, and Tomas Petricek pored over the text and the samples to

xvi ❘ Introduction

http://srtsolutions.com/blogs/effectivecsharp
http://srtsolutions.com/blogs/billwagner

ensure the quality of the book you now hold. Their reviews were thorough
and complete, which is the best anyone can hope for. Beyond that, they
added recommendations that helped me explain many of the topics better.

The team at Addison-Wesley is a dream to work with. Joan Murray is a
fantastic editor, taskmaster, and the driving force behind anything that gets
done. She leans on Olivia Basegio heavily, and so do I. Their contributions
created the quality of the finished manuscript from the front cover to the
back, and everything in between. Curt Johnson and Brandon Prebynski
continue to do an incredible job marketing technical content. No matter
what format you chose, Curt and Brandon have had something to do with
its existence for this book. Geneil Breeze poured over the entire manu-
script improving explanations and clarifying the wording in several places.

It’s an honor, once again, to be part of Scott Meyer’s series. He goes over
every manuscript and offers suggestions and comments for improvement.
He is incredibly thorough, and his experience in software, although not in
C#, means he finds any areas where I haven’t explained an item clearly or
fully justified a recommendation. His feedback, as always, is invaluable.

I’ve also had the privilege of bouncing ideas off the other consultants at
SRT Solutions. From the most experienced to the youngest, they are an
incredibly smart group of people with great insight. They are also not
afraid to express their opinions. Countless conversations with Ben Bare-
field, Dennis Burton, Marina Fedner, Alex Gheith, Darrell Hawley, Chris
Marinos, Dennis Matveyev, Anne Marsan, Dianne Marsh, Charlie Sears,
Patrick Steele, Mike Woelmer, and Jay Wren sparked ideas and samples.
Later conversations helped clarify how to explain and justify different
 recommendations.

As always, my family gave up time with me so that I could finish this man-
uscript. My children Lara, Sarah, and Scott, put up with the times I hid in
the home office and didn’t join in other activities. My wife, Marlene, gave
up countless hours while I went off to write or create samples. Without
their support, I never would have finished this or any other book. Nor
would it be as satisfying to finish.

About the Author

With more than twenty years of experience, Bill Wagner, SRT Solutions
cofounder, is a recognized expert in software design and engineering,

Introduction ❘ xvii

 specializing in C#, .NET, and the Azure platform. He serves as Michigan’s
Regional Director for Microsoft and is a multiyear winner of Microsoft’s
MVP award. An internationally recognized writer, Bill is the author of the
first edition of this book and More Effective C# (Addison-Wesley, 2009) and
currently writes a column on the Microsoft C# Developer Center. Bill earned
a B.S. in computer science from the University of Illinois at Champaign-
Urbana.

xviii ❘ Introduction

case in which an upgrade to a base class now collides with a member that
you previously declared in your class.

Of course, over time, your users might begin wanting to use the BaseWidget
.NormalizeValues() method. Then you are back to the original problem:
two methods that look the same but are different. Think through all the
long-term ramifications of the new modifier. Sometimes, the short-term
inconvenience of changing your method is still better.

The new modifier must be used with caution. If you apply it indiscrimi-
nately, you create ambiguous method calls in your objects. It’s for the spe-
cial case in which upgrades in your base class cause collisions in your class.
Even in that situation, think carefully before using it. Most importantly,
don’t use it in any other situations.

Item 34: Avoid Overloading Methods Defined in Base Classes

When a base class chooses the name of a member, it assigns the semantics
to that name. Under no circumstances may the derived class use the same
name for different purposes. And yet, there are many other reasons why a
derived class may want to use the same name. It may want to implement
the same semantics in a different way, or with different parameters. Some-
times that’s naturally supported by the language: Class designers declare
virtual functions so that derived classes can implement semantics differ-
ently. Item 33 covered why using the new modifier could lead to hard-to-
find bugs in your code. In this item, you’ll learn why creating overloads of
methods that are defined in a base class leads to similar issues. You should
not overload methods declared in a base class.

The rules for overload resolution in the C# language are necessarily com-
plicated. Possible candidate methods might be declared in the target class,
any of its base classes, any extension method using the class, and interfaces
it implements. Add generic methods and generic extension methods, and
it gets very complicated. Throw in optional parameters, and I’m not sure
anyone could know exactly what the results will be. Do you really want to
add more complexity to this situation? Creating overloads for methods
declared in your base class adds more possibilities to the best overload
match. That increases the chance of ambiguity. It increases the chance that
your interpretation of the spec is different than the compilers, and it will
certainly confuse your users. The solution is simple: Pick a different
method name. It’s your class, and you certainly have enough brilliance to

198 ❘ Chapter 4 Working with the Framework

come up with a different name for a method, especially if the alternative
is confusion for everyone using your types.

The guidance here is straightforward, and yet people always question if it
really should be so strict. Maybe that’s because overloading sounds very
much like overriding. Overriding virtual methods is such a core principle
of object-oriented languages; that’s obviously not what I mean. Over-
loading means creating multiple methods with the same name and differ-
ent parameter lists. Does overloading base class methods really have that
much of an effect on overload resolution? Let’s look at the different ways
where overloading methods in the base class can cause issues.

There are a lot of permutations to this problem. Let’s start simple. The
interplay between overloads in base classes has a lot to do with base and
derived classes used for parameters. For all the following examples, any
class that begins with “B” is the base class, and any class that begins with
“D” is the derived class. The samples use this class hierarchy for parameters:

public class B2 { }

public class D2 : B2 {}

Here’s a class with one method, using the derived parameter (D2):

public class B

{

public void Foo(D2 parm)

{

Console.WriteLine("In B.Foo");

}

}

Obviously, this snippet of code writes “In B.Foo”:

var obj1 = new D();

obj1.Bar(new D2());

Now, let’s add a new derived class with an overloaded method:

public class D : B

{

public void Foo(B2 parm)

{

Console.WriteLine("In D.Foo");

}

}

Item 34: Avoid Overloading Methods Defined in Base Classes ❘ 199

Now, what happens when you execute this code?

var obj2 = new D();

obj2.Foo(new D2());

obj2.Foo(new B2());

Both lines print “in D.Foo”. You always call the method in the derived
class. Any number of developers would figure that the first call would print
“in B.Foo”. However, even the simple overload rules can be surprising.
The reason both calls resolve to D.Foo is that when there is a candidate
method in the most derived compile-time type, that method is the better
method. That’s still true when there is even a better match in a base class.
Of course, this is very fragile. What do you suppose this does:

B obj3 = new D();

obj3.Foo(new D2());

I chose the words above very carefully because obj3 has the compile-time
type of B (your Base class), even though the runtime type is D (your Derived
class). Foo isn’t virtual; therefore, obj3.Foo() must resolve to B.Foo.

If your poor users actually want to get the resolution rules they might
expect, they need to use casts:

var obj4 = new D();

((B)obj4).Foo(new D2());

obj4.Foo(new B2());

If your API forces this kind of construct on your users, you’ve failed. You
can easily add a bit more confusion. Add one method to your base class, B:

public class B

{

public void Foo(D2 parm)

{

Console.WriteLine("In B.Foo");

}

public void Bar(B2 parm)

{

Console.WriteLine("In B.Bar");

}

}

200 ❘ Chapter 4 Working with the Framework

Clearly, the following code prints “In B.Bar”:

var obj1 = new D();

obj1.Bar(new D2());

Now, add a different overload, and include an optional parameter:

public class D : B

{

public void Foo(B2 parm)

{

Console.WriteLine("In D.Foo");

}

public void Bar(B2 parm1, B2 parm2 = null)

{

Console.WriteLine("In D.Bar");

}

}

Hopefully, you’ve already seen what will happen here. This same snippet
of code now prints “In D.Bar” (you’re calling your derived class again):

var obj1 = new D();

obj1.Bar(new D2());

The only way to get at the method in the base class (again) is to provide a
cast in the calling code.

These examples show the kinds of problems you can get into with one
parameter method. The issues become more and more confusing as you
add parameters based on generics. Suppose you add this method:

public class B

{

public void Foo(D2 parm)

{

Console.WriteLine("In B.Foo");

}

public void Bar(B2 parm)

{

Console.WriteLine("In B.Bar");

}

Item 34: Avoid Overloading Methods Defined in Base Classes ❘ 201

public void Foo2(IEnumerable<D2> parm)

{

Console.WriteLine("In B.Foo2");

}

}

Then, provide a different overload in the derived class:

public class D : B

{

public void Foo(B2 parm)

{

Console.WriteLine("In D.Foo");

}

public void Bar(B2 parm1, B2 parm2 = null)

{

Console.WriteLine("In D.Bar");

}

public void Foo2(IEnumerable<B2> parm)

{

Console.WriteLine("In D.Foo2");

}

}

Call Foo2 in a manner similar to before:

var sequence = new List<D2> { new D2(), new D2() };

var obj2 = new D();

obj2.Foo2(sequence);

What do you suppose gets printed this time? If you’ve been paying atten-
tion, you’d figure that “In D.Foo2” gets printed. That answer gets you partial
credit. That is what happens in C# 4.0. Starting in C# 4.0, generic interfaces
support covariance and contravariance, which means D.Foo2 is a candidate
method for an IEnumerable<D2> when its formal parameter type is an
IEnumerable<B2>. However, earlier versions of C# do not support generic
variance. Generic parameters are invariant. In those versions, D.Foo2 is
not a candidate method when the parameter is an IEnumerable<D2>. The
only candidate method is B.Foo2, which is the correct answer in those
 versions.

202 ❘ Chapter 4 Working with the Framework

The code samples above showed that you sometimes need casts to help
the compiler pick the method you want in many complicated situations.
In the real world, you’ll undoubtedly run into situations where you need
to use casts because class hierarchies, implemented interfaces, and exten-
sion methods have conspired to make the method you want, not the
method the compiler picks as the “best” method. But the fact that real-
world situations are occasionally ugly does not mean you should add to the
problem by creating more overloads yourself.

Now you can amaze your friends at programmer cocktail parties with a
more in-depth knowledge of overload resolution in C#. It can be useful
information to have, and the more you know about your chosen language
the better you’ll be as a developer. But don’t expect your users to have the
same level of knowledge. More importantly, don’t rely on everyone having
that kind of detailed knowledge of how overload resolution works to be
able to use your API. Instead, don’t overload methods declared in a base
class. It doesn’t provide any value, and it will only lead to confusion among
your users.

Item 35: Learn How PLINQ Implements Parallel Algorithms

This is the item where I wish I could say that parallel programming is now
as simple as adding AsParallel() to all your loops. It’s not, but PLINQ does
make it much easier than it was to leverage multiple cores in your pro-
grams and still have programs that are correct. It’s by no means trivial to
create programs that make use of multiple cores, but PLINQ makes it
 easier.

You still have to understand when data access must be synchronized. You
still need to measure the effects of parallel and sequential versions of the
methods declared in ParallelEnumerable. Some of the methods involved
in LINQ queries can execute in parallel very easily. Others force more
sequential access to the sequence of elements—or, at least, require the
complete sequence (like Sort). Let’s walk through a few samples using
PLINQ and learn what works well, and where some of the pitfalls still exist.
All the samples and discussions for this item use LINQ to Objects. The
title even calls out “Enumerable,” not “Queryable”. PLINQ really won’t
help you parallelize LINQ to SQL, or Entity Framework algorithms. That’s
not really a limiting feature, because those implementations leverage the
parallel database engines to execute queries in parallel.

Item 35: Learn How PLINQ Implements Parallel Algorithms ❘ 203

typeof(DynamicDictionary2).GetMethod(methodName),

parameters),

BindingRestrictions.GetTypeRestriction(Expression,

LimitType));

return getDictionaryEntry;

}

Before you go off and think this isn’t that hard, let me leave you with some
thoughts from the experience of writing this code. This is about as simple
as a dynamic object can get. You have two APIs: property get, property
set. The semantics are very easy to implement. Even with this very sim-
ple behavior, it was rather difficult to get right. Expression trees are hard
to debug. They are hard to get right. More sophisticated dynamic types
would have much more code. That would mean much more difficulty get-
ting the expressions correct.

Furthermore, keep in mind one of the opening remarks I made on this
section: Every invocation on your dynamic object will create a new
DynamicMetaObject and invoke one of the Bind members. You’ll need to
write these methods with an eye toward efficiency and performance. They
will be called a lot, and they have much work to do.

Implementing dynamic behavior can be a great way to approach some of
your programming challenges. When you look at creating dynamic types,
your first choice should be to derive from System.Dynamic.DynamicObject.
On those occasions where you must use a different base class, you can
implement IDynamicMetaObjectProvider yourself, but remember that
this is a complicated problem to take on. Furthermore, any dynamic types
involve some performance costs, and implementing them yourself may
make those costs greater.

Item 42: Understand How to Make Use of the Expression API

.NET has had APIs that enable you to reflect on types or to create code at
runtime. The ability to examine code or create code at runtime is very
powerful. There are many different problems that are best solved by
inspecting code or dynamically generating code. The problem with these
APIs is that they are very low level and quite difficult to work with. As
developers, we crave an easier way to dynamically solve problems.

Now that C# has added LINQ and dynamic support, you have a better way
than the classic Reflection APIs: expressions and expression trees. Expres-

254 ❘ Chapter 5 Dynamic Programming in C#

sions look like code. And, in many uses, expressions do compile down to
delegates. However, you can ask for expressions in an Expression format.
When you do that, you have an object that represents the code you want
to execute. You can examine that expression, much like you can examine
a class using the Reflection APIs. In the other direction, you can build an
expression to create code at runtime. Once you create the expression tree
you can compile and execute the expression. The possibilities are endless.
After all, you are creating code at runtime. I’ll describe two common tasks
where expressions can make your life much easier.

The first solves a common problem in communication frameworks. The
typical workflow for using WCF, remoting, or Web services is to use some
code generation tool to generate a client-side proxy for a particular serv-
ice. It works, but it is a somewhat heavyweight solution. You’ll generate
hundreds of lines of code. You’ll need to update the proxy whenever the
server gets a new method, or changes parameter lists. Instead, suppose you
could write something like this:

var client = new ClientProxy<IService>();

var result = client.CallInterface<string>(

srver => srver.DoWork(172));

Here, the ClientProxy<T> knows how to put each argument and method
call on the wire. However, it doesn’t know anything about the service
you’re actually accessing. Rather than relying on some out of band code
generator, it will use expression trees and generics to figure out what
method you called, and what parameters you used.

The CallInterface() method takes one parameter, which is an Expression
<Func<T, TResult>>. The input parameter (of type T) represents an
object that implements IService. TResult, of course, is whatever the par-
ticular method returns. The parameter is an expression, and you don’t
even need an instance of an object that implements IService to write this
code. The core algorithm is in the CallInterface() method.

public TResult CallInterface<TResult>(Expression<

Func<T, TResult>> op)

{

var exp = op.Body as MethodCallExpression;

var methodName = exp.Method.Name;

var methodInfo = exp.Method;

Item 42: Understand How to Make Use of the Expression API ❘ 255

var allParameters = from element in exp.Arguments

select processArgument(element);

Console.WriteLine("Calling {0}", methodName);

foreach (var parm in allParameters)

Console.WriteLine(

"\tParameter type = {0}, Value = {1}",

parm.Item1, parm.Item2);

return default(TResult);

}

private Tuple<Type, object> processArgument(Expression

element)

{

object argument = default(object);

LambdaExpression l = Expression.Lambda(

Expression.Convert(element, element.Type));

Type parmType = l.ReturnType;

argument = l.Compile().DynamicInvoke();

return Tuple.Create(parmType, argument);

}

Starting from the beginning of CallInterface, the first thing this code does
is look at the body of the expression tree. That’s the part on the right side
of the lambda operator. Look back at the example where I used
 CallInterface(). That example called it with srver.DoWork(172). It is a
MethodCallExpression, and that MethodCallExpression contains all the
information you need to understand all the parameters and the method
name invoked. The method name is pretty simple: It’s stored in the Name
property of the Method property. In this example, that would be
‘DoWork’. The LINQ query processes any and all parameters to this
method. The interesting work in is processArgument.

processArgument evaluates each parameter expression. In the example
above, there is only one argument, and it happens to be a constant, the
value 172. However, that’s not very robust, so this code takes a different
strategy. It’s not robust, because any of the parameters could be method
calls, property or indexer accessors, or even field accessors. Any of the
method calls could also contain parameters of any of those types. Instead of
trying to parse everything, this method does that hard work by leveraging

256 ❘ Chapter 5 Dynamic Programming in C#

the LambdaExpression type and evaluating each parameter expression.
Every parameter expression, even the ConstantExpression, could be expressed
as the return value from a lambda expression. ProcessArgument() con-
verts the parameter to a LambdaExpression. In the case of the constant
expression, it would convert to a lambda that is the equivalent of () =>
172. This method converts each parameter to a lambda expression because
a lambda expression can be compiled into a delegate and that delegate can
be invoked. In the case of the parameter expression, it creates a delegate
that returns the constant value 172. More complicated expressions would
create more complicated lambda expressions.

Once the lambda expression has been created, you can retrieve the type of
the parameter from the lambda. Notice that this method does not perform
any processing on the parameters. The code to evaluate the parameters in
the lambda expression would be executed when the lambda expression is
invoked. The beauty of this is that it could even contain other calls to
 CallInterface(). Constructs like this just work:

client.CallInterface(srver => srver.DoWork(

client.CallInterface(srv => srv.GetANumber())));

This technique shows you how you can use expression trees to determine
at runtime what code the user wishes to execute. It’s hard to show in a
book, but because ClientProxy<T> is a generic class that uses the service
interface as a type parameter, the CallInterface method is strongly typed.
The method call in the lambda expression must be a member method
defined on the server.

The first example showed you how to parse expressions to convert code (or
at least expressions that define code) into data elements you can use to
implement runtime algorithms. The second example shows the opposite
direction: Sometimes you want to generate code at runtime. One com-
mon problem in large systems is to create an object of some destination
type from some related source type. For example, your large enterprise
may contain systems from different vendors each of which has a different
type defined for a contact (among other types). Sure, you could type meth-
ods by hand, but that’s tedious. It would be much better to create some
kind of type that “figures out” the obvious implementation. You’d like to
just write this code:

var converter = new Converter<SourceContact,

DestinationContact>();

DestinationContact dest2 = converter.ConvertFrom(source);

Item 42: Understand How to Make Use of the Expression API ❘ 257

You’d expect the converter to copy every property from the source to the
destination where the properties have the same name and the source object
has a public get accessor and the destination type has a public set acces-
sor. This kind of runtime code generation can be best handled by creating
an expression, and then compiling and executing it. You want to generate
code that does something like this:

// Not legal C#, explanation only

TDest ConvertFromImaginary(TSource source)

{

TDest destination = new TDest();

foreach (var prop in sharedProperties)

destination.prop = source.prop;

return destination;

}

You need to create an expression that creates code that executes the pseudo
code written above. Here’s the full method to create that expression and
compile it to a function. Immediately following the listing, I’ll explain all
the parts of this method in detail. You’ll see that while it’s a bit thorny at
first, it’s nothing you can’t handle.

private void createConverterIfNeeded()

{

if (converter == null)

{

var source = Expression.Parameter(typeof(TSource),

"source");

var dest = Expression.Variable(typeof(TDest),

"dest");

var assignments = from srcProp in

typeof(TSource).GetProperties(

BindingFlags.Public |

BindingFlags.Instance)

where srcProp.CanRead

let destProp = typeof(TDest).

GetProperty(

srcProp.Name,

BindingFlags.Public |

BindingFlags.Instance)

258 ❘ Chapter 5 Dynamic Programming in C#

where (destProp != null) &&

(destProp.CanWrite)

select Expression.Assign(

Expression.Property(dest,

destProp),

Expression.Property(source,

srcProp));

// put together the body:

var body = new List<Expression>();

body.Add(Expression.Assign(dest,

Expression.New(typeof(TDest))));

body.AddRange(assignments);

body.Add(dest);

var expr =

Expression.Lambda<Func<TSource, TDest>>(

Expression.Block(

new[] { dest }, // expression parameters

body.ToArray() // body

),

source // lambda expression

);

var func = expr.Compile();

converter = func;

}

}

This method creates code that mimics the pseudo code shown before. First,
you declare the parameter:

var source = Expression.Parameter(typeof(TSource), "source");

Then, you have to declare a local variable to hold the destination:

var dest = Expression.Variable(typeof(TDest), "dest");

The bulk of the method is the code that assigns properties from the source
object to the destination object. I wrote this code as a LINQ query. The
source sequence of the LINQ query is the set of all public instance prop-
erties in the source object where there is a get accessor:

Item 42: Understand How to Make Use of the Expression API ❘ 259

from srcProp in typeof(TSource).GetProperties(

BindingFlags.Public | BindingFlags.Instance)

where srcProp.CanRead

The let declares a local variable that holds the property of the same name
in the destination type. It may be null, if the destination type does not
have a property of the correct type:

let destProp = typeof(TDest).GetProperty(

srcProp.Name,

BindingFlags.Public | BindingFlags.Instance)

where (destProp != null) &&

(destProp.CanWrite)

The projection of the query is a sequence of assignment statements that
assigns the property of the destination object to the value of the same
property name in the source object:

select Expression.Assign(

Expression.Property(dest, destProp),

Expression.Property(source, srcProp));

The rest of the method builds the body of the lambda expression. The
Block() method of the Expression class needs all the statements in an array
of Expression. The next step is to create a List<Expression> where you can
add all the statements. The list can be easily converted to an array.

var body = new List<Expression>();

body.Add(Expression.Assign(dest,

Expression.New(typeof(TDest))));

body.AddRange(assignments);

body.Add(dest);

Finally, it’s time to build a lambda that returns the destination object and
contains all the statements built so far:

var expr =

Expression.Lambda<Func<TSource, TDest>>(

Expression.Block(

new[] { dest }, // expression parameters

body.ToArray() // body

),

source // lambda expression

);

260 ❘ Chapter 5 Dynamic Programming in C#

That’s all the code you need. Time to compile it and turn it into a delegate
that you can call:

var func = expr.Compile();

converter = func;

That is complicated, and it’s not the easiest to write. You’ll often find
 compiler-like errors at runtime until you get the expressions built cor-
rectly. It’s also clearly not the best way to approach simple problems. But
even so, the Expression APIs are much simpler than their predecessors in
the Reflection APIs. That’s when you should use the Expression APIs:
When you think you want to use reflection, try to solve the problem using
the Expression APIs instead.

The Expression APIs can be used in two very different ways: You can cre-
ate methods that take expressions as parameters, which enables you to
parse those expressions and create code based on the concepts behind the
expressions that were called. Also, the Expression APIs enable you to cre-
ate code at runtime. You can create classes that write code, and then exe-
cute the code they’ve written. It’s a very powerful way to solve some of the
more difficult general purpose problems you’ll encounter.

Item 43: Use Expressions to Transform Late Binding into
Early Binding

Late binding APIs use the symbol text to do their work. Compiled APIs
do not need that information, because the compiler has already resolved
symbol references. The Expression API enables you to bridge both worlds.
Expression objects contain a form of abstract symbol tree that represents
the algorithms you want to execute. You can use the Expression API to exe-
cute that code. You can also examine all the symbols, including the names
of variables, methods, and properties. You can use the Expression APIs to
create strongly typed compiled methods that interact with portions of the
system that rely on late binding, and use the names of properties or other
symbols.

One of the most common examples of a late binding API is the property
notification interfaces used by Silverlight and WPF. Both Silverlight and
WPF were designed to respond to bound properties changing so that user
interface elements can respond when data elements change underneath
the user interface. Of course, there is no magic; there is only code that you

Item 43: Use Expressions to Transform Late Binding into Early Binding ❘ 261

Add()
limitations of dynamic

programming, 228–236
minimizing dynamic objects in

public APIs, 268–270

AggregateExceptions, 220–225

Algorithms, parallel
constructing with exceptions in

mind, 203–215
PLINQ implementation of, 203–215

Allocations
distinguishing between value types

and reference types, 107–108
minimizing, 94–98

Amdahl’s law, 214

Annotation of named parameters, 63

Anonymous types, 239–243

APIs (application programming
interfaces)

avoiding conversion operators in,
56–60

CAS, 295
large-grain internet service, 166–171
making use of expression, 254–261
minimizing dynamic objects in

public, 267–273
transforming late binding to early

binding with expressions, 262–267

Symbols and Numbers
+ (addition) operator, in dynamic

programming, 228–229

==() operator
defined, 44
hash value equality, 45–46

0 (null)
ensuring valid state for value types,

110–114
initialization of nonserializable

members, 159–160
initializing object to, 75

A
Abrahams, Dave, 285

Abstract base classes, 129–131

Access
compile-time vs. runtime constants, 8
security, 294–298

Accessible data members, 1–7

Accessors
event, 149
inclining property, 66–67
property, 4–5, 7

Action<>, 144

Adapter patterns, 240

309

❘ Index

APIs (continued)
using interfaces to define, 135
using optional parameters to

minimize method overloads, 61–62

APM (Asynchronous Programming
Model), 219

Application programming interfaces
(APIs). See APIs (application
programming interfaces)

Application-specific exception classes,
279–284

Arrays
creating immutable value types,

121–122
generating with query syntax, 52
support for covariance, 172–173

as

preferring to casts, 12–20
using with IDisposable, 90

AsParallel(), 203–209, 216

Assemblies
building small cohesive, 303–308
CLS-compliant, 298–303
compile-time vs. runtime constants

in, 9–10
security, 296–297

Asserts, 23–24

Assignment statements vs. member
initializers, 74–77

Asynchronous downloading
handling exceptions, 220–222
with PLINQ, 217

Asynchronous Programming Model
(APM), 219

Atomic value types, 114–123

Attributes
CLSCompliant, 299

310 ❘ Index

Serializable and Nonserializable,
158–166

using Conditional instead of #if,
20–28

Austern, Matt, 285

Automatic properties and
serialization, 164–165

B
Backing stores, 4

Bandwidth, 171

base(), 85

Base Class Library (BCL). See BCL
(Base Class Library)

Base classes
avoiding overloading methods

defined in, 198–203
CLS-compliance, 303
defining and implementing

interfaces vs. inheritance, 129–138
disposing of derived classes, 100–102
implementing ICloneable, 193–194
interface methods vs. virtual

methods, 139–143
overriding Equals(), 43
serialization, 163–165
using DynamicObject as, 246
using new only to react to updates,

194–198
using overrides instead of event

handlers, 179–183

BCL (Base Class Library)
casts, 19–20
ForAll implementation, 52–53
IFormattable.ToString(), 33
.NET Framework and, 179
overriding ToString(), 30

Behavior
defining with reference types,

104–110
described through interfaces, 129

Best practices for exception handling,
284–294

Binary compatibility
of properties and accessible data

members, 6–7
of read-only constant, 10

Binary operators, 245–246

Binary serialization, 159, 166

BindGetMember, 253–254

Binding data. See Data binding

BindingList, 155–156

BindSetMember, 251–252

Blocks
constructing parallel algorithms with

exceptions in mind, 224–225
using Conditional attribute instead

of #if/#endif, 20–28
using try/finally for resource

cleanup, 87–94

Boxing operations, 275–279

Brushes class, 96

Buffering options in PLINQ, 214–215

C
C++, 105

C# dynamic programming. See
Dynamic programming in C#

C# language idioms
avoiding conversion operators in

APIs, 56–60

Index ❘ 311

Conditional attribute instead of #if,
20–28

design expression. See design
expression

optional parameters for minimizing
method overloads, 60–64

pitfalls of GetHashCode(), 44–51
preferring is or as operators to

casts, 12–20
providing ToString(), 28–36
query syntax vs. loops, 51–56
readonly vs. const, 8–12
understanding equality and

relationships, 36–44
understanding small functions,

64–68
using properties instead of accessible

data members, 1–7

Callback expression with delegates,
143–146

CallInterface(), 255–257

Cargill, Tom, 285

CAS (code access security), 295

Casts
conversion operations and, 59–60
in dynamic programming, 229
overload resolution and, 201–203
preferring is or as operators to,

12–20

Cast<T>()
converting elements in sequence

with, 19–20
in dynamic programming, 236–239

Catching exceptions
with casts, 13
creating exception classes, 279–283
strong exception guarantee, 284–294

Chaining constructors, 82–83

CheckState(), 22–26

Chunk partitioning, 205

Circular references, 69

Classes
assemblies and, 304
avoiding returning references to

internal objects, 154–157
base. See Base classes
creating application-specific

exception, 279–284
derived. See Derived classes
initialization for static members,

77–79
limiting visibility of types, 126–129
providing ToString(), 28–36
substitutability, 56–60
understanding equality and

relationships, 36–44
vs. structs, 104–110

Cleaning up resources, 87–94

Clients
building cohesive assemblies for,

305–306
creating internet service APIs,

166–171
notifying with Event Pattern,

146–154

Close()
avoiding ICloneable, 191–194
vs. Dispose(), 93–94

CLR (Common Language Runtime)
building cohesive assemblies, 306–

307
calling static constructors, 78–79
CLS-compliant assemblies, 298

312 ❘ Index

security restrictions, 295–296
strong exception guarantee, 285

CLS (Common Language
Specification), 127

CLS-compliant assemblies, 298–303

Code
conventions, xv–xvi
idioms. See C# language idioms
safety, 294–298

Code access security (CAS), 295

Cohesion, 304

Collections
event handler, 152–153
hash-based, 115
limiting visibility of types, 126–127
pitfalls of GetHashCode(), 44–51
support for covariance, 173
wrapping, 157

Colvin, Greg, 285

COM methods, 61–62

Common Language Specification
(CLS), 127

Communication
improving with expression API,

255–257
with large-grain internet service

APIs, 166–171

Compacting garbage, 70

CompareTo(), 183–190

Comparisons
implementing ordering relations

with IComparable<T> and
IComparer<T>, 183–190

understanding equality and
relationships, 36–44

Compatibility of properties vs.
accessible data members, 6–7

Compilation
compile-time constants vs. runtime

constants, 8–12
conditional, 20–28
default ToString(), 30
minimizing boxing and unboxing,

275–279
preferring is or as operators to

casts, 15
pros and cons of dynamic

programming, 227–236
understanding small functions,

64–68

Conditional attributes, 20–28

const vs. readonly, 8–12

Constants
immutable atomic value types,

114–123
preferring readonly to const, 8–12
using constructor initializers, 85–86

Constraints
constructors for new(), 81–82
GetHashCode(), 48–51
getting around with dynamic

invocation, 227–228

Constructors
defining copy, 193–194
dynamic invocation, 245–246
exception class, 282–283
minimizing duplicate initialization

logic, 79–87
serialization, 161–162
static, 77
syncing with member variables, 74–77
using instead of conversion

operators, 57

Index ❘ 313

Containers
hash-based, 44–51
minimizing boxing and unboxing,

275–279

ContinueWith(), 217, 219

Contracts in interface methods,
140–143

Contravariance
overload resolution and, 202
supporting generic, 171–177

Controls, GC, 69–74

Conversion operators
avoiding in APIs, 56–60
in dynamic programming, 229
leveraging runtime type of generic

type parameters, 236–239
minimizing boxing and unboxing,

275–279
preferring is or as to casts,

12–20

Convert<T>, 239

Copying
avoiding ICloneable, 190–194
defensive, 286–287
minimizing boxing and unboxing,

275–279

Cost avoidance with small
functions, 66

Covariance
overload resolution and, 202
supporting generic, 171–177

CSV data
in cohesive assemblies, 305
minimizing dynamic objects in

public APIs, 270–273

Custom formatting of human-
readable output, 33–35

D
Data binding

with properties instead of data
members, 2

support for, 7
transforming late binding to early

binding with expressions, 261–267

Data-drive types, 243–254

Data fields, 5, 7

Data members
implementation for interfaces,

130–131
properties instead of, 1–7
serialization, 157–166

Data storage
isolated, 296–297
with value types, 104–110

Debug builds, 20–28

DEBUG environment variable, 24–28

Debug.Assert, 23–24

Declarative syntax, 51–56

Deep copies, 190–191

Default constructors, 74–75

Default initialization, 87

Default parameters
for minimizing duplicate

initialization logic, 80–82
naming parameters, 63–64
vs. overloads, 86

Delegates
covariance and contravariance,

175–177
expressing callbacks with, 143–146
implementing Event Pattern for

notifications, 146–154
no-throw guarantee, 294

314 ❘ Index

Derived classes
avoiding ICloneable, 190–194
avoiding overloading methods

defined in base classes, 198–203
disposal, 100–102
implementation for interfaces,

130–131
interface methods vs. virtual

methods, 139–143
serialization, 164–165
using overrides instead of event

handlers, 179–182

Deserialization, 160

Design expression
avoiding returning references to

internal class objects, 154–157
expressing callbacks with delegates,

143–146
generic covariance and

contravariance support, 171–177
implementing Event Pattern for

notifications, 146–154
interface methods vs. virtual

methods, 139–143
interfaces vs. inheritance, 129–138
large-grain internet service APIs,

166–171
limiting visibility of types, 126–129
making types serializable, 157–166
overview, 125

Design Patterns (Gamma, et al.),
146, 240

Diagnostics messages, 24

Dictionary class, 152–153

Dictionary, dynamic, 250–254

Dispose()
implementing standard dispose

pattern, 98–104

no-throw guarantee, 293–294
releasing resources with, 87–94

DownloadData(), 216

Downloading, 215–220

Duck typing, 228

Duplicate initialization logic, 79–87

Dynamic programming in C#
DynamicObject or

IDynamicMetaObjectProvider
for data-driven dynamic types,
243–254

leveraging runtime type of generic
type parameters, 236–239

making use of expression API,
254–261

minimizing dynamic objects in
public APIs, 267–273

for parameters that receive
anonymous types, 239–243

pros and cons, 227–236
transforming late binding to early

binding with expressions, 261–267

DynamicDictionary, 250–254

DynamicObject, 243–254

E
EAP (Event-based Asynchronous

Pattern), 219

Early binding, 261–267

#endif, 20–28

Enregistration, 66

EntitySet class, 69–70

Enumerable.Cast<T>(), 19–20

Enumerator<T>, 126–127

enums, 110–114

Index ❘ 315

Envelope-letter pattern, 288–293

Environment variables, 24–28

Equality
ordering relations and, 190
requirements of GetHashCode(),

45–46
understanding relationships and,

36–44

Equals(), 36–44

Errors
with conversion operators, 56–57
creating exception classes, 279–284
recovery code, xv

Event arguments, 301

Event-based Asynchronous Pattern
(EAP), 219

EventHandlerList, 152–153

Events
expressing callbacks with delegates,

144–146
handlers vs. overrides, 179–183
implementing pattern for

notifications, 146–154

Exception translation, 284

Exceptional C++ (Sutter), 285

Exceptions
array covariance, 173
catching with static constructors, 79
constructing parallel algorithms with

these in mind, 220–225
creating application-specific classes,

279–284
Equals() and, 40
handling with initialization, 77
InvalidCastException, 237
InvalidOperationException, 233
issues with delegate invocation, 145

Exceptions (continued)
strong guarantee, 284–294
using is to remove, 17

Explicit conversion operators, 57,
59–60

Explicit properties, 119–120

Expressing designs in C#. See design
expression

Expression trees
in dynamic programming, 230–231
handling dynamic invocation,

251–254
making use of, 254–261

Expressions
making use of API, 254–261
transforming late binding to early

binding with, 261–267
vs. dynamic, 230–235

Extensions
of anonymous types, 243
member implementation for

interfaces, 130
ParallelEnumerable, 214
property, 4
using expressions to create, 262–267

F
Feedback, 143–146

Fields, data, 5, 7

File system security, 296–297

Finalizers
for disposing of nonmemory

resources, 98–104
in GC, 71–74
no-throw guarantee, 293–294

finally, 285

316 ❘ Index

Find(), 144–145

FinishDownload(), 217–218

Flags enumerations, 113–114

Flexibility
with event handling, 182
of runtime constants, 8

Flow control with exceptions, 17

ForAll, 52–53

foreach, 18–19

Formatting human-readable output,
31–33

Func<>, 144

Functions. See also Methods
pitfalls of GetHashCode(), 44–51
understanding equality and

relationships, 36–44
understanding small, 64–68

G
Gamma, Erich, 146, 240

GC (Garbage Collector)
avoiding unnecessary object

creation, 94
defined, 69–74
finalization and, 99

Generations of objects, 73

Generic covariance and
contravariance, 171–177

Get accessors, 4–5

GetFormat(), 35

GetHashCode(), 44–51

GetMetaObject(), 250–254

GetObjectData(), 161–163, 166

GetType(), 19

H
Hash Partitioning, 206

Hash values, 44–51

Heap objects, 94

Helm, Richard, 146, 240

Hierarchies
avoiding conversion operators in

APIs, 56–60
creating exception, 279
defining and implementing

interfaces vs. inheritance, 129–138
implementing ICloneable, 193–194

Human-readable output, 28–36

I
I/O bound operations

isolated storage, 296–297
using PLINQ for, 215–220

IBindingList, 155–156

ICloneable, 190–194

IComparable<T>, 183–190

IComparer<T>, 183–190

ICustomFormatter, 33–35

IDeserializationCallback, 160

Idioms. See C# language idioms

IDisposable
disposing of nonmemory resources,

99–104
resource management with, 71, 74
strong exception guarantee, 285
using and try/finally for

resource cleanup, 87–94

IDynamicMetaObjectProvider,
243–254

Index ❘ 317

IEnumerable, 18–20

IEnumerable<T>
extension methods, 131–134
ForAll implementation, 52–53
limiting visibility of types, 126–127

IEquatable<T>, 36, 39–44

#if, 20–28

IFormatProvider, 33–35

IFormattable.ToString(), 28, 31–35

Immutable types
avoiding unnecessary object

creation, 97–98
immutable atomic value types,

114–123
protecting from modification, 155
using with GetHashCode(), 48–51

Imperative syntax vs. declarative
syntax, 51–56

Implementation
interface vs. abstract base class,

129–138
interface vs. virtual method, 139–143
of ordering relations with

IComparable<T> and
IComparer<T>, 183–190

PLINQ of parallel algorithms,
203–215

Implicit conversions
minimizing boxing and unboxing,

277
operators, 57–60

Implicit properties
creating immutable value types,

119–120
initialization, 76
syntax, 4

in, 175–177

Indexers
dynamic invocation, 245–246
properties as, 5–6

Inheritance
array covariance and, 173
interface methods vs. virtual

methods, 139–143
new modifier and, 194–198
vs. defining and implementing

interfaces, 129–138

Initialization
ensuring 0 is valid state for value

types, 110–114
immutable atomic value type,

114–123
member initializers vs. assignment

statements, 74–77
minimizing duplicate logic, 79–87
of nonserializable members,

159–160
for static class members, 77–79

Inlining, 66

InnerException, 220–223, 283–284

INotifyPropertyChanged, 262–267

INotifyPropertyChanging, 262–267

Instances
construction, 87
distinguishing between value types

and reference types, 104–110
invariants, 45, 48–51

int, 158

Interfaces. See also APIs (application
programming interfaces)

avoiding ICloneable, 190–194
CLS-compliance, 298–303
creating large-grain internet service

APIs, 166–171

318 ❘ Index

defining and implementing vs.
inheritance, 129–138

how methods differ from virtual
methods, 139–143

IDynamicMetaObjectProvider,
243–254

implementing ordering relations
with IComparable<T> and
IComparer<T>, 183–190

limiting visibility of types with,
126–129

minimizing dynamic objects in
public APIs, 267–273

protecting read-only properties from
modification, 155–156

supporting generic covariance and
contravariance, 171–177

transforming late binding to early
binding with expressions, 262–267

vs. dynamic programming, 235–236

Internal classes
avoiding returning references to

objects, 154–157
creating to limit visibility, 126–129

Internal state, 114–123

Internationalization, 305

Internet services, 166–171

InvalidCastException, 18, 237

InvalidOperationException, 233

Invariants
requirements of GetHashCode(),

48–51
supporting generic covariance and

contravariance, 172

Inverted Enumeration, 207–208

IParallelEnumerable, 204–205

is, 12–20

ISerializable, 160–166

Isolated storage, 296–297

IStructuralEquality, 36, 44

J
Java, 105

JIT (Just-In-Time) compiler
small functions, 64–68
using Conditional attribute, 25

Johnson, Ralph, 146, 240

K
Key/value pairs, 162–163

Keys, 44–51

Keywords, 55–56

L
Labeling, 74

Lambda expressions
dynamic programming and,

229–231
expressing callbacks with delegates,

144–145
making use of expression API,

256–261

Language idioms. See C# language
idioms

Large-grain internet service APIs,
166–171

Late binding, 261–267

Library functions, 22–28

Index ❘ 319

LINQ
constructing parallel algorithms with

exceptions in mind, 224–225
expressing callbacks with delegates,

144–145
to XML, 244–245

LINQ queries
building small functions, 67
interface extension methods,

133–134
PLINQ implementation of parallel

algorithms, 203–215

LINQ to Objects, 208–214

Listener notification, 147–154

List.ForEach(), 144–145

List<T>, 52–53

Local variables, 95–98

Log event handlers, 148

Logging events, 147–152

Loops
preferring query syntax to, 51–56
strong exception guarantee, 286–287
using casts with foreach, 18–19

M
Managing resources. See .NET

resource management

Mathematical properties of equality,
38

Member initializers, 74–77

Member variables
initialization for static, 77–79
promoting local variables to, 95–98
syncing with constructors, 74–77

Members, data. See Data members

Memory
management with GC, 69–74
security, 295–296

MemoryMonitor, 264

Metaprogramming, 250–254

+= method, 97

Method call syntax, 51–52

Methods
avoiding overloading those defined

in base classes, 198–203
Clone(), 191–194
CompareTo(), 183–190
conditional compilation, 22–28
constructing parallel algorithms with

exceptions in mind, 220–225
declaring constants inside, 8
defining and implementing

interfaces vs. inheritance, 129–138
Dispose(), 87–94
Enumerable.Cast<T>(), 19–20
GetType(), 19
inlining, 66
interface vs. virtual, 139–143
optional parameters for minimizing

overloads, 60–64
pitfalls of GetHashCode(), 44–51
PLINQ implementation of parallel

algorithms, 203–215
properties vs. accessible data

members, 1–7
pros and cons of dynamic

programming, 227–236
providing ToString(), 28–36
serialization, 160–166
standard dispose pattern, 99
strong exception guarantee, 284–294
that use callbacks, 144–146

320 ❘ Index

understanding equality and
relationships, 36–44

using PLINQ for I/O bound
operations, 215–220

Meyers, Scott, 285

Microsoft Intermediate Language
(MSIL), 6

MoveNext(), 209–213

MSIL (Microsoft Intermediate
Language), 6

Multi-dimensional indexers, 5–6

Multicast delegates, 145–146

Multithreading
immutable atomic value types and,

117
for properties, 3
raising events safely, 148
using PLINQ for I/O bound

operations, 215–220

N
Named parameters, 60–64

Naming
avoiding overloading methods

defined in base classes, 198–203
declaring indexers, 6
exception classes, 281–282
parameters, 63–64

Nested loops vs. query syntax, 53

.NET Event Pattern
., 146–154

.NET Framework
avoiding ICloneable, 190–194
avoiding overloading methods

defined in base classes, 198–203

CLS-compliant assemblies, 298–303
constructing parallel algorithms with

exceptions in mind, 220–225
extension methods, 130
implementing ordering relations

with IComparable<T> and
IComparer<T>, 183–190

minimizing boxing and unboxing,
275–279

overrides vs. event handlers, 179–183
PLINQ implementation of parallel

algorithms, 203–215
properties and, 2
security, 294–298
understanding small functions,

64–68
using new only to react to base class

updates, 194–198
using PLINQ for I/O bound

operations, 215–220

.NET Framework Library
debugging capabilities, 22–28
delegate forms, 144
public interfaces with private classes,

126–127

.NET resource management
avoiding unnecessary objects, 94–98
distinguishing between value types

and reference types, 104–110
ensuring that 0 is valid state for value

types, 110–114
immutable atomic value types,

114–123
implementing standard dispose

pattern, 98–104
member initializers vs. assignment

statements, 74–77
minimizing duplicate initialization

logic, 79–87
overview, 69–74

Index ❘ 321

proper initialization for static class
members, 77–79

using and try/finally for
resource cleanup, 87–94

.NET Serialization Framework,
158–166

new

creating explicit parameterless
constructor, 81–82

using only to react to base class
updates, 194–198

using with compile-time constants, 9

No-throw guarantee, 293–294

NonSerializable attribute, 159–160

Notifications, Event Pattern for,
146–154

null

checking with casts, 13
references in value types, 113–114

null (0)
ensuring valid state for value types,

110–114
initialization of nonserializable

members, 159–160
initializing object to, 75

Number types, 8–9

O
Object.Equals(), 37–39

Object.GetHashCode(), 45–46, 47

Object.ReferenceEquals(), 37

Objects
avoiding returning references to

internal class, 154–157
avoiding unnecessary, 94–98
creating event, 150–152

Objects (continued)
disposal with using and
try/finally, 87–94

expressing callbacks with delegates,
144–146

GetType(), 19
minimizing dynamic in public APIs,

267–273
pros and cons of dynamic, 227–236
standard dispose pattern, 98–104
transferring between client and

server, 166–171
using DynamicObject or

IDynamicMetaObjectProvider for
data-driven dynamic types, 243–254

Observer Pattern, 146, 153

Office APIs, 61–62

OnDeserialization, 160

Operators
==(), 44
avoiding conversion in APIs, 56–60
CLS-compliance, 300
conversion. See Conversion operators
hash value equality, 45–46
preferring is or as to casts, 12–20

Optional parameters
overload resolution and, 201
using to minimize method

overloads, 60–64

Order of operations, 87

Ordering relations, 183–190

out, 175–177

Overloads
avoiding overloading methods

defined in base classes, 198–203
CLS-compliance, 300
optional parameters for minimizing,

60–64

322 ❘ Index

vs. default parameters, 81–82, 86
when implementing IComparable,

185

Overrides
Equals(), 38–44
GetHashCode(), 48–51
ToString(), 28–36
virtual functions vs. interface

methods, 139–143
vs. event handlers, 179–183
vs. overloads, 199

P
Parallel algorithms

constructing with exceptions in
mind, 203–215

PLINQ implementation of, 203–215

Parallel Task Library
constructing parallel algorithms with

exceptions in mind, 220–225
using PLINQ for I/O bound

operations, 215–220

ParallelEnumerable, 214–215

Parallel.ForEach(), 216

Parameters
CLS-compliance, 299
cons of dynamic programming,

231–232
covariance and contravariance,

171–172, 175–176
declaring indexers, 5–6
dynamic for those that receive

anonymous types, 239–243
dynamic to leverage runtime type of

generic type, 236–239
exception, 283
as expressions, 255–256

IFormattable.ToString(), 33
interfaces as, 134–135
for minimizing duplicate

initialization logic, 80–82
optional for minimizing method

overloads, 60–64
overload resolution and, 199–202
using none with Conditional

attribute, 27–28

Partitioning
assemblies, 304
parallel queries, 205–206

Performance
avoiding unnecessary object

creation, 94–98
building cohesive assemblies, 306–307
compile-time vs. runtime constants,

8, 12
costs of dynamic programming, 235
finalizers and, 72–73
implementing ordering relations

with IComparable<T> and
IComparer<T>, 183–190

minimizing boxing and unboxing,
275–279

properties vs. accessible data
members, 7

query syntax vs. looping, 56
understanding small functions, 64–68

Permissions, security, 163

Persistence through type serialization,
157–166

Pipelining, 206

PLINQ
constructing parallel algorithms with

exceptions in mind, 224–225
implementation of parallel

algorithms, 203–215

Index ❘ 323

using for I/O bound operations,
215–220

Predicate<T>, 144

Preprocessors, 20–28

Primitive types, 8–9

Private data members, 7

Private types, 126–129

ProcessArgument(), 256–257

Processing while disposing, 103

Professional development, xiv

Programming, dynamic. See Dynamic
programming in C#

Properties
in anonymous types, 241
avoiding returning references to

internal class objects, 154–157
event, 149
factoring into interface, 137
implementing dynamic property

bag, 244–245
instead of accessible data members,

1–7
limiting exposure with interfaces,

135
serialization, 164–165
transforming late binding to early

binding with expressions, 261–267

Property accessors
defined, 4–5, 7
inlining, 66–67

Protected interfaces, 299–300

Protection, 294–298

Public interfaces
CLS-compliance, 299–303
limiting visibility of types in,

126–129

Public interfaces (continued)
minimizing dynamic objects in

public APIs, 267–273
when defining APIs, 135

Public types, 126–129

Q
Queries

building small functions, 67
interface extension methods, 133–134
PLINQ implementation of parallel

algorithms, 203–215
syntax preferring to loops, 51–56

R
Range partitioning, 205

Read-only constants, 85–86

Read-only properties, 154–157

Readability with query syntax, 51–56

readonly vs. const, 8–12

Recovery with application-specific
exception classes, 281–284

Reference types
avoiding ICloneable, 190–193
creating immutable value types,

121–122
distinguishing between value types

and, 104–110
expressing equality, 36–44
foreach support with casts, 18
minimizing boxing and unboxing,

275–279
pitfalls of GetHashCode(), 44–51
promoting to member variables,

95–96

324 ❘ Index

using with Conditional attribute,
27–28

References
avoiding returning to internal class

objects, 154–157
raising events safely, 148
in value types, 113

Reflection, 23

Reflexive property of equality, 38

Region directives, xvi

Relationships
implementing ordering relations

with IComparable<T> and
IComparer<T>, 183–190

understanding equality and, 36–44

Release builds, 20–28

Releasing resources, 87–94

Remote communications, 166–171

Repetition with dynamic
programming, 229–231

ReportAggregateError, 221

Requirements of GetHashCode(),
45–51

Resource cleanup, 87–94

Resource management. See .NET
resource management

Responsibilities, 105–110

Resurrected objects, 103–104

Return values
CLS-compliance, 299
in dynamic programming, 228
issues with delegate invocation,

145–146
using interfaces as, 134–135
using void with Conditional

attribute, 27

Reusable code, 130, 134–135

Rights, security, 294–298

Role-based security, 295

RunAsync
asynchronous downloading, 217
handling exceptions in, 220–222

Runtime constants vs. compile-time
constants, 8–12

Runtime type checking, 12

S
SafeUpdate method, 293

Scope, 127–129

Searching containers, 45

Security
building cohesive assemblies, 307
overview, 294–298
permissions, 163

Sequence element conversion, 19–20

Serializable attribute, 158–166

Serialization
creating APIs based on, 167
exception class, 282–283
type, 157–166

SerializationFormatter, 163

Servers
building cohesive assemblies, 305–306
creating internet service APIs,

166–171

Set accessors, 4–5

Shape conversion, 56–60

Shoemaker, Martin, 179

Single-dimension indexers, 5

Singleton pattern, 77–78

Index ❘ 325

Size, type, 109

Skip(), 213–214

Slicing the object, 105

Small functions, 64–68

SOAP serialization, 159

Software design. See Design
expression

SomeMethod(), 28

Source compatibility, 6–7

StackTrace class, 23

Standard dispose pattern, 98–104

StartDownload(), 217

State
ensuring that 0 is valid for value

types, 110–114
immutable atomic value type,

114–123
protecting read-only properties

from, 154–157
strong exception guarantee, 285–286

Statements for resource cleanup, 87–94

Static class member initialization, 77–79

Static constructors, 77–79

Static member variables, 96

Static programming, 227

Stop and Go, 207–208

Storing data
isolated storage, 296–297
with value types, 104–110

string serialization, 158

String types
dynamic programming, 228–229
ensuring 0 is valid state for, 113–114
providing ToString(), 28–36
using with compile-time constants,

8–9

StringBuilder class, 97–98

String.Format(), 97

Striped partitions, 205–206

Strong exception guarantee, 284–294

Strong typing, 12

structs

interface implementation, 137–138
pitfalls of GetHashCode(), 47
understanding equality and

relationships, 36–44

Structs vs. classes, 104–110

Substitutability
with conversion operators, 56–60
covariance and contravariance,

171–177

Subsystem addition, 150–152

Support
for generic covariance and

contravariance, 171–177
ICloneable, 194
IComparable, 184–185
IFormattable.ToString(), 33
type for serialization, 157–166

Sutter, Herb, 285

Symmetric property of equality, 38

Syntax, query vs. looping, 51–56

System.Array, 44

System.Collections.ObjectModel.Read
OnlyCollection<T>, 157

System.Diagnostics.Debug, 23

System.Diagnostics.Trace, 23

System.Exception, 281–282

System.Linq.Enumerable class, 131–134

System.Linq.Enumerable.Cast<T>,
236–239

326 ❘ Index

System.Linq.Expression class, 230

System.Object, 275–279

System.Object.ToString(), 28–36

T
Take(), 213–214

Task class, 217–219

Testing, 129

Textual representation, 28–36

This, 6

this(), 85

Throwing exceptions
creating exception classes, 281
strong exception guarantee, 284–294

ToString(), 28–36

TRACE environment variable, 26–28

Trace.WriteLine, 24

Transaction optimization, 166–171

Transitive property of equality, 38

Translation, exception, 284

TrueForAll(), 144–145

try/catch, 224–225

try/finally, 87–94

TryGetIndex, 248–249

TryGetMember, 244–245, 248

TrySetMember, 244–245

Tuple<> classes, 44

Types
avoiding conversion operators in

APIs, 56–60
checking, 12
defining and implementing

interfaces vs. inheritance, 129–138

distinguishing between value and
reference, 104–110

implementing ordering relations
with IComparable<T> and
IComparer<T>, 183–190

limiting visibility, 126–129
making serializable, 157–166
pitfalls of GetHashCode(), 44–51
preferring is or as operators to

casts, 12–20
pros and cons of dynamic, 227–236
providing ToString(), 28–36
reference types. See Reference types
supporting generic covariance and

contravariance, 171–177
understanding equality relationships,

36–44
using compile-time vs. runtime

constants with, 8–9
using dynamic for parameters that

receive anonymous, 239–243
using DynamicObject or

IDynamicMetaObjectProvider for
data-driven dynamic, 243–254

value types. See Value types

U
Unary operators, 245–246

Unboxing operations
minimizing, 275–279
structs, 137–138

Unit testing, 129

Unmanaged resources
avoiding unnecessary object

creation, 94–98
creating finalizer for, 99–100, 104
disposing of, 87–94

Index ❘ 327

Unrelated types, 135–137

Updates
compile-time vs. runtime constants,

10
using new only to react to base class,

194–198

UsedMemory, 264–266

User-defined conversions
leveraging runtime type of generic

type parameters, 237–238
preferring is or as to casts, 13–15

User-defined types
displaying as text, 28–36
preferring is or as to casts, 14–15

using

implicit, xv–xvi
for resource cleanup, 87–94

V
Value types

avoiding ICloneable, 191
distinguishing between reference

types and, 104–110
ensuring that 0 is valid state for,
110–114
expressing equality, 36–44
foreach support with casts, 18
minimizing boxing and unboxing,

275–279
pitfalls of GetHashCode(), 44–51
preferring immutable atomic,
114–123
protecting from modification, 155
using with compile-time constants,

8–9

ValueType.Equals(), 38–39

ValueType.GetHashCode(), 46–48

Variable initialization, 74–77

Variance support, 171–177

Versions
storing with compile time constants,

10–11
type serialization, 157–166
when to use new modifier, 196–198

Virtual functions
for disposal, 100
new modifier and, 195–196

Virtual methods
how interface methods differ from,

139–143
overriding, 179–182
using overrides instead of event

handlers, 179–182

Virtual properties, 3–4

Visibility, limiting type, 126–129

Vlissides, John M., 146, 240

Void return types, 27

328 ❘ Index

W
Wagner, Bill, xvii–xviii

Web services
creating large-grain internet service

APIs, 166–171
improving with expression API,
255–257

WithDegreeOfParallelism(), 214

WithExecutionMode(), 214

WithMergeOptions(), 214

Wrappers
dynamic object, 268–269
envelope-letter pattern, 288–293
protecting read-only properties from

modification, 157

X
XAML declarations, 182

XML, LINQ to, 244–245

	Introduction
	Item 34: Avoid Overloading Methods Defined in Base Classes
	Item 42: Understand How to Make Use of the Expression API
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

