
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321647733
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321647733
https://plusone.google.com/share?url=http://www.informit.com/title/9780321647733
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321647733
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321647733/Free-Sample-Chapter

Praise for
Development with the Force.com Platform

“Jason Ouellette's book is useful right out of the gate—an incredibly practical
deep dive into building business applications on the Force.com Platform.
Whether you're learning about database integration in Apex code or developing
a custom user interface with Visualforce, this is a must-read for anyone who
wants to build applications on the Salesforce.com Cloud."

—Howard A. Brown, Founder and CEO, DemandResults

“A great resource for experienced programmers with wide-ranging coverage of
intermediate/advanced topics with clear and well-explained code samples."

—David Cheng, Principal, Clarity TechWorks

“Jason covers all the bases, from understanding the concepts of the Force.com
platform all the way to advanced development. He’s packed in tons of code
examples, instructions, considerations, and ideas to inspire and challenge for
months to come.”

—Jeff Grosse, Senior Business Consultant,
Blue Cross Blue Shield of Minnesota

“Jason has created a no-nonsense, easy-to-follow guide for Salesforce develop-
ment. It shows how to get the best out of the platform using the internal tools,
techniques, and API that are available to enhance any application based
around Salesforce."

—Brendan Lally, CTO for Startups, StartITup.net

“Jason’s book captures many insights and hard lessons Appirio gathered
through years of Force.Com development and makes them easily accessible to
beginners and advanced developers of business applications. A must-have for
any company considering building on or porting apps to the Force.Com
platform.”

—Narinder Singh, Co-founder and Head of R&D, Appirio

“This book gives developers, managers, and entrepreneurs an extensive
technical overview of the Force.com platform and provides key insights only
found through practical hands-on experience. This should be required reading
for any serious developer of business applications today."

—Jim Thompson, CEO of Rogue IT, Developer of Chargent
and GreatVines for Force.com

Development
with the

Force.com
Platform

This page intentionally left blank

Development
with the

Force.com
Platform

Building Business Applications
in the Cloud

Jason Ouellette

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Ouellette, Jason, 1973-
Development with the Force.com platform : building business applications in the cloud /

Jason Ouellette.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-64773-3 (pbk. : alk. paper) 1. Web services. 2. Application software--

Development. 3. Force.com (Electronic resource) 4. Cloud computing. 5. Service-oriented
architecture (Computer science) I. Salesforce.com (Firm) II. Title.

TK5105.88813.O94 2009
006.7'6--dc22

2009028957

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Screenshots ©2009 Salesforce.com, Inc. All rights reserved.

ISBN-13: 978-0-321-64773-3
ISBN-10: 0-321-64773-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
Fourth printing October 2010

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editors
Lori Lyons
Julie Anderson

Copy Editor
Cheri Clark

Indexer
Publishing Works,
Inc.

Proofreader
Language
Logistics, LLC

Technical
Reviewers
David Cheng
Brendan Lally
Colin Loretz

Publishing
Coordinator
Olivia Basegio

Cover Designer
Gary Adair

Compositor
Jake McFarland

❖

To Tracey, for rolling with me

❖

This page intentionally left blank

ixContents

Table of Contents
Foreword xvi

Preface xix

Acknowledgments xxi

About the Author xxii

Chapter 1 Introducing Force.com 1
Force.com in the Cloud Computing Landscape 1

Platform as a Service (PaaS) 2

Force.com as a Platform 4

Force.com Services 7

Inside a Force.com Project 9

Project Selection 9

Team Selection 11

Lifecycle 12

Tools and Resources 15

Sample Application: Services Manager 17

Background 17

User Roles 18

Development Plan 18

Summary 19

Chapter 2 Database Essentials 21
Overview of Force.com’s Database 21

Objects 21

Fields 23

Relationships 25

Query Language 25

Data Integration 28

Working with Custom Objects 31

Force.com Developer Edition 31

Tools for Custom Objects 31

Object Creation 33

Field Creation 36

Entering and Browsing Data 38

x Contents

Sample Application: Data Model 41

Logical Data Model 41

Force.com Data Model 47

Implementing the Data Model 50

Importing Data 55

Summary 60

Chapter 3 Database Security 63
Overview of Database Security 63

Object-Level Security 65

Profiles 66

Field-Level Security 67

Record-Level Security 69

Record Ownership 69

User Groups 70

Sharing Model 70

Sample Application: Securing Data 73

Designing the Security Model 74

Implementing the Security Model 78

Testing the Security Model 83

Summary 88

Chapter 4 Additional Database Features 89
Dependent Fields 90

Record Types 90

Defining Record Types 91

Securing Record Types 92

Using Record Types 93

Roll-Up Summary Fields 95

Field History Tracking 97

Tags 98

Enabling Tags 99

Using Tags 99

Force.com Connect Offline 100

Administration of Force.com Connect Offline 100

Using Force.com Connect Offline 102

xiContents

Sample Application: Applying the Features 103

Dependent Fields for Skill Types 104

Roll-Up Summary Fields for Project Reporting 104

Force.com Connect Offline for Staffing 107

Summary 109

Chapter 5 Business Logic 111
Introduction to Apex 112

Introducing the Force.com IDE 113

Installation 113

Force.com Perspective 113

Force.com Projects 114

Problems View 115

Schema Explorer 115

Apex Test Runner View 116

Execute Anonymous View 116

Apex Language Basics 116

Variables 117

Operators 121

Arrays and Collections 122

Control Logic 124

Understanding Governor Limits 129

Database Integration in Apex 130

Database Records as Objects 130

Database Queries 132

Persisting Database Records 137

Database Triggers 139

Database Security in Apex 142

Object-Oriented Apex 143

Encapsulation 143

Information Hiding 147

Modularity 148

Inheritance 149

Polymorphism 150

Debugging and Testing 151

Debugging 151

Testing 154

Sample Application: Validating Timecards 155

Force.com IDE Setup 156

Creating the Trigger 156

Unit Testing 157

Summary 159

Chapter 6 Advanced Business Logic 161
Additional SOQL Features 161

Inner Join and Outer Join 162

Semi-Join and Anti-Join 163

Multi-Select Picklists 166

Salesforce Object Search Language (SOSL) 167

SOSL Basics 167

SOSL in Apex 168

Transaction Processing 170

Data Manipulation Language (DML)
Database Methods 170

Savepoints 171

Record Locking 173

Apex Managed Sharing 174

Sharing Objects 175

Creating Sharing Rules in Apex 176

Sending and Receiving Email 180

Sending Email 181

Receiving Email 185

Dynamic Apex 187

Dynamic Database Queries 188

Schema Metadata 189

Sample Application: Adding Email Notifications 192

Summary 193

Chapter 7 User Interfaces 195
Introduction to Visualforce 196

Overview of Visualforce 196

Getting Started with Visualforce 198

Visualforce Controllers 201

Standard Controllers 201

xii Contents

Custom Controllers 203

Controller Extensions 206

View Components 207

View Component Basics 208

Data Components 210

Action Components 213

Primitive Components 214

Force.com-Styled Components 215

Force.com User Interface Components 218

Visualforce and the Native User Interface 222

Standard Pages 222

Standard Buttons 224

Page Layouts 225

Custom Buttons and Links 226

Custom Tabs 227

Visualforce in Production 227

Security 228

Error Handling 230

Governor Limits 232

Unit Tests 232

Sample Application: Skills Matrix 233

Basic Implementation 234

Full Implementation 235

Implementation Walkthrough 236

Summary 242

Chapter 8 Advanced User Interfaces 245
Asynchronous Actions 245

Partial Page Refresh 246

Action as JavaScript Function 247

Action as Timed Event 248

Action as JavaScript Event 249

Indicating Action Status 250

Modular Visualforce 252

Static Resources 252

Inclusion 253

Composition 253

xiiiContents

Custom Visualforce Components 255

Extending Visualforce 257

Using JavaScript Libraries 257

Adobe Flex and Visualforce 258

Force.com Sites 264

Sample Application: Enhanced Skills Matrix 268

Summary 272

Chapter 9 Integration 273
Force.com Integration Solutions 273

Outbound Messaging 274

Salesforce-to-Salesforce (S2S) 279

Developing Custom Integrations 288

Calling Web Services from Apex Code 289

Using HTTP Integration 290

Sample Application: Anonymous Benchmarking 293

Visualforce Page Design 294

Visualforce Controller Design 295

Integrating the Web Service 296

Sample Implementation 299

Summary 302

Chapter 10 Advanced Integration 303
Understanding Force.com Web Services 304

Basics of Force.com Web Services 304

Generating the Web Service Client 306

Logging In 310

Force.com Data Types in SOAP 313

Error Handling 314

Using the Enterprise API 314

Retrieving Records 315

Writing Records 317

Building Custom Web Services in Apex 319

Understanding Custom Web Services 320

Service Definition 321

Calling a Custom Web Service 322

Introduction to the Metadata API 323

Overview 323

xiv Contents

Getting Started with the Metadata API 324

Sample Application: Database Integration 326

Integration Scenario 326

Implementation Strategy 326

Sample Implementation 327

Summary 330

Chapter 11 Additional Platform Features 333
Workflow and Approvals 333

Introduction to Workflow 334

Getting Started with Approval Processes 335

Introduction to Analytics 342

Working with Reports 343

Configuring Dashboards 345

Using Analytic Snapshots 346

Force.com for International Organizations 347

Multilingual Support 348

Using Multiple Currencies 350

Advanced Currency Management (ACM) 353

Using Single Sign-On 354

Federated Single Sign-On 354

Delegated Single Sign-On 359

Sample Application: Project Map Dashboard 362

Summary 368

Index 369

xvContents

Foreword

In a famous (if possibly mythical) conversation, it’s said that Steve Jobs recruited John
Sculley away from PepsiCo by asking one question:“Do you want to spend the rest of
your life selling sugared water, or do you want to change the world?” Creating a new
application platform is one of the tiny handfuls of ways that a small number of people
can truly change the world, sometimes for decades to follow. Mastering a new platform
is one of the most important investments that a business professional can make in adding
massive leverage to other business and technical skills.

Radical platform improvements eliminate wasteful friction and complexity from the
systems that we use to get things done. Breakthrough platform improvements liberate the
talent of people who didn’t previously see IT as a medium for creative innovation.
Cloud computing platforms go one step farther:They let anyone offer the benefit of
their new view of a problem, or their new insight on performing a useful task, to anyone
with an Internet connection in any part of the world.

That’s the vision that’s driven the creation of the Force.com cloud platform and that
Jason Ouellette illuminates in this timely and valuable guide.

Few people are so well grounded in the subject at hand. Jason’s insights come from
working with Appirio’s customers to solve real-world business problems at the vastly
improved speed—and with the superior return on investment—that the cloud comput-
ing model should be expected to provide.

It would be essentially impossible for anyone to claim longer experience with cloud
application development in general, let alone Force.com in particular—since some of the
technologies that Jason describes, clearly and effectively, do things that were thought to
be conceptually impossible until Force.com provided the first existence proofs in just the
past few years. For example, before the advent of Apex code, many would have said that
custom business logic necessarily implied infiltration of customer-specific changes into
the code base of a packaged enterprise software product. Cost, complexity, and delayed
exploitation of software upgrades were assumed to be unavoidable consequences.

Jason shares with developers his informed understanding of Apex Code as a multi-
tenant programming language, surrounded by a natively cloud-based developer experi-
ence.These are among the most important concepts for a developer to grasp, if the goal
is to use the cloud to its full potential instead of merely relocating the traditional devel-
oper experience—warts and all—to the other end of the wire.

Thinking back over the last few generations of application development, it seems as if
each major breakthrough has moved the center of development toward the most impor-
tant problem to be solved…whatever that problem might be at any given time.

n When the cost and complexity of hardware were the biggest IT problems,
COBOL- and FORTRAN-era development was centered on maximizing com-
putational efficiency. Ease of use often suffered.

n When ease of end-user learning became the biggest IT problem,Visual Basic and
other RAD tools were centered on crafting an accessible user interface and wiring
up the application function behind it.Application portfolio coherence and consis-
tency often suffered.

n Today, hardware is cheap, and the user interface conventions of the Internet are
widely understood.The hardest problems in business computing today are those of
connection, collaboration, and coherence of the data that should be carefully con-
trolled even as it’s consistently and conveniently shared.

Times like these demand a development environment in which connection is implic-
it, collaboration is straightforward, and coherence of data becomes the path of least resist-
ance rather than requiring continual (and often futile) effort to achieve.The standards-
based, Internet-accessible cloud is that environment:The Force.com platform is the first
and most fully realized demonstration of the possibilities that thus arise.

It is, therefore, a great pleasure to recommend Jason Ouellette as your trusted guide to
this new world.This is where the next generation of successful developers will find their
opportunities for professional contribution and personal achievement. Enjoy the flight.

Craig Weissman, CTO, Salesforce.com

This page intentionally left blank

Preface

I wrote this book to help developers discover Force.com as a viable, even superior tool
for building business applications.

I’m always surprised at how many developers I meet who aren’t aware of Force.com
as a platform.They know of Salesforce, but only that it’s a CRM.Those who have heard
of Force.com are surprised when I describe what Appirio and other companies are
building with it.“I didn’t know you could do that with Force.com” is a common reac-
tion, even to the simplest of things such as creating custom database tables.

I hope that this book is effective in introducing business application developers to
what Force.com offers.This is a combination of its features as a development platform
and the benefits of it being “in the cloud,” delivered over the Internet as a service rather
than installed on your own servers. I believe you’ll find, as I did, that Force.com can save
you significant time and effort for many classes of applications.

Key Features of This Book
This book covers areas of Force.com relevant to developing applications in a corporate
environment. It takes a hands-on approach, providing code examples and encouraging
experimentation. It includes sections on the Force.com database,Apex programming lan-
guage,Visualforce user interface technology, integration to other systems, and supporting
features such as workflow and analytics. SFA, CRM, customer support, and other pre-
built applications from Salesforce are not discussed, but general Force.com platform skills
are helpful for working in these areas as well.The book does not discuss cloud comput-
ing in general terms. It also avoids comparing Force.com with other technologies, plat-
forms, or languages. Emphasis is placed on understanding Force.com on its own unique
terms rather than as a database, application server, or cloud computing platform.

Although Force.com is a premium service sold by Salesforce, all the material in this
book was developed using a free Force.com Developer Edition account.Additionally,
every feature described in this book is available in the free edition.

Throughout the text you will see sidebar boxes labeled Note,Tip, or Caution. Notes
explain interesting or important points that can help you understand key concepts and
techniques.Tips are little pieces of information that will help you in real-world situa-
tions, and often offer shortcuts to make a task easier or faster. Cautions provide informa-
tion about detrimental performance issues or dangerous errors. Pay careful attention to
Cautions.

Target Audience for This Book
This book is intended for application developers who use Java, C#.NET, PHP, or other
high-level languages to build Web and rich-client applications for end users. It assumes
knowledge of relational database design and queries,Web application development using
HTML and JavaScript, and exposure to Web services.

Code Examples for This Book
The code listings in this book are also available on the book’s Web site:
http://www.informit.com/title/9780321647733.They are also available as a Force.com
package, freely available on Force.com AppExchange: http://sites.force.com/appexchange/
listingDetail?listingId=a0N30000001SS3rEAG.The package can be installed directly into
your own Force.com organization.

http://www.informit.com/title/9780321647733
http://sites.force.com/appexchange/listingDetail?listingId=a0N30000001SS3rEAG
http://sites.force.com/appexchange/listingDetail?listingId=a0N30000001SS3rEAG

Acknowledgments

There are many people to thank for this book.
n Mark Taub: Mark is the Editor-in-Chief at Pearson.At Dreamforce 2008, Mark

attended a presentation of mine about using Google Data APIs with Force.com.
Despite this, he approached me with an idea on a book for Force.com development.

n My coworkers at Appirio: Many thanks go out to the Notorious P.S.E. crew of
Narinder Singh, Ryan Nichols,Todd Bursey,Titash Bardhan, James Eitzmann, Bill
Mers, Iein Valdez, Dayal Gaitonde, and Marlin Scott for supporting me during the
writing process.

n Trina MacDonald: Trina is an Acquisitions Editor at Pearson. In our weekly
meetings, she has guided me through the book-writing process and kept me on
track and on time with the content. I can’t imagine this process running much
more smoothly, and I have her to thank.

n David Cheng, Brendan Lally, Colin Loretz: The technical reviewers for this
book have consistently provided valuable and timely feedback.

n Paul Kopacki: Paul is the VP of Developer Relations and Technical Enablement
at Salesforce. He supported the book from the start. He validated my approach and
helped me differentiate the book from the existing content available from
Salesforce.

n Ron Hess: Ron is a Developer Evangelist at Salesforce. He’s developed many
open-source libraries for Force.com, including my favorite, XmlDom. He was
responsive to any question I had about the Force.com platform.

n Songlin Qiu: Songlin was my technical editor at Pearson. She is incredibly fast
and thorough in reviewing draft chapters. She tirelessly flagged style usage mistakes
that I continued to make even after 11 chapters of her polite corrections.

n Olivia Basegio: Olivia is the Editorial Assistant at Pearson. She worked behind
the scenes to make the publishing process seem easy.

n Tracey: My wife and teammate in impossible missions,Tracey and I have under-
taken larger and scarier projects than this book and steamed right through them.
As always, she fed me and kept the wheels from flying off. I couldn’t have done it
without her.

About the Author

Jason Ouellette has been working with Force.com since 2004. He developed three of
the ten most popular applications on AppExchange, the official Force.com application
marketplace, including the #1 most installed application,Appirio Calendar Sync for
Salesforce and Google Apps. He is Chief Architect for Appirio, a leading Force.com
Independent Software Vendor and Salesforce Consulting partner. He has been inventing
cutting-edge enterprise software for more than 13 years. Prior to joining Appirio, he
served as a director of R&D for application products at Composite Software, where he
led development of data services for Siebel, SAP, and salesforce.com.At webMethods, he
helped architect the industry’s first XML-based B2B server.

He lives with his wife and two geriatric cats in San Francisco, California.

1
Introducing Force.com

This chapter introduces the concepts, terminology, and technology components of the
Force.com platform and its context in the broader Platform as a Service (PaaS) landscape.
The goal is to provide context for exploring Force.com within a corporate software de-
velopment organization. If any of the following sentences describe you, this chapter is in-
tended to help.

n You have read about cloud computing or PaaS and want to learn how Force.com
compares to other technologies.

n You want to get started with Force.com but need to select a suitable first project.
n You have a project in mind to build on Force.com and want to learn how your ex-

isting development skills and process can be leveraged.

This chapter consists of three sections, listed below.

n Force.com in the Cloud Computing Landscape: Learn about PaaS and
Force.com’s unique features as a PaaS solution.

n Inside a Force.com Project: Examine how application development with
Force.com differs from other technologies in terms of project selection, technical
roles, and tools.

n Sample Application: A sample business application is referenced throughout this
book to provide a concrete basis for discussing technical problems and their solu-
tions. In this chapter the sample application’s requirements and use-cases are out-
lined, as well as a development plan, mapped to chapters of the book.

Force.com in the Cloud Computing Landscape
Phrases like “cloud computing” and “Platform as a Service” have many meanings put
forth by many vendors.This section provides definitions of the terms to serve as a basis
for understanding Force.com and comparing it with other products in the market.With

2 Chapter 1 Introducing Force.com

this background, you can make the best choice for your projects, whether that is
Force.com, another PaaS product, or your own in-house infrastructure.

Platform as a Service (PaaS)
The platform is infrastructure for the development of software applications.The function-
ality of a platform’s infrastructure differs widely across platform vendors, so this section
focuses on a handful of the most established vendors.The suffix “as a Service” (aaS) means
that the platform exists “in the cloud,” accessible to customers via the Internet.There are
many variations on this acronym, including SaaS (Software as a Service), DaaS (Develop-
ment as a Service), and so forth.

PaaS is a category within the umbrella of cloud computing.“Cloud computing” is a
phrase to describe the movement of computing resources away from physical data centers
or servers in a closet in your company and into the network, where they can be provi-
sioned, accessed, and deprovisioned instantly. You plug a lamp into an electrical socket to
use the electrons in your region’s power grid. It is usually not necessary to run a diesel
generator in your basement.You trust that the power company is going to provide that
service, and you pay the company as you use the service.

Cloud computing as a general concept spans every conceivable configuration of infra-
structure, well outside the scope of this book.The potential benefits are reduced com-
plexity and cost versus a traditional approach.The traditional approach is to invest in
infrastructure by acquiring new infrastructure assets and staff or redeploying or optimizing
existing investments. Cloud computing provides an alternative.

Many companies provide PaaS products.The following subsections introduce the
mainstream PaaS products and include brief descriptions of their functionality. Consult
the Web sites of each company for further information.

Amazon Web Services
Amazon Web Services refers to a family of cloud computing products.The most relevant
to PaaS is Elastic Compute Cloud (EC2). EC2 is a general-purpose computing platform.
You can provision virtual instances of Windows or Linux machines at will, loading them
with your own custom operating-system image or one prebuilt by Amazon or the com-
munity.These instances run until you shut them down, and you are billed for usage of re-
sources such as CPU, disk, and network.

A raw machine with an OS on it is a great start, but to build a business application re-
quires you to install, manage access to, maintain, monitor, patch and upgrade, back up,
plan to scale, and generally care and feed in perpetuity an application platform on the
EC2 instance. If your organization has the skills to build on .NET, J2EE, LAMP, or other
application stacks, plus the OS, database administration, and IT operations experience,
EC2’s virtual servers in the cloud could be a strong alternative to running your own
servers in-house.

Amazon provides various other products that compliment EC2.These include Simple
Queue Service (SQS) for publish-and-subscribe-style integration between applications,

3Force.com in the Cloud Computing Landscape

Simple DB for managing schemaless data, and Simple Storage Service (S3), a content
repository.

Microsoft Azure Services Platform
At the time of writing this book,Azure is not yet commercially available. Microsoft’s en-
trance into the PaaS world will likely offer some unique value, particularly for companies
seeking to leverage the cost savings of cloud computing but preserve their existing invest-
ments in .NET, SQL Server, SharePoint, and other Microsoft products.Azure is marketed
as a blend of on-premise software and services in the cloud. It consists of two parts.The
first part is Windows Azure, a new operating system that can utilize Microsoft’s data cen-
ters for general computation and storage.The second part encompasses three categories of
cloud services: .NET Services, SQL Services, and SharePoint Services.These services map
to existing Microsoft products for computing, database, and collaboration.The intent is
presumably to enable Microsoft’s existing development community to pick and choose
how their applications are partitioned between local and hosted resources without costly
rewrites or redeployment. Pricing is not yet available, but Microsoft says it will charge for
resource consumption, defined as some combination of CPU, network bandwidth, stor-
age, and number of transactions.

Google App Engine
App Engine is a platform designed for hosting Web applications.App Engine is like
having an unlimited number of EC2 instances working for you, preconfigured with a
distributed data store and Python or Java-based application server, but without the IT
operations effort required by EC2.App Engine includes tools for managing the data store,
monitoring your site and its resource consumption, and debugging and logging.

App Engine is free for up to 500MB of storage and five million page views per
month.Applications requiring more storage or bandwidth can purchase it by setting a
maximum daily dollar amount they’re willing to spend, divided into five buckets: CPU
time, bandwidth in, bandwidth out, storage, and email.

Force.com
Force.com is targeted toward corporate application developers and independent software
vendors. Unlike the other PaaS offerings, it does not expose developers directly to its own
infrastructure. Developers do not provision CPU time, disk, or instances of running oper-
ating systems. Instead, Force.com provides a custom application platform centered around
the relational database, one resembling an application server stack you might be familiar
with from working with .NET, J2EE, or LAMP.

Although it integrates with other technologies using open standards such as SOAP and
REST, the programming languages and metadata representations used to build applica-
tions are proprietary to Force.com.This is unique among the PaaS products but not un-
reasonable when examined in depth. Force.com operates at a significantly higher level of

4 Chapter 1 Introducing Force.com

abstraction than the other PaaS products, promising dramatically higher productivity to
developers in return for their investment and trust in a single-vendor solution.

Force.com is free for developers. Production applications are priced primarily by stor-
age used and number of unique users.

Facebook
Facebook is a Web site for connecting with your friends, but it also provides developers
with ways to build their own socially aware applications.These applications leverage the
Facebook service to create new ways for users to interact while online.The Facebook
platform is also accessible to applications not built inside Facebook, exposing the “social
graph” (the network of relationships between users) where permitted.

Much of the value of Facebook as a platform stems from its large user base and consis-
tent yet extensible user experience. It is a set of services for adding social context to ap-
plications. Unlike Force.com and App Engine, for example, Facebook has no facility to
host custom applications.

Force.com as a Platform
Force.com is different from other PaaS solutions in its focus on business applications.
Force.com is a part of Salesforce.com, which started as a SaaS Customer Relationship
Management (CRM) vendor. But Force.com is unrelated to CRM. It provides the infra-
structure commonly needed for any business application, customizable for the unique re-
quirements of each business through a combination of code and configuration.This
infrastructure is delivered to you as a service on the Internet.

Since you are reading this book, you have probably developed a few business applica-
tions in your time. Consider the features you implemented and reimplemented in multi-
ple applications, the unglamorous plumbing, wiring, and foundation work. Some
examples are security, user identity, logging, profiling, integration, data storage, transac-
tions, workflow, and reporting.This infrastructure is essential to your applications but ex-
pensive to develop and maintain. Business application developers do not code their own
relational database kernels, windowing systems, or operating systems.This is basic infra-
structure, acquired from software vendors or the open-source community and then con-
figured to meet user requirements.What if you could do the same for your application
infrastructure? This is the premise of the Force.com.

The following subsections list differentiating architectural features of Force.com with
brief descriptions.

Multitenancy
Multitenancy is an abstract concept, an implementation detail of Force.com, but one with
tangible benefits for developers. Figure 1-1 shows a conceptual view of multitenancy.
Customers access shared infrastructure, with metadata and data stored in the same logical
database.

The multitenant architecture of Force.com consists of the following features.

5Force.com in the Cloud Computing Landscape

Meta
data Data

P
la

tfo
rm

 S
er

vi
ce

s

Customer 1

Customer 2

…

Customer n

Figure 1-1 Multitenant architecture

n Shared infrastructure: Every customer (or tenant) of Force.com shares the same
infrastructure.You are assigned a logical environment within the Force.com
infrastructure.

At first some might be uncomfortable with the thought of handing their data to a
third-party where it is co-mingled with that of competitors. Salesforce’s whitepaper
on its multitenant technology includes the technical details of how it works and
why your data is safe from loss or spontaneous appearance to unauthorized parties.

n Single version: There is only one version of the Force.com platform in produc-
tion.The same platform is used to deliver applications of all sizes and shapes, used
by 1 to 100,000 users, running everything from dog-grooming businesses to the
Japanese national post office.

n Continuous, zero-cost improvements: When Force.com is upgraded to include
new features or bug fixes, the upgrade is enabled in every customer’s logical
environment with zero to minimal effort required.

Salesforce can roll out new releases with confidence because it maintains a single
version of its infrastructure and can achieve broad test coverage by leveraging tests, code,
and configurations from their production environment.You, the customer, are helping
maintain and improve Force.com in a systematic, measurable way as a side effect of simply
using it.This deep feedback loop between the Force.com and its users is something
impractical to achieve with on-premise software.

Relational Database
The heart of Force.com is the relational database provided as a service.The relational
database is the most well-understood and widely used way to store and manage business

6 Chapter 1 Introducing Force.com

data. Business applications typically require reporting, transactional integrity, summariza-
tion, and structured search, and implementing those on nonrelational data stores requires
significant effort. Force.com provides a relational database to each tenant, one that is
tightly integrated with every other feature of the platform.There are no Oracle licenses
to purchase, no tablespaces to configure, no JDBC drivers to install, no ORM to wrangle,
no DDL to write, no queries to optimize, and no replication and backup strategies to im-
plement. Force.com takes care of all of this for you.

Application Services
Force.com provides many of the common services needed for modern business applica-
tion development.These are the services you might have built or integrated repeatedly in
your past development projects.They include logging, transaction processing, validation,
workflow, email, integration, testing, reporting, and user interface.

These services are highly customizable with and without writing code.Although each
service can be valued as an individual unit of functionality, there is tremendous value from
their unification.All the features of Force.com are designed, built, and maintained by a
single responsible party, Salesforce. Salesforce provides documentation for these features as
well as support staff on-call, training and certification classes, and accountability to its cus-
tomers for keeping things running smoothly.This is in contrast to many software projects
that end up as a patchwork of open-source, best-of-breed tools and libraries glued
together by you, the developer, asked to do more with fewer people, shorter timelines,
and cheaper, often unsupported tools.

Declarative Metadata
Almost every customization configured or coded within Force.com is readily available as
simple XML with a documented schema.At any point in time, you can ask Force.com for
this metadata via a set of Web services.The metadata can be used to configure an identi-
cal environment or integrate with a source control system. It is also helpful for trou-
bleshooting, allowing you to visually compare the state of two environments.Although
there are a few features of Force.com not available in this declarative metadata form,
Salesforce’s stated product direction is to provide full coverage.

Programming Language
Force.com has its own programming language, called Apex. It allows developers to script
interactions with other platform features, including the user interface. Its syntax is a blend
of Java and database stored procedure languages likeT/SQL and can be written using a
Web browser or a plug-in to the Eclipse IDE.

Other platforms take a different approach. Google’s App Engine simultaneously re-
stricts and extends existing languages such as Python so that they play nicely in a PaaS
sandbox.There are obvious benefits, such as leveraging the development community, ease
of migration, and skills preservation. One way to understand Apex is as a domain-specific
language. Force.com is not a general-purpose computing platform to run any Java or C#
program you want to run.Apex is kept intentionally minimalistic, designed with only the

7Force.com in the Cloud Computing Landscape

needs of Force.com developers in mind, built within the controlled environment of
Salesforce R&D.Although it won’t solve every programming problem,Apex’s specialized
nature leads to some advantages in learning curve, code conciseness, ease of refactoring,
and ongoing maintenance costs.

Force.com Services
Force.com can be divided into four major services: database, business logic, user interface,
and integration.Technically there are many more services provided by Force.com, but
these are the high-level categories that are most relevant to new Force.com developers.

Database
Force.com is built around a relational database. It allows the definition of custom tables
containing up to 500 fields. Fields contain strongly typed data using any of the standard
data types, plus rich types such as currency amounts, picklists, and phone numbers. Fields
can contain validation rules to keep data clean before it is committed and formulas to de-
rive values like cells in a spreadsheet. Field history tracking provides an audit log of
changes to chosen fields.

Custom tables can be related to each other, allowing the definition of complex data
schemas.Tables, rows, and columns can be configured with security constraints. Data and
metadata is protected against accidental deletion through a “recycling bin” metaphor.The
database schema is often modifiable instantly, without manual migration. Data is imported
from files or other sources with free tools, and APIs are provided for custom data loading
solutions.

Data is queried via a SQL-like language called SOQL (Salesforce Object Query Lan-
guage). Full-text search is available through SOSL (Salesforce Object Search Language).

Business Logic
Apex is the language used to implement business logic on Force.com. It allows code to be
structured into classes and interfaces, and it supports object-oriented behaviors. It has
strongly typed collection objects and arrays modeled after Java.

Data binding is a first-class concept in Apex, with the database schema automatically
imported as language constructs. Data manipulation statements, trigger semantics, and
transaction boundaries are also part of the language.

The philosophy of test-driven development is hard-wired into the Force.com platform.
Methods are annotated as tests and run from a provided test harness or test API calls.Test
methods are automatically instrumented by Force.com and output timing information for
performance tuning. Force.com prevents code from being deployed into production that
does not have adequate unit test coverage.

User Interface
Force.com provides two approaches for the development of user interfaces: Page Layouts
and Visualforce. Page Layouts are inferred from the data model, including validation rules,

8 Chapter 1 Introducing Force.com

and then customized using a WYSIWYG editor. Page Layouts feature the standard Sales-
force look-and-feel. For many applications, Page Layouts can deliver some or all of the
user interface with no development effort.

Visualforce allows developers to build custom user interfaces. It consists of a series of
XML markup tags called components with their own namespace.As with JSP,ASP.NET,
Velocity, and other template processing technologies, the components serve as containers
to structure data returned by the Controller, a class written in Apex.To the user, the
resulting Web pages might look nothing like Salesforce, or adopt its standard look-and-
feel.There are Visualforce components to express the many types and styles of UIs, in-
cluding basic entry forms, lists, multistep wizards,Ajax, Flex, mobile applications, and
content management systems. Developers can create their own components to reuse
across applications.

User interfaces in Visualforce are public, private, or some blend of the two. Private user
interfaces require a user to log in before gaining access. Public user interfaces, called Sites,
can be made available to anonymous users on the Internet.

Integration
In the world of integration, more options are usually better, and standards support is es-
sential. Force.com supports a wide array of integration technologies, almost all of them
based on industry-standard protocols and message formats.You can integrate other tech-
nologies with Force.com using the standard recipe of configuration plus code. Here are
some examples.

n Apex Web Services allows control of data, metadata, and process from any platform
supporting SOAP over HTTP, including JavaScript.This makes it possible to write
composite applications that combine Force.com with technology from other ven-
dors in many interesting and powerful ways. Force.com’s Web services API is in its
15th version, and Salesforce supports all 16 versions simultaneously.

n Business logic developed in Apex can be exposed as a Web service, accessible with
or without a Force.com user identity. Force.com generates the WSDL from your
Apex code.Additionally, Force.com converts WSDL to Apex bindings to allow ac-
cess to external Web services from within the platform.

n You can create virtual email inboxes on Force.com and write code to process the
incoming email. Sending email from Force.com is also supported.

n Force.com provides an API for making HTTP requests, including support for
client-side certificates, SSL, proxies, and HTTP authentication.With this you can
integrate with Web-based resources, such as Representational State Transfer (REST)
or JSON services.

n Salesforce-to-Salesforce (S2S) is a publish-and-subscribe model of data sharing be-
tween multiple Force.com environments. If the company you need to integrate
with already uses Force.com and the data is supported by S2S, integration becomes

9Inside a Force.com Project

a relatively simple configuration exercise.There is no code or message formats to
maintain.Your data is transported within the Force.com environment from one ten-
ant to another.

If your requirements dictate a higher-level approach to integration, integration
software vendors like Cast Iron Systems and Informatica offer adapters to Force.com to
read and write data and orchestrate complex transactions spanning disparate systems.

Inside a Force.com Project
This section discusses what makes a Force.com project different from a typical corporate
in-house software development effort, starting with project selection. Learn some tips for
selecting a project in Force.com’s sweet spot.Then examine how traditional technical
roles translate to development activities in a Force.com project and how technologies
within Force.com impact your product development lifecycle. Lastly, get acquainted with
the tools and resources available to make your project a success.

Project Selection
Some projects are better suited to implementation on Force.com than others. It is possible
to run into natural limits of the PaaS approach or battle against the abstraction provided
by the platform.Always strive to pursue projects that play into Force.com strengths.There
are no absolute rules for determining this, but projects with the following characteristics
tend to work well with Force.com:

n The project is data-centered, requiring the storage and retrieval of structured
data.

Structured data is the most important point. Implementing a YouTube-like applica-
tion on Force.com is not the best idea, since it primarily works with unstructured
data in the form of video streams. Force.com supports binary data, so a video-
sharing Web site is certainly possible to build. But handling large amounts of binary
data is not a focus or core competency of Force.com.A hotel reservation system is
an example of a more natural fit.

n The user interface is composed primarily of wizards, grids, forms, reports.

Force.com does not restrict you to these user interface patterns.You can implement
any type of user interface, including “rich” clients that run using Flash in the
browser, and even full desktop applications that integrate with Force.com via its
Apex Web Services API. But to capture the most benefit from the platform, stick
with structured, data-driven user interfaces that use standard Web technologies such
as HTML, CSS, and JavaScript.

n The underlying business processes involve email, spreadsheets, and hierarchies
of people who participate in a distributed, asynchronous workflow.

Standard Force.com features such as workflow, approvals, and email services add a
lot of value to these applications.They can be configured by business analysts or
controlled in-depth by developers in Apex code.

10 Chapter 1 Introducing Force.com

n The rules around data sharing and security are fine-grained and based on
organizational roles and user identity.

User identity management and security are deep subjects and typically require high
effort to implement in a custom system.With Force.com they are standard, highly
configurable components that you can leverage without coding.You can then spend
more time thinking though the “who can see what” scenarios rather than coding
the infrastructure to make them possible.

n The project requires integration with other systems.

Force.com is built from the ground up to interoperate with other systems at all its
layers: data, business logic, and user interface.The infrastructure is taken care of, so
you can focus on the integration design. Exchange a million rows of data between
your SQL Server database and Force.com. Call your Apex services from a legacy
J2EE application or vice versa.Add an event to a Google calendar from within your
Visualforce user interface.These scenarios and more are fully supported by the
platform.

n The project manipulates data incrementally, driven by user actions rather than
a calendar.

Force.com is a shared resource. Simultaneously there are other customers of varying
sizes using the same infrastructure.This requires Force.com to carefully monitor and
fairly distribute the computing resources so that all customers can accomplish their
goals with a high quality of service. If one customer’s application on Force.com was
allowed to consume a disproportionate share of resources, other customers’ applica-
tions would suffer resource starvation.The limitations in place, called governors,
prevent too much memory, CPU, disk, or network bandwidth from being concen-
trated in the hands of any one customer.The platform strongly enforces these gov-
ernor limits, so the best Force.com applications involve computing tasks that can be
split into small units of work.

n The data volume is limited, below a few million records per table.

Data volume is important to think about with any system: How large is my data going
to grow and at what rate? Force.com consists of a logical single transactional database.
There is no analytical data store.Applications that require access to large volumes of data,
such as data warehousing and analytics, cannot be built on Force.com. Other software
vendors provide solutions to this area, but all involve copying data from Force.com to
their own products.

Force.com is not an all-or-nothing proposition. If your project does not fit within
these guidelines, you might still want to explore Force.com but in conjunction with other
PaaS solutions such as Amazon EC2.Thanks to Force.com’s integration capabilities, EC2
and Force.com can be used together as a composite solution, EC2 augmenting Force.com
where general-purpose computing is needed.

11Inside a Force.com Project

Team Selection
The best people to staff on Force.com projects might already work at your company. Pro-
jects do not require brand-new teams staffed with Force.com experts.With the majority
of the platform based in mature technology such as relational databases and Web develop-
ment, adapting existing teams can be a straightforward task.

Here are some examples of traditional software development roles and how they can
contribute to a Force.com project:

n Business Analyst

Substantial Force.com applications can be built entirely by configuration, no com-
puter science background or coding skills required. Salesforce refers to this as
“clicks, not code.” Business analysts who are proficient with Microsoft Excel and its
macro language, or small-scale databases like Microsoft Access and FileMaker Pro,
can get hands-on with the Force.com data model, validation rules, workflows, ap-
proval rules, and page layouts.

n Data Modeler

A data model forms the core of a Force.com application. Data modelers can use
their existing Entity-Relationship tools and techniques to design the data layer,
with some deltas to account for Force.com behavior. Rather than scripts of DDL
statements, their work output is Force.com’s metadata XML or manual configura-
tion of the data objects. Data modelers can also design reports and report types,
which define data domains available to business users to build their own reports.

n Database Administrator

Many traditional DBA tasks are obsolete in Force.com because there is no physical
database to build, monitor, and tune. But a DBA still has plenty of work to do in
planning and implementing the Force.com object model.There are objects to de-
fine or permissions to configure, and the challenges of data migration are still as rel-
evant in Force.com as in any database-backed system.

n Database Developer

The design of Force.com’s programming language,Apex, has clearly been inspired
by stored procedure languages like T-SQL and PL/SQL. Existing database develop-
ers can adapt their skills to writing Apex code, particularly when it requires detailed
work on the data like triggers.

n Object-Oriented Analysis and Design Specialist

Force.com includes an object-oriented language, and persistent data is represented
as objects.With all of these objects floating around, people with skills in traditional
techniques like Unified Modeling Language (UML) are valuable to have on your
project team. Larger applications benefit from a well-designed object model, and as
in any language, designing before writing Apex code can be a real timesaver.

12 Chapter 1 Introducing Force.com

n User Interface Designer

Force.com supports modern Web standards for creating usable, flexible, and main-
tainable UIs. UI designers can help by building screen mock-ups, page layouts, and
the static portions of Visualforce pages to serve as templates.

n Web Developer

Developers who have built Web applications can quickly learn enough Apex and
Visualforce and build similar applications on Force.com, typically with much less
effort. Skills in HTML, CSS, JavaScript, or Adobe Flex are needed to build custom
Force.com user interfaces.

n 4GL Developer

Developers proficient in fourth-generation languages such as Java, C#.NET, and
PHP have no problem picking up Apex code. It has the same core syntax as Java,
minus the Java-specific libraries.

n Integration Specialist

Force.com is a producer and consumer of Web services and supports REST as well
as any integration strategy based on HTTP.An integration expert can design the
interaction between systems, define the remote operations, and implement them
using Force.com or a dedicated integration product.

n Quality Assurance Engineer

Testing is a critical part of any software project, and on Force.com testing is manda-
tory before code is deployed to production.A QA engineer can write unit tests in
Apex and test plans for security and integration testing. Standard tools like Sele-
nium can be used to automate UI testing.

n Operations Specialist

Although there are no servers or operating systems to manage, larger deployments
of Force.com can involve integration with on-premise systems. Single Sign On
(SSO) integration and data migration are two common examples. Operations ex-
perts can help in this area, as well as with application deployment and Force.com
administration tasks such as user maintenance.

Lifecycle
The software development lifecycle of a Force.com project is much like an on-premise
Web application development project, but with less toil.There are many moving parts in
J2EE, .NET, or LAMP projects. Most require a jumble of frameworks to be integrated
and configured properly before one line of code relevant to your project is written. In
fairly integrated environments like .NET on the Microsoft platform, there are fewer
frameworks to be integrated but still plenty of infrastructure code to be written.

This section describes areas of Force.com functionality designed to streamline the de-
velopment lifecycle and focus your time on the value-added activities related to your ap-
plication.There are implicit costs and benefits in each of these areas. On the cost side,

13Inside a Force.com Project

there is usually a loss of control and flexibility versus technologies with less abstraction. It
is up to you to evaluate these features and judge whether they constitute costs or benefits
for your project.

Integrated Logical Database
Relational databases are still the default choice for business applications, despite the avail-
ability of alternatives like XML and object-oriented databases.The relational model
maps well onto business entities, data integrity is easily enforceable, and implementations
scale to hold massive amounts of data while providing efficient recall, composition, and
modification.

For business applications coded in an object-oriented language, accessing relational
databases introduces an impedance mismatch. Databases organize data in terms of
schemas, tables, and columns. Programs organize data and logic into objects, methods, and
fields.There are many ways to juggle data between the two, none of them ideal.To make
matters more complicated, there are many layers of protocol and message needed to trans-
port queries, resultsets, and transactions between the program and the database.

In Force.com, the database tables are called objects.They are somewhat confusingly
named because they do not exhibit entirely object-oriented behavior.The name comes
from the fact that they are logical entities that act as tables when being defined, loaded
with data, queried, updated, and reported on, but are surfaced to programs as first-class
objects.There is no mismatch between the way data is represented in code and the way
it’s represented in the database.Your code remains consistent and concise whether you are
working with in-memory instances of your custom-defined Apex classes or objects from
the database.This also enables compile-time validation of programs, including queries and
data manipulation statements, to ensure that they adhere to the database schema.This one
seemingly simple feature eliminates a whole class of defects that were previously discov-
ered only through unit tests or in production by unfortunate users.

The logical aspect of the database is also significant. Developers have no direct access
to the physical databases running in Salesforce’s data centers.The physical data model is a
proprietary meta-model optimized for multitenant applications, with layers of caches and
fault tolerance, spanning thousands of servers in multiple data centers.When you create an
object in Force.com, no corresponding Oracle database table is created.The metadata de-
scribing your new table is stored and indexed by a series of physical tables, becoming a
unified, tenant-specific vocabulary baked into the platform’s higher-level features.The
synergy of integrated, metadata-aware functionality makes Force.com much more than
the sum of its features.

Metadata-Derived User Interface
As described previously, the definition of your objects becomes the vocabulary for other
features. Nowhere is this more evident than in the standard Force.com user interface,
commonly referred to as the “native” UI.This is the style pioneered by the Salesforce

14 Chapter 1 Introducing Force.com

CRM: lots of tables, topped with fat bars of color with icons of dollar signs and tele-
scopes, and a row of tabs for navigation. Lots of page refreshes too.

It is worth getting to know the capabilities of native UI even if you have reservations
about its appearance or usability.To some it is an artifact of the Precambrian era of Web
applications.To others it is a clean-cut business application, consistent and safe. Either way,
as a developer you cannot afford to ignore it.The native UI is where many configuration
tasks are performed, for features not yet visible to Eclipse and other tools.

If your project’s user interface design is amenable to the native UI, you can build
screens almost as fast as users can describe their requirements. Rapid application prototyp-
ing is an excellent addition or alternative to static screen mock-ups. Page layouts are de-
scriptions of which fields appear on a page in the native UI.They are automatically created
when you define an object and configured with a simple drag-and-drop layout tool.

Simplified Configuration Management
Configuration management is very different from what you might be accustomed to from
on-premise development. Setting up a development environment is trivial with
Force.com.You can provision a new development environment in a few clicks and deploy
your code to it using the familiar Eclipse IDE.

When added to your Eclipse IDE or file system, Force.com code and metadata are
ready to be committed to an existing source control system. Custom Ant tasks are avail-
able to automate your deployments. Sandboxes can be provisioned for testing against real-
world volumes of data and users.They are automatically refreshed from snapshots of
production data per your request. Force.com’s packaging feature allows you to partition
your code into logical units of functionality, making it easier to manage and share with
others at your company or in the larger community.

Integrated Unit Testing
The ability to write and execute unit tests is a native part of the Apex language and
Force.com development environment.Typically a test framework is an optional compo-
nent that you need to integrate into your development and build process.With the facil-
ity to test aligned closely with code, writing and executing tests becomes a natural part of
the development lifecycle rather than an afterthought.

In fact, unit tests are required by Force.com to deploy code into production.This ap-
plies to all Apex code in the system: user interface logic, triggers, and general business
logic.To achieve the necessary 75% test coverage often requires as much if not more code
than the actual Apex classes.

To make sure you don’t code yourself into a corner without test coverage, a great time
to write tests is while you code. Many development methodologies advocate test-driven
development, and writing tests as you code has benefits well beyond simply meeting the
minimum requirements for production deployment in Force.com. For example, a com-
prehensive library of tests adds guardrails to refactoring and maintenance tasks, steering
you away from destabilizing changes.

15Inside a Force.com Project

Integrated Model-View-Controller (MVC) Pattern
The goal of the MVC pattern is maintainable user interface code. It dictates the separa-
tion of data, visual elements that represent data and actions to the user, and logic that me-
diates between the two. If these three areas are allowed to collide and the codebase grows
large enough, the cost to fix bugs and add features becomes prohibitive.

Visualforce adopts MVC by design. For example, its view components do not allow
the expression of business logic and vice versa. Like other best practices made mandatory
by the platform, this can be inconvenient when you just want to do something quick and
dirty. But it is there to help.After all, quick-and-dirty demos have an uncanny tendency
to morph into production applications.

Integrated Interoperability
Force.com provides Web services support to your applications without code.You can des-
ignate an Apex method as a Web service.WSDL is automatically generated to reflect the
method signature.Your logic is now accessible to any program that is capable of calling a
Web service, given valid credentials for an authorized user in your organization.You can
also restrict access by IP address or open up your service to guests.

As in other languages,Apex provides you with a WSDL-to-Apex tool.This tool gener-
ates Apex stubs from WSDL, enabling you to integrate with SOAP-enabled business
processes existing outside of Force.com. Lower-level Apex libraries are also available for
raw HTTP and XML processing.

End of Life
Retiring a production application requires a few clicks from the system administrator.
Users can also be quickly removed or repurposed for other applications.Applications can
be readily consolidated because they share the same infrastructure. For example, you
might keep an old user interface online while a new one is being run in parallel, both
writing to the same set of objects.Although these things are possible with other tech-
nologies, Force.com removes a sizable chunk of infrastructure complexity, preserving
more intellectual bandwidth to devote to tackling the hard problems specific to your
business.

Tools and Resources
Force.com has a rich developer ecosystem.There are discussion groups for reaching out
to the development community on specific subjects, a source-code repository for open-
source projects, a Web site called AppExchange where you can browse for free and paid
extensions to the platform, services companies to help you plan and implement your
larger projects, and Ideas, a site for posting your ideas for enhancing the platform.

The following subsections list some tools and resources that exist to make your proj-
ects successful.

16 Chapter 1 Introducing Force.com

Developer Force (http://developer.force.com)
Developer Force is a rich source of information on Force.com. It contains documenta-
tion, tutorials, e-books written by Salesforce, a blog, and a Wiki with links to many more
resources inside and outside of Salesforce.

Developer Discussion Boards (http://community.salesforce.com)
This is a public discussion forum for the Force.com development community. It is di-
vided into a dozen separate boards by technology area. Users post their questions and
problems, gripes, and kudos. Other users in the community contribute answers and solu-
tions, including Salesforce employees.The boards are a great way to build a reputation as a
Force.com expert and keep current on the latest activity around the platform.

Ideas (http://ideas.salesforce.com)
If you have a suggestion for improving Force.com or any Salesforce product, visit the Ideas
site and post it. Other users in the community can vote for it. If your idea is popular
enough, it might be added to the next release of Force.com. Incidentally, Ideas is a reusable
component of Force.com, so you can build your own customized idea-sharing sites.

Code Share (http://developer.force.com/codeshare)
Code Share is a directory of open-source code contributions from the Force.com com-
munity, with links to the actual source code hosted on Google Code. Salesforce employ-
ees have contributed many projects here.Two notable ones are the Facebook Toolkit, a
library for integrating with Facebook, and XmlDom, an XML parsing library modeled
after one in Java.

Platform Documentation
Salesforce provides documentation through online, context-sensitive help within the Web
user interface, as well as HTML and PDF versions of its reference manuals.All documen-
tation can be found at Developer Force.

AppExchange (www.appexchange.com)
AppExchange is a directory of ready-to-install applications developed on Force.com.The
applications consist of metadata, such as Visualforce pages and Apex code, deployable into
your Force.com environment. Users can rate applications from one to five stars and write
reviews.There are many free applications written by Salesforce employees to illustrate
new platform features. Commercial applications are also available for trial and purchase.
AppExchange is how ISVs distribute their Force.com applications to customers.

Dreamforce
Salesforce has a series of user conferences every year called Dreamforce. San Francisco
hosts the largest Dreamforce venue, with thousands attending to participate in training
sessions, booths, product demos, keynote speeches, breakout sessions, executive briefings,
and, of course, the parties. Dreamforce is a fun way to stay up to date with the technology.

http://developer.force.com
http://community.salesforce.com
http://ideas.salesforce.com
http://developer.force.com/codeshare
www.appexchange.com

17Sample Application: Services Manager

Systems Integrators
For deployments including significant numbers of users, integration with other enterprise
systems, or complex data migrations, consider contracting the services of a systems inte-
grator.There are systems integrators who have competency with Force.com, SFA, SSS,
and other Salesforce products.They include pure-play systems integrators such as Appirio
or Model Metrics, as well as general consultancies like Accenture.

Technical Support
When you encounter undocumented or incorrect behavior in the system, submit a bug
report. If the issue can be described simply, like a cryptic error message, search for it in the
discussion groups. In many cases someone else has already run into the same problem be-
fore you, posted about it, and attracted the attention of Salesforce employees. If not, the
ability to log and track Force.com platform support cases is available in Force.com’s Web
user interface.

Sample Application: Services Manager
Every following chapter in this book contributes to the construction of a sample applica-
tion called Services Manager. Services Manager is designed for businesses that bill for
their employees’ time.These businesses need accurate accounting of when and where em-
ployees are staffed, numbers of hours worked, skills of the employees, project expenses,
amounts billed to customers, and so forth.This section describes these features in prepara-
tion for later discussions of their design and code.

The goal is not to build a fully functional application for operating a professional serv-
ices business, but to provide a logically related set of working code samples to accompany
the technical concepts covered in this book.

Background
Imagine you own a professional services business.The services your company provides
could be architecture, graphic design, software, law, or anything with the following
characteristics:

n High cost, highly skilled employees
n Complex projects lasting a week or more
n Customers billed at an hourly rate and invoiced monthly
n High cost of acquiring new customers

Your profit comes from the difference between the billing rate and the internal cost of
resources.This is typically small, so your process must be streamlined, repeatable, and scal-
able.To increase profit you must hire more resources and win more customer projects.

18 Chapter 1 Introducing Force.com

User Roles
The users of the Services Manager application span many roles in the organization.The
roles are covered in the following subsections, with a summary of their responsibilities
and how they use Services Manager.

Services Sales Representative
Sales reps work with customers to identify project needs and manage the relationship
with the customer. Reps use the Sales Force Automation (SFA) product from Salesforce
to manage their sales process. In general, they do not use Services Manager directly, but
start the process by winning the contract.

Staffing Coordinator
Staffing coordinators manage and schedule resources for projects.When the opportunity
is closed, they are notified via email.They then create a project using Services Manager
and staff it by matching the availability and skills of resources against the scheduling and
skill requirements of the project.

Project Manager
Project managers are responsible for success of projects on a daily basis.They direct and
prioritize project activities.They use Services Manager to manage the detailed weekly
schedules of their consultants and monitor the health and progress of their projects.

Consultant
The consultant is engaged directly with the customer and is responsible for the project
deliverables. In Service Manager, he or she logs time spent on the project, indicates the
completion of project milestones, and submits expenses.

Accounts Receivable
Accounts receivable is responsible for invoicing and collecting customers based on work
that has been delivered.At the end of each billing cycle, they use Services Manager to
generate invoices for customers.

Services Vice President
The VP is responsible for the services P&L and success of the team. Services Manager
provides the VP with reports on utilization and other metrics for assessing the team’s
overall performance.

Development Plan
The Services Manager sample application is developed incrementally throughout this
book, each chapter building on the previous. Every chapter covers a set of technical con-
cepts followed by the relevant Services Manager requirements, design, and implementation.

19Summary

The goal is to expose you to the abstract technology and then make it practical by getting
your hands dirty on the sample application.

The following list names the remaining chapters in this book, with brief descriptions
of the features of Services Manager to be covered.

n Chapter 2,“Database Essentials”: Design and create the database and import data.

n Chapter 3,“Database Security”: Define users, roles, and profiles. Configure sharing
rules.

n Chapter 4,“Additional Database Features”: Define fields for reporting and make a
subset of data accessible offline.

n Chapter 5,“Business Logic”: Build triggers to validate data and unit test them.
n Chapter 6,“Advanced Business Logic”:Write services to generate email

notifications based on user activity.
n Chapter 7,“User Interfaces”: Construct a custom user interface for tracking the

skills of consultants.
n Chapter 8,“Advanced User Interfaces”: Enhance the skills user interface with Ajax.
n Chapter 9,“Integration”: Calculate and transmit corporate performance metrics to

a fictional industry benchmarking organization.
n Chapter 10,“Advanced Integration”: Develop a Java program to update Force.com

with information from a human resources database.
n Chapter 11,“Additional Platform Features”: Build a custom dashboard component

to visualize the geographic distribution of consultants on projects.

Summary
This chapter has introduced you to Force.com, explained how it differs from other PaaS
technologies and what infrastructure it’s designed to replace, and given guidelines for its
use on your projects. Here are a few thoughts to take away from this chapter.

n Force.com is a PaaS uniquely designed to make business applications easy to build,
maintain, and deliver. It consists of database, business logic, user interface, and inte-
gration services, all of them interoperable and interdependent, accessible through
configuration or code.

n The most suitable applications for implementation on Force.com operate primarily
on structured data.Traditional software development roles are still relevant in the
Force.com world, particularly Web and client/server developers. Data modeling
takes on a new importance with the platform, as data objects are tightly integrated
with the rest of the technology stack, and unit testing is mandatory.

n Services Manager is the sample application built on throughout this book. It’s de-
signed to serve companies in the professional services space, those selling projects to
customers and billing them for the time of its highly skilled employees.

This page intentionally left blank

Index

Symbols
4GL developers, 12, 148
() operator, 122
+ (addition operator), 121
& (AND operator), 121
&& (AND operator), 122
- (arithmetic negation operator), 121
= (assignment operator), 121
!= (comparison operator), 121
> (comparison operator), 121
>= (comparison operator), 121
< (comparison operator), 121
<= (comparison operator), 121
== (comparison operator), 121
/ (division operator), 121
=== (equality operator), 122
? (if/then/else operator), 122
!== (inequality operator), 122
! (logical negation operator), 121
* (multiplication operator), 121
| (OR operator), 121
|| (OR operator), 122
>> (signed shift right operator), 121
<< (signed shift left operator), 121
+ (string concatenation operator), 121
>>> (unsigned shift right operator), 121
++ (unary increment operator, 121
- - (unary decrement operator), 121
^ (XOR operator), 121

A
abstract methods, 149-150
Accept button (Visualforce pages), 225

access modifiers
Apex classes, 147
methods, 148

accessibility fields, 64, 68, 80
accounts

ID population, 57
receivable, Services Manager

application, 18
ACM (Advanced Currency Management),

353-354
action methods, custom controllers,

204-205
actionFunction component, 247
actionPoller component, 248
actions, Visualforce

components, 213-214
JavaScript events, 249
JavaScript functions, 247
partial page refreshes, 246-247
status, 250-251
timed events, 248

actionStatus component, 250-251
facets, 250
with JavaScript, 251

actionSupport component, 249, 271
active workflow rules, 334
addition (+) operator, 121
administration

Connect Offline, 100-102
permissions, 66

Adobe Flex, 258
disadvantages, 258
Flex Builder, 259
FlexDemo project, 260

Internet Explorer support, 263-264
MXML code, 260-261
static resource, 261
Visualforce page, 262

toolkit, 259
Advanced Currency Management (ACM),

353-354
Ajax, Visualforce support

actions
status, 250-251
as JavaScript functions, 247

JavaScript events, 249
partial page refreshes, 246-247
timed events, 248

Amazon Web Services, 2-3
analytics

dashboards, 345
reports, 343

creating, 343-344
custom types, 344
running, 344

snapshots, 346-347
AND operator (&), 121
AND operator (&&), 122
anonymous benchmarking (Services

Manager application), 293, 296-298
anti-joins (SOQL), 166
Apex, 6, 112

arrays, 122-123
Batch, 128
classes, 143

access modifiers, 147
constructors, 145-146
information hiding, 147-148
inheritance, 149-150
initializers, 146-147
inner, 147
methods, 144
properties, 145
user-defined, 143
variables, 144

code
development, 113
listing, 29

collections, 122
arrays, 123
Lists, 122-123
Maps, 124
Sets, 124

control logic, 124
asynchronous execution, 127-128
conditional statements, 125
exception statements, 126-127
loops, 125
recursion, 127

370 access modifiers

custom Web services, 320
administrative rights, 320
calling, 322-323
code example, 322
definition, 321
governor limits, 321

database integration, 130
deleting/undeleting records, 139
inserting records, 137
persisting records, 137-139
queries, 132. See also SOQL
records as objects, 130-132
relationships, 131
security, 142
triggers, 139-141
updating records, 138
upserting records, 138

debugging, 151
debug method, 154
Finest log level, 154
logs, monitoring, 152

dynamic, 187
database queries, 188-189
schema metadata, 189-191

encapsulation, 143
future methods, 128
generating from WSDL, 289-290
governor limits, 129
HTTP integration, 290-293
inheritance, 149-150
interfaces, 148-149
managed sharing, 174-176

objects, 175-176
rules, 176-180

operators, 121-122
overview, 112
polymorphism, 150-151
receiving email, 186

class, creating, 186
configuring, 185
inbound email processing, 187
personalizing, 185

record submissions for approval, 342
scope, 112

sending email, 181
attachments, 184
blind carbon copies, 184
carbon copies, 184
Documents, 184
mass emails, 183
methods, 184-185
organization-wide email address

unique identifiers, 185
replying, 184
sender display names, 184
signatures, 184
single messages, 181-182
templates, 182
tracking activity, 185
transactional behavior, 184

SOQL queries, integrating, 135
SOSL, 168-169
testing, 154

governor limits, 154
running, 155
test methods, writing, 154

Test Runner view
(Force.com IDE), 116

transaction processing
DML database methods, 170-171
record locking, 173-174
savepoints, 171-173

variables, 117-120
case sensitivity, 117
constants, 118
data types, 117-119
dates to strings conversions, 120
declaring, 117
enums, 118
names, 117
rounding numbers, 119
string to date conversions, 120

Web services, calling, 289-290
APIs

enabled permissions, 310
Enterprise, 314

creating records, 317-318
deleting/undeleting records, 319
limits, 320

371APIs

record bulk modifications, 319
record retrieval, 315-316
updating records, 318

faults, 314
Metadata, 323

creating objects in Java, 324-325
file-based services, 323
object-based services, 324
overview, 323-324

Web services, 304-306
App Builder Tools

custom object metadata, 32
Services Manager data model, creating

application definition, 50
assignment custom objects, 53
project custom objects, 51-52
relationships, 54-55
resource custom objects, 52
skill custom objects, 53
timecard custom objects, 54

App Engine (Google), 3
AppExchange Web site, 16
applications

errors, 314
Hello World, 116, 199-201
logos, 50
retiring, 15
services, 6
Services Manager. See Services

Manager application
Approval History related lists, 337
approval processes, 337

Approval History related list, 337
configuring, 340
creating, 340
defining, 337
diagram, 341
field update action, 340
ProcessInstance objects, 341
ProcessInstanceHistory object, 341
record submissions, 342
requests, 337
retrieving, 341
timecard record example, 337
viewing approved records, 337

architecture
security, 63
Visualforce, 196

architecture of Force.com
application services, 6
declarative metadata, 6
multitenancy, 4-5
programming language, 6
relational databases, 5

arithmetic negation operator (-), 121
arrays

Apex, 122
creating, 123
mixed array and list syntax, 123

assert method, 154
assignment operator (=), 121
assignments

custom objects, 53
logical data model, 45

asynchronous actions. See Ajax
asynchronous execution (Apex), 127-128
asyncMethod method, 128
atomic data types, 117
attachments (email), 184
attributes

Apex classes, 145
controller, 209
opt_allOrNone, 170
reRender, 246
standardController, 209
view components, 209

authentication
delegated WSDL, downloading, 360
users, 267

auto number fields, 38
automatic properties, 145
Azure, 3

B
Batch Apex, 128
batch processing, database triggers, 140
batch size (queries), 316
BenchmarkWS class, 297
blind carbon copies (email), 184

372 APIs

blob data types, 118
Boolean data types, 117
break keyword, 126
Briefcase configuration

(Connect Offline), 100
browsing data, 39
bulk modifications, records, 319
business

analysts, 11
logic services, 7
units

collaboration, testing, 86-87
security, 75, 78

buttons
custom objects, 35
customizing, 226
standard, 224-225

C
C#

logging in, 312
query batch sizes, 316
records

creating, 318
retrieval, 315

Web services clients, 309-310
carbon copies (email), 184
case sensitivity (Apex variables), 117
chaining constructors, 146
child relationship metadata, 190
child-to-parent relationships, 135
classes

Apex, 143
access modifiers, 147
constructors, 145-146
information hiding, 147-148
inheritance, 149-150
initializers, 146-147
inner, 147
methods, 144
properties, 145
user-defined, 143
variables, 144

BenchmarkWS, 297

Crypto, 291
CustomWS, 322
EncodingUtil, 291
exception, 126
Http, 290
HttpRequest, 290
HttpResponse, 290
TimecardManager

creating, 156
unit testing, 158

YahooGeocode, 293
clients

logical data model, 42
Web services, generating, 306-310

Clone button (Visualforce pages), 225
cloud computing

defined, 2
PaaS, 2

Amazon Web Services, 2-3
Facebook, 4
Force.com, 3
Google App Engine, 3
Microsoft Azure, 3

Code Share, 16
collections (Apex), 122

Arrays, 123
Lists, 122-123
Maps, 124
Sets, 124

column to field mapping, 58
commandButton component, 213
commandLink component, 213
communication errors, 231
CompareSkillsComponent component, 271
comparison operators, 121
composition (Visualforce), 253-254
conditional statements (Apex), 125
configuring

analytic snapshots, 346
approval processes, 340
Connect Offline

Briefcase configuration, 100
data sets, defining, 101-102

currency exchange rates, 350

373configuring

custom labels, 349
dashboards, 345
delegated SSO, 361
development lifecycles, 14
federated SSO, 355-356
fields

accessibility, 80
history tracking, 97

inbound email processing, 185
object permissions on profiles, 66
organization-wide defaults, 71, 80
outbound messaging, 274-276

delivery status, 276
message definition, 276
workflow rule, 275-276

record types for profiles, 93
shared objects (S2S), 281, 284

selecting fields to publish, 283
selecting objects to publish, 283
subscriptions, 284

sharing rules, 82
Visualforce security, 230

Connect Offline, 100
administration, 100-102
configuring

Briefcase configuration, 100
data sets, defining, 101-102

conflict resolution, 103
desktop client, 102
detail record example, 102
logging in, 102
sending changes back to

Force.com, 102
Services Manager application staffing,

107-108
connections (S2S), 280-281
constants, 118, 144
constructors (Apex classes), 145-146

chaining, 146
declaring, 145

consultants
profiles, testing, 85
Services Manager application, 18

contact ID population, 57

containsKey method, 124
continue keyword, 126
control logic (Apex), 124

asynchronous execution, 127-128
conditional statements, 125
exception statements, 126-127
loops, 125
recursion, 127

controller attribute, 209
controllers

ProjectMap Visualforce page, 366-367
Services Manager Skills Matrix, 269
Skills Matrix (Services Manager

application), 236-242, 269
Visualforce, 196, 201

custom, 203-205
extensions, 206
Services Manager application,

295-301
standard, 201-203

converting
data types, 118-119
dates to strings, 120
strings to dates, 120

cost variable, 145
creating

analytic snapshots, 346
approval processes, 340
arrays, 123
custom objects, 33

buttons/links, 35
object definitions, 33-35
page layouts, 36
search layouts, 36
standard fields, 35
triggers, 35
validation rules, 35

custom tabs, 39
databases

Force.com data model, 47, 50
logical data model, 41-46

date, datetime, time datatypes, 120
fields, 36-37, 340
lists, 122

374 configuring

profiles, 78-79
Project Map dashboard, 362
records, 39, 317-318
relationships, 54-55
reports, 343-344
SAML assertions, 357
static resources, 252
tags, 99
test methods, 154
TimecardManager class, 156
users, 84

Crypto class, 291
CSV files, exporting, 56
currencies (multiple), 350-353

ACM, 353-354
dated currency rates, retrieving, 354
exchange rates, configuring, 350
records, setting, 350
SOQL conversions, 352
support cases, logging, 350
viewing, 352
Visualforce, 352

CurrencyIsoCode field, 350
Currently Assigned Formula field, 53
custom objects

assignment, 53
creating, 33

buttons/links, 35
object definitions, 33-35
page layouts, 36
search layouts, 36
standard fields, 35
triggers, 35
validation rules, 35

projects, 51-52
records, creating, 39
resource, 52
skill, 53
timecard, 54
tools, 31-32
Views, 41

CustomWS class, 322
customers, logical data model, 42

customizing
controllers, 203-205
action methods, 204-205
data exposure, 203
fields, 23
labels, 349
profiles, 66
report types, 344
tabs, 39
Visualforce

components, 255-256
pages, 226-227

Web services, 320
administrative rights, 320
calling, 322-323
code example, 322
definition, 321
governor limits, 321

D
dashboards, configuring, 345
dashboards (Services Manager

Project Map), 362
controller, 366-367
creating, 362
defining, 367
GoogleMultiMap component, 364-365
Visualforce page, 366

data
browsing, 39
custom object tools, 32
entering, 39
entities

assignments, 45
client, 42
customer, 42
project, 43
resources, 44
skills, 46
timecards, 46

exposing, 203
importing, 55

preparations, 56-57
process, 58-59
verification, 59-60

375data

integrating, 28
object-relational mapping, 29
user interfaces, generating, 30
Web services API, 29
XML metadata, 30

modelers, 11
relationships, 25
sets, defining, 101-102
types

Apex variables, 117-119
rich, 24

Visualforce components, 210
metadata-aware, 210
primitive, 211
repeating, 212

volume, 10
Data Loader, importing data, 55

preparations, 56-57
process, 58-59
verification, 59-60

Data Manipulation Language. See DML
databases

administrators, 11
Apex integration, 130

database records as objects, 130-132
queries, 132. See also SOQL
relationships, 131

creating
Force.com data model, 47, 50
logical data model, 41-46

developers, 11
fields, 23

auto number, 38
creating, 36-37
custom, 23
formula, 24, 38
history tracking, 24
logical, 23
relationship, 37-38
rich data types, 24
roll-up summary, 38
standard, 23
unique identifiers, 23
validation rules, 23

integrated logical, 13
objects, 13, 21

database tuning, 22
fields, 21
logical, 22
operational tasks, 22
undelete functionality, 22

queries
Apex, 132. See also SOQL
languages, 25-28

records
deleting, 139
inserting, 137
persisting, 137-139
undeleting, 139
updating, 138
upserting, 138

relational, 5
relationships, 25
security

Apex, 142
funnel, 64-65
object-level. See object-level

security
overview, 63-65
record-level. See record-level

security
services, 7
triggers, 139

batch processing, 140
defining, 139-140
error handling, 141
governor limits, 141

tuning, 22
dataList component, 212
dataList view component, 208
dataTable component, 212
date data types, 117
dated currency rates, retrieving, 354
dates, 120
datetime data types, 117, 120
DE (Developer Edition), 31
debug method, 154

376 data

debugging
Apex, 151

debug method, 154
Finest log level, 154
logs, monitoring, 152

workflow rules, 335
decimal data types, 118
declarative metadata, 6
declaring

Apex variables, 117
constructors, 145
future methods, 128
inner classes, 147
interfaces, 148
methods, 144
variables, 144

delegated administration sharing
reasons, 73

delegated SSO, 359-361
configuring, 361
errors, 362
profiles, 361
sample code, 360-361
WSDL authentication,

downloading, 360
Delete button (Visualforce pages), 225
Delete statements, 139
DeleteResult object, 319
deleting

database records, 139
records, 91, 319

delivery status (outbound messages), 276
dependent fields, 90

alternatives, 90
picklist values, 90
Services Manager application skill

types, 104
dependent picklists, 104
DER (Distinguished Encoding Rules), 358
DescribeFieldResult object, 190
desktop client (Connect Offline), 102
detail component, 220

detail records (Connect Offline), 102
details page (Force.com sites), 267
developer discussion boards, 16
Developer Edition (DE), 31
Developer Force Web site, 16, 31
development. See also listings

Apex code, 113
lifecycles, 12

application retirement, 15
configuration management, 14
integrated logical databases, 13
interoperability, 15
metadata-derived user interfaces,

13-14
MVC pattern, 15
unit testing integration, 14

Services Manager application, 18
Visualforce, 198-199

Distinguished Encoding Rules (DER), 358
division operator (/), 121
DML (Data Manipulation Language), 170

database methods, 170-171
database records, persisting, 137-139

deleting, 139
Insert statement, 137
undeleting, 139
Update statement, 138
Upsert statement, 138

DmlException class, 126
do while loops, 125
documents, emailing, 184
domain names, 265
double data types, 118
Dreamforce, 16
dynamic Apex, 187

database queries, 188-189
schema metadata, 189

child relationship, 190
field, 190
object, 189
picklist, 191
record type, 191

377dynamic Apex

E
EC2 (Elastic Compute Cloud), 2
Eclipse Web site, 113
edit standard page, 224
email

receiving in Apex, 186
class, creating, 186
configuring, 185
inbound email processing, 187
personalizing, 185

sending in Apex, 181
attachments, 184
blind carbon copies, 184
carbon copies, 184
Documents, 184
mass emails, 183
methods, 184-185
organization-wide email address

unique identifier, 185
replying, 184
sender display names, 184
signatures, 184
single messages, 181-182
templates, 182
tracking activity, 185
transactional behavior, 184

Services Manager application, 192-193
enabling

Force.com sites, 265
S2S, 280-281
tags, 99

encapsulation (Apex), 143
constructors, 145-146
initializers, 146-147
inner, 147
methods, 144
properties, 145
variables, 144

encoding SAML assertions, 358
EncodingUtil class, 291
enhancedList component, 218

Enterprise API, 314
limits, 320
records

bulk modifications, 319
creating, 317-318
deleting/undeleting, 319
retrieval, 315-316
updating, 318

Web services, 304
entities

assignments, 45
client, 42
customer, 42
project, 43
resources, 44
skills, 46
timecards, 46

entry points (governor limits), 129
enums (Apex variables), 118
equality operator (===), 122
errors

communication, 231
data type conversions, 119
handling

database triggers, 141
delegated SSO, 362
Visualforce, 230-231
Web services, 314

events
JavaScript, 249-251
timed, 248

Excel
Connector, 33
formula for populating

account IDs, 57
formula for populating contact IDs, 57

exception statements (Apex), 126-127
exchange rates, configuring, 350
Execute Anonymous view

(Force.com IDE), 116
Executive VP profiles, 86
exporting CSV files, 56

378 EC2 (Elastic Compute Cloud)

extending Visualforce, 257
Adobe Flex

disadvantages, 258
Flex Builder, 259
FlexDemo project, 260-264
toolkit, 259

JavaScript libraries, 257-258
extensions (controllers), 206
external sharing related lists, 286

F
Facebook, 4
facets (actionStatus component), 250
feature opt-ins, 39
federated SSO, 354-359

configuring, 355-356
SAML assertions, 356-357

creating, 357
PEM conversions, 358
signing/encoding, 358
testing, 359

fields, 23
accessibility, 64, 80
auto number, 38
creating, 36-37
CurrencyIsoCode, 350
custom, 23
custom objects, 35
dependent, 90

alternatives, 90
picklist values, 90
Services Manager application skill

types, 104
federated SSO, 355
filters, 101
formula, 24, 38

Currently Assigned, 53
Total Hours, 54
Years of Experience, 52

history tracking, 24, 97-98
logical, 23
metadata, 190
objects, 21
relationship, 37-38

rich data types, 24
roll-up summary, 38, 95-97

Services Manager application
project reporting, 104, 107

summary calculation, 96
security, 67-69
sharing objects, 175
SOSL specifications, 168
standard, 23
unique identifiers, 23
update actions, creating, 340
validation rules, 23
visibility, 93

files
based services, 323
CSV, exporting, 56

filters
field, 101
record ownership, 101
SOQL records, 133-134

final keyword, 144
Finest log level, 154
Flex (Adobe)

disadvantages, 258
Flex Builder, 259
FlexDemo project, 260

Internet Explorer support, 263-264
MXML code, 260-261
static resource, 261
Visualforce page, 262

toolkit, 259
FlexDemo project, 260

Internet Explorer support, 263-264
MXML code, 260-261
static resource, 261
Visualforce page, 262

Force.com
architecture

application services, 6
declarative metadata, 6
multitenancy, 4-5
programming language, 6
relational databases, 5

379Force.com

Connect Offline, 100-103
IDE, 113

custom object metadata, 32
debug logs, 152
installing, 113
perspective, 113
projects, 114
Schema Explorer, 115
Services Manager application

timecard validation, 156
views, 115-116
Visualforce development, 199

integration solutions, 273
calling Web services from Apex

code, 289-290
HTTP, 290-293
outbound messaging, 274-279
S2S, 279-288

outbound requests, controlling, 289
overview, 3-4
services, 7

business logic, 7
database, 7
integration, 8-9
user interface, 7

sites, 264
details page, 267
domain names, 265
enabling, 265
Login Settings page, 267
main page, 266
pages, adding, 266
security, 266
user authentication, 267

versions, 5
formatting datetime data types, 120
formula fields, 24, 38

Currently Assigned, 53
Total Hours, 54
Years of Experience, 52

forwarding records, 286
funnel of security, 64-65
future methods, 128

G–H
generating user interfaces, 30
getCost method, 145
getDescribe method, 190
global access modifier, 148
Google App Engine, 3
GoogleMultiMap component, 364-365
Governor Limits, 28

Anonymous Block, 129
Apex, 129
custom Web services, 321
database triggers, 141
entry points, 129
incoming email messages, 186
resource types, 129
test methods, 154
Visualforce, 232

Group object query, 178
group operator (), 122
groups

search, 168
user, 70

handleInboundEmail method, 185
handling

errors
database triggers, 141
delegated SSO, 362
Visualforce, 230-231
Web services, 314

exceptions, 126
Hello World application, 116, 199-201
history tracking, 24
HTTP, Force.com integration, 290-293
Http class, 290
HttpRequest class, 290
HttpResponse class, 290

I
ID data types, 118-119
IDE (Force.com), 113

Apex Test Runner view, 116
custom object metadata, 32

380 Force.com

debug logs, 152
Execute Anonymous view, 116
installing, 113
perspective, 113
Problems view, 115
projects, 114
Schema Explorer, 115
Services Manager application timecard

validation, 156
Visualforce development, 199

Ideas Web site, 16
if/then/else operator (?), 122
iframe component, 214
images, 50, 214
implementing Services Manager

application, 326
Java example, 326-330
security, 78

field accessibility, configuring, 80
organization-wide defaults,

configuring, 80
profiles, creating, 78-79
role hierarchy, 81
sharing rules, 82

Skills Matrix
basic, 234
controllers, 236-242
full, 235
Visualforce page, 238-240

implicit joins, 26
Import Wizard, 33
importing

data, 55
preparations, 56-57
process, 58-59
verification, 59-60

relationships, 56
inactive workflow rules, 334
InboundEmailHandler interface, 185
inbound email processing, 187

class, creating, 186
configuring, 185
personalizing, 185

include component, 253

includeScript component, 214
inclusion (Visualforce), 253
inequality operator (!==), 122
information hiding (Apex), 147-148
inheritance (Apex), 149-150
initializers (Apex classes), 146-147
inner classes (Apex), 147
inner joins (SOQL), 162-163
inputCheckbox component, 211
inputField component, 210
inputFile component, 211
inputHidden component, 211
inputSecret component, 211
inputText component, 211
inputTextArea component, 212
Insert statements, 137
inserting database records, 137
installing Force.com IDE, 113
instance initializers, 146
instanceof keyword, 151
integers, 118
integration

calling Web services from Apex code,
289-290

data, 28
object-relational mapping, 29
user interfaces, generating, 30
Web services API, 29
XML metadata, 30

HTTP, 290-293
interoperability, 15
logical databases, 13
MVC, 15
outbound messaging, 274

configuring, 274-276
limits, 274
Web service, creating, 276-279

S2S, 279
connecting, 280-281
record sharing, 284-288
shared objects, configuring,

281, 284
services, 8-9

381integration

Services Manager application, 326
Java integration implementation

sample, 327-330
JSON file format sample, 330

specialists, 12
unit testing, 14
Web services, 304

APIs, 304-306
C# clients, generating, 309-310
clients, generating, 306, 310
Enterprise API. See Enterprise API
error handling, 314
Java clients, generating, 307-308
logging in, 310-312
Metadata API, 323-324
overview, 304
security, 305
Services Manager application,

296-298
SOAP data types, 313
versions, 305

interfaces
Apex, 148-149
InboundEmailHandler, 185
native user

custom buttons/links, 226
custom tabs, 227
page layout, 225-226
standard buttons, 224-225
standard pages, 222-224
Visualforce development, 198

international organizations
multilingual support, 348-349
multiple currencies, 350-353

ACM, 353-354
dated currency rates,

retrieving, 354
exchange rates, configuring, 350
records, setting, 350
SOQL conversions, 352
support cases, logging, 350
viewing, 352
Visualforce, 352

interoperability, 15
IP whitelisting, 311
isDefaultRecordTypeMapping object, 191

J–K
Java

API SimpleDateFormat pattern, 120
logging in, 312
objects, creating, 324-325
query batch sizes, 316
records, 315-317
Services Manager integration

implementation, 327-330
Web services clients, 307-308

JavaScript, Visualforce
events, 249-251
functions, 247
libraries, 257-258

job function security, 75
joins (SOQL)

anti-joins, 166
inner, 162-163
outer, 162
semi-joins, 164-166

JSON file format, 330
Jump Start Wizard, 340

keyset method, 124
keywords

abstract, 149
final, 144
instanceof, 151
loops, 126
static, 144
super, 149
this, 145
virtual, 149
with sharing, 142

L
labels, custom, 349
languages

Apex. See Apex
DML

database methods, 170-171
database records, persisting,

137-139

382 integration

SAML assertions, 356-357
creating, 357
PEM conversions, 358
signing/encoding, 358
testing, 359

SOQL, 25-28
anti-joins, 166
Apex database queries, 132
approvals, retrieving, 341
currency conversions, 352
dated currency rates,

retrieving, 354
dynamic queries, 188
Governor Limits, 28
implicit joins, 26
inner joins, 162-163
multiple object queries, 134-135
multi-select picklists, 166
nested resultsets, 26
no functions allowed, 27
object relationships, 135-136
outer joins, 162
queries in Apex, 135
query results, sorting, 134
record limits, 134
records, filtering, 133-134
records, retrieval, 315-316
sample query, 26
semi-joins, 164-166
statements, 132

SOSL, 25, 28
Apex, 168-169
field specifications, 168
overview, 167-168
queries, 167, 189
record limits, 168
search groups, 168

WSDL
Apex, generating, 289-290
delegated authentication,

downloading, 360
outbound messaging, 276-279

layout, Visualforce pages, 225-226
licensing profiles, 67

lifecycles (development), 12
application retirement, 15
configuration management, 14
integrated logical databases, 13
interoperability, 15
metadata-derived user interfaces,

13-14
MVC pattern, 15
unit testing integration, 14

limits
future methods, 128
outbound messaging, 274
records

Connect Offline configuration, 102
SOSL, 168

savepoints, 171
sending email (Apex), 181
SOQL records, 134
Web services APIs, 305-306

links, customizing, 35, 226
list loops, 126
list standard page, 222
listings

Apex, 29
abstract methods, 150
arrays, creating, 123
automatic properties, 145
conditional statements, 125
constructor chaining, 146
constructor declaration, 145
database records, creating, 130
database relationships, 131
data type conversions, 118-119
datetime formatting, 120
DML database method, 171
exception handling, 127
future methods, declaring, 128
inner class declaration, 147
instance initializer, 146
instanceof keyword, 151
interface declaration, 148
lists, creating, 122
Maps, 124
method declarations, 144
method overloading, 150

383listings

mixed array and list syntax, 123
nested lists, 123
properties, 145
read-only fields, 131
read-only/write-only

properties, 145
receiving email, 186
record locking, 174
recursion with unsupported

depth, 127
rounding numbers, 120
savepoints, 172
sending email with

SingleEmailMessage, 181
sending email with template, 182
sending mass email, 183
Sets, 124
sharing rules, 179
simple statement, 117
subclass, 149
test method, 154
user-defined classes, 143
variable declarations, 144
variables with traditional accessor

methods, 145
child relationship metadata, 190
CSV import file, 57
custom Web services, 322
database records

deleting, 139
inserting, 137
undeleting, 139
updating, 138
upserting, 138

database triggers
batch processing, 141
defining, 140

date, datetime, time datatypes,
creating, 120

delegated SSO, 360-361
enums, defining, 118
Excel formulas for populating IDs, 57
federated SSO

creating SAML assertions, 357
OpenSAML initialization, 357

PEM conversions, 358
signing/encoding SAML

assertions, 358
testing SAML assertions, 359

field metadata, 190
formula fields, 24

Currently Assigned, 53
Total Hours, 54
Years of Experience, 52

Hello World application, 116
logging in, 312
Metadata API, object creation, 324
object metadata, 189
PHP implementation, 278
picklist metadata, 191
records

creating, 317-318
retrieval, 315-316
submissions for approval, 342
type metadata, 191

REST services
calling, 291
invoking, 291
testing, 293

Services Manager application
controller sample code, 299-301
email notification triggers on

Timecard object, 192
GoogleMultiMap component,

364-365
Java integration implementation,

327-330
JSON file format, 330
ProjectMap, 366-367
Skills Matrix, 269-271
Skills Matrix actionSupport

component, 271
Skills Matrix controller, 236-238
Skills Matrix Visualforce page,

239-240
Skills Matrix YUI overlay

support, 270
TimecardManager class, 156
unit tests, 158, 240
validateTimecard trigger, 156

384 listings

Visualforce page sample code,
301-302

Web service integration, testing,
297-298

skill validation rule, 53
SOQL

anti-joins, 166
Apex, 168
approvals, retrieving, 341
child-to-parent relationship, 135
currency conversions, 352
dated currency rates,

retrieving, 354
dynamic queries, 188-189
Group object query, 178
inner joins, 162
multi-select picklist, 167
outer join, 162
parent-to-child query, filter on

child, 164
parent-to-child relationships, 135
Project Share object query, 177
queries, 26-28
queries in Apex, 136
query results, sorting, 134
record filtering, 133
record limits, 134
relationship queries, 27
semi-joins, 164
statements, 132

SQL relationship queries, 26
validation rule example, 23
Visualforce

action status, 250
actionFunction component, 247
actionPoller component, 249
actionStatus component, 250-251
actionSupport component, 249
commandButton component, 213
component reference in

JavaScript, 258
controller extensions, 207
custom component, 256
custom component to render

Google Map, 255

custom controller action
methods, 205

custom controller data
exposure, 204

error handling, 232
Flex object embedding, 264
FlexDemo Internet Explorer

support, 263-264
FlexDemo MXML code, 260-261
FlexDemo controller extension

method, 263
FlexDemo Visualforce page, 262
Force.com-styled components, 215
Hello World, 199-200
include component, 253
inputField component, 210
outputField component, 210
partial page refreshes, 246
record-level security, 229
repeat component, 213
sample controller and page,

220-222
standard controller with multiple

records, 202
standard controller with single

record, 201
templates, 254
unit tests, 233
view component sample, 208

XML metadata, 30
lists, 122-123

creating, 122
mixed array and list syntax, 123
nesting, 123

listViews component, 218
locking records, 173-174
logging in, 31, 310

API enabled permissions, 310
Connect Offline, 102
IP whitelisting, 311
login Web service, 311
security tokens, 311
troubleshooting, 312

385logging in

logical data models (Services Manager
application), 41-46

assignments, 45
clients, 42
customers, 42
projects, 43
resources, 44
skills, 46
timecards, 46

logical negation operator (!), 121
Login Settings page (Force.com sites), 267
login Web service, 311
logos, 50
logs

debug, 152
Finest log level, 154

long data types, 118
Lookup relationships, 38, 49
loops (Apex), 125

M
main page (Force.com sites), 266
managing

analytic snapshots, 346
development lifecycles, 14
profiles, 66
sharing (Apex), 174-176

objects, 175-176
rules, 176-180

manual sharing reasons, 72
mapping columns to fields, 58
Maps, 124
mass emails, sending in Apex, 183
MassEmailMessage object, 183
Master records, 91
Master-Detail relationships, 38, 49
messages component, 231
messaging (outbound)

configuring, 274-276
delivery status, 276
workflow rule, 275-276

limits, 274
message definition, 276
Web service, creating, 276-279

metadata
API, 323

creating objects in Java, 324-325
file-based services, 323
object-based services, 324
overview, 323-324

aware components, 210
custom object tools, 32
declarative, 6
derived user interfaces, 13-14
schema, 189

child relationship, 190
field, 190
object, 189
picklist, 191
record type, 191

XML, integrating, 30
methods

abstract, 150
access modifiers, 148
action, 204-205
Apex

classes, 144
email objects, 184-185

assert, 154
asyncMethod, 128
containsKey, 124
debug, 154
DML database, 170-171
future, 128
getCost, 145
getDescribe, 190
handleInboundEmail, 185
keySet, 124
overloading, 150
overriding, 149
remove, 124
rollback, 171
sendEmail, 184
setBccSender, 184
setCcAddresses, 184
setCost, 145
setDocumentAttachments, 184
setFileAttachments, 184
setOrgWideEmailAddressId, 185

386 logical data models

setReplyTo, 184
setSaveAsActivity, 183-185
setSavepoint, 171
setSenderDisplayName, 184
setUseSignature, 184
Skills Matrix testing, 242
test, 154
testAsUser, 242
testNoResourceForUser, 242
testNoResourceSelected, 242
testNoSkills, 242
testSave, 242
testWithSkills, 242
valueOf, 119

Microsoft Azure, 3
Model-View Controller (MVC), 15
modular Visualforce, 252

composition, 253-254
custom components, 255-256
inclusion, 253
static resources, 252-253

modularity, Apex interfaces, 148-149
monitoring

debug logs, 152
workflow queues, 335

multilingual support, 348
custom labels, 349
Translation Workbench, 348

multiple currencies, 350-353
ACM, 353-354
dated currency rates, retrieving, 354
exchange rates, configuring, 350
records, setting, 350
SOQL conversions, 352
support cases, logging, 350
viewing, 352
Visualforce, 352

multiplication operator (*), 121
multi-select picklists, 166
multitenancy of Force.com, 4-5
MVC (Model-View Controller), 15

N
names

analytic snapshots, 346
Apex variables, 117
view components, 208

native user interfaces
browsing data, 39
data entry, 39
opting-in, 39
Visualforce

custom buttons/links, 226
custom tabs, 227
development, 198
page layout, 225-226
standard buttons, 224-225
standard pages, 222-224

nesting
lists, 123
resultsets, 26

New button (Visualforce pages), 225
New Custom Field Wizard, 36-37
new features, opting-in, 39
notification email triggers, 192-193
NullPointerException class, 126
numbers

data type conversions, 118
rounding, 119

O
object-oriented programming

analysis and design specialists, 11
Apex

classes, 143-147
encapsulation, 143
information hiding, 147-148
inheritance, 149-150
interfaces, 148-149
polymorphism, 150-151

Object-Relational Mapping (ORM), 29
objects, 13, 21

Connect Offline configuration, 101
creating in Java, 324-325

387objects

custom
assignment, defining, 53
creating, 33-36
projects, defining, 51-52
records, creating, 39
resource, defining, 52
skill, defining, 53
timecard, defining, 54
tools, 31-32
Views, 41

database
records as, 130-132
tuning, 22

data types, 118
DescribeFieldResult, 190
fields, 21

accessibility, configuring, 80
dependent, 90
filters, 101
history tracking, 97-98
roll-up summary, 95-97
security, 67-69

Group, 178
isDefaultRecordTypeMapping, 191
logical, 22
metadata, 189
operational tasks, 22
permissions, 64-66
ProcessInstance, 341
ProcessInstanceHistory, 341
Project Share, 177
relationships, 135-136
security, 63-65

fields, 67-69
profiles, 66-67
Visualforce, 228-229

sending email (Apex)
MassEmailMessage, 183
methods, 184-185
SingleEmailMessage, 181-182

services, 324
shared S2S, configuring, 281-284

selecting fields to publish, 283
selecting objects to publish, 283
subscriptions, 284

sharing, 175-176
standard, 47
Timecard, 192-193
undelete support, 22

offline access. See Connect Offline
Open Perspective dialog box, 113
OpenSAML toolkit

federated SSO SAML assertions, 356
initializing, 357

operations specialists, 12
operators (Apex), 121-122
opt_allOrNone parameter, 170
opting-in for features, 39
OR operator (|), 121
OR operator (||), 122
organization-wide defaults

records, 71-72
Services Manager application, 80

organization-wide email address unique
identifiers, 185

ORM (Object-Relational Mapping), 29
outbound messaging, 274

configuring, 274-276
delivery status, 276
workflow rule, 275-276

limits, 274
message definition, 276
Web service, creating, 276-279

outbound requests, controlling, 289
outer joins (SOQL), 162
outputField component, 210
outputLabel component, 211
outputLink component, 214
outputPanel component, 214
outputText component, 214
overloading methods, 150
overriding

methods, 149
standard buttons, 225
standard pages, 224

ownership
filters, 101
records, 69-70

388 objects

P
PaaS (Platform as a Service), 2

Amazon Web Services, 2-3
Facebook, 4
Force.com, 3
Google App Engine, 3
Microsoft Azure, 3

pageBlockButtons component, 295
pageBlockSectionItem components, 295
pageMessages component, 231, 294
pages

adding, Force.com sites, 266
definitions,Visualforce view

components, 209
page layouts, 7

custom objects, 36
record types, 93

Visualforce, 197
action status, 250-251
actions as JavaScript functions, 247
composition, 253-254
custom buttons/links, 226
custom components, 255-256
custom tabs, 227
inclusion, 253
JavaScript events, 249
layout, 225-226
partial page refreshes, 246-247
security, 229
Services Manager application,

294-295, 301-302
Skills Matrix (Services Manager),

238-240
standard buttons, 224-225
standard pages, 222-224
static resources, 252-253
timed events, 248

parent-to-child relationships (SOQL), 135
partial page refreshes (Visualforce pages),

246-247
Partner API (Web services), 305
PEM (Privacy Enhanced Mail), 358

permissions
administrative, 66
API enabled, 310
objects, 64-66

persisting database records, 137-139
personal tags, 99
perspective (Force.com IDE), 113
PHP implementation, 278
picklists

dependent, 104
metadata, 191
multi-select, 166
values (record types), 92

Platform as a Service. See PaaS
platform documentation resources, 16
polymorphism (Apex), 150-151
populating account/contact IDs formulas, 57
primitive components, 211, 214-215
Privacy Enhanced Mail (PEM), 358
private access modifier, 148
Problems view (Force.com IDE), 115
procedural sharing reasons, 73
processing

inbound email, 185-187
transactions

DML database methods, 170-171
record locking, 173-174
savepoints, 171-173

ProcessInstance object, 341
ProcessInstanceHistory object, 341
profiles, 66

administrative permissions, 66
Consultant, testing, 85
creating, 78-79
custom, 66
defined, 63
delegated SSO, 361
Executive VP, testing, 86
field-level security, 68
licensing, 67
managing, 66
object permissions, 66

389profiles

record types, configuring, 93
Staffing Coordinator, 85
standard, 66

programming languages
Apex. See Apex
DML

database methods, 170-171
database records, persisting,

137-139
SAML assertions, 356-357

creating, 357
PEM conversions, 358
signing/encoding, 358
testing, 359

SOQL, 132
anti-joins, 166
Apex database queries, 132
approvals, retrieving, 341
currency conversions, 352
dated currency rates,

retrieving, 354
dynamic queries, 188
Governor Limits, 28
implicit joins, 26
inner joins, 162-163
multiple object queries, 134-135
multi-select picklists, 166
nested resultsets, 26
no functions allowed, 27
object relationships, 135-136
outer joins, 162
queries in Apex, 135
query results, sorting, 134
record limits, 134
records, retrieval, 315-316
records, filtering, 133-134
sample query, 26
semi-joins, 164-166
statements, 132

SOSL
Apex, 168-169
field specifications, 168
overview, 167-168
queries, 167, 189

record limits, 168
search groups, 168

WSDL
Apex, generating, 289-290
delegated authentication,

downloading, 360
outbound messaging, 276-279

Project Map dashboard, 362
controller, 366-367
creating, 362
defining, 367
GoogleMultiMap component,

364-365
Visualforce page, 366

projects
custom objects, defining, 51-52
FlexDemo, 260

Internet Explorer support, 263-264
MXML code, 260-261
static resource, 261
Visualforce page, 262

Force.com IDE, 114
lifecycles, 12

application retirement, 15
configuration management, 14
integrated logical databases, 13
interoperability, 15
metadata-derived user interfaces,

13-14
MVC pattern, 15
unit testing integration, 14

logical data model, 43
selecting, 9-10
Services Manager application

managers, 18
reporting, 104, 107

team selection, 11-12
Project Share object query, 177
properties. See attributes
protected access modifier, 148
public access modifier, 147-148
public groups, 70
public tags, 99

390 profiles

Q
quality assurance engineers, 12
queries

batch size, 316
database (Apex), 132. See also SOQL
dynamic database Apex, 188-189
Group object, 178
Project Share object, 177
SOQL

dynamic, 188
multiple objects, 134-135
results, sorting, 134

SOSL, 167, 189
query languages

SOQL, 25
anti-joins, 166
Apex database queries, 132
approvals, retrieving, 341
currency conversions, 352
dated currency rates,

retrieving, 354
dynamic queries, 188
Governor Limits, 28
implicit joins, 26
inner joins, 162-163
multiple object queries, 134-135
multi-select picklists, 166
nested resultsets, 26
no functions allowed, 27
object relationships, 135-136
outer joins, 162
queries in Apex, 135
query results, sorting, 134
record limits, 134
records, retrieval, 315-316
records, filtering, 133-134
sample query, 26
semi-joins, 164-166
statements, 132

SOSL, 28
Apex, 168-169
field specifications, 168
overview, 167-168

queries, 167, 189
record limits, 168
search groups, 168

queues (workflow, monitoring), 335

R
raising exceptions, 126
read-only properties, 145
receiving email (Apex), 186

class, creating, 186
configuring, 185
inbound email processing, 187
personalizing, 185

record-level security, 64, 69
record ownership, 69-70
sharing model, 70-73

organization-wide defaults, 71-72
sharing reasons, 72-73

user groups, 70
records

approvals
submissions, 342
viewing, 337

bulk modifications, 319
creating, 39, 317-318
database

deleting, 139
inserting, 137
as objects, 130-132
persisting, 137-139
undeleting, 139
updating, 138
upserting, 138

deleting/undeleting, 319
detail, 102
forwarding, 286
limits

Connect Offline configuration, 102
SOSL, 168

locking, 173-174
ownership, 69-70, 101
retrieving, 315-316
security, 229

391records

sharing, 284-288
SOQL, 133-134
types, 90-91

changing, 95
configuring for profiles, 93
default, 95
defining, 91-92
deleting, 91
field visibility, 93
Master, 91
metadata, 191
new record creation, 93
page layout assignment, 93
picklist values, 92
security, 92-93

updating, 318
recursion (Apex), 127
registration, 31
relatedList component, 218
relational databases, 5
relationships, 25

creating, 54-55
database, 131
definitions, 25
fields, 37-38
importing, 56
integrity enforcement, 25
objects, 135-136
Services Manager application, 48-50

remove method, 124
repeating components, 212-213
replying (email), 184
reports, 343

creating, 343-344
custom types, 344
running, 344

requests, approvals, 337
reRender attribute, 246
resources

AppExchange, 16
Code Share Web site, 16
custom objects, 52
developer discussion boards, 16

Developer Force, 16
Dreamforce, 16
Ideas Web site, 16
logical data model, 44
platform documentation, 16
systems integrators, 17
technical support, 17
types, 129

REST services, 291
calling, 291
invoking, 291-292
testing, 293

restoring savepoints, 171
restrictions (Apex managed sharing), 175
resultsets, nesting, 26
retiring applications, 15
retrieving

approvals, 341
dated currency rates, 354
records, 315-316

rich data types, 24
roles

Services Manager application, 81
user groups, 70

rollback method, 171
roll-up summary fields, 38, 95-97

Services Manager application project
reporting, 104, 107

summary calculation, 96
rounding numbers, 119
rules

Apex sharing, 176-180
validation, 23
workflow, 334

active, 334
debugging, 335
inactive, 334
outbound messaging, 275-276
queue, monitoring, 335
time-based, 334

running
analytic snapshots, 346
reports, 344

392 records

S
S2S (Salesforce-to-Salesforce), 279

connecting, 280-281
record sharing, 284-288
shared objects, configuring, 281-284

selecting fields to publish, 283
selecting objects to publish, 283
subscriptions, 284

Salesforce.com, 4
Force.com application services, 6
multitenancy, 5

Salesforce Object Query Language.
See SOQL

sales representatives (Services Manager
application), 18

SAML (Security Assertion Markup Language)
assertions, 356-357

creating, 357
PEM conversions, 358
signing/encoding, 358
testing, 359

savepoints, transaction processing, 171-173
Schema Explorer

Apex database relationships, 131
Force.com IDE, 115
SOQL queries, 132

schema metadata (dynamic Apex), 189
child relationship, 190
field, 190
object, 189
picklist, 191
record type, 191

scope (Apex), 112
search groups (SOSL), 168
search layouts (custom objects), 36
searching tags, 99
sectionHeader component, 294
Secure Sockets Layer (SSL), 305
security

architecture, 63
databases, 63-65, 142
Force.com sites, 266
funnel, 64-65

object-level, 63-65
fields, 67-69
profiles, 66-67

record types, 92-93
record-level, 64, 69

record ownership, 69-70
sharing model, 70-73
user groups, 70

Services Manager application, 73
business units, 75-78
designing, 74-75
field accessibility, configuring, 80
implementing, 78
job functions, 75
organization-wide defaults,

configuring, 80
profiles, creating, 78-79
role hierarchy, 81
sharing rules, 82
testing, 83-87

tokens, logging in, 311
Visualforce, 228

object-level, 228-229
page-level, 229
record-level, 229

Web services, 305
Security Assertion Markup Language.

See SAML
selectCheckboxes component, 212
selecting

projects, 9-10
teams, 11-12

selectList component, 212
selectRadio component, 212
semi-joins (SOQL), 164-166
sendEmail method, 184
sender display names (email), 184
sending email (Apex), 181

attachments, 184
blind carbon copies, 184
carbon copies, 184
Documents, 184
mass emails, 183
methods, 184-185

393sending email (Apex)

organization-wide email address
unique identifiers, 185

replying, 184
sender display names, 184
signatures, 184
single messages, 181-182
templates, 182
tracking activity, 185
transactional behavior, 184

services
application, 6
business logic, 7
database, 7
Force.com, 7
integration, 8-9
user interface, 7-8

Services Manager application, 17
anonymous benchmarking, 293,

296-298
background, 17
Connect Offline for staffing, 107-108
custom objects list, 55
data model, creating

application definition, 50
assignment custom objects, 53
project custom objects, 51-52
relationships, 54-55
resource custom objects, 52
skill custom objects, 53
timecard custom objects, 54

dependent fields for skill types, 104
development plan, 18
email notifications, 192-193
Force.com data model, 47, 50

relationships, 48-50
standard objects, 47

implementation strategy, 326
importing data, 55

preparations, 56-57
process, 58-59
verification, 59-60

integration scenario, 326
Java integration implementation

sample, 327-330

JSON file format, 330
logical data model, 41-46

assignments, 45
clients, 42
customers, 42
projects, 43
resources, 44
skills, 46
timecards, 46

Project Map dashboard, 362
controller, 366-367
creating, 362
defining, 367
GoogleMultiMap component,

364-365
Visualforce page, 366

roll-up summary fields for project
reporting, 104, 107

security, 73
business units, 75-78
designing, 74-75
field accessibility, configuring, 80
implementing, 78
job functions, 75
organization-wide defaults,

configuring, 80
profiles, creating, 78-79
role hierarchy, 81
sharing rules, 82
testing, 83-87

Skills Matrix, 233-234, 268
actionSupport, 271
basic implementation, 234
CompareSkillsComponent, 271
controller, 236-238, 269
controller tests, 240-242
custom component, 269
full implementation, 235
refreshing, 271
Visualforce page, 238-240
YUI overlay support, 270

timecard validation, 155
Force.com IDE setup, 156
triggers, 156-157
unit testing, 157-159

394 sending email (Apex)

user roles, 18
utilization, 293

controller sample code, 299-301
Visualforce controller design,

295-296
Visualforce page design, 294-295
Visualforce page sample code,

301-302
setBccSender method, 184
setCcAddresses method, 184
setCost method, 145
setDocumentAttachments method, 184
setFileAttachments method, 184
set iteration for loops, 126
setOrgWideEmailAddressId method, 185
setReplyTo method, 184
Sets, 124
setSaveAsActivity method, 183-185
setSavepoint method, 171
setSenderDisplayName method, 184
setUseSignature method, 184
sharing, 64

managed Apex, 174-176
objects, 175-176
rules, 176-180

objects (S2S), 281, 284
selecting fields to publish, 283
selecting objects to publish, 283
subscriptions, 284

record-level security, 70, 73
organization-wide defaults, 71-72
sharing reasons, 72-73

records (S2S), 284-288
rules, 73, 82

signatures (email), 184
signed shift left operator (<<), 121
signed shift right operator (>>), 121
signing SAML assertions, 358
Simple Queue Service (SQS), 2
SimpleDateFormat Java API pattern, 120
single sign-on. See SSO
SingleEmailMessage object, 181-182

sites (Force.com), 264
details page, 267
domain names, 265
enabling, 265
Login Settings page, 267
main page, 266
pages, adding, 266
security, 266
user authentication, 267

skills
custom objects, 53
logical data model, 46
types, dependent fields, 104
validation rule listing, 53

Skills Matrix (Services Manager application),
233-234, 268

actionSupport, 271
basic implementation, 234
CompareSkillsComponent, 271
controller, 236-238, 269
controller tests, 240-242
custom component, 269
full implementation, 235
refreshing, 271
Visualforce page, 238-240
YUI overlay support, 270

snapshots (analytic), 346-347
SOAP data types, 313
SOQL (Salesforce Object Query Language),

25, 132
Apex database queries, 132
approvals, retrieving, 341
currency conversions, 352
dated currency rates, retrieving, 354
Governor Limits, 28
joins

anti-joins, 166
implicit, 26
inner, 162-163
outer, 162
semi-joins, 164-166

multi-select picklists, 166
nested resultsets, 26

395SOQL

no functions allowed, 27
object relationships, 135-136
queries

Apex integration, 135
dynamic, 188
multiple objects, 134-135
results, sorting, 134

records
filtering, 133-134
limits, 134
retrieval, 315-316

sample query, 26
statements, 132

SOSL (Salesforce Object Search Language),
25, 28

Apex, 168-169
field specifications, 168
overview, 167-168
queries, 167, 189
record limits, 168
search groups, 168

SQS (Simple Queue Service), 2
SSL (Secure Sockets Layer), 305
SSO (single sign-on), 354

delegated, 359-361
configuring, 361
errors, 362
profiles, 361
sample code, 360-361
WSDL authentication,

downloading, 360
federated, 354-359

configuring, 355-356
SAML assertions, 356-359

staffing
coordinators

Services Manager application, 18
testing, 85

Services Manager application, 107-108
standardController attribute, 209
standards

buttons (Visualforce pages), 224-225
controllers, 197, 201

multiple records, 202-203
single records, 201-202

fields, 23
objects (Services Manager

application), 47
pages, 222-224
profiles, 66

Standard Setup Wizard, 340
start/stop facets (actionStatus

component), 250
statements

control (Apex), 125
Delete, 139
exception (Apex), 126-127
Insert, 137
SOQL, 132
Undelete, 139
Update, 138
Upsert, 138

static initializers, 147
static keyword, 144
static resources (Visualforce), 252-253
strings, 117

concatenation operator (+), 121
conversions, 119-120

stylesheet component, 214
subclasses (Apex), 149
submitting records for approval, 342
subscriptions (S2S shared objects), 284
subtraction operator (-), 121
super keyword, 149
syntax (Visualforce view components),

208-209
attributes, 209
bodies, 209
names, 208

system exceptions, 314
systems integrators, 17

T
tabs

custom
creating, 39
Visualforce pages, 227

standard page, 222
user interfaces, 39

396 SOQL

tags, 98-99
teams, selecting, 11-12
technical support, 17
templates

email (Apex), 182
Visualforce pages, 253-254

testAsUser method, 242
testing

Apex, 154
governor limits, 154
running, 155
test methods, writing, 154

methods, 154
REST services, 293
SAML assertions, 359
Services Manager security, 83

additional users, creating, 84
business unit collaboration, 86-87
consultant profiles, 85
data preparations, 84-85
Executive VP profiles, 86
Staffing Coordinator profiles, 85

unit testing, 14
Services Manager application

timecard validation, 157-159
Skills Matrix (Services Manager),

240-242
Visualforce, 232-233

testNoResourceForUser method, 242
testNoResourceSelected method, 242
testNoSkills method, 242
testSave method, 242
testWithSkills method, 242
this keyword, 145
time-based workflow rules, 334
TimecardManager class

creating, 156
unit testing, 158

timecards
custom objects, 54
email notification triggers, 192-193
logical data model, 46

validation (Services Manager
application), 155

Force.com IDE setup, 156
triggers, 156-157
unit testing, 157-159

time data types, 117, 120
timed events, 248
TLS (Transport Layer Security), 305
tools

Adobe Flex toolkit, 259
App Builder

custom object metadata, 32
Services Manager data model,

creating, 50-54
custom objects, 31-32
Data Loader, importing data, 55-60

preparations, 56-57
process, 58-59
verification, 59-60

OpenSAML toolkit
federated SSO SAML

assertions, 356
initializing, 357

Visualforce development, 198-199
Total Hours formula field, 54
tracking

email activity (Apex), 185
field history, 97-98

traditional for loops, 126
transactions, processing

DML database methods, 170-171
record locking, 173-174
savepoints, 171-173

Translation Workbench, 348
Transport Layer Security (TLS), 305
triggers

custom objects, 35
database, 139

batch processing, 140
defining, 139-140
error handling, 141
governor limits, 141

397triggers

Services Manager application timecard
validation, 156-157

uncaught expressions, 231
troubleshooting logging in, 312
tuning databases, 22
TypeException class, 126
types

records, 90-91
changing, 95
configuring for profiles, 93
default, 95
defining, 91-92
deleting, 91
field visibility, 93
Master, 91
metadata, 191
new record creation, 93
page layout assignment, 93
picklist values, 92
security, 92-93

reports, customizing, 344
skills, 104

U
unary decrement operator (- -), 121
unary increment operator (++), 121
uncaught exceptions (Visualforce), 230-231
UndeleteResult object, 319
Undelete statements, 139
undeleting, 22

database records, 139
records, 319

unique identifiers (fields), 23
unit testing, 14

Services Manager application
Skills Matrix, 240-242
timecard validation, 157-159

Visualforce, 232-233
unsigned shift right operator (>>>), 121
Update statements, 138
updating

database records, 138
records, 318

Upsert statements, 138
upserting database records, 138
users

authentication, 267
creating, 84
defined classes (Apex), 143
groups, 70
interfaces

designers, 12
generating, 30
metadata-derived, 13-14
native. See native user interfaces
services, 7-8
tabs, 39

profiles, 66
administrative permissions, 66
Consultant, testing, 85
creating, 78-79
custom, 66
defined, 63
Executive VP, testing, 86
field-level security, 68
licensing, 67
managing, 66
object permissions, 66
Staffing Coordinator, testing, 85
standard, 66

Services Manager application, 18
utilization (Services Manager

application), 293
controller sample code, 299-301
Visualforce

controller design, 295-296
page design, 294-295
page sample code, 301-302

V
validation rules

custom objects, 35
fields, 23
skills, 53

valueOf method, 119

398 triggers

variables
access modifiers, 148
Apex, 117-120

case sensitivity, 117
classes, 144-145
constants, 118
data types, 117-119
dates to strings conversions, 120
declaring, 117
enums, 118
names, 117
rounding numbers, 119
string to date conversions, 120

cost, 145
verifying data imports, 59-60
versions

Force.com, 5
Web services, 305

Vice President (Services Manager
application), 18

view components (Visualforce), 207
action components, 213
attributes, 209
bodies, 209
data components, 210

metadata-aware, 210
primitive, 211
repeating, 212

Force.com-styled, 215-217
names, 208
overview, 208
page definitions, 209
primitive components, 214-215
sample controller and page, 220-222
syntax, 208-209
user interface, 218-220
visibility, 210

view standard page, 222
viewing, 39

approved records, 337
currencies, 352
custom objects, 41
debug logs, 152

Force.com IDE
Apex Test Runner, 116
Execute Anonymous, 116
Problems, 115

shared records, 286
virtual keyword, 149
visibility (Visualforce view components), 210
Visualforce, 8, 196

action components, 213-214
Ajax

action status, 250-251
actions as JavaScript functions, 247
JavaScript events, 249
partial page refreshes, 246-247
timed events, 248

architecture, 196
controllers, 196, 201

custom, 203-205
extensions, 206
standard, 201-203

data components, 210
metadata-aware, 210
primitive, 211
repeating, 212

development process, 198
development tools, 198-199
error handling, 230

error communication, 231
uncaught exceptions, 230-231

extending, 257
Adobe Flex. See Adobe Flex
JavaScript libraries, 257-258

Force.com sites, 264
details page, 267
domain names, 265
enabling, 265
Login Settings page, 267
main page, 266
pages, adding, 266
security, 266
user authentication, 267

Force.com-styled components,
215-217

399Visualforce

GoogleMultiMap component,
364-365

governor limits, 232
Hello World example, 199-201
modular, 252

composition, 253-254
custom components, 255-256
inclusion, 253
static resources, 252-253

multiple currencies support, 352
native user interface, 198
overview, 196
pages, 197

buttons, 224-226
layout, 225-226
links, 226
Skills Matrix (Services Manager

application), 238-240
standard, 222-224
tabs, 227

primitive components, 214-215
ProjectMap page, 366
security, 228-229
Services Manager application

controller design, 295-296
page design, 294-295

unit tests, 232-233
user interface components, 218

detail, 220
enhancedList, 218
listViews, 218
relatedList, 218

view components, 207
attributes, 209
bodies, 209
names, 208
overview, 208
page definitions, 209
sample controller and page,

220-222
syntax, 208-209
visibility, 210

volume (data), 10

W
Web developers, 12
Web services, 304

APIs, 304
data integration, 29
Developer’s Guide Web site, 305
limits, 305-306

calling from Apex code, 289-290
clients, generating, 306, 310

C#, 309-310
Java, 307-308

custom, 320
administrative rights, 320
calling, 322-323
code example, 322
definition, 321
governor limits, 321

Enterprise API, 314
creating records, 317-318
deleting/undeleting records, 319
limits, 320
record bulk modifications, 319
record retrieval, 315-316
updating records, 318

error handling, 314
integration, 296-298
logging in, 310

API enabled permissions, 310
IP whitelisting, 311
login Web service, 311
security tokens, 311
troubleshooting, 312

Metadata API, 323
creating objects in Java, 324-325
file-based services, 323
object-based services, 324
overview, 323-324

outbound messaging, creating,
276-279

overview, 304
security, 305
SOAP data types, 313
versions, 305

400 Visualforce

Web sites
Adobe Flex toolkit, 259
AppExchange, 16
Code Share, 16
DE, 31
developer discussion boards, 16
Developer Force, 16, 31
Eclipse, 113
Excel Connector download, 33
Flex Builder, 260
Ideas, 16
SimpleDateFormat Java API

pattern, 120
Web Services API Developer’s

Guide, 305
while loops, 125
with sharing keyword, 142
with/without sharing security modes, 229
wizards

Import, 33
Jump Start, 340
New Custom Field, 36-37
Standard Setup, 340

workflow rules
active, 334
debugging, 335
inactive, 334
outbound messaging, configuring,

275-276
queue, monitoring, 335
time-based, 334

write locks, 173
write-only properties, 145
WSDL (Web Service Definition Language)

Apex, generating, 289-290
delegated authentication,

downloading, 360
outbound messaging, 276-279

X–Z
XML metadata, integrating, 30
XOR operator (^), 121

YahooGeocode class, 293
Years of Experience Formula field, 52

zero-cost improvements, 5

401zero-cost improvements

	Table of Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Introducing Force.com
	Force.com in the Cloud Computing Landscape
	Platform as a Service (PaaS)
	Force.com as a Platform
	Force.com Services

	Inside a Force.com Project
	Project Selection
	Team Selection
	Lifecycle
	Tools and Resources

	Sample Application: Services Manager
	Background
	User Roles
	Development Plan

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

