
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321638366
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321638366
https://plusone.google.com/share?url=http://www.informit.com/title/9780321638366
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321638366
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321638366/Free-Sample-Chapter

DISTRIBUTED PROGRAMMING
WITH RUBY

Mark Bates

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the web: informit.com/ph

Library of Congress Cataloging-in-Publication Data:

Bates, Mark, 1976-
Distributed programming with Ruby / Mark Bates.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-63836-6 (pbk. : alk. paper) 1. Ruby (Computer program language)

2. Electronic data processing—Distributed processing. 3. Object-oriented methods
(Computer science) I. Title.

QA76.73.R83B38 2010
005.1’17—dc22

2009034095

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohib-
ited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: 617-671-3447

ISBN-13: 978-0-321-63836-6
ISBN-10: 0-321-63836-0
Text printed in the United States on recycled paper at RR Donnelley and Sons in
Crawfordsville, Indiana
First printing November 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Senior Project Editor
Lori Lyons

Copy Editor
Gayle Johnson

Indexer
Brad Herriman

Proofreader
Apostrophe Editing
Services

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Nonie Ratcliff

To Rachel, Dylan, and Leo.

Thanks for letting Daddy hide away until the wee hours of the morning

and be absent most weekends. I love you all so very much,

and I couldn’t have done this without the three of you.

This page intentionally left blank

Contents

Foreword ix

Preface xi

Part I Standard Library 1

1 Distributed Ruby (DRb) 3
Hello World 4
Proprietary Ruby Objects 10
Security 17

Access Control Lists (ACLs) 18
DRb over SSL 21

ID Conversion 28
Built-in ID Converters 29
Building Your Own ID Converter 33
Using Multiple ID Converters 34

Conclusion 35
Endnotes 36

2 Rinda 37
“Hello World” the Rinda Way 38
Understanding Tuples and TupleSpaces 44

Writing a Tuple to a TupleSpace 44
Reading a Tuple from a TupleSpace 45
Taking a Tuple from a TupleSpace 48
Reading All Tuples in a TupleSpace 52

Callbacks and Observers 53
Understanding Callbacks 54
Implementing Callbacks 55

Security with Rinda 59
Access Control Lists (ACLs) 59
Using Rinda over SSL 61
Selecting a RingServer 63

Renewing Rinda Services 70
Using a Numeric to Renew a Service 71
Using nil to Renew a Service 72
Using the SimpleRenewer Class 72
Custom Renewers 73

Conclusion 75
Endnotes 76

Part II Third-Party Frameworks and Libraries 77

3 RingyDingy 79
Installation 79
Getting Started with RingyDingy 80
“Hello World” the RingyDingy Way 81
Building a Distributed Logger with RingyDingy 82
Letting RingyDingy Shine 84
Conclusion 86

4 Starfish 87
Installation 87
Getting Started with Starfish 88
“Hello World” the Starfish Way 90

Using the Starfish Binary 90
Saying Goodbye to the Starfish Binary 93

Building a Distributed Logger with Starfish 96
Letting Starfish Shine 99
MapReduce and Starfish 103

Using Starfish to MapReduce ActiveRecord 104
Using Starfish to MapReduce a File 110

Conclusion 112
Endnotes 113

vi Contents

5 Distribunaut 115
Installation 116
Blastoff: Hello, World! 117
Building a Distributed Logger with Distribunaut 120
Avoiding Confusion of Services 123
Borrowing a Service with Distribunaut 126
Conclusion 128
Endnotes 129

6 Politics 131
Installation 133
Working with Politics 135
Conclusion 141
Endnotes 142

Part III Distributed Message Queues 143

7 Starling 145
What Is a Distributed Message Queue? 145
Installation 147
Getting Started with Starling 148
“Hello World” the Starling Way 155
Building a Distributed Logger with Starling 157
Persisted Queues 158
Getting Starling Stats 158
Conclusion 162
Endnotes 162

8 AMQP/RabbitMQ 163
What Is AMQP? 163
Installation 165
“Hello World” the AMQP Way 167
Building a Distributed Logger with AMQP 178
Persisted AMQP Queues 180
Subscribing to a Message Queue 184

Contents vii

Topic Queues 187
Fanout Queues 193
Conclusion 196
Endnotes 197

Part IV Distributed Programming with Ruby on Rails 199

9 BackgrounDRb 201
Installation 202
Offloading Slow Tasks with BackgrounDRb 203
Configuring BackgrounDRb 211
Persisting BackgrounDRb Tasks 213
Caching Results with Memcached 217
Conclusion 220
Endnotes 221

10 Delayed Job 223
Installation 223
Sending It Later with Delayed Job 225
Custom Workers and Delayed Job 230
Who’s on First, and When Does He Steal Second? 235
Configuring Delayed Job 237
Conclusion 240
Endnotes 241

Index 243

viii Contents

ix

Foreword

Mark’s career in programming parallels mine to a certain degree. We both started developing
web applications in 1996 and both did hard time in the Java world before discovering Ruby
and Rails in 2005, and never looking back.

At RubyConf 2008 in Orlando, I toasted Mark on his successful talk as we sipped Piña
Coladas and enjoyed the “fourth track” of that conference—the lazy river and hot tub. The
topic of our conversation? Adding a title to the Professional Ruby Series in which Mark would
draw from his experience building Mack, a distributed web framework, as well as his long
career doing distributed programming. But most important, he would let his enthusiasm for
the potentially dry subject draw in the reader while being educational. I sensed a winner, but
not only as far at finding the right author. The timing was right, too.

Rails developers around the world are progressing steadily beyond basic web program-
ming as they take on large, complex systems that traditionally would be done on Java or
Microsoft platforms. As a system grows in scale and complexity, one of the first things you
need to do is to break it into smaller, manageable chunks. Hence all the interest in web serv-
ices. Your initial effort might involve cron jobs and batch processing. Or you might imple-
ment some sort of distributed job framework, before finally going with a full-blown
messaging solution.

Of course, you don’t want to reinvent anything you don’t need to, but Ruby’s distributed
programming landscape can be confusing. In the foreground is Ruby’s DRb technology, part
of the standard library and relatively straightforward to use—especially for those of us famil-
iar with parallel technologies in other languages, such as Java’s RMI. But does that approach
scale? And is it reliable? If DRb is not suitable for your production use, what is? If we cast our
view further along the landscape, we might ask: “What about newer technologies like AMQP
and Rabbit MQ? And how do we tie it all together with Rails in ways that make sense?”

Mark answers all those questions in this book. He starts with some of the deepest docu-
mentation on DRb and Rinda that anyone has ever read. He then follows with coverage of
the various Ruby libraries that depend on those building blocks, always keeping in mind the

practical applications of all of them. He covers assembling cloud-based servers to handle
background processing, one of today’s hottest topics in systems architecture. Finally, he cov-
ers the Rails-specific libraries BackgrounDRb and Delayed Job and teaches you when and
how to use each.

Ultimately, one of my most pleasant surprises and one of the reasons that I think Mark
is an up-and-coming superstar of the Ruby community is the hard work, productivity, and
fastidiousness that he demonstrated while writing this book. Over the course of the spring
and summer of this year, Mark delivered chapters and revisions week after week with clock-
work regularity. All with the utmost attention to detail and quality. All packed with knowl-
edge. And most important, all packed with strong doses of his winning personality. It is my
honor to present to you the latest addition to our series, Distributed Programming with Ruby.

Obie Fernandez, Series Editor
September 30, 2009

x Foreword

xi

Preface

I first found a need for distributed programming back in 2001. I was looking for a way to
increase the performance of an application I was working on. The project was a web-based
email client, and I was struggling with a few performance issues. I wanted to keep the email
engine separate from the client front end. That way, I could have a beefier box handle all the
processing of the incoming email and have a farm of smaller application servers handling the
front end of it. That seems pretty easy and straightforward, doesn’t it? Well, the language I was
using at the time was Java, and the distributed interface was RMI (remote method invocation).
Easy and straightforward are not words I would use to describe my experiences with RMI.

Years later I was working on a completely different project, but I had a not-too-dissimilar
problem—performance. The application this time was a large user-generated content site
built using Ruby on Rails. When a user wrote, edited, or deleted an article for the site, it
needed to be indexed by our search engine, our site map needed to be rebuilt, and the article
needed to be injected into the top of our rating engine system. As you can imagine, none of
this was quick and simple. You can also probably guess that our CEO wanted all of this to
happen as close to real time as possible, but without the end user’s having to wait for every-
thing to get done. To further complicate matters, we had limited system resources and mil-
lions of articles that needed to be processed.

I didn’t want to burden our already-overworked applications server boxes with these
tasks, so I had to offload the processing to another machine. The question came to be how I
could best offload this work. The first idea was to use the database as the transfer mechanism.
I could store all the information in the database that these systems would need. Then the
machine that was to do the processing could poll the database at a regular interval, find any
pending tasks, pull them out of the database, create the same heavy objects I already had, and
then start processing them. The problem, as you most likely already know, is that I’m now
placing more load on the database. I would be polling it continually, regardless of whether it
contained any tasks. If it did have tasks, I would have to pull those records out of the database

and use more system resources transforming the records back into those same heavy Ruby
objects I already had.

What I really wanted to do was just send the fully formed Ruby objects I had already cre-
ated to the other machine and let it do the processing. This would lessen the burden all
around. In addition to the lighter load on the database, memory, and system resources, the
machine doing the processing would work only when it was told to, and it wouldn’t waste
recourses by continually polling the database. Plus, without polling, the parts of the applica-
tion the CEO wanted updated in near real time would get updated faster.

After I realized that what I wanted to do was to use some sort of distributed mechanism,
that’s when I decided to see what sort of RMI-esque features Ruby had. I was already
impressed with Ruby for being a terse language, but when I found the DRb (Distributed Ruby,
also known as dRuby) package, I became a believer. I found that writing distributed applica-
tions in Ruby could be simple, and dare I say fun.

Who Is This Book For?
This book is quite simply written for the intermediate to advanced Ruby developer who
wants to start developing distributed applications. This book assumes that you have good
knowledge of Ruby, at least at the intermediate developer level. Although we will touch on
some parts of the Ruby language—particularly those that might be confusing when dealing
with distributed applications—we will not be going into the language in depth.

Although you should know Ruby, this book assumes that you probably do not under-
stand distributed programming and that this is your first venture into this world. If you have
done distributed programming before, this book will help you quickly understand how to do
it in Ruby. If you haven’t, this book will help you understand what distributed programming
is and isn’t.

How Is This Book Organized?
This book is split into four parts. Part I examines what ships with the standard library in
Ruby 1.8.x and beyond. We look, in depth, at understanding how DRb (dRuby or Distrib-
uted Ruby) and Rinda work. We will build some simple applications in a variety of ways and
use those examples to talk about the libraries. We examine the pros and cons of DRb and
Rinda. By the end of Part I, “Standard Library,” you should feel comfortable and ready to
build your distributed applications using these libraries.

Part II, “Third-Party Frameworks and Libraries,” looks at a variety of third-party tools,
libraries, and frameworks designed to make distributed programming in Ruby easy, fun, and

xii Preface

Preface xiii

robust. Some of these libraries build on the DRb and Rinda libraries we learned about in Part
I, and others don’t. Some are based on executing arbitrary code on another machine. Others
are based on running code in the background to elevate performance.

Part III, “Distributed Message Queues,” takes a close look at some of the leading dis-
tributed message queues available to the Ruby community. These queues can help facilitate
communication and tasks between your applications. Distributed message queues can help
increase your applications’ performance by queuing up work to be done at a later date instead
of at runtime.

Finally, Part IV, “Distributed Programming with Ruby on Rails,” looks at a few libraries
that are designed to work exclusively with the Ruby on Rails web framework. These libraries
might already be familiar to you if you have been using Ruby on Rails for several years. But
there is always something to be learned, and that’s what the chapters in this part of this book
will help you with.

During the course of the book, we will examine a breadth of different technologies; how-
ever, this book is not necessarily a how-to guide. Instead, you will use these different tech-
nologies to help understand the complex problems associated with distributed programming
and several different ways you can solve these problems. You’ll use these technologies to learn
about RMI, message queues, and MapReduce, among others.

How to Run the Examples
I have tried to make this book as easy to use and follow as possible. When a new technology
is referenced or introduced, I give you a link to find out more about it and/or its developer(s).
When you see a code sample, unless otherwise stated, I present that sample in its entirety. I
have also taken extra effort to make sure that you can easily run each of those code samples
as is. Unless otherwise stated, you should be able to take any code sample, copy it into a Ruby
file, and run it using the ruby command, like this:

$ ruby foo.rb

There are times when a file needs to be named something specific or has to be run with
a special command. In particular, Chapter 4, “Starfish,” covers this issue. At that time I will
call your attention to these details so that you can run the examples without hassle.

In some chapters, such as Chapters 2, “Rinda,” and 8, “AMQP/RabbitMQ,” background
servers need to be run for the examples to run correctly. It is highly recommended that you
restart these background servers between each set of examples that are presented in these
chapters. A lot of these chapters iteratively build on a piece of software, and restarting the
servers between runs helps eliminate potentially confusing results.

Acknowledgments

Writing a book isn’t easy. I know that’s an obvious statement, but sometimes I think people
just don’t quite get what goes into writing a book. I didn’t think it would be this difficult.
Thankfully, though, I have somehow made it out the other side. I’m a little (more like a lot)
battered, bruised, and very tired, but it was definitely worth it.

However, I couldn’t have done this without a lot of help from a lot of different people.
As with a good Oscar speech, I’ll try to keep this brief, and I’m sure, as with an Oscar speech,
I’ll leave out some people. If I’ve left you out, I apologize. Now, let’s see if I can get through
this before the orchestra plays me off.

First, and foremost, I have to thank my family. Rachel, my beautiful wife, has been so
supportive and understanding, not just with this book, but with everything I do. I know that
she would’ve loved to have had me spend my weekend afternoons going for walks with her.
Or to have me do the stuff around the house that needs to get done. Instead, she let me hide
away in my office/studio, diligently (sometimes) working on my book. The same goes for
Dylan, my son. I’m sure he would’ve preferred to have Daddy playing with him all day. I’m
all yours now, little buddy. And to little Leo: This book and you share a very similar
timeline—only two days separate your birth and this book going to print. Welcome, son!
Your mother and big brother will tell you this hasn’t been easy, and you’re better for having
slept through the whole thing.

Before I get off the subject of family, I would like to thank my parents. The reasons are
obvious. They brought me into this world. (And, from what I’ve been told, they can take me
out as well.) They have always supported me and have made me the man I am today. Because
of them I am not afraid to take risks. I’m not afraid to fail. In general, I’m not afraid. Except
for dogs. I’m afraid of dogs, but I don’t think that’s my parents’ fault.

I would also like to quickly thank the rest of my friends, family, and coworkers. Mostly
I’m thanking them for not telling me to shut up whenever I started talking about my book,
which, let me tell you, was a lot. Even I got tired of hearing about it!

xiv

In November 2008, I gave a presentation titled “Building Distributed Applications” at
RubyConf in Florida. After my presentation I was approached by a couple of gentlemen
telling me how much they enjoyed my talk. They wanted to know where they could find out
more about DRb and Rinda. I told them that unfortunately very little documentation on the
subject existed—just a few blog posts here and there, and the code itself. They told me I
should write a book about distributed programming with Ruby, adding that they would order
it in a heartbeat. I thought it was a great idea. Shortly before I sent my manuscript to the pub-
lisher, I received an email from one of these gentlemen, Ali Rizvi. He had stumbled across
one of my blog posts on a completely unrelated subject (the iPhone), and he realized who I
was and that I was writing this book. He dropped me a quick note to say hi and that he was
looking forward to reading the book. So Ali, now that I know your name, thank you for the
idea!

At that same conference I found myself having a few drinks in the hot tub with none
other than Obie Fernandez, the Professional Ruby Series editor for Addison-Wesley. He told
me how much he enjoyed my presentation earlier that day. I used the opportunity to pitch
him my book idea—the one I’d had only an hour before. He loved the idea and told me he
thought it would be a great book, and he would love to be a part of it. A few weeks later I
received an email from Debra Williams Cauley at Addison-Wesley, wanting to talk to me
about the book. The rest, as they say, is history.

Obie and Debra have been my guiding light with this book. Obie has given me great
advice and guidance on writing it. His direction as a series editor has been invaluable. Thank
you, Obie, for your mentoring, and thank you for helping me get this opportunity.

Debra, thank you. Thank you so much. Debra managed this book. She answered all my
questions (some good, some bad); she was always there with an answer. She never told me a
request was too outrageous. She helped guide me through the treacherous waters of book
writing, and it’s because of her that I managed to make it through to the other end mostly
unscathed. I can’t say enough great things about Debra, and I know I can never thank her as
much as she deserves to be thanked in regards to this book. Thank you, Debra.

I would like to thank Songlin Qiu. Songlin’s amazing technical editing is, quite frankly,
what made this book readable. She constantly kept me on my toes and made sure not only
that the book was consistent, but also that it was well written and worth reading. I’m pretty
sure she also fixed a million misuses of the “its” that appeared in the book. Thank you,
Songlin.

Gayle Johnson also deserves a thank you here for her copy editing. She is the one who
turned my words into poetry. Well, maybe poetry is an exaggeration, but trust me—this book

Acknowledgments xv

is a lot more enjoyable to read because of her. She turned my Guinness soaked ramblings into
coherent English. Thank you, Gayle.

Lori was my project editor on this book. She helped to guide me through the murky
waters that are the copy editing/pre-production phase of writing a book. Thank you, Lori, for
helping me take my book to the printer.

I would like to acknowledge another group of people—technical reviewers. They read the
book and told me all the things they don’t like about it. Just kidding—sort of. They are my
peers. Their job is to read the book and give me feedback on what they liked, disliked, and
were indifferent to. Their comments ranged from “Why didn’t you talk about such-and-
such?” to “I like how you flow from this subject to that one.” Some of these people I came to
absolutely love, either because they offered me great advice or because they liked what I had
done. Others I came to be frustrated with, either because I didn’t like their comments or
because they were right, and I don’t like being wrong. Either way, all the feedback was
extremely helpful. So with that said, here is a list of those people, in no particular order:
Gregg Pollack, Robert P.J. Day, Jennifer Lindner, and Ilya Grigorik. Thank you all so very
much.

I want to thank everyone at Addison-Wesley who worked on this book. Thank you to
those who dedicated their time to making my dream into a reality. I know there are people
who are working hard in the background that I am unaware of, from the cover art, to the
technical editing, to the page layout, to the technical reviewers, to the person who corrects
my spelling, thank you.

Finally, thank you. Thank you for spending your time and your money on this book. I
appreciate it very, very much.

xvi Acknowledgments

xvii

About the Author

Mark Bates has been developing web applications of one kind or another since 1996. He has
spent an ungodly amount of time programming Java, but thankfully he discovered Ruby in
late 2005, and life has been much nicer since.

Since discovering Ruby, Mark has become a prominent member of the community. He
has developed various open-source projects, such as Configatron, Cachetastic, Genosaurus,
APN on Rails, and the Mack Framework, just to name a few. The Mack Framework brought
Mark to the forefront of distributed programming in the Ruby community. Mack was a web
framework designed from the ground up to aid in the development of distributed applications.

Mark has taught classes on both Ruby and Ruby on Rails. He has spoken at several
Ruby gatherings, including 2008’s RubyConf, where he spoke about building distributed
applications.

Mark has an honors degree in music from the Liverpool Institute for Performing Arts.
He still likes to rock out on the weekends, but set times are now 10 p.m., not 2 a.m.

He lives just outside of Boston with his wife Rachel and their sons, Dylan and Leo, both
of whom he missed very much when writing this book.

Mark can be found at http://www.markbates.com and http://github.com/markbates.

http://www.markbates.com
http://github.com/markbates

This page intentionally left blank

CHAPTER 5
Distribunaut

In early 2008, I was working for a company that was using Ruby on Rails as the frame-
work behind the application we were building. For the most part we were happy with
Rails, but there were things we wanted to do that Rails was just not a good fit for. First
we realized that what had started as a Web 2.0 application was anything but that.
Instead, we came to the conclusion that we were building a rather large portal
application.

For all of its pros, Rails has a few cons as well. I won’t go into all of them now, but
the biggest disadvantage we found was that Rails doesn’t want to help you write com-
plex portal applications. It wants you to build smaller, simpler applications—at least,
at the time it did. With Rails 3.0 on the horizon, that may change.

In addition to building this large portal, we decided we wanted to split our appli-
cation into many applications. The advantages we saw were smaller code bases that
were easier to maintain and separate applications that were easier to scale. We also
could push updates and new features sooner, because we didn’t have a gigantic code
base to worry about.

We identified three main problems. First, we wanted to let each application main-
tain its own set of routing, but we wanted the other applications to be able to use the
dynamic routing we had become accustomed to in Rails. We didn’t want to hardcode
URLs in the other applications; we wanted them generated by the application they
would be linking to. Second, we wanted to share views and layouts among these appli-
cations. We didn’t want to have to deal with SVN externals, GIT submodules, or sym-
links. We wanted to be able to quickly say, “Here is a URL for a layout. Render it like

you would a local layout.” Finally, we wanted to share models and libraries through-
out all these applications without having to worry about packaging them and rede-
ploying all these applications each time we made a bug fix to a model.

With these goals in mind, I set out to find a Ruby web framework that would help
us achieve these goals. After downloading and testing nearly 20 frameworks, I was at
a loss for the solution we needed. Then I found Rack.1 Rack bills itself as a framework
for frameworks. It is a middleware abstraction layer that lets framework developers get
on with developing their framework without worrying about things like parsing
requests and talking with application servers. Within a few hours I had a simple
MVC-based framework up and running, and the Mack Framework was born.

I then spent the next year building and developing a large feature set for Mack,
including all the libraries to handle distributed routes, views, and models. During that
time I was asked time and again to make these components available outside the Mack
framework for others to use. In April 2009, I announced an early version of a library
I dubbed Distribunaut.

Distribunaut2 is a port of one-third of the distributed features that are found in
Mack. In particular, it focuses on making it incredibly easy to distribute models and
other Ruby classes. You will not find distributed views/layouts and routes in Distri-
bunaut. The reason is that they are too specific to each of the web frameworks out
there, and coding for each one would be a lot of work.

So with that brief history of Distribunaut, let’s look at what it can do for us.

Installation
Installing the Distribunaut library is simple. It can be installed using RubyGems:

$ gem install markbates-distribunaut -s http://gems.github.com

You should then see something similar to the following, telling you that you have suc-
cessfully installed the gem:

Successfully installed markbates-distribunaut-0.2.1

116 5. Distribunaut

Blastoff: Hello, World!
Distribunaut uses DRb and Rinda to do most of its heavy lifting. The good news is
that because you have already learned all about DRb and Rinda, you can easily jump
into experimenting with Distribunaut.

As you’ll remember from our look at Rinda, we need to start a RingServer
before we can run any code. Distribunaut ships with a convenient binary to help make
starting, stopping, and restarting a RingServer easy:

$ distribunaut_ring_server start

If you wanted to stop the RingServer, you would do so with the following
command:

$ distribunaut_ring_server stop

You can probably guess how to restart the server. You should restart the
RingServer between all these examples, just so things don’t go a bit funny on you:

$ distribunaut_ring_server restart

So, with a RingServer running nicely as a daemon in the background, let’s kick
off things with a simple “Hello World” application. Let’s start with a server. Keep in
mind that, as we talked about earlier in the book, when we are using DRb and Rinda,
applications can act as both a server and a client. So when we use the term “server”
here, we are merely using it to describe a bit of code that serves up some content. So
what does our HelloWorld class look like with Distribunaut? Let’s see:

require 'rubygems'

require 'distribunaut'

configatron.distribunaut.app_name = :hello_world_app

class HelloWorld

include Distribunaut::Distributable

117Blastoff: Hello, World!

def say_hi

"Hello, World!"

end

end

DRb.thread.join

First we require rubygems and then the Distribunaut library itself. After that
we hit the first of two lines that make Distribunaut special.

Each Distribunaut “application” needs a unique name. When we talk about appli-
cations within Distribunaut, we are actually talking about a Ruby VM/process that
contains one or more Distribunaut classes. The name of that application should be
unique to avoid confusion. We will look at what can happen with redundant applica-
tion, and class, names a bit later in this chapter.

To manage its configurations, Distribunaut uses the Configatron3 library. We set
the application as follows:

configatron.distribunaut.app_name = :hello_world_app

This needs to happen only once per Ruby VM. If you set it multiple times, strange
things can happen, so be careful. In our sample code we are setting the application
name to :hello_world_app. We could just as easily set it to something like
:server1 if we wanted to make it more generic for other Distribunaut classes we
were planning on running in the same Ruby VM.

After we have set up our application name, the only other thing we have to do is
include the Distribunaut::Distributable module in our HelloWorld class.
Then we are ready to try to get a “Hello, World!” remotely.

Before we get to our client code, let’s take a quick look at what the preceding
HelloWorld class would’ve looked like had we used raw DRb and Rinda:

require 'rinda/ring'

class HelloWorld

include DRbUndumped

def say_hi

"Hello, World!"

end

118 5. Distribunaut

end

DRb.start_service

ring_server = Rinda::RingFinger.primary

ring_server.write([:hello_world_service, :HelloWorld,

HelloWorld.new, 'I like to say hi!'],

Rinda::SimpleRenewer.new)

DRb.thread.join

Although the HelloWorld class part of it is relatively the same, much more noise
is required at the end to get our HelloWorld instance into the RingServer. At this
point it is also worth pointing out that in the Rinda version of HelloWorld we had
to create a new instance of the class. This means that we can’t call any class methods
that HelloWorld may have. This includes the ability to call the new method and get
a new instance of the HelloWorld class. We are stuck with that instance only. We did
not do anything of the sort with the Distribunaut version of the class. In fact, you
probably have noticed that we didn’t make any calls to get it into the RingServer.
We’ll talk about why that is shortly. First, let’s look at our client code:

require 'rubygems'

require 'distribunaut'

hw = Distribunaut::Distributed::HelloWorld.new

puts hw.say_hi

If we were to run this code, we should see the following output:

Hello, World!

What just happened there? Where did the Distribunaut::Distributed::Hel-
loWorld class come from? How did it know to print “Hello, World!” when we called
the say_hi method? All great questions.

The Distribunaut::Distributed module is “special.” When you preface a
constant such as HelloWorld in that module, it queries the RingServer and
attempts to find a service that matches that constant. So, in our case it searched the
RingServer for a service called HelloWorld. It found the HelloWorld class we cre-
ated earlier and returned a reference to it. With that reference we could call the new

119Blastoff: Hello, World!

method on that class, which returned a new instance of the HelloWorld class. And
then we could call the say_hi method.

So if we didn’t explicitly place our HelloWorld class in the RingServer, how did
we access it? And how were we able to call a class method on it, when we know that
you have to put instances only into a RingServer? The same answer applies to both
questions. When we included the Distribunaut::Distributable module into the
HelloWorld class, it created a Singleton wrapper class on-the-fly that then proxies all
methods called on that proxy class onto the original HelloWorld class. With that we
can put the Singleton instance into the RingServer. Then we can call class methods,
which allows us to do things like call the new and get back a new instance of the class.

Having all of this happen automatically also helps clean up the usual supporting
code you need to write to both set an instance into the RingServer and retrieve that
instance later. Just look at what a plain-vanilla DRb and Rinda implementation of the
client would look like:

require 'rinda/ring'

DRb.start_service

ring_server = Rinda::RingFinger.primary

service = ring_server.read([:hello_world_service,

nil, nil, nil])

server = service[2]

puts server.say_hi

This is not only more code, but also uglier code.

Building a Distributed Logger with Distribunaut
So now that you have a good understanding of how Distribunaut works, and what it
does under the covers, let’s try to create a distributed logger and see how it goes. To
create our distributed logger, we want to create a RemoteLogger class. Here’s what
that would look like:

require 'rubygems'

require 'distribunaut'

require 'logger'

120 5. Distribunaut

configatron.distribunaut.app_name = :remote_logger

LOGGER = ::Logger.new(STDOUT)

class RemoteLogger

include Distribunaut::Distributable

class << self

def new

LOGGER

end

[:debug, :info, :warn, :error, :fatal].each do |meth|

define_method(meth) do |*args|

LOGGER.send(meth, *args)

end

end

end

end

DRb.thread.join

Although this looks a lot more intimidating than our HelloWorld class, it really
isn’t. The extra code comes from making it a bit easier to access the underlying Ruby
Logger class we want to wrap. We could have just harnessed the incredible power of
Ruby and opened up the Logger class and included the Distribunaut::Distrib-
utable module directly into it, but that is generally not considered good practice.
Besides, this way lets us talk about a few things we couldn’t talk about otherwise. Let’s
look at it in a bit more depth; you’ll see it isn’t that complex.

After we require the correct classes and define our application name (this time we
are calling it :remote_logger), we create a constant called LOGGER to act as a holder
for our Logger instance. We want only one instance of the Logger class. That is why
we assign it to the global constant—so that we can access it throughout the rest of our
code.

After we have included the Distribunaut::Distributable module into our
RemoteLogger class, we then add a few methods for convenience. The first of these
methods is a class-level override of the new method. We do this so that when our

121Building a Distributed Logger with Distribunaut

clients try to create a new instance of the RemoteLogger class, they are actually get-
ting the wrapped Logger class instead. Next we generate the five standard logging
methods on Logger, putting them at the class level of the RemoteLogger class. These
methods simply proxy the methods onto the single instance of our Logger class that
we have stored in our LOGGER constant. We do this so that our clients can call these
methods at the class level of RemoteLogger without having to create a new instance
of it. This is easier to demonstrate in the client code.

With all of that out of the way, let’s see what our client code would look like:

require 'rubygems'

require 'distribunaut'

logger = Distribunaut::Distributed::RemoteLogger.new

logger.debug("Hello, World!")

Distribunaut::Distributed::RemoteLogger.error("oops!")

In this client we first create a new “instance” of the RemoteLogger class. I put
“instance” in quotes for a reason. Remember that we don’t actually get a new instance
of the RemoteLogger class. Instead, we simply get back a reference to the global
instance of the Logger class we set up earlier.

As soon as we have the RemoteLogger, we can call the standard logging meth-
ods, such as debug. We should see our message printed to the server’s screen, not the
client’s. After we call the debug method, we call the class method error on the
RemoteLogger class and pass it the message “oops!”.

If we were to run all of this, we would get the following:

Hello, World!

oops!

As you can see, creating a new distributed logger with Distribunaut is actually
quite easy. We could have simplified the code by not giving class-level convenience
methods for the common logging methods. But it was only a few more lines of code,
and it could make the end user’s life a little easier.

122 5. Distribunaut

Avoiding Confusion of Services
Earlier, when speaking about application names, I mentioned that names need to be
unique to avoid confusion, but I didn’t explain what I meant.

You know from Chapter 2, “Rinda,” that when we create a Tuple to put into the
RingServer, we give it some unique characteristics that allow us to retrieve it easily.
The combination of these characteristics becomes sort of like an ID for that particu-
lar Tuple. So imagine if we were to put two Tuples into the RingServer that had
the same characteristics. How would we retrieve the specific one we want? If we use
the same application name, we not only run the risk of overwriting another Tuple,
but we also make it difficult to find later.

As you have seen, Distribunaut performs a lot of magic that keeps us from hav-
ing to write as much code. It also makes the code we write cleaner and easier to use
and maintain. One thing Distribunaut does for you is build the search characteristics
for you when you make a call to the special Distribunaut::Distributed module.
When Distribunaut goes to build the search parameters for that request, it takes into
account only the class, or service, name you provide. Because of this, if you have two
applications serving up a class with the same name, you are unsure which one you will
receive from the query. In some cases this might be fine, but in other cases, it might
be a problem.

Let’s look at a simple example. Let’s create a service that serves up a User class.
We want to launch at least two instances of this service for this example. To do that
we need to run the following code twice to start two instances of it:

require 'rubygems'

require 'distribunaut'

user_servers = ['0']

services = Distribunaut::Utils::Rinda.available_services

services.each do |service|

if service.app_name.to_s.match(/^user_server_(\d+)$/)

user_servers << "#{$1}"

end

end

123Avoiding Confusion of Services

user_servers.sort!

app_name = "user_server_#{user_servers.last.succ}"

puts "Launching: #{app_name}"

configatron.distribunaut.app_name = app_name

class User

include Distribunaut::Distributable

def app_server_name

configatron.distribunaut.app_name

end

end

DRb.thread.join

A large majority of the preceding code simply finds out what the last service, if
there is one, was called. Then it names the service that is currently launching so that
it has a unique name. Although most of this is straightforward Ruby code, it is worth
pointing out the call to the available_services method on the Distribunaut::
Utils::Rinda module. The available_services method, as its name implies,
returns an Array of the services that are currently registered with Distribunaut. The
elements of this Array are Distribunaut::Tuple classes, which are simply a con-
venience class to make it easier to deal with Tuples that are in the Distribunaut
format.

After we have decided on an appropriate application name and registered it, we
create a User class, include the Distribunaut::Distributable module and give
it an instance method that returns the application name that is running this service.

Now, with a couple of instances of our service running, let’s look at the style of
client we have been using so far in this chapter:

require 'rubygems'

require 'distribunaut'

user = Distribunaut::Distributed::User.new

puts user.app_server_name

124 5. Distribunaut

So which instance of the user service do we get when we run this? Well, on my
system I see the following printed:

user_server_1

On your system you might see this:

user_server_2

or another variation, depending on how many instances you have running. There is
no guarantee which instance you will receive when accessing services this way. Again,
this might be acceptable in your environment, or it might not.

So what do you do when this is unacceptable, or you want to get a specific
instance of a service? Distribunaut provides you with a method called lookup. This
method is found on the Distribunaut::Distributed module. The lookup
method takes a URL to find the specific instance you are looking for.

Right about now you should be wondering how you are supposed to know the
URL of the service you want to look up. Don’t worry. Distribunaut has you covered
by making it easy to look up these services. Let’s look at a client that wants to find spe-
cific instances of the user services we have running:

require 'rubygems'

require 'distribunaut'

user_one_url = "distributed://user_server_1/User"

UserOne = Distribunaut::Distributed.lookup(user_one_url)

user_two_url = "distributed://user_server_2/User"

UserTwo = Distribunaut::Distributed.lookup(user_two_url)

user1 = UserOne.new

puts user1.app_server_name

user2 = UserTwo.new

puts user2.app_server_name

Building the URL for the service we want is quite simple. The format is
distributed://<application_name>/<service_name>. Because of this format,

125Avoiding Confusion of Services

it is important that we have unique application names for each Ruby VM so that we
can easily seek out the one we are looking for.

With the URLs in hand for the two services we are looking for, we can call the
lookup method and find these two services. When we have them, we can create new
instances of the User class and print the return value of the app_server_name
method. You should see something similar to the following printed:

user_server_1

user_server_2

With the lookup method now in our arsenal, we can code with confidence,
knowing that we will always get the specific instance of a service we are looking for.
And we can do it without having to deal with IP addresses, ports, and other such
nonsense.

Borrowing a Service with Distribunaut
As you probably remember from Chapter 2, when we retrieve Tuples from the
RingServer, we have two choices. We can either read the Tuple or take the Tuple.
The former leaves the Tuple in the RingServer for others to access simultaneously.
The latter removes the Tuple from the RingServer; as a consequence, no one else
can gain access to that Tuple.

So what happens when we access a service using Distribunaut? Are we doing a
read or a take from the RingServer? Distribunaut does a read from the RingServer,
thereby allowing others to access the same service at the same time.

Most of the time this is the exact behavior you want. You usually want to be a
good citizen and let others access the service you are accessing as well. Sometimes,
however, you might need to grab hold of a service exclusively, do a few things with
that service, and then return it to the RingServer for others to have access to.

So how do we take a service from the RingServer, use that service, and then
return it for wider use? We could use raw Rinda and DRb code, but that would be ugly,
and prone to error should any of the underpinnings of Distribunaut change. Instead,
Distribunaut offers the concept of borrowing a service.

To demonstrate how to borrow a service, let’s use our simple HelloWorld class as
the service we want to borrow:

126 5. Distribunaut

require 'rubygems'

require 'distribunaut'

configatron.distribunaut.app_name = :hello_world_app

class HelloWorld

include Distribunaut::Distributable

def say_hi

"Hello, World!"

end

end

DRb.thread.join

Here is what our client code would look like to borrow the HelloWorld service:

require 'rubygems'

require 'distribunaut'

Distribunaut::Distributed::HelloWorld.borrow do |hw_class|

hw = hw_class.new

puts hw.say_hi

begin

hw = Distribunaut::Distributed::HelloWorld.new

rescue Rinda::RequestExpiredError => e

puts "Oops - We couldn't find the HelloWorld class!"

end

end

hw = Distribunaut::Distributed::HelloWorld.new

puts hw.say_hi

If we were to run this code, we should see the following printed:

Hello, World!

Oops - We couldn't find the HelloWorld class!

Hello, World!

127Borrowing a Service with Distribunaut

So exactly what did we do, and how did it work? The borrow method takes a
block and yields a reference to our proxy service, as we discussed earlier in this chap-
ter. This works the same way as if we had called Distribunaut::Distributed::
HelloWorld directly. The difference is, before the block gets executed, the service is
located and removed from the RingServer. It is then “locked” and placed back into
the RingServer in such a way that others can’t retrieve it. After the block finishes exe-
cuting, the service is unlocked in the RingServer and is available again for public
consumption.

If we look at what is happening in the block, we see that we call the new method
on the hw_class variable, which is the reference to the HelloWorld service. The new
method creates a new instance of the HelloWorld class, and we can call the say_hi
method on it.

To demonstrate that we can’t access the HelloWorld service directly, we attempt
to call it, but, as we see, it raises a Rinda::RequestExpiredError because the serv-
ice cannot be found.

After the block has finished executing, we again try to access the HelloWorld
service as we would normally. This time, instead of an exception, we are greeted with
a pleasant “Hello, World!”.

As you can see, the concept of borrowing a service allows us to easily take control
of the service we want, do the work we need to do on that service, and then have it
automatically returned to the RingServer for others to use. It also has the added ben-
efit of being quite easy to code. We don’t have to write fragile code that takes the serv-
ice from the RingServer, handles exceptions that may arise, and ensures that the
service gets placed back into the RingServer correctly.

Conclusion
Obviously I’m slightly biased in my feelings about Distribunaut, seeing as how I am
the developer of the library. With that said, I feel strongly that Distribunaut makes
distributed objects incredibly easy to code, use, and maintain.

The library continues to grow and develop. Its fundamentals were pulled from the
mack-distributed gem for the Mack Framework, but the library has grown and
evolved much since its origins. Even during the course of writing this chapter, I found
several bugs, enhancements, and performance improvements that could be made, so I

128 5. Distribunaut

made changes. The underpinnings of this library have been working hard in several
production environments and have proven themselves to be reliable, fast, and easy
to use.

Overall I feel that the simple interface, basically just including a module, makes
an already easy system for building distributed applications, DRb and Rinda, even eas-
ier. Instead of having to write code to look up services, read them, parse them, man-
age them, and so on, you can use something you are already familiar with—simple
Ruby objects.

What does the future hold for Distribunaut? As far as the feature set is concerned,
that is hard to say. I try to develop features that will actually be used, not features that
I think are cool. What I can tell you for sure is that Distribunaut will continue to
be maintained and grown to keep up with the challenges of developing distributed
applications.

Endnotes
1. http://rack.rubyforge.org/

2. http://github.com/markbates/distribunaut/tree/master

3. http://github.com/markbates/configatron/tree/master

129Endnotes

http://rack.rubyforge.org/
http://github.com/markbates/distribunaut/tree/master
http://github.com/markbates/configatron/tree/master

This page intentionally left blank

243

A

ACLs (access control lists), 18-20
Rinda, 59-61

ActiveRecord model
callbacks, 54
MapReduce, 105-110

AMQP (Advanced Message Queueing
Protocol), 163-165, 196

distributed loggers, building, 178-180
documentation, 168
fanout queues, 193-195
Hello World application, 167-178
message queues, subscribing to, 184-187
persisted queues, 180-184
Quison, 180
RabbitMQ

installing, 165-166
stopping, 168

topic queues, 187-192
Apache Hadoop project, MRToolkit, 104
applications

“Distributed Logger” example, 9-10
AMQP, 178-180
Distribunaut, 120-126
DRb, 7-9

Java RMI, 4-7
RingyDingy, 82-84
Starfish, 96-99
Starling, 157-158

distributed queuing services, Starfish,
99-103

“Hello World” example, 4-9
AMQP, 167-178
Distribunaut, 117-120
Rinda, 38-44
RingyDingy, 81-82
Starfish, 90-96
Starling, 155-157

security, 17-18
ACLs (access control lists), 18-20
SSL (Secure Sockets Layer), 21-28

“User Database Server” example, 11-16

B

BackgrounDRb, 201, 220
configuring, 211-213
installing, 202-203
persisting tasks, 213-217
results, caching, 217-220
slow tasks, offloading, 203-211

Index

binary, Starfish, 90-93
binding queues

fanout queues, AMQP, 193-195
topic queues, AMQP, 187-192

borrowing services, Distribunaut, 126-128
“Building Distributed Applications,” 131
builit-in ID converters, 29

DRb::DRbIdConv, 29-32
DRb::GWIdConv converter, 29

C

CA (Certificate Authority), 25, 36
caching BackgrounDRb results,

Memcached, 217-220
callbacks, 53-55

ActiveRecord model, 54
implementing, 55-58

capturing exceptions, Hoptoad, 210
Carlson, Lucas, 87
Certificate Authority (CA), 25, 36
certificates

CA (Certificate Authority), 25, 36
SSL (Secure Sockets Layer), generating,

21-22
classes

MiddleMan, 207
SimpleRenewer, 72-73
Task, 100
User, 11
UserServer, writing, 11-12

clients, IP addresses and ports,
hardcoding, 37

configuration
BackgrounDRb, 211-213
Delayed Job, 237, 239
Starling, YAML, 149

connections, hardcoding, 37
consumer code, exiting, 173

Cook, Blaine, 148
custom Renewers, Rinda services, renewing,

73-74
custom workers, Delayed Job, 230-235

D

Daemons, 228
Delayed Job, 210, 223, 240

configuring, 237-239
custom workers, 230-235
deploying, 240
installing, 223-225
send_later method, 225-230
tasks, scheduling and prioritizing,

235-237
DeLeo, Dan, 180
deploying Delayed Job, 240
Design Patterns in Ruby, 58
Distribunaut, 115-116, 128-129

distributed loggers, building, 120-126
Hello World application, 117-120
installing, 116
services

avoiding confusion, 123-126
borrowing, 126-128

“Distributed Logger” example, 9-10
AMQP, 178-180
Distribunaut, 120-126
RingyDingy, 82-84
Starfish, 96-99
Starling, 157-158

distributed message queues
AMQP (Advanced Message Queueing

Protocol), 163-165
building distributed loggers, 178-180
documentation, 168
fanout queues, 193-195
Hello World application, 167-178

244 Index

installing RabbitMQ, 165-166
message queue subscriptions, 184-187
persisted queues, 180-184
Quison, 180
topic queues, 187-192

RabbitMQ, installing, 166
Starling, 145-147

distributed programming, xi
distributed queuing services, Starfish,

99-103
documentation, AMQP (Advanced

Message Queueing Protocol), 168
DRb (Distributed Ruby), 3-4

advantages, 3
disadvantages, 4
“Hello World” example, 7-9
Java RMI, compared, 4-10

DRb::DRbIdConv converter, 29-32
DRb::GWIdConv converter, 29
DRbUndumped module, 15-17

E

encode method, 226
EventMachine, 176
examples

“Distributed Logger” example, 9-10
AMQP, 178-180
Distribunaut, 120-126
RingyDingy, 82-84
Starfish, 96-99
Starling, 157-158

distributed queuing services, Starfish,
99-103

“Hello World” example, 4-9
AMQP, 178-180
Distribunaut, 120-126
DRb, 7-9
Java RMI, 4-7

RingyDingy, 82-84
Starfish, 96-99
Starling, 157-158

security, 17-18
ACLs (access control lists), 18-20
SSL (Secure Sockets Layer), 21-28

“User Database Server” example, 11-16
exceptions, capturing, Hoptoad, 210
exchanges, queues, compared, 191
exiting code, 173

F–G

fanout queues, AMQP, 193-195
files, MapReduce, 110-112
find method, 12

GitHub.com, 230
Google MapReduce, 103
Gupta, Arman, 169

H

hardcoding, 37
hashes, Tuples, 47-48, 134
“Hello World” application

AMQP, 167-178
Distribunaut, 117-120
DRb, 7-9
Java RMI, 4-7
Rinda, 38-44
RingyDingy, 81-82
Starfish, 90-96
Starling, 155-157

Hodel, Eric, 21, 79, 86
Hoptoad, 210

Index 245

I

ID converters, 28-29
building, 33-34
built-in ID converters, 29

DRb::DRbIdConv, 29-32
DRb::GWIdConv converter, 29

multiple ID converters, using, 34-35
installation

BackgrounDRb, 202-203
Delayed Job, 223-225
Distribunaut, 116
Politics, 133
RabbitMQ, 165-166
RingyDingy, 79
Starfish, 87
Starling, 147

IP addresses, hardcoding, 37

J–K–L

Java RMI (remote method invocation), xi
Hello World” example, 4-7

Kumar, Hemant, 201

libraries
AMQP (Advanced Message Queueing

Protocol), 163-165
building distributed loggers, 178-180
documentation, 168
fanout queues, 193-195
“Hello World” application, 167-178
installing RabbitMQ, 165-166
message queue subscriptions, 184-187
persisted queues, 180-184
Quison, 180
topic queues, 187-192

BackgrounDRb, 201, 220
caching results, 217-220
configuring, 211-213
installing, 202-203
offloading slow tasks, 203-211
persisting tasks, 213-217

Daemons, 228
Delayed Job, 223, 240

configuring, 237-239
custom workers, 230-235
deploying, 240
installing, 223-225
scheduling tasks, 235-237
send_later method, 225-230

Distribunaut, 115-116, 128-129
borrowing services, 126-128
building distributed loggers, 120-126
“Hello World” application, 117-120
installing, 116

Politics, 131, 141-142
caveats, 140
implementing, 135
installing, 133
TokenWorker module, 135-141

Quison, 180
RabbitMQ, installing, 166
RingyDingy, 79-81, 84-86

building distributed loggers, 82-84
“Hello World” application, 81-82
installing, 79

Starfish, 87-89
binary, 90-93
building distributed loggers, 96-99
distributed queuing services, 99-103
“Hello World” application, 90-96
installing, 87
MapReduce, 103-104, 106-112

Starling, 148-152, 162
building distributed loggers, 157-158
configuring, 149

246 Index

distributed message queues, 145-147
“Hello World” application, 155-157
installing, 147
Memcached, 158
retrieving statistics, 158-161

life cycles
requests, 9

pass by reference requests, 16
responses, 9

loggers. See distributed loggers
lookup method, 7
Lütke, Tobias, 223

M

MacPorts, RabbitMQ, installing, 166
managing RingServers, RingyDingy, 79-85
MapReduce

MRToolkit, 104
SkyNet, 104
Starfish, 103

ActiveRecord, 105-110
files, 110-112

marshaling. See serialization
mDNS, 132-133
Memcached, 132

Starling, compared, 158
message queues, subscriptions, AMQP,

184-187
messaging servers

AMQP (Advanced Message Queueing
Protocol), 163-165

building distributed loggers, 178-180
documentation, 168
fanout queues, 193-195
“Hello World” application, 167-178
installing RabbitMQ, 165-166
message queue subscriptions, 184-187
persisted queues, 180-184

Quison, 180
topic queues, 187-192

RabbitMQ, installing, 166
Starling, 145, 148-152, 162

building distributed loggers, 157-158
configuring, 149
distributed message queues, 145-147
“Hello World” application, 155-157
installing, 147
Memcached, 158
retrieving statistics, 158-161

methods
encode, 226
find, 12
lookup, 7
queue, 171
read, 43
send_later, 225-230
worker, 207
write, 43

MiddleMan class, 207
modules, DRbUndumped, 15-17
MRToolkit, MapReduce, 104
multiple ID converters, using, 34-35

N–O

nil, Rinda services, renewing, 72
numeric, Rinda services, renewing, 71-72

objects
ID converters, 28-29

building, 33-34
built-in ID converters, 29-32
multiple ID converters, using, 34-35

pass by reference, 14
pass by value, 14
proprietary objects, 10-16
serialization, 9

Index 247

observers, 53-55
offloading slow tasks, BackgrounDRb,

203-211
Olsen, Russ, 58

P

pass by reference requests, 14
life cycles, 16

pass by value requests, 14
Perham, Mark, 131
persisted queues, AMQP, 180-184
persisting tasks, BackgrounDRb, 213-217
Pisoni, Adam, 104
Politics, 131, 141-142

caveats, 140
implementing, 135
installing, 133
TokenWorker module, 135-141

ports, hardcoding, 37
prioritizing tasks, Delayed Job, 235-237
proprietary objects, 10-16
publisher code, exiting, 173

Q–R

queue method, 171
queues

exchanges, compared, 191
unbinding, 196

QuickCert, SSL certificates, generating,
21-22

Quison, 180

RabbitMQ, 196. See also AMQP
installing, 165-166
stopping, 168

read method, 43

referenced objects, ID converters, 28
building, 33
built-in ID converters, 29-32
multiple ID converters, 34-35

renewing Rinda services, 70-75
custom Renewers, 73-74
nil, 72
Numeric, 71-72
SimpleRenewer class, 72-73

requests
life cycles, 9
pass by value, 16
pass by reference requests, 16

responses, life cycles, 9
results, caching, Memcached, 217-220
Rinda, 38, 75

callbacks, 53-55
implementing, 55-58

“Hello World” application, 38-44
observers, 53-55
RingServers, 38

building, 38-44
selecting, 63-70

security
ACLs (access control lists), 59-61
RingServers, 63-70
SSL (Secure Sockets Layer), 61-63

services, renewing, 70-75
Tuples, 40-44

hashes, 47-48
reading all in TupleSpaces, 52-53
reading from TupleSpaces, 45-47
taking from TupleSpaces, 48-52
writing to TupleSpaces, 44-45

TupleSpaces, 40-44
RingServers, 38, 123-126

building, 38-44
managing, RingyDingy, 79-85
selecting, 63-70

RingyDingy, 40, 79-86

248 Index

distributed loggers, building, 82-84
“Hello World” application, 81-82
installing, 79
RingServers, managing, 79-85

Ruby Cookbook, 87
Ruby DRb, Java RMI, compared, 4-10
Ruby on Rails, xi

S

safe mode, levels, 18
scheduling tasks, Delayed Job, 235-237
Secure Sockets Layer (SSL). See SSL (Secure

Sockets Layer)
security, 17-18

ACLs (access control lists), 18-20
Rinda

ACLs (access control lists), 59-61
RingServers, 63-70
SSL (Secure Sockets Layer), 61-63

SSL (Secure Sockets Layer), 21-28
certificate generation, 21-22

send_later method, 226
Delayed Job, 225-230

serialization, 9
servers

IP addresses, hardcoding, 37
ports, hardcoding, 37
security, 17-18

ACLs (access control lists), 18-20
SSL (Secure Sockets Layer), 21-28

services
borrowing, Distribunaut, 126-128
confusion, avoiding, 123-126
Rinda, renewing, 70-75

SimpleRenewer class, Rinda services,
renewing, 72-73

SkyNet, MapReduce, 104
slow tasks, offloading, BackgrounDRb,

203-207, 209-211

SSL (Secure Sockets Layer), 21-28
certificates, generating, 21-22
Rinda, 61-63

Starfish, 87-89, 112
binary, 90-93
distributed loggers, building, 96-99
distributed queuing services, 99-103
“Hello World” application, 90-96
installing, 87
MapReduce, 103

ActiveRecord, 105-110
files, 110-112

Starling, 145-146, 149-152, 162
configuring, 149
distributed loggers, building, 157-158
distributed message queues, 145-147
“Hello World” application, 155-157
installing, 147
Memcached, compared, 158
statistics, retreiving, 158-161

statistics, retrieving, Starling, 158-161
stopping RabbitMQ, 168

T

Task class, 100
tasks

offloading, BackgrounDRb, 203-211
persisting tasks, BackgrounDRb, 213-217
prioritizing, Delayed Job, 235-237
scheduling, Delayed Job, 235-237

TokenWorker module, Politics, 135-141
topic queues, AMQP, 187-192
Tuples, 40-44, 123-126

hashes, 47-48
TupleSpaces

reading all, 52-53
reading from, 45-47
taking from, 48-52
writing to, 44-45

Index 249

TupleSpaces, 40, 43-44
Tuples

reading all in, 52-53
reading to, 45-47
taking from, 48-52
writing from, 44-45

Twitter, Starling, 145

U–Z

unbinding queues, 196
User class, 11
“User Database Server” example, 11-16
UserServer class, writing, 11-12

worker method, 207
workers, custom workers, Delayed Job,

230-235
write method, 43

YAML, Starling, configuring, 149

Zygmuntowicz, Ezra, 201

250 Index

	Contents
	Foreword
	Preface
	5 Distribunaut
	Installation
	Blastoff: Hello, World!
	Building a Distributed Logger with Distribunaut
	Avoiding Confusion of Services
	Borrowing a Service with Distribunaut
	Conclusion
	Endnotes

	Index
	A
	B
	C
	D
	E
	F–G
	H
	I
	J–K–L
	M
	N–O
	P
	Q–R
	S
	T
	U–Z

