
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321637734
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321637734
https://plusone.google.com/share?url=http://www.informit.com/title/9780321637734
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321637734
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321637734/Free-Sample-Chapter

The Addison-Wesley Professional Computing Series was created in 1990 to
provide serious programmers and networking professionals with well-written
and practical reference books. There are few places to turn for accurate and
authoritative books on current and cutting-edge technology. We hope that our
books will help you understand the state of the art in programming languages,
operating systems, and networks.

Consulting Editor Brian W. Kernighan

Visit informit.com/series/professionalcomputing
for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Addison-Wesley
Professional Computing Series

Praise for Advanced Programming in the UNIX  ® Environment,
Second Edition

“Stephen Rago’s update is a long overdue benefit to the community of professionals
using the versatile family of UNIX and UNIX-like operating environments. It removes
obsolescence and includes newer developments. It also thoroughly updates the context
of all topics, examples, and applications to recent releases of popular implementations
of UNIX and UNIX-like environments. And yet, it does all this while retaining the style
and taste of the original classic.”

—Mukesh Kacker, cofounder and former CTO of Pronto Networks, Inc.

“One of the essential classics of UNIX programming.”

—Eric S. Raymond, author of The Art of UNIX Programming

“This is the definitive reference book for any serious or professional UNIX systems
programmer. Rago has updated and extended the classic Stevens text while keeping
true to the original. The APIs are illuminated by clear examples of their use. He also
mentions many of the pitfalls to look out for when programming across different UNIX
system implementations and points out how to avoid these pitfalls using relevant
standards such as POSIX 1003.1, 2004 edition, and the Single UNIX Specification,
Version 3.”

—Andrew Josey, Director, Certification, The Open Group, and
Chair of the POSIX 1003.1 Working Group

“Advanced Programming in the UNIX ® Environment, Second Edition, is an essential
reference for anyone writing programs for a UNIX system. It’s the first book I turn to
when I want to understand or re-learn any of the various system interfaces. Stephen
Rago has successfully revised this book to incorporate newer operating systems such as
GNU/Linux and Apple’s OS X while keeping true to the first edition in terms of both
readability and usefulness. It will always have a place right next to my computer.”

—Dr. Benjamin Kuperman, Swarthmore College

Praise for the First Edition

“Advanced Programming in the UNIX ® Environment is a must-have for any serious C
programmer who works under UNIX. Its depth, thoroughness, and clarity of explana-
tion are unmatched.”

—UniForum Monthly

“Numerous readers recommended Advanced Programming in the UNIX ® Environment by
W. Richard Stevens (Addison-Wesley), and I’m glad they did; I hadn’t even heard of this
book, and it’s been out since 1992. I just got my hands on a copy, and the first few
chapters have been fascinating.”

—Open Systems Today

“A much more readable and detailed treatment of [UNIX internals] can be found in
Advanced Programming in the UNIX ® Environment by W. Richard Stevens (Addison-
Wesley). This book includes lots of realistic examples, and I find it quite helpful when I
have systems programming tasks to do.”

—RS/Magazine

Advanced Programming
in the UNIX® Environment

Third Edition

The Addison-Wesley Professional Computing Series was created in 1990 to
provide serious programmers and networking professionals with well-written
and practical reference books. There are few places to turn for accurate and
authoritative books on current and cutting-edge technology. We hope that our
books will help you understand the state of the art in programming languages,
operating systems, and networks.

Consulting Editor Brian W. Kernighan

Visit informit.com/series/professionalcomputing
for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Addison-Wesley
Professional Computing Series

Advanced Programming
in the UNIX® Environment

Third Edition

W. Richard Stevens
Stephen A. Rago

Make sure to connect with us!
informit.com/socialconnect

The Addison-Wesley
Professional Computing Series

Upper­Saddle­river,­NJ­•­Boston­•­Indianapolis­•­San­Francisco
New­York­•­Toronto­•­montreal­•­london­•­munich­•­Paris­•­madrid

capetown­•­Sydney­•­Tokyo­•­Singapore­•­mexico­city

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Stevens, W. Richard.
 Advanced programming in the UNIX environment/W. Richard Stevens, Stephen A. Rago. —
Third edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-63773-4 (pbk. : alk. paper)
 1. Operating systems (Computers) 2. UNIX (Computer file) I. Rago, Stephen A. II. Title.
 QA76.76.O63S754 2013
 005.4’32—dc23
 2013004509

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use mate-
rial from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to (201) 236-3290.

ISBN-13:   978-0-321-63773-4
ISBN-10:   0-321-63773-9
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor,
Michigan.
First printing, May 2013

For my parents, Len & Grace

This page intentionally left blank

Contents

Foreword to the Second Edition xix

Preface xxi

Preface to the Second Edition xxv

Preface to the First Edition xxix

Chapter 1. UNIX System Overview 1

1.1 Introduction 1
1.2 UNIX Architecture 1
1.3 Logging In 2
1.4 Files and Directories 4
1.5 Input and Output 8
1.6 Programs and Processes 10
1.7 Error Handling 14
1.8 User Identification 16
1.9 Signals 18
1.10 Time Values 20
1.11 System Calls and Librar y Functions 21
1.12 Summary 23

Chapter 2. UNIX Standardization and Implementations 25

2.1 Introduction 25

ix

x Contents

2.2 UNIX Standardization 25
2.2.1 ISO C 25
2.2.2 IEEE POSIX 26
2.2.3 The Single UNIX Specification 30
2.2.4 FIPS 32
2.3 UNIX System Implementations 33
2.3.1 UNIX System V Release 4 33
2.3.2 4.4BSD 34
2.3.3 FreeBSD 34
2.3.4 Linux 35
2.3.5 Mac OS X 35
2.3.6 Solaris 35
2.3.7 Other UNIX Systems 35
2.4 Relationship of Standards and Implementations 36
2.5 Limits 36
2.5.1 ISO C Limits 37
2.5.2 POSIX Limits 38
2.5.3 XSI Limits 41
2.5.4 sysconf, pathconf, and fpathconf

Functions 42
2.5.5 Indeterminate Runtime Limits 49
2.6 Options 53
2.7 Feature Test Macros 57
2.8 Primitive System Data Types 58
2.9 Differences Between Standards 58
2.10 Summary 60

Chapter 3. File I/O 61

3.1 Introduction 61
3.2 File Descr iptors 61
3.3 open and openat Functions 62
3.4 creat Function 66
3.5 close Function 66
3.6 lseek Function 66
3.7 read Function 71
3.8 write Function 72
3.9 I/O Efficiency 72
3.10 File Shar ing 74
3.11 Atomic Operations 77
3.12 dup and dup2 Functions 79
3.13 sync, fsync, and fdatasync Functions 81
3.14 fcntl Function 82

Contents xi

3.15 ioctl Function 87
3.16 /dev/fd 88
3.17 Summary 90

Chapter 4. Files and Directories 93

4.1 Introduction 93
4.2 stat, fstat, fstatat, and lstat Functions 93
4.3 File Types 95
4.4 Set-User-ID and Set-Group-ID 98
4.5 File Access Per missions 99
4.6 Ownership of New Files and Directories 101
4.7 access and faccessat Functions 102
4.8 umask Function 104
4.9 chmod, fchmod, and fchmodat Functions 106
4.10 Sticky Bit 108
4.11 chown, fchown, fchownat, and lchown

Functions 109
4.12 File Size 111
4.13 File Tr uncation 112
4.14 File Systems 113
4.15 link, linkat, unlink, unlinkat, and remove

Functions 116
4.16 rename and renameat Functions 119
4.17 Symbolic Links 120
4.18 Creating and Reading Symbolic Links 123
4.19 File Times 124
4.20 futimens, utimensat, and utimes Functions 126
4.21 mkdir, mkdirat, and rmdir Functions 129
4.22 Reading Director ies 130
4.23 chdir, fchdir, and getcwd Functions 135
4.24 Device Special Files 137
4.25 Summary of File Access Per mission Bits 140
4.26 Summary 140

Chapter 5. Standard I/O Library 143

5.1 Introduction 143
5.2 Streams and FILE Objects 143
5.3 Standard Input, Standard Output, and Standard

Error 145
5.4 Buffer ing 145
5.5 Opening a Stream 148

xii Contents

5.6 Reading and Writing a Stream 150
5.7 Line-at-a-Time I/O 152
5.8 Standard I/O Efficiency 153
5.9 Binary I/O 156
5.10 Positioning a Stream 157
5.11 For matted I/O 159
5.12 Implementation Details 164
5.13 Temporar y Files 167
5.14 Memory Streams 171
5.15 Alternatives to Standard I/O 174
5.16 Summary 175

Chapter 6. System Data Files and Information 177

6.1 Introduction 177
6.2 Password File 177
6.3 Shadow Passwords 181
6.4 Group File 182
6.5 Supplementary Group IDs 183
6.6 Implementation Differences 184
6.7 Other Data Files 185
6.8 Login Accounting 186
6.9 System Identification 187
6.10 Time and Date Routines 189
6.11 Summary 196

Chapter 7. Process Environment 197

7.1 Introduction 197
7.2 main Function 197
7.3 Process Termination 198
7.4 Command-Line Arguments 203
7.5 Environment List 203
7.6 Memory Lay out of a C Program 204
7.7 Shared Librar ies 206
7.8 Memory Allocation 207
7.9 Environment Var iables 210
7.10 setjmp and longjmp Functions 213
7.11 getrlimit and setrlimit Functions 220
7.12 Summary 225

Chapter 8. Process Control 227

8.1 Introduction 227

Contents xiii

8.2 Process Identifiers 227
8.3 fork Function 229
8.4 vfork Function 234
8.5 exit Functions 236
8.6 wait and waitpid Functions 238
8.7 waitid Function 244
8.8 wait3 and wait4 Functions 245
8.9 Race Conditions 245
8.10 exec Functions 249
8.11 Changing User IDs and Group IDs 255
8.12 Interpreter Files 260
8.13 system Function 264
8.14 Process Accounting 269
8.15 User Identification 275
8.16 Process Scheduling 276
8.17 Process Times 280
8.18 Summary 282

Chapter 9. Process Relationships 285

9.1 Introduction 285
9.2 Ter minal Logins 285
9.3 Networ k Logins 290
9.4 Process Groups 293
9.5 Sessions 295
9.6 Controlling Terminal 296
9.7 tcgetpgrp, tcsetpgrp, and tcgetsid

Functions 298
9.8 Job Control 299
9.9 Shell Execution of Programs 303
9.10 Orphaned Process Groups 307
9.11 FreeBSD Implementation 310
9.12 Summary 312

Chapter 10. Signals 313

10.1 Introduction 313
10.2 Signal Concepts 313
10.3 signal Function 323
10.4 Unreliable Signals 326
10.5 Interrupted System Calls 327
10.6 Reentrant Functions 330
10.7 SIGCLD Semantics 332

xiv Contents

10.8 Reliable-Signal Ter minology and Semantics 335
10.9 kill and raise Functions 336
10.10 alarm and pause Functions 338
10.11 Signal Sets 344
10.12 sigprocmask Function 346
10.13 sigpending Function 347
10.14 sigaction Function 349
10.15 sigsetjmp and siglongjmp Functions 355
10.16 sigsuspend Function 359
10.17 abort Function 365
10.18 system Function 367
10.19 sleep, nanosleep, and clock_nanosleep

Functions 373
10.20 sigqueue Function 376
10.21 Job-Control Signals 377
10.22 Signal Names and Numbers 379
10.23 Summary 381

Chapter 11. Threads 383

11.1 Introduction 383
11.2 Thread Concepts 383
11.3 Thread Identification 384
11.4 Thread Creation 385
11.5 Thread Termination 388
11.6 Thread Synchronization 397
11.6.1 Mutexes 399
11.6.2 Deadlock Avoidance 402
11.6.3 pthread_mutex_timedlock Function 407
11.6.4 Reader–Writer Locks 409
11.6.5 Reader–Writer Locking with Timeouts 413
11.6.6 Condition Variables 413
11.6.7 Spin Locks 417
11.6.8 Barriers 418
11.7 Summary 422

Chapter 12. Thread Control 425

12.1 Introduction 425
12.2 Thread Limits 425
12.3 Thread Attr ibutes 426
12.4 Synchronization Attr ibutes 430
12.4.1 Mutex Attr ibutes 430

Contents xv

12.4.2 Reader–Writer Lock Attr ibutes 439
12.4.3 Condition Variable Attributes 440
12.4.4 Barrier Attributes 441
12.5 Reentrancy 442
12.6 Thread-Specific Data 446
12.7 Cancel Options 451
12.8 Threads and Signals 453
12.9 Threads and fork 457
12.10 Threads and I/O 461
12.11 Summary 462

Chapter 13. Daemon Processes 463

13.1 Introduction 463
13.2 Daemon Character istics 463
13.3 Coding Rules 466
13.4 Error Logging 469
13.5 Single-Instance Daemons 473
13.6 Daemon Conventions 474
13.7 Client–Server Model 479
13.8 Summary 480

Chapter 14. Advanced I/O 481

14.1 Introduction 481
14.2 Nonblocking I/O 481
14.3 Record Locking 485
14.4 I/O Multiplexing 500
14.4.1 select and pselect Functions 502
14.4.2 poll Function 506
14.5 Asynchronous I/O 509
14.5.1 System V Asynchronous I/O 510
14.5.2 BSD Asynchronous I/O 510
14.5.3 POSIX Asynchronous I/O 511
14.6 readv and writev Functions 521
14.7 readn and writen Functions 523
14.8 Memory-Mapped I/O 525
14.9 Summary 531

Chapter 15. Interprocess Communication 533

15.1 Introduction 533
15.2 Pipes 534
15.3 popen and pclose Functions 541

xvi Contents

15.4 Coprocesses 548
15.5 FIFOs 552
15.6 XSI IPC 556
15.6.1 Identifiers and Keys 556
15.6.2 Per mission Str ucture 558
15.6.3 Configuration Limits 559
15.6.4 Advantages and Disadvantages 559
15.7 Message Queues 561
15.8 Semaphores 565
15.9 Shared Memor y 571
15.10 POSIX Semaphores 579
15.11 Client–Server Proper ties 585
15.12 Summary 587

Chapter 16. Network IPC: Sockets 589

16.1 Introduction 589
16.2 Socket Descr iptors 590
16.3 Addressing 593
16.3.1 Byte Order ing 593
16.3.2 Address Formats 595
16.3.3 Address Lookup 597
16.3.4 Associating Addresses with Sockets 604
16.4 Connection Establishment 605
16.5 Data Tr ansfer 610
16.6 Socket Options 623
16.7 Out-of-Band Data 626
16.8 Nonblocking and Asynchronous I/O 627
16.9 Summary 628

Chapter 17. Advanced IPC 629

17.1 Introduction 629
17.2 UNIX Domain Sockets 629
17.2.1 Naming UNIX Domain Sockets 634
17.3 Unique Connections 635
17.4 Passing File Descriptors 642
17.5 An Open Server, Version 1 653
17.6 An Open Server, Version 2 659
17.7 Summary 669

Chapter 18. Terminal I/O 671

18.1 Introduction 671

Contents xvii

18.2 Over view 671
18.3 Special Input Characters 678
18.4 Getting and Setting Ter minal Attr ibutes 683
18.5 Ter minal Option Flags 683
18.6 stty Command 691
18.7 Baud Rate Functions 692
18.8 Line Control Functions 693
18.9 Ter minal Identification 694
18.10 Canonical Mode 700
18.11 Noncanonical Mode 703
18.12 Ter minal Window Size 710
18.13 termcap, terminfo, and curses 712
18.14 Summary 713

Chapter 19. Pseudo Terminals 715

19.1 Introduction 715
19.2 Over view 715
19.3 Opening Pseudo-Ter minal Devices 722
19.4 pty_fork Function 726
19.5 pty Program 729
19.6 Using the pty Program 733
19.7 Advanced Features 740
19.8 Summary 741

Chapter 20. A Database Library 743

20.1 Introduction 743
20.2 History 743
20.3 The Librar y 744
20.4 Implementation Over view 746
20.5 Centralized or Decentralized? 750
20.6 Concurrency 752
20.7 Building the Librar y 753
20.8 Source Code 753
20.9 Perfor mance 781
20.10 Summary 786

Chapter 21. Communicating with a Network Printer 789

21.1 Introduction 789
21.2 The Inter net Pr inting Protocol 789
21.3 The Hyper text Transfer Protocol 792
21.4 Printer Spooling 793

xviii Contents

21.5 Source Code 795
21.6 Summary 843

Appendix A. Function Prototypes 845

Appendix B. Miscellaneous Source Code 895

B.1 Our Header File 895
B.2 Standard Error Routines 898

Appendix C. Solutions to Selected Exercises 905

Bibliography 947

Index 955

Foreword to the Second Edition

At some point during nearly every interview I give, as well as in question periods after
talks, I get asked some variant of the same question: ‘‘Did you expect Unix to last for so
long?’’ And of course the answer is always the same: No, we didn’t quite anticipate
what has happened. Even the observation that the system, in some form, has been
around for well more than half the lifetime of the commercial computing industry is
now dated.

The course of developments has been turbulent and complicated. Computer
technology has changed greatly since the early 1970s, most notably in universal
networking, ubiquitous graphics, and readily available personal computing, but the
system has somehow managed to accommodate all of these phenomena. The
commercial environment, although today dominated on the desktop by Microsoft and
Intel, has in some ways moved from single-supplier to multiple sources and, in recent
years, to increasing reliance on public standards and on freely available source.

Fortunately, Unix, considered as a phenomenon and not just a brand, has been able
to move with and even lead this wave. AT&T in the 1970s and 1980s was protective of
the actual Unix source code, but encouraged standardization efforts based on the
system’s interfaces and languages. For example, the SVID—the System V Interface
Definition — was published by AT&T, and it became the basis for the POSIX work and
its follow-ons. As it happened, Unix was able to adapt rather gracefully to a networked
environment and, perhaps less elegantly, but still adequately, to a graphical one. And as
it also happened, the basic Unix kernel interface and many of its characteristic user-level
tools were incorporated into the technological foundations of the open-source
movement.

It is important that papers and writings about the Unix system were always
encouraged, even while the software of the system itself was proprietary, for example
Maurice Bach’s book, The Design of the Unix Operating System. In fact, I would claim that

xix

xx Foreword to the Second Edition

a central reason for the system’s longevity has been that it has attracted remarkably
talented writers to explain its beauties and mysteries. Brian Kernighan is one of these;
Rich Stevens is certainly another. The first edition of this book, along with his series of
books about networking, are rightfully regarded as remarkably well-crafted works of
exposition, and became hugely popular.

However, the first edition of this book was published before Linux and the several
open-source renditions of the Unix interface that stemmed from the Berkeley CSRG
became widespread, and also at a time when many people’s networking consisted of a
serial modem. Steve Rago has carefully updated this book to account for the technology
changes, as well as developments in various ISO and IEEE standards since its first
publication. Thus his examples are fresh, and freshly tested.

It’s a most worthy second edition of a classic.

Murray Hill, New Jersey Dennis Ritchie
March 2005

Preface

Introduction

It’s been almost eight years since I first updated Advanced Programming in the UNIX
Environment, and already so much has changed.

• Before the second edition was published, The Open Group created a 2004
edition of the Single UNIX Specification, folding in the changes from two sets of
corrigenda. In 2008, The Open Group created a new version of the Single UNIX
Specification, updating the base definitions, adding new interfaces, and
removing obsolete ones. This was called the 2008 version of POSIX.1, which
included version 7 of the Base Specification and was published in 2009. In 2010,
this was bundled with an updated curses interface and reissued as version 4 of
the Single UNIX Specification.

• Versions 10.5, 10.6, and 10.8 of the Mac OS X operating system, running on Intel
processors, have been certified to be UNIX® systems by The Open Group.

• Apple Computer discontinued development of Mac OS X for the PowerPC
platform. From Release 10.6 (Snow Leopard) onward, new operating system
versions are released for the x86 platform only.

• The Solaris operating system was released in open source form to try to compete
with the popularity of the open source model followed by FreeBSD, Linux, and
Mac OS X. After Oracle Corporation bought Sun Microsystems in 2010, it
discontinued the development of OpenSolaris. Instead, the Solaris community
formed the Illumos project to continue open source development based on
OpenSolaris. For more information, see http://www.illumos.org.

xxi

http://www.illumos.org

xxii Preface

• In 2011, the C standard was updated, but because systems haven’t caught up yet
with the changes, we still refer to the 1999 version in this text.

Most notably, the platforms used in the second edition have become out-of-date. In this
book, the third edition, I cover the following platforms:

1. FreeBSD 8.0, a descendant of the 4.4BSD release from the Computer Systems
Research Group at the University of California at Berkeley, running on a 32-bit
Intel Pentium processor.

2. Linux 3.2.0 (the Ubuntu 12.04 distribution), a free UNIX-like operating system,
running on a 64-bit Intel Core i5 processor.

3. Apple Mac OS X, version 10.6.8 (Darwin 10.8.0) on a 64-bit Intel Core 2 Duo
processor. (Darwin is based on FreeBSD and Mach.) I chose to switch to an
Intel platform instead of continuing with one based on the PowerPC, because
the latest versions of Mac OS X are no longer being ported to the PowerPC
platform. The drawback to this choice is that the processors covered are now
slanted in favor of Intel. When discussing issues of heterogeneity, it is helpful to
have processors with different characteristics, such as byte ordering and integer
size.

4. Solaris 10, a derivative of System V Release 4 from Sun Microsystems (now
Oracle), running on a 64-bit UltraSPARC IIi processor.

Chang es from the Second Edition

One of the biggest changes to the Single UNIX Specification in POSIX.1-2008 is the
demotion of the STREAMS-related interfaces to obsolescent status. This is the first step
before these interfaces are removed entirely in a future version of the standard. Because
of this, I have reluctantly removed the STREAMS content from this edition of the book.
This is an unfortunate change, because the STREAMS interfaces provided a nice
contrast to the socket interfaces, and in many ways were more flexible. Admittedly, I
am not entirely unbiased when it comes to the STREAMS mechanism, but there is no
debating the reduced role it is playing in current systems:

• Linux doesn’t include STREAMS in its base system, although packages (LiS and
OpenSS7) are available to add this functionality.

• Although Solaris 10 includes STREAMS, Solaris 11 uses a socket implementation
that is not built on top of STREAMS.

• Mac OS X doesn’t include support for STREAMS.

• FreeBSD doesn’t include support for STREAMS (and never did).

So with the removal of the STREAMS-related material, an opportunity exists to replace
it with new topics, such as POSIX asynchronous I/O.

In the second edition, the Linux version covered was based on the 2.4 version of the
source. In this edition, I have updated the version of Linux to 3.2. One of the largest

Preface xxiii

area of differences between these two versions is the threads subsystem. Between Linux
2.4 and Linux 2.6, the threads implementation was changed to the Native POSIX Thread
Library (NPTL). NPTL makes threads on Linux behave more like threads on the other
systems.

In total, this edition includes more than 70 new interfaces, including interfaces to
handle asynchronous I/O, spin locks, barriers, and POSIX semaphores. Most obsolete
interfaces are removed, except for a few ubiquitous ones.

Acknowledgments

Many readers have e-mailed comments and bug reports on the second edition. My
thanks to them for improving the accuracy of the information presented. The following
people were the first to make a particular suggestion or point out a specific error: Seth
Arnold, Luke Bakken, Rick Ballard, Johannes Bittner, David Bronder, Vlad Buslov, Peter
Butler, Yuching Chen, Mike Cheng, Jim Collins, Bob Cousins, Will Dennis, Thomas
Dickey, Loïc Domaigné, Igor Fuksman, Alex Gezerlis, M. Scott Gordon, Timothy Goya,
Tony Graham, Michael Hobgood, Michael Kerrisk, Youngho Kwon, Richard Li, Xueke
Liu, Yun Long, Dan McGregor, Dylan McNamee, Greg Miller, Simon Morgan, Harry
Newton, Jim Oldfield, Scott Parish, Zvezdan Petkovic, David Reiss, Konstantinos
Sakoutis, David Smoot, David Somers, Andriy Tkachuk, Nathan Weeks, Florian
Weimer, Qingyang Xu, and Michael Zalokar.

The technical reviewers improved the accuracy of the information presented.
Thanks to Steve Albert, Bogdan Barbu, and Robert Day. Special thanks to Geoff Clare
and Andrew Josey for providing insights into the Single UNIX Specification and
helping to improve the accuracy of Chapter 2. Also, thanks to Ken Thompson for
answering history questions.

Once again, the staff at Addison-Wesley was great to work with. Thanks to Kim
Boedigheimer, Romny French, John Fuller, Jessica Goldstein, Julie Nahil, and Debra
Williams-Cauley. In addition, thanks to Jill Hobbs for providing her copyediting
expertise this time around.

Finally, thanks to my family for their understanding while I spent so much time
working on this updated edition.

As before, the source code presented here is available at www.apuebook.com. I
welcome e-mail from any readers with comments, suggestions, or bug fixes.

Warren, New Jersey Stephen A. Rago
January 2013 sar@apuebook.com

http://www.apuebook.com

This page intentionally left blank

Preface to the Second Edition

Introduction

Rich Stevens and I first met through an e-mail exchange when I reported a
typographical error in his first book, UNIX Network Programming. He used to kid me
about being the person to send him his first errata notice for the book. Until his death in
1999, we exchanged e-mail irregularly, usually when one of us had a question we
thought the other might be able to answer. We met for dinner at USENIX conferences
and when Rich was teaching in the area.

Rich Stevens was a friend who always conducted himself as a gentleman. When I
wrote UNIX System V Network Programming in 1993, I intended it to be a System V
version of Rich’s UNIX Network Programming. As was his nature, Rich gladly reviewed
chapters for me, and treated me not as a competitor, but as a colleague. We often talked
about collaborating on a STREAMS version of his TCP/IP Illustrated book. Had events
been different, we might have actually done it, but since Rich is no longer with us,
revising Advanced Programming in the UNIX Environment is the closest I’ll ever get to
writing a book with him.

When the editors at Addison-Wesley told me that they wanted to update Rich’s
book, I thought that there wouldn’t be too much to change. Even after 13 years, Rich’s
work still holds up well. But the UNIX industry is vastly different today from what it
was when the book was first published.

• The System V variants are slowly being replaced by Linux. The major system
vendors that ship their hardware with their own versions of the UNIX System
have either made Linux ports available or announced support for Linux. Solaris
is perhaps the last descendant of UNIX System V Release 4 with any appreciable
market share.

xxv

xxvi Preface to the Second Edition

• After 4.4BSD was released, the Computing Science Research Group (CSRG) from
the University of California at Berkeley decided to put an end to its
development of the UNIX operating system, but several different groups of
volunteers still maintain publicly available versions.

• The introduction of Linux, supported by thousands of volunteers, has made it
possible for anyone with a computer to run an operating system similar to the
UNIX System, with freely available source code for the newest hardware
devices. The success of Linux is something of a curiosity, given that several free
BSD alternatives are readily available.

• Continuing its trend as an innovative company, Apple Computer abandoned its
old Mac operating system and replaced it with one based on Mach and FreeBSD.

Thus, I’ve tried to update the information presented in this book to reflect these four
platforms.

After Rich wrote Advanced Programming in the UNIX Environment in 1992, I got rid of
most of my UNIX programmer ’s manuals. To this day, the two books I keep closest to
my desk are a dictionary and a copy of Advanced Programming in the UNIX Environment.
I hope you find this revision equally useful.

Chang es from the First Edition

Rich’s work holds up well. I’ve tried not to change his original vision for this book, but
a lot has happened in 13 years. This is especially true with the standards that affect the
UNIX programming interface.

Throughout the book, I’ve updated interfaces that have changed from the ongoing
efforts in standards organizations. This is most noticeable in Chapter 2, since its
primary topic is standards. The 2001 version of the POSIX.1 standard, which we use in
this revision, is much more comprehensive than the 1990 version on which the first
edition of this book was based. The 1990 ISO C standard was updated in 1999, and
some changes affect the interfaces in the POSIX.1 standard.

A lot more interfaces are now covered by the POSIX.1 specification. The base
specifications of the Single UNIX Specification (published by The Open Group, formerly
X/Open) have been merged with POSIX.1. POSIX.1 now includes several 1003.1
standards and draft standards that were formerly published separately.

Accordingly, I’ve added chapters to cover some new topics. Threads and
multithreaded programming are important concepts because they present a cleaner way
for programmers to deal with concurrency and asynchrony.

The socket interface is now part of POSIX.1. It provides a single interface to
interprocess communication (IPC), regardless of the location of the process, and is a
natural extension of the IPC chapters.

I’ve omitted most of the real-time interfaces that appear in POSIX.1. These are best
treated in a text devoted to real-time programming. One such book appears in the
bibliography.

I’ve updated the case studies in the last chapters to cover more relevant real-world
examples. For example, few systems these days are connected to a PostScript printer

Preface to the Second Edition xxvii

via a serial or parallel port. Most PostScript printers today are accessed via a network,
so I’ve changed the case study that deals with PostScript printer communication to take
this into account.

The chapter on modem communication is less relevant these days. So that the
original material is not lost, however, it is available on the book’s Web site in two
formats: PostScript (http://www.apuebook.com/lostchapter/modem.ps) and
PDF (http://www.apuebook.com/lostchapter/modem.pdf).

The source code for the examples shown in this book is also available at
www.apuebook.com. Most of the examples have been run on four platforms:

1. FreeBSD 5.2.1, a derivative of the 4.4BSD release from the Computer Systems
Research Group at the University of California at Berkeley, running on an Intel
Pentium processor

2. Linux 2.4.22 (the Mandrake 9.2 distribution), a free UNIX-like operating system,
running on Intel Pentium processors

3. Solaris 9, a derivative of System V Release 4 from Sun Microsystems, running on
a 64-bit UltraSPARC IIi processor

4. Darwin 7.4.0, an operating environment based on FreeBSD and Mach,
supported by Apple Mac OS X, version 10.3, on a PowerPC processor

Acknowledgments

Rich Stevens wrote the first edition of this book on his own, and it became an instant
classic.

I couldn’t have updated this book without the support of my family. They put up
with piles of papers scattered about the house (well, more so than usual), my
monopolizing most of the computers in the house, and lots of hours with my face
buried behind a computer terminal. My wife, Jeanne, even helped out by installing
Linux for me on one of the test machines.

The technical reviewers suggested many improvements and helped make sure that
the content was accurate. Many thanks to David Bausum, David Boreham, Keith Bostic,
Mark Ellis, Phil Howard, Andrew Josey, Mukesh Kacker, Brian Kernighan, Bengt
Kleberg, Ben Kuperman, Eric Raymond, and Andy Rudoff.

I’d also like to thank Andy Rudoff for answering questions about Solaris and
Dennis Ritchie for digging up old papers and answering history questions. Once again,
the staff at Addison-Wesley was great to work with. Thanks to Tyrrell Albaugh, Mary
Franz, John Fuller, Karen Gettman, Jessica Goldstein, Noreen Regina, and John Wait.
My thanks to Evelyn Pyle for the fine job of copyediting.

As Rich did, I also welcome electronic mail from any readers with comments,
suggestions, or bug fixes.

Warren, New Jersey Stephen A. Rago
April 2005 sar@apuebook.com

http://www.apuebook.com/lostchapter/modem.ps
http://www.apuebook.com/lostchapter/modem.pdf
http://www.apuebook.com

This page intentionally left blank

Preface to the First Edition

Introduction

This book describes the programming interface to the Unix system—the system call
interface and many of the functions provided in the standard C library. It is intended
for anyone writing programs that run under Unix.

Like most operating systems, Unix provides numerous services to the programs
that are running — open a file, read a file, start a new program, allocate a region of
memory, get the current time-of-day, and so on. This has been termed the system call
interface. Additionally, the standard C library provides numerous functions that are
used by almost every C program (format a variable’s value for output, compare two
strings, etc.).

The system call interface and the library routines have traditionally been described
in Sections 2 and 3 of the Unix Programmer ’s Manual. This book is not a duplication of
these sections. Examples and rationale are missing from the Unix Programmer ’s Manual,
and that’s what this book provides.

Unix Standards

The proliferation of different versions of Unix during the 1980s has been tempered by
the various international standards that were started during the late 1980s. These
include the ANSI standard for the C programming language, the IEEE POSIX family
(still being developed), and the X/Open portability guide.

This book also describes these standards. But instead of just describing the
standards by themselves, we describe them in relation to popular implementations of
the standards — System V Release 4 and the forthcoming 4.4BSD. This provides a real-
world description, which is often lacking from the standard itself and from books that
describe only the standard.

xxix

xxx Preface to the First Edition

Organization of the Book

This book is divided into six parts:

1. An overview and introduction to basic Unix programming concepts and
terminology (Chapter 1), with a discussion of the various Unix standardization
efforts and different Unix implementations (Chapter 2).

2. I/O—unbuffered I/O (Chapter 3), properties of files and directories
(Chapter 4), the standard I/O library (Chapter 5), and the standard system data
files (Chapter 6).

3. Processes — the environment of a Unix process (Chapter 7), process control
(Chapter 8), the relationships between different processes (Chapter 9), and
signals (Chapter 10).

4. More I/O — terminal I/O (Chapter 11), advanced I/O (Chapter 12), and daemon
processes (Chapter 13).

5. IPC—Interprocess communication (Chapters 14 and 15).

6. Examples—a database library (Chapter 16), communicating with a PostScript
printer (Chapter 17), a modem dialing program (Chapter 18), and using pseudo
terminals (Chapter 19).

A reading familiarity with C would be beneficial as would some experience using
Unix. No prior programming experience with Unix is assumed. This text is intended
for programmers familiar with Unix and programmers familiar with some other
operating system who wish to learn the details of the services provided by most Unix
systems.

Examples in the Text

This book contains many examples—approximately 10,000 lines of source code. All the
examples are in the C programming language. Furthermore, these examples are in
ANSI C. You should have a copy of the Unix Programmer ’s Manual for your system
handy while reading this book, since reference is made to it for some of the more
esoteric and implementation-dependent features.

Almost every function and system call is demonstrated with a small, complete
program. This lets us see the arguments and return values and is often easier to
comprehend than the use of the function in a much larger program. But since some of
the small programs are contrived examples, a few bigger examples are also included
(Chapters 16, 17, 18, and 19). These larger examples demonstrate the programming
techniques in larger, real-world examples.

All the examples have been included in the text directly from their source files. A
machine-readable copy of all the examples is available via anonymous FTP from the
Internet host ftp.uu.net in the file published/books/stevens.advprog.tar.Z.
Obtaining the source code allows you to modify the programs from this text and
experiment with them on your system.

Preface to the First Edition xxxi

Systems Used to Test the Examples

Unfortunately all operating systems are moving targets. Unix is no exception. The
following diagram shows the recent evolution of the various versions of System V and
4.xBSD.

1986 1987 1988 1989 1990 1991 1992

4.3BSD 4.3BSD Tahoe

BSD Net 1

4.3BSD Reno

BSD Net 2

4.4BSD ?

4.3+BSD

SVR3.0 SVR3.1 SVR3.2 SVR4

XPG3 ANSI C POSIX.1

4.xBSD are the various systems from the Computer Systems Research Group at the
University of California at Berkeley. This group also distributes the BSD Net 1 and BSD
Net 2 releases — publicly available source code from the 4.xBSD systems. SVRx refers to
System V Release x from AT&T. XPG3 is the X/Open Portability Guide, Issue 3, and
ANSI C is the ANSI standard for the C programming language. POSIX.1 is the IEEE
and ISO standard for the interface to a Unix-like system. We’ll have more to say about
these different standards and the various versions of Unix in Sections 2.2 and 2.3.

In this text we use the term 4.3+BSD to refer to the Unix system from
Berkeley that is somewhere between the BSD Net 2 release and 4.4BSD.

At the time of this writing, 4.4BSD was not released, so the system could not be called 4.4BSD.
Nevertheless a simple name was needed to refer to this system and 4.3+BSD is used
throughout the text.

Most of the examples in this text have been run on four different versions of Unix:

1. Unix System V/386 Release 4.0 Version 2.0 (‘‘vanilla SVR4’’) from U.H. Corp.
(UHC), on an Intel 80386 processor.

2. 4.3+BSD at the Computer Systems Research Group, Computer Science Division,
University of California at Berkeley, on a Hewlett Packard workstation.

3. BSD/386 (a derivative of the BSD Net 2 release) from Berkeley Software Design,
Inc., on an Intel 80386 processor. This system is almost identical to what we call
4.3+BSD.

4. SunOS 4.1.1 and 4.1.2 (systems with a strong Berkeley heritage but many
System V features) from Sun Microsystems, on a SPARCstation SLC.

Numerous timing tests are provided in the text and the systems used for the test are
identified.

xxxii Preface to the First Edition

Acknowledgments

Once again I am indebted to my family for their love, support, and many lost weekends
over the past year and a half. Writing a book is, in many ways, a family affair. Thank
you Sally, Bill, Ellen, and David.

I am especially grateful to Brian Kernighan for his help in the book. His numerous
thorough reviews of the entire manuscript and his gentle prodding for better prose
hopefully show in the final result. Steve Rago was also a great resource, both in
reviewing the entire manuscript and answering many questions about the details and
history of System V. My thanks to the other technical reviewers used by Addison-
Wesley, who provided valuable comments on various portions of the manuscript:
Maury Bach, Mark Ellis, Jeff Gitlin, Peter Honeyman, John Linderman, Doug McIlroy,
Evi Nemeth, Craig Partridge, Dave Presotto, Gary Wilson, and Gary Wright.

Keith Bostic and Kirk McKusick at the U.C. Berkeley CSRG provided an account
that was used to test the examples on the latest BSD system. (Many thanks to Peter
Salus too.) Sam Nataros and Joachim Sacksen at UHC provided the copy of SVR4 used
to test the examples. Tr ent Hein helped obtain the alpha and beta copies of BSD/386.

Other friends have helped in many small, but significant ways over the past few
years: Paul Lucchina, Joe Godsil, Jim Hogue, Ed Tankus, and Gary Wright. My editor at
Addison-Wesley, John Wait, has been a great friend through it all. He never complained
when the due date slipped and the page count kept increasing. A special thanks to the
National Optical Astronomy Observatories (NOAO), especially Sidney Wolff, Richard
Wolff, and Steve Grandi, for providing computer time.

Real Unix books are written using troff and this book follows that time-honored
tradition. Camera-ready copy of the book was produced by the author using the groff
package written by James Clark. Many thanks to James Clark for providing this
excellent system and for his rapid response to bug fixes. Perhaps someday I will really
understand troff footer traps.

I welcome electronic mail from any readers with comments, suggestions, or bug
fixes.

Tucson, Arizona W. Richard Stevens
April 1992 rstevens@kohala.com

http://www.kohala.com/˜rstevens

http://www.kohala.com/~rstevens

11

Threads

11.1 Introduction

We discussed processes in earlier chapters. We learned about the environment of a
UNIX process, the relationships between processes, and ways to control processes. We
saw that a limited amount of sharing can occur between related processes.

In this chapter, we’ll look inside a process further to see how we can use multiple
threads of control (or simply threads) to perform multiple tasks within the environment of
a single process. All threads within a single process have access to the same process
components, such as file descriptors and memory.

Anytime you try to share a single resource among multiple users, you have to deal
with consistency. We’ll conclude this chapter with a look at the synchronization
mechanisms available to prevent multiple threads from viewing inconsistencies in their
shared resources.

11.2 Thread Concepts

A typical UNIX process can be thought of as having a single thread of control: each
process is doing only one thing at a time. With multiple threads of control, we can
design our programs to do more than one thing at a time within a single process, with
each thread handling a separate task. This approach can have several benefits.

• We can simplify code that deals with asynchronous events by assigning a
separate thread to handle each event type. Each thread can then handle its event
using a synchronous programming model. A synchronous programming model
is much simpler than an asynchronous one.

• Multiple processes have to use complex mechanisms provided by the operating
system to share memory and file descriptors, as we will see in Chapters 15

383

384 Threads Chapter 11

and 17. Threads, in contrast, automatically have access to the same memory
address space and file descriptors.

• Some problems can be partitioned so that overall program throughput can be
improved. A single-threaded process with multiple tasks to perform implicitly
serializes those tasks, because there is only one thread of control. With multiple
threads of control, the processing of independent tasks can be interleaved by
assigning a separate thread per task. Two tasks can be interleaved only if they
don’t depend on the processing performed by each other.

• Similarly, interactive programs can realize improved response time by using
multiple threads to separate the portions of the program that deal with user
input and output from the other parts of the program.

Some people associate multithreaded programming with multiprocessor or
multicore systems. The benefits of a multithreaded programming model can be realized
even if your program is running on a uniprocessor. A program can be simplified using
threads regardless of the number of processors, because the number of processors
doesn’t affect the program structure. Furthermore, as long as your program has to
block when serializing tasks, you can still see improvements in response time and
throughput when running on a uniprocessor, because some threads might be able to run
while others are blocked.

A thread consists of the information necessary to represent an execution context
within a process. This includes a thread ID that identifies the thread within a process, a
set of register values, a stack, a scheduling priority and policy, a signal mask, an errno
variable (recall Section 1.7), and thread-specific data (Section 12.6). Everything within a
process is sharable among the threads in a process, including the text of the executable
program, the program’s global and heap memory, the stacks, and the file descriptors.

The threads interfaces we’re about to see are from POSIX.1-2001. The threads
interfaces, also known as ‘‘pthreads’’ for ‘‘POSIX threads,’’ originally were optional in
POSIX.1-2001, but SUSv4 moved them to the base. The feature test macro for POSIX
threads is _POSIX_THREADS. Applications can either use this in an #ifdef test to
determine at compile time whether threads are supported or call sysconf with the
_SC_THREADS constant to determine this at runtime. Systems conforming to SUSv4
define the symbol _POSIX_THREADS to have the value 200809L.

11.3 Thread Identification

Just as every process has a process ID, every thread has a thread ID. Unlike the process
ID, which is unique in the system, the thread ID has significance only within the context
of the process to which it belongs.

Recall that a process ID, represented by the pid_t data type, is a non-negative
integer. A thread ID is represented by the pthread_t data type. Implementations are
allowed to use a structure to represent the pthread_t data type, so portable
implementations can’t treat them as integers. Therefore, a function must be used to
compare two thread IDs.

Section 11.4 Thread Creation 385

#include <pthread.h>

int pthread_equal(pthread_t tid1, pthread_t tid2);

Returns: nonzero if equal, 0 otherwise

Linux 3.2.0 uses an unsigned long integer for the pthread_t data type. Solaris 10 represents
the pthread_t data type as an unsigned integer. FreeBSD 8.0 and Mac OS X 10.6.8 use a
pointer to the pthread structure for the pthread_t data type.

A consequence of allowing the pthread_t data type to be a structure is that there
is no portable way to print its value. Sometimes, it is useful to print thread IDs during
program debugging, but there is usually no need to do so otherwise. At worst, this
results in nonportable debug code, so it is not much of a limitation.

A thread can obtain its own thread ID by calling the pthread_self function.

#include <pthread.h>

pthread_t pthread_self(void);

Returns: the thread ID of the calling thread

This function can be used with pthread_equal when a thread needs to identify data
structures that are tagged with its thread ID. For example, a master thread might place
work assignments on a queue and use the thread ID to control which jobs go to each
worker thread. This situation is illustrated in Figure 11.1. A single master thread places
new jobs on a work queue. A pool of three worker threads removes jobs from the
queue. Instead of allowing each thread to process whichever job is at the head of the
queue, the master thread controls job assignment by placing the ID of the thread that
should process the job in each job structure. Each worker thread then removes only jobs
that are tagged with its own thread ID.

11.4 Thread Creation

The traditional UNIX process model supports only one thread of control per process.
Conceptually, this is the same as a threads-based model whereby each process is made
up of only one thread. With pthreads, when a program runs, it also starts out as a single
process with a single thread of control. As the program runs, its behavior should be
indistinguishable from the traditional process, until it creates more threads of control.
Additional threads can be created by calling the pthread_create function.

#include <pthread.h>

int pthread_create(pthread_t *restrict tidp,
const pthread_attr_t *restrict attr,
void *(*start_rtn)(void *), void *restrict arg);

Returns: 0 if OK, error number on failure

386 Threads Chapter 11

thread
2

thread
1

thread
3

work
queue

job

TID 1

job

TID 3

job

TID 2

job

TID 3

master
thread

Figure 11.1 Work queue example

The memory location pointed to by tidp is set to the thread ID of the newly created
thread when pthread_create returns successfully. The attr argument is used to
customize various thread attributes. We’ll cover thread attributes in Section 12.3, but
for now, we’ll set this to NULL to create a thread with the default attributes.

The newly created thread starts running at the address of the start_rtn function.
This function takes a single argument, arg, which is a typeless pointer. If you need to
pass more than one argument to the start_rtn function, then you need to store them in a
structure and pass the address of the structure in arg.

When a thread is created, there is no guarantee which will run first: the newly
created thread or the calling thread. The newly created thread has access to the process
address space and inherits the calling thread’s floating-point environment and signal
mask; however, the set of pending signals for the thread is cleared.

Note that the pthread functions usually return an error code when they fail. They
don’t set errno like the other POSIX functions. The per-thread copy of errno is
provided only for compatibility with existing functions that use it. With threads, it is
cleaner to return the error code from the function, thereby restricting the scope of the
error to the function that caused it, instead of relying on some global state that is
changed as a side effect of the function.

Example

Although there is no portable way to print the thread ID, we can write a small test
program that does, to gain some insight into how threads work. The program in

Section 11.4 Thread Creation 387

Figure 11.2 creates one thread and prints the process and thread IDs of the new thread
and the initial thread.

#include "apue.h"
#include <pthread.h>

pthread_t ntid;

void
printids(const char *s)
{

pid_t pid;
pthread_t tid;

pid = getpid();
tid = pthread_self();
printf("%s pid %lu tid %lu (0x%lx)\n", s, (unsigned long)pid,
(unsigned long)tid, (unsigned long)tid);

}

void *
thr_fn(void *arg)
{

printids("new thread: ");
return((void *)0);

}

int
main(void)
{

int err;

err = pthread_create(&ntid, NULL, thr_fn, NULL);
if (err != 0)

err_exit(err, "can’t create thread");
printids("main thread:");
sleep(1);
exit(0);

}

Figure 11.2 Printing thread IDs

This example has two oddities, which are necessary to handle races between the main
thread and the new thread. (We’ll learn better ways to deal with these conditions later
in this chapter.) The first is the need to sleep in the main thread. If it doesn’t sleep, the
main thread might exit, thereby terminating the entire process before the new thread
gets a chance to run. This behavior is dependent on the operating system’s threads
implementation and scheduling algorithms.

The second oddity is that the new thread obtains its thread ID by calling
pthread_self instead of reading it out of shared memory or receiving it as an
argument to its thread-start routine. Recall that pthread_create will return the

388 Threads Chapter 11

thread ID of the newly created thread through the first parameter (tidp). In our
example, the main thread stores this ID in ntid, but the new thread can’t safely use it.
If the new thread runs before the main thread returns from calling pthread_create,
then the new thread will see the uninitialized contents of ntid instead of the thread ID.

Running the program in Figure 11.2 on Solaris gives us

$./a.out
main thread: pid 20075 tid 1 (0x1)
new thread: pid 20075 tid 2 (0x2)

As we expect, both threads have the same process ID, but different thread IDs. Running
the program in Figure 11.2 on FreeBSD gives us

$./a.out
main thread: pid 37396 tid 673190208 (0x28201140)
new thread: pid 37396 tid 673280320 (0x28217140)

As we expect, both threads have the same process ID. If we look at the thread IDs as
decimal integers, the values look strange, but if we look at them in hexadecimal format,
they make more sense. As we noted earlier, FreeBSD uses a pointer to the thread data
structure for its thread ID.

We would expect Mac OS X to be similar to FreeBSD; however, the thread ID for the
main thread is from a different address range than the thread IDs for threads created
with pthread_create:

$./a.out
main thread: pid 31807 tid 140735073889440 (0x7fff70162ca0)
new thread: pid 31807 tid 4295716864 (0x1000b7000)

Running the same program on Linux gives us

$./a.out
main thread: pid 17874 tid 140693894424320 (0x7ff5d9996700)
new thread: pid 17874 tid 140693886129920 (0x7ff5d91ad700)

The Linux thread IDs look like pointers, even though they are represented as unsigned
long integers.

The threads implementation changed between Linux 2.4 and Linux 2.6. In Linux 2.4,
LinuxThreads implemented each thread with a separate process. This made it difficult to
match the behavior of POSIX threads. In Linux 2.6, the Linux kernel and threads library were
overhauled to use a new threads implementation called the Native POSIX Thread Library
(NPTL). This supported a model of multiple threads within a single process and made it easier
to support POSIX threads semantics.

11.5 Thread Termination

If any thread within a process calls exit, _Exit, or _exit, then the entire process
terminates. Similarly, when the default action is to terminate the process, a signal sent
to a thread will terminate the entire process (we’ll talk more about the interactions
between signals and threads in Section 12.8).

Section 11.5 Thread Termination 389

A single thread can exit in three ways, thereby stopping its flow of control, without
terminating the entire process.

1. The thread can simply return from the start routine. The return value is the
thread’s exit code.

2. The thread can be canceled by another thread in the same process.

3. The thread can call pthread_exit.

#include <pthread.h>

void pthread_exit(void *rval_ptr);

The rval_ptr argument is a typeless pointer, similar to the single argument passed to the
start routine. This pointer is available to other threads in the process by calling the
pthread_join function.

#include <pthread.h>

int pthread_join(pthread_t thread, void **rval_ptr);

Returns: 0 if OK, error number on failure

The calling thread will block until the specified thread calls pthread_exit, returns
from its start routine, or is canceled. If the thread simply returned from its start routine,
rval_ptr will contain the return code. If the thread was canceled, the memory location
specified by rval_ptr is set to PTHREAD_CANCELED.

By calling pthread_join, we automatically place the thread with which we’re
joining in the detached state (discussed shortly) so that its resources can be recovered.
If the thread was already in the detached state, pthread_join can fail, returning
EINVAL, although this behavior is implementation-specific.

If we’re not interested in a thread’s return value, we can set rval_ptr to NULL. In this
case, calling pthread_join allows us to wait for the specified thread, but does not
retrieve the thread’s termination status.

Example

Figure 11.3 shows how to fetch the exit code from a thread that has terminated.

#include "apue.h"
#include <pthread.h>

void *
thr_fn1(void *arg)
{

printf("thread 1 returning\n");
return((void *)1);

}

void *
thr_fn2(void *arg)
{

390 Threads Chapter 11

printf("thread 2 exiting\n");
pthread_exit((void *)2);

}

int
main(void)
{

int err;
pthread_t tid1, tid2;
void *tret;

err = pthread_create(&tid1, NULL, thr_fn1, NULL);
if (err != 0)

err_exit(err, "can’t create thread 1");
err = pthread_create(&tid2, NULL, thr_fn2, NULL);
if (err != 0)

err_exit(err, "can’t create thread 2");
err = pthread_join(tid1, &tret);
if (err != 0)

err_exit(err, "can’t join with thread 1");
printf("thread 1 exit code %ld\n", (long)tret);
err = pthread_join(tid2, &tret);
if (err != 0)

err_exit(err, "can’t join with thread 2");
printf("thread 2 exit code %ld\n", (long)tret);
exit(0);

}

Figure 11.3 Fetching the thread exit status

Running the program in Figure 11.3 gives us

$./a.out
thread 1 returning
thread 2 exiting
thread 1 exit code 1
thread 2 exit code 2

As we can see, when a thread exits by calling pthread_exit or by simply returning
from the start routine, the exit status can be obtained by another thread by calling
pthread_join.

The typeless pointer passed to pthread_create and pthread_exit can be used
to pass more than a single value. The pointer can be used to pass the address of a
structure containing more complex information. Be careful that the memory used for
the structure is still valid when the caller has completed. If the structure was allocated
on the caller’s stack, for example, the memory contents might have changed by the time
the structure is used. If a thread allocates a structure on its stack and passes a pointer to
this structure to pthread_exit, then the stack might be destroyed and its memory
reused for something else by the time the caller of pthread_join tries to use it.

Section 11.5 Thread Termination 391

Example

The program in Figure 11.4 shows the problem with using an automatic variable
(allocated on the stack) as the argument to pthread_exit.

#include "apue.h"
#include <pthread.h>

struct foo {
int a, b, c, d;

};

void
printfoo(const char *s, const struct foo *fp)
{

printf("%s", s);
printf(" structure at 0x%lx\n", (unsigned long)fp);
printf(" foo.a = %d\n", fp->a);
printf(" foo.b = %d\n", fp->b);
printf(" foo.c = %d\n", fp->c);
printf(" foo.d = %d\n", fp->d);

}

void *
thr_fn1(void *arg)
{

struct foo foo = {1, 2, 3, 4};

printfoo("thread 1:\n", &foo);
pthread_exit((void *)&foo);

}

void *
thr_fn2(void *arg)
{

printf("thread 2: ID is %lu\n", (unsigned long)pthread_self());
pthread_exit((void *)0);

}

int
main(void)
{

int err;
pthread_t tid1, tid2;
struct foo *fp;

err = pthread_create(&tid1, NULL, thr_fn1, NULL);
if (err != 0)

err_exit(err, "can’t create thread 1");
err = pthread_join(tid1, (void *)&fp);
if (err != 0)

err_exit(err, "can’t join with thread 1");
sleep(1);
printf("parent starting second thread\n");

392 Threads Chapter 11

err = pthread_create(&tid2, NULL, thr_fn2, NULL);
if (err != 0)

err_exit(err, "can’t create thread 2");
sleep(1);
printfoo("parent:\n", fp);
exit(0);

}

Figure 11.4 Incorrect use of pthread_exit argument

When we run this program on Linux, we get

$./a.out
thread 1:
structure at 0x7f2c83682ed0
foo.a = 1
foo.b = 2
foo.c = 3
foo.d = 4

parent starting second thread
thread 2: ID is 139829159933696
parent:
structure at 0x7f2c83682ed0
foo.a = -2090321472
foo.b = 32556
foo.c = 1
foo.d = 0

Of course, the results vary, depending on the memory architecture, the compiler, and
the implementation of the threads library. The results on Solaris are similar:

$./a.out
thread 1:
structure at 0xffffffff7f0fbf30
foo.a = 1
foo.b = 2
foo.c = 3
foo.d = 4

parent starting second thread
thread 2: ID is 3
parent:
structure at 0xffffffff7f0fbf30
foo.a = -1
foo.b = 2136969048
foo.c = -1
foo.d = 2138049024

As we can see, the contents of the structure (allocated on the stack of thread tid1) have
changed by the time the main thread can access the structure. Note how the stack of the
second thread (tid2) has overwritten the first thread’s stack. To solve this problem, we
can either use a global structure or allocate the structure using malloc.

Section 11.5 Thread Termination 393

On Mac OS X, we get different results:

$./a.out
thread 1:

structure at 0x1000b6f00
foo.a = 1
foo.b = 2
foo.c = 3
foo.d = 4

parent starting second thread
thread 2: ID is 4295716864
parent:

structure at 0x1000b6f00
Segmentation fault (core dumped)

In this case, the memory is no longer valid when the parent tries to access the structure
passed to it by the first thread that exited, and the parent is sent the SIGSEGV signal.

On FreeBSD, the memory hasn’t been overwritten by the time the parent accesses it,
and we get

thread 1:
structure at 0xbf9fef88
foo.a = 1
foo.b = 2
foo.c = 3
foo.d = 4

parent starting second thread
thread 2: ID is 673279680
parent:

structure at 0xbf9fef88
foo.a = 1
foo.b = 2
foo.c = 3
foo.d = 4

Even though the memory is still intact after the thread exits, we can’t depend on this
always being the case. It certainly isn’t what we observe on the other platforms.

One thread can request that another in the same process be canceled by calling the
pthread_cancel function.

#include <pthread.h>

int pthread_cancel(pthread_t tid);

Returns: 0 if OK, error number on failure

In the default circumstances, pthread_cancel will cause the thread specified by tid to
behave as if it had called pthread_exit with an argument of PTHREAD_CANCELED.
However, a thread can elect to ignore or otherwise control how it is canceled. We will
discuss this in detail in Section 12.7. Note that pthread_cancel doesn’t wait for the
thread to terminate; it merely makes the request.

394 Threads Chapter 11

A thread can arrange for functions to be called when it exits, similar to the way that
the atexit function (Section 7.3) can be used by a process to arrange that functions are
to be called when the process exits. The functions are known as thread cleanup handlers.
More than one cleanup handler can be established for a thread. The handlers are
recorded in a stack, which means that they are executed in the reverse order from that
with which they were registered.

#include <pthread.h>

void pthread_cleanup_push(void (*rtn)(void *), void *arg);

void pthread_cleanup_pop(int execute);

The pthread_cleanup_push function schedules the cleanup function, rtn, to be
called with the single argument, arg, when the thread performs one of the following
actions:

• Makes a call to pthread_exit

• Responds to a cancellation request

• Makes a call to pthread_cleanup_pop with a nonzero execute argument

If the execute argument is set to zero, the cleanup function is not called. In either
case, pthread_cleanup_pop removes the cleanup handler established by the last call
to pthread_cleanup_push.

A restriction with these functions is that, because they can be implemented as
macros, they must be used in matched pairs within the same scope in a thread. The
macro definition of pthread_cleanup_push can include a { character, in which case
the matching } character is in the pthread_cleanup_pop definition.

Example

Figure 11.5 shows how to use thread cleanup handlers. Although the example is
somewhat contrived, it illustrates the mechanics involved. Note that although we never
intend to pass zero as an argument to the thread start-up routines, we still need to
match calls to pthread_cleanup_pop with the calls to pthread_cleanup_push;
otherwise, the program might not compile.

#include "apue.h"
#include <pthread.h>

void
cleanup(void *arg)
{

printf("cleanup: %s\n", (char *)arg);
}

void *
thr_fn1(void *arg)

Section 11.5 Thread Termination 395

{
printf("thread 1 start\n");
pthread_cleanup_push(cleanup, "thread 1 first handler");
pthread_cleanup_push(cleanup, "thread 1 second handler");
printf("thread 1 push complete\n");
if (arg)

return((void *)1);
pthread_cleanup_pop(0);
pthread_cleanup_pop(0);
return((void *)1);

}

void *
thr_fn2(void *arg)
{

printf("thread 2 start\n");
pthread_cleanup_push(cleanup, "thread 2 first handler");
pthread_cleanup_push(cleanup, "thread 2 second handler");
printf("thread 2 push complete\n");
if (arg)

pthread_exit((void *)2);
pthread_cleanup_pop(0);
pthread_cleanup_pop(0);
pthread_exit((void *)2);

}

int
main(void)
{

int err;
pthread_t tid1, tid2;
void *tret;

err = pthread_create(&tid1, NULL, thr_fn1, (void *)1);
if (err != 0)

err_exit(err, "can’t create thread 1");
err = pthread_create(&tid2, NULL, thr_fn2, (void *)1);
if (err != 0)

err_exit(err, "can’t create thread 2");
err = pthread_join(tid1, &tret);
if (err != 0)

err_exit(err, "can’t join with thread 1");
printf("thread 1 exit code %ld\n", (long)tret);
err = pthread_join(tid2, &tret);
if (err != 0)

err_exit(err, "can’t join with thread 2");
printf("thread 2 exit code %ld\n", (long)tret);
exit(0);

}

Figure 11.5 Thread cleanup handler

396 Threads Chapter 11

Running the program in Figure 11.5 on Linux or Solaris gives us

$./a.out
thread 1 start
thread 1 push complete
thread 2 start
thread 2 push complete
cleanup: thread 2 second handler
cleanup: thread 2 first handler
thread 1 exit code 1
thread 2 exit code 2

From the output, we can see that both threads start properly and exit, but that only the
second thread’s cleanup handlers are called. Thus, if the thread terminates by returning
from its start routine, its cleanup handlers are not called, although this behavior varies
among implementations. Also note that the cleanup handlers are called in the reverse
order from which they were installed.

If we run the same program on FreeBSD or Mac OS X, we see that the program
incurs a segmentation violation and drops core. This happens because on these
systems, pthread_cleanup_push is implemented as a macro that stores some context
on the stack. When thread 1 returns in between the call to pthread_cleanup_push
and the call to pthread_cleanup_pop, the stack is overwritten and these platforms
try to use this (now corrupted) context when they invoke the cleanup handlers. In the
Single UNIX Specification, returning while in between a matched pair of calls to
pthread_cleanup_push and pthread_cleanup_pop results in undefined
behavior. The only portable way to return in between these two functions is to call
pthread_exit.

By now, you should begin to see similarities between the thread functions and the
process functions. Figure 11.6 summarizes the similar functions.

Process primitive Thread primitive Description

fork pthread_create create a new flow of control
exit pthread_exit exit from an existing flow of control
waitpid pthread_join get exit status from flow of control
atexit pthread_cleanup_push register function to be called at exit from flow of control
getpid pthread_self get ID for flow of control
abort pthread_cancel request abnormal termination of flow of control

Figure 11.6 Comparison of process and thread primitives

By default, a thread’s termination status is retained until we call pthread_join
for that thread. A thread’s underlying storage can be reclaimed immediately on
termination if the thread has been detached. After a thread is detached, we can’t use the
pthread_join function to wait for its termination status, because calling
pthread_join for a detached thread results in undefined behavior. We can detach a
thread by calling pthread_detach.

Section 11.6 Thread Synchronization 397

#include <pthread.h>

int pthread_detach(pthread_t tid);

Returns: 0 if OK, error number on failure

As we will see in the next chapter, we can create a thread that is already in the detached
state by modifying the thread attributes we pass to pthread_create.

11.6 Thread Synchronization

When multiple threads of control share the same memory, we need to make sure that
each thread sees a consistent view of its data. If each thread uses variables that other
threads don’t read or modify, no consistency problems will exist. Similarly, if a variable
is read-only, there is no consistency problem with more than one thread reading its
value at the same time. However, when one thread can modify a variable that other
threads can read or modify, we need to synchronize the threads to ensure that they
don’t use an invalid value when accessing the variable’s memory contents.

When one thread modifies a variable, other threads can potentially see
inconsistencies when reading the value of that variable. On processor architectures in
which the modification takes more than one memory cycle, this can happen when the
memory read is interleaved between the memory write cycles. Of course, this behavior
is architecture dependent, but portable programs can’t make any assumptions about
what type of processor architecture is being used.

Figure 11.7 shows a hypothetical example of two threads reading and writing the
same variable. In this example, thread A reads the variable and then writes a new value
to it, but the write operation takes two memory cycles. If thread B reads the same
variable between the two write cycles, it will see an inconsistent value.

Thread A

read

write
1

write
2

Thread B

read

time

Figure 11.7 Interleaved memory cycles with two threads

To solve this problem, the threads have to use a lock that will allow only one thread
to access the variable at a time. Figure 11.8 shows this synchronization. If it wants to

398 Threads Chapter 11

read the variable, thread B acquires a lock. Similarly, when thread A updates the
variable, it acquires the same lock. Thus thread B will be unable to read the variable
until thread A releases the lock.

Thread A

read

write
1

write
2

Thread B

read

read

time

Figure 11.8 Two threads synchronizing memory access

We also need to synchronize two or more threads that might try to modify the same
variable at the same time. Consider the case in which we increment a variable
(Figure 11.9). The increment operation is usually broken down into three steps.

1. Read the memory location into a register.

2. Increment the value in the register.

3. Write the new value back to the memory location.

If two threads try to increment the same variable at almost the same time without
synchronizing with each other, the results can be inconsistent. You end up with a value
that is either one or two greater than before, depending on the value observed when the
second thread starts its operation. If the second thread performs step 1 before the first
thread performs step 3, the second thread will read the same initial value as the first
thread, increment it, and write it back, with no net effect.

If the modification is atomic, then there isn’t a race. In the previous example, if the
increment takes only one memory cycle, then no race exists. If our data always appears
to be sequentially consistent, then we need no additional synchronization. Our
operations are sequentially consistent when multiple threads can’t observe
inconsistencies in our data. In modern computer systems, memory accesses take
multiple bus cycles, and multiprocessors generally interleave bus cycles among
multiple processors, so we aren’t guaranteed that our data is sequentially consistent.

Section 11.6 Thread Synchronization 399

Thread A

fetch i into register
(register = 5)

increment the
contents of
the register

(register = 6)

store the contents
of the register

into i
(register = 6)

Thread B

fetch i into register
(register = 5)

increment the
contents of
the register

(register = 6)

store the contents
of the register

into i
(register = 6)

Contents of i

5

5

6

6

time

Figure 11.9 Two unsynchronized threads incrementing the same variable

In a sequentially consistent environment, we can explain modifications to our data
as a sequential step of operations taken by the running threads. We can say such things
as ‘‘Thread A incremented the variable, then thread B incremented the variable, so its
value is two greater than before’’ or ‘‘Thread B incremented the variable, then thread A
incremented the variable, so its value is two greater than before.’’ No possible ordering
of the two threads can result in any other value of the variable.

Besides the computer architecture, races can arise from the ways in which our
programs use variables, creating places where it is possible to view inconsistencies. For
example, we might increment a variable and then make a decision based on its value.
The combination of the increment step and the decision-making step isn’t atomic, which
opens a window where inconsistencies can arise.

11.6.1 Mutexes

We can protect our data and ensure access by only one thread at a time by using the
pthreads mutual-exclusion interfaces. A mutex is basically a lock that we set (lock)
before accessing a shared resource and release (unlock) when we’re done. While it is
set, any other thread that tries to set it will block until we release it. If more than one
thread is blocked when we unlock the mutex, then all threads blocked on the lock will
be made runnable, and the first one to run will be able to set the lock. The others will

400 Threads Chapter 11

see that the mutex is still locked and go back to waiting for it to become available again.
In this way, only one thread will proceed at a time.

This mutual-exclusion mechanism works only if we design our threads to follow
the same data-access rules. The operating system doesn’t serialize access to data for us.
If we allow one thread to access a shared resource without first acquiring a lock, then
inconsistencies can occur even though the rest of our threads do acquire the lock before
attempting to access the shared resource.

A mutex variable is represented by the pthread_mutex_t data type. Before we
can use a mutex variable, we must first initialize it by either setting it to the constant
PTHREAD_MUTEX_INITIALIZER (for statically allocated mutexes only) or calling
pthread_mutex_init. If we allocate the mutex dynamically (by calling malloc, for
example), then we need to call pthread_mutex_destroy before freeing the memory.

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Both return: 0 if OK, error number on failure

To initialize a mutex with the default attributes, we set attr to NULL. We will discuss
mutex attributes in Section 12.4.

To lock a mutex, we call pthread_mutex_lock. If the mutex is already locked,
the calling thread will block until the mutex is unlocked. To unlock a mutex, we call
pthread_mutex_unlock.

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

All return: 0 if OK, error number on failure

If a thread can’t afford to block, it can use pthread_mutex_trylock to lock the
mutex conditionally. If the mutex is unlocked at the time pthread_mutex_trylock
is called, then pthread_mutex_trylock will lock the mutex without blocking and
return 0. Otherwise, pthread_mutex_trylock will fail, returning EBUSY without
locking the mutex.

Example

Figure 11.10 illustrates a mutex used to protect a data structure. When more than one
thread needs to access a dynamically allocated object, we can embed a reference count
in the object to ensure that we don’t free its memory before all threads are done using it.

Section 11.6 Thread Synchronization 401

#include <stdlib.h>
#include <pthread.h>

struct foo {
int f_count;
pthread_mutex_t f_lock;
int f_id;
/* ... more stuff here ... */

};

struct foo *
foo_alloc(int id) /* allocate the object */
{

struct foo *fp;

if ((fp = malloc(sizeof(struct foo))) != NULL) {
fp->f_count = 1;
fp->f_id = id;
if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {

free(fp);
return(NULL);

}
/* ... continue initialization ... */

}
return(fp);

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{

pthread_mutex_lock(&fp->f_lock);
fp->f_count++;
pthread_mutex_unlock(&fp->f_lock);

}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{

pthread_mutex_lock(&fp->f_lock);
if (--fp->f_count == 0) { /* last reference */

pthread_mutex_unlock(&fp->f_lock);
pthread_mutex_destroy(&fp->f_lock);
free(fp);

} else {
pthread_mutex_unlock(&fp->f_lock);

}
}

Figure 11.10 Using a mutex to protect a data structure

We lock the mutex before incrementing the reference count, decrementing the
reference count, and checking whether the reference count reaches zero. No locking is

402 Threads Chapter 11

necessary when we initialize the reference count to 1 in the foo_alloc function,
because the allocating thread is the only reference to it so far. If we were to place the
structure on a list at this point, it could be found by other threads, so we would need to
lock it first.

Before using the object, threads are expected to add a reference to it by calling
foo_hold. When they are done, they must call foo_rele to release the reference.
When the last reference is released, the object’s memory is freed.

In this example, we have ignored how threads find an object before calling
foo_hold. Even though the reference count is zero, it would be a mistake for
foo_rele to free the object’s memory if another thread is blocked on the mutex in a
call to foo_hold. We can avoid this problem by ensuring that the object can’t be found
before freeing its memory. We’ll see how to do this in the examples that follow.

11.6.2 Deadlock Avoidance
A thread will deadlock itself if it tries to lock the same mutex twice, but there are less
obvious ways to create deadlocks with mutexes. For example, when we use more than
one mutex in our programs, a deadlock can occur if we allow one thread to hold a
mutex and block while trying to lock a second mutex at the same time that another
thread holding the second mutex tries to lock the first mutex. Neither thread can
proceed, because each needs a resource that is held by the other, so we have a deadlock.

Deadlocks can be avoided by carefully controlling the order in which mutexes are
locked. For example, assume that you have two mutexes, A and B, that you need to
lock at the same time. If all threads always lock mutex A before mutex B, no deadlock
can occur from the use of the two mutexes (but you can still deadlock on other
resources). Similarly, if all threads always lock mutex B before mutex A, no deadlock
will occur. You’ll have the potential for a deadlock only when one thread attempts to
lock the mutexes in the opposite order from another thread.

Sometimes, an application’s architecture makes it difficult to apply a lock ordering.
If enough locks and data structures are involved that the functions you have available
can’t be molded to fit a simple hierarchy, then you’ll have to try some other approach.
In this case, you might be able to release your locks and try again at a later time. You
can use the pthread_mutex_trylock interface to avoid deadlocking in this case. If
you are already holding locks and pthread_mutex_trylock is successful, then you
can proceed. If it can’t acquire the lock, however, you can release the locks you already
hold, clean up, and try again later.

Example

In this example, we update Figure 11.10 to show the use of two mutexes. We avoid
deadlocks by ensuring that when we need to acquire two mutexes at the same time, we
always lock them in the same order. The second mutex protects a hash list that we use
to keep track of the foo data structures. Thus the hashlock mutex protects both the
fh hash table and the f_next hash link field in the foo structure. The f_lock mutex
in the foo structure protects access to the remainder of the foo structure’s fields.

Section 11.6 Thread Synchronization 403

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(id) (((unsigned long)id)%NHASH)

struct foo *fh[NHASH];

pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;

struct foo {
int f_count;
pthread_mutex_t f_lock;
int f_id;
struct foo *f_next; /* protected by hashlock */
/* ... more stuff here ... */

};

struct foo *
foo_alloc(int id) /* allocate the object */
{

struct foo *fp;
int idx;

if ((fp = malloc(sizeof(struct foo))) != NULL) {
fp->f_count = 1;
fp->f_id = id;
if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {

free(fp);
return(NULL);

}
idx = HASH(id);
pthread_mutex_lock(&hashlock);
fp->f_next = fh[idx];
fh[idx] = fp;
pthread_mutex_lock(&fp->f_lock);
pthread_mutex_unlock(&hashlock);
/* ... continue initialization ... */
pthread_mutex_unlock(&fp->f_lock);

}
return(fp);

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{

pthread_mutex_lock(&fp->f_lock);
fp->f_count++;
pthread_mutex_unlock(&fp->f_lock);

}

struct foo *
foo_find(int id) /* find an existing object */
{

404 Threads Chapter 11

struct foo *fp;

pthread_mutex_lock(&hashlock);
for (fp = fh[HASH(id)]; fp != NULL; fp = fp->f_next) {

if (fp->f_id == id) {
foo_hold(fp);
break;

}
}
pthread_mutex_unlock(&hashlock);
return(fp);

}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{

struct foo *tfp;
int idx;

pthread_mutex_lock(&fp->f_lock);
if (fp->f_count == 1) { /* last reference */

pthread_mutex_unlock(&fp->f_lock);
pthread_mutex_lock(&hashlock);
pthread_mutex_lock(&fp->f_lock);
/* need to recheck the condition */
if (fp->f_count != 1) {

fp->f_count--;
pthread_mutex_unlock(&fp->f_lock);
pthread_mutex_unlock(&hashlock);
return;

}
/* remove from list */
idx = HASH(fp->f_id);
tfp = fh[idx];
if (tfp == fp) {

fh[idx] = fp->f_next;
} else {

while (tfp->f_next != fp)
tfp = tfp->f_next;

tfp->f_next = fp->f_next;
}
pthread_mutex_unlock(&hashlock);
pthread_mutex_unlock(&fp->f_lock);
pthread_mutex_destroy(&fp->f_lock);
free(fp);

} else {
fp->f_count--;
pthread_mutex_unlock(&fp->f_lock);

}
}

Figure 11.11 Using two mutexes

Section 11.6 Thread Synchronization 405

Comparing Figure 11.11 with Figure 11.10, we see that our allocation function now
locks the hash list lock, adds the new structure to a hash bucket, and before unlocking
the hash list lock, locks the mutex in the new structure. Since the new structure is
placed on a global list, other threads can find it, so we need to block them if they try to
access the new structure, until we are done initializing it.

The foo_find function locks the hash list lock and searches for the requested
structure. If it is found, we increase the reference count and return a pointer to the
structure. Note that we honor the lock ordering by locking the hash list lock in
foo_find before foo_hold locks the foo structure’s f_lock mutex.

Now with two locks, the foo_rele function is more complicated. If this is the last
reference, we need to unlock the structure mutex so that we can acquire the hash list
lock, since we’ll need to remove the structure from the hash list. Then we reacquire the
structure mutex. Because we could have blocked since the last time we held the
structure mutex, we need to recheck the condition to see whether we still need to free
the structure. If another thread found the structure and added a reference to it while we
blocked to honor the lock ordering, we simply need to decrement the reference count,
unlock everything, and return.

This locking approach is complex, so we need to revisit our design. We can simplify
things considerably by using the hash list lock to protect the structure reference count,
too. The structure mutex can be used to protect everything else in the foo structure.
Figure 11.12 reflects this change.

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(id) (((unsigned long)id)%NHASH)

struct foo *fh[NHASH];
pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;

struct foo {
int f_count; /* protected by hashlock */
pthread_mutex_t f_lock;
int f_id;
struct foo *f_next; /* protected by hashlock */
/* ... more stuff here ... */

};

struct foo *
foo_alloc(int id) /* allocate the object */
{

struct foo *fp;
int idx;

if ((fp = malloc(sizeof(struct foo))) != NULL) {
fp->f_count = 1;
fp->f_id = id;
if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {

free(fp);

406 Threads Chapter 11

return(NULL);
}
idx = HASH(id);
pthread_mutex_lock(&hashlock);
fp->f_next = fh[idx];
fh[idx] = fp;
pthread_mutex_lock(&fp->f_lock);
pthread_mutex_unlock(&hashlock);
/* ... continue initialization ... */
pthread_mutex_unlock(&fp->f_lock);

}
return(fp);

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{

pthread_mutex_lock(&hashlock);
fp->f_count++;
pthread_mutex_unlock(&hashlock);

}

struct foo *
foo_find(int id) /* find an existing object */
{

struct foo *fp;

pthread_mutex_lock(&hashlock);
for (fp = fh[HASH(id)]; fp != NULL; fp = fp->f_next) {

if (fp->f_id == id) {
fp->f_count++;
break;

}
}
pthread_mutex_unlock(&hashlock);
return(fp);

}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{

struct foo *tfp;
int idx;

pthread_mutex_lock(&hashlock);
if (--fp->f_count == 0) { /* last reference, remove from list */

idx = HASH(fp->f_id);
tfp = fh[idx];
if (tfp == fp) {

fh[idx] = fp->f_next;
} else {

while (tfp->f_next != fp)

Section 11.6 Thread Synchronization 407

tfp = tfp->f_next;
tfp->f_next = fp->f_next;

}
pthread_mutex_unlock(&hashlock);
pthread_mutex_destroy(&fp->f_lock);
free(fp);

} else {
pthread_mutex_unlock(&hashlock);

}
}

Figure 11.12 Simplified locking

Note how much simpler the program in Figure 11.12 is compared to the program in
Figure 11.11. The lock-ordering issues surrounding the hash list and the reference count
go away when we use the same lock for both purposes. Multithreaded software design
involves these types of trade-offs. If your locking granularity is too coarse, you end up
with too many threads blocking behind the same locks, with little improvement
possible from concurrency. If your locking granularity is too fine, then you suffer bad
performance from excess locking overhead, and you end up with complex code. As a
programmer, you need to find the correct balance between code complexity and
performance, while still satisfying your locking requirements.

11.6.3 pthread_mutex_timedlock Function
One additional mutex primitive allows us to bound the time that a thread blocks when
a mutex it is trying to acquire is already locked. The pthread_mutex_timedlock
function is equivalent to pthread_mutex_lock, but if the timeout value is reached,
pthread_mutex_timedlock will return the error code ETIMEDOUT without locking
the mutex.

#include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict tsptr);

Returns: 0 if OK, error number on failure

The timeout specifies how long we are willing to wait in terms of absolute time (as
opposed to relative time; we specify that we are willing to block until time X instead of
saying that we are willing to block for Y seconds). The timeout is represented by the
timespec structure, which describes time in terms of seconds and nanoseconds.

Example

In Figure 11.13, we see how to use pthread_mutex_timedlock to avoid blocking
indefinitely.

408 Threads Chapter 11

#include "apue.h"
#include <pthread.h>

int
main(void)
{

int err;
struct timespec tout;
struct tm *tmp;
char buf[64];
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_lock(&lock);
printf("mutex is locked\n");
clock_gettime(CLOCK_REALTIME, &tout);
tmp = localtime(&tout.tv_sec);
strftime(buf, sizeof(buf), "%r", tmp);
printf("current time is %s\n", buf);
tout.tv_sec += 10; /* 10 seconds from now */
/* caution: this could lead to deadlock */
err = pthread_mutex_timedlock(&lock, &tout);
clock_gettime(CLOCK_REALTIME, &tout);
tmp = localtime(&tout.tv_sec);
strftime(buf, sizeof(buf), "%r", tmp);
printf("the time is now %s\n", buf);
if (err == 0)

printf("mutex locked again!\n");
else

printf("can’t lock mutex again: %s\n", strerror(err));
exit(0);

}

Figure 11.13 Using pthread_mutex_timedlock

Here is the output from the program in Figure 11.13.

$./a.out
mutex is locked
current time is 11:41:58 AM
the time is now 11:42:08 AM
can’t lock mutex again: Connection timed out

This program deliberately locks a mutex it already owns to demonstrate how
pthread_mutex_timedlock works. This strategy is not recommended in practice,
because it can lead to deadlock.

Note that the time blocked can vary for several reasons: the start time could have
been in the middle of a second, the resolution of the system’s clock might not be fine
enough to support the resolution of our timeout, or scheduling delays could prolong the
amount of time until the program continues execution.

Section 11.6 Thread Synchronization 409

Mac OS X 10.6.8 doesn’t support pthread_mutex_timedlock yet, but FreeBSD 8.0, Linux
3.2.0, and Solaris 10 do support it, although Solaris still bundles it in the real-time library,
librt. Solaris 10 also provides an alternative function that uses a relative timeout.

11.6.4 Reader–Writer Locks

Reader–writer locks are similar to mutexes, except that they allow for higher degrees of
parallelism. With a mutex, the state is either locked or unlocked, and only one thread
can lock it at a time. Three states are possible with a reader–writer lock: locked in read
mode, locked in write mode, and unlocked. Only one thread at a time can hold a
reader–writer lock in write mode, but multiple threads can hold a reader–writer lock in
read mode at the same time.

When a reader–writer lock is write locked, all threads attempting to lock it block
until it is unlocked. When a reader–writer lock is read locked, all threads attempting to
lock it in read mode are given access, but any threads attempting to lock it in write
mode block until all the threads have released their read locks. Although
implementations vary, reader–writer locks usually block additional readers if a lock is
already held in read mode and a thread is blocked trying to acquire the lock in write
mode. This prevents a constant stream of readers from starving waiting writers.

Reader–writer locks are well suited for situations in which data structures are read
more often than they are modified. When a reader–writer lock is held in write mode,
the data structure it protects can be modified safely, since only one thread at a time can
hold the lock in write mode. When the reader–writer lock is held in read mode, the
data structure it protects can be read by multiple threads, as long as the threads first
acquire the lock in read mode.

Reader–writer locks are also called shared–exclusive locks. When a reader–writer
lock is read locked, it is said to be locked in shared mode. When it is write locked, it is
said to be locked in exclusive mode.

As with mutexes, reader–writer locks must be initialized before use and destroyed
before freeing their underlying memory.

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

Both return: 0 if OK, error number on failure

A reader–writer lock is initialized by calling pthread_rwlock_init. We can pass a
null pointer for attr if we want the reader–writer lock to have the default attributes. We
discuss reader–writer lock attributes in Section 12.4.2.

The Single UNIX Specification defines the PTHREAD_RWLOCK_INITIALIZER
constant in the XSI option. It can be used to initialize a statically allocated reader–writer
lock when the default attributes are sufficient.

Before freeing the memory backing a reader–writer lock, we need to call
pthread_rwlock_destroy to clean it up. If pthread_rwlock_init allocated any

410 Threads Chapter 11

resources for the reader–writer lock, pthread_rwlock_destroy frees those
resources. If we free the memory backing a reader–writer lock without first calling
pthread_rwlock_destroy, any resources assigned to the lock will be lost.

To lock a reader–writer lock in read mode, we call pthread_rwlock_rdlock. To
write lock a reader–writer lock, we call pthread_rwlock_wrlock. Regardless of how
we lock a reader–writer lock, we can unlock it by calling pthread_rwlock_unlock.

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

All return: 0 if OK, error number on failure

Implementations might place a limit on the number of times a reader–writer lock
can be locked in shared mode, so we need to check the return value of
pthread_rwlock_rdlock. Even though pthread_rwlock_wrlock and
pthread_rwlock_unlock have error returns, and technically we should always
check for errors when we call functions that can potentially fail, we don’t need to check
them if we design our locking properly. The only error returns defined are when we use
them improperly, such as with an uninitialized lock, or when we might deadlock by
attempting to acquire a lock we already own. However, be aware that specific
implementations might define additional error returns.

The Single UNIX Specification also defines conditional versions of the reader–writer
locking primitives.

#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

Both return: 0 if OK, error number on failure

When the lock can be acquired, these functions return 0. Otherwise, they return the
error EBUSY. These functions can be used to avoid deadlocks in situations where
conforming to a lock hierarchy is difficult, as we discussed previously.

Example

The program in Figure 11.14 illustrates the use of reader–writer locks. A queue of job
requests is protected by a single reader–writer lock. This example shows a possible
implementation of Figure 11.1, whereby multiple worker threads obtain jobs assigned to
them by a single master thread.

#include <stdlib.h>
#include <pthread.h>

struct job {
struct job *j_next;
struct job *j_prev;

Section 11.6 Thread Synchronization 411

pthread_t j_id; /* tells which thread handles this job */
/* ... more stuff here ... */

};

struct queue {
struct job *q_head;
struct job *q_tail;
pthread_rwlock_t q_lock;

};

/*
* Initialize a queue.
*/
int
queue_init(struct queue *qp)
{

int err;

qp->q_head = NULL;
qp->q_tail = NULL;
err = pthread_rwlock_init(&qp->q_lock, NULL);
if (err != 0)

return(err);
/* ... continue initialization ... */
return(0);

}

/*
* Insert a job at the head of the queue.
*/
void
job_insert(struct queue *qp, struct job *jp)
{

pthread_rwlock_wrlock(&qp->q_lock);
jp->j_next = qp->q_head;
jp->j_prev = NULL;
if (qp->q_head != NULL)

qp->q_head->j_prev = jp;
else

qp->q_tail = jp; /* list was empty */
qp->q_head = jp;
pthread_rwlock_unlock(&qp->q_lock);

}

/*
* Append a job on the tail of the queue.
*/
void
job_append(struct queue *qp, struct job *jp)
{

pthread_rwlock_wrlock(&qp->q_lock);
jp->j_next = NULL;

412 Threads Chapter 11

jp->j_prev = qp->q_tail;
if (qp->q_tail != NULL)

qp->q_tail->j_next = jp;
else

qp->q_head = jp; /* list was empty */
qp->q_tail = jp;
pthread_rwlock_unlock(&qp->q_lock);

}

/*
* Remove the given job from a queue.
*/
void
job_remove(struct queue *qp, struct job *jp)
{

pthread_rwlock_wrlock(&qp->q_lock);
if (jp == qp->q_head) {

qp->q_head = jp->j_next;
if (qp->q_tail == jp)

qp->q_tail = NULL;
else

jp->j_next->j_prev = jp->j_prev;
} else if (jp == qp->q_tail) {

qp->q_tail = jp->j_prev;
jp->j_prev->j_next = jp->j_next;

} else {
jp->j_prev->j_next = jp->j_next;
jp->j_next->j_prev = jp->j_prev;

}
pthread_rwlock_unlock(&qp->q_lock);

}

/*
* Find a job for the given thread ID.
*/
struct job *
job_find(struct queue *qp, pthread_t id)
{

struct job *jp;

if (pthread_rwlock_rdlock(&qp->q_lock) != 0)
return(NULL);

for (jp = qp->q_head; jp != NULL; jp = jp->j_next)
if (pthread_equal(jp->j_id, id))

break;

pthread_rwlock_unlock(&qp->q_lock);
return(jp);

}

Figure 11.14 Using reader–writer locks

Section 11.6 Thread Synchronization 413

In this example, we lock the queue’s reader–writer lock in write mode whenever we
need to add a job to the queue or remove a job from the queue. Whenever we search the
queue, we grab the lock in read mode, allowing all the worker threads to search the
queue concurrently. Using a reader–writer lock will improve performance in this case
only if threads search the queue much more frequently than they add or remove jobs.

The worker threads take only those jobs that match their thread ID off the queue.
Since the job structures are used only by one thread at a time, they don’t need any extra
locking.

11.6.5 Reader–Writer Locking with Timeouts

Just as with mutexes, the Single UNIX Specification provides functions to lock
reader–writer locks with a timeout to give applications a way to avoid blocking
indefinitely while trying to acquire a reader–writer lock. These functions are
pthread_rwlock_timedrdlock and pthread_rwlock_timedwrlock.

#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict tsptr);

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict tsptr);

Both return: 0 if OK, error number on failure

These functions behave like their ‘‘untimed’’ counterparts. The tsptr argument
points to a timespec structure specifying the time at which the thread should stop
blocking. If they can’t acquire the lock, these functions return the ETIMEDOUT error
when the timeout expires. Like the pthread_mutex_timedlock function, the
timeout specifies an absolute time, not a relative one.

11.6.6 Condition Variables

Condition variables are another synchronization mechanism available to threads. These
synchronization objects provide a place for threads to rendezvous. When used with
mutexes, condition variables allow threads to wait in a race-free way for arbitrary
conditions to occur.

The condition itself is protected by a mutex. A thread must first lock the mutex to
change the condition state. Other threads will not notice the change until they acquire
the mutex, because the mutex must be locked to be able to evaluate the condition.

Before a condition variable is used, it must first be initialized. A condition variable,
represented by the pthread_cond_t data type, can be initialized in two ways. We can
assign the constant PTHREAD_COND_INITIALIZER to a statically allocated condition

414 Threads Chapter 11

variable, but if the condition variable is allocated dynamically, we can use the
pthread_cond_init function to initialize it.

We can use the pthread_cond_destroy function to deinitialize a condition
variable before freeing its underlying memory.

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

int pthread_cond_destroy(pthread_cond_t *cond);

Both return: 0 if OK, error number on failure

Unless you need to create a conditional variable with nondefault attributes, the attr
argument to pthread_cond_init can be set to NULL. We will discuss condition
variable attributes in Section 12.4.3.

We use pthread_cond_wait to wait for a condition to be true. A variant is
provided to return an error code if the condition hasn’t been satisfied in the specified
amount of time.

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict tsptr);

Both return: 0 if OK, error number on failure

The mutex passed to pthread_cond_wait protects the condition. The caller
passes it locked to the function, which then atomically places the calling thread on the
list of threads waiting for the condition and unlocks the mutex. This closes the window
between the time that the condition is checked and the time that the thread goes to sleep
waiting for the condition to change, so that the thread doesn’t miss a change in the
condition. When pthread_cond_wait returns, the mutex is again locked.

The pthread_cond_timedwait function provides the same functionality as the
pthread_cond_wait function with the addition of the timeout (tsptr). The timeout
value specifies how long we are willing to wait expressed as a timespec structure.

Just as we saw in Figure 11.13, we need to specify how long we are willing to wait
as an absolute time instead of a relative time. For example, suppose we are willing to
wait 3 minutes. Instead of translating 3 minutes into a timespec structure, we need to
translate now + 3 minutes into a timespec structure.

We can use the clock_gettime function (Section 6.10) to get the current time
expressed as a timespec structure. However, this function is not yet supported on all
platforms. Alternatively, we can use the gettimeofday function to get the current
time expressed as a timeval structure and translate it into a timespec structure. To

Section 11.6 Thread Synchronization 415

obtain the absolute time for the timeout value, we can use the following function
(assuming the maximum time blocked is expressed in minutes):

#include <sys/time.h>
#include <stdlib.h>

void
maketimeout(struct timespec *tsp, long minutes)
{

struct timeval now;

/* get the current time */
gettimeofday(&now, NULL);
tsp->tv_sec = now.tv_sec;
tsp->tv_nsec = now.tv_usec * 1000; /* usec to nsec */
/* add the offset to get timeout value */
tsp->tv_sec += minutes * 60;

}

If the timeout expires without the condition occurring, pthread_cond_timedwait
will reacquire the mutex and return the error ETIMEDOUT. When it returns from a
successful call to pthread_cond_wait or pthread_cond_timedwait, a thread
needs to reevaluate the condition, since another thread might have run and already
changed the condition.

There are two functions to notify threads that a condition has been satisfied. The
pthread_cond_signal function will wake up at least one thread waiting on a
condition, whereas the pthread_cond_broadcast function will wake up all threads
waiting on a condition.

The POSIX specification allows for implementations of pthread_cond_signal to wake up
more than one thread, to make the implementation simpler.

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Both return: 0 if OK, error number on failure

When we call pthread_cond_signal or pthread_cond_broadcast, we are
said to be signaling the thread or condition. We have to be careful to signal the threads
only after changing the state of the condition.

Example

Figure 11.15 shows an example of how to use a condition variable and a mutex together
to synchronize threads.

416 Threads Chapter 11

#include <pthread.h>

struct msg {
struct msg *m_next;
/* ... more stuff here ... */

};

struct msg *workq;

pthread_cond_t qready = PTHREAD_COND_INITIALIZER;

pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER;

void
process_msg(void)
{

struct msg *mp;

for (;;) {
pthread_mutex_lock(&qlock);
while (workq == NULL)

pthread_cond_wait(&qready, &qlock);
mp = workq;
workq = mp->m_next;
pthread_mutex_unlock(&qlock);
/* now process the message mp */

}
}

void
enqueue_msg(struct msg *mp)
{

pthread_mutex_lock(&qlock);
mp->m_next = workq;
workq = mp;
pthread_mutex_unlock(&qlock);
pthread_cond_signal(&qready);

}

Figure 11.15 Using a condition variable

The condition is the state of the work queue. We protect the condition with a mutex
and evaluate the condition in a while loop. When we put a message on the work
queue, we need to hold the mutex, but we don’t need to hold the mutex when we signal
the waiting threads. As long as it is okay for a thread to pull the message off the queue
before we call cond_signal, we can do this after releasing the mutex. Since we check
the condition in a while loop, this doesn’t present a problem; a thread will wake up,
find that the queue is still empty, and go back to waiting again. If the code couldn’t
tolerate this race, we would need to hold the mutex when we signal the threads.

Section 11.6 Thread Synchronization 417

11.6.7 Spin Locks
A spin lock is like a mutex, except that instead of blocking a process by sleeping, the
process is blocked by busy-waiting (spinning) until the lock can be acquired. A spin
lock could be used in situations where locks are held for short periods of times and
threads don’t want to incur the cost of being descheduled.

Spin locks are often used as low-level primitives to implement other types of locks.
Depending on the system architecture, they can be implemented efficiently using test-
and-set instructions. Although efficient, they can lead to wasting CPU resources: while
a thread is spinning and waiting for a lock to become available, the CPU can’t do
anything else. This is why spin locks should be held only for short periods of time.

Spin locks are useful when used in a nonpreemptive kernel: besides providing a
mutual exclusion mechanism, they block interrupts so an interrupt handler can’t
deadlock the system by trying to acquire a spin lock that is already locked (think of
interrupts as another type of preemption). In these types of kernels, interrupt handlers
can’t sleep, so the only synchronization primitives they can use are spin locks.

However, at user level, spin locks are not as useful unless you are running in a real-
time scheduling class that doesn’t allow preemption. User-level threads running in a
time-sharing scheduling class can be descheduled when their time quantum expires or
when a thread with a higher scheduling priority becomes runnable. In these cases, if a
thread is holding a spin lock, it will be put to sleep and other threads blocked on the
lock will continue spinning longer than intended.

Many mutex implementations are so efficient that the performance of applications
using mutex locks is equivalent to their performance if they had used spin locks. In
fact, some mutex implementations will spin for a limited amount of time trying to
acquire the mutex, and only sleep when the spin count threshold is reached. These
factors, combined with advances in modern processors that allow them to context
switch at faster and faster rates, make spin locks useful only in limited circumstances.

The interfaces for spin locks are similar to those for mutexes, making it relatively
easy to replace one with the other. We can initialize a spin lock with the
pthread_spin_init function. To deinitialize a spin lock, we can call the
pthread_spin_destroy function.

#include <pthread.h>

int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

int pthread_spin_destroy(pthread_spinlock_t *lock);

Both return: 0 if OK, error number on failure

Only one attribute is specified for spin locks, which matters only if the platform
supports the Thread Process-Shared Synchronization option (now mandatory in the
Single UNIX Specification; recall Figure 2.5). The pshared argument represents the
process-shared attribute, which indicates how the spin lock will be acquired. If it is set to
PTHREAD_PROCESS_SHARED, then the spin lock can be acquired by threads that have
access to the lock’s underlying memory, even if those threads are from different
processes. Otherwise, the pshared argument is set to PTHREAD_PROCESS_PRIVATE and
the spin lock can be accessed only from threads within the process that initialized it.

418 Threads Chapter 11

To lock the spin lock, we can call either pthread_spin_lock, which will spin
until the lock is acquired, or pthread_spin_trylock, which will return the EBUSY
error if the lock can’t be acquired immediately. Note that pthread_spin_trylock
doesn’t spin. Regardless of how it was locked, a spin lock can be unlocked by calling
pthread_spin_unlock.

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

All return: 0 if OK, error number on failure

Note that if a spin lock is currently unlocked, then the pthread_spin_lock
function can lock it without spinning. If the thread already has it locked, the results are
undefined. The call to pthread_spin_lock could fail with the EDEADLK error (or
some other error), or the call could spin indefinitely. The behavior depends on the
implementation. If we try to unlock a spin lock that is not locked, the results are also
undefined.

If either pthread_spin_lock or pthread_spin_trylock returns 0, then the
spin lock is locked. We need to be careful not to call any functions that might sleep
while holding the spin lock. If we do, then we’ll waste CPU resources by extending the
time other threads will spin if they try to acquire it.

11.6.8 Barriers
Barriers are a synchronization mechanism that can be used to coordinate multiple
threads working in parallel. A barrier allows each thread to wait until all cooperating
threads have reached the same point, and then continue executing from there. We’ve
already seen one form of barrier—the pthread_join function acts as a barrier to
allow one thread to wait until another thread exits.

Barrier objects are more general than this, however. They allow an arbitrary
number of threads to wait until all of the threads have completed processing, but the
threads don’t have to exit. They can continue working after all threads have reached
the barrier.

We can use the pthread_barrier_init function to initialize a barrier, and we
can use the pthread_barrier_destroy function to deinitialize a barrier.

#include <pthread.h>

int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr,
unsigned int count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

Both return: 0 if OK, error number on failure

Section 11.6 Thread Synchronization 419

When we initialize a barrier, we use the count argument to specify the number of
threads that must reach the barrier before all of the threads will be allowed to continue.
We use the attr argument to specify the attributes of the barrier object, which we’ll look
at more closely in the next chapter. For now, we can set attr to NULL to initialize a
barrier with the default attributes. If the pthread_barrier_init function allocated
any resources for the barrier, the resources will be freed when we deinitialize the barrier
by calling the pthread_barrier_destroy function.

We use the pthread_barrier_wait function to indicate that a thread is done
with its work and is ready to wait for all the other threads to catch up.

#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

Returns: 0 or PTHREAD_BARRIER_SERIAL_THREAD if OK, error number on failure

The thread calling pthread_barrier_wait is put to sleep if the barrier count (set in
the call to pthread_barrier_init) is not yet satisfied. If the thread is the last one to
call pthread_barrier_wait, thereby satisfying the barrier count, all of the threads
are awakened.

To one arbitrary thread, it will appear as if the pthread_barrier_wait function
returned a value of PTHREAD_BARRIER_SERIAL_THREAD. The remaining threads see
a return value of 0. This allows one thread to continue as the master to act on the results
of the work done by all of the other threads.

Once the barrier count is reached and the threads are unblocked, the barrier can be
used again. However, the barrier count can’t be changed unless we call the
pthread_barrier_destroy function followed by the pthread_barrier_init
function with a different count.

Example

Figure 11.16 shows how a barrier can be used to synchronize threads cooperating on a
single task.

#include "apue.h"
#include <pthread.h>
#include <limits.h>
#include <sys/time.h>

#define NTHR 8 /* number of threads */
#define NUMNUM 8000000L /* number of numbers to sort */
#define TNUM (NUMNUM/NTHR) /* number to sort per thread */

long nums[NUMNUM];
long snums[NUMNUM];

pthread_barrier_t b;

#ifdef SOLARIS
#define heapsort qsort
#else
extern int heapsort(void *, size_t, size_t,

420 Threads Chapter 11

int (*)(const void *, const void *));
#endif

/*
* Compare two long integers (helper function for heapsort)
*/
int
complong(const void *arg1, const void *arg2)
{

long l1 = *(long *)arg1;
long l2 = *(long *)arg2;

if (l1 == l2)
return 0;

else if (l1 < l2)
return -1;

else
return 1;

}

/*
* Worker thread to sort a portion of the set of numbers.
*/
void *
thr_fn(void *arg)
{

long idx = (long)arg;

heapsort(&nums[idx], TNUM, sizeof(long), complong);
pthread_barrier_wait(&b);

/*
* Go off and perform more work ...
*/

return((void *)0);
}

/*
* Merge the results of the individual sorted ranges.
*/
void
merge()
{

long idx[NTHR];
long i, minidx, sidx, num;

for (i = 0; i < NTHR; i++)
idx[i] = i * TNUM;

for (sidx = 0; sidx < NUMNUM; sidx++) {
num = LONG_MAX;
for (i = 0; i < NTHR; i++) {

if ((idx[i] < (i+1)*TNUM) && (nums[idx[i]] < num)) {
num = nums[idx[i]];

Section 11.6 Thread Synchronization 421

minidx = i;
}

}
snums[sidx] = nums[idx[minidx]];
idx[minidx]++;

}
}

int
main()
{

unsigned long i;
struct timeval start, end;
long long startusec, endusec;
double elapsed;
int err;
pthread_t tid;

/*
* Create the initial set of numbers to sort.
*/

srandom(1);
for (i = 0; i < NUMNUM; i++)

nums[i] = random();

/*
* Create 8 threads to sort the numbers.
*/

gettimeofday(&start, NULL);
pthread_barrier_init(&b, NULL, NTHR+1);
for (i = 0; i < NTHR; i++) {

err = pthread_create(&tid, NULL, thr_fn, (void *)(i * TNUM));
if (err != 0)

err_exit(err, "can’t create thread");
}
pthread_barrier_wait(&b);
merge();
gettimeofday(&end, NULL);

/*
* Print the sorted list.
*/

startusec = start.tv_sec * 1000000 + start.tv_usec;
endusec = end.tv_sec * 1000000 + end.tv_usec;
elapsed = (double)(endusec - startusec) / 1000000.0;
printf("sort took %.4f seconds\n", elapsed);
for (i = 0; i < NUMNUM; i++)

printf("%ld\n", snums[i]);
exit(0);

}

Figure 11.16 Using a barrier

422 Threads Chapter 11

This example shows the use of a barrier in a simplified situation where the threads
perform only one task. In more realistic situations, the worker threads will continue
with other activities after the call to pthread_barrier_wait returns.

In the example, we use eight threads to divide the job of sorting 8 million numbers.
Each thread sorts 1 million numbers using the heapsort algorithm (see Knuth [1998] for
details). Then the main thread calls a function to merge the results.

We don’t need to use the PTHREAD_BARRIER_SERIAL_THREAD return value from
pthread_barrier_wait to decide which thread merges the results, because we use
the main thread for this task. That is why we specify the barrier count as one more than
the number of worker threads; the main thread counts as one waiter.

If we write a program to sort 8 million numbers with heapsort using 1 thread only,
we will see a performance improvement when comparing it to the program in
Figure 11.16. On a system with 8 cores, the single-threaded program sorted 8 million
numbers in 12.14 seconds. On the same system, using 8 threads in parallel and 1 thread
to merge the results, the same set of 8 million numbers was sorted in 1.91 seconds, 6
times faster.

11.7 Summary

In this chapter, we introduced the concept of threads and discussed the POSIX.1
primitives available to create and destroy them. We also introduced the problem of
thread synchronization. We discussed five fundamental synchronization
mechanisms — mutexes, reader–writer locks, condition variables, spin locks, and
barriers — and we saw how to use them to protect shared resources.

Exercises
11.1 Modify the example code shown in Figure 11.4 to pass the structure between the threads

properly.

11.2 In the example code shown in Figure 11.14, what additional synchronization (if any) is
necessary to allow the master thread to change the thread ID associated with a pending
job? How would this affect the job_remove function?

11.3 Apply the techniques shown in Figure 11.15 to the worker thread example (Figures 11.1
and 11.14) to implement the worker thread function. Don’t forget to update the
queue_init function to initialize the condition variable and change the job_insert and
job_append functions to signal the worker threads. What difficulties arise?

11.4 Which sequence of steps is correct?

1. Lock a mutex (pthread_mutex_lock).

2. Change the condition protected by the mutex.

3. Signal threads waiting on the condition (pthread_cond_broadcast).

4. Unlock the mutex (pthread_mutex_unlock).

Chapter 11 Exercises 423

or

1. Lock a mutex (pthread_mutex_lock).

2. Change the condition protected by the mutex.

3. Unlock the mutex (pthread_mutex_unlock).

4. Signal threads waiting on the condition (pthread_cond_broadcast).

11.5 What synchronization primitives would you need to implement a barrier? Provide an
implementation of the pthread_barrier_wait function.

This page intentionally left blank

Index

The function subentries labeled ‘‘definition of’’ point to where the function prototype
appears and, when applicable, to the source code for the function. Functions defined in
the text that are used in later examples, such as the set_fl function in Figure 3.12, are
included in this index. The definitions of functions that are part of the larger examples
(Chapters 17, 19, 20, and 21) are also included to help in going through these examples.
Also, significant functions and constants that occur in any of the examples in the text,
such as select and poll, are also included in this index. Trivial functions that occur
frequently, such as printf, are sometimes not referenced when they occur in examples.

#! , see interpreter file
. , see current directory
.. , see parent directory
2.9BSD, 234
386BSD, xxxi, 34
4.1BSD, 525
4.2BSD, 18, 34, 81, 121, 129–130, 183, 277, 326, 329,

469, 502, 508, 521, 525, 589
4.3BSD, xxxi, 33–34, 36, 49, 201, 257, 267, 289, 313,

318, 329, 366, 482, 535, 735, 898, 951
Reno, xxxi, 34, 76
Tahoe, xxxi, 34, 951

4.4BSD, xxvi, xxxi, 21, 34, 74, 112, 121, 129, 149,
234, 329, 535, 589, 735, 744, 951

a2ps program, 842
abort function, 198, 236, 241, 272, 275, 313,

317–319, 331, 365–367, 381, 447, 900
definition of, 365–366

absolute pathname, 5, 8, 43, 50, 64, 136, 141–142,
260, 553, 911

accept function, 148, 331, 451, 608–609, 615, 617,
635, 639–640, 648, 817

definition of, 608
access function, 102–104, 121, 124, 331, 452

definition of, 102
Accetta, M., 35
accounting

login, 186–187
process, 269–275

acct function, 269
acct structure, 270, 273
acctcom program, 269
accton program, 269, 274
ACORE constant, 271, 273–274
Adams, J., 293
add_job function, 814, 820, 823, 827

definition of, 820
add_option function, 831, 834

definition of, 831
addressing, socket, 593–605
addrinfo structure, 599–603, 614, 616, 618, 620,

622, 800, 802, 804, 807, 813–814, 816, 819, 833

955

956 Index

add_worker function, 814, 824, 828
definition of, 828

adjustment on exit, semaphore, 570–571
Adobe Systems, 825, 947
advisory record locking, 495
AES (Application Environment Specification), 32
AEXPND constant, 271
AF_INET constant, 590–591, 595–596, 598, 601,

603–604, 802, 808
AF_INET6 constant, 590, 595–596, 601
AF_IPX constant, 590
AF_LOCAL constant, 590
AFORK constant, 270–271, 273
AF_UNIX constant, 590, 601, 630, 632, 635, 637,

640–641, 941
AF_UNSPEC constant, 590, 601
agetty program, 290
Aho, A. V., 262, 947
AI_ALL constant, 603
AI_CANONNAME constant, 603, 616, 618, 623, 802
AI_NUMERICHOST constant, 603
AI_NUMERICSERV constant, 603
aio_cancel function, 514–515

definition of, 514
aiocb structure, 511, 517–518
aio_error function, 331, 513, 515, 519–520

definition of, 513
aio_fsync function, 512–513, 520

definition of, 513
<aio.h> header, 29
AIO_LISTIO_MAX constant, 515–516
AIO_MAX constant, 515–516
AIO_PRIO_DELTA_MAX constant, 515–516
aio_read function, 512–513, 515, 518

definition of, 512
aio_return function, 331, 513, 519–520

definition of, 513
aio_suspend function, 331, 451, 514, 520

definition of, 514
aio_write function, 512–513, 515, 519

definition of, 512
AI_PASSIVE constant, 603
AI_V4MAPPED constant, 600, 603
AIX, 35, 334
alarm function, 313, 317, 331–332, 335, 338–343,

357, 373–374, 381–382, 620–621, 924
definition of, 338

alloca function, 210
Almquist, K., 4
already_running function, 475–478

definition of, 474
ALTWERASE constant, 676, 682, 685
American National Standards Institute, see ANSI

Andrade, J. M., 560, 947
ANSI (American National Standards Institute), 25
ANSI C, xxx–xxxi
Apple Computer, xxi, xxvi
Application Environment Specification, see AES
apue_db.h header, 745, 753, 757, 761
apue.h header, 7, 9–10, 247, 324, 489–490, 635,

755, 895–898
Architecture, UNIX, 1–2
argc variable, 815
ARG_MAX constant, 40, 43, 47, 49, 251
arguments, command-line, 203
argv variable, 663
Arnold J. Q., 206, 947
<arpa/inet.h> header, 29, 594
asctime function, 192
<assert.h> header, 27
assignment-allocation character, 162
ASU constant, 271, 273
asynchronous I/O, 501, 509–520
asynchronous socket I/O, 627
async-signal safe, 330, 446, 450, 457, 461–462, 927
at program, 259, 472
atd program, 259, 465
AT_EACCESS constant, 103
atexit function, 40–41, 43, 200, 202, 226, 236,

394, 731, 920
definition of, 200

ATEXIT_MAX constant, 40–41, 43, 49, 52
AT_FDCWD constant, 65, 94, 102, 106, 110, 116–117,

120, 123–124, 127, 129, 553
atoi function, 766, 839–840
atol function, 765–767, 818, 823
atomic operation, 39, 44, 59, 63, 77–79, 81, 116, 149,

359, 365, 488, 553, 566, 568, 570, 945
AT_REMOVEDIR constant, 117
AT_SYMLINK_FOLLOW constant, 116
AT_SYMLINK_NOFOLLOW constant, 94, 106, 110,

127
AT&T, xix, 6, 33, 174, 336, 507, 948
automatic variables, 205, 215, 217, 219, 226
avoidance, deadlock, 402–407
awk program, 44, 46, 262–264, 552, 950
AXSIG constant, 271, 273–274

B0 constant, 692
B110 constant, 692
B115200 constant, 692
B1200 constant, 692
B134 constant, 692
B150 constant, 692

Index 957

B1800 constant, 692
B19200 constant, 692
B200 constant, 692
B2400 constant, 692
B300 constant, 692
B38400 constant, 692
B4800 constant, 692
B50 constant, 692
B57600 constant, 692
B600 constant, 692
B75 constant, 692
B9600 constant, 692
Bach, M. J., xix, xxxii, 74, 81, 112, 116, 229, 907, 948
background process group, 296, 300, 302, 304,

306–307, 309, 321, 369, 377, 944
backoff, exponential, 606
Barkley, R. E., 948
barrier attributes, 441–442
barriers, 418–422
basename function, 442
bash program, 85, 372
.bash_login file, 289
.bash_profile file, 289
Bass, J., 485
baud rate, terminal I/O, 692–693
Berkeley Software Distribution, see BSD
bibliography, alphabetical, 947–953
big-endian byte order, 593, 791
bind function, 331, 604, 609, 624–625, 634–635,

637–638, 641
definition of, 604

/bin/false program, 179
/bin/true program, 179
<bits/signum.h> header, 314
block special file, 95, 138–139
Bolsky, M. I., 548, 948
Bostic, K., xxxii, 33, 74, 112, 116, 525, 951

Keith, 229, 236
Bourne, S. R., 3
Bourne shell, 3, 53, 90, 210, 222, 289, 299, 303, 372,

497, 542, 548, 702, 935, 950
Bourne-again shell, 3–4, 53, 85, 90, 210, 222, 289,

300, 548
Bovet, D. P., 74
BREAK character, 677, 682, 685, 688, 690, 694, 708
BRKINT constant, 676, 685, 688, 706–708
BS0 constant, 685
BS1 constant, 685
BSD (Berkeley Software Distribution), 34, 65, 111,

175, 286, 289, 291, 293, 296–297, 299, 482, 501,
509–511, 532, 596–597, 630, 726–727, 734, 742

BSD Networking Release 1.0, xxxi, 34
BSD Networking Release 2.0, xxxi, 34

BSD/386, xxxi
BSDLY constant, 676, 684–685, 689
__BSD_VISIBLE constant, 473
bss segment, 205
buf_args function, 656–658, 668–670, 897

definition of, 657
buffer cache, 81
buffering, standard I/O, 145–147, 231, 235, 265,

367, 552, 721, 752
BUFSIZ constant, 49, 147, 166, 220
build_qonstart function, 814, 817, 822

definition of, 822
BUS_ADRALN constant, 353
BUS_ADRERR constant, 353
BUS_OBJERR constant, 353
byte order, xxii, 593–594, 792, 810, 825, 831, 834,

842, 861, 865
big-endian, 593, 791
little-endian, 593

C, ANSI, xxx–xxxi
ISO, 25–26, 153, 950

C shell, 3, 53, 222, 289, 299, 548
c99 program, 58, 70
cache

buffer, 81
page, 81

CAE (Common Application Environment), 32
calendar time, 20, 24, 59, 126, 189, 191–192, 264,

270
calloc function, 207–208, 226, 544, 760, 920

definition of, 207
cancellation point, 451
canonical mode, terminal I/O, 700–703
Carges, M. T., 560, 947
cat constant, 301
cat program, 89, 112, 123, 301, 304, 734–735, 748,

944
catclose function, 452
catgets function, 442, 452
catopen function, 452
CBAUDEXT constant, 675, 685
cbreak terminal mode, 672, 704, 708, 713
cc program, 6, 57, 206
CCAR_OFLOW constant, 675, 685, 689
cc_t data type, 674
CCTS_OFLOW constant, 675, 685
cd program, 136
CDSR_OFLOW constant, 675, 685
CDTR_IFLOW constant, 675, 685
Cesati, M., 74

958 Index

cfgetispeed function, 331, 677, 692
definition of, 692

cfgetospeed function, 331, 677, 692
definition of, 692

cfsetispeed function, 331, 677, 692
definition of, 692

cfsetospeed function, 331, 677, 692
definition of, 692

character special file, 95, 138–139, 699
CHAR_BIT constant, 37–38
CHARCLASS_NAME_MAX constant, 39, 49
CHAR_MAX constant, 37–38
CHAR_MIN constant, 37–38
chdir function, 8, 121, 135–137, 141, 222, 288,

331, 468, 912
definition of, 135

Chen, D., 948
CHILD_MAX constant, 40, 43, 49, 233
chmod function, 106–108, 121, 125, 331, 452, 558,

641, 944
definition of, 106

chmod program, 99–100, 559
chown function, 55, 109–110, 120–121, 125, 288,

331, 452, 558, 944
definition of, 109

chroot function, 141, 480, 910, 928
CIBAUDEXT constant, 675, 685
CIGNORE constant, 675, 685
Clark, J. J., xxxii
CLD_CONTINUED constant, 353
CLD_DUMPED constant, 353
CLD_EXITED constant, 353
CLD_KILLED constant, 353
CLD_STOPPED constant, 353
CLD_TRAPPED constant, 353
clearenv function, 212
clearerr function, 151

definition of, 151
cli_args function, 656–658, 668–669

definition of, 658
cli_conn function, 636–637, 640, 659, 665, 897

definition of, 636, 640
client_add function, 662, 665, 667

definition of, 661
client_alloc function, 661–662, 668

definition of, 660
client_cleanup function, 814, 824, 829

definition of, 829
client_del function, 665, 667

definition of, 661
client–server model, 479–480, 585–587
client_thread function, 814, 817, 824

definition of, 824

CLOCAL constant, 318, 675, 685
clock function, 58–59
clock tick, 20, 42–43, 49, 59, 270, 280
clock_getres function, 190

definition of, 190
clock_gettime function, 189–190, 331, 408, 414,

437, 439
definition of, 189

clockid_t data type, 189
CLOCK_MONOTONIC constant, 189
clock_nanosleep function, 373–375, 437, 439,

451, 462
definition of, 375

CLOCK_PROCESS_CPUTIME_ID constant, 189
CLOCK_REALTIME constant, 189–190, 408, 437,

439, 581
clock_settime function, 190, 439

definition of, 190
CLOCKS_PER_SEC constant, 59
clock_t data type, 20, 58–59, 280
CLOCK_THREAD_CPUTIME_ID constant, 189
clone function, 229
close function, 8, 52, 61, 66, 80–81, 124, 128, 331,

451, 468, 474, 492, 532, 537–539, 544, 550, 553,
560, 577–578, 587, 592–593, 609, 616, 618,
625, 638–639, 641, 654–655, 657, 665,
667–669, 725–726, 728–729, 739–740, 761,
823, 826–827, 829, 833, 837

definition of, 66
closedir function, 5, 7, 130–135, 452, 698, 823,

910
definition of, 130

closelog function, 452, 470
definition of, 470

close-on-exec flag, 80, 83, 252–253, 479–480, 492
clrasync function, definition of, 940
clr_fl function, 85, 482–483, 896, 937
clri program, 122
cmsgcred structure, 648–651
CMSG_DATA function, 645–646, 648, 650, 652

definition of, 645
CMSG_FIRSTHDR function, 645, 652

definition of, 645
cmsghdr structure, 645–647, 649, 651
CMSG_LEN function, 645–647, 649, 651

definition of, 645
CMSG_NXTHDR function, 645, 650, 652

definition of, 645
CMSPAR constant, 675, 685, 690
codes, option, 31
COLL_WEIGHTS_MAX constant, 39, 43, 49
COLUMNS environment variable, 211
Comer, D. E., 744, 949

Index 959

command-line arguments, 203
Common Application Environment, see CAE
Common Open Software Environment, see COSE
communication, network printer, 789–843
<complex.h> header, 27
comp_t data type, 59
Computing Science Research Group, see CSRG
condition variable attributes, 440–441
condition variables, 413–416
cond_signal function, 416
connect function, 331, 451, 605–608, 610–611,

621, 635, 641–642
definition of, 605

connection establishment, 605–609
connect_retry function, 607, 614, 800, 808, 834

definition of, 606–607
controlling

process, 296–297, 318
terminal, 63, 233, 252, 270, 292, 295–298, 301,

303–304, 306, 309, 311–312, 318, 321, 377, 463,
465–466, 469, 480, 680, 685, 691, 694, 700, 702,
716, 724, 726–727, 898, 953

cooked terminal mode, 672
cooperating processes, 495, 752, 945
Coordinated Universal Time, see UTC
coprocesses, 548–552, 721, 737
copy-on-write, 229, 458
core dump, 74, 928
core file, 111, 124, 275, 315, 317, 320, 332, 366, 681,

703, 909, 920, 922
COSE (Common Open Software Environment), 32
count, link, 44, 59, 114–117, 130
cp program, 141, 528
cpio program, 127, 142, 910–911
<cpio.h> header, 29
CR terminal character, 678, 680, 703
CR0 constant, 685
CR1 constant, 685
CR2 constant, 685
CR3 constant, 685
CRDLY constant, 676, 684–685, 689
CREAD constant, 675, 686
creat function, 61, 66, 68, 79, 89, 101, 104, 118,

121, 125, 149, 331, 451, 491, 825–826, 909, 912
definition of, 66

creation mask, file mode, 104–105, 129, 141, 169,
233, 252, 466

cron program, 259, 382, 465, 470, 472–474, 925
CRTSCTS constant, 675, 686
CRTS_IFLOW constant, 675, 686
CRTSXOFF constant, 675, 686
crypt function, 287, 298, 304, 442
crypt program, 298, 700

CS5 constant, 684, 686
CS6 constant, 684, 686
CS7 constant, 684, 686
CS8 constant, 684, 686, 706–708
.cshrc file, 289
CSIZE constant, 675, 684, 686, 706–707
csopen function, 653–654

definition of, 654, 659
CSRG (Computing Science Research Group), xx,

xxvi, 34
CSTOPB constant, 675, 686
ctermid function, 442, 452, 694, 700–701

definition of, 694
ctime function, 192
<ctype.h> header, 27
cu program, 500
cupsd program, 465, 793
current directory, 4–5, 8, 13, 43, 50, 65, 94, 100,

115–117, 120, 127, 130, 135–137, 178, 211, 233,
252, 315, 317, 466

Curses, 32
curses library, 712–713, 949, 953
cuserid function, 276

daemon, 463–480
coding, 466–469
conventions, 474–479
error logging, 469–473

daemonize function, 466, 468, 480, 616, 618, 623,
664, 815, 896, 929–930

definition of, 467
Dang, X. T., 206, 949
Darwin, xxii, xxvii, 35
dash program, 372
data, out-of-band, 626
data segment

initialized, 205
uninitialized, 205

data transfer, 610–623
data types, primitive system, 58
database library, 743–787

coarse-grained locking, 752
concurrency, 752–753
fine-grained locking, 752
implementation, 746–750
performance, 781–786
source code, 753–781

database transactions, 952
Date, C. J., 753, 949
date functions, time and, 189–196
date program, 192, 196, 371, 919, 944

960 Index

DATEMSK environment variable, 211
db library, 744, 952
DB structure, 756–758, 760–762, 765–768, 773, 776,

782
_db_alloc function, 757, 760–761

definition of, 760
db_close function, 745, 749, 754, 761

definition of, 745, 761
db_delete function, 746, 752, 754, 768–769, 771,

945
definition of, 746, 768

_db_dodelete function, 757, 768–769, 772, 776,
780–781, 787, 944–945

definition of, 769
db_fetch function, 745, 748–749, 752, 754, 762,

767
definition of, 745, 762

_db_find_and_lock function, 757, 762–763,
767–768, 774–775, 777, 786

definition of, 763
_db_findfree function, 757, 775, 777–778, 781

definition of, 777
_db_free function, 757–758, 761

definition of, 761
DBHANDLE data type, 749, 754, 757, 761–762, 768,

774, 779
_db_hash function, 757, 764, 787

definition of, 764
DB_INSERT constant, 745, 749, 754, 774, 776
dbm library, 743–744, 952
dbm_clearerr function, 442
dbm_close function, 442, 452
dbm_delete function, 442, 452
dbm_error function, 442
dbm_fetch function, 442, 452
dbm_firstkey function, 442
dbm_nextkey function, 442, 452
dbm_open function, 442, 452
dbm_store function, 442, 452
db_nextrec function, 746, 750, 752, 754, 769, 779,

781, 787, 944–945
definition of, 746, 779

db_open function, 745–746, 749, 752, 754–757,
759–761, 781

definition of, 745, 757
_db_readdat function, 757, 762, 768, 780, 945

definition of, 768
_db_readidx function, 757, 764–765, 778, 780,

945
definition of, 765

_db_readptr function, 757, 763, 765, 770,
775–777, 787

definition of, 765

DB_REPLACE constant, 745, 754, 774
db_rewind function, 746, 754, 760, 779, 781

definition of, 746, 779
DB_STORE constant, 745, 754, 774
db_store function, 745, 747, 749, 752, 754, 769,

771, 774, 781, 787
definition of, 745, 774

_db_writedat function, 757, 769, 771–772,
775–777, 781, 787, 944–945

definition of, 771
_db_writeidx function, 522, 757, 759, 770, 772,

775–776, 781, 787, 945
definition of, 772

_db_writeptr function, 757, 759, 770, 773,
775–776, 778

definition of, 773
dcheck program, 122
dd program, 275
deadlock, 234, 402, 490, 552, 721

avoidance, 402–407
record locking, 490

Debian Almquist shell, 4, 53
Debian Linux distribution, 4
delayed write, 81
DELAYTIMER_MAX constant, 40, 43
descriptor set, 503, 505, 532, 933
detachstate attribute, 427–428
/dev/fd device, 88–89, 142, 696
/dev/fd/0 device, 89
/dev/fd/1 device, 89, 142
/dev/fd/2 device, 89
device number

major, 58–59, 137, 139, 465, 699
minor, 58–59, 137, 139, 465, 699

device special file, 137–139
/dev/klog device, 470
/dev/kmem device, 68
/dev/log device, 470, 480, 928
/dev/null device, 73, 86, 304
/dev/stderr device, 89, 697
/dev/stdin device, 89, 697
/dev/stdout device, 89, 697
dev_t data type, 59, 137–138
devtmpfs file system, 139
/dev/tty device, 298, 304, 312, 694, 700, 740
/dev/tty1 file, 290
/dev/zero device, 576–578
df program, 141, 910
DIR structure, 7, 131, 283, 697, 822
directories

files and, 4–8
hard links and, 117, 120
reading, 130–135

Index 961

directory, 4
current, 4–5, 8, 13, 43, 50, 65, 94, 100, 115–117,

120, 127, 130, 135–137, 178, 211, 233, 252, 315,
317, 466

file, 95
home, 2, 8, 135, 211, 288, 292
ownership, 101–102
parent, 4, 108, 125, 129
root, 4, 8, 24, 139, 141, 233, 252, 283, 910

Directory Services daemon, 185
dirent structure, 5, 7, 131, 133, 697, 822
<dirent.h> header, 7, 29, 131
dirname function, 442
DISCARD terminal character, 678, 680, 687
dlclose function, 452
dlerror function, 442
<dlfcn.h> header, 29
dlopen function, 452
do_driver function, 732, 739

definition of, 739
Dorward, S., 229, 952
DOS, 57, 65
dot, see current directory
dot-dot, see parent directory
dprintf function, 159, 452, 945

definition of, 159
drand48 function, 442
DSUSP terminal character, 678, 680, 688
dtruss program, 497
du program, 111, 141, 909
Duff, T., 88
dup function, 52, 61, 74, 77, 79–81, 148, 164, 231,

331, 468, 492–493, 592–593, 907–908, 921
definition of, 79

dup2 function, 64, 79–81, 90, 148, 331, 539, 544,
550–551, 592, 618–619, 655, 728–729,
739–740, 907–908

definition of, 79

E2BIG error, 564
EACCES error, 14–15, 474, 487, 499, 918
EAGAIN error, 16, 376, 474, 482, 484, 487, 496–497,

499, 514, 563, 569–570, 581, 609, 627
EBADF error, 52, 916
EBUSY error, 16, 400, 410, 418
ECANCELED error, 515
ECHILD error, 333, 351, 371, 546
ECHO constant, 676, 686–687, 701, 705–707, 731
echo program, 203
ECHOCTL constant, 676, 686
ECHOE constant, 676, 686–687, 701, 731

ECHOK constant, 676, 687, 701, 731
ECHOKE constant, 676, 687
ECHONL constant, 676, 687, 701, 731
ECHOPRT constant, 676, 686–687
ed program, 367, 369–370, 496–497
EDEADLK error, 418
EEXIST error, 121, 558, 584
EFBIG error, 925
effective

group ID, 98–99, 101–102, 108, 110, 140, 183,
228, 233, 256, 258, 558, 587

user ID, 98–99, 101–102, 106, 110, 126, 140, 228,
233, 253, 256–260, 276, 286, 288, 337, 381, 558,
562, 568, 573, 586–587, 637, 640, 809, 918

efficiency
I/O, 72–74
standard I/O, 153–156

EIDRM error, 562–564, 568–570, 579
EINPROGRESS error, 519–520, 608
EINTR error, 16, 265–266, 301, 327–329, 339, 359,

370, 502, 508, 514, 545–546, 563–564,
569–570, 620

EINVAL error, 42, 47–48, 345, 389, 543, 545–546,
705–707, 774, 914

EIO error, 309, 321, 823–824, 826–827
Ellis, M., xxxii
ELOOP error, 121–122
EMFILE error, 544, 546
EMSGSIZE error, 610
ENAMETOOLONG error, 65, 637, 640
encrypt function, 442
endgrent function, 183–184, 442, 452

definition of, 183
endhostent function, 452, 597

definition of, 597
endnetent function, 452, 598

definition of, 598
endprotoent function, 452, 598

definition of, 598
endpwent function, 180–181, 442, 452

definition of, 180
endservent function, 452, 599

definition of, 599
endspent function, 182

definition of, 182
endutxent function, 442, 452
ENFILE error, 16
ENOBUFS error, 16
ENOENT error, 15, 170, 445, 745, 774
ENOLCK error, 16
ENOMEM error, 16, 914
ENOMSG error, 564
ENOSPC error, 16, 445

962 Index

ENOTDIR error, 592
ENOTRECOVERABLE error, 433
ENOTTY error, 683, 693
environ variable, 203–204, 211, 213, 251, 255,

444–445, 450, 920
environment list, 203–204, 233, 251, 286–288
environment variable, 210–213

COLUMNS , 211
DATEMSK , 211
HOME , 210–211, 288
IFS , 269
LANG , 41, 211
LC_ALL , 211
LC_COLLATE , 43, 211
LC_CTYPE , 211
LC_MESSAGES , 211
LC_MONETARY , 211
LC_NUMERIC , 211
LC_TIME , 211
LD_LIBRARY_PATH , 753
LINES , 211
LOGNAME , 211, 276, 288
MAILPATH , 210
MALLOC_OPTIONS , 928
MSGVERB , 211
NLSPATH , 211
PAGER , 539, 542–543
PATH , 100, 211, 250–251, 253, 260, 263, 265,

288–289
POSIXLY_CORRECT , 111
PWD , 211
SHELL , 211, 288, 737
TERM , 211, 287, 289
TMPDIR , 211
TZ , 190, 192, 195–196, 211, 919
USER , 210, 288

ENXIO error, 553
EOF constant, 10, 151–152, 154, 164, 175, 545,

547–548, 550–551, 664, 730, 913
EOF terminal character, 678, 680, 686–687, 700, 703
EOL terminal character, 678, 680, 687, 700, 703
EOL2 terminal character, 678, 680, 687, 700, 703
EOWNERDEAD error, 432
EPERM error, 256
EPIPE error, 537, 937
Epoch, 20, 22, 126, 187, 189–190, 640
ERANGE error, 50
ERASE terminal character, 678, 680, 686–687,

702–703
ERASE2 terminal character, 678, 681
err_cont function, 897, 899

definition of, 900
err_dump function, 366, 767, 897, 899

definition of, 900
err_exit function, 809, 897, 899

definition of, 900
err_msg function, 897, 899

definition of, 901
errno variable, 14–15, 42, 50, 55, 65, 67, 81, 121,

144, 256, 265, 277, 301, 309, 314, 321, 327–328,
330–331, 333, 337, 339, 345, 351, 359, 371, 376,
380, 384, 386, 446–447, 454, 471, 474, 482, 484,
487, 499, 502, 508, 513–514, 537, 546, 553, 564,
568, 579, 581, 584, 592, 608–610, 627,
637–638, 640, 683, 693, 745, 805, 899, 925, 937

<errno.h> header, 14–16, 27
error

handling, 14–16
logging, daemon, 469–473
recovery, 16
routines, standard, 898–904
TOCTTOU, 65, 250, 953

err_quit function, 7, 815, 897, 899, 912
definition of, 901

err_ret function, 897, 899, 912
definition of, 899

err_sys function, 7, 897, 899
definition of, 899

ESPIPE error, 67, 592
ESRCH error, 337
/etc/gettydefs file, 290
/etc/group file, 17–18, 177, 185–186
/etc/hosts file, 186, 795
/etc/init directory, 290
/etc/inittab file, 290
/etc/master.passwd file, 185
/etc/networks file, 185–186
/etc/passwd file, 2, 99, 135, 177–178, 180, 182,

185–186
/etc/printer.conf file, 794–795, 799
/etc/protocols file, 185–186
/etc/pwd.db file, 185
/etc/rc file, 189, 291
/etc/services file, 185–186
/etc/shadow file, 99, 185–186
/etc/spwd.db file, 185
/etc/syslog.conf file, 470
/etc/termcap file, 712
/etc/ttys file, 286
ETIME error, 800, 805
ETIMEDOUT error, 407, 413, 415, 581, 800
Evans, J., 949
EWOULDBLOCK error, 16, 482, 609, 627
exec function, 10–11, 13, 23, 39–40, 43, 79, 82,

100, 121, 125, 197, 201, 203, 225, 229, 233–234,
249–257, 260–261, 264–266, 269–271, 275,
277, 282–283, 286–288, 290–292, 294, 305,

Index 963

325, 372, 457, 479, 492, 527, 533, 538, 541, 557,
585, 653–654, 658–659, 669, 716–717, 721,
723, 727, 739, 742, 920, 928, 948

execl function, 249–251, 261, 265–266, 272,
274–275, 283, 288, 331, 370–371, 539, 544,
550–551, 618, 655, 737, 922

definition of, 249
execle function, 249–251, 254, 287, 331

definition of, 249
execlp function, 12–13, 19, 249–251, 253–254,

264–265, 283, 740, 922
definition of, 249

execv function, 249–251, 331
definition of, 249

execve function, 249–251, 253, 331, 922
definition of, 249

execvp function, 249–251, 253, 731–732
definition of, 249

exercises, solutions to, 905–945
_Exit function, 198, 201, 236–237, 239, 331, 365,

367, 388, 447
definition of, 198

_exit function, 198, 201, 235–239, 265–266,
282–283, 331, 365, 367, 370, 381, 388, 447, 921,
924

definition of, 198
exit function, 7, 150, 154, 198–202, 226, 231,

234–239, 246, 249, 265, 271–272, 274–275,
283, 288, 330, 365–366, 388, 447, 466, 542, 705,
732, 742, 817, 830, 895, 920–921, 944

definition of, 198
exit handler, 200
expect program, 720, 739–740, 951
exponential backoff, 606
ext2 file system, 129
ext3 file system, 129
ext4 file system, 73, 86, 129, 465
EXTPROC constant, 676, 687

faccessat function, 102–104, 331, 452
definition of, 102

Fagin, R., 744, 750, 949
Fast-STREAMS, Linux, 534
fatal error, 16
fchdir function, 135–137, 592

definition of, 135
fchmod function, 106–108, 120, 125, 331, 452, 498,

592
definition of, 106

fchmodat function, 106–108, 331, 452
definition of, 106

fchown function, 109–110, 125, 331, 452, 592
definition of, 109

fchownat function, 109–110, 331, 452
definition of, 109

fclose function, 148–150, 172–174, 199, 201, 365,
367, 452, 545, 701, 803

definition of, 150
fcntl function, 61, 77, 80–87, 90, 112, 148, 164,

252–253, 331, 451–452, 480, 482, 485–490,
492, 494–495, 510–511, 592, 626–627, 783,
785, 939, 944

definition of, 82
<fcntl.h> header, 29, 62
fdatasync function, 81, 86–87, 331, 451, 513, 592

definition of, 81
FD_CLOEXEC constant, 63, 79, 82–83, 252, 480
FD_CLR function, 503–504, 665, 933

definition of, 503
FD_ISSET function, 503–504, 665, 817, 933

definition of, 503
fdopen function, 148–150, 159, 544, 936

definition of, 148
fdopendir function, 130–135

definition of, 130
fd-pipe, 653–654, 656, 658
fd_pipe function, 630, 655, 739, 896

definition of, 630
fd_set data type, 59, 503–504, 532, 664, 805, 814,

816–817, 932–933, 939
FD_SET function, 503–504, 664–665, 805, 816, 933

definition of, 503
__FD_SETSIZE constant, 933
FD_SETSIZE constant, 504, 932–933
F_DUPFD constant, 81–83, 592
F_DUPFD_CLOEXEC constant, 82, 592
FD_ZERO function, 503–504, 664, 805, 933

definition of, 503
feature test macro, 57–58, 84
Fenner, B., 157, 291, 470, 589, 952
<fenv.h> header, 27
feof function, 151, 157

definition of, 151
ferror function, 10, 151, 154, 157, 273, 538, 543,

550
definition of, 151

fexecve function, 249–250, 253, 331
definition of, 249

FF0 constant, 687
FF1 constant, 687
FFDLY constant, 676, 684, 687, 689
fflush function, 145, 147, 149, 172, 174–175, 366,

452, 547–548, 552, 702, 721, 901, 904, 913
definition of, 147

964 Index

F_FREESP constant, 112
fgetc function, 150–151, 154–155, 452

definition of, 150
F_GETFD constant, 82–83, 480, 592
F_GETFL constant, 82–85, 592
F_GETLK constant, 82, 486–490
F_GETOWN constant, 82–83, 592, 626
fgetpos function, 157–159, 452

definition of, 158
fgets function, 10, 12, 19, 150, 152–156, 168,

174–175, 214, 216, 452, 538, 543, 548,
550–552, 616, 622, 654, 738, 753, 803, 845, 911,
913, 936

definition of, 152
fgetwc function, 452
fgetws function, 452
FIFOs, 95, 534, 552–556
file

access permissions, 99–101, 140
block special, 95, 138–139
character special, 95, 138–139, 699
descriptor passing, 587, 642–652
descriptors, 8–10, 61–62
device special, 137–139
directory, 95
group, 182–183
holes, 68–69, 111–112
mode creation mask, 104–105, 129, 141, 169,

233, 252, 466
offset, 66–68, 74, 77–78, 80, 231–232, 494, 522,

747–748, 908
ownership, 101–102
pointer, 144
regular, 95
sharing, 74–77, 231
size, 111–112
times, 124–125, 532
truncation, 112
types, 95–98

FILE structure, 131, 143–144, 151, 164, 168,
171–172, 220, 235, 273, 443–444, 538,
542–543, 545, 547, 622, 701, 754, 803, 914, 929

file system, 4, 113–116
devtmpfs , 139
ext2 , 129
ext3 , 129
ext4 , 73, 86, 129, 465
HFS , 87, 113, 116
HSFS , 113
PCFS , 49, 57, 113
S5 , 65
UFS , 49, 57, 65, 113, 116, 129

filename, 4

truncation, 65–66
FILENAME_MAX constant, 38
fileno function, 164, 545, 701, 913

definition of, 164
_FILE_OFFSET_BITS constant, 70
FILEPERM constant, 800, 825
files and directories, 4–8
FILESIZEBITS constant, 39, 44, 49
find program, 124, 135, 252
finger program, 141, 179, 910
FIOASYNC constant, 627, 939–940
FIOSETOWN constant, 627
FIPS, 32–33
Flandrena, B., 229, 952
<float.h> header, 27, 38
flock function, 485
flock structure, 486, 489–490, 494
flockfile function, 443–444

definition of, 443
FLUSHO constant, 676, 680, 687
fmemopen function, 171–175, 913

definition of, 171
fmtmsg function, 211, 452
<fmtmsg.h> header, 30
FNDELAY constant, 482
<fnmatch.h> header, 29
F_OK constant, 102
follow_link function, 48
fopen function, 6, 144, 148–150, 165, 220, 273,

452, 538–539, 542, 701, 803, 929
definition of, 148

FOPEN_MAX constant, 38, 43
foreground process group, 296, 298, 300–303, 306,

311, 318–322, 369, 377, 680–682, 685, 689, 710,
719, 741, 944

foreground process group ID, 298, 303, 677
fork function, 11–13, 19, 23, 77, 228–237,

241–243, 245–249, 254, 260–261, 264–266,
269–272, 274–275, 277, 282, 286, 288,
290–292, 294, 296, 304, 307–308, 312, 326,
331, 334, 370–372, 381, 457–462, 466–469,
471, 479, 491–493, 498–500, 527, 533–539,
541, 544, 546, 550, 557, 565, 577, 585, 588,
618–619, 642, 653–655, 658–659, 669–670,
716, 721, 723–724, 726–728, 732, 739, 781,
922–923, 927–928, 930–931, 934, 937, 939, 948

definition of, 229
fork1 function, 229
forkall function, 229
Fowler, G. S., 135, 949, 953
fpathconf function, 37, 39, 41–48, 53–55, 65,

110, 452, 537, 679
definition of, 42

Index 965

FPE_FLTDIV constant, 353
FPE_FLTINV constant, 353
FPE_FLTOVF constant, 353
FPE_FLTRES constant, 353
FPE_FLTSUB constant, 353
FPE_FLTUND constant, 353
FPE_INTDIV constant, 353
FPE_INTOVF constant, 353
fpos_t data type, 59, 157
fprintf function, 159, 452

definition of, 159
fputc function, 145, 152, 154–155, 452

definition of, 152
fputs function, 146, 150, 152–156, 164, 168,

174–175, 452, 543, 548, 550, 701, 901, 904, 911,
919, 926, 936

definition of, 153
fputwc function, 452
fputws function, 452
F_RDLCK constant, 486–487, 489–490, 897,

930–931
fread function, 150, 156–157, 269, 273, 452

definition of, 156
free function, 163, 174, 207–209, 330, 332, 401,

403–405, 407, 437–438, 450, 697, 762, 829,
833, 837, 842, 917

definition of, 207
freeaddrinfo function, 599, 833

definition of, 599
FreeBSD, xxi–xxii, xxvi–xxvii, 3–4, 21, 26–27,

29–30, 34–36, 38, 49, 57, 60, 62, 64, 68, 70, 81,
83, 88, 95, 102, 108–111, 121, 129, 132, 138,
175, 178, 182, 184–185, 187–188, 209–212,
222, 225, 229, 240, 245, 253, 257, 260, 262, 269,
271, 276–277, 288–289, 292, 298, 303, 310,
314–316, 319, 322, 329, 334, 351, 355, 358, 371,
373, 377, 379–380, 385, 388, 393, 396, 409,
426–427, 433, 439, 473, 485, 492–493, 497,
499, 503, 527, 534, 559, 561, 567, 572, 576,
594–595, 607, 611–613, 627, 634, 648–649,
652, 675–678, 685–691, 716, 724, 726–727,
740–741, 744, 799, 911, 918, 930, 932–933,
935–936, 949, 951

freopen function, 144, 148–150, 452
definition of, 148

frequency scaling, 785
fscanf function, 162, 452

definition of, 162
fsck program, 122
fseek function, 149, 157–159, 172, 452

definition of, 158
fseeko function, 157–159, 172, 452

definition of, 158

F_SETFD constant, 82, 85, 90, 480, 592, 907
F_SETFL constant, 82–83, 85, 90, 511, 592, 627,

907, 944
F_SETLK constant, 82, 486–488, 490, 494, 897,

930–931
F_SETLKW constant, 82, 486, 488, 490, 897, 931
F_SETOWN constant, 82–83, 510, 592, 626–627, 939
fsetpos function, 149, 157–159, 172, 452

definition of, 158
fstat function, 4, 93–95, 120, 331, 452, 494, 498,

518, 529–530, 535, 586, 592, 698, 759, 808, 833
definition of, 93

fstatat function, 93–95, 331, 452
definition of, 93

fsync function, 61, 81, 86–87, 175, 331, 451, 513,
517, 528, 592, 787, 913

definition of, 81
ftell function, 157–159, 452

definition of, 158
ftello function, 157–159, 452

definition of, 158
ftok function, 557–558

definition of, 557
ftpd program, 472, 928
ftruncate function, 112, 125, 331, 529–530, 592

definition of, 112
ftrylockfile function, 443–444

definition of, 443
fts function, 132
ftw function, 122, 130–135, 141
<ftw.h> header, 30
full-duplex pipes, 534

named, 534
timing, 565

function prototypes, 845–893
functions, system calls versus, 21–23
F_UNLCK constant, 486–487, 489–490, 897
funlockfile function, 443–444

definition of, 443
funopen function, 175, 915
futimens function, 125–128, 331, 452, 910

definition of, 126
fwide function, 144

definition of, 144
fwprintf function, 452
fwrite function, 150, 156–157, 382, 452, 925

definition of, 156
F_WRLCK constant, 486–487, 489–490, 494, 897,

931
fwscanf function, 452

966 Index

gai_strerror function, 600, 616, 619, 621, 623
definition of, 600

Gallmeister, B. O., 949
Garfinkel, S., 181, 250, 298, 949
gather write, 521, 644
gawk program, 262
gcc program, 6, 26, 58, 919
gdb program, 928
gdbm library, 744
generic pointer, 71, 208
getaddrinfo function, 452, 599–601, 603–604,

614–616, 619, 621, 623, 802, 808
definition of, 599

getaddrlist function, 800, 802, 804, 808, 815
definition of, 802

GETALL constant, 568
getc function, 10, 150–156, 164–165, 452,

701–702, 913
definition of, 150

getchar function, 150–151, 164, 175, 452, 547, 913
definition of, 150

getchar_unlocked function, 442, 444, 452
definition of, 444

getconf program, 70
getc_unlocked function, 442, 444, 452

definition of, 444
getcwd function, 50, 135–137, 142, 208, 452,

911–912
definition of, 136

getdate function, 211, 442, 452
getdelim function, 452
getegid function, 228, 331

definition of, 228
getenv function, 204, 210–212, 442, 444–446,

449–450, 462, 539, 928
definition of, 210

getenv_r function, 445–446
geteuid function, 228, 257, 268, 331, 650, 809

definition of, 228
getgid function, 17, 228, 331

definition of, 228
getgrent function, 183–184, 442, 452

definition of, 183
getgrgid function, 182, 442, 452

definition of, 182
getgrgid_r function, 443, 452
getgrnam function, 182, 442, 452

definition of, 182
getgrnam_r function, 443, 452
getgroups function, 184, 331

definition of, 184
gethostbyaddr function, 597, 599
gethostbyname function, 597, 599

gethostent function, 442, 452, 597
definition of, 597

gethostid function, 452
gethostname function, 39–40, 43, 188, 452,

616–618, 623, 815
definition of, 188

getline function, 452
getlogin function, 275–276, 442, 452, 480,

929–930
definition of, 275

getlogin_r function, 443, 452
getmsg function, 740
getnameinfo function, 452, 600

definition of, 600
GETNCNT constant, 568
getnetbyaddr function, 442, 452, 598

definition of, 598
getnetbyname function, 442, 452, 598

definition of, 598
getnetent function, 442, 452, 598

definition of, 598
get_newjobno function, 814, 820, 825, 843

definition of, 820
getopt function, 442, 452, 662–664, 669, 730–731,

807–808
definition of, 662

getpass function, 287, 298, 700, 702–703
definition of, 701

getpeername function, 331, 605
definition of, 605

getpgid function, 293–294
definition of, 294

getpgrp function, 293, 331
definition of, 293

GETPID constant, 568
getpid function, 11, 228, 230, 235, 272, 308, 331,

366, 378, 387, 474, 650, 939
definition of, 228

getppid function, 228–229, 331, 491, 732
definition of, 228

get_printaddr function, 800, 804, 819
definition of, 804

get_printserver function, 800, 804, 808
definition of, 804

getpriority function, 277
definition of, 277

getprotobyname function, 442, 452, 598
definition of, 598

getprotobynumber function, 442, 452, 598
definition of, 598

getprotoent function, 442, 452, 598
definition of, 598

getpwent function, 180–181, 442, 452

Index 967

definition of, 180
getpwnam function, 177–181, 186, 276, 287,

330–332, 442, 452, 816, 918
definition of, 179–180

getpwnam_r function, 443, 452
getpwuid function, 177–181, 186, 275–276, 442,

452, 809, 918
definition of, 179

getpwuid_r function, 443, 452
getresgid function, 257
getresuid function, 257
getrlimit function, 53, 220, 224, 466–467,

906–907
definition of, 220

getrusage function, 245, 280
gets function, 152–153, 911

definition of, 152
getservbyname function, 442, 452, 599

definition of, 599
getservbyport function, 442, 452, 599

definition of, 599
getservent function, 442, 452, 599

definition of, 599
getsid function, 296

definition of, 296
getsockname function, 331, 605

definition of, 605
getsockopt function, 331, 624–625

definition of, 624
getspent function, 182

definition of, 182
getspnam function, 182, 918

definition of, 182
gettimeofday function, 190, 414, 421, 437, 439

definition of, 190
getty program, 238, 286–288, 290, 472
gettytab file, 287
getuid function, 17, 228, 257, 268, 275–276, 331

definition of, 228
getutxent function, 442, 452
getutxid function, 442, 452
getutxline function, 442, 452
GETVAL constant, 568
getwc function, 452
getwchar function, 452
GETZCNT constant, 568
Ghemawat, S., 949
GID, see group ID
gid_t data type, 59
Gingell, R. A., 206, 525, 949
Gitlin, J. E., xxxii
glob function, 452
global variables, 219

<glob.h> header, 29
gmtime function, 191–192, 442

definition of, 192
gmtime_r function, 443
GNU, 2, 289, 753
GNU Public License, 35
Godsil, J. M., xxxii
Goodheart, B., 712, 949
Google, 210
goto, nonlocal, 213–220, 355–358
Grandi, S., xxxii
grantpt function, 723–725

definition of, 723
grep program, 20, 174, 200, 252, 949–950
group file, 182–183
group ID, 17, 255–260

effective, 98–99, 101–102, 108, 110, 140, 183,
228, 233, 256, 258, 558, 587

real, 98, 102, 183, 228, 233, 252–253, 256, 270,
585

supplementary, 18, 39, 98, 101, 108, 110,
183–184, 233, 252, 258

group structure, 182
<grp.h> header, 29, 182, 186
guardsize attribute, 427, 430

hack, 303, 842
half-duplex pipes, 534
handle_request function, 656, 665–666, 668

definition of, 657, 668
hard link, 4, 114, 117, 120, 122
hard links and directories, 117, 120
hcreate function, 442
hdestroy function, 442
headers

optional, 30
POSIX required, 29
standard, 27
XSI option, 30

heap, 205
Hein, T. R., xxxii, 951
Hewlett-Packard, 35, 835
HFS file system, 87, 113, 116
Hogue, J. E., xxxii
holes, file, 68–69, 111–112
home directory, 2, 8, 135, 211, 288, 292
HOME environment variable, 210–211, 288
Honeyman, P., xxxii
hostent structure, 597
hostname program, 189
HOST_NAME_MAX constant, 40, 43, 49, 188,

615–618, 622–623, 800, 815

968 Index

HP-UX, 35
hsearch function, 442
HSFS file system, 113
htonl function, 594, 810, 824–827, 834

definition of, 594
htons function, 594, 831, 834

definition of, 594
HTTP (Hypertext Transfer Protocol), 792–793
Hume, A. G., 174, 949
HUPCL constant, 675, 687
Hypertext Transfer Protocol, see HTTP

IBM (International Business Machines), 35
ICANON constant, 676, 678, 680–682, 686–687, 691,

703, 705–707
iconv_close function, 452
<iconv.h> header, 29
iconv_open function, 452
ICRNL constant, 676, 680, 688, 700, 706–708
identifiers

IPC, 556–558
process, 227–228

IDXLEN_MAX constant, 779
IEC (International Electrotechnical Commission),

25
IEEE (Institute for Electrical and Electronic

Engineers), xx, 26–27, 950
IEXTEN constant, 676, 678, 680–682, 688, 706–708
I_FIND constant, 725–726
IFS environment variable, 269
IGNBRK constant, 676, 685, 688
IGNCR constant, 676, 680, 688, 700
IGNPAR constant, 676, 688, 690
ILL_BADSTK constant, 353
ILL_COPROC constant, 353
ILL_ILLADR constant, 353
ILL_ILLOPC constant, 353
ILL_ILLOPN constant, 353
ILL_ILLTRP constant, 353
ILL_PRVOPC constant, 353
ILL_PRVREG constant, 353
Illumos, xxi
IMAXBEL constant, 676, 688
implementation differences, password, 184–185
implementations, UNIX System, 33
INADDR_ANY constant, 605
in_addr_t data type, 595
incore, 74, 152
INET6_ADDRSTRLEN constant, 596
inet_addr function, 596
INET_ADDRSTRLEN constant, 596, 603–604

inetd program, 291, 293, 465, 470, 472
inet_ntoa function, 442, 596
inet_ntop function, 596, 604

definition of, 596
inet_pton function, 596

definition of, 596
INFTIM constant, 508
init program, 187, 189, 228, 237–238, 246, 270,

286–291, 293, 307, 309, 312, 320, 337, 379,
464–465, 475, 923, 930

initgroups function, 184, 288
definition of, 184

initialized data segment, 205
init_printer function, 814, 816, 819, 833

definition of, 819
init_request function, 814, 816, 818

definition of, 818
initserver function, 615–617, 619, 622–623,

800, 816
definition of, 609, 625

inittab file, 320
INLCR constant, 676, 688
i-node, 59, 75–77, 94, 108, 113–116, 120, 124, 127,

130–131, 138–139, 179, 253, 493, 698, 905, 910
ino_t data type, 59, 114
INPCK constant, 676, 688, 690, 706–708
in_port_t data type, 595
Institute for Electrical and Electronic Engineers, see

IEEE
int16_t data type, 831
Intel, xxii
International Business Machines, see IBM
International Electrotechnical Commission, see IEC
International Standards Organization, see ISO
Internet Printing Protocol, see IPP
Internet worm, 153
interpreter file, 260–264, 283
interprocess communication, see IPC
interrupted system calls, 327–330, 343, 351,

354–355, 365, 508
INT_MAX constant, 37–38
INT_MIN constant, 37–38
INTR terminal character, 678, 681, 688, 701
<inttypes.h> header, 27
I/O

asynchronous, 501, 509–520
asynchronous socket, 627
efficiency, 72–74
library, standard, 10, 143–175
memory-mapped, 525–531
multiplexing, 500–509
nonblocking, 481–484
nonblocking socket, 608–609, 627

Index 969

terminal, 671–713
unbuffered, 8, 61–91

IOBUFSZ constant, 836
ioctl function, 61, 87–88, 90, 297–298, 322,

328–329, 452, 482, 510, 562, 592, 627, 674,
710–711, 718–719, 725–728, 730, 740–742,
939–940

definition of, 87
_IOFBF constant, 147
_IOLBF constant, 147, 166, 220
_IO_LINE_BUF constant, 165
_IONBF constant, 147, 166
_IO_UNBUFFERED constant, 165
iovec structure, 41, 43, 521, 611, 646–647, 649,

651, 655, 659, 765, 771–772, 832, 836
IOV_MAX constant, 41, 43, 49, 521
IPC (interprocess communication), 533–588,

629–670
identifiers, 556–558
key, 556–558, 562, 567, 572
XSI, 556–560

IPC_CREAT constant, 558, 632, 941
IPC_EXCL constant, 558
IPC_NOWAIT constant, 563–564, 569–570
ipc_perm structure, 558, 562, 567, 572, 587
IPC_PRIVATE constant, 557–558, 575, 586, 588
ipcrm program, 559
IPC_RMID constant, 562–563, 568, 573–575
ipcs program, 559, 588
IPC_SET constant, 562–563, 568, 573
IPC_STAT constant, 562–563, 568, 573
IPP (Internet Printing Protocol), 789–792
ipp.h header, 843
ipp_hdr structure, 798, 832, 834, 838, 842
IPPROTO_ICMP constant, 591
IPPROTO_IP constant, 591, 624
IPPROTO_IPV6 constant, 591
IPPROTO_RAW constant, 591, 602
IPPROTO_TCP constant, 591, 602, 624
IPPROTO_UDP constant, 591, 602
I_PUSH constant, 725–726
IRIX, 35
isalpha function, 516
isatty function, 679, 695, 698–699, 711, 730, 738

definition of, 695
isdigit function, 839–840
I_SETSIG constant, 510
ISIG constant, 676, 678, 680–682, 688, 706–708
ISO (International Standards Organization), xx,

xxxi, 25–27, 950
ISO C, 25–26, 153, 950
<iso646.h> header, 27
is_read_lockable function, 490, 897

isspace function, 839–840
ISTRIP constant, 676, 688, 690, 706–708
is_write_lockable function, 490, 897
IUCLC constant, 676, 688
IUTF8 constant, 676, 689
IXANY constant, 676, 689
IXOFF constant, 676, 681–682, 689
IXON constant, 676, 681–682, 689, 706–708

jemalloc, 210
jmp_buf data type, 216, 218, 340, 343
job control, 299–303

shell, 294, 299, 306–307, 325, 358, 377, 379,
734–735

signals, 377–379
job structure, 812–813, 820–821, 832
job_append function, definition of, 411
job_find function, 927

definition of, 412
job_insert function, definition of, 411
job_remove function, 927

definition of, 412
Jolitz, W. F., 34
Joy, W. N., 3, 76
jsh program, 299

Karels, M. J., 33–34, 74, 112, 116, 229, 236, 525, 951
kernel, 1
Kernighan, B. W., xx, xxxii, 26, 149, 155, 162, 164,

208, 262, 898, 906, 947, 950
Kerrisk, M., 950
key, IPC, 556–558, 562, 567, 572
key_t data type, 557, 633
kill function, 18, 272, 308, 314, 325, 331, 335–338,

353, 363, 366–367, 376, 378–379, 381, 455,
679, 681, 702, 732–733, 924, 932

definition of, 337
kill program, 314–315, 321, 325, 551
KILL terminal character, 678, 681, 687, 702–703
kill_workers function, 814, 828–830

definition of, 828
Kleiman, S. R., 76, 950
Knuth, D. E., 422, 764, 950
Korn, D. G., 3, 135, 174, 548, 948–950, 953
Korn shell, 3, 53, 90, 210, 222, 289, 299, 497, 548,

702, 733–734, 737, 935, 948
Kovach, K. R., 560, 947
Krieger, O., 174, 531, 950

970 Index

l64a function, 442
LANG environment variable, 41, 211
<langinfo.h> header, 29
last program, 187
launchctl program, 293
launchd program, 228, 259, 289, 292, 465
layers, shell, 299
LC_ALL environment variable, 211
LC_COLLATE environment variable, 43, 211
LC_CTYPE environment variable, 211
lchown function, 109–110, 121, 125

definition of, 109
LC_MESSAGES environment variable, 211
LC_MONETARY environment variable, 211
LC_NUMERIC environment variable, 211
L_ctermid constant, 694
LC_TIME environment variable, 211
ld program, 206
LDAP (Lightweight Directory Access Protocol),

185
LD_LIBRARY_PATH environment variable, 753
ldterm STREAMS module, 716, 726
leakage, memory, 209
least privilege, 256, 795, 816
Lee, M., 206, 949
Lee, T. P., 948
Leffler, S. J., 34, 951
Lennert, D., 951
Lesk, M. E., 143
lgamma function, 442
lgammaf function, 442
lgammal function, 442
Libes, D., 720, 924, 951
<libgen.h> header, 30
libraries, shared, 206–207, 226, 753, 920, 947
Lightweight Directory Access Protocol, see LDAP
limit program, 53, 222
limits, 36–53

C, 37–38
POSIX, 38–41
resource, 220–225, 233, 252, 322, 382
runtime indeterminate, 49–53
XSI, 41

<limits.h> header, 27, 37, 39, 41, 49–50
Linderman, J. P., xxxii
line control, terminal I/O, 693–694
LINE_MAX constant, 39, 43, 49
LINES environment variable, 211
link

count, 44, 59, 114–117, 130
hard, 4, 114, 117, 120, 122
symbolic, 55, 94–95, 110–111, 114, 118, 120–123,

131, 137, 141, 186, 908–909

link function, 79, 115–119, 121–122, 125, 331, 452
definition of, 116

linkat function, 116–119, 331, 452
definition of, 116

LINK_MAX constant, 39, 44, 49, 114
lint program, 200
Linux, xxi–xxii, xxv, xxvii, 2–4, 7, 14, 21, 26–27,

29–30, 35–38, 49, 52, 57, 60, 62, 64–65, 70, 73,
75–76, 86–89, 102, 108–111, 121–122, 129,
132, 138, 173, 178, 182, 184–185, 187–188,
205, 209, 211–212, 222, 226, 229, 240, 244–245,
253, 257, 259–260, 262, 269, 271, 274,
276–277, 288–290, 293, 298, 303, 306,
314–316, 318–320, 322, 329, 334–335, 351,
354–355, 358, 371, 373, 377, 379–380, 385,
388, 392, 396, 409, 426–427, 432–433, 439,
462, 464–465, 473–474, 485, 496–497, 503,
522, 530–531, 534, 559, 561, 567, 571–573,
575–576, 578, 583, 594–596, 607, 611–613,
627, 634, 648–650, 652, 675–678, 684–691,
693, 716, 724, 726–727, 740–741, 744, 753,
783, 793, 799, 911, 918, 925, 930, 932, 935–936

Linux Fast-STREAMS, 534
LinuxThreads, 388
lio_listio function, 452, 515

definition of, 515
LIO_NOWAIT constant, 515
Lions, J., 951
LIO_WAIT constant, 515
listen function, 331, 605, 608–609, 625, 635, 638,

800
definition of, 608

little-endian byte order, 593
Litwin, W., 744, 750, 951
LLONG_MAX constant, 37
LLONG_MIN constant, 37
ln program, 115
LNEXT terminal character, 678, 681
locale, 43
localeconv function, 442
<locale.h> header, 27
localtime function, 190–192, 194–195, 264, 408,

442, 452, 919
definition of, 192

localtime_r function, 443, 452
lockf function, 451–452, 485
lockf structure, 493
lockfile function, 473–474

definition of, 494
locking

database library, coarse-grained, 752
database library, fine-grained, 752

locking function, 485

Index 971

lock_reg function, 489, 897, 930–931
definition of, 489

locks
reader–writer, 409–413
spin, 417–418

lock_test function, 489–490, 897
definition of, 489

log function, 470
LOG_ALERT constant, 472
LOG_AUTH constant, 472
LOG_AUTHPRIV constant, 472
LOG_CONS constant, 468, 471
LOG_CRIT constant, 472
LOG_CRON constant, 472
LOG_DAEMON constant, 468, 472
LOG_DEBUG constant, 472
LOG_EMERG constant, 472
LOG_ERR constant, 472, 474–476, 478–479,

615–619, 622–623, 902–903
log_exit function, 817, 898–899

definition of, 903
LOG_FTP constant, 472
logger program, 471
login accounting, 186–187
.login file, 289
login name, 2, 17, 135, 179, 187, 211, 275–276, 290,

480, 930
root, 16

login program, 179, 182, 184, 187, 251, 254, 256,
276, 287–290, 292, 472, 700, 717, 738

LOG_INFO constant, 472, 476, 478
LOGIN_NAME_MAX constant, 40, 43, 49
logins

network, 290–293
terminal, 285–290

LOG_KERN constant, 472
LOG_LOCAL0 constant, 472
LOG_LOCAL1 constant, 472
LOG_LOCAL2 constant, 472
LOG_LOCAL3 constant, 472
LOG_LOCAL4 constant, 472
LOG_LOCAL5 constant, 472
LOG_LOCAL6 constant, 472
LOG_LOCAL7 constant, 472
LOG_LPR constant, 472
LOG_MAIL constant, 472
log_msg function, 897, 899

definition of, 903
LOGNAME environment variable, 211, 276, 288
LOG_NDELAY constant, 471, 928
LOG_NEWS constant, 472
LOG_NOTICE constant, 472
log_open function, 664, 898

definition of, 902
LOG_PERROR constant, 471
LOG_PID constant, 471, 664
log_quit function, 830, 898–899

definition of, 903
log_ret function, 898–899

definition of, 902
log_sys function, 804, 898–899

definition of, 902
LOG_SYSLOG constant, 472
log_to_stderr variable, 664, 807, 813, 902, 904
LOG_USER constant, 472, 664
LOG_WARNING constant, 472
LONG_BIT constant, 38
_longjmp function, 355, 358
longjmp function, 197, 213, 215–219, 225,

330–331, 340–341, 343, 355–358, 365, 381, 924
definition of, 215

LONG_MAX constant, 37, 52–53, 60, 420, 906–907
LONG_MIN constant, 37
loop function, 663–664, 666, 670, 732, 742

definition of, 666, 732
lp program, 585, 793
lpc program, 472
lpd program, 472, 793
lpsched program, 585, 793
lrand48 function, 442
ls program, 5–8, 13, 107–108, 112, 123, 125, 131,

135, 139, 141, 177, 179, 559, 905
lseek function, 8, 59, 61, 66–70, 77–79, 88, 91,

149, 158, 331, 452, 462, 486, 489, 498, 592, 670,
765–766, 768, 771, 773, 779, 819, 908

definition of, 67
lstat function, 93–97, 121–122, 133, 141, 331,

452, 942
definition of, 93

L_tmpnam constant, 168
Lucchina, P., xxxii

Mac OS X, xxi–xxii, xxvi–xxvii, 3–4, 17, 26–27,
29–30, 35–36, 38, 49, 57, 60, 62, 64, 70, 83,
87–88, 102, 108–111, 113, 121, 129, 132, 138,
175, 178, 182, 184–185, 187–188, 193, 209,
211–212, 222, 228, 240, 244–245, 260, 262, 269,
271, 276–277, 288–289, 292–293, 298, 303,
314–317, 319, 322, 329, 334, 351, 355, 371, 373,
377, 379–380, 385, 388, 393, 396, 409,
426–427, 464–465, 485, 497, 503, 522, 534,
559, 561, 567, 572, 576, 594, 607, 611–613, 627,
634, 648, 675–678, 685–691, 716, 724,
726–727, 740–741, 744, 793, 799, 911, 918, 925,
930, 932, 935–936

972 Index

Mach, xxii, xxvi–xxvii, 35, 947
<machine/_types.h> header, 906
macro, feature test, 57–58, 84
MAILPATH environment variable, 210
main function, 7, 150, 155, 197–200, 202, 204,

215–217, 226, 236–237, 249, 283, 330–332,
357–358, 468, 654, 656, 663, 729, 739, 811, 814,
817, 824, 830, 833, 919, 921, 939, 944

major device number, 58–59, 137, 139, 465, 699
major function, 138–139
make program, 300
makethread function, 436, 438–439
mallinfo function, 209
malloc function, 21–23, 51, 136, 145, 174,

207–210, 213, 330, 332, 392, 400–401, 403,
405, 429, 437, 447, 450, 575, 616, 618, 623,
646–647, 650–651, 661–662, 666, 696,
760–761, 815, 820, 828, 839, 926, 928

definition of, 207
MALLOC_OPTIONS environment variable, 928
mallopt function, 209
mandatory record locking, 495
Mandrake, xxvii
MAP_ANON constant, 578
MAP_ANONYMOUS constant, 578
MAP_FAILED constant, 529, 577
MAP_FIXED constant, 526–527
MAP_PRIVATE constant, 526, 528, 578
MAP_SHARED constant, 526–529, 576–578
<math.h> header, 27
Mauro, J., 74, 112, 116, 951
MAX_CANON constant, 39, 44, 47, 49, 673
MAX_INPUT constant, 39, 44, 49, 672
MAXPATHLEN constant, 49
MB_LEN_MAX constant, 37
mbstate_t structure, 442
McDougall, R., 74, 112, 116, 951
McIlroy, M. D., xxxii
McKusick, M. K., xxxii, 33–34, 74, 112, 116, 229,

236, 525, 951
MD5, 181
MDMBUF constant, 675, 685, 689
memccpy function, 155
memcpy function, 530–531, 916
memory

allocation, 207–210
layout, 204–206
leakage, 209
shared, 534, 571–578

memory-mapped I/O, 525–531
memset function, 172–173, 614, 616, 618, 621, 623
Menage, P., 949
message queues, 534, 561–565

timing, 565
mgetty program, 290
MIN terminal value, 687, 703–704, 708, 713, 943
minor device number, 58–59, 137, 139, 465, 699
minor function, 138–139
mkdir function, 101–102, 120–122, 125, 129–130,

331, 452, 912
definition of, 129

mkdir program, 129
mkdirat function, 129–130, 331, 452

definition of, 129
mkdtemp function, 167–171, 452

definition of, 169
mkfifo function, 120–121, 125, 331, 452, 553, 937

definition of, 553
mkfifo program, 553
mkfifoat function, 331, 452, 553

definition of, 553
mknod function, 120–121, 129, 331, 452, 553
mknodat function, 331, 452, 553
mkstemp function, 167–171, 452

definition of, 169
mktime function, 190, 192, 195, 452

definition of, 192
mlock function, 221
mmap function, 174, 221, 429, 481, 525, 527,

529–532, 576–578, 587, 592, 949
definition of, 525

modem, xx, xxvii, 285, 287, 297, 318, 328, 481, 508,
671, 674–675, 685, 687, 689, 692

mode_t data type, 59
<monetary.h> header, 29
Moran, J. P., 525, 949
more program, 543, 748
Morris, R., 181, 951
mount program, 102, 129, 139, 496
mounted STREAMS-based pipes, 534
mprotect function, 527

definition of, 527
mq_receive function, 451
mq_send function, 451
mq_timedreceive function, 451
mq_timedsend function, 451
<mqueue.h> header, 30
mrand48 function, 442
MS_ASYNC constant, 528
MSG_CONFIRM constant, 611
msgctl function, 558–559, 562

definition of, 562
MSG_CTRUNC constant, 613
MSG_DONTROUTE constant, 611
MSG_DONTWAIT constant, 611
MSG_EOF constant, 611

Index 973

MSG_EOR constant, 611, 613
msgget function, 557–562, 632–633, 941

definition of, 562
msghdr structure, 611, 613, 644, 646–647, 649, 651
MSG_MORE constant, 611
MSG_NOERROR constant, 564, 631, 941
MSG_NOSIGNAL constant, 611
MSG_OOB constant, 611–613, 626
MSG_PEEK constant, 612
msgrcv function, 451, 558–559, 561, 564, 585, 631,

941
definition of, 564

msgsnd function, 451, 558, 560–561, 563–565, 633
definition of, 563

MSG_TRUNC constant, 612–613
MSGVERB environment variable, 211
MSG_WAITALL constant, 612
MS_INVALIDATE constant, 528
msqid_ds structure, 561–562, 564
MS_SYNC constant, 528, 530
msync function, 451, 528, 530

definition of, 528
Mui, L., 712, 953
multiplexing, I/O, 500–509
munmap function, 528–529

definition of, 528
mutex attributes, 430–439
mutex timing comparison, 571
mutexes, 399–409
mv program, 115
myftw function, 133, 141

named full-duplex pipes, 534
NAME_MAX constant, 38–39, 44, 49, 55, 65, 131
nanosleep function, 373–375, 437, 439, 451, 462,

837, 934
definition of, 374

Nataros, S., xxxii
Native POSIX Threads Library, see NPTL
nawk program, 262
NCCS constant, 674
ndbm library, 744
<ndbm.h> header, 30
Nemeth, E., xxxii, 951
<netdb.h> header, 29, 186
netent structure, 598
<net/if.h> header, 29
<netinet/in.h> header, 29, 595, 605
<netinet/tcp.h> header, 29
Network File System, Sun Microsystems, see NFS
Network Information Service, see NIS
network logins, 290–293

network printer communication, 789–843
Neville-Neil, G. V., 74, 112, 116, 951
newgrp program, 183
nfds_t data type, 507
_NFILE constant, 51
NFS (Network File System, Sun Microsystems), 76,

787
nftw function, 122, 131–132, 135, 442, 452, 910
NGROUPS_MAX constant, 39, 43, 49, 183–184
nice function, 276–277

definition of, 276
nice value, 252, 276–277, 279
Nievergelt, J., 744, 750, 949
NIS (Network Information Service), 185
NIS+, 185
NL terminal character, 678, 680–681, 687, 700, 703
NL0 constant, 689
NL1 constant, 689
NL_ARGMAX constant, 39
NLDLY constant, 676, 684, 689
nlink_t data type, 59, 114
nl_langinfo function, 442
NL_LANGMAX constant, 41
NL_MSGMAX constant, 39
NL_SETMAX constant, 39
NLSPATH environment variable, 211
NL_TEXTMAX constant, 39
<nl_types.h> header, 29
nobody login name, 178–179
NOFILE constant, 51
NOFLSH constant, 676, 689
NOKERNINFO constant, 676, 682, 689
nologin program, 179
nonblocking

I/O, 481–484
socket I/O, 608–609, 627

noncanonical mode, terminal I/O, 703–710
nonfatal error, 16
nonlocal goto, 213–220, 355–358
NPTL (Native POSIX Threads Library), xxiii, 388
ntohl function, 594, 811, 825, 842

definition of, 594
ntohs function, 594, 604, 842

definition of, 594
NULL constant, 823
null signal, 314, 337
NZERO constant, 41, 276–277

O_ACCMODE constant, 83–84
O_APPEND constant, 63, 66, 72, 77–78, 83–84, 149,

497, 511

974 Index

O_ASYNC constant, 83, 511, 627
O_CLOEXEC constant, 63
O_CREAT constant, 63, 66, 79, 89, 121, 125, 474,

496–498, 517–518, 529, 558, 579–580, 584,
749, 758, 818, 930

OCRNL constant, 676, 689
od program, 69
O_DIRECT constant, 150
O_DIRECTORY constant, 63
O_DSYNC constant, 64, 83, 513
O_EXCL constant, 63, 79, 121, 558, 580, 584
O_EXEC constant, 83
OFDEL constant, 676, 684, 689
off_t data type, 59, 67–70, 157–158, 772
OFILL constant, 676, 684, 689
O_FSYNC constant, 64, 83–84
OLCUC constant, 676, 689
Olson, M., 952
O_NDELAY constant, 36, 63, 482
ONLCR constant, 676, 690, 731, 738
ONLRET constant, 676, 690
ONOCR constant, 676, 690
O_NOCTTY constant, 63, 297–298, 466, 723–724,

726
ONOEOT constant, 676, 690
O_NOFOLLOW constant, 63
O_NONBLOCK constant, 36, 63, 83–84, 482–483,

496, 498, 553, 611–612, 934, 937
open function, 8, 14, 61–66, 77, 79, 83, 89, 91,

100–101, 103–104, 112, 118, 120–125,
127–128, 137, 148–150, 283, 287, 297–298,
331, 451, 468, 470, 474, 482, 492–493,
495–498, 517–518, 525, 529, 553, 556, 558,
560, 577–578, 585, 588, 592, 653, 656–657,
669–670, 685, 723, 725–726, 745, 757–758,
808, 818, 823, 833, 907, 909, 930, 937

definition of, 62
Open Group, The, xxi, xxvi, 31, 196, 950
Open Software Foundation, see OSF
openat function, 62–66, 331, 451

definition of, 62
opend.h header, 656, 660, 942
opendir function, 5, 7, 121, 130–135, 252–253,

283, 452, 697, 822, 910
definition of, 130

openlog function, 452, 468, 470–471, 480, 902, 928
definition of, 470

OPEN_MAX constant, 40, 43, 49, 51–53, 60, 62, 906
open_max function, 466, 544, 546, 666, 896

definition of, 52, 907
open_memstream function, 171–174

definition of, 173
OpenServer, 485

OpenSolaris, xxi
OpenSS7, 534
open_wmemstream function, 171–174

definition of, 173
OPOST constant, 676, 690, 706–708, 710
optarg variable, 663
opterr variable, 663
optind variable, 808
option codes, 31
options, 53–57

socket, 623–625
optopt variable, 663
Oracle Corporation, xxi–xxii, 35
O_RDONLY constant, 62, 83–84, 100, 103, 517–518,

529, 654, 808, 833, 937
O_RDWR constant, 62, 83–84, 100, 128, 468, 474,

498, 517–518, 529, 577, 723, 725, 749, 818, 930
O’Reilly, T., 712, 953
orientation, stream, 144
orphaned process group, 307–309, 469, 735
O_RSYNC constant, 64, 83
O_SEARCH constant, 63, 83
OSF (Open Software Foundation), 31–32
O_SYNC constant, 63–64, 83–84, 86–87, 513, 520
O_TRUNC constant, 63, 66, 100, 112, 125, 127–128,

149, 496, 498, 517–518, 529, 749
O_TTY_INIT constant, 64, 683, 722
out-of-band data, 626
ownership

directory, 101–102
file, 101–102

O_WRONLY constant, 62, 83–84, 100, 937
OXTABS constant, 676, 690

packet mode, pseudo terminal, 740
page cache, 81
page size, 573
pagedaemon process, 228
PAGER environment variable, 539, 542–543
PAGESIZE constant, 40, 43, 49
PAGE_SIZE constant, 41, 43, 49
P_ALL constant, 244
PARENB constant, 675, 688, 690, 706–708
parent

directory, 4, 108, 125, 129
process ID, 228, 233, 237, 243, 246, 252, 287–288,

309, 464
PAREXT constant, 675, 690
parity, terminal I/O, 688
PARMRK constant, 676, 685, 688, 690
PARODD constant, 675, 685, 688, 690, 713

Index 975

Partridge, C., xxxii
passing, file descriptor, 587, 642–652
passwd program, 99, 182, 720
passwd structure, 177, 180, 332, 809, 814, 918
password

file, 177–181
implementation differences, 184–185
shadow, 181–182, 196, 918

PATH environment variable, 100, 211, 250–251,
253, 260, 263, 265, 288–289

path_alloc function, 133, 137, 896, 912
definition of, 50

pathconf function, 37, 39, 41–48, 50–51, 53–55,
57, 65, 110, 121, 452, 537

definition of, 42
PATH_MAX constant, 38–39, 44, 49–50, 142, 911
pathname, 5

absolute, 5, 8, 43, 50, 64, 136, 141–142, 260, 553,
911

relative, 5, 8, 43–44, 50, 64–65, 135, 553
truncation, 65–66

pause function, 324, 327–328, 331, 334, 338–343,
356, 359, 365, 374, 451, 460, 711, 924, 930–931

definition of, 338
_PC_2_SYMLINKS constant, 55
_PC_ASYNC_IO constant, 55
_PC_CHOWN_RESTRICTED constant, 55
_PC_FILESIZEBITS constant, 42, 44
PCFS file system, 49, 57, 113
pckt STREAMS module, 716, 740
_PC_LINK_MAX constant, 42, 44
pclose function, 267, 452, 541–548, 616, 622,

935–937
definition of, 541, 545

_PC_MAX_CANON constant, 42, 44, 47
_PC_MAX_INPUT constant, 42, 44
_PC_NAME_MAX constant, 42, 44
_PC_NO_TRUNC constant, 55, 57
_PC_PATH_MAX constant, 43–44, 51
_PC_PIPE_BUF constant, 44
_PC_PRIO_IO constant, 55
_PC_SYMLINK_MAX constant, 44
_PC_SYNC_IO constant, 55
_PC_TIMESTAMP_RESOLUTION constant, 42, 44
_PC_VDISABLE constant, 54–55, 679
PENDIN constant, 676, 690
Pentium, xxii, xxvii
permissions, file access, 99–101, 140
perror function, 15–16, 24, 334, 379, 452, 600, 905

definition of, 15
pgrp structure, 311–312
PID, see process ID
pid_t data type, 11, 59, 293, 384

Pike, R., 229, 950, 952
pipe function, 125, 148, 331, 535, 537–538, 540,

544, 546, 550, 565, 630, 934
definition of, 535

PIPE_BUF constant, 39, 44, 49, 532, 537, 554–555,
935

pipes, 534–541
full-duplex, 534
half-duplex, 534
mounted STREAMS-based, 534
named full-duplex, 534
timing full-duplex, 565

Pippenger, N., 744, 750, 949
Plan 9 operating system, 229, 952
Plauger, P. J., 26, 164, 323, 952
pointer, generic, 71, 208
poll function, 319, 330–331, 343, 451, 481,

501–502, 506–509, 531–532, 560, 586, 588,
592, 608–609, 627, 631–632, 659, 664,
666–668, 718, 732, 742, 933–934, 936–937, 942

definition of, 506
POLLERR constant, 508
pollfd structure, 507, 632, 666, 668, 934, 941
<poll.h> header, 29, 507
POLLHUP constant, 508, 667–668, 936
POLLIN constant, 508, 632, 666–668, 936, 941–942
polling, 246, 484, 501
POLLNVAL constant, 508
POLLOUT constant, 508
POLLPRI constant, 508
POLLRDBAND constant, 508
POLLRDNORM constant, 508
POLLWRBAND constant, 508
POLLWRNORM constant, 508
popen function, 23, 242, 249, 267, 452, 541–548,

587–588, 615, 619, 622–623, 935–937
definition of, 541, 543

port number, 593, 595–596, 598–601, 605
Portable Operating System Environment for

Computer Environments, IEEE, see POSIX
POSIX (Portable Operating System Environment

for Computer Environments, IEEE), xix,
xxxi, 26–30, 33, 265, 561, 674

POSIX semaphores, 579–584
POSIX.1, xxvi, xxxi, 4, 9, 27, 38, 41, 50, 53, 57–58,

88, 257, 262, 329, 367–368, 384, 533, 546, 553,
589, 617, 744, 950

POSIX.2, 262
_POSIX2_SYMLINKS constant, 55
_POSIX_ADVISORY_INFO constant, 31
_POSIX_AIO_LISTIO_MAX constant, 515
_POSIX_AIO_MAX constant, 515
_POSIX_ARG_MAX constant, 39–40

976 Index

_POSIX_ASYNCHRONOUS_IO constant, 54, 57
_POSIX_ASYNC_IO constant, 55
_POSIX_BARRIERS constant, 54, 57
_POSIX_CHILD_MAX constant, 39–40
_POSIX_CHOWN_RESTRICTED constant, 55, 57,

110
_POSIX_CLOCKRES_MIN constant, 38
_POSIX_CLOCK_SELECTION constant, 54, 57
_POSIX_CPUTIME constant, 31, 189
_POSIX_C_SOURCE constant, 57–58, 84, 240
_POSIX_DELAYTIMER_MAX constant, 39–40
posix_fadvise function, 452
posix_fallocate function, 452
_POSIX_FSYNC constant, 31
_POSIX_HOST_NAME_MAX constant, 39–40
_POSIX_IPV6 constant, 31
_POSIX_JOB_CONTROL constant, 57
_POSIX_LINK_MAX constant, 39
_POSIX_LOGIN_NAME_MAX constant, 39–40
POSIXLY_CORRECT environment variable, 111
posix_madvise function, 452
_POSIX_MAPPED_FILES constant, 54, 57
_POSIX_MAX_CANON constant, 39
_POSIX_MAX_INPUT constant, 39
_POSIX_MEMLOCK constant, 31
_POSIX_MEMLOCK_RANGE constant, 31
_POSIX_MEMORY_PROTECTION constant, 54, 57
_POSIX_MESSAGE_PASSING constant, 31
_POSIX_MONOTONIC_CLOCK constant, 31, 189
_POSIX_NAME_MAX constant, 39, 580
_POSIX_NGROUPS_MAX constant, 39
_POSIX_NO_TRUNC constant, 55, 57, 65
_POSIX_OPEN_MAX constant, 39–40
posix_openpt function, 452, 722–725

definition of, 722
_POSIX_PATH_MAX constant, 39–40, 696–697
_POSIX_PIPE_BUF constant, 39
_POSIX_PRIO_IO constant, 55
_POSIX_PRIORITIZED_IO constant, 31
_POSIX_PRIORITY_SCHEDULING constant, 31
_POSIX_RAW_SOCKETS constant, 31
_POSIX_READER_WRITER_LOCKS constant, 55,

57
_POSIX_REALTIME_SIGNALS constant, 55, 57
_POSIX_RE_DUP_MAX constant, 39
_POSIX_RTSIG_MAX constant, 39–40
_POSIX_SAVED_IDS constant, 57, 98, 256, 337
_POSIX_SEMAPHORES constant, 55, 57
_POSIX_SEM_NSEMS_MAX constant, 39–40
_POSIX_SEM_VALUE_MAX constant, 39–40
_POSIX_SHARED_MEMORY_OBJECTS constant, 31
_POSIX_SHELL constant, 57
_POSIX_SIGQUEUE_MAX constant, 39–40

_POSIX_SOURCE constant, 57
_POSIX_SPAWN constant, 31
posix_spawn function, 452
posix_spawnp function, 452
_POSIX_SPIN_LOCKS constant, 55, 57
_POSIX_SPORADIC_SERVER constant, 31
_POSIX_SSIZE_MAX constant, 39
_POSIX_STREAM_MAX constant, 39–40
_POSIX_SYMLINK_MAX constant, 39
_POSIX_SYMLOOP_MAX constant, 39–40
_POSIX_SYNCHRONIZED_IO constant, 31
_POSIX_SYNC_IO constant, 55
_POSIX_THREAD_ATTR_STACKADDR constant,

31, 429
_POSIX_THREAD_ATTR_STACKSIZE constant,

31, 429
_POSIX_THREAD_CPUTIME constant, 31, 189
_POSIX_THREAD_PRIO_INHERIT constant, 31
_POSIX_THREAD_PRIO_PROTECT constant, 31
_POSIX_THREAD_PRIORITY_SCHEDULING

constant, 31
_POSIX_THREAD_PROCESS_SHARED constant,

31, 431
_POSIX_THREAD_ROBUST_PRIO_INHERIT

constant, 31
_POSIX_THREAD_ROBUST_PRIO_PROTECT

constant, 31
_POSIX_THREADS constant, 55, 57, 384
_POSIX_THREAD_SAFE_FUNCTIONS constant,

55, 57, 442
_POSIX_THREAD_SPORADIC_SERVER constant,

31
_POSIX_TIMEOUTS constant, 55
_POSIX_TIMER_MAX constant, 39–40
_POSIX_TIMERS constant, 55, 57
_POSIX_TIMESTAMP_RESOLUTION constant, 44
posix_trace_event function, 331
_POSIX_TTY_NAME_MAX constant, 39–40
posix_typed_mem_open function, 452
_POSIX_TYPED_MEMORY_OBJECTS constant, 31
_POSIX_TZNAME_MAX constant, 39–40
_POSIX_V6_ILP32_OFF32 constant, 70
_POSIX_V6_ILP32_OFFBIG constant, 70
_POSIX_V6_LP64_OFF64 constant, 70
_POSIX_V6_LP64_OFFBIG constant, 70
_POSIX_V7_ILP32_OFF32 constant, 70
_POSIX_V7_ILP32_OFFBIG constant, 70
_POSIX_V7_LP64_OFF64 constant, 70
_POSIX_V7_LP64_OFFBIG constant, 70
_POSIX_VDISABLE constant, 55, 57, 678–679
_POSIX_VERSION constant, 57, 188
PowerPC, xxi–xxii, xxvii
P_PGID constant, 244

Index 977

PPID, see parent process ID
P_PID constant, 244
pr program, 753
prctl program, 559
pread function, 78, 451, 461–462, 592

definition of, 78
Presotto, D. L., xxxii, 229, 952
pr_exit function, 239–241, 266–268, 281, 283,

372, 896
definition of, 240

primitive system data types, 58
print program, 794, 801, 820, 824–825, 834, 843
printd program, 794, 843
printer communication, network, 789–843
printer spooling, 793–795

source code, 795–842
printer_status function, 814, 837–838, 843

definition of, 838
printer_thread function, 814, 832, 945

definition of, 832
printf function, 10–11, 21, 150, 159, 161–163,

175, 192, 194, 219, 226, 231, 235, 283, 309, 330,
349, 452, 552, 919–920

definition of, 159
print.h header, 815, 820, 825
printreq structure, 801, 809–810, 812, 820,

822–824, 827
printresp structure, 801, 809, 811, 824–827
PRIO_PGRP constant, 277
PRIO_PROCESS constant, 277
PRIO_USER constant, 277
privilege, least, 256, 795, 816
pr_mask function, 356–357, 360–361, 896

definition of, 347
/proc, 136, 253
proc structure, 311–312
process, 11

accounting, 269–275
control, 11, 227–283
ID, 11, 228, 252
ID, parent, 228, 233, 237, 243, 246, 252, 287–288,

309, 464
identifiers, 227–228
relationships, 285–312
scheduling, 276–280
system, 228, 337
termination, 198–202
time, 20, 24, 59, 280–282

process group, 293–294
background, 296, 300, 302, 304, 306–307, 309,

321, 369, 377, 944
foreground, 296, 298, 300–303, 306, 311,

318–322, 369, 377, 680–682, 685, 689, 710,
719, 741, 944

ID, 233, 252
ID, foreground, 298, 303, 677
ID, session, 304
ID, terminal, 303, 463
leader, 294–296, 306, 312, 465–466, 727
lifetime, 294
orphaned, 307–309, 469, 735

processes, cooperating, 495, 752, 945
process-shared attribute, 431
.profile file, 289
program, 10
PROT_EXEC constant, 525
PROT_NONE constant, 525
protoent structure, 598
prototypes, function, 845–893
PROT_READ constant, 525, 529, 577
PROT_WRITE constant, 525, 529, 577
PR_TEXT constant, 801, 810, 825, 835–836
ps program, 237, 283, 303, 306–307, 463–465,

468–469, 480, 736, 923
pselect function, 331, 451, 501, 506

definition of, 506
pseudo terminal, 715–742

packet mode, 740
remote mode, 741
signal generation, 741
window size, 741

psiginfo function, 379–380, 452
definition of, 379

psignal function, 379–380, 452
definition of, 379

ptem STREAMS module, 716, 726
pthread structure, 385
pthread_atfork function, 457–461

definition of, 458
pthread_attr_destroy function, 427–429

definition of, 427
pthread_attr_getdetachstate function, 428

definition of, 428
pthread_attr_getguardsize function, 430

definition of, 430
pthread_attr_getstack function, 429

definition of, 429
pthread_attr_getstacksize function,

429–430
definition of, 430

pthread_attr_init function, 427–429
definition of, 427

pthread_attr_setdetachstate function, 428
definition of, 428

pthread_attr_setguardsize function, 430
definition of, 430

pthread_attr_setstack function, 429
definition of, 429

978 Index

pthread_attr_setstacksize function,
429–430

definition of, 430
pthread_attr_t data type, 427–428, 430, 451
pthread_barrierattr_destroy function, 441

definition of, 441
pthread_barrierattr_getpshared function,

441
definition of, 441

pthread_barrierattr_init function, 441
definition of, 441

pthread_barrierattr_setpshared function,
441

definition of, 441
pthread_barrier_destroy function, 418–419

definition of, 418
pthread_barrier_init function, 418–419, 421

definition of, 418
PTHREAD_BARRIER_SERIAL_THREAD constant,

419, 422
pthread_barrier_t data type, 419
pthread_barrier_wait function, 419–423

definition of, 419
pthread_cancel function, 393, 451, 453, 828

definition of, 393
PTHREAD_CANCEL_ASYNCHRONOUS constant, 453
PTHREAD_CANCEL_DEFERRED constant, 453
PTHREAD_CANCEL_DISABLE constant, 451
PTHREAD_CANCELED constant, 389, 393
PTHREAD_CANCEL_ENABLE constant, 451
pthread_cleanup_pop function, 394–396, 827,

829
definition of, 394

pthread_cleanup_push function, 394–396, 824
definition of, 394

pthread_condattr_destroy function, 440
definition of, 440

pthread_condattr_getclock function, 441
definition of, 441

pthread_condattr_getpshared function, 440
definition of, 440

pthread_condattr_init function, 440
definition of, 440

pthread_condattr_setclock function, 441
definition of, 441

pthread_condattr_setpshared function, 440
definition of, 440

pthread_condattr_t data type, 441
pthread_cond_broadcast function, 415,

422–423, 927
definition of, 415

pthread_cond_destroy function, 414, 462
definition of, 414

pthread_cond_init function, 414, 462, 941
definition of, 414

PTHREAD_COND_INITIALIZER constant, 413,
416, 455, 814

pthread_cond_signal function, 415–416, 456,
821, 942

definition of, 415
pthread_cond_t data type, 413, 416, 455, 814,

940
pthread_cond_timedwait function, 414–415,

434, 440–441, 451
definition of, 414

pthread_cond_wait function, 414–416, 434,
451, 456, 832, 927, 941

definition of, 414
pthread_create function, 385–388, 390–392,

395, 397, 421, 427–428, 456, 460, 477, 632, 817,
926, 941

definition of, 385
PTHREAD_CREATE_DETACHED constant, 428
PTHREAD_CREATE_JOINABLE constant, 428
PTHREAD_DESTRUCTOR_ITERATIONS constant,

426, 447
pthread_detach function, 396–397, 427

definition of, 397
pthread_equal function, 385, 412

definition of, 385
pthread_exit function, 198, 236, 389–391,

393–396, 447, 824–829
definition of, 389

pthread_getspecific function, 449–450
definition of, 449

<pthread.h> header, 29
pthread_join function, 389–391, 395–396, 418,

451, 926
definition of, 389

pthread_key_create function, 447–448, 450
definition of, 447

pthread_key_delete function, 447–448
definition of, 448

PTHREAD_KEYS_MAX constant, 426, 447
pthread_key_t data type, 449
pthread_kill function, 455

definition of, 455
pthread_mutexattr_destroy function, 431,

445
definition of, 431

pthread_mutexattr_getpshared function,
431

definition of, 431
pthread_mutexattr_getrobust function, 432

definition of, 432
pthread_mutexattr_gettype function, 434

Index 979

definition of, 434
pthread_mutexattr_init function, 431, 438,

445
definition of, 431

pthread_mutexattr_setpshared function,
431

definition of, 431
pthread_mutexattr_setrobust function, 432

definition of, 432
pthread_mutexattr_settype function, 434,

438, 445
definition of, 434

pthread_mutexattr_t data type, 430–431, 438,
445

pthread_mutex_consistent function,
432–433, 571

definition of, 433
PTHREAD_MUTEX_DEFAULT constant, 433–434
pthread_mutex_destroy function, 400–401,

404, 407
definition of, 400

PTHREAD_MUTEX_ERRORCHECK constant,
433–434

pthread_mutex_init function, 400–401, 403,
405, 431, 438, 445, 941

definition of, 400
PTHREAD_MUTEX_INITIALIZER constant, 400,

403, 405, 408, 416, 431, 449, 455, 459, 813–814
pthread_mutex_lock function, 400–401,

403–404, 406–408, 416, 422–423, 432, 438,
445, 450, 456, 459–460, 820–821, 828–830,
832–833, 941–942

definition of, 400
PTHREAD_MUTEX_NORMAL constant, 433–434
PTHREAD_MUTEX_RECURSIVE constant, 433–434,

438, 445
PTHREAD_MUTEX_ROBUST constant, 432
PTHREAD_MUTEX_STALLED constant, 432
pthread_mutex_t data type, 400–401, 403, 405,

408, 416, 438, 445, 449, 455, 459, 813–814, 940
pthread_mutex_timedlock function, 407–409,

413
definition of, 407

pthread_mutex_trylock function, 400, 402
definition of, 400

pthread_mutex_unlock function, 400–401,
403–404, 406–407, 416, 422–423, 438–439,
445, 450, 456, 460, 820–821, 828–830,
832–833, 941–942

definition of, 400
pthread_once function, 445, 448, 450, 928

definition of, 448
PTHREAD_ONCE_INIT constant, 445, 448–449

pthread_once_t data type, 445, 449
PTHREAD_PROCESS_PRIVATE constant, 417, 431,

442
PTHREAD_PROCESS_SHARED constant, 417, 431,

442, 571
pthread_rwlockattr_destroy function, 439

definition of, 439
pthread_rwlockattr_getpshared function,

440
definition of, 440

pthread_rwlockattr_init function, 439
definition of, 439

pthread_rwlockattr_setpshared function,
440

definition of, 440
pthread_rwlockattr_t data type, 439
pthread_rwlock_destroy function, 409–410

definition of, 409
pthread_rwlock_init function, 409, 411

definition of, 409
PTHREAD_RWLOCK_INITIALIZER constant, 409
pthread_rwlock_rdlock function, 410, 412,

452
definition of, 410

pthread_rwlock_t data type, 411
pthread_rwlock_timedrdlock function, 413,

452
definition of, 413

pthread_rwlock_timedwrlock function, 413,
452

definition of, 413
pthread_rwlock_tryrdlock function, 410

definition of, 410
pthread_rwlock_trywrlock function, 410

definition of, 410
pthread_rwlock_unlock function, 410–412

definition of, 410
pthread_rwlock_wrlock function, 410–412,

452
definition of, 410

pthreads, 27, 229, 384, 426
pthread_self function, 385, 387, 391, 824

definition of, 385
pthread_setcancelstate function, 451

definition of, 451
pthread_setcanceltype function, 453

definition of, 453
pthread_setspecific function, 449–450

definition of, 449
pthread_sigmask function, 453–454, 477, 815

definition of, 454
pthread_spin_destroy function, 417

definition of, 417

980 Index

pthread_spin_init function, 417
definition of, 417

pthread_spin_lock function, 418
definition of, 418

pthread_spin_trylock function, 418
definition of, 418

pthread_spin_unlock function, 418
definition of, 418

PTHREAD_STACK_MIN constant, 426, 430
pthread_t data type, 59, 384–385, 387, 390–391,

395, 411, 421, 428, 456, 460, 476, 632, 812, 814,
824, 829, 926, 941

pthread_testcancel function, 451, 453
definition of, 453

PTHREAD_THREADS_MAX constant, 426
ptrdiff_t data type, 59
ptsname function, 442, 723–725

definition of, 723
pty program, 309, 715, 720–721, 727, 729–742, 944
pty_fork function, 721, 724, 726–730, 732, 739,

741–742
definition of, 727

ptym_open function, 724, 726–728, 897
definition of, 724–725

ptys_fork function, 897
ptys_open function, 724, 726–728, 897

definition of, 724–725
Pu, C., 65, 953
putc function, 10, 152–156, 247–248, 452, 701

definition of, 152
putchar function, 152, 175, 452, 547–548

definition of, 152
putchar_unlocked function, 442, 444, 452

definition of, 444
putc_unlocked function, 442, 444, 452

definition of, 444
putenv function, 204, 212, 251, 442, 446, 462

definition of, 212
putenv_r function, 462
puts function, 152–153, 452, 911

definition of, 153
pututxline function, 442, 452
putwc function, 452
putwchar function, 452
PWD environment variable, 211
<pwd.h> header, 29, 177, 186
pwrite function, 78–79, 451, 461–462, 592

definition of, 78

Quarterman, J. S., 33–34, 74, 112, 116, 229, 236, 525,
951

QUIT terminal character, 678, 681, 688, 702

race conditions, 245–249, 339, 784, 922, 924
Rago, J. E., xxvii
Rago, S. A., xxxii, 88, 157, 290, 952
raise function, 331, 336–338, 365

definition of, 337
rand function, 442
raw terminal mode, 672, 704, 708, 713, 732, 734
Raymond, E. S., 952
read function, 8–10, 20, 59, 61, 64, 71–72, 78, 88,

90–91, 111, 124–125, 130, 145, 154–156, 174,
301, 308–309, 328–331, 342–343, 364–365,
378, 451, 462, 470, 482–483, 495–496,
498–502, 505–506, 508–509, 513, 517,
523–525, 530–531, 536–537, 540–541,
549–551, 553, 556, 587, 590, 592, 610, 612, 654,
656, 665–667, 672, 702–704, 708–709,
732–733, 738, 740, 748, 752, 765, 767–768,
805–806, 811, 818, 823, 836–838, 907–908,
936, 943

definition of, 71
read, scatter, 521, 644
readdir function, 5, 7, 130–135, 442, 452, 697, 823

definition of, 130
readdir_r function, 443, 452
reader–writer lock attributes, 439–440
reader–writer locks, 409–413
reading directories, 130–135
readlink function, 121, 123–124, 331, 452

definition of, 123
readlinkat function, 123–124, 331, 452

definition of, 123
read_lock function, 489, 493, 498, 897
readmore function, 814, 837, 840–841

definition of, 837
readn function, 523–524, 738, 806, 811, 896

definition of, 523–524
readv function, 41, 43, 329, 451, 481, 521–523,

531, 592, 613, 644, 752, 766
definition of, 521

readw_lock function, 489, 759, 763, 780, 897
real

group ID, 98, 102, 183, 228, 233, 252–253, 256,
270, 585

user ID, 39–40, 43, 98–99, 102, 221, 228, 233,
252–253, 256–260, 270, 276, 286, 288, 337,
381, 585, 924

realloc function, 50, 174, 207–208, 213, 661–662,
666, 761, 838, 840, 911–912

definition of, 207
record locking, 485–499

advisory, 495
deadlock, 490
mandatory, 495

Index 981

timing comparison, 571
recv function, 331, 451, 592, 612–615, 626–627

definition of, 612
recv_fd function, 642–644, 650, 655, 660, 896

definition of, 642, 647
recvfrom function, 331, 451, 613, 620–623

definition of, 613
recvmsg function, 331, 451, 613, 644, 647–648, 651

definition of, 613
recv_ufd function, 650

definition of, 651
RE_DUP_MAX constant, 39, 43, 49
reentrant functions, 330–332
regcomp function, 39, 43
regexec function, 39, 43
<regex.h> header, 29
register variables, 217
regular file, 95
relative pathname, 5, 8, 43–44, 50, 64–65, 135, 553
reliable signals, 335–336
remote mode, pseudo terminal, 741
remove function, 116–119, 121, 125, 452

definition of, 119
remove_job function, 814, 822, 832

definition of, 822
rename function, 119–121, 125, 331, 452

definition of, 119
renameat function, 119–120, 331, 452

definition of, 119
replace_job function, 814, 821, 837

definition of, 821
REPRINT terminal character, 678, 681, 687, 690,

703
reset program, 713, 943
resource limits, 220–225, 233, 252, 322, 382
restarted system calls, 329–330, 342–343, 351, 354,

508, 700
restrict keyword, 26, 93, 123, 146, 148,

152–153, 156, 158–159, 161–163, 190, 192,
195, 346, 350, 385, 400, 409, 414, 428–432, 434,
440–441, 454, 502, 506, 596, 599–600, 605,
608, 613, 624

rewind function, 149, 158, 168, 452
definition of, 158

rewinddir function, 130–135, 452
definition of, 130

rfork function, 229
Ritchie, D. M., xx, 26, 143, 149, 155, 162, 164, 208,

898, 906, 950, 952
RLIM_INFINITY constant, 221, 468
rlimit structure, 220, 224, 467, 907
RLIMIT_AS constant, 221–223
RLIMIT_CORE constant, 221–223, 317

RLIMIT_CPU constant, 221–223
RLIMIT_DATA constant, 221–223
RLIMIT_FSIZE constant, 221–223, 382
RLIMIT_INFINITY constant, 224, 907
RLIMIT_MEMLOCK constant, 221–223
RLIMIT_MSGQUEUE constant, 221, 223
RLIMIT_NICE constant, 221, 223
RLIMIT_NOFILE constant, 221–223, 467, 907
RLIMIT_NPROC constant, 221–223
RLIMIT_NPTS constant, 221, 223
RLIMIT_RSS constant, 222–223
RLIMIT_SBSIZE constant, 222–223
RLIMIT_SIGPENDING constant, 222, 224
RLIMIT_STACK constant, 222, 224
RLIMIT_SWAP constant, 222, 224
RLIMIT_VMEM constant, 222, 224
rlim_t data type, 59, 223
rlogin program, 717, 741–742
rlogind program, 717, 734, 741, 944
rm program, 559, 663
rmdir function, 117, 119–120, 125, 129–130, 331

definition of, 130
robust attribute, 431, 571
R_OK constant, 102–103
root

directory, 4, 8, 24, 139, 141, 233, 252, 283, 910
login name, 16

routed program, 472
rpcbind program, 465
RS-232, 674, 685–686
rsyslogd program, 465, 480
RTSIG_MAX constant, 40, 43
Rudoff, A. M., 157, 291, 470, 589, 952
runacct program, 269

S5 file system, 65
sa program, 269
sac program, 290
Sacksen, J., xxxii
SAF (Service Access Facility), 290
safe, async-signal, 330, 446, 450, 457, 461–462, 927
sa_handler structure, 376
SA_INTERRUPT constant, 351, 354–355
s_alloc function, 584
Salus, P. H., xxxii, 952
SA_NOCLDSTOP constant, 351
SA_NOCLDWAIT constant, 333, 351
SA_NODEFER constant, 351, 354
Santa Cruz Operation, see SCO
SA_ONSTACK constant, 351

982 Index

SA_RESETHAND constant, 351, 354
SA_RESTART constant, 329, 351, 354, 508–509
SA_SIGINFO constant, 336, 350–353, 376, 512
saved

set-group-ID, 56, 98, 257
set-user-ID, 56, 98, 256–260, 288, 337

S_BANDURG constant, 510
sbrk function, 21–23, 208, 221
_SC_AIO_MAX constant, 516
_SC_AIO_PRIO_DELTA_MAX constant, 516
scaling, frequency, 785
scan_configfile function, 803–804

definition of, 803
scandir function, 452
scanf function, 150, 162–163, 452

definition of, 162
_SC_ARG_MAX constant, 43, 47
_SC_ASYNCHRONOUS_IO constant, 57
_SC_ATEXIT_MAX constant, 43
scatter read, 521, 644
_SC_BARRIERS constant, 57
_SC_CHILD_MAX constant, 43, 221
_SC_CLK_TCK constant, 42–43, 280–281
_SC_CLOCK_SELECTION constant, 57
_SC_COLL_WEIGHTS_MAX constant, 43
_SC_DELAYTIMER_MAX constant, 43
SCHAR_MAX constant, 37–38
SCHAR_MIN constant, 37–38
<sched.h> header, 29
scheduling, process, 276–280
_SC_HOST_NAME_MAX constant, 43, 616, 618, 623,

815
Schwartz, A., 181, 250, 298, 949
_SC_IO_LISTIO_MAX constant, 516
_SC_IOV_MAX constant, 43
_SC_JOB_CONTROL constant, 54, 57
_SC_LINE_MAX constant, 43
_SC_LOGIN_NAME_MAX constant, 43
_SC_MAPPED_FILES constant, 57
SCM_CREDENTIALS constant, 649–652
SCM_CREDS constant, 649–650, 652
SCM_CREDTYPE constant, 650, 652
_SC_MEMORY_PROTECTION constant, 57
SCM_RIGHTS constant, 645–646, 650, 652
_SC_NGROUPS_MAX constant, 43
_SC_NZERO function, 276
SCO (Santa Cruz Operation), 35
_SC_OPEN_MAX constant, 43, 52, 221, 907
_SC_PAGESIZE constant, 43, 527
_SC_PAGE_SIZE constant, 43, 527
_SC_READER_WRITER_LOCKS constant, 57
_SC_REALTIME_SIGNALS constant, 57
_SC_RE_DUP_MAX constant, 43

script program, 715, 719–720, 734, 736–737,
741–742

_SC_RTSIG_MAX constant, 43
_SC_SAVED_IDS constant, 54, 57, 98, 256
_SC_SEMAPHORES constant, 57
_SC_SEM_NSEMS_MAX constant, 43
_SC_SEM_VALUE_MAX constant, 43
_SC_SHELL constant, 57
_SC_SIGQUEUE_MAX constant, 43
_SC_SPIN_LOCKS constant, 57
_SC_STREAM_MAX constant, 43
_SC_SYMLOOP_MAX constant, 43
_SC_THREAD_ATTR_STACKADDR constant, 429
_SC_THREAD_ATTR_STACKSIZE constant, 429
_SC_THREAD_DESTRUCTOR_ITERATIONS

constant, 426
_SC_THREAD_KEYS_MAX constant, 426
_SC_THREAD_PROCESS_SHARED constant, 431
_SC_THREADS constant, 57, 384
_SC_THREAD_SAFE_FUNCTIONS constant, 57,

442
_SC_THREAD_STACK_MIN constant, 426
_SC_THREAD_THREADS_MAX constant, 426
_SC_TIMER_MAX constant, 43
_SC_TIMERS constant, 57
_SC_TTY_NAME_MAX constant, 43
_SC_TZNAME_MAX constant, 43
_SC_V7_ILP32_OFF32 constant, 70
_SC_V7_ILP32_OFFBIG constant, 70
_SC_V7_LP64_OFF64 constant, 70
_SC_V7_LP64_OFFBIG constant, 70
_SC_VERSION constant, 50, 54, 57
_SC_XOPEN_CRYPT constant, 57
_SC_XOPEN_REALTIME constant, 57
_SC_XOPEN_REALTIME_THREADS constant, 57
_SC_XOPEN_SHM constant, 57
_SC_XOPEN_VERSION constant, 50, 54, 57
<search.h> header, 30
sed program, 950
Seebass, S., 951
seek function, 67
SEEK_CUR constant, 67, 158, 486, 494–495, 766
seekdir function, 130–135, 452

definition of, 130
SEEK_END constant, 67, 158, 486, 494–495,

771–773, 781
SEEK_SET constant, 67, 158, 172, 486, 494–495,

498, 759, 762–763, 765–766, 768–773,
775–780, 818–819, 930–931

SEGV_ACCERR constant, 353
SEGV_MAPERR constant, 353
select function, 330–331, 343, 451, 481, 501–509,

531–532, 560, 586, 588, 592, 608–609,
626–627, 631–632, 659, 664–666, 668, 718,

Index 983

732, 742, 805–806, 816–817, 928–929, 933,
936, 939, 942

definition of, 502
Seltzer, M., 744, 952
semaphore, 57, 534, 565–571

adjustment on exit, 570–571
locking timing comparison, 571, 583

<semaphore.h> header, 29
sembuf structure, 568–569
sem_close function, 580, 584

definition of, 580
semctl function, 558, 562, 566–568, 570

definition of, 567
sem_destroy function, 582

definition of, 582
SEM_FAILED constant, 584
semget function, 557–558, 566–567

definition of, 567
sem_getvalue function, 582

definition of, 582
semid_ds structure, 566–568
sem_init function, 582

definition of, 582
SEM_NSEMS_MAX constant, 40, 43
semop function, 452, 559, 567–570

definition of, 568
sem_open function, 579–580, 582, 584

definition of, 579
sem_post function, 331, 581–582, 584

definition of, 582
sem_t structure, 582
sem_timedwait function, 451, 581–582

definition of, 581
sem_trywait function, 581, 584
semun union, 567–568
SEM_UNDO constant, 569–570, 580, 583
sem_unlink function, 580–581, 584

definition of, 580
SEM_VALUE_MAX constant, 40, 43, 580
sem_wait function, 451, 581–582, 584

definition of, 581
send function, 331, 451, 592, 610, 616, 626–627

definition of, 610
send_err function, 642–644, 653, 656–657,

668–669, 897
definition of, 642, 644

send_fd function, 642–645, 649, 653, 656–657,
669, 897

definition of, 642, 646, 649
sendmsg function, 331, 451, 611, 613, 644–646,

650, 670
definition of, 611

sendto function, 331, 451, 610–611, 620, 622–623

definition of, 610
S_ERROR constant, 510
serv_accept function, 636–638, 641, 648, 659,

665, 667–668, 897
definition of, 636, 638

servent structure, 599
Service Access Facility, see SAF
Service Management Facility, see SMF
serv_listen function, 636–637, 659, 664–665,

667, 670, 897
definition of, 636–637

session, 295–296
ID, 233, 252, 296, 311, 463–464
leader, 295–297, 311, 318, 464–466, 469,

726–727, 742, 944
process group ID, 304

session structure, 310–311, 318, 464
set

descriptor, 503, 505, 532, 933
signal, 336, 344–345, 532, 933

SETALL constant, 568, 570
setasync function, definition of, 939
setbuf function, 146–147, 150, 171, 175, 247–248,

701, 930
definition of, 146

set_cloexec function, 615, 617, 622, 896
definition of, 480

setegid function, 258
definition of, 258

setenv function, 212, 251, 442
definition of, 212

seteuid function, 258–260
definition of, 258

set_fl function, 86, 482–483, 498, 896, 934
definition of, 85

setgid function, 256, 258, 288, 331, 816
definition of, 256

setgrent function, 183–184, 442, 452
definition of, 183

set-group-ID, 98–99, 102, 107–108, 110, 129, 140,
233, 253, 317, 496, 546, 723

saved, 56, 98, 257
setgroups function, 184

definition of, 184
sethostent function, 452, 597

definition of, 597
sethostname function, 189
setitimer function, 317, 320, 322, 381
_setjmp function, 355, 358
setjmp function, 197, 213, 215–219, 225, 340, 343,

355–356, 358, 381, 924
definition of, 215

<setjmp.h> header, 27

984 Index

setkey function, 442
setlogmask function, 470–471

definition of, 470
setnetent function, 452, 598

definition of, 598
setpgid function, 294, 331

definition of, 294
setpriority function, 277

definition of, 277
setprotoent function, 452, 598

definition of, 598
setpwent function, 180–181, 442, 452

definition of, 180
setregid function, 257–258

definition of, 257
setreuid function, 257

definition of, 257
setrlimit function, 53, 220, 382

definition of, 220
setservent function, 452, 599

definition of, 599
setsid function, 294–295, 297, 310–311, 331,

464–467, 724, 727–728
definition of, 295

setsockopt function, 331, 624–625, 651
definition of, 624

setspent function, 182
definition of, 182

settimeofday function, 190
setuid function, 98, 256, 258, 260, 288, 331, 816

definition of, 256
set-user-ID, 98–99, 102, 104, 107–108, 110, 129, 140,

182, 233, 253, 256–257, 259, 267, 317, 546,
585–586, 653, 924

saved, 56, 98, 256–260, 288, 337
setutxent function, 442, 452
SETVAL constant, 568, 570
setvbuf function, 146–147, 150, 171, 175, 220,

552, 721, 936
definition of, 146

SGI (Silicon Graphics, Inc.), 35
SGID, see set-group-ID
SHA-1, 181
shadow passwords, 181–182, 196, 918
<shadow.h> header, 186
S_HANGUP constant, 510
Shannon, W. A., 525, 949
shared

libraries, 206–207, 226, 753, 920, 947
memory, 534, 571–578

sharing, file, 74–77, 231
shell, see Bourne shell, Bourne-again shell, C shell,

Debian Almquist shell, Korn shell, TENEX C
shell

SHELL environment variable, 211, 288, 737
shell, job-control, 294, 299, 306–307, 325, 358, 377,

379, 734–735
shell layers, 299
shells, 3
S_HIPRI constant, 510
shmat function, 559, 573–576

definition of, 574
shmatt_t data type, 572
shmctl function, 558, 562, 573–575

definition of, 573
shmdt function, 574

definition of, 574
shmget function, 557–558, 572, 575

definition of, 572
shmid_ds structure, 572–574
SHMLBA constant, 574
SHM_LOCK constant, 573
SHM_RDONLY constant, 574
SHM_RND constant, 574
SHRT_MAX constant, 37
SHRT_MIN constant, 37
shutdown function, 331, 592–593, 612

definition of, 592
SHUT_RD constant, 592
SHUT_RDWR constant, 592
SHUT_WR constant, 592
SI_ASYNCIO constant, 353
S_IFBLK constant, 134
S_IFCHR constant, 134
S_IFDIR constant, 134
S_IFIFO constant, 134
S_IFLNK constant, 114, 134
S_IFMT constant, 97
S_IFREG constant, 134
S_IFSOCK constant, 134, 634
sig2str function, 380–381

definition of, 380
SIG2STR_MAX constant, 380
SIGABRT signal, 236, 240–241, 275, 313, 317–319,

365–367, 381, 924
sigaction function, 59, 323, 326, 329–331, 333,

335–336, 349–355, 366, 370, 374, 376, 455,
468, 476, 478–479, 510, 621, 815, 939

definition of, 350
sigaction structure, 350, 354–355, 366, 369, 374,

376, 379, 467, 476, 478, 621, 814
sigaddset function, 331, 344–345, 348, 360,

362–363, 370, 374, 378, 456, 478–479, 701,
815, 933

definition of, 344–345
SIGALRM signal, 313–314, 317, 330–332, 338–340,

342–343, 347, 354, 356–357, 364–365,
373–374, 621

Index 985

sigaltstack function, 351
sig_atomic_t data type, 59, 356–357, 361–363,

732
SIG_BLOCK constant, 346, 348, 360, 362–363, 370,

374, 454, 456, 477, 701, 815
SIGBUS signal, 317, 352–353, 527, 530
SIGCANCEL signal, 317
SIGCHLD signal, 238, 288, 315, 317, 331–335,

351–353, 367–368, 370–371, 377, 471, 501,
546, 723, 923, 939

semantics, 332–335
SIGCLD signal, 317, 332–336
SIGCONT signal, 301, 309, 317, 337, 377, 379
sigdelset function, 331, 344–345, 366, 374, 933

definition of, 344–345
SIG_DFL constant, 323, 333, 350–351, 366,

378–379, 476
sigemptyset function, 331, 344, 348, 354–355,

360, 362–363, 369–370, 374, 378, 456, 467,
476, 478, 621, 701, 815, 933

definition of, 344
SIGEMT signal, 317–318
SIG_ERR constant, 19, 324, 334, 340–343, 348,

354–356, 360–361, 363, 368, 550, 709, 711, 733
sigevent structure, 512
SIGEV_NONE constant, 518
sigfillset function, 331, 344, 366, 477, 933

definition of, 344
SIGFPE signal, 18, 240–241, 317–318, 352–353
SIGFREEZE signal, 317–318
Sigfunc data type, 354–355, 896
SIGHUP signal, 308–309, 317–318, 468, 475–479,

546, 815, 830, 843
SIG_IGN constant, 323, 333, 350, 366, 369, 379,

467, 815
SIGILL signal, 317–318, 351–353, 366
SIGINFO signal, 317–318, 682, 689
siginfo structure, 244, 283, 351–352, 376, 379,

381, 512
SIGINT signal, 18–19, 300, 314, 317, 319–320,

340–341, 347, 359–361, 364–365, 367–370,
372, 455–457, 546, 679, 681, 685, 688–689,
701–702, 709, 930, 932

SIGIO signal, 83, 317, 319, 501, 509–510, 627
SIGIOT signal, 317, 319, 365
sigismember function, 331, 344–345, 347–348,

933
definition of, 344–345

sigjmp_buf data type, 356
SIGJVM1 signal, 317
SIGJVM2 signal, 317
SIGKILL signal, 272, 275, 315, 317, 319, 321, 323,

346, 380, 735

siglongjmp function, 219, 331, 355–358, 365
definition of, 356

SIGLOST signal, 317
SIGLWP signal, 317, 319, 321
signal function, 18–19, 59, 308, 323–326,

329–335, 339–343, 348–349, 354–356,
360–361, 363, 368, 378, 510, 550, 709, 711, 939

definition of, 323, 354
signal mask, 336
signal set, 336, 344–345, 532, 933
<signal.h> header, 27, 240, 314, 324, 344–345,

380
signal_intr function, 330, 355, 364, 382, 508,

733, 896, 930
definition of, 355

signals, 18–19, 313–382
blocking, 335
delivery, 335
generation, 335
generation, pseudo terminal, 741
job-control, 377–379
null, 314, 337
pending, 335
queueing, 336, 349, 376
reliable, 335–336
unreliable, 326–327

signal_thread function, 814, 830
definition of, 830

sigpause function, 331
sigpending function, 331, 335, 347–349

definition of, 347
SIGPIPE signal, 314, 317, 319, 537, 550–551, 553,

556, 587, 611, 815, 936
SIGPOLL signal, 317, 319, 501, 509–510
sigprocmask function, 331, 336, 340, 344,

346–349, 360, 362–364, 366, 370, 374, 378,
453–454, 456, 701

definition of, 346
SIGPROF signal, 317, 320
SIGPWR signal, 317–318, 320
sigqueue function, 222, 331, 353, 376–377

definition of, 376
SIGQUEUE_MAX constant, 40, 43, 376
SIGQUIT signal, 300, 317, 320, 347–349, 361–362,

367, 370, 372, 456–457, 546, 681, 689, 702, 709
SIGRTMAX constant, 376
SIGRTMIN constant, 376
SIGSEGV signal, 314, 317, 320, 332, 336, 352–353,

393, 527
sigset function, 331, 333
sigsetjmp function, 219, 331, 355–358

definition of, 356
SIG_SETMASK constant, 346, 348–349, 360,

362–364, 366, 370, 374, 454, 456, 701

986 Index

sigset_t data type, 59, 336, 344, 347–348,
360–361, 363, 366, 369, 374, 378, 454–456,
701, 813

SIGSTKFLT signal, 317, 320
SIGSTOP signal, 315, 317, 320, 323, 346, 377
SIGSUSP signal, 689
sigsuspend function, 331, 340, 359–365, 374, 451

definition of, 359
SIGSYS signal, 317, 320
SIGTERM signal, 315, 317, 321, 325, 476–479, 709,

732–733, 742, 815, 830, 944
SIGTHAW signal, 317, 321
SIGTHR signal, 319
sigtimedwait function, 451
SIGTRAP signal, 317, 321, 351, 353
SIGTSTP signal, 300, 308, 317, 320–321, 377–379,

680, 682, 701, 735
SIGTTIN signal, 300–301, 304, 309, 317, 321, 377,

379
SIGTTOU signal, 301–302, 317, 321, 377, 379, 691
SIG_UNBLOCK constant, 346, 349, 378, 454
SIGURG signal, 83, 314, 317, 319, 322, 510–511, 626
SIGUSR1 signal, 317, 322, 324, 347, 356–358,

360–361, 363–364, 501
SIGUSR2 signal, 317, 322, 324, 363–364
sigval structure, 352
SIGVTALRM signal, 317, 322
sigwait function, 451, 454–455, 457, 475, 477, 830

definition of, 454
sigwaitinfo function, 451
SIGWAITING signal, 317, 322
SIGWINCH signal, 311, 317, 322, 710–712, 718–719,

741–742
SIGXCPU signal, 221, 317, 322
SIGXFSZ signal, 221, 317, 322, 382, 925
SIGXRES signal, 317, 322
Silicon Graphics, Inc., see SGI
SI_MESGQ constant, 353
Singh, A., 112, 116, 952
Single UNIX Specification, see SUS

Version 3, see SUSv3
Version 4, see SUSv4

single-instance daemons, 473–474
S_INPUT constant, 510
SIOCSPGRP constant, 627
SI_QUEUE constant, 353
S_IRGRP constant, 99, 104, 107, 140, 149, 473, 896
S_IROTH constant, 99, 104, 107, 140, 149, 473, 896
S_IRUSR constant, 99, 104, 107, 140, 149, 169, 473,

818, 896
S_IRWXG constant, 107, 639
S_IRWXO constant, 107, 639
S_IRWXU constant, 107, 584, 639

S_ISBLK function, 96–97, 139
S_ISCHR function, 96–97, 139, 698
S_ISDIR function, 96–97, 133, 698
S_ISFIFO function, 96–97, 535, 552
S_ISGID constant, 99, 107, 140, 498
S_ISLNK function, 96–97
S_ISREG function, 96, 808
S_ISSOCK function, 96–97, 639
S_ISUID constant, 99, 107, 140
S_ISVTX constant, 107–109, 140
SI_TIMER constant, 353
SI_USER constant, 353
S_IWGRP constant, 99, 104, 107, 140, 149
S_IWOTH constant, 99, 104, 107, 140, 149
S_IWUSR constant, 99, 104, 107, 140, 149, 169, 473,

818, 896
S_IXGRP constant, 99, 107, 140, 498, 896
S_IXOTH constant, 99, 107, 140, 896
S_IXUSR constant, 99, 107, 140, 169, 896
size, file, 111–112
size program, 206–207, 226
sizeof operator, 231
size_t data type, 59–60, 71, 507, 772, 906
__SLBF constant, 166
sleep function, 230, 234, 243, 246, 272, 274, 308,

331, 334, 339–342, 348, 372–375, 381–382,
387, 391–392, 439, 451, 460, 504, 532,
606–607, 923, 925, 928, 931, 936

definition of, 373–374, 929
sleep program, 372
sleep2 function, 924
sleep_us function, 532, 896

definition of, 933–934
SMF (Service Management Facility), 293
S_MSG constant, 510
__SNBF constant, 165
Snow Leopard, xxi
snprintf function, 159, 901, 904

definition of, 159
Snyder, G., 951
sockaddr structure, 595–597, 605–607, 609, 622,

625, 635, 637, 639, 641, 800
sockaddr_in structure, 595–596, 603
sockaddr_in6 structure, 595–596
sockaddr_un structure, 634–638, 640–642
sockatmark function, 331, 626

definition of, 626
SOCK_DGRAM constant, 590–591, 602, 608, 612,

621, 623, 632, 941
socket

addressing, 593–605
descriptors, 590–593
I/O, asynchronous, 627

Index 987

I/O, nonblocking, 608–609, 627
mechanism, 95, 534, 587, 589–628
options, 623–625

socket function, 148, 331, 590, 592, 607, 609, 621,
625, 637–638, 640–641, 808

definition of, 590
socketpair function, 148, 331, 629–630, 632,

634, 941
definition of, 630

sockets, UNIX domain, 629–642
timing, 565

socklen_t data type, 606–607, 609, 622, 625, 800
SOCK_RAW constant, 590–591, 602
SOCK_SEQPACKET constant, 590–591, 602, 605,

609, 612, 625
SOCK_STREAM constant, 319, 590–591, 602, 605,

609, 612, 614–616, 618–619, 625, 630, 635,
637, 640, 802, 808, 816

Solaris, xxi–xxii, xxv, xxvii, 3–4, 26–27, 29–30,
35–36, 38, 41, 48–49, 57–60, 62, 64–65, 70, 76,
88, 102, 108–113, 121–122, 129, 131–132, 138,
178, 182, 184–188, 208–209, 211–212, 222,
225, 229, 240, 242, 244–245, 260, 277, 288, 290,
293, 296, 298, 303, 314, 316–323, 329,
334–335, 351, 355, 371, 373, 377, 379–380,
385, 388, 392, 396, 409, 426–427, 432, 439, 471,
485, 496–497, 499, 503, 530–531, 534, 559,
561, 563, 565, 567, 572–573, 576, 592, 594,
607–608, 611–613, 627, 634, 648, 675–678,
684–691, 693, 700, 704, 716–717, 723–724,
726–727, 740–741, 744, 799, 911, 918, 925, 930,
932, 935–936, 951

SOL_SOCKET constant, 624–625, 645–646,
650–652

solutions to exercises, 905–945
SOMAXCONN constant, 608
SO_OOBINLINE constant, 626
SO_PASSCRED constant, 651
SO_REUSEADDR constant, 625
source code, availability, xxx
S_OUTPUT constant, 510
Spafford, G., 181, 250, 298, 949
spawn function, 234
<spawn.h> header, 30
spin locks, 417–418
spooling, printer, 793–795
sprintf function, 159, 549, 616, 622, 640, 655,

657, 659, 668–669, 759, 772–773, 803,
818–819, 822–823, 825–827, 833–835, 837,
845, 945

definition of, 159
spwd structure, 918
squid login name, 178

S_RDBAND constant, 510
S_RDNORM constant, 510
sscanf function, 162, 549, 551, 802–803

definition of, 162
ssh program, 293
sshd program, 465
SSIZE_MAX constant, 38, 41, 71
ssize_t data type, 39, 59, 71
stack, 205, 215
stackaddr attribute, 427
stacksize attribute, 427
standard error, 8, 145, 617
standard error routines, 898–904
standard input, 8, 145
standard I/O

alternatives, 174–175
buffering, 145–147, 231, 235, 265, 367, 552, 721,

752
efficiency, 153–156
implementation, 164–167
library, 10, 143–175
streams, 143–144
versus unbuffered I/O, timing, 155

standard output, 8, 145, 617
standards, 25–33

differences, 58–59
START terminal character, 678, 680–682, 686, 689,

693
stat function, 4, 7, 65, 93–95, 97, 99, 107,

121–122, 124, 126–128, 131, 138, 140–141,
170, 331, 452, 586, 592, 628, 639–640, 670, 698,
908, 910, 942

definition of, 93
stat structure, 93–96, 98, 111, 114, 124, 140, 147,

167, 170, 498, 518, 529, 535, 552, 557, 586, 638,
697–698, 757, 807, 832

static variables, 219
STATUS terminal character, 678, 682, 687, 689, 703
<stdarg.h> header, 27, 162–163, 755, 758
<stdbool.h> header, 27
__STDC_IEC_559_ _ constant, 31
<stddef.h> header, 27, 635
stderr variable, 145, 483, 731, 901
STDERR_FILENO constant, 62, 145, 618–619, 643,

648, 652, 729
stdin variable, 10, 145, 154, 214, 216, 550–551,

654
STDIN_FILENO constant, 9, 62, 67, 72, 145, 308,

378, 483, 539, 544, 549–550, 619, 655–656,
679, 684, 709, 711, 728, 730–732, 739–740

<stdint.h> header, 27, 595
<stdio.h> header, 10, 27, 38, 51, 145, 147, 151,

164, 168, 694, 755, 895

988 Index

<stdlib.h> header, 27, 208, 895
stdout variable, 10, 145, 154, 247–248, 275, 901,

921, 930
STDOUT_FILENO constant, 9, 62, 72, 145, 230, 235,

378, 483, 537, 544, 549–550, 614, 618–620,
654–656, 729, 733, 739–740, 921

Stevens, D. A., xxxii
Stevens, E. M., xxxii
Stevens, S. H., xxxii
Stevens, W. R., xx, xxv–xxvi, xxxii, 157, 291, 470,

505, 589, 717, 793, 952
sticky bit, 107–109, 117, 140
stime function, 190
Stonebraker, M. R., 743, 953
STOP terminal character, 678, 680–682, 686, 689,

693
str2sig function, 380

definition of, 380
strace program, 497
Strang, J., 712, 953
strchr function, 767
stream orientation, 144
STREAM_MAX constant, 38, 40, 43, 49
STREAMS, xxii, 88, 143, 501–502, 506, 508, 510,

534, 560, 565, 648, 716–717, 722, 726, 740
streams, memory, 171–174
STREAMS module

ldterm , 716, 726
pckt , 716, 740
ptem , 716, 726
ttcompat , 716, 726

streams, standard I/O, 143–144
STREAMS-based pipes, mounted, 534

timing, 565
strerror function, 15–16, 24, 380, 442, 452, 471,

474, 478–479, 600, 615–618, 621–622, 657,
669, 823–827, 830, 833–834, 842, 899, 901,
904, 906, 931

definition of, 15
strerror_r function, 443, 452
strftime function, 190, 192–196, 264, 408, 452,

919
definition of, 192

strftime_l function, 192
definition of, 192

<string.h> header, 27, 895
<strings.h> header, 29
strip program, 920
strlen function, 12, 231, 945
strncasecmp function, 840
strncpy function, 809
Strong, H. R., 744, 750, 949
<stropts.h> header, 508, 510

strptime function, 195
definition of, 195

strsignal function, 380, 830
definition of, 380

strtok function, 442, 657–658
strtok_r function, 443
strtol function, 633
stty program, 301, 691–692, 702, 713, 943
Stumm, M., 174, 531, 950
S_TYPEISMQ function, 96
S_TYPEISSEM function, 96
S_TYPEISSHM function, 96
su program, 472
submit_file function, 807, 809, 811

definition of, 809
SUID, see set-user-ID
Sun Microsystems, xxi–xxii, xxvii, 33, 35, 76, 740,

953
SunOS, xxxi, 33, 206, 330, 354
superuser, 16
supplementary group ID, 18, 39, 98, 101, 108, 110,

183–184, 233, 252, 258
SUS (Single UNIX Specification), xxi, xxvi, 28,

30–33, 36, 50, 53–54, 57–58, 60–61, 64, 69, 78,
88, 94, 105, 107, 109, 131, 136, 143, 157, 163,
168–169, 180, 183, 190–191, 196, 211–212,
220–221, 234, 239, 244–245, 262, 293, 296, 311,
315, 322, 330, 333, 352, 354, 410, 425, 429–431,
442, 469–472, 485, 496, 501, 507, 509, 521,
527–528, 533–534, 559, 561, 565–566,
572–573, 583, 596, 607, 610, 612, 623, 627, 645,
662, 674, 678, 683, 722–724, 744, 910, 950, 953

SUSP terminal character, 678, 680, 682, 688, 701
SUSv3 (Single UNIX Specification, Version 3), 32
SUSv4 (Single UNIX Specification, Version 4), 32,

88, 132, 143, 153, 168–169, 189, 314, 319–320,
336, 375–376, 384, 442, 501, 509–510, 525,
533, 571, 579

SVID (System V Interface Definition), xix, 32–33,
948

SVR2, 65, 187, 317, 329, 336, 340–341, 712, 948
SVR3, 76, 129, 201, 299, 313, 317, 319, 326, 329, 333,

336, 496, 502, 507, 898, 948
SVR3.0, xxxi
SVR3.1, xxxi
SVR3.2, xxxi, 36, 81, 267
SVR4, xxii, xxxi–xxxii, 3, 21, 33, 35–36, 48, 63, 65,

76, 121, 187, 209, 290, 296, 299, 310, 313, 317,
329, 333, 336, 469, 502, 507–508, 521, 712, 722,
744, 948, 953

swapper process, 227
S_WRBAND constant, 510
S_WRNORM constant, 510

Index 989

symbolic link, 55, 94–95, 110–111, 114, 118,
120–123, 131, 137, 141, 186, 908–909

symlink function, 123–124, 331, 452
definition of, 123

symlinkat function, 123–124, 331, 452
definition of, 123

SYMLINK_MAX constant, 39, 44, 49
SYMLOOP_MAX constant, 40, 43, 48–49
sync function, 61, 81, 452

definition of, 81
sync program, 81
synchronization mechanisms, 86–87
synchronous write, 63, 86–87
<sys/acct.h> header, 269
sysconf function, 20, 37, 39, 41–48, 50–54, 57,

59–60, 69, 98, 201, 221, 256, 276, 280–281,
384, 425–426, 429, 431, 442, 516, 527, 616, 618,
623, 800, 815, 907

definition of, 42
sysctl program, 315, 559
sysdef program, 559
<sys/disklabel.h> header, 88
<sys/filio.h> header, 88
<sys/ipc.h> header, 30, 558
<sys/iso/signal_iso.h> header, 314
syslog function, 452, 465, 468–476, 478–480,

615–619, 622–623, 901, 904, 928
definition of, 470

syslogd program, 470–471, 473, 475, 479–480
<syslog.h> header, 30
<sys/mkdev.h> header, 138
<sys/mman.h> header, 29
<sys/msg.h> header, 30
<sys/mtio.h> header, 88
<sys/param.h> header, 49, 51
<sys/resource.h> header, 30
<sys/select.h> header, 29, 501, 504, 932–933
<sys/sem.h> header, 30, 568
<sys/shm.h> header, 30
sys_siglist variable, 379
<sys/signal.h> header, 314
<sys/socket.h> header, 29, 608
<sys/sockio.h> header, 88
<sys/stat.h> header, 29, 97
<sys/statvfs.h> header, 29
<sys/sysmacros.h> header, 138
system calls, 1, 21

interrupted, 327–330, 343, 351, 354–355, 365,
508

restarted, 329–330, 342–343, 351, 354, 508, 700
tracing, 497
versus functions, 21–23

system function, 23, 129, 227, 249, 264–269,
281–283, 349, 367–372, 381, 451, 538, 542,

923, 936
definition of, 265–266, 369
return value, 371

system identification, 187–189
system process, 228, 337
System V, xxv, 87, 464, 466, 469, 475, 482, 485,

500–501, 506, 509–510, 722, 726
System V Interface Definition, see SVID
<sys/time.h> header, 30, 501
<sys/times.h> header, 29
<sys/ttycom.h> header, 88
<sys/types.h> header, 29, 58, 138, 501, 557, 933
<sys/uio.h> header, 30
<sys/un.h> header, 29, 634
<sys/utsname.h> header, 29
<sys/wait.h> header, 29, 239

TAB0 constant, 691
TAB1 constant, 691
TAB2 constant, 691
TAB3 constant, 690–691
TABDLY constant, 676, 684, 689–691
Tankus, E., xxxii
tar program, 127, 135, 142, 910–911
<tar.h> header, 29
tcdrain function, 322, 331, 451, 677, 693

definition of, 693
tcflag_t data type, 674
tcflow function, 322, 331, 677, 693

definition of, 693
tcflush function, 145, 322, 331, 673, 677, 693

definition of, 693
tcgetattr function, 331, 674, 677, 679, 683–684,

691–692, 695, 701, 705–707, 722, 730–731
definition of, 683

tcgetpgrp function, 298–299, 331, 674, 677
definition of, 298

tcgetsid function, 298–299, 674, 677
definition of, 299

TCIFLUSH constant, 693
TCIOFF constant, 693
TCIOFLUSH constant, 693
TCION constant, 693
TCMalloc, 210, 949
TCOFLUSH constant, 693
TCOOFF constant, 693
TCOON constant, 693
TCSADRAIN constant, 683
TCSAFLUSH constant, 679, 683, 701, 705–707
TCSANOW constant, 683–684, 728, 731

990 Index

tcsendbreak function, 322, 331, 677, 682,
693–694

definition of, 693
tcsetattr function, 322, 331, 673–674, 677, 679,

683–684, 691–692, 701, 705–707, 722, 728,
731, 738

definition of, 683
tcsetpgrp function, 298–299, 301, 303, 322, 331,

674, 677
definition of, 298

tee program, 554–555
tell function, 67
TELL_CHILD function, 247–248, 362, 491, 498,

532, 539, 541, 577, 898
definition of, 363, 540

telldir function, 130–135
definition of, 130

TELL_PARENT function, 247, 362, 491, 532, 539,
541, 577, 898, 934

definition of, 363, 540
TELL_WAIT function, 247–248, 362, 491, 498, 532,

539, 577, 898, 934
definition of, 363, 540

telnet program, 292–293, 500, 738–739, 742
telnetd program, 291–292, 500–501, 717, 734,

923, 944
tempnam function, 169
TENEX C shell, 3
TERM environment variable, 211, 287, 289
termcap , 712–713, 953
terminal

baud rate, 692–693
canonical mode, 700–703
controlling, 63, 233, 252, 270, 292, 295–298, 301,

303–304, 306, 309, 311–312, 318, 321, 377, 463,
465–466, 469, 480, 680, 685, 691, 694, 700, 702,
716, 724, 726–727, 898, 953

identification, 694–700
I/O, 671–713
line control, 693–694
logins, 285–290
mode, cbreak, 672, 704, 708, 713
mode, cooked, 672
mode, raw, 672, 704, 708, 713, 732, 734
noncanonical mode, 703–710
options, 683–691
parity, 688
process group ID, 303, 463
special input characters, 678–682
window size, 311, 322, 710–712, 718, 727,

741–742
termination, process, 198–202
terminfo , 712–713, 949, 953

termio structure, 674
<termio.h> header, 674
termios structure, 64, 311, 674, 677–679,

683–684, 692–693, 695, 701, 703–706, 708,
722, 727, 730–732, 738, 741–742, 897, 944

<termios.h> header, 29, 88, 674
text segment, 204
<tgmath.h> header, 27
Thompson, K., 75, 181, 229, 743, 951–953
thread–fork interactions, 457–461
thread_init function, 445
threads, 14, 27, 229, 383–423, 578

cancellation options, 451–453
concepts, 383–385
control, 425–462
creation, 385–388
I/O, 461–462
reentrancy, 442–446
synchronization, 397–422
termination, 388–397

thread–signal interactions, 453–457
thread-specific data, 446–451
thundering herd, 927
tick, clock, 20, 42–43, 49, 59, 270, 280
time

and date functions, 189–196
calendar, 20, 24, 59, 126, 189, 191–192, 264, 270
process, 20, 24, 59, 280–282
values, 20

time program, 20
TIME terminal value, 687, 703–704, 708, 713, 943
time function, 189–190, 194, 264, 331, 357,

639–640, 919, 929
definition of, 189

<time.h> header, 27, 59
timeout function, 439, 462
TIMER_ABSTIME constant, 375
timer_getoverrun function, 331
timer_gettime function, 331
TIMER_MAX constant, 40, 43
timer_settime function, 331, 353
times, file, 124–125, 532
times function, 42, 59, 280–281, 331, 522

definition of, 280
timespec structure, 94, 126, 128, 189–190, 375,

407–408, 413–414, 437–438, 506, 832
time_t data type, 20, 59, 94, 189, 192, 196, 906
timeval structure, 190, 414, 421, 437, 503, 506,

805–806, 929, 933
timing

full-duplex pipes, 565
message queues, 565
read buffer sizes, 73

Index 991

read/write versus mmap , 530
standard I/O versus unbuffered I/O, 155
STREAMS-based pipes, 565
synchronization mechanisms, 86–87
UNIX domain sockets, 565
writev versus other techniques, 522

timing comparison, mutex, 571
record locking, 571
semaphore locking, 571, 583

TIOCGWINSZ constant, 710–711, 719, 730, 897
TIOCPKT constant, 740
TIOCREMOTE constant, 741
TIOCSCTTY constant, 297–298, 727–728
TIOCSIG constant, 741
TIOCSIGNAL constant, 741
TIOCSWINSZ constant, 710, 718, 728, 741
tip program, 713
tm structure, 191, 194, 408, 919
TMPDIR environment variable, 211
tmpfile function, 167–171, 366, 452

definition of, 167
TMP_MAX constant, 38, 168
tmpnam function, 38, 167–171, 442

definition of, 167
tms structure, 280–281
TOCTTOU error, 65, 250, 953
Torvalds, L., 35
TOSTOP constant, 676, 691
touch program, 127
tracing system calls, 497
transactions, database, 952
TRAP_BRKPT constant, 353
TRAP_TRACE constant, 353
tread function, 800, 805–806, 825, 838–839

definition of, 805
treadn function, 800, 806, 824

definition of, 806
Trickey, H., 229, 952
truncate function, 112, 121, 125, 474

definition of, 112
truncation

file, 112
filename, 65–66
pathname, 65–66

truss program, 497
ttcompat STREAMS module, 716, 726
tty structure, 311
tty_atexit function, 705, 731, 897

definition of, 708
tty_cbreak function, 704, 709, 897

definition of, 705
ttymon program, 290
ttyname function, 137, 276, 442, 452, 695–696, 699

definition of, 695, 698
TTY_NAME_MAX constant, 40, 43, 49
ttyname_r function, 443, 452
tty_raw function, 704, 709, 713, 731, 897

definition of, 706
tty_reset function, 704, 709, 897

definition of, 707
tty_termios function, 705, 897

definition of, 708
type attribute, 431
typescript file, 719, 737
TZ environment variable, 190, 192, 195–196, 211,

919
TZNAME_MAX constant, 40, 43, 49
tzset function, 452

Ubuntu, xxii, 7, 26, 35, 290
UCHAR_MAX constant, 37–38
ucontext_t structure, 352
ucred structure, 649, 651
UFS file system, 49, 57, 65, 113, 116, 129
UID, see user ID
uid_t data type, 59
uint16_t data type, 595
uint32_t data type, 595
UINT_MAX constant, 37–38
ulimit program, 53, 222
ULLONG_MAX constant, 37
ULONG_MAX constant, 37
UltraSPARC, xxii, xxvii
umask function, 104–107, 222, 331, 466–467

definition of, 104
umask program, 105, 141
uname function, 187, 196, 331

definition of, 187
uname program, 188, 196
unbuffered I/O, 8, 61–91
unbuffered I/O timing, standard I/O versus, 155
ungetc function, 151–152, 452

definition of, 151
ungetwc function, 452
uninitialized data segment, 205
<unistd.h> header, 9, 29, 53, 62, 110, 442, 501,

755, 895
UNIX Architecture, 1–2
UNIX domain sockets, 629–642

timing, 565
UNIX System implementations, 33
Unix-to-Unix Copy, see UUCP
UnixWare, 35

992 Index

unlink function, 114, 116–119, 121–122, 125, 141,
169–170, 331, 366, 452, 497, 553, 637, 639, 641,
823, 826–827, 837, 909, 911, 937, 942

definition of, 117
unlinkat function, 116–119, 331, 452

definition of, 117
un_lock function, 489, 759–760, 762, 768,

770–771, 773, 777–778, 780, 897
unlockpt function, 723–725

definition of, 723
Unrau, R., 174, 531, 950
unreliable signals, 326–327
unsetenv function, 212, 442

definition of, 212
update program, 81
update_jobno function, 814, 819, 832, 843

definition of, 819
Upstart, 290
uptime program, 614–615, 617, 619–620,

622–623, 628
__USE_BSD constant, 473
USER environment variable, 210, 288
user ID, 16, 255–260

effective, 98–99, 101–102, 106, 110, 126, 140,
228, 233, 253, 256–260, 276, 286, 288, 337, 381,
558, 562, 568, 573, 586–587, 637, 640, 809, 918

real, 39–40, 43, 98–99, 102, 221, 228, 233,
252–253, 256–260, 270, 276, 286, 288, 337,
381, 585, 924

USHRT_MAX constant, 37
usleep function, 532, 934
UTC (Coordinated Universal Time), 20, 189, 192,

196
utime function, 127, 331, 910
UTIME_NOW constant, 126
utimensat function, 125–128, 331, 452, 910

definition of, 126
UTIME_OMIT constant, 126–127
utimes function, 125–128, 141, 331, 452, 910

definition of, 127
utmp file, 186–187, 276, 312, 734, 923, 930
utmp structure, 187
utmpx file, 187
<utmpx.h> header, 30
utsname structure, 187–188, 196
UUCP (Unix-to-Unix Copy), 188
uucp program, 500

V7, 329, 726
va_arg function, 758
va_end function, 758, 899–903

va_list data type, 758, 899–903
/var/account/acct file, 269
/var/adm/pacct file, 269
<varargs.h> header, 162
variables

automatic, 205, 215, 217, 219, 226
global, 219
register, 217
static, 219
volatile, 217, 219, 340, 357

/var/log/account/pacct file, 269
/var/log/wtmp file, 187
/var/run/utmp file, 187
va_start function, 758, 899–903
VDISCARD constant, 678
vdprintf function, 161, 452

definition of, 161
VDSUSP constant, 678
VEOF constant, 678–679, 704
VEOL constant, 678, 704
VEOL2 constant, 678
VERASE constant, 678
VERASE2 constant, 678
vfork function, 229, 234–236, 283, 921–922
vfprintf function, 161, 452

definition of, 161
vfscanf function, 163

definition of, 163
vfwprintf function, 452
vi program, 377, 497, 499, 672, 711–713, 943
VINTR constant, 678–679
vipw program, 179
VKILL constant, 678
VLNEXT constant, 678
VMIN constant, 703–705, 707
v-node, 74–76, 78, 136, 312, 642, 907, 950
vnode structure, 311–312
Vo, K. P., 135, 174, 949–950, 953
volatile variables, 217, 219, 340, 357
vprintf function, 161, 452

definition of, 161
VQUIT constant, 678
vread function, 525
VREPRINT constant, 678
vscanf function, 163

definition of, 163
vsnprintf function, 161, 901

definition of, 161
vsprintf function, 161, 471

definition of, 161
vsscanf function, 163

definition of, 163
VSTART constant, 678

Index 993

VSTATUS constant, 678
VSTOP constant, 678
VSUSP constant, 678
vsyslog function, 472

definition of, 472
VT0 constant, 691
VT1 constant, 691
VTDLY constant, 676, 684, 689, 691
VTIME constant, 703–705, 707
VWERASE constant, 678
vwprintf function, 452
vwrite function, 525

wait function, 231–232, 237–246, 249, 255, 264,
267, 280, 282–283, 301, 317, 328–329, 331,
333–335, 351, 368, 371–372, 451, 471, 499,
546, 588, 936

definition of, 238
Wait, J. W., xxxii
wait3 function, 245

definition of, 245
wait4 function, 245

definition of, 245
WAIT_CHILD function, 247, 362, 491, 532, 539, 577,

898, 934
definition of, 363, 540

waitid function, 244–245, 283, 451
definition of, 244

WAIT_PARENT function, 247–248, 362, 491, 498,
532, 539, 577, 898

definition of, 363, 540
waitpid function, 11–13, 19, 23, 237–245, 254,

261, 265–267, 282, 285, 294, 301, 315, 329, 331,
370–371, 451, 498, 538, 545–546, 587–588,
618, 935, 937, 939

definition of, 238
wall program, 723
wc program, 112
<wchar.h> header, 27, 144
wchar_t data type, 59
WCONTINUED constant, 242, 244
WCOREDUMP function, 239–240
wcrtomb function, 442
wcsftime function, 452
wcsrtombs function, 442
wcstombs function, 442
wctomb function, 442
<wctype.h> header, 27
Weeks, M. S., 206, 949
Wei, J., 65, 953
Weinberger, P. J., 76, 262, 743, 947, 953
Weinstock, C. B., 953

WERASE terminal character, 678, 682, 685–687,
703

WEXITED constant, 244
WEXITSTATUS function, 239–240
who program, 187, 734
WIFCONTINUED function, 239
WIFEXITED function, 239–240
WIFSIGNALED function, 239–240
WIFSTOPPED function, 239–240, 242
Williams, T., 310, 953
Wilson, G. A., xxxii
window size

pseudo terminal, 741
terminal, 311, 322, 710–712, 718, 727, 741–742

winsize structure, 311, 710–711, 727, 730, 732,
742, 897, 944

Winterbottom, P., 229, 952
WNOHANG constant, 242, 244
WNOWAIT constant, 242, 244
W_OK constant, 102
Wolff, R., xxxii
Wolff, S., xxxii
WORD_BIT constant, 38
wordexp function, 452
<wordexp.h> header, 29
worker_thread structure, 812–813, 828–829
working directory, see current directory
worm, Internet, 153
wprintf function, 452
Wright, G. R., xxxii
write

delayed, 81
gather, 521, 644
synchronous, 63, 86–87

write program, 723
write function, 8–10, 20–21, 59, 61, 63–64,

68–69, 72, 77–79, 86–88, 90, 125, 145–146,
156, 167, 174, 230–231, 234, 247, 328–329,
331, 342–343, 378, 382, 451, 474, 482–484,
491, 495–498, 502, 505, 509, 513, 517,
522–526, 530–532, 537–538, 540, 549–551,
553, 555, 560, 565, 587, 590, 592, 610, 614, 620,
643, 654–655, 672, 752, 760, 773, 810, 819, 826,
836, 907–908, 921, 925, 934, 936–937, 945

definition of, 72
write_lock function, 489, 493, 498, 818, 897
writen function, 523–524, 644, 732–733, 738,

810–811, 824–827, 836, 896
definition of, 523–524

writev function, 41, 43, 329, 451, 481, 521–523,
531–532, 592, 611, 644, 655, 660, 752, 771, 773,
832, 836

definition of, 521

994 Index

writew_lock function, 489, 491, 759, 763, 769,
771–772, 777, 787, 897

wscanf function, 452
WSTOPPED constant, 244
WSTOPSIG function, 239–240
WTERMSIG function, 239–240
wtmp file, 186–187, 312, 923
Wulf, W. A., 953
WUNTRACED constant, 242

x86, xxi
xargs program, 252
XCASE constant, 691
Xenix, 33, 485, 726
xinetd program, 293
X_OK constant, 102
X/Open, xxvi, 31, 953
X/Open Curses, 32
X/Open Portability Guide, 31–32

Issue 3, see XPG3
Issue 4, see XPG4

_XOPEN_CRYPT constant, 31, 57
_XOPEN_IOV_MAX constant, 41
_XOPEN_NAME_MAX constant, 41
_XOPEN_PATH_MAX constant, 41
_XOPEN_REALTIME constant, 31, 57
_XOPEN_REALTIME_THREADS constant, 31, 57
_XOPEN_SHM constant, 57
_XOPEN_SOURCE constant, 57–58
_XOPEN_UNIX constant, 30–31, 57
_XOPEN_VERSION constant, 57
XPG3 (X/Open Portability Guide, Issue 3), xxxi,

33, 953
XPG4 (X/Open Portability Guide, Issue 4), 32, 54
XSI, 30–31, 53–54, 57, 94, 107, 109, 131–132, 143,

161, 163, 168–169, 180, 183, 211–212, 220, 222,
239, 242, 244–245, 252, 257, 276, 293, 315, 317,
322, 329, 333, 350–352, 377, 429, 431, 442,
469–472, 485, 521, 526, 528, 534, 553,
562–563, 566, 571, 576, 578, 587–588, 666,
676, 685, 687, 689–691, 722, 724, 744, 910

XSI IPC, 556–560
XTABS constant, 690–691

Yigit, O., 744, 952

zombie, 237–238, 242, 283, 333, 351, 923

	Contents
	Foreword to the Second Edition
	Preface
	Preface to the Second Edition
	Preface to the First Edition
	Chapter 11. Threads
	11.1 Introduction
	11.2 Thread Concepts
	11.3 Thread Identification
	11.4 Thread Creation
	11.5 Thread Termination
	11.6 Thread Synchronization
	11.6.1 Mutexes
	11.6.2 Deadlock Avoidance
	11.6.3 pthread_mutex_timedlock Function
	11.6.4 Reader–Writer Locks
	11.6.5 Reader–Writer Locking with Timeouts
	11.6.6 Condition Variables
	11.6.7 Spin Locks
	11.6.8 Barriers
	11.7 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

