Services make up 80 percent of the world economy and comprise more than half of U.S. Department of Defense acquisitions. The primary purpose of the CMMI for Services (CMMI-SVC) model, which is the basis of this book, is to guide service providers as they improve the way they do their work—their processes. Improved processes result in improved service performance, customer satisfaction, and profitability. When organizations using CMMI-SVC make improvements in their performance, they can ultimately improve the health of the world economy.

CMMI (Capability Maturity Model Integration) models are collections of effective practices that help organizations to improve their processes. The CMMI-SVC model, like all of the CMMI Product Suite, is developed by a team from industry, government, and the Software Engineering Institute (SEI). Hundreds of reviewers suggest new content and changes for the model. Early adopters pilot the model and give further feedback. A network of hundreds of SEI partners and thousands of users apply the model to their work and report their experience and results, further improving model content. In this way, the CMMI-SVC model represents the ongoing consensus of thousands of practitioners about how to provide superior service.

1. There are CMMI models that focus on the development of products and services (CMMI for Development) and on the acquisition of products and services (CMMI for Acquisition). See the CMMI website for more information about these members of the CMMI Product Suite (www.sei.cmu.edu/cmmi/).
Purpose

This book provides guidance on how all types of service provider organizations can establish, manage, and improve services that meet the needs of their customers and end users.

This guidance includes the following:

• Delivering services that meet the terms of service agreements
• Managing the organization’s capacity to provide services and ensure the availability of services
• Addressing service incidents effectively
• Establishing standard services and service levels that meet the strategic needs of the organization as well as the needs of customers and end users
• Ensuring the continuity of services in the face of disaster

By integrating these and other practices, CMMI-SVC helps service providers to establish, deliver, and manage services.

Organization of This Book

This book is organized into three main parts:

• Part One—About CMMI for Services
• Part Two—Generic Goals and Generic Practices, and the Process Areas
• Part Three—The Appendices and Glossary

Part One, “About CMMI for Services,” consists of six chapters.

• Chapter 1, “Introduction,” offers a broad view of CMMI and the Services constellation,² concepts of process improvement, the history of models used for process improvement, and key concepts of CMMI for Services.
• Chapter 2, “Process Area Components,” describes all of the components of the CMMI-SVC process areas.
• Chapter 3, “How to Start Using CMMI,” describes the important roles needed for implementing a CMMI-based process improvement program, explains how appraisals can be used, identifies training that can help, and provides tips for getting started using CMMI.

---

² A “constellation” is defined as a collection of components that are used to construct models, training materials, and appraisal materials in an area of interest (e.g., services, development).
Chapter 4, “Achieving Process Improvement That Lasts,” explains how selected practices in all CMMI models enable the organization to make improvement part of how it does business, including descriptions of generic goals, generic practices, maturity levels, capability levels, and equivalent staging.

Chapter 5, “Relationships among Process Areas,” describes how process areas interrelate and provides insight into the interactions of the CMMI-SVC process areas.

Chapter 6, “Essays about CMMI for Services,” consists of invited essays from contributing authors. The essays cover early use of CMMI-SVC, unusual applications, use of CMMI-SVC in new domains, and solutions from field use to challenges such as including other frameworks in appraisals.


Part Two contains 25 sections. The first section contains the generic goals and practices. The remaining 24 sections each represent one of the CMMI-SVC process areas. Process areas contain effective practices covering topics ranging from configuration management to service delivery.

To make these process areas easy to find, they are organized alphabetically by process area acronym. Most CMMI users quickly learn the process area acronyms and abandon their longer names for their shorter abbreviations. Here’s an example in which the order of the process areas by full process area title versus their abbreviations is different: Supplier Agreement Management (SAM) appears before Service Delivery (SD). Each section contains goals, practices, and examples in a format that enables you to locate information quickly.

Part Three, “The Appendices and Glossary,” consists of four sections:

- Appendix A, “References,” contains references you can use to locate documented sources of information, such as reports, process improvement models, industry standards, and books that are related to CMMI-SVC.
- Appendix B, “Acronyms,” defines the acronyms used in the model.

---

3. A process area is a cluster of related best practices in an area that, when implemented collectively, satisfies a set of goals considered important for making significant improvement in that area. This concept is covered in detail in Chapter 2.

Appendix D, “Glossary,” defines many of the terms used in CMMI-SVC.

**Extras in This Book**

Readers who are familiar with the model and with prior CMMI books will find these changes and extras in this book on CMMI-SVC. We extensively revised Part One to add more material on service concepts, including a discussion of lifecycles in service environments, as well as invited essays on the use and application of CMMI-SVC. We also clarified and shortened the material on generic goals and practices, and updated the material on getting started and sustaining improvement. In Part Two, we added margin notes to all the process areas. These notes describe why the practices in a process area are valuable and rephrase what the process area is about in plainer language than the formal model language. We also added author notes in Part Two to amplify service concepts or to explain how to apply core model concepts in a service context.

**How to Use This Book**

Whether you are new to process improvement, new to CMMI, or already familiar with CMMI, Part One can help you understand why CMMI-SVC is the model to use for improving your service processes. Over time, you will use Part Two the most because it contains the practices of the model. The primary value of Part Three is the glossary.

**Readers New to Process Improvement**

If you are new to process improvement or new to the Capability Maturity Model (CMM) concept, we suggest that you read Chapter 1 first. Chapter 1 contains an overview of CMMI-based process improvement as well as descriptions of the concepts and conventions used in the rest of the CMMI-SVC model.

Next, skim Part Two, including generic goals and practices as well as the process areas, to get a feel for the scope of the practices contained in the model. Pay close attention to the purpose and introductory notes at the beginning of each process area. Also pay attention to how information is organized and presented in Part Two.
In Part Three, skim the references in Appendix A to see if additional sources would be beneficial to read before using CMMI-SVC. Read through the acronyms and glossary to become familiar with the language of CMMI. Then, go back and read the details of Part Two.

**Readers Experienced with Process Improvement**
If you are new to CMMI but have experience with other process improvement models, such as Information Technology Infrastructure Library (ITIL) or International Organization for Standardization (ISO) 9000, you will recognize similarities in their structure and content.

We recommend that you read Part One to understand how CMMI is different from other process improvement models. If you have experience with other models, you may want to select which sections to read first. Read Part Two, looking for practices you recognize from other models that you have used, and note variations. You may notice a different level of detail in CMMI than in the models you are accustomed to using.

Next, review the glossary and the “Important CMMI-SVC Concepts” section in Chapter 1 to understand how some terminology may differ from that used in the process improvement models you know. Concepts may be shared by CMMI and other standards, but they may use different terms to name them.

**Readers Familiar with CMMI**
If you have reviewed or used a CMMI model before, you will quickly recognize the CMMI concepts discussed and many of the practices presented.

Review the process areas specific to CMMI-SVC first:

- Capacity and Availability Management (CAM)
- Incident Resolution and Prevention (IRP)
- Service Continuity (SCON)
- Service Delivery (SD)
- Service System Development (SSD)
- Service System Transition (SST)
- Strategic Service Management (STSM)

Then go back and review the other process areas you are already familiar with and see the guidance for applying these practices to a service environment.
User Feedback and Questions

Your suggestions for improving CMMI are continually reviewed and used to make changes to models, appraisal methods, and training materials each time they are released. For information on how to provide feedback, see the CMMI website at www.sei.cmu.edu/cmmi/models/change-requests.html. If you have questions about CMMI, send e-mail to cmmi-comments@sei.cmu.edu.
The service industry is a significant driver for worldwide economic growth. Guidance on developing and improving service processes is a critical contributor to improved performance, customer satisfaction, and profitability. The CMMI for Services (CMMI-SVC) model was designed to begin meeting that need for guidance within the CMMI Product Suite.

All CMMI-SVC model practices focus on the activities of the service provider organization. Seven process areas focus on practices specific to services, addressing capacity and availability management, service continuity, service delivery, incident resolution and prevention, service transition, service system development, and strategic service management processes. The remaining 17 process areas focus on practices that any organization should master to meet its business objectives.

Do You Need CMMI?

CMMI is being adopted by organizations all over the world. These organizations are large and small, government and private industry, and represent industries ranging from financial to health care, manufacturing to software, education to business services. What do all of these organizations have in common?

Do You Have These Common Problems?

Many organizations accept common problems as “normal,” and they don’t try to address them or eliminate them. What about your organization? Are you settling for less? Take a look through the following list and see if you have accepted problems that you can solve by adopting CMMI.
• Plans are made but not necessarily followed.
• Work is not tracked against the plan; plans are not adjusted.
• Expectations and service levels are not consistent; changes to them are not managed.
• Estimates are way off; over-commitment is common.
• When overruns become apparent, a crisis atmosphere develops.
• Most problems are discovered in operations or, worse yet, by the customer.
• Success depends on heroic efforts by competent staff members.
• Repeatability of effective behaviors is questionable.

Even if you’ve accepted that your organization could use something to reduce or eliminate these problems, some service providers reject the idea of using process improvement to address or resolve them. Some mythology has grown up around the idea of using process improvement. You may have heard some of these fallacies.

• I don’t need process improvement; I have good people (or advanced technology, or an experienced manager).
• Process improvement interferes with creativity and introduces bureaucracy.
• Process improvement is useful only in large organizations and costs too much.
• Process improvement hinders agility in fast-moving markets.¹

These common misconceptions serve only as excuses for organizations not willing to make the changes needed to move ahead, address their problems, and improve their bottom line.

Another way to look at whether your organization could benefit from CMMI is to think about whether it is often operating in crisis mode. Crisis mode is characterized by the following:

• Staff members working harder and longer
• Staff members moving from team to team
• Service teams lowering expectations to meet delivery deadlines
• Service teams adding more people to meet expectations or deadlines
• Everyone cutting corners
• A hero saving the day

¹. See the report “CMMI or Agile: Why Not Embrace Both!” for a discussion of how CMMI and Agile can work together effectively [Anderson 2008].
How Does CMMI Help You Solve These Problems?

In its research to help organizations to develop and maintain quality products and services, the Software Engineering Institute (SEI) has found several dimensions that an organization can focus on to improve its business. Figure 1.1 illustrates the three critical dimensions that organizations typically focus on: people, procedures and methods, and tools and equipment.

What ties everything together? Processes allow you to align people, procedures and methods, and tools and equipment with the way you do business. They allow you to address scalability and provide a way to incorporate knowledge of how to do things better. Processes allow you to get leverage from your resources and to examine business trends.

People and technology are important. However, we are living in a world in which technology is changing by an order of magnitude every few years, and people typically work for many companies throughout their careers. We live in a dynamic world. A focus on process provides the infrastructure and stability necessary to be competitive when faced with these ever-present changes.

CMMs (including CMMI) focus on improving processes in an organization. They contain the essential elements of effective processes for one or more disciplines and describe an evolutionary
improvement path from ad hoc, immature processes to disciplined, mature processes with improved quality and effectiveness.

The advantage of a process focus is that it complements the emphasis the organization places on both its people and its technology.

- A well-defined process can provide the means to work smarter, not harder. That means using the experience and training of your workforce effectively. It also means shifting the “blame” for problems from people to processes, making the problems easier to address and solve.
- An appropriate process roadmap can help your organization use technology to its best advantage. Technology alone does not guarantee its effective use.
- A disciplined process enables an organization to discover which procedures and methods are most effective and to improve them as results are measured.

CMMI is a suite of products used for process improvement. These products include models, appraisal methods, and training courses.

- The models are descriptions of best practices that can help you achieve your business goals related to cost, schedule, service levels, quality, and so forth. CMMI best practices describe what to do, but not how to do it or who should do it.
- The appraisal methods evaluate an organization's processes using a CMMI model as a yardstick. SCAMPI (Standard CMMI Appraisal Method for Process Improvement) is the group of SEI appraisal methods used with CMMI models. SCAMPI uses a formalized appraisal process, involves senior management as a sponsor, focuses the appraisal on the sponsor's business objectives, and observes strict confidentiality and nonattribution of data.
- Training courses support knowledge about the use of CMMI models and appraisal methods.

The SEI has taken the process management premise that the quality of a product (including service) is highly influenced by the quality of the process used to develop and maintain it and defined CMMs that embody this premise. The belief in this premise is seen worldwide in quality movements, as evidenced by the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) body of standards.
How Can CMMI Benefit You?

Today, CMMI is an application of the principles introduced almost a century ago to achieve an enduring cycle of process improvement. The value of this process improvement approach has been confirmed over time. Organizations have experienced increased productivity and quality, improved cycle time, and more accurate and predictable schedules and budgets [Gibson 2006].

The benefits of CMMI have been published for years and will continue to be published in the future. See the SEI website for more information about performance results.

Although the cost of CMMI adoption is highly variable depending on many factors (organization size, culture, structure, current processes), regardless of the investment, history demonstrates a respectable return on investment.

Example returns on investment at various organizations using CMMI for Development (CMMI-DEV) include those shown in Table 1.1.

Since the CMMI-SVC model has been recently released, data on the results of its use are not yet available. The SEI will be collecting ROI data as organizations adopt the CMMI-SVC model.

See the CMMI website (www.sei.cmu.edu/cmmi/) for the latest information about CMMI adoption, including presentations by those who have adopted CMMI and want to share how they did it.

The History of CMMI

In the 1930s, Walter Shewhart began work in process improvement with his principles of statistical quality control [Shewhart 1931]. These principles were refined by W. Edwards Deming [Deming 1986], Phillip Crosby [Crosby 1979], and Joseph Juran [Juran 1988].

<table>
<thead>
<tr>
<th>ROI</th>
<th>Focus of Process Improvement Program</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:1</td>
<td>Quality activities</td>
<td>Accenture</td>
</tr>
<tr>
<td>13:1</td>
<td>Defects avoided per hour spent in training and defect prevention</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>2:1</td>
<td>Overall process improvement over three years</td>
<td>Siemens Information Systems Ltd., India</td>
</tr>
</tbody>
</table>
Watts Humphrey, Ron Radice, and others extended these principles even further and began applying them to software in their work at IBM and the SEI [Humphrey 1989]. Humphrey’s book, *Managing the Software Process*, provides a description of the basic principles and concepts on which many of the Capability Maturity Models (CMMs) are based.

The SEI created the first CMM designed for software organizations and published it in a book, *The Capability Maturity Model: Guidelines for Improving the Software Process* [SEI 1995].

Figure 1.2 illustrates the models that were integrated into CMMI, Version 1.2. Developing the CMMI Product Suite involved more than simply combining some existing model materials. Using processes that promote consensus, the CMMI Product Team built a framework that accommodates multiple constellations and benefits multiple industries and areas of interest.

Some service providers attempted to use the CMMI-DEV model to address their process improvement needs, but the fit required some difficult interpretations.

---

2. EIA 731 SECM is the Electronic Industries Alliance standard 731, or the Systems Engineering Capability Model. INCOSE SECAM is the International Council on Systems Engineering Systems Engineering Capability Assessment Model [EIA 2002].
Then, in 2006, Northrop Grumman approached the CMMI Steering Group with the idea of a distinct CMMI for Services model. The Steering Group approved the idea, and as a result, Northrop Grumman sponsored and led a volunteer industry team. This team eventually joined with the SEI to finish developing a pilot draft of a CMMI for Services model.

After collecting piloting results and feedback from the draft’s use, the CMMI-SVC development team updated and improved the draft to be what it is today, CMMI-SVC, V1.2, the model contained in this book.

CMMI Framework

The CMMI Framework provides the structure needed to produce CMMI models, training materials, and appraisal-related materials. The CMMI Framework is a structure that allows the use of multiple models that serve different constituencies while maintaining a strong CMMI identity. Within the CMMI Framework, model components are classified as either common to all CMMI models or applicable to a specific area of interest or constellation. The common material that is present in all CMMI models is called the “CMMI Model Foundation,” or “CMF.”

CMF components are combined with material applicable to a constellation (e.g., Services, Development) to produce a model. Some of this material is shared across constellations, and other material is unique to only one.

A “constellation” is defined as a collection of components that are used to construct models, training materials, and appraisal-related materials in an area of interest. CMMI-SVC belongs to the Services constellation.

CMMI for Services

CMMI-SVC draws on concepts and practices from CMMI and other service-focused standards and models, including the following:

- Information Technology Infrastructure Library (ITIL)
- ISO/IEC 20000: Information Technology—Service Management
- Control Objectives for Information and Related Technology (CobiT)
- Information Technology Services Capability Maturity Model (ITSCMM)
Familiarity with these and other service-oriented standards and models is not required to understand and use CMMI-SVC, and the Services constellation is not structured in a way that is intended to conform to any of them (except CMMI, of course). However, knowledge of other standards and models may provide a richer understanding of CMMI-SVC models and content.

The Services constellation covers services of many different types. Although the standards and models used to develop CMMI-SVC predominately cover IT services, this model was purposely written more broadly to be useful by a wide variety of different service types. These service types include information services, engineering services, maintenance, operations, logistics, and research services.

As defined in the CMMI context, a service is an intangible, non-storable product. The CMMI-SVC model has been developed to be compatible with this broad definition. CMMI-SVC goals and practices are therefore potentially relevant to any organization concerned with the delivery of services, including enterprises in sectors such as defense, information technology (IT), health care, finance, and transportation.

Early users of CMMI-SVC, who used the model during its development and piloting, deliver services as varied as training, logistics, maintenance, refugee services, lawn care, book shelving, research, consulting, auditing, independent verification and validation, human resources, financial management, health care, and IT services.

The Services constellation contains practices that cover project management, process management, service establishment, service delivery, and supporting processes. The CMMI-SVC model shares a great deal of material with CMMI models in other constellations. Therefore, those familiar with another CMMI constellations will find much of the CMMI-SVC content familiar.

In the context of CMMI-SVC, the term project is interpreted to encompass all of the resources required to satisfy a service agreement with a customer. Thus, the concept of project management in this context is intended to be similar to the concept of service management in other standards and models, although the correspondence may not be exact. See more about the meaning of “project” in the Important CMMI-SVC Concepts section of this chapter.

Organizations interested in evaluating and improving their processes to develop systems for delivering services may use a CMMI-DEV model. This approach is especially recommended for organizations that are already using CMMI-DEV or that must develop and
maintain complex systems for delivering services. However, some organizations instead may choose to use the Service System Development (SSD) process area. This process area consolidates some of the practices in the CMMI-DEV model and interprets them for service systems. In fact, we recommend that even if you use CMMI-DEV to develop your service system, you review SSD for some of its service-specific guidance.

**Important CMMI-SVC Concepts**

The following concepts are particularly significant in the CMMI-SVC model. Although all are defined in the glossary, they each employ words that can cover a range of possible meanings to those from different backgrounds, and so they merit additional discussion to ensure that model material that includes these concepts is not misinterpreted.

**Service**

The most important of these terms is the word service itself, which the glossary defines as a product that is intangible and nonstorable. While this definition accurately captures the intended scope of meaning for the word service, it does not highlight some of the possible subtleties or misunderstandings of this concept in the CMMI context.

The first point to highlight is that a service is a kind of product, given this definition. Many people routinely think of products and services as two mutually exclusive categories. In CMMI models, however, products and services are not disjoint categories: A service is considered to be a special variety of product. Any reference to products can be assumed to refer to services as well. If you find a need to refer to a category of products that are not services in a CMMI context, you may find it helpful to use the term goods, as in the commonly used and understood phrase “goods and services.” (For historical reasons, portions of CMMI models still use the phrase “products and services” on occasion. However, this usage is always intended to explicitly remind the reader that services are included in the discussion.)

A second possible point of confusion is between services and processes, especially because both terms refer to entities that are by nature intangible and nonstorable, and because both concepts are
intrinsically linked. However, in CMMI models, processes are activities, while services are a useful result of performing those activities. For example, an organization that provides training services performs training processes (activities) that are intended to leave the recipients of the training in a more knowledgeable state. This useful state of affairs (i.e., being more knowledgeable) is the service that the training provider delivers or attempts to deliver. If the training processes are performed but the recipients fail to become more knowledgeable (perhaps because the training is poorly designed, or the recipients don’t have some necessary preliminary knowledge), then the service—the useful result—has not actually been delivered. Services are the results of processes (performed as part of a collection of resources), not the processes themselves.

A final possible point of confusion over the meaning of the word service will be apparent to those with a background in information technology, especially those familiar with disciplines such as service-oriented architecture (SOA) or software as a service (SaaS). In a software context, services are typically thought of as methods, components, or building blocks of a larger automated system, rather than as the results produced by that system. In CMMI models, services are useful intangible and nonstorable results delivered through the operation of a service system, which may or may not have any automated components. To completely resolve this possible confusion, an understanding of the service system concept is necessary.

Service System
A service is delivered through the operation of a service system, which the glossary defines as an integrated and interdependent combination of component resources that satisfies service requirements. The use of the word system in service system may suggest to some that service systems are a variety of information technology, and that they must have hardware, software, and other conventional IT components. This interpretation is too restrictive. While it is possible for some components of a service system to be implemented with information technology, it is also possible to have a service system that uses little or no information technology at all.

In this context, the word system should be interpreted in the broader sense of “a regularly interacting or interdependent group of items forming a unified whole,” a typical dictionary definition. Also,
systems created by people usually have an intended unifying purpose, as well as a capability to operate or behave in intended ways. Consider a package delivery system, a health care system, or an education system as examples of service systems with a wide variety of integrated and interdependent component resources.

Some may still have trouble with this interpretation because they may feel that the way they deliver services is not systematic, does not involve identifiable “components,” or is too small or difficult to view through the lens of a systems perspective. While this difficulty may in some cases be true for service provider organizations with relatively immature practices, part of the difficulty may also be traced to an overly narrow interpretation of the word resources in the definition of service system.

The full extent of a service system encompasses everything required for service delivery, including work products, processes, tools, facilities, consumable items, and human resources. Some of these resources may belong to customers or suppliers, and some may be transient (in the sense that they are only part of the service system for a limited time). But all of these resources become part of a service system if they are needed in some way to enable service delivery.

Because of this broad range of included resource types and the relationships among them, a service system can be something large and complex, with extensive facilities and tangible components (e.g., a service system for health care or for transportation). Alternatively, a service system could be something consisting primarily of people and processes (e.g., for an independent verification and validation service). Since every service provider organization using the CMMI-SVC model must have at a minimum both people and process resources, they should be able to apply the service system concept successfully.

Service providers who are not used to thinking of their methods, tools, and personnel for service delivery from a broad systems perspective may need to expend some effort to reframe their concept of service delivery to accommodate this perspective. The benefits of doing so are great, however, because critical and otherwise unnoticed resources and dependencies among resources will become visible for the first time. This insight will enable the service provider organization to effectively improve its operations over time without being caught by surprises or wasting resources on incompletely addressing a problem.
Services and Service Systems in CMMI for Services versus SOA and SaaS

If you know something about SOA or SaaS, you might be a bit non-plussed by the preceding briefly stated distinction between the various meanings of the term service, followed by a forward reference to a discussion of the term service system, where neither SOA nor SaaS is mentioned at all. Here’s some additional clarification. (If you’re not interested in SOA or SaaS, you can skip over this discussion.)

Although there are a variety of interpretations of SOA and SaaS, they all tend to focus on information systems of one form or another and how they are designed to deliver value. SOA emphasizes certain characteristics of the architecture of these systems (e.g., the alignment of components with business functions), whereas SaaS considers different aspects of system architecture while emphasizing the flexibility of how software capabilities are delivered to end users. Because CMMI for Services, SOA, and SaaS practitioners all use the terms service and system somewhat differently, and because it’s quite possible for CMMI for Services, SOA, and SaaS to all be employed in a single context, some confusion is likely if you are not sensitive to those differences.

In the CMMI for Services perspective, a service is the result of a process, and system (i.e., a service system) refers to all the resources required to deliver services. When done properly, the operation of a service system causes service delivery. Service systems may incorporate subsystems that are themselves information technology systems, but these IT systems might represent only a small fraction of a total service system infrastructure.

In the SOA perspective, a service is an IT system component that provides a distinct and loosely coupled function accessible through a standard, contractually governed interface. At the top level, the structure of these services is expected to correlate well with the structure of business functions that an organization performs, and SOA designs often involve analyses of one or more enterprise architectures to establish needed commonalities. No matter what level of abstraction, the term service in SOA is most likely to be applied to actions, methods, functions, and “things that are done” rather than to their results; and the term system typically refers to something that at its core is an IT system of some kind.

In the SaaS perspective, software is delivered as a service (e.g., a subscription service) without the need for the customer to pay for the full cost up front. The term service in SaaS therefore seems closer to the CMMI for Services usage than the SOA usage, but it’s important to be clear. A SaaS service is not a software component that is
made available (as in SOA), but rather is the on-demand availability of that component (and others) along with capabilities such as dynamic updates, tailorability, and load balancing. SaaS services are delivered via an IT system, but this may be only a portion of a larger service system that supplies other services, such as help desk support or network management.

Service Agreement
A service agreement is the foundation of the joint understanding between a service provider and a customer of what to expect from their mutual relationship. The glossary defines a service agreement as a binding, written record of a promised exchange of value between a service provider and a customer. Service agreements can appear in a wide variety of forms, ranging from simple posted menus of services and their prices, to tickets or signs with fine print that refers to terms and conditions described elsewhere, to complex multipart documents that are included as part of legal contracts. Whatever they may contain, it is essential that service agreements be recorded in a form that both the service provider and the customer can access and understand so that misunderstandings are minimized.

The “promised exchange of value” implies that each party to the agreement commits to providing the other party or parties with something they need or want. A common situation is for the service provider to deliver needed services and for the customer to pay money in return, but many other types of arrangements are possible. For example, an operating level agreement (OLA) between organizations in the same enterprise may require only that the customer organization notify the service provider organization when certain services are needed. Service agreements for public services provided by governments, municipal agencies, and nonprofit organizations may simply document what services are available, and identify what steps end users must follow to get those services. In some cases, the only thing the service provider needs or wants from the customer or end user is specific information required to enable service delivery.

See the glossary for additional discussion of the terms service agreement, service level agreement, customer, and end user.

Service Request
Even given a service agreement, customers and end users must be able to notify the service provider of their needs for specific instances of service delivery. In the CMMI-SVC model, these notifications are called “service requests,” and they can be communicated in every
conceivable way, including face-to-face encounters, phone calls, all varieties of written media, and even nonverbal signals (e.g., pressing a button to call a bus to a bus stop).

However it is communicated, a service request identifies one or more desired services that the request originator expects to fall within the scope of an existing service agreement. These requests are often generated over time by customers and end users as their needs develop. In this sense, service requests are expected intentional actions that are an essential part of service delivery; they are the primary triggering events that cause service delivery to occur. (Of course, it is possible for the originator of a request to be mistaken about whether the request is actually within the scope of agreed services.)

Sometimes specific service requests may be incorporated directly into the service agreements themselves. This incorporation of service requests in the service agreement is often the case for services that are to be performed repeatedly or continuously over time (e.g., a cleaning service with a specific expected cleaning schedule or a network management service that must provide 99.9 percent network availability for the life of the service agreement). Even in these situations, ad hoc service requests may also be generated when needed, and the service provider should be prepared to deliver services in response to both types of requests.

**Service Incident**

Even with the best planning, monitoring, and delivery of services, unintended events may occur that are unwanted. Some instances of service delivery may have lower than expected or lower than acceptable degrees of performance or quality, or may be completely unsuccessful. The CMMI-SVC model refers to these difficulties as “service incidents.” The glossary defines a service incident as an indication of an actual or potential interference with a service. The single word incident is used in place of service incident when the context makes the meaning clear.

Like requests, incidents require some recognition and response by the service provider; but unlike requests, incidents are unintended events, although some types of incidents may be anticipated. Whether or not they are anticipated, incidents must be resolved in some way by the service provider. In some service types and service provider organizations, service requests and incidents are both managed and resolved through common processes, personnel, and tools. The CMMI-SVC model is compatible with this kind of approach but does not require it, as it is not appropriate for all types of services.
The use of the word *potential* in the definition of service incident is deliberate and significant; it means that incidents do not always have to involve actual interference with or failure of service delivery. Indications that a service *may* have been insufficient or unsuccessful are also incidents, as are indications that it may be insufficient or unsuccessful in the future. (Customer complaints are an almost universal example of this type of incident because they are always indications that service delivery may have been inadequate.) This aspect of incidents is often overlooked, but it is important: Failure to address and resolve potential interference with services is likely to lead eventually to actual interference, and possibly to a failure to satisfy service agreements.

**Project**

While it refers to a concept that is used across all CMMI models, the term *project* deserves some special clarification in the context of the CMMI-SVC model. It is likely that no other single word in the model has the same potential to raise misunderstandings, questions, and even objections.

Those with prior experience using other CMMI models, or who routinely think of their work as part of a project-style work arrangement, may wonder where the difficulty lies. The CMMI glossary defines a project as a managed set of interrelated resources that delivers one or more products or services to a customer or end user, and continues by declaring that a project has a definite beginning (i.e., project startup) and typically operates according to a plan. These characteristics are conventional of a project according to many definitions, so why is there an issue? Why might there be a difficulty with applying terms such as *project planning* or *project management* in some service provider organizations?

One simple reason is that many people work on or know of projects that have a definite end as well as a definite beginning; such projects are focused on accomplishing an objective by a certain time. In fact, the glossary in prior versions of CMMI models (i.e., prior to V1.2) specifically included a definite end as part of the definition of *project*. This more restrictive definition reflected the original focus of CMMI (and the other maturity models that preceded it), which was principally on development efforts that normally come to some expected end once an overall objective has been reached. While some services follow this same pattern, many are delivered over time without an expected definite end (e.g., services from businesses that intend to offer them indefinitely, or typical municipal
services). Service providers in these contexts would naturally be reluctant to describe their service delivery work as a project under this definition.

However, for the latest (V1.2) CMMI models, the definition of project was deliberately changed to eliminate this limitation, in part to allow the term to be applied easily to the full range of service types. Projects must be planned, but they do not need to have a planned end, and this broader definition can therefore make sense in the context of all service delivery (provided that CMMI model users are willing to suppress an expectation that all projects must come to an end).

Even given this adjustment, some people may still have difficulty thinking of the delivery of services as being a project, which often carries the connotation of trying to accomplish an overall objective by following some preset plan. Many services are delivered in response to what are effectively small independent objectives established over time—individual service requests—in ways that are not planned in advance according to predetermined milestones. In these circumstances, service providers are often not used to thinking of a single objective to be accomplished. Therefore, characterizing their work arrangements as projects may seem awkward at best.

For this reason, the CMMI-SVC model explicitly interprets the term project to encompass all of the resources required to satisfy a service agreement with a customer. Satisfaction of the terms of the service agreement becomes the overall objective under which individual service requests are handled. Planning the effort to satisfy the service agreement is required in the form of work structures, resource allocations, schedules, and other typical project planning work products and processes. If you think of a service agreement as outlining the scope of a project in this way, the use of project in a service context becomes less of a problem.

Even better, the glossary includes notes explaining that a project can be composed of projects. These additional notes mean that interrelated sets of service agreements or service agreements covering multiple customers can be treated as projects, as can distinct subsets of work within the scope of a single service agreement. For example, the development of a new version of a service system or the transition of a new service delivery capability into operational use can be treated as a project as well.

In the end, of course, organizations will use whatever terminology is comfortable, familiar, and useful to them, and the CMMI-SVC model does not require this approach to change. However, all CMMI
models need a convenient way to refer consistently and clearly to the fundamental groupings of resources that organize work to achieve significant objectives. Given the glossary definition and the preceding discussion, the term *project* is still adequate and effective for this purpose, although its meaning has had to grow in scope over time. This adaptation is not a surprise, because CMMI models themselves have grown in scope over time, and are likely to continue to do so in the future. CMMI-SVC users are strongly encouraged to consider how they too may adapt their way of thinking to reflect greater flexibility, and thereby gain the benefits of different ways of improving services.

**Stakeholder, Customer, and End User**

In the model glossary, a *stakeholder* is defined as a group or individual who is affected by or is in some way accountable for the outcome of an undertaking. Stakeholders include any and all parties with a legitimate interest in the results of service delivery, such as service provider executives, staff members, customers, end users, suppliers, partners, and oversight groups. Remember that any given reference to stakeholders in the model covers all types of stakeholders, and not just the ones that might be most obvious in the particular context.

The model defines a *customer* as the party (individual, project, or organization) responsible for accepting the product or for authorizing payment. A customer must also be external to the project that develops (delivers) a product (service), although both the customer and the project may be part of the same larger organization. While this concept seems clear enough, the glossary includes some ambiguous language about how the term *customer* can include “other relevant stakeholders” in some contexts, such as *customer requirements*. Although this caveat reflects an accepted legacy usage of the term from earlier versions of CMMI models, it could be potentially confusing in a service context, where the distinction between customers and other stakeholders (especially end users) can be especially significant.

The CMMI for Services model addresses this concern in two ways. First, it avoids the term *customer requirements* except in those contexts where it refers to the requirements of *customers* in the narrow sense (those who accept a product or authorize payment). Second, the model includes added material in the glossary to distinguish between customers and end users, and to define the term *end user* itself.

The model defines an *end user* as the party (individual, project, or organization) that ultimately receives the benefit of a delivered service. While end users and customers therefore cover distinct roles in
service establishment and delivery, both can often be represented by a single party. For example, a private individual who receives financial services from a bank is probably both the customer and the end user of those services. However, in health care services, the customers often include organizations such as employers and government agencies that negotiate (or dictate) health care plan coverage for the ultimate health care beneficiaries, who are the end users of those services. (Many of these end users may be customers as well, if they have a responsibility to pay for all or part of some services.)

To summarize: It’s important to keep in mind the actual scope of the terms *stakeholder*, *customer*, and *end user* as you review and apply the CMMI for Services model in your unique service context so that you don’t overlook or confuse crucial interactions and interfaces in your service system.
INDEX

A
Accept the Acquired Product practice, 504–505
Acceptable service levels documentation, 515
Acceptance procedures for acquired products, 504
Acceptance reviews and tests documentation, 505
Access control archived data, 427
configuration management, 260
Accuracy checks for measures, 328
Achieve Specific Goals goal, 150
Achievement profiles, 64
Acquired products accepting, 504–505
configuring, 256
transition of, 505–506
Acquisition types, 494
Acronyms, 601–603
Action plans establishing, 367
implementing, 368–369
for supplier agreements, 505
Action proposals, 251
Actions corrective. See Corrective actions incident, 306–308, 312
planning and implementing, 367–369
on standard services, 586
Activities, 12
Actualization phase in service lifecycles, 78
Ad-hoc service requests, 524
Adaptive maintenance, 540
Additions, 29–30
Address Causes of Defects and Problems goal, 250
Evaluate the Effect of Changes practice, 252–253
Implement Action Proposals practice, 250–252
Record Data practice, 253
Address Underlying Causes of Selected Incidents practice, 307–308
Adherence evaluation, 197–205
Administrative procedures in measurement analyses, 324
Advisory Group, 607
Agile Manifesto, 123
Agility of services, 122–128

653
Index

Agreement phase in project lifecycles, 78
Agreement types in strategies, 416
Agreements, supplier. See Supplier Agreement Management (SAM) process area
Align Measurement and Analysis Activities goal, 317
Establish Measurement Objectives practice, 317–319
Specify Analysis Procedures practice, 323–325
Specify Data Collection and Storage Procedures practice, 321–322
Specify Measures practice, 319–321
Alternative solutions evaluating, 269–275 identifying, 272
Analysis phase incident lifecycles, 81
service request lifecycles, 80
service system lifecycles, 79
Analyze and Validate Requirements practice, 549–551
Analyze Causes practice, 248–250
Analyze Existing Agreements and Service Data practice, 526–528
Analyze Incident Data practice, 305–306
Analyze Issues practice, 405–406
Analyze Measurement Data practice, 326–327
Analyze Results of Verification and Validation practice, 520–521
Analyze Selected Incident Data practice, 310–311
Analyze Service System Transition Needs practice, 130, 571–573
Annual conferences, 39
Apply Statistical Methods to Understand Variation practice, 458–461
Apply Workarounds to Selected Incidents practice, 306–307
Appraisal approach, 48
Appraisal ratings, 49
Appraisal teams, 36
Appraisals, 6
processes, methods, and tools, 374
SCAMPI, 36–37
Appraise the Organization’s Processes practice, 364–365
Archived data, 427
“Are Services Agile?” (Glazer), 122–128
Assess and Control the Impacts of the Transition practice, 130–131, 577–579
Assess Training Effectiveness practice, 394–395
Assessing knowledge and skills, 431
Asset libraries, 347
for defined processes, 281, 288
establishing, 356–357
Assign Responsibility practice overview, 167–168
process area relationships, 220
Assignable causes, 459–461
Assumptions decision criteria, 274
Schedule, 423
Attributes monitoring, 399–400
process elements, 350
services, 588
subprocesses, 454
work products and tasks, 419
Audits, configuration, 265–266
Authorization for configuration item changes, 263
Automatic collection of data, 322
Availability, CAM. See Capacity and Availability Management (CAM) process area
B
Barriers to process- and technology-improvement deployment, 336–337
Base measures data collection for, 326
examples, 319–320
Baselines
configuration management, 257–262
performance, 381–382
service system, 572
transition plans, 575
Bate, Roger, vi, 141, 144
Behr, Kevin
The Visible Ops Handbook: Starting ITIL in Four Practical Steps, 90
“What We Can Learn from High-Performing IT Organizations to Stop the Madness in IT Outsourcing” (Kim and Behr), 89–98
Benefits
process- and technology-improvement proposals, 335, 338
risk mitigation plans, 488
Bidirectional traceability, 467, 471–473
Books on change, 40–41
Bounds for thresholds, 480
Brundtland Report, 134
Budgets, 422–424

C
Calibrating process-performance models, 384
CAM. See Capacity and Availability Management (CAM) process area
Candidate measures, 320
Capability levels, 57–58
vs. maturity levels, 60–63
profiles, 65
Capability Maturity Model: Guidelines for Improving the Software Process, 8
Capability Maturity Models (CMMs), 8
Capability profiles, 40
Capacity and Availability Management (CAM) process area
configuration management, 175
Incident Resolution and Prevention relationship, 299
introductory notes, 225–230
Monitor and Analyze Capacity and Availability goal, 238–243
Organizational Process Performance relationship, 376
Prepare for Capacity and Availability Management goal, 231–238
process monitoring and control, 190
process plans, 155
project lifecycles, 79
Project Monitoring and Control relationship, 397
Project Planning relationship, 412
purpose, 225
Quantitative Project Management relationship, 447
relationships, 74, 230
resources, 160
service system lifecycles, 80
stakeholder identification and involvement, 182
training, 168
capital project failures, 95
CAR. See Causal Analysis and Resolution (CAR) process area
case studies for IT organizations, 95–96
Categories
incidents, 301, 305
risks, 478, 484–485
service requests, 531, 537–538
Causal Analysis and Resolution (CAR) process area, 24
Address Causes of Defects and Problems goal, 250–253
adherence evaluation, 197
capital project failures, 95
configuration management, 175
Determine Causes of Defects and Problems goal, 247–250
improvement information collection, 209
Causal Analysis and Resolution (CAR) process area (Continued)
Incident Resolution and Prevention relationship, 300
introductory notes, 245–246
policies, 151
process monitoring and control, 190
process plans, 155–156
purpose, 245
Quantitative Project Management relationship, 447
relationships, 73, 246
resources, 160
Service System Transition relationship, 571
stakeholder identification and involvement, 182
training, 169
Causality, culture of, 92
CCBs (configuration control boards), 262
Center for Ecology and Development (KATE), 136, 138
Change
measuring effects, 252
readiness for, 49–50
service continuity plans, 520
strategies for, 49
Change Configuration and Release Performance Study, 93
Change history for requirements, 471
Change requests documentation, 404
Checking in and out configuration items, 263
Checklists for service system component reviews, 563
Closing
incidents, 308
service requests, 538
Closure phase
incident lifecycles, 81
service request lifecycles, 80
CM. See Configuration Management (CM) process area
CMMI overview
benefits, 7
CMMI Framework, 9
critical dimensions, 5–6
history, 7–9
need for, 3–4
“CMMI and Corporate Social Responsibility” (Neeb-Bruckner), 133–141
CMMI-DEV, 7
CMMI for Services Advisory Group, 607
CMMI for Services project participants, 605–608
CMMI Product Team, 65
CMMI Steering Group, 607
CMMI-SVC
Model Team, 605
overview, 9–11
Quality Team, 606–607
service system concept, 12–15
services, 11–12
Training Team, 606
CMMI Technology Conference and User Group conference, 39
CMMs (Capability Maturity Models), 8
Coaching in corporate social responsibility, 138–139
CobiT (Control Objectives for Information and Related Technology), 9
Code of behavior in corporate social responsibility, 140
Collect and Analyze Improvement Proposals practice, 334–337
Collect Improvement Information practice overview, 208–214
process area relationships, 222
Collection
information, 38–42
issues for analysis, 405–406
procedures, 321–322
process- and technology- improvement proposals, 334–335
Commitments
acquired products, 504
to corrective actions, 295
monitoring, 401
  to plans, 435–436
  to requirements, 470
resources, 44
reviewing, 405, 436
to transition plans, 575
Common culture among high
performers, 91–92
Common parts of standard services,
588
Common problems and
misconceptions, 3–4
Communicate and Ensure the
Resolution of Noncompliance
Issues practice, 442–443
Communicate Results practice,
328–329
Communicate the Status of Incidents
practice, 309
Communicating
  action proposals, 312–313
  deployment impact information,
  578
  measurements, 322
  product status, 403
  risk status, 402
  service request status, 540
  for statistical management, 458
  strategic needs, 585
Communication mechanisms
  requirements, 428
  stakeholders, 532
Compatible interfaces, 555–557
Complaints, customer, 298
Completeness checks for measures,
328
Compliance with configuration
management standards and
  procedures, 266
Component-to-component interfaces,
  556
Components, 21
  descriptions, 25–30
  expected, 21–22
  informative, 21–22
  model, 22–25
  required, 21–22
  requirements, 429
  supporting informative, 30
Compose the Defined Process
  practice, 451–452
Compound interfaces, 556
Conceptualization phase in service
lifecycles, 77
Conditions
  exception, 242
  incidents, 299
  risks, 484
Conduct Milestone Reviews practice,
  404–405
Conduct Progress Reviews practice,
  403–404
Conferences, 39
Configuration control boards (CCBs),
  262
Configuration management general
  goal, 174–181
Configuration Management (CM)
  process area
    adherence evaluation, 198
    configuration management, 176
    Establish Baselines goal, 257–262
    Establish Integrity goal, 264–266
    generic goals and practices support
      by, 219
    improvement information
      collection, 209
    Incident Resolution and Prevention
      relationship, 300
    introductory notes, 255–257
    policies, 151
    process monitoring and control,
      191
    process plans, 156
    purpose, 255
    relationships, 72, 257
    Requirements Management
      relationship, 468
    resources, 161
    Service Delivery relationship, 525
    Service System Transition
      relationship, 571
Configuration Management (CM) process area (Continued)
stakeholder identification and involvement, 182
Track and Control Changes goal, 262–264
training, 169
Conflicts
managing, 288
quality and process-performance objectives, 450
Consequences, risks, 484
Consistency
for measures, 326
reviews for, 473
Consistent curriculum delivery, 110
Consolidation effects on law firms, 128
Constraints
identifying, 423
verification and validation, 548
Consultation for pilot plans, 339
Context, risk, 484
Contingency plans, 486, 488
Continuity, SCON. See Service Continuity (SCON) process area
Continuous model representations, 60–62
Continuous service requests, 524
Contribute to Organizational Process Assets practice, 291–293
Control
Monitor and Control the Process practice, 189–197
and performance, 94
PMC. See Project Monitoring and Control (PMC) process area
Control Configuration Items practice, 263–264
Control Objectives for Information and Related Technology (CobiT), 9
Coordinate and Collaborate with Relevant Stakeholders goal, 293
Manage Dependencies practice, 294–295
Manage Stakeholder Involvement practice, 293–294
Resolve Coordination Issues practice, 295–296
Coordination
improvement deployment, 343–344
resolving, 295–296
with stakeholders, 293
Corporate social responsibility (CSR), 133–141
Correct Root Causes of Problems practice
overview, 218
process area relationships, 224
Corrective actions
criteria, 424
dependencies and commitments, 295
on identified issues, 406–407
issues analysis for, 405–406
managing, 407
process performance, 190
requirements, 473
service delivery, 534
service system resources, 240–241
special causes of variation, 461
Corrective maintenance, 540
Costs
estimating, 420–421
monitoring, 399
process- and technology-improvement proposals, 335, 338
risk mitigation plans, 488
risks associated with, 482–483
service system transitions, 574
training programs, 391
Cox-Buteau, Betsey, “Public Education in an Age of Accountability,” 107–112
Create or Release Baselines practice, 261–262
Criteria
asset library items, 356
corrective actions, 424
decision analysis, 268, 271–274
defined processes, 451–452
design, 555, 558
evaluation, 440–441
incidents, 301–302
measurement analyses, 324–325, 327
peer reviews, 564
pilot plans, 339
process and technology improvements, 332
process appraisals, 365
process-performance analysis, 377–378
process-performance baseline categories, 381
requirements, 469–470
requirements providers, 469
risk, 479
service continuity plan verification and validation, 520
service requests, 531
service system selection, 553
standard processes, 352–354
statistical management, 457–458
subprocesses, 453
suppliers, 495
tailoring, 352–354, 589
Critical attributes of services, 588
Critical dependencies in service delivery schedules, 539
Critical success factors in corporate social responsibility, 137–138
Criticality of dependent functions, 511
Crosby, Phillip, 7
CSR (corporate social responsibility), 133–141
Culture
for change, 49–50
high performers, 91–92
organizational, 40
Cunningham, Sally, “Legal Services in a Changing World,” 128–133
Currency checks for measures, 328
Curriculum for training, 392
Customer satisfaction
in corporate social responsibility, 140
service system, 540
Customers
complaints, 298
need data, 527
overview, 19–20

D
DAR. See Decision Analysis and Resolution (DAR) process area
Data collection procedures, 321–322
Data integrity checks for measures, 326, 328
Data management planning, 426–428
Dates for critical dependency, 294
Decision Analysis and Resolution (DAR) process area, 23
adherence evaluation, 198
configuration management, 176
for education systems, 111
Evaluate Alternatives goal, 269–275
government services, 115
improvement information collection, 209
introductory notes, 267–269
Organizational Innovation and Deployment relationship, 333
Organizational Training relationship, 386
policies, 151
process monitoring and control, 191
process plans, 156
purpose, 267
related process areas, 269
resources, 161
Risk Management relationship, 476
Service Continuity relationship, 510
Service System Development relationship, 545
stakeholder identification and involvement, 182
training, 169
Decomposing standard processes, 349–350
Defects causes. See Causal Analysis and Resolution (CAR) process area
Deficiencies, subprocess, 463
Define Approaches to Address Selected Incidents goal, 309–310
Analyze Selected Incident Data practice, 310–311
Establish Workarounds for Selected Incidents practice, 312–313
Plan Actions to Address Underlying Causes of Selected Incidents practice, 311–312
Define Project Lifecycle Phases practice, 419–420
Define Risk Parameters practice, 478–480
Defined processes, 52–53
composing, 451–452
establishing, 207–208, 280–282
Deliver Services goal, 536
Maintain the Service System practice, 540–542
Operate the Service System practice, 539–540
Receive and Process Service Requests practice, 536–538
Deliver Training practice, 393–394
Delivery, SD. See Service Delivery (SD) process area
Delivery phase in project lifecycles, 78
Deming, W. Edwards, 7
Dependencies
identifying, 510–513
in lifecycles, 76
managing, 294–295
process areas, 219
service delivery schedules, 539
Deploy Improvements goal, 341
Manage the Deployment practice, 343–344
Measure Improvement Effects practice, 345
Plan the Deployment practice, 341–342
Deploy Organizational Process Assets and Incorporate Experiences goal, 369
Deploy Organizational Process Assets practice, 369–371
Deploy Standard Processes practice, 371–372
Incorporate Experiences into Organizational Process Assets practice, 373–374
Monitor the Implementation practice, 372–373
Deploy Organizational Process Assets practice, 369–371
Deploy Service System Components practice, 130, 576–577
Deploy Standard Processes practice, 371–372
Deploy the Service System goal, 576
Assess and Control the Impacts of the Transition practice, 577–579
Deploy Service System Components practice, 576–577
Deployment, SST. See Service System Transition (SST) process area
Derived measures
data collection for, 326
description, 319–320
Descriptions
components, 25–30
defined processes, 219
lifecycle models, 351–352
service system performance, 238–239
standard services, 590–591
Descriptive statistics, 324
Design
asset libraries, 356
developing, 554–555
implementing, 557–558
measurement repositories, 355
Design packages, 554
Design phase in service system lifecycles, 79
Detection phase in incident lifecycles, 81
Determine Acquisition Type practice, 129, 494
Develop and Analyze Stakeholder Requirements goal, 545–547
Analyze and Validate Requirements practice, 549–551
Develop Service System Requirements practice, 548–549
Develop Stakeholder Requirements practice, 547–548
Develop Risk Mitigation Plans practice, 486–488
Develop Service System Requirements practice, 548–549

Develop Service System Transition Plans practice, 573–575
Develop Service Systems goal, 551–552
Develop the Design practice, 554–555
Ensure Interface Compatibility practice, 555–557
Implement the Service System Design practice, 557–558
Integrate Service System Components practice, 558–559
Select Service System Solutions practice, 552–554
Develop Stakeholder Requirements practice, 547–548
Develop the Design practice, 554–555
Development phase in service lifecycles, 77

Documentation
acceptance reviews and tests, 505
action plans, 368–369
business strategy considerations, 415
causal analysis activities, 310
change requests, 404
commitments, 294, 296, 401, 435
configuration items, 262
configuration management actions, 264
data management activity reviews, 402
decision alternatives, 272
decision criteria, 271
decision results, 274
defect and problem actions, 249
deficiency-correcting actions, 455
defined processes, 207, 281
dependencies, 294, 296, 513
design, 555
improvement deployment, 342, 344
improvement information collection, 208–214
improvement proposals, 252
incident actions, 308, 312
incident criteria, 303
information needs and objectives, 318
Documentation (Continued)
issue actions, 406–407
lessons learned, 292
lifecycle models, 352
measurement objectives, 319
milestone reviews, 405
noncompliance issues, 442
performance and availability
resource use, 232–233
pilot plans, 339
planning deviations, 400
plans, 433
process and technology
improvement deployment, 337
process and technology
improvement selection, 340
process appraisals, 365
process asset deployment, 370
process improvements, 367
process needs and objectives, 364
quality and process-performance
objectives, 450
requirements changes, 471
risks, 401, 426, 484
service continuity plan
improvements, 521
service continuity plans, 515
service continuity training, 516
service delivery approach, 533
service system, 541–542
standard processes, 351, 354
subprocess deficiency actions, 463
supplier agreements, 497
supplier criteria, 495
supplier issues, 502–503
training commitments, 389
training needs, 388
verification activities, 565
Doyle, Kieran, “How to Appraise
Security Using CMMI for
Services,” 103–107

Education
Education and Training listing, 39
“Public Education in an Age of
Accountability,” 107–112
Effectiveness of training, 394–395
Efficient decision making in
education systems, 110–111
Effort estimation, 420–421
Electronic billing by law firms, 128–131
Emergency operating resources, 512
End users
need data for, 527
overview, 19–20
Engineering as service, 115–122
Ensure Continuous Process
Improvement practice
overview, 216–218
process area relationships, 223
Ensure Interface Compatibility
practice, 555–557
Ensure Transition of Products
practice, 505–506
Environment
establishing, 283–285
risks, 484
standards, 357–358
Equipment requirements, 429
Equivalent staging, 63–67
Escalation
incidents, 303
noncompliance issues, 442
Essays, 85
“Are Services Agile?”, 122–128
“CMMI and Corporate Social
Responsibility,” 133–141
“Expanding the Universe of CMMI
with the CMMI for Services
Constellation,” 141–146
“How to Appraise Security Using
CMMI for Services,” 103–107
“Legal Services in a Changing
World,” 128–133
“National Government Services
Uses CMMI-SVC and Builds on
a History with CMMI-DEV,”
112–115

E

Eco Management and Audit Scheme
(EMAS), 136
“Plans Are Worthless,” 98–102
“Public Education in an Age of Accountability,” 107–112
“Treating Systems Engineering As a Service,” 115–122
“Using CMMI-SVC in a DoD Organization,” 85–89
“What We Can Learn from High-Performing IT Organizations to Stop the Madness in IT Outsourcing,” 89–98
Essential characteristics of processes, 364
Essential functions, dependencies on, 511–513
Establish a Capacity and Availability Management Strategy practice, 231–233
Establish a Configuration Management System practice, 260–261
Establish a Defined Process practice overview, 207–208
process area relationships, 222
Establish a Request Management System practice, 535–536
Establish a Risk Management Strategy practice, 480–481
Establish a Training Capability practice, 390–392
Establish an Approach to Incident Resolution and Prevention practice, 300–303
Establish an Incident Management System practice, 303–304
Establish an Organizational Policy practice, 150–154
Establish an Organizational Training Capability goal, 387
Determine Which Training Needs are the Responsibility of the Organization practice, 388–389
Establish a Training Capability practice, 390–392
Establish an Organizational Training Tactical Plan practice, 389–390
Establish Strategic Training Needs practice, 387–388
Establish an Organizational Training Tactical Plan practice, 389–390
Establish and maintain the description of a defined process practice, 219
Establish Baselines goal, 257
Create or Release Baselines practice, 261–262
Establish a Configuration Management System practice, 260–261
Identify Configuration Items practice, 258–259
Establish Configuration Management Records practice, 264–265
Establish Descriptions of Standard Services practice, 132–133, 590–591
Establish Estimates goal, 413–414
Define Project Lifecycle Phases practice, 419–420
Establish Estimates of Work Product and Task Attributes practice, 418–419
Establish the Project Strategy practice, 414–416
Estimate Effort and Cost practice, 420–421
Estimate the Scope of the Project practice, 417–418
Establish Estimates of Work Product and Task Attributes practice, 418–419
Establish Evaluation Criteria practice, 271–272
Establish Guidelines for Decision Analysis practice, 269–270
Establish Integrated Teams practice, 289–291
Establish Integrity goal, 264
Establish Configuration Management Records practice, 264–265
Perform Configuration Audits practice, 265–266
Establish Lifecycle Model
   Descriptions practice, 351–352
Establish Measurement Objectives
   practice, 317–319
Establish Organizational Process
   Assets goal, 349
Establish Lifecycle Model
   Descriptions practice, 351–352
Establish Rules and Guidelines for
   Integrated Teams practice, 358–359
Establish Standard Processes
   practice, 349–351
Establish Tailoring Criteria and
   Guidelines practice, 352–354
Establish the Organization’s
   Measurement Repository
   practice, 354–356
Establish the Organization’s Process
   Asset Library practice, 356–357
Establish Work Environment
   Standards practice, 357–358
Establish Organizational Process
   Needs practice, 363–364
Establish Performance Baselines and
   Models goal, 377
Establish Process-Performance
   Baselines practice, 381–382
Establish Process-Performance
   Measures practice, 378–379
Establish Process-Performance
   Models practice, 383–384
Establish Quality and Process-
   Performance Objectives
   practice, 379–381
Establish Property Descriptions
   practice, 355–356
Establish Properties of Standard
   Services and Service Levels
   practice, 132, 587–590
Establish Quality and Process-
   Performance Objectives practice,
   379–381
Establish Quantitative Objectives for
   the Process practice
   overview, 215
   process area relationships, 223
Establish Records practice, 443
Establish Rules and Guidelines for
   Integrated Teams practice,
   358–359
Establish Service Agreements
   goal, 525–526
Analyze Existing Agreements and
   Service Data practice, 526–528
   Establish the Service Agreement
   practice, 528–530
Establish Service Continuity Plans
   practice, 514–515
Establish Service Continuity Training
   practice, 516–517
Establish Service System
   Representations practice,
   235–238
Establish Standard Processes practice,
   349–351
Establish Standard Services goal, 587
   Establish Descriptions of Standard
   Services practice, 590–591
Establish Properties of Standard
   Services and Service Levels
   practice, 587–590
Establish Strategic Needs and Plans
   for Standard Services goal, 584
   Establish Plans for Standard
   Services practice, 585–587
   Gather and Analyze Relevant Data
   practice, 584–585
Establish Strategic Training Needs
   practice, 387–388
Establish Supplier Agreements
   goal, 587
   Determine Acquisition Type
   practice, 494
Establish Supplier Agreements practice, 496–499
Select Suppliers practice, 494–496
Establish Supplier Agreements practice, 496–499
Establish Tailoring Criteria and Guidelines practice, 352–354
Establish the Budget and Schedule practice, 422–424
Establish the Organization’s Measurement Repository practice, 354–356
Establish the Organization’s Process Asset Library practice, 356–357
Establish the Project Plan practice, 432–434
Establish the Project Strategy practice, 414–416
Establish the Project’s Defined Process practice, 280–282
Establish the Project’s Objectives practice, 448–451
Establish the Project’s Work Environment practice, 283–285
Establish the Service Agreement practice, 528–530
Establish the Service Delivery approach practice, 530–533
Establish Training Records practice, 394
Establish Work Environment Standards practice, 357–358
Establish Workarounds for Selected Incidents practice, 312–313
Estimate Effort and Cost practice, 420–421
Estimate the Scope of the Project practice, 417–418
Estimates establishing, 413–414
work product and task attributes, 418–419
Evaluate, Categorize, And Prioritize Risks practice, 484–485
Evaluate Alternatives goal, 269
Establish Evaluation Criteria practice, 271–272
Establish Guidelines for Decision Analysis practice, 269–270
Evaluate Alternatives practice, 274
Identify Alternative Solutions practice, 272
Select Evaluation Methods practice, 273
Select Solutions practice, 275
Evaluate Alternatives practice, 274
Evaluate Selected Supplier Work Products practice, 502–503
Evaluate the Effect of Changes practice, 252–253
Evaluation adherence, 197–205
PPQA. See Process and Product Quality Assurance (PPQA) process area
service continuity training, 517
training, 395
Examples, overview, 30
Exception conditions in service system, 242
Execute the Supplier Agreement practice, 499–501
Executive sponsors, 33–34
Exit criteria for peer reviews, 564
“Expanding the Universe of CMMI with the CMMI for Services Constellation” (Wilson), 141–146
Expected components, 21–22
Experiences, incorporating, 369–371
External commitment reviews, 436
External dependencies documentation, 513
External interfaces, 556–557
External training programs, 391

F
Facilities for acquired products, 506
requirements, 429
Failure mode and effects analysis (FMEA), 479
Fair trade in corporate social responsibility, 140
FCAs (functional configuration audits), 265
Federal legislation for education, 108–109
Feedback

text continues...

G

Garcia, Suzanne, “Treating Systems Engineering As a Service,” 115–122
Gather and Analyze Relevant Data practice, 131, 584–585
Gathering relevant defect and problem data, 247
Generic goals, 149
and capability levels, 57–58
Institutionalize a Defined Process goal, 207–214
Institutionalize a Managed Process goal, 150–207
Institutionalize a Quantitatively Managed Process goal, 215–216
Institutionalize an Optimizing Process goal, 216–218
and maturity levels, 59
overview, 27–28
Generic practices, 55–56
applying, 149
elaborations, 29
overview, 29
process area support for, 218–224
Glazer, Hillel, “Are Services Agile?,” 122–128
Global Reporting Initiative (GRI), 136
Global Sustainable Tourism Criteria (GSTC), 139
Globalization effects on law firms, 128
Glossary of terms, 609–641
Goal Question Metric paradigm, 378
Goals. See also specific goals by name
in corporate social responsibility, 138
numbering schemes, 31
Government services, 112–115
Green, Bob, “National Government Services Uses CMMI-SVC and Builds on a History with CMMI-DEV,” 112–115
GRI (Global Reporting Initiative), 136
GSTC (Global Sustainable Tourism Criteria), 139
Guidelines
decision analysis, 269–270
integrated teams, 358–359
process assets, 371
standard processes, 352–354
Help, 44–45
Help desk function, 301
High risks, 489
Higher level management, status reviews with, 205–207
Historical data for cost estimates, 420–421
“How to Appraise Security Using CMMI for Services” (Doyle), 103–107
Humphrey, Watts, 8
Identify, Control, and Address Incidents goal, 304
Address Underlying Causes of Selected Incidents practice, 307–308
Analyze Incident Data practice, 305–306
Apply Workarounds to Selected Incidents practice, 306–307
Communicate the Status of Incidents practice, 309
Identify and Record Incidents practice, 304–305
Monitor the Status of Incidents to Closure practice, 308
Identify Alternative Solutions practice, 272
Identify and Analyze Innovations practice, 337–338
Identify and Analyze Risks goal, 481
Evaluate, Categorize, And Prioritize Risks practice, 484–485
Identify Risks practice, 481–484
Identify and Involve Relevant Stakeholders practice
overview, 181–189
process area relationships, 221
Identify and Prioritize Essential Functions practice, 511
Identify and Prioritize Essential Resources practice, 512–513
Identify and Record Incidents practice, 304–305
Identify Configuration Items practice, 258–259
Identify Essential Service Dependencies goal, 510–511
Identify and Prioritize Essential Functions practice, 511
Identify and Prioritize Essential Resources practice, 512–513
Identify Inconsistencies Between Project Work and Requirements practice, 473
Identify Project Risks practice, 424–426
Identify Risks practice, 481–484
Identify the Organization's Process Improvements practice, 366–367
Impacts requirements, 470–471
transition, 577–579
Implement Action Proposals practice, 250–252
Implement Process Action Plans practice, 368–369
Implement Risk Mitigation Plans practice, 488–490
Implement the Service System Design practice, 557–558
Implementation phase in service system lifecycles, 79
Improvement determining, 363–364
lasting, 51–55
OID. See Organizational Innovation and Deployment (OID) process area
roles, 33–36
scope of, 46–47
Improvement information collection, 208–214
Improvement plans process, 362
Incident Resolution and Prevention (IRP) process area
adherence evaluation, 198–199
Capacity and Availability Management relationship, 230
configuration management, 176
Define Approaches to Address Selected Incidents goal, 309–313
government services, 113
Identify, Control, and Address Incidents goal, 304–309
improvement information collection, 210
incident lifecycles, 81
introductory notes, 297–299
policies, 151
Prepare for Incident Resolution and Prevention goal, 300–304
Incident Resolution and Prevention (IRP) process area (Continued)
- process monitoring and control, 191
- process plans, 156
- project lifecycles, 79
  - purpose, 297
  - relationships, 72, 299–300
- resources, 161
- responsibility, 167
- service system lifecycles, 80
- Service System Transition relationship, 570
- stakeholder identification and involvement, 183
- status reviews with higher level management, 205
- Strategic Service Management relationship, 583
- training, 170

Incidents
- lifecycles, 81
  - overview, 16–17

Incomplete processes, 52

Inconsistencies in project work and requirements, 473

Incorporate Experiences into Organizational Process Assets practice, 373–374

Information collection, 38–42

Information Technology
  - Infrastructure Library (ITIL), 9
  - influence of, 94
  - for security, 103–104

Information Technology Services
  - Capability Maturity Model (ITSCMM), 9

Informative components, 21–22

Infrastructure needs for cost estimates, 421

Initial analyses for measures, 326–327

Initiation phase in service request lifecycles, 80

Innovation, OID. See Organizational Innovation and Deployment (OID) process area

Installing service system, 577

Institutionalize a Defined Process goal
  - Collect Improvement Information practice, 208–214
  - Establish a Defined Process practice, 207–208

Institutionalize a Managed Process goal
  - Assign Responsibility practice, 167–168
  - Establish an Organizational Policy practice, 150–154
  - Identify and Involve Relevant Stakeholders practice, 181–189
  - Manage Configurations practice, 174–181
  - Monitor and Control the Process practice, 189–197
  - Objectively Evaluate Adherence practice, 197–205
  - Plan the Process practice, 154–160
  - Provide Resources practice, 160–167
  - Review Status with Higher Level Management practice, 205–207
  - Train People practice, 168–174

Institutionalize a Quantitatively Managed Process goal
  - Establish Quantitative Objectives for the Process practice, 215
  - Stabilize Subprocess Performance practice, 215–216

Institutionalize an Optimizing Process goal
  - Correct Root Causes of Problems practice, 218
  - Ensure Continuous Process Improvement practice, 216–218

Institutionalized processes, 51

Instructors
  - selecting, 46
  - training, 392

Integrate Plans practice, 285–288

Integrate Service System Components practice, 558–559

Integrated plans for project management, 288–289
L
Lasting improvement, 51–55
Law firms, 128–133
Legal resources, 512
“Legal Services in a Changing World” (Cunningham), 128–133
Lessons learned
   from evaluations, 441
   from process asset activities, 373
Levels
   capability, 57–63
   configuration management control, 260–261
   incidents, 302
   maturity, 58–63, 98–100
   risk acceptability and triggers, 487–488
Libraries, asset, 347
   for defined processes, 281, 288
   establishing, 356–357
Lifecycle models
   defined processes, 281
   descriptions, 351–352
Lifecycles, 75–76
   CMMI for Services, 77
   importance, 76–77
   incidents, 81
   phases, 419–420
   projects, 78–79
   putting together, 81–83
   service requests, 80–81
   service systems, 79–80
   services, 77–78
Literature searches for decision alternatives, 272
Long-duration project strategies, 414
Low-level monitoring of service delivery, 539–540

M
MA. See Measurement and Analysis (MA) process area
Maintain Bidirectional Traceability of Requirements practice, 471–473
Maintain the Service System practice, 540–542
Maintenance and operational support for work environment, 285
Maintenance notifications to stakeholders, 541
Manage Configurations practice overview, 174–181
   process area relationships, 220
Manage Corrective Action to Closure goal, 405
   Analyze Issues practice, 405–406
   Manage Corrective Actions practice, 407
   Take Corrective Action practice, 406–407
Manage Corrective Actions practice, 407
Manage Dependencies practice, 294–295
Manage Project Performance practice, 454–456
Manage Requirements Changes practice, 471
Manage Requirements goal, 468–469
   Identify Inconsistencies Between Project Work and Requirements practice, 473
   Maintain Bidirectional Traceability of Requirements practice, 471–473
Manage Requirements Changes practice, 471
Obtain Commitment to Requirements practice, 470
Understand Requirements practice, 469–470
Manage Stakeholder Involvement practice, 293–294
Manage the Deployment practice, 343–344
Manage the Project Using Integrated Plans practice, 288–289
Managed processes
   characteristics, 52
   institutionalizing, 150–154
Management reviews with suppliers, 500
Management steering group, 34
Managing the Software Process (Humphrey), 8
Marks, Angela, “National Government Services Uses CMMI-SVC and Builds on a History with CMMI-DEV,” 112–115
Materials
solicitation, 495
training, 391–392, 516–517
Maturity levels, 58–60
vs. capability levels, 60–63
limits, 98–100
Measurable goals in corporate social responsibility, 138
Measure Improvement Effects practice, 345
Measurement and Analysis (MA) process area
adherence evaluation, 199
Align Measurement and Analysis Activities goal, 317–325
Capacity and Availability Management relationship, 230
Causal Analysis and Resolution relationship, 246
configuration management, 177
in corporate social responsibility, 141
for education systems, 111
Integrated Project Management relationship, 279
introductory notes, 315–316
Organizational Innovation and Deployment relationship, 333
Organizational Process Performance relationship, 376
policies, 151
process monitoring and control, 192
process plans, 156
Project Monitoring and Control relationship, 398
Project Planning relationship, 412
Provide Measurement Results goal, 325–329
purpose, 315
Quantitative Project Management relationship, 447
related process areas, 316
resources, 161
stakeholder identification and involvement, 183
training, 170
Measurements
analyzing, 374
capacity and availability management, 233–235
for causes, 246
change effects, 252
decision evaluation methods, 273
for organization needs support, 289
for planning parameters, 282–283
process performance, 378–379, 382
QPM. See Quantitative Project Management (QPM) process area
repositories, 354–356
service system performance, 238
statistical management, 457
training effectiveness, 395
Medium risks, 489
Milestones
identifying, 423
reviewing, 404–405
Mitigate Risks goal, 486
Develop Risk Mitigation Plans practice, 486–488
Implement Risk Mitigation Plans practice, 488–490
Model-blending strategy in government services, 115
Model Team, 605
Models
CMMI, 6
components, 22–25
for cost estimates, 420–421
for decisions, 274
performance, 383–384
process-performance, 455
Models (Continued)
selecting, 47–48
for standard processes, 351
Monitor and Analyze Availability practice, 241
Monitor and Analyze Capacity and Availability goal, 238–243
Monitor and Analyze Availability practice, 241
Monitor and Analyze Capacity practice, 239–240
Report Capacity and Availability Management Data practice, 241–243
Monitor and Analyze Capacity practice, 239–240
Monitor and Control the Process practice overview, 189–197
process area relationships, 221
Monitor Commitments practice, 401
Monitor Data Management practice, 402
Monitor Project Planning Parameters practice, 398–400
Monitor Project Risks practice, 401–402
Monitor Selected Supplier Processes practice, 501–502
Monitor Stakeholder Involvement practice, 403
Monitor the Implementation practice, 372–373
Monitor the Performance of Selected Subprocesses practice, 462–463
Monitor the Project Against the Plan goal, 398
Conduct Milestone Reviews practice, 404–405
Conduct Progress Reviews practice, 403–404
Monitor Commitments practice, 401
Monitor Data Management practice, 402
Monitor Project Planning Parameters practice, 398–400
Monitor Project Risks practice, 401–402
Monitor Stakeholder Involvement practice, 403
Monitor the Status of Incidents to Closure practice, 308
Monitoring improvement deployment, 343
plans for, 288
PMC. See Project Monitoring and Control (PMC) process area
process- and technology- improvement deployment, 337
risk status, 489
service delivery, 534, 539–540
service request status, 538
supplier progress and performance, 499
Multiple levels of control in configuration management, 260–261
N
“National Government Services Uses CMMI-SVC and Builds on a History with CMMI-DEV” (Marks and Green), 112–115
Natural bounds, 459–460
Neeb-Bruckner, Barbara, “CMMI and Corporate Social Responsibility,” 133–141
Nelson, Brad, “Plans Are Worthless,” 98–102
No Child Left Behind (NCLB) Act, 108–109
Non-numeric criteria in decision analysis, 268
Noncompliance issues, 442–443
Nonfunctional validation on selected service system components, 566
Nontechnical commitments for acquired products, 504
Norauksy Process Solutions, 113
Normative components, 22
Northrop Grumman, 9, 145–146
Notes overview, 30
Notifications
incidents, 302
transitions, 375
Numbering schemes, 31
Numeric criteria in decision analysis, 268

Objective criteria for requirements, 469
Objectively Evaluate Adherence practice
overview, 197–205
process area relationships, 221
Objectively Evaluate Processes and Work Products goal, 440
Objectively Evaluate Processes practice, 440–441
Objectively Evaluate Work Products practice, 441
Objectively Evaluate Processes practice, 440–441
Objectively Evaluate Work Products practice, 441
Objectives
business, 379–380
improvement, 42–44
measurement, 317–319
project, 448–451
quality and process performance, 379–381, 449–451
strategic, 415, 586
training needs identification, 388
Objectivity in quality assurance, 438
Obtain Commitment to Requirements practice, 470
Obtain Commitment to the Plan goal, 434
Obtain Plan Commitment practice, 435–436
Reconcile Work And Resource Levels practice, 434–435
Review Plans That Affect the Project practice, 434
Obtain Measurement Data practice, 325–326
Obtain Plan Commitment practice, 435–436
OID. See Organizational Innovation and Deployment (OID) process area
OLAs (operating level agreements), 15
OPD. See Organizational Process Definition (OPD) process area
Operate the Service System practice, 539–540
Operating level agreements (OLAs), 15
Operation phase in service system lifecycles, 79
Operational definitions for measures, 320
operational failures, IT organizations, 95
OPF. See Organizational Process Focus (OPF) process area
OPP. See Organizational Process Performance (OPP) process area
Optimizing processes institutionalizing, 216–218
overview, 55–56
Organizational culture, 40, 49–50
Organizational Innovation and Deployment (OID) process area
adherence evaluation, 199
Causal Analysis and Resolution relationship, 246
configuration management, 177
Deploy Improvements goal, 341–345
for education systems, 112
improvement information collection, 210
introductory notes, 331–333
policies, 151
process plans, 157
purpose, 331
Quantitative Project Management relationship, 448
related process areas, 333, 545
Organizational Innovation and Deployment (OID) process area
(Continued)
resources, 162
Select Improvements goal, 334–340
stakeholder identification and involvement, 183–184
training, 170
Organizational Process Definition (OPD) process area
adherence evaluation, 199–200
collection, 210
configuration management, 177
for education systems, 112
Establish Organizational Process Assets goal, 349–359
generic goals and practices support by, 219
improvement information collection, 211
Integrated Project Management relationship, 279
introductory notes, 347–348
Measurement and Analysis relationship, 316
Organizational Process Focus relation, 362
Organizational Training relationship, 386
policies, 152
process monitoring and control, 192
process plans, 157
purpose, 26, 347
Quantitative Project Management relationship, 448
relationships, 72, 348
resources, 162
stakeholder identification and involvement, 184
Strategic Service Management relationship, 583
training, 170
Organizational Process Focus (OPF) process area
adherence evaluation, 200
collection, 211
configuration management, 177
training, 170
Deploy Organizational Process Assets and Incorporate Experiences goal, 369–374
Determine Process Improvement Opportunities goal, 363–367
improvement information collection, 211
introductory notes, 361–362
Organizational Innovation and Deployment relationship, 333
Organizational Process Definition relationship, 348
Plan and Implement Process Actions goal, 367–369
policies, 152
process monitoring and control, 192
process plans, 157
purpose, 361
related process areas, 362
resources, 162
stakeholder identification and involvement, 184
status reviews with higher level management, 206
training, 171
Organizational Process Performance (OPP) process area
adherence evaluation, 200
configuration management, 178
for education systems, 112
Establish Performance Baselines and Models goal, 377–384
improvement information collection, 211
introductory notes, 375–376
Organizational Innovation and Deployment relationship, 333
policies, 152
process monitoring and control, 192
process plans, 157
purpose, 375
Quantitative Project Management relationship, 448
related process areas, 376
resources, 163–164
service system representations, 237
stakeholder identification and
involvement, 185
training, 171
Organizational Training (OT) process
area
adherence evaluation, 200–201
configuration management, 178
for education systems, 112
Establish an Organizational
   Training Capability goal, 387–392
improvement information
collection, 211
introductory notes, 385–386
Organizational Innovation and
   Deployment relationship, 333
policies, 152
process monitoring and control, 193
process plans, 157–158
Provide Necessary Training goal, 392–395
purpose, 385
relationships, 73, 386
resources, 163
Service Continuity relationship, 510
stakeholder identification and
   involvement, 185
training, 171
Organizationalx strategic plans, 587
“Our Common Future,” 134

P
Parameters
   project planning, 282–283, 398–400
   risk, 478–480, 484–485
Partner organizations, 39, 49–50
Paths of service delivery schedules, 539
PCAs (physical configuration audits), 265
Peer reviews
   defined processes, 282
   lifecycle models, 352
   plans for, 287
   selected service system
   components, 558
   standard processes, 351, 354–355
   standard service descriptions, 591
   system services, 562–565
   Perfection maintenance, 540
Perform Configuration Audits
   practice, 265–266
Perform Peer Reviews practice, 562–565
Perform Specific Practices practice, 150
Performance
high and low performers, 92–93
OPP. See Organizational Process
   Performance (OPP) process area
risk-handling activities, 490
risks associated with, 482–483
suppliers, 500
Performance work statements
(PWSs), 465
Performed processes, 52, 56
Person-to-person interfaces, 555–556
Phillips, Mike, “Using CMMI-SVC in
   a DoD Organization,” 85–89
Physical configuration audits (PCAs), 265
Pilot Improvements practice, 339
Pilots
   action plans, 369
   for decisions, 274
   for innovation, 332
   problems, 568
Plan Actions to Address Underlying
   Causes of Selected Incidents
   practice, 311–312
Plan and Implement Process Actions
   goal, 367
Establish Process Action Plans
   practice, 367–368
Implement Process Action Plans
   practice, 368–369
Plan Data Management practice, 426–428
Plan dates for critical dependency, 294
Plan Needed Knowledge and Skills practice, 430–431
Plan Stakeholder Involvement practice, 431–432
Plan the Deployment practice, 341–342
Plan the Process practice, overview, 154–160
process area relationships, 220
Plan the Project’s Resources practice, 428–429
Planned work, culture of, 92
Plans
action, 367–369, 505
establishing, 432–434
PP. See Project Planning (PP) process area
reviewing, 405
risk mitigation, 486–488
service continuity, 514–515
service request actions, 538
service system maintenance, 541
service system transition, 573–575
for standard services, 585–587
training, 389–390
“Plans Are Worthless” (Nelson), 98–102
PMC. See Project Monitoring and Control (PMC) process area
Policies
establishing, 150–154
for standard processes, 351
Post-deployment reviews, 579
PP. See Project Planning (PP) process area
PPQA. See Process and Product Quality Assurance (PPQA) process area
Practice Implementation Indicator (PII) for security, 105–106
Practices. See also specific practices by name
generic. See Generic practices numbering schemes, 31
Preliminary conclusions for measures, 326
Preparation phase in project lifecycles, 78
Prepare for Capacity and Availability Management goal, 231
Establish a Capacity and Availability Management Strategy practice, 231–233
Establish Service System Representations practice, 235–238
Select Measures and Analytic Techniques practice, 233–235
Prepare for Incident Resolution and Prevention goal, 300
Establish an Approach to Incident Resolution and Prevention practice, 300–303
Establish an Incident Management System practice, 303–304
Prepare for Risk Management goal, 477
Define Risk Parameters practice, 478–480
Determine Risk Sources and Categories practice, 477–478
Establish a Risk Management Strategy practice, 480–481
Prepare for Service Continuity goal, 513–514
Establish Service Continuity Plans practice, 514–515
Establish Service Continuity Training practice, 516–517
Provide and Evaluate Service Continuity Training practice, 517
Prepare for Service Delivery goal, 530
Establish a Request Management System practice, 535–536
Establish the Service Delivery approach practice, 530–533
Prepare for Service System Operations practice, 533–535
Prepare for Service System Operations practice, 533–535
Prepare for Service System Transition
goal, 571
Analyze Service System Transition
Needs practice, 571–573
Develop Service System Transition
Plans practice, 573–575
Prepare Stakeholders for Changes
practice, 575–576
Prepare for the Verification and
Validation of the Service
Continuity Plan practice,
518–520
Prepare for Verification and Validation
practice, 561–562
Prepare Stakeholders for Changes
practice, 130, 575–576
Preventive maintenance, 540
Priorities
action proposals, 251
candidate process improvements,
366–367
change requests, 262
data collection procedures, 322
essential functions, 511–513
incident levels, 302
information needs and objectives,
319
maintenance requests, 541
measurement analyses, 323
measures, 321
objectives, 380
process and technology
improvements, 340
quality and process performance,
449
risks, 484–485
Privacy requirements and procedures,
427
Problem causes. See Causal Analysis
and Resolution (CAR) process
area
Process action plans, 368–369
Process and Product Quality
Assurance (PPQA) process area
adherence evaluation, 201–202
configuration management, 178
for education systems, 110
improvement information
collection, 212
introductory notes, 437–439
Objectively Evaluate Processes and
Work Products goal, 440–441
policies, 152
process monitoring and control,
193
process plans, 158
Provide Objective Insight goal,
442–443
purpose, 437
related process areas, 439
resources, 164
responsibility, 167
stakeholder identification and
involvement, 186
training, 172
Process and technology improvement
criteria, 332
Process areas. See also specific process
areas by name
components. See Components
description, 25–26
generic goals and generic practices
support, 218–224
and maturity levels, 59
relationships among. See
Relationships among process
areas
Process asset libraries, 347
for defined processes, 288
establishing, 356–357
Process assets
deploying, 369–371
monitoring, 372–373
Process group leaders, 35
Process groups, 34–35
Process improvements
determining, 363–364
OID. See Organizational Innovation
and Deployment (OID) process
area
roles, 33–36
Process Management process areas, 60
Processes
CMMI, 5–6
lasting improvement, 51–55
needs establishment, 363
performance. See Organizational Process Performance (OPP) process area
Products, services as, 11
Profiles, 40, 60, 64–67
Progress
action plan, 369
project monitoring, 399
reviews, 403–404
Project management, 10, 60, 74
Project Monitoring and Control (PMC) process area
adherence evaluation, 201
configuration management, 178
Configuration Management relationship, 257
generic goals and practices support by, 219
improvement information collection, 211
Incident Resolution and Prevention relationship, 300
Integrated Project Management relationship, 279
introductory notes, 397
Manage Corrective Action To Closure goal, 405–407
Measurement and Analysis relationship, 316
Monitor the Project Against the Plan goal, 398–405
policies, 152
process monitoring and control, 193
process plans, 158
purpose, 397
Quantitative Project Management relationship, 448
relationships, 74, 397
Requirements Management relationship, 468
resources, 163
Risk Management relationship, 476
Service Delivery relationship, 525
stakeholder identification and involvement, 185
Strategic Service Management relationship, 583
Supplier Agreement Management relationship, 493
training, 171
Project Planning (PP) process area
adherence evaluation, 201
Capacity and Availability Management relationship, 230
configuration management, 178
Configuration Management relationship, 257
Develop a Project Plan goal, 422–434
Establish Estimates goal, 413–421
generic goals and practices support by, 219
improvement information collection, 212
Integrated Project Management relationship, 279
introductory notes, 409–412
Measurement and Analysis relationship, 316
Obtain Commitment to the Plan goal, 434–436
Organizational Training relationship, 386
policies, 152
process monitoring and control, 193
process plans, 158
Project Monitoring and Control relationship, 398
purpose, 409
relationships, 74, 412
Requirements Management relationship, 468
resources, 164
Risk Management relationship, 476
Service Continuity relationship, 510
stakeholder identification and involvement, 185–186
training, 172
Projects overview, 17–19
defined, 10
lifecycles, 78–79
strategies, 586–587
Properties of standard services and service levels, 587–590
Prototypes, 274
Provide and Evaluate Service Continuity Training practice, 517
Provide Measurement Results goal, 325
Analyze Measurement Data practice, 326–327
Communicate Results practice, 328–329
Obtain Measurement Data practice, 325–326
Store Data and Results practice, 327–328
Provide Necessary Training goal, 392–393
Assess Training Effectiveness practice, 394–395
Deliver Training practice, 393–394
Establish Training Records practice, 394
Provide Objective Insight goal, 442
Communicate and Ensure the Resolution of Noncompliance Issues practice, 442–443
Establish Records practice, 443
Provide Resources practice overview, 160–167
process area relationships, 220
“Public Education in an Age of Accountability” (Cox-Buteau), 107–112
Publishing service agreements, 530
Purchasing policy in corporate social responsibility, 140
Purpose statements, 26
PWSs (performance work statements), 465

Q
QPM. See Quantitative Project Management (QPM) process area
Quality
OPP. See Organizational Process Performance (OPP) process area
PPQA. See Process and Product Quality Assurance (PPQA) process area
Quality assurance appraisal, 37
Quality Team, 606–607
Quantitative objectives, 215
Quantitative process improvements, 217
Quantitative Project Management (QPM) process area
adherence evaluation, 202
Causal Analysis and Resolution relationship, 246
configuration management, 179
improvement information collection, 212
introductory notes, 445–447
Measurement and Analysis relationship, 316
Organizational Process Performance relationship, 376
policies, 153
process monitoring and control, 194
process plans, 158
purpose, 445
Quantitatively Manage the Project goal, 448–456
related process areas, 447–448
stakeholder identification and involvement, 186
Statistically Manage Subprocess Performance goal, 456–463
training, 172
Quanitatively Manage the Project goal, 448
Compose the Defined Process practice, 451–452
Quantitatively Manage the Project

Quantitatively Manage the Project (Continued)
Establish the Project’s Objectives
Manage Project Performance
Select Subprocesses to Be Statistically Managed
Quantitatively managed processes,

R
Radice, Ron, 8
Range for ranking decision criteria,
Ranking decision criteria, 271–272
Ratings, appraisal, 37, 49
Rationale for evaluation criteria, 272
Recalculating natural bounds, 461
Receive and Process Service Requests
Reconcile Work And Resource Levels
Record Data practice, 253
Record Statistical Management Data practice, 463
Recording
commitments to requirements, 470
incident actions, 308
incidents, 305, 307
peer review information, 564–565
process improvement activities, 374
service continuity plan verification and validation, 520
service request information, 537
underlying causes of incidents, 310–311
verification activities results, 565
Records
quality assurance, 443
training, 394
Reference models, 47–48
References
CMMI resources, 595–599
process areas, 31

Relationships among process areas, 69–70
Capacity and AvailabilityManagement, 230
Causal Analysis and Resolution, 246
Configuration Management, 257
Decision Analysis and Resolution, 269
Incident Resolution and Prevention, 299–300
Integrated Project Management, 279
lifecycles, 75–83
Measurement and Analysis, 316
Organizational Innovation and Deployment, 333
Organizational Process Definition, 348
Organizational Process Focus, 362
Organizational Process Performance, 376
Organizational Training, 386
overview, 27
Process and Product Quality Assurance, 439
Project Monitoring and Control, 397
Project Planning, 412
Quantitative Project Management, 447–448
Requirements Management, 468
Risk Management, 476
Service Continuity, 510
Service Delivery, 525
Service Establishment and Delivery, 69–73
service management, 73–75
Service System Development, 545
Service System Transition, 570–571
specifying, 350–351
Strategic Service Management, 583
Supplier Agreement Management, 493
Relative importance of decision criteria, 272
Relevant defect and problem data gathering, 247
Repeatability measurements, 322
statistical management, 458
Report Capacity and Availability Management Data practice, 241–243
Reports configuration management, 261
measurement analyses, 323
underlying causes of incidents, 310
Repositories for measurement, 354–356
REQM. See Requirements Management (REQM) process area
Request management system, 535–536
Required components, 21–22
Requirements analyzing and validating, 549–551
defect, 567
peer review, 563
service system, 548–549
stakeholders, 547–548
standard services, 586
Requirements Management (REQM) process area
adherence evaluation, 202
configuration management, 179
in corporate social responsibility, 141
improvement information collection, 212
introductory notes, 465–467
Manage Requirements goal, 468–473
policies, 153
process monitoring and control, 194
process plans, 158
Project Planning relationship, 412
purpose, 465
relationships, 70–71, 75, 468
resources, 164
stakeholder identification and involvement, 186–187
status reviews with higher level management, 206
Strategic Service Management relationship, 583
Supplier Agreement Management relationship, 493
training, 172
Requirements traceability matrices, 472
Resolve Coordination Issues practice, 295–296
Resolving noncompliance issues, 442
quality and process-performance objectives conflicts, 450
Resource level reconciliation, 434–435
Resources, 13
CAM. See Capacity and Availability Management (CAM) process area
committing, 44
dependencies, 512–513
monitoring, 400
planning, 428–429
providing, 160–167
requirements, 429
risk-handling activities, 490
service delivery, 534
service requests, 532, 537–538
service system transitions, 574
in strategies, 415
Response phase incident lifecycles, 81
service request lifecycles, 80
Responsibility assigning, 167–168
corporate social responsibility, 133–141
incidents, 302
risk, 488
service requests, 532
Responsible buyers, 100–101
Retirement phase
  service lifecycles, 78
  service system lifecycles, 79
Review Plans That Affect the Project
  practice, 434
Review Status with Higher Level
  Management practice
  overview, 205–207
  process area relationships, 222
Reviews
  acceptance procedures, 504
  action plans, 368–369
  asset libraries, 356
  business objectives, 379–380
  commitments, 436
  for consistency, 473
  data collection procedures, 322
  data management activities, 402
  improvement deployment plans, 342
  incident actions, 308
  interface descriptions, 557
  maintenance requests, 541
  measurement analyses, 324
  measurement objectives, 319
  measures, 321
  objective achievements, 455
  pilot plans, 339
  plans, 434
  post-deployment, 579
  process accomplishments, 189
  process-performance baselines, 382
  process-performance models, 384
  project performance with current
    and anticipated needs, 289
  quality and process performance
    objectives, 449
  risks, 426
  service agreements, 350
  service continuity plans, 515
  service continuity training
    materials, 516
  service delivery approach, 533–534
  service delivery data, 527
  service request status, 538
  service system components, 563
standard processes, 373
standard service descriptions, 591
strategies, 416
subprocesses, 454–455
with suppliers, 499–500
verification and validation plans, 519
work breakdown structures, 484
work environment, 285
Revising
  asset libraries, 356
  configuration management
    structure, 261
  defined process descriptions, 207
  lifecycle model descriptions, 352
  measure sets, 379
  measurement repositories, 355
  objectives, 380–381
  planned process improvements, 367
  process needs and objectives, 364
  process-performance baselines, 382
  process-performance models, 384
  project plans, 434
  quality and process-performance
    objectives, 451
  quality assurance status and history,
    443
  raining materials, 392
  risk documentation, 401
  risks, 426
  service agreements, 530
  service continuity plans, 515
  service continuity training
    materials, 517
  service delivery approach, 533
  service system, 558
  standard process tailoring, 354
  standard processes, 351, 354
  standard service descriptions, 591
  statistical management techniques, 458
strategies, 416
supplier requirements, 497, 499
training needs, 388
training plans, 390
Rickover, Hyman, 100
Risk Management (RSKM) process area
adherence evaluation, 202–203
configuration management, 179
Decision Analysis and Resolution relationship, 269
Identify and Analyze Risks goal, 481–485
improvement information collection, 213
Incident Resolution and Prevention relationship, 300
introductory notes, 475–476
Mitigate Risks goal, 486–490
policies, 153
Prepare for Risk Management goal, 477–481
process monitoring and control, 194
process plans, 158
Project Planning relationship, 412
purpose, 475
related process areas, 476
Requirements Management relationship, 468
resources, 165
Service Continuity relationship, 510
stakeholder identification and involvement, 187
status reviews with higher level management, 206
training, 173
Risks decisions, 275
identifying, 424–426
monitoring, 401–402
process- and technology-improvement deployment, 336–337
product and project interface, 287
quality and process-performance objectives, 455
reviewing, 405
RSKM. See Risk Management (RSKM) process area
in strategies, 416
subprocesses, 452
supplier, 495, 501
Roles
peer reviews, 564
process improvement, 33–36
Roll-out, SST. See Service System Transition (SST) process area
Root causes
correcting, 218
determining, 249
incidents, 298–299, 309
RSKM. See Risk Management (RSKM) process area
S
SaaS (software as a service), 12, 14–15
Safety provisions for continuity, 513
SAM. See Supplier Agreement Management (SAM) process area
Satisfy Supplier Agreements goal, 499
Accept the Acquired Product practice, 504–505
Ensure Transition of Products practice, 505–506
Evaluate Selected Supplier Work Products practice, 502–503
Execute the Supplier Agreement practice, 499–501
Monitor Selected Supplier Processes practice, 501–502
Scale for ranking decision criteria, 271
SCAMPI. See Standard CMMI Appraisal Method for Process Improvement (SCAMPI)
Scenario development, 550
Schedules
assumptions, 423
critical development tasks, 287
establishing, 422–424
peer reviews, 563
process- and technology-improvement deployment, 337
process appraisals, 365
risk-handling activities, 489
risks associated with, 482–483
Schedules (Continued)
  service delivery, 539
  service requests, 524
  service system transitions, 574
  training, 393
SCON. See Service Continuity (SCON) process area
Scope
  establishing, 417–418
  improvement, 46–47
  process appraisals, 365
SD. See Service Delivery (SD) process area
SECM (Systems Engineering Capability Model), 8
Secure storage and access methods, 515
Security
  “How to Appraise Security Using CMMI for Services,” 103–107
  requirements and procedures for, 427
  service delivery, 539
  in strategies, 416
SEI (Software Engineering Institute), 5–6
  and corporate social responsibility, 135
  training courses, 38–39
SEI Partners, 49–50
Select Defects and Problems practice, 247–248
Select Evaluation Methods practice, 273
Select Improvements for Deployment practice, 340
Select Improvements goal, 334
  Collect and Analyze Improvement Proposals practice, 334–337
  Identify and Analyze Innovations practice, 337–338
  Pilot Improvements practice, 339
  Select Improvements for Deployment practice, 340
Select Measures and Analytic Techniques practice, 233–235, 456–458
Select Processes practice, 377–378
Select Service System Solutions practice, 552–554
Select Solutions practice, 275
Select Subprocesses to Be Statistically Managed practice, 453–454
Select Suppliers practice, 129, 494–496
Senior management
  commitment reviews with, 436
  corporate social responsibility sponsorship, 138
  process appraisal sponsorship, 365
  strategy reviews with, 416
SEPG conference, 39
Service agreements, 15
  contents, 125
  for education, 109–110
  establishing, 525–530
Service Continuity (SCON) process area
  adherence evaluation, 203
  Capacity and Availability Management relationship, 230
  configuration management, 179
  government services, 113
  Identify Essential Service Dependencies goal, 510–513
  improvement information collection, 213
  introductory notes, 507–509
  policies, 153
  Prepare for Service Continuity goal, 513–517
  process monitoring and control, 195
  process plans, 159
  purpose, 507
  relationships, 75, 510
  resources, 165
  responsibility, 167
  Risk Management relationship, 476
  Service System Transition relationship, 570
  stakeholder identification and involvement, 187
status reviews with higher level management, 206
training, 173
Verify and Validate the Service Continuity Plan goal, 517–521
Service Delivery (SD) process area
adherence evaluation, 203
Capacity and Availability
Management relationship, 230
configuration management, 180
Deliver Services goal, 536–542
education systems, 110
Establish Service Agreements goal, 525–530
improvement information
collection, 213
Incident Resolution and Prevention relationship, 299
introductory notes, 523–524
policies, 153
Prepare for Service Delivery goal, 530–536
process monitoring and control, 195
process plans, 159
project lifecycles, 79
Project Planning relationship, 412
purpose, 523
relationships, 72, 75, 525, 545
resources, 165–166
responsibility, 168
Service Continuity relationship, 510
service request lifecycles, 80
Service System Transition relationship, 570
stakeholder identification and involvement, 188
Strategic Service Management relationship, 583
training, 173
Service desk function, 301
Service Establishment and Delivery process areas, 60, 69–70
Service incidents. See Incident Resolution and Prevention (IRP) process area
lifecycles, 81
overview, 16–17
Service level agreements (SLAs)
pénalties, 96
in requirements management, 465
Service levels
perspectives, 582–583
properties, 587–590
Service Management, 10
Service-oriented architecture (SOA), 12, 14–15
Service requests, 15–16
lifecycles, 80–81
receiving and processing, 536–538
Service System Development (SSD)
process area, 11, 29–30
adherence evaluation, 204
configuration management, 180
Develop and Analyze Stakeholder Requirements goal, 545–551
Develop Service Systems goal, 551–559
government services, 112, 115
improvement information
collection, 214
Integrated Project Management relationship, 279
introductory notes, 543–544
Measurement and Analysis relationship, 316
policies, 153
Process and Product Quality Assurance relationship, 439
process monitoring and control, 196
process plans, 159
Project Planning relationship, 412
purpose, 543
relationships, 71, 545
Requirements Management relationship, 468
resources, 166
Service Delivery relationship, 525
Service system lifecycles, 80
stakeholder identification and involvement, 188
Service System Development (SSD) process area (Continued)

Strategic Service Management relationship, 583
Supplier Agreement Management relationship, 493
training, 174
Verify and Validate Service Systems goal, 559–568
Service system representations
Capacity and Availability Management process area, 228–230
establishing, 235–238
Service System Transition (SST) process area
adherence evaluation, 204–205
configuration management, 180
in corporate social responsibility, 141
Deploy the Service System goal, 576–579
for education systems, 112
improvement information collection, 214
introductory notes, 569–570
for law firms, 129
policies, 154
Prepare for Service System Transition goal, 571–575
process monitoring and control, 196
process plans, 159–160
purpose, 569
relationships, 72, 545, 570–571
resources, 166
responsibility, 168
Service Delivery relationship, 525
service system lifecycles, 80
Stakeholder identification and involvement, 188
status reviews with higher level management, 207
training, 174
Service systems
concept, 12–15
lifecycles, 79–80
Services, 11–12
critical attributes, 588
lifecycles, 77–78
Services constellations, 8–10
Severity levels of incidents, 302
Shared vision, 291
Sheard, Sarah, 117
Shewhart, Walter, 7
Short-duration project strategies, 414
Skills, plans for, 430–431
SLAs (service level agreement) penalties, 96
in requirements management, 465
SOA (service-oriented architecture), 12, 14–15
Social responsibility, corporate, 133–141
Software as a service (SaaS), 12, 14–15
Software Engineering Institute (SEI), 5–6
and corporate social responsibility, 135
training courses, 38–39
Software Engineering Institute Partners, 49–50
Solicitation material, 495
SOOs (statements of objectives), 465
Sources, risk, 477–478
SOWs (statements of work), 465
Spafford, George, Visible Ops Handbook: Starting ITIL in Four Practical Steps, 90
Special causes, 459–461
Specific goals, 27–28
Specific practices, 28
Specify Analysis Procedures practice, 323–325
Specify Data Collection and Storage Procedures practice, 321–322
Specify Measures practice, 319–321
Sponsorship
corporate social responsibility, 138
process appraisals, 365
SSD. See Service System Development (SSD) process area
Store Data and Results practice, 327–328
Strategic Service Management (STSM) process area
adherence evaluation, 205
Capacity and Availability Management relationship, 230
configuration management, 181
Establish Standard Services goal, 587–591
Establish Strategic Needs and Plans for Standard Services goal, 584–587
government services, 113
improvement information collection, 214
introductory notes, 581–583
for law firms, 131–132
Organizational Process Definition relationship, 348
Organizational Process Performance relationship, 376
policies, 154
process monitoring and control, 197
process plans, 160
Project Planning relationship, 412
purpose, 581
Quantitative Project Management relationship, 447
relationships, 70–72, 583
Requirements Management relationship, 468
resources, 166–167
Service System development relationship, 545
stakeholder identification and involvement, 189
training, 174
Strategies
capacity and availability management, 231–233
change, 49
establishing, 414–416
process improvements, 218
risk management, 480–481
service continuity training, 516
Structure of service agreements, 529
STSM. See Strategic Service Management (STSM) process area
Students
Education and Training listing, 39
“Public Education in an Age of Accountability,” 107–112
Submitting service requests, 532
Subpractices overview, 28
Subprocesses
in defined processes, 451–452
monitoring, 462–463
natural bounds for, 439–460
performance stabilizing, 215–216
selecting, 54, 453–454
statistically managing, 456–463
Supplier Agreement Management (SAM) process area
adherence evaluation, 203
configuration management, 179
Establish Supplier Agreements goal, 494–499
improvement information collection, 213
introductory notes, 491–493
for law firms, 129
policies, 153
process monitoring and control, 195
process plans, 159
purpose, 491
related process areas, 493
resources, 165
Satisfy Supplier Agreements goal, 499–506
stakeholder identification and involvement, 187
training, 173
Supplier agreement reviews, 527
Support personnel, 527
Support process areas, 60
Supporting informative components, 30
Sustained improvement for education systems, 111
Systems engineering as service, 115–122
Systems Engineering Capability Model (SECM), 8

T
Tactical plans
deployment backout, 578
training, 389–390
Tailoring criteria, 352–354, 589
Take Corrective Action practice, 406–407
Target profiles, 60, 64–67
Tasks
attributes, 418–419
dependencies, 423
Team leaders
responsibilities, 35–36
selecting, 45–46
Teams
for actions, 368
CMMI-SVC, 605–607
establishing, 289–291
rules and guidelines, 358–359
Technical reviews with suppliers, 500
Termination phase in project lifecycles, 78
Terms, glossary of, 609–641
Test Wing organization, 86–89
Tests
acceptance, 505
corrective and preventive maintenance, 542
service system components, 558
Threats, identifying, 514
Three pillars of sustainability, 134
Thresholds
risk acceptability and triggers, 487–488
risk categories, 479–480
service system performance, 238–240
Time requirements
incident response, 302
service request handling, 532
Titles of goals, 27–28
Tourism example, 138–140
Traceability
bidirectional, 467, 471–473
measurement objectives, 319–320
quality and process-performance objectives, 450–451
Track and Control Changes goal, 262
Control Configuration Items practice, 263–264
Track Change Requests practice, 262–263
Track Change Requests practice, 262–263
Tracking
acceptance actions, 505
action plan progress, 369
change requests, 404
corrective actions, 190
dependencies and commitments, 295
milestone actions, 405
noncompliance issues, 443
pilot plans, 339
risk-handling actions, 489
supplier process-performance objectives, 455
training, 394
Train People practice overview, 168–174
process area relationships, 220
Training
for acquired products, 506
in corporate social responsibility, 138–139
for data collection, 322
for defined processes, 287
in improvement deployment, 343–344
for knowledge needs, 430
methods, 6
OT. See Organizational Training (OT) process area overview, 37–38
for process asset deployment, 370
programs, 48
Index

Training (Continued)
for service continuity, 516–517
for service delivery, 534–535
for transitions, 575–577
Training Team, 606
Transfer of incidents, 303
Transition
products, 505–506
SST. See Service System Transition (SST) process area
Transition phase in service system lifecycles, 79
“Treating Systems Engineering As a Service” (Garcia), 115–122
Trends in service system resources, 241
Trial natural bounds, 459–460
Triggers, risk, 487–488
Typical work products, 28

U
Udovicki, Kori, 134
Underlying causes of incidents, 298–299, 307–308, 310
Understand Requirements practice, 469–470
Unintended events, 16
Updating
data collection procedures, 322
measurement analyses, 324
measurement objectives, 319
measures, 321
service system documentation, 541
Use Organizational Process Assets for Planning Project Activities practice, 282–283
Use the Project’s Defined Process goal, 279
Contribute to Organizational Process Assets practice, 291–293
Establish Integrated Teams practice, 289–291
Establish the Project’s Defined Process practice, 280–282
Establish the Project’s Work Environment practice, 283–285
Integrate Plans practice, 285–288
Manage the Project Using Integrated Plans practice, 288–289
Use Organizational Process Assets for Planning Project Activities practice, 282–283
“Using CMMI-SVC in a DoD Organization” (Phillips), 85–89

V
Validate the Service System practice, 566–568
Validation
action proposals, 312
constraints for, 548
requirements, 549–551
service continuity plans, 517–518
service system components, 565, 577
Variable parts of standard services, 588
Verification
acquired products satisfaction, 504
action proposals, 312
constraints for, 548
Verify and Validate Service Systems goal, 559–561
Perform Peer Reviews practice, 562–565
Prepare for Verification and Validation practice, 561–562
Validate the Service System practice, 566–568
Verify Selected Service System Components practice, 565
Verify and Validate the Service Continuity Plan goal, 517–518
Analyze Results of Verification and Validation practice, 520–521
Prepare for the Verification and Validation of the Service Continuity Plan practice, 518–520
Verify and Validate the Service
Continuity Plan practice, 520
Verify and Validate the Service
Continuity Plan practice, 520
Verify Selected Service System
Components practice, 565
Version control, 428
Visible Ops Handbook: Starting ITIL in
Four Practical Steps (Behr, Kim,
and Spafford), 90
Vital data and systems protection, 515
Vulnerabilities identification, 514

W
Waivers for standard processes, 354
Waterfall type of service system
lifecycle, 79
WBS (work breakdown structure),
287
developing, 417
reviews, 484
“What We Can Learn from High-
Performing IT Organizations to
Stop the Madness in IT
Outsourcing” (Kim and Behr),
89–90
calls to action, 97–98
case study, 95–96
common culture, 91–92
controls, 94
effective systems, 96–97
high and low performers, 92–93
introduction, 90–91
IT problems, 94–95
ten-year study, 91
Wilson, Hal, “Expanding the Universe
do CMMI with the CMMI for
Services Constellation,” 141–146
Work breakdown structure (WBS),
287
developing, 417
reviews, 484
Work environment
establishing, 283–285
standards, 357–358
Work levels reconciliation, 434–435
Work packages, 418
Work products
configuring, 256
selecting, 503
Workarounds to incidents, 306–307,
313
Working groups, 35