

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

Symantec Press Publisher: Linda McCarthy
Editor in Chief: Karen Gettman
Acquisitions Editor: Jessica Goldstein
Cover Designer: Alan Clements
Managing Editor: Gina Kanouse
Senior Project Editor: Kristy Hart
Copy Editor: Christal Andry
Indexers: Cheryl Lenser and Larry Sweazy
Compositor: Stickman Studio
Manufacturing Buyer: Dan Uhrig

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Number: 2004114972

Copyright © 2005 Symantec Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-32-130454-3

Text printed in the United States on recycled paper at Phoenix BookTech in Hagerstown, Maryland.
First printing, February, 2005

www.awprofessional.com

xxii

Preface
Who Should Read This Book
Over the last two decades, several publications appeared on the subject of
computer viruses, but only a few have been written by professionals (“insiders”)
of computer virus research. Although many books exist that discuss the computer
virus problem, they usually target a novice audience and are simply not too inter-
esting for the technical professionals. There are only a few works that have no
worries going into the technical details, necessary to understand, to effectively
defend against computer viruses.

Part of the problem is that existing books have little—if any—information about
the current complexity of computer viruses. For example, they lack serious techni-
cal information on fast-spreading computer worms that exploit vulnerabilities to
invade target systems, or they do not discuss recent code evolution techniques
such as code metamorphism. If you wanted to get all the information I have in this
book, you would need to spend a lot of time reading articles and papers that are
often hidden somewhere deep inside computer virus and security conference pro-
ceedings, and perhaps you would need to dig into malicious code for years to
extract the relevant details.

I believe that this book is most useful for IT and security professionals who
fight against computer viruses on a daily basis. Nowadays, system administrators
as well as individual home users often need to deal with computer worms and
other malicious programs on their networks. Unfortunately, security courses have
very little training on computer virus protection, and the general public knows
very little about how to analyze and defend their network from such attacks. To
make things more difficult, computer virus analysis techniques have not been

Preface

xxiii

discussed in any existing works in sufficient length before.
I also think that, for anybody interested in information security, being aware of

what the computer virus writers have “achieved” so far is an important thing to
know.

For years, computer virus researchers used to be “file” or “infected object” ori-
ented. To the contrary, security professionals were excited about suspicious events
only on the network level. In addition, threats such as CodeRed worm appeared to
inject their code into the memory of vulnerable processes over the network, but
did not “infect” objects on the disk. Today, it is important to understand all of
these major perspectives—the file (storage), in-memory, and network views—and
correlate the events using malicious code analysis techniques.

During the years, I have trained many computer virus and security analysts to
effectively analyze and respond to malicious code threats. In this book, I have
included information about anything that I ever had to deal with. For example, I
have relevant examples of ancient threats, such as 8-bit viruses on the
Commodore 64. You will see that techniques such as stealth technology appeared
in the earliest computer viruses, and on a variety of platforms. Thus, you will be
able to realize that current rootkits do not represent anything new! You will find
sufficient coverage on 32-bit Windows worm threats with in-depth exploit discus-
sions, as well as 64-bit viruses and “pocket monsters” on mobile devices. All along
the way, my goal is to illustrate how old techniques “reincarnate” in new threats
and demonstrate up-to-date attacks with just enough technical details.

I am sure that many of you are interested in joining the fight against malicious
code, and perhaps, just like me, some of you will become inventors of defense
techniques. All of you should, however, be aware of the pitfalls and the challenges
of this field!

That is what this book is all about.

What I Cover
The purpose of this book is to demonstrate the current state of the art of computer
virus and antivirus developments and to teach you the methodology of computer
virus analysis and protection. I discuss infection techniques of computer viruses
from all possible perspectives: file (on storage), in-memory, and network. I classify
and tell you all about the dirty little tricks of computer viruses that bad guys
developed over the last two decades and tell you what has been done to deal with
complexities such as code polymorphism and exploits.

Preface

xxiv

The easiest way to read this book is, well, to read it from chapter to
chapter. However, some of the attack chapters have content that can be more rele-
vant after understanding techniques presented in the defense chapters. If you feel
that any of the chapters are not your taste, or are too difficult or lengthy, you can
always jump to the next chapter. I am sure that everybody will find some parts of
this book very difficult and other parts very simple, depending on individual
experience.

I expect my readers to be familiar with technology and some level of program-
ming. There are so many things discussed in this book that it is simply impossible
to cover everything in sufficient length. However, you will know exactly what you
might need to learn from elsewhere to be absolutely successful against malicious
threats. To help you, I have created an extensive reference list for each chapter that
leads you to the necessary background information.

Indeed, this book could easily have been over 1,000 pages. However, as you
can tell, I am not Shakespeare. My knowledge of computer viruses is great, not my
English. Most likely, you would have no benefit of my work if this were the other
way around.

What I Do Not Cover
I do not cover Trojan horse programs or backdoors in great length. This book is
primarily about self-replicating malicious code. There are plenty of great books
available on regular malicious programs, but not on computer viruses.

I do not present any virus code in the book that you could directly use to
build another virus. This book is not a “virus writing” class. My understanding,
however, is that the bad guys already know about most of the techniques that I
discuss in this book. So, the good guys need to learn more and start to think (but
not act) like a real attacker to develop their defense!

Interestingly, many universities attempt to teach computer virus research
courses by offering classes on writing viruses. Would it really help if a student
could write a virus to infect millions of systems around the world? Will such stu-
dents know more about how to develop defense better? Simply, the answer
is no…

Instead, classes should focus on the analysis of existing malicious threats.
There are so many threats out there waiting for somebody to understand them—
and do something against them.

Of course, the knowledge of computer viruses is like the “Force” in Star Wars.
Depending on the user of the “Force,” the knowledge can turn to good or evil. I
cannot force you to stay away from the “Dark Side,” but I urge you to do so.

49

CHAPTER 3
Malicious Code
Environments

“In all things of nature there is something of the marvelous.”

—Aristotle

One of the most important steps toward understanding computer viruses is learn-
ing about the particular execution environments in which they operate. In theory,
for any given sequence of symbols we could define an environment in which that
sequence could replicate itself. In practice, we need to be able to find the environ-
ment in which the sequence of symbols operates and prove that it uses code
explicitly to make copies of itself and does so recursively1.

A successful penetration of the system by viral code occurs only if the various
dependencies of malicious code match a potential environment. Figure 3.1 is an
imperfect illustration of common environments for malicious code. A perfect dia-
gram like this is difficult to draw in 2D form.

The figure shows that Microsoft Office itself creates a homogeneous environ-
ment for malicious code across Mac and the PC. However, not all macro viruses2

that can multiply on the PC will be able to multiply on the Mac because of further
dependencies. Each layer might create new dependencies (such as vulnerabilities)
for malicious code. It is also interesting to see how possible developments of .NET
on further operating systems, such as Linux, might change these dependency
points and allow computer viruses to jump across operating systems easily.
Imagine that each ring in Figure 3.1 has tiny penetration holes in it. When the
holes on all the rings match the viral code and all the dependencies are resolved,
the viral code successfully infects the system.

Figure 3.1 suggests how difficult virus research has become over the years.
With many platforms already invaded by viruses, the fight against malicious code
gets more and more difficult.

Chapter 3—Malicious Code Environments

50

Figure 3.1 Common environments of malicious code.

Please note that I am not suggesting that viruses would need to exploit sys-
tems. An exploitable vulnerability is just one possible dependency out of many
examples.

Automation of malicious code analysis has also become increasingly more dif-
ficult because of diverse environment dependency issues. It is not uncommon to
spend many hours with a virus in a lab environment, attempting natural replica-
tion, but without success, while the virus is being reported from hundreds or per-
haps even thousands of systems around the world.

Another set of viruses could be so unsuccessful that a researcher could never
manage to replicate them. Steve White of IBM Research once said that he could
give a copy of the Whale virus (“the mother of all viruses”) to everybody in the
audience, and it would still not replicate3. However, it turns out that Whale has an
interesting dependency on early 8088 architectures4 on which it works perfectly.
Even more interestingly, this dependency disappears on Pentium and above

Chapter 3—Malicious Code Environments

51

processors5. Thus Whale, “the dinosaur heading for extinction,”6 is able to return,
theoretically, in a Jurassic Park–like fashion.

One of the greatest challenges facing virus researchers is the need to be able to
recognize the types, formats, and sequences of code and to find its environment.
A researcher can only analyze the code according to the rules of its environment
and prove that the sequence of code is malicious in that environment.

Over the years, viruses have appeared on many platforms, including Apple II,
C64, Atari ST, Amiga, PC, and Macintosh, as well as mainframe systems and
handheld systems such as the PalmPilot7, Symbian phones, and the Pocket PC.
However, the largest set of computer viruses exists on the IBM PC and its clones.

In this chapter, I will discuss the most important dependency factors that com-
puter viruses rely on to replicate. I will also demonstrate how computer viruses
unexpectedly evolve, devolve, and mutate, caused by the interaction of virus code
with its environment.

3.1 Computer Architecture Dependency
Most computer viruses do spread in executable, binary form (also called compiled
form). For instance, a boot virus will replicate itself as a single or couple of sectors
of code and takes advantage of the computer’s boot sequence. Among the very
first documented virus incidents was Elk Cloner on the Apple II, which is also a
boot virus. Elk Cloner modified the loaded operating system with a hook to itself
so that it could intercept disk access and infect newly inserted disks by overwrit-
ing their system boot sectors with a copy of its own code and so on. Brain, the
oldest known PC computer virus, was a boot sector virus as well, written in 1986.
Although the boot sequences of the two systems as well as the structures of these
viruses show similarities, viruses are highly dependent on the particularities of the
architecture itself (such as the CPU dependency described later on in this chapter)
and on the exact load procedure and memory layout. Thus, binary viruses typical-
ly depend on the computer architecture. This explains why one computer virus for
an Apple II is generally unable to infect an IBM PC and vice versa.

In theory, it would be feasible to create a multi-architecture binary virus, but
this is no simple task. It is especially hard to find ways to execute the code made
for one architecture to run on another. However, it is relatively easy to code to two
independent architectures, inserting the code for both in the same virus. Then the
virus must make sure that the proper code gets control on the proper architecture.
In March of 2001, the PeElf virus proved that it was possible to create a cross-
platform binary virus.

Chapter 3—Malicious Code Environments

52

3.2 CPU Dependency

53

Virus writers found another way to solve the multi-architecture and operating
system issue by translating the virus code to a pseudoformat and then translating
it to a new architecture. The Simile.D virus (also known as Etap.D) of Mental
Driller uses this strategy to spread itself on Windows and Linux systems on 32-bit
Intel (and compatible) architectures.

It is interesting to note that some viruses refrain from replication in particular
environments. Such an attempt was first seen in the Cascade virus, written by a
German programmer in 1987. Cascade was supposed to look at the BIOS of the
system, and if it found an IBM copyright, it would refrain from infecting. This part
of the virus had a minor bug, so the virus infected all kinds of systems. Its author
repeatedly released new versions of the virus to fix this bug, but the newer vari-
ants also had bugs in this part of the code8.

Another kind of computer virus is dependent on the nature of BIOS updating.
On so-called flashable or upgradeable BIOS systems, BIOS infection is feasible.
There have been published attempts to do this by the infamous Australian virus-
writer group called VLAD.

3.2 CPU Dependency
CPU dependency affects binary computer viruses. The source code of programs is
compiled to object code, which is linked in a binary format such as an EXE (exe-
cutable) file format. The actual executable contains the “genome” of a program as
a sequence of instructions. The instructions consist of opcodes. For instance, the
instruction NOP (no operation) has a different opcode on an Intel x86 than on a
VAX or a Macintosh. On Intel CPUs, the opcode is defined as 0x90. On the VAX,
this opcode would be 0x01.

Thus the sequences of bytes most likely translate to garbage code from one
CPU to another because of the differences between the opcode table and the oper-
ation of the actual CPU. However, there are some opcodes that might be used as
meaningful code on both systems, and some viruses might take advantage of this.
Most computer viruses that are compiled to binary format will be CPU-dependent
and unable to replicate on a different CPU architecture.

There is yet another form of CPU dependency that occurs when a particular
processor is not 100% backward compatible with a previous generation and does
not support the features of another perfectly or at all. For example, the Finnpoly
virus fails to work on 386 processors because the processor incorrectly executes
the instruction CALL SP (make a call according to the Stack Pointer). Because the

virus transfers control to its decrypted code on the stack using this instruction, it
hangs the machine when an infected file is executed on a 386 processor. In addi-
tion, a similar error appeared in Pentium processors as well9. Another example is
the Cyrix 486 clones, which have a bug in their single-stepping code10. Single-step-
ping is used by tunneling viruses (see Chapter 6, “Basic Self-Protection Strategies“)
such as Yankee_Doodle, thus they fail to work correctly on the bogus processors.

Note

It is not an everyday discovery to find a computer virus that fails
because of a bug in the processor.

Some viruses use instructions that are simply no longer supported on a newer
CPU. For instance, the 8086 Intel CPU supported a POP CS instruction, although
Intel did not document it. Later, the instruction opcode (0x0f) was used to trap
into multibyte opcode tables. A similar example of this kind of dependency is the
MOV CS, AX instruction used by some early computer viruses, such as the Italian
boot virus, Ping Pong:

Opcode Assembly Instruction

8EC8 MOV CS,AX

0E PUSH CS

1F POP DS

Other computer viruses might use the coprocessor or MMX (Multimedia
Extensions) or some other extension, which causes them to fail when they execute
on a machine that does not support them.

Some viruses use analytical defense techniques based on altering the proces-
sor’s prefetch queue. The size of the prefetch queue is different from processor to
processor. Viruses try to overwrite code in the next instruction slot, hoping that
such code is already in the processor prefetch queue. Such modification occurs
during debugging of the virus code; thus, novice virus code analysts are often
unable to analyze such viruses. This technique is also effective against early code
emulation–based heuristics scanners. However, the disadvantage of such virus
code is that it might become incompatible with certain kinds of processors or even
operating systems.

Chapter 3—Malicious Code Environments

54

3.3 Operating System Dependency
Traditionally, operating systems were hard-coded to a particular CPU architecture.
Microsoft’s first operating systems, such as MS-DOS, supported Intel processors
only. Even Microsoft Windows supported only Intel-compatible hardware.
However, in the ’90s the need to support more CPU architectures with the same
operating system was increasing. Windows NT was Microsoft’s first operating sys-
tem that supported multiple CPU architectures.

Most computer viruses can operate only on a single operating system.
However, cross-compatibility between DOS, Windows, Windows 95/98, and
Windows NT/2000/XP still exists on the Intel platforms even today. Thus, some of
the viruses that were written for DOS can still replicate on newer systems. We
tend to use less and less old, “authentic” software, however, thus reducing the risk
of such infections. Furthermore, some of the older tricks of computer viruses will
not work in the newer environments. On Windows NT, for example, port com-
mands cannot be used directly to access the hardware from DOS programs. As a
result, all DOS viruses that use direct port commands will fail at some point
because the operating system generates an error. This might prevent the replica-
tion of the virus altogether if the port commands (IN/OUT operations) occur
before the virus multiplies itself.

A 32-bit Windows virus that will infect only portable executable (PE) files will
not be able to replicate itself on DOS because PE is not a native file format of DOS
and thus will not execute on it. However, so-called multipartite viruses are able to
infect several different file formats or system areas, enabling them to jump from
one operating environment to another. The most important environmental
dependency of binary computer viruses is the operating system itself.

3.4 Operating System Version Dependency
Some computer viruses depend not only on a particular operating system, but also
on an actual system version. Young virus researchers often struggle to analyze
such a virus. After a few minutes of unsuccessful test infections on their research
systems, they might believe that a particular virus does not work at all. Especially
at the beginning of a particular computer virus era, we can see a flurry of comput-
er viruses repeating the same mistakes that make them dependent on some flavor
of Windows. For example, the W95/Boza virus does not work on non-English
releases of Windows 95, such as the Hungarian release of the operating system.

3.4 Operating System Version Dependency

55

This leads to the discovery that computer viruses might be used to target the
computers of one particular nation more than others. For example, Russian
Windows systems can be different enough from U.S. versions to become recogniz-
able, enabling the author of a virus, intentionally or unintentionally, to target only
a subset of computer users. In general, however, after a virus has been created, its
author has very little or no control over exactly where his or her creation will
travel.

3.5 File System Dependency
Computer viruses also have file system dependencies. For most viruses, it does not
matter whether the targeted files reside on a File Allocation Table (FAT), originally
used by DOS; the New Technology File System (NTFS), used by Windows NT; or a
remote file system shared across network connections. For such viruses, as long as
they are compatible with the operating environment’s high-level file system inter-
face, they work. They will simply infect the file or store new files on the disk with-
out paying attention to the actual storage format. However, other kinds of viruses
depend strongly on the actual file system.

3.5.1 Cluster Viruses
Some successful viruses can spread only on a specific file system. For instance,
the Bulgarian virus, DIR-II, is a so-called cluster virus, written in 1991. DIR-II has
features specific to certain DOS versions but, even more importantly, spreads
itself by manipulating key structures of FAT-based file systems. On FAT on a DOS
system, direct disk access can be used to overwrite the pointer (stored in the direc-
tory entry) to the first cluster on which the beginning of a file is stored.

Files are stored on the disk as clusters, and the FAT is used by DOS to put the
puzzle pieces together. The DIR-II virus overwrites the pointer in the directory
entry that points to the first cluster of a file with a value that directs the disk-read
to the virus body, which has been stored at the end of the disk. The virus stores
the pointer to the real first cluster of each host program in an encrypted form, in
an unused part of the directory entry structure. This is used later to execute the
real host from the disk after the virus has been loaded in memory. In fact, when
the virus is active in memory, the disk looks normal and files execute normally.

Such viruses infect programs extremely quickly because they only manipulate
a few bytes in the directory entries on the disk. These viruses are often called
“super fast” infectors1. It is important to understand that there is only one copy of

Chapter 3—Malicious Code Environments

56

DIR-II on each infected disk. Consequently, when DIR-II is not active in memory,
the file system appears “cross-linked” because all infected files point to the same
start cluster: the virus code.

A similar cluster infection technique appeared in the BHP virus on the
Commodore 64 in Germany, written by “DR. DR. STROBE & PAPA HACKER” in
circa 198611. This virus manipulates with the block entries of host programs stored
on Commodore floppy diskettes. I decided to call this special infection technique
the cluster prepender method. Let me tell you a little bit more about this ancient
creature.

Normally, the Commodore 1541 floppy drive can store up to 166KB on each
side of a diskette. The storage capacity of each diskette side is split into 664
“blocks” that are 256 bytes each. When BHP infects a program on the diskette, the
virus will attempt to occupy eight free blocks for itself. Next, it replaces the
“block” pointer in the first block of the host program to point to the virus code
instead. Except for the first block, the host program’s code will not be moved on
the diskette. Instead, the virus will link its own “blocks” with the “blocks” of the
host program as a single cluster of blocks. The infected host program will be
loaded with the virus in front. Unlike the DIR-II virus, the BHP virus has multiple
copies per diskettes. In each infection, eight blocks of free space will be lost on the
diskette, but the infected files will not appear to be larger in a directory listing
even if the virus is not active in memory.

Figure 3.2(1) shows when a BHP-infected program called TEST is loaded for
the first time with a LOAD command. When I list the content of the loaded
program with the LIST command, a BASIC command line appears as shown in
Figure 3.2(2). This SYS command triggers the binary virus code. When I execute
the infected program with the RUN command, the 6502 Assembly-written virus
gets control. On execution of the virus code, BHP becomes active in memory.
Finally, the virus runs the original host program. Figure 3.2(2) shows that a “HI”
message is displayed when the loaded virus is executed. This message is displayed
by the host program.

When BHP virus is active in memory it becomes stealth just like the DIR-II
virus. As shown in Figure 3.2(3), I load the infected TEST program a second time.
When I list the content of the program, I see the original host program, a single
PRINT command that displays “HI.” Thus, the virus is already stealth; as long as
the virus code is active in memory, the original content of the program is shown
instead of the infected program. In addition, the BHP virus implements a set of
basic self-protection tricks. For example, the virus disables restart and reset
attempts to stay active in memory. Moreover, BHP uses a self checksum function

57

3.5 File System Dependency

to check if its binary code was modified or corrupted. As a result, a trivially modi-
fied or corrupted virus code will intentionally fail to run.

Chapter 3—Malicious Code Environments

58

Figure 3.2 The BHP virus on Commodore 64.

3.5.2 NTFS Stream Viruses
FAT file systems are simple but very inefficient for larger hard disks (in FAT terms,
a drive of several Gigabytes is considered very large). Operating systems such as
Windows NT demanded modern file systems that would be fast and efficient on
large disks and, more importantly, on the large disk arrays that span many
Terabytes, as used in commercial databases.

To meet this need, the NTFS (NT file system) was introduced. A little-known
feature of NTFS is primarily intended to support the multiple-fork concept of
Apple’s Hierarchical File System (HPS). Windows NT had to support multiple-fork
files because the server version was intended to service Macintosh computers. On
NTFS, a file can contain multiple streams on the disk. The “main stream” is the
actual file itself. For instance, notepad.exe’s code can be found in the main stream
of the file. Someone could store additional named streams in the same file; for
instance, the notepad.exe:test stream name can be used to create a stream name
called test. When the WNT/Stream12 virus infects a file, it will overwrite the file’s
main stream with its own code, but first it stores the original code of the host in a
named stream called STR. Thus WNT/Stream has an NTFS file system dependen-
cy in storing the host program.

Malicious hackers often leave their tools behind in NTFS streams on the disk.
Alternate streams are not visible from the command line or the graphical file man-
ager, Explorer. They generally do not increment the file size in the directory
entries, although disk space lost to them might be noticed. Furthermore, the con-

tent of the alternate streams can be executed directly without storing the file con-
tent in a main stream. This allows the potential for sophisticated NTFS worms in
the future.

3.5.3 NTFS Compression Viruses
Some viruses attempt to use the compression feature of the NTFS to compress the
host program and the virus. Such viruses use the DeviceIoControl() API of
Windows and set the FSCTL_SET_COMPRESSION control mode on them.
Obviously, this feature depends on an NTFS and will not work without it. For
example, the W32/HIV virus, by the Czech virus writer, Benny, depends on this.
Some viruses also use NTFS compression as an infection marker, such as the
WNT/Stream virus.

3.5.4 ISO Image Infection
Although it is not a common technique, viruses also attack image file formats of
CD-ROMs, such as the ISO 9660, which defines a standard file system. Viruses
can infect an ISO image before it is burnt onto a CD. In fact, several viruses got
wild spread from CD-R disks, which cannot be easily disinfected afterwards. ISO
images often have an AUTORUN.INF file on them to automatically lunch an
executable when the CD-ROM is used on Windows. Viruses can take advantage of
this file within the image and modify it to run an infected executable. This tech-
nique was developed by the Russian virus writer, Zombie, in early 2002.

3.6 File Format Dependency
Viruses can be classified according to the file objects they can infect. This short
section is an introduction to binary format infectors. Many of the techniques are
detailed further in Chapter 4, “Classification of Infection Strategies.“

3.6.1 COM Viruses on DOS
Viruses such as Virdem and Cascade only infect DOS binary files that have the
COM extension. COM files do not have a specific structure; therefore, they are
easy targets of viruses. Dozens of variations of techniques exist to infect COM
files.

3.6 File Format Dependency

59

3.6.2 EXE Viruses on DOS
Other viruses can infect DOS EXE files. EXE files start with a small header struc-
ture that holds the entry point of the program among other fields. EXE infector
viruses often modify the entry point field of the host and append themselves to
the end of the file. There are more techniques for infecting EXE files than for
infecting COM files because of the format itself.

EXE files start with an MZ identifier, a monogram of the Microsoft engineer,
Mark Zbikowski, who designed the file format. Interestingly, some DOS versions
accept either MZ or ZM at the front of the file. This is why some of the early
Bulgarian DOS EXE viruses infect files with both signatures in the front. If a scan-
ner recognizes EXE files based on the MZ signature alone, it might have a problem
detecting a virus with a ZM signature. Some tricky DOS viruses replace the MZ
mark with ZM to avoid detection by antivirus programs, and yet others have used
ZM as an infection marker to avoid infecting the file a second time.

Disinfecting EXE files is typically more complicated than disinfecting a COM
file. In principle, however, the techniques are similar. The header information, just
like the rest of the executable, must be restored, and the file must be truncated
properly (whenever needed).

3.6.3 NE (New Executable) Viruses on 16-bit Windows and OS/2
One of the first viruses on Windows was W16/Winvir. Winvir uses DOS interrupt
calls to infect files in the Windows NE file format. This is because early versions of
Windows use DOS behind the scene. NE files are more complicated in their struc-
ture than EXE files. Such NE files start with an old DOS EXE header at the front
of the file, followed by the new EXE header, which starts with an NE identifier.

One of the most interesting NE virus infection techniques was developed in
the W16/Tentacle_II family, which was found in the wild in June 1996 in the U.S.,
U.K., Australia, Norway, and New Zealand. Not only was Tentacle_II in the wild,
but it was also rather difficult to detect and repair because it took advantage of the
complexity of the NE file format. This virus is discussed further in Chapter 4.

3.6.4 LX Viruses on OS/2
Linear eXecutables (LXs) were also introduced in later versions of OS/2. Not many
viruses were ever implemented in them, but there are a few such creations. For
instance, OS2/Myname is a very simple overwriting virus.

Myname uses a couple of system calls, such as DosFindFirst(), DosFindNext(),
DosOpen(), DosRead(), and DosWrite(), to locate executables and then overwrites

Chapter 3—Malicious Code Environments

60

3.6 File Format Dependency

61

them with itself. The virus searches for files with executable extensions in the cur-
rent directory. It does not attempt to identify OS/2 LX files for infection; it simply
overwrites any files with its own copy. Nonetheless, OS2/Myname is dependent
on the LX file format and OS/2 environment for execution given that the virus
itself is an LX executable.

The OS2/Jiskefet version of the virus also overwrites files to spread itself. This
virus looks specifically for files with a New Executable header that starts with the
LX mark:

cmp word ptr [si], ‘XL’

jnz NO

The header of the file is loaded by the virus, and the si (source index) register
is used as an index to check for the mark. If the marker is missing, the virus will
not overwrite the file. As a result, Jiskefet is more dependent on the LX file format
than Myname.

3.6.5 PE (Portable Executable) Viruses on 32-bit Windows
The first virus known to infect PE files was W95/Boza, written by members of the
Australian virus-writing group, VLAD, for the beta version of Windows 95.

The virus was named Bizatch by its authors but got its current name, Boza,
from Vesselin Bontchev. He called the virus Boza, referring to a bizarre Bulgarian
drink with color and consistency of mud that is disliked by most non-Bulgarians.
Bontchev picked the name not only because Boza sounds similar to “Bizatch,” but
also because the virus was “buggy and messily written.” The Bulgarian idiom,
“This is a big boza,” means “this is extremely messy and unclear.”

Quantum, the virus writer, was unhappy about this, which was Bontchev’s
intention in choosing the name. In fact, other viruses attacked antivirus software
databases to change the name of Boza to Bizatch so that the original name would
be displayed when an antivirus program detected it. This illustrates the psycholog-
ical battle waged between virus writers and antivirus researchers.

Because PE file infection is currently one of the most common infection tech-
niques, I will provide more information about it in Chapter 4. Many binary pro-
grams use the PE file format, including standard system components, regular
applications, screen-saver files, device drivers, native applications, dynamic link
libraries, and ActiveX controls.

The new 64-bit PE+ files are already supported by 64-bit architectures, such as
IA64, AMD64, and EM64T. Computer virus researchers expected that 64-bit

Windows viruses will appear to infect this format correctly with native 64-bit virus
code.

The W64/Rugrat.334413 virus appeared in May 2004, written by the virus
writer “roy g biv.” Rugrat is written in IA64 Assembly. The virus is very compact—
about 800 lines. Rugrat utilizes modern features of the Itanium processor, such as
code predication. In addition, roy g biv released the W64/Shruggle virus during
the summer of 2004. W64/Shruggle infects PE+ files that run on the upcoming 64-
bit Windows on AMD64.

3.6.5.1 Dynamic Link Library Viruses
The W95/Lorez virus was one of the first 32-bit Windows viruses that could infect
a dynamic link library (DLL). A Windows DLL uses the same basic file format as
regular PE executables. Dynamic linked libraries export functions that other appli-
cations can use.

The interface between applications and dynamic link libraries is facilitated by
exports from DLLs and imports into the executables. Lorez simply infects the user
mode KERNEL client component, KERNEL32.DLL. By modifying the DLL’s export
directory, such viruses can hook an API interface easily.

DLL infection became increasingly successful with the appearance of the
Happy99 worm (also known as W32/SKA.A, the worm’s CARO name), written by
Spanska in early 1999. Figure 3.3 is a capture of Happy99’s fireworks payload.

Chapter 3—Malicious Code Environments

62

Figure 3.3 The Happy99 worm’s payload.

Just as many other worms are linked to holidays, this worm took advantage of
the New Year’s period by mimicking an attractive New Year’s card application.

Happy99 injected a set of hooks into the WSOCK32.DLL library, hooking the
connect() and send() APIs to monitor access to mail and newsgroups.

Happy99 started a debate about computer malware classifications by carrying
the following message for researchers:

Is it a virus, a worm, a trojan? MOUT-MOUT Hybrid (c) Spanska 1999.

3.6.5.2 Native Viruses
Recently, a new kind of 32-bit Windows virus is on the rise: native infectors. The
first such virus, W32/Chiton, was created by the virus writer, roy g biv, in late
2001. Unlike most Win32 viruses, which depend on calling into the Win32 subsys-
tem to access API functions to replicate, W32/Chiton can also replicate outside of
the Win32 subsystem.

A PE file can be loaded as a device driver, a GUI Windows application, a con-
sole application, or a native application. Native applications, such as autochk.exe,
load during boot time. Because they load before subsystems are available, they are
responsible for their own memory management. In their file headers, the
PE.OptionalHeader.Subsystem value is set to 0001 (Native).

The HKLM\System\CurrentControlset\Control\Session Manager\BootExecute
value contains the names and arguments of native applications that are executed
by the Session Manager at boot time. The Session Manager looks for such applica-
tions in the Windows\System32 directory, with the native executable names speci-
fied.

Native applications use the NTDLL.DLL (Native API), where hundreds of APIs
are stored and remain largely undocumented by Microsoft. Native applications do
not rely on the subsystem DLLs, such as KERNEL32.DLL, as these DLLs are not
yet loaded when native applications load. There are only a handful of APIs that a
computer virus needs to be able to call from NTDLL.DLL, and virus writers have
already discovered the interface for these functions and their parameters.

W32/Chiton relies on the following NTDLL.DLL APIs for memory, directory,
and file management:

1. Memory management:
RtlAllocateHeap()
RtlFreeHeap()

3.6 File Format Dependency

63

Chapter 3—Malicious Code Environments

64

2. Directory and file search:
RtlSetCurrentDirectory_U()
RtlDosPathNameToNtPathName_U()
NtQueryDirectoryFile()

3. File management:

NtOpenFile()
NtClose()
NtMapViewOfSection()
NtUnmapViewOfSection()
NtSetInformationFile()
NtCreateSection()

Native viruses can load very early in the boot process, which gives them great
flexibility in infecting applications. Such viruses are similar in structure to kernel-
mode viruses. Therefore, it is expected that kernel-mode and native infection
techniques will be combined in the future.

3.6.6 ELF (Executable and Linking Format) Viruses on UNIX
Viruses are not unknown on UNIX and UNIX-like operating systems, which gener-
ally use the ELF executable file format14. Typically, ELF files do not have any file
extensions, but they can be identified based on their internal structure.

Just like PE files, ELF files can support more than one CPU platform.
Moreover, ELF files can properly support 32-bit as well as 64-bit CPUs in their
original design, unlike PE files, which needed some minor updates to make them
compatible with 64-bit environments (resulting in the PE+ file format).

ELF files contain a short header, and the file is divided into logical sections.
Viruses that spread on Linux systems typically target this format. Most Linux
viruses are relatively simple15. For instance, the Linux/Jac.8759 virus can only
infect files in the current folder.

One of the most complex Linux viruses is {W32,Linux}/Simile.D (also known
as Etap.D), which was the first entry-point obscuring Linux virus (more on this in
Chapter 4). Of course, Simile.D’s success will depend on how well security set-
tings are used in the file system. Writeable files will be infected; however, the
virus does not elevate privileges to infect files.

It seems likely that future computer worm attacks (such as Linux/Slapper) will
be combined with ELF infection on Linux. The elevated privileges often gained by
exploiting network services can result in better access to binary files.

The main problem for ELF viruses is the missing binary compatibility between
various flavors of UNIX systems. The diversification of the binaries on various

CPUs introduces library dependency. Because of this, many ELF-infecting viruses
suffer serious problems and crash with core dumps rather than causing infections.

3.6.7 Device Driver Viruses
Device driver infectors were not very common in the DOS days, although virus
writer magazines such as 40Hex dedicated early articles to the subject. Device
drivers for popular operating systems tend to have their own binary format, but as
these are special forms of the more general executable formats for those platforms,
all can be infected with known virus infection techniques. For example, 16-bit
Windows drivers must be in the LE (linear executable) format. LE is very similar to
the OS/2 LX file format. Of course, viruses can infect such files, too.

On Windows 9x, the VxD (virtual device driver) file format was never officially
documented by Microsoft for the general public’s use. As a result, only a few
viruses were created that could infect VxD files. For example, W95/WG can infect
VxD files and modify their entry point to run an external file each time the infect-
ed VxD is loaded. Consequently, only the entry-point code of the VxD is modified
to load the virus code from the external source.

Other viruses, such as the W95/Opera family, infect VxD files by appending
the virus code to the end of the file and modifying the real mode entry point of
the VxD to run themselves from it.

Recently, device driver infectors appeared on Windows XP systems. On NT-
based systems, device drivers are PE files that are linked to NT kernel functions.
The few such viruses that exist today hook the INT 2E (System Service on IA32-
based NT systems) interrupt handler directly in kernel mode to infect files on the
fly. For example, WNT/Infis and W2K/Infis families can infect directly in
Windows NT and Windows 2000 kernel mode. The W32/Kick virus was created
by the Czech virus writer, Ratter, in 2003. W32/Kick infects only SYS files in the
PE device driver format. The virus loads itself into kernel mode memory but runs
its infection routine in user mode to infect files through the standard Win32 API.

Note

More information about in-memory strategies of computer viruses
is available in Chapter 5, “Classification of In-Memory
Strategies.”

3.6 File Format Dependency

65

Chapter 3—Malicious Code Environments

66

3.6.8 Object Code and LIB Viruses
Object and LIB infections are not very common. There are only about a dozen
such viruses because they tend to be dependent on developer environments.

Source code is first compiled to object code, and then it is linked to an exe-
cutable format:

Source Code - Object code / Library code - Executable.

Viruses that attack objects or libraries can parse the object or library format.
For instance, the Shifter virus16 can infect object files. Such viruses spread in a
couple of stages as shown in Figure 3.4.

Stage 1: Infected executable is run on the host.

Stage 2: Virus code locates new object files and infects them.

Stage 3: The object files or libraries are linked by the user as part of a new
project. (Repeat Stage 1.)

Figure 3.4 The infection stages of the Shifter virus.

Shifter was written by Stormbringer in 1993. The virus carefully checks whether
an object file is ready to be linked to a COM, DOS executable. This is done by
checking the Data Record Entry offset of object files. If this is 0x100, the virus
attempts to infect the object in such a way that once the object is linked, it will be
in the front of the COM executable.

3.7 Interpreted Environment Dependency
Several virus classes depend on some sort of interpreted environment. Almost
every major application supports users with programmability. For example,
Microsoft Office products provide a rich programmable macro environment that
uses Visual Basic for Applications. (Older versions of Word, specifically Word
6.0/Word 95, use WordBasic.) Such interpreted environments often enhance virus-
es with multi-platform capabilities.

3.7.1 Macro Viruses in Microsoft Products
Today there are thousands of macro viruses, and many of them are in the wild.
Users often exchange documents that were created with a Microsoft Office prod-

3.7 Interpreted Environment Dependency

67

uct, such as Word, Excel, PowerPoint, Visio, or even Access or Project. The first
wild-spread macro virus, WM/Concept.A17, appeared in late 1995. Within a couple
of months, only a few dozen such viruses were found, but by 1997 there were
thousands of similar creations. The XM/Laroux18, discovered in 1996, was the first
wild-spread macro virus to infect Excel spreadsheets. The first known Word macro
virus was WM/DMV, written in 1994. The author of the WM/DMV virus also cre-
ated a nearly functional Excel macro (XM) virus at the same time.

Figure 3.5 illustrates a high-level view of an OLE2 file used by Microsoft prod-
ucts. Microsoft does not officially document the file structure for the public.

Please note that Microsoft products do not directly work with OLE2 files. As a
result, technically a macro virus in any such Microsoft environments does not
directly infect an OLE2 file because Microsoft products access these objects
through the OLE2 API. Also note that different versions of such Microsoft pro-
grams use different languages or different versions of such languages.

In the front of OLE2 files, you can find an identifier, a sequence of hex bytes
“D0 CF 11 E0,” which looks like the word DOCFILE in hex bytes (with a lowercase
L). These bytes can appear in both big-endian and little-endian formats. Other val-
ues are supported by various beta versions of Microsoft Office products. The head-
er information block contains pointers to important data structures in the file.
Among many important fields, it contains pointers to the FAT and the Directory.
Indeed, the OLE2 file is analogous to MS-DOS FAT-based storage. The problem is
that OLE2 files have an extremely complex structure. They are essentially file sys-
tems in a file with their own clusters, file allocation table, root directory, subdirec-
tories (called “storages”), files (called “streams”), and so on.

The basic sector size is 512 bytes, but larger values are also allowed. (In some
implementations, a mini-FAT19 allows even shorter “sector” sizes.) Office products
locate macros by looking in the Directory of an OLE2 file for the VBA storage fold-
er. The macros appear as streams inside the document. Obviously, any objects can
get fragmented, as in a real file system—corruptions of all kinds are also possible,
including circular FAT or Directory entries, and so on. Unfortunately, even macros
can get corrupted; as you will see, this fact contributes to the natural creation of
new macro virus variants.

In addition, documents have a special bit inside, the so-called template bit.
WinWord 6/7 does not look for macros if the template bit is off20.

Chapter 3—Malicious Code Environments

68

Figure 3.5 A high-level view of the OLE2 file format.

Macro viruses are stored inside the document instead of at the front or at the
very end of the file. Even worse, the macros are buried inside some of the streams,
and the streams themselves have a very complex structure. When looking at the
physical OLE2 document, without understanding its structure, the (otherwise logi-
cally continuous) body of a macro of a macro virus could be split into chunks—
some of them as small as 64 bytes.

A major challenge is the protection of user macros in the documents during
the removal of virulent macros. In some cases, it is simply impossible to remove a
macro virus safely without also removing the user macros. Obviously, users prefer
to keep their own macros and remove the viruses from them, but such acrobatics
are not always possible.

Macro viruses are much easier to create than other kinds of file infectors.
Furthermore, the source of the virus code is available to anybody with the actual
infection. Although this greatly simplifies the analysis of macro viruses, it also
helps attackers because the virus source code can be accessed and modified easily.

To understand the internal structure of OLE2 documents better, look at a com-
ment fraction of the W97M/Killboot.A virus in Microsoft’s DocFile Viewer applica-
tion, shown in Figure 3.6. DocFile Viewer is available as part of Microsoft Visual
C++ 6.0. This tool can be used to browse the document storage and find the
“ThisDocument” stream in the Macros\VBA directory.

Figure 3.6 The W97M/Killboot.A virus in DocFile Viewer.

The ThisDocument stream can be further browsed to find the virus code. In
Figure 3.6, a comment by the virus writer can be seen encoded as VBA code:

E0 00 00 00 39 00 73 65 74 20 74 68 65 20 64 619.set the da

79 20 6F 66 20 41 72 6D 61 67 65 64 64 6F 6E 2C y of Armageddon,

20 74 68 65 20 32 39 74 68 20 64 61 79 20 6F 66 the 29th day of

20 74 68 65 20 6E 65 78 74 20 6D 6F 6E 74 68 00 the next month.

The 0xE0 opcode is used for comments. The 0x39 represents the size of the
comment. Thus the preceding line translates to

‘set the day of Armageddon, the 29th day of the next month

The opcode itself is VBA version-specific, so the 0xE0 byte can change to other
values, resulting in Word up-conversion and down-conversion issues21.

One of the most interesting aspects of macro viruses is that they introduced a
new set of problems not previously seen in such quantities with any other type of
computer virus.

3.7.1.1 Macro Corruption
Many macro viruses copy themselves to new files using macro copy commands. A
macro virus can copy itself into a new document in this way, often attacking the
global template called NORMAL.DOT first and then copying itself from the global
template back to user documents.

3.7 Interpreted Environment Dependency

69

Chapter 3—Malicious Code Environments

70

A natural mutation often occurs in Microsoft Word environments22. The real
reason for the corruption was never found, but it is believed to be connected to
saving documents on floppy disks. Some users simply did not wait until the docu-
ment was written perfectly to disk, which can result in a couple of bytes of corrup-
tion in the macro body. Because Word interprets the VBA code line by line, it will
not generate an error message unless the faulty code is about to be executed1.

As demonstrated earlier, macros are stored as binary data in Word documents.
When the binary of the macro body gets corrupted, the virus code often can
survive and work at least partially. The problem is that such corruptions are so
common that often hundreds of minor variants of a single macro virus family are
created by the “mutation engine” of Microsoft Word itself! For instance, the
WM/Npad family has many members that are simply natural corruptions, which
are not created intentionally.

Corrupted macro viruses can often work after corruption. There are several
reasons for this commonly observed behavior:

� The VBA code necessary to copy a macro to another document is very short.
� Even a single working macro can copy dozens of corrupted macros.
� The corruption’s side effects might only appear in conditional cases.
� The corruption happens after the replication of viral code.
� The virus supports an “On Error Resume Next” handler.

Consider the example shown in Listing 3.1.

Listing 3.1
A Corrupted Macro Example

Sub MAIN
SourceMacro$= FileName$()+ “Foobar”
DestinationMacro$ = “Global:Foobar”

MacroCopy(SourceMacro$, DestinationMacro$)

// Corruption here //
End Sub

Because most macro viruses include an error handler at the beginning of their
code, macro virus compilation and execution has tended to be resilient to all but
the most traumatic corruptions.

Because many AV products use checksums to detect and identify macro virus-
es, the antivirus software can get confused by the corrupted macro virus variants.

3.7 Interpreted Environment Dependency

71

Using checksums is the only way to exactly identify each different variant.
Other types of viruses, such as Assembly-written viruses on DOS, most often

fail immediately when the slightest corruption occurs in them. However, macro
viruses often survive the corruption because the actual replicating instructions are
so short in the macro body.

3.7.1.2 Macro Up-Conversion and Down-Conversion
When creating Word 97 and additional support for VBA, Microsoft decided to
create new document formats and started to use a different, even richer macro lan-
guage. To solve compatibility problems for customers, they decided to automatical-
ly convert old macros to the new formats. As a result, when a macro virus in the
Word 95 WordBasic format was opened with the newer editions of Word, the virus
might be converted to the new environment, creating a new virus. As a result,
WM viruses are often converted to W97M format, and so on.

The macro up-conversion issue generated many problems for antivirus
researchers that went beyond simple technicalities. Some researchers believed it
was not ethical to up-convert all old macro viruses to the new format, while others
believed it was the only choice to protect customers. Today, techniques are avail-
able23 to convert the different macro formats to a canonical form; thus, detection
can be done on the canonical form using a single definition. This greatly simplifies
the macro detection problems and reduces the antivirus scanner’s database
growth because less data need to be stored to detect the viruses, and the virus
code no longer needs to be replicated on more than one Office platform.

3.7.1.3 Language Dependency
Given that Microsoft translated basic macro commands, such as FileOpen, into
different language versions for Office products, most viruses that use these com-
mands to infect files cannot spread to another language version of Microsoft
Office, such as the German edition.

Table 3.1 lists some of the most common macro names in Microsoft Word in
various localized versions.

Table 3.1

Common Macro Names in Microsoft Word in Some Localized Versions

English Finnish German

FileNew TiedostoUusi DateiNeu

FileOpen TiedostoAvaa DateiOffnen

FileClose TiedostoSulje DateiSchliesen

continues

Chapter 3—Malicious Code Environments

72

Table 3.1 continued

Common Macro Names in Microsoft Word in Some Localized Versions

English Finnish German

FileSave TiedostoTallenna DateiSpeichern

FileSaveAs TiedostoTallennaNimmellä DateiSpeichernUnter

FileTemplates TiedostoMallit DateiDokVorlagen

ToolsMacro TyökalutMacro ExtrasMakro

Spanish French Italian

ArchivoNuevo FichierNouveau FileNuovo

ArchivoAbrir FichierOuvrir FileApri

ArchivoCerrar FichierFermer FileChiudi

ArchivoGuardar FichierEnregister FileSalva

ArchivoGuardarComo FichierEnregisterSous FileSalvaConNome

ArchivoPlantillas FichierModules FileModelli

HerramMacro OutilsMacro StrumMacro

Various Office products use different versions of these macro names. A few
common examples can be found in Table 3.2 for English Microsoft Office
products.

Table 3.2

Differences in Macro Names Between Word and Excel

Microsoft Word Microsoft Excel

AutoClose Auto_Close

AutoOpen Auto_Open

The WM/CAP.A24 virus is an example of language independence, because it
uses menu indexes. Using menu indexes was strongly recommended to macro
developers by the Microsoft Access team. Of course, menu indexes only work reli-
ably if the host environment has not been customized.

The WM/CAP.A virus also fools users to believe that they are saving their files
in RTF (Rich Text Format) when, in fact, they are saving them as infected DOC
files instead. Users would prefer to save files as RTF to avoid saving active macros
into documents. The virus takes over the File/SaveAs… operation for this trick25.

3.7.1.4 Platform Dependency of Macro Viruses
Although most macro viruses are not platform-dependent, several have introduced
some sort of dependency on the actual platform. Microsoft Office products are
used not only on Windows but also on Macintosh systems. Not all macro viruses,
however, are able to work on both platforms because of the following common rea-
sons.

Win32 function calls

A few macro viruses define API function calls for their own use from the
Win32 set of Windows. Such viruses might fail to replicate on the Mac
because the API is not implemented on it. For instance, the virus WM/Hot.A
used the GetWindowsDirectory() API calls in January, 199626.

Declare Function GetWindowsDirectory Lib “KERNEL.EXE” \

(Buffer As String, Size As Integer) As Integer

:

:

GetWindowsDirectory(WinPath$, SizeBuf)

Tricky macro viruses use Win32 callback functions to run code outside of the
context of the macro interpreter. For instance, a simple string variable is
defined that has encoded Assembly code. Often the chr() function is used to
build larger strings that contain code. Then the callback routine is used to run
the string directly as code. This way, the macro virus jumps out of the context
of the macro interpreter and becomes CPU and platform -dependent.

For example, the {W32, W97M}/Heathen.12888 virus uses the CallBack12(),
CallBack24(), and CreateThread() APIs of KERNEL32.DLL to achieve infection
and dropping mechanism of both documents and 32-bit executables.

Location of files in storage

Another key difference among operating system platforms is the location of
files on the disk. Some macro viruses use hard-coded path names, such as the
location of the NORMAL.DOT template on the C: drive. Obviously, they can-
not work on the Mac.

In addition, viruses often assume a Windows-style file system, even if they
use the “correct” VBA methods to get the configured folder locations.

3.7 Interpreted Environment Dependency

73

Registry modifications

Some macro viruses modify Registry keys on Windows systems to introduce
extra tricks or store variables. Such viruses introduce OS dependencies as a
result.

3.7.1.5 Macro Evolution and Devolution
Macro viruses consist of a single macro or set of macros. Because these individual
macros must be recognized by the antivirus programs on a macro-to-macro basis,
a set of interesting problems occurs.

Some macro viruses will copy more than their own set of macros. They can
snatch macros from the documents they had infected previously. This way, the
virus might evolve into new forms naturally. Some viruses will lose macros from
their sets and thus will naturally devolve27 to other forms. There are also sandwich-
es28, which are created when more than one macro or script virus shares a macro
name or script file.

A set of dangerous situations was introduced because of antivirus detection
and disinfection, one of which was found by Richard Ford29. The problem occurs
when an antivirus product detects a subset of known macros (“macro virus rem-
nants”) from a set of macros in a newer virus that has at least one new macro
among the other, older known macros. If the antivirus product removes the
known macros, it could create a new virus by leaving a macro or set of macros in
the document that is still part of the virus and often remains viral itself.
This problem can be avoided in several different ways, one of which is to remove
all macros from infected documents (although this means removing user macros
from the documents also). Researchers also suggested defining a minimal set of
macros from a known virus to “safely remove” a set of viral macros from a docu-
ment. However, there is a natural extension of Richard Ford’s problem, which was
found by Igor Muttik, described in a scientific paper of Vesselin Bontchev in
detail30. This is known as “Igor’s problem.”

Suppose there is a virus known as Foobar that consists of a single macro
called M. The antivirus program identifies M in an infected document, but when it
attempts to disinfect the document, a problem occurs. This happens because there
is a variant of the Foobar virus in the document. This variant of Foobar consists of
{M, P} macros. Unfortunately, macro P is not known to the antivirus program;
thus, whenever the antivirus removes macro M, it will leave P behind. The major
problem is that P could be a fully functional virus on its own. Consequently, an
antivirus program, even with exact identification for Foobar, would create a new

Chapter 3—Malicious Code Environments

74

virus by accident when repairing a document in such situation. Indeed, some-
times, it is dangerous to remove a macro virus without removing all macros from
the document.

The environment of the malicious programs and agents within the environ-
ment of the programs can make changes in computer viruses that result in newly
evolved or devolved creatures. In addition, multiple infections of different macro
viruses in the same document can lead to “crossed” threats and behavior. Indeed,
viruses can become “sexual” by accident: They can exchange their macros
(“genes”) and evolve and devolve accordingly.

3.7.1.6 Life Finds a Way—Source, P-code, and Execode
Microsoft file formats had to be reverse-engineered by AV companies to be able to
detect computer viruses in them. Although Microsoft offered information to AV
developers about certain file formats under NDA, the information received often
contained major bugs or was incomplete31.

Some AV companies were more successful in their reverse-engineering efforts
than others. As a result, a new kind of expert quickly emerged at AV companies:
the file format expert. Among the best file format experts are Vesselin Bontchev,
Darren Chi, Peter Ferrie, Andrew Krukov (“Crackov”), Igor Muttik, and Costin
Raiu to just name a few.

Starting with VBA5 (Office 97), documents contain the compressed source of
the macros, as well as their precompiled code, called p-code (pseudocode), and
execode. Execode is a further optimization of p-code that simply runs without any
further checks because its state is self-contained. A problem appears because
under the right circumstances, any of these three forms can run.

Unfortunately, some AV companies produced products that occasionally cor-
rupted the documents they repaired. In other cases, the products removed any of
the three forms, without removing at least one of the other two. For example,
some antivirus programs might remove the p-code, but they leave the source
behind. Normally the p-code would run first. The VBA Editor also displays decom-
piled p-code as “a source” for macros, instead of using the actual source code of
macros which are saved in the documents. Given the right circumstances, howev-
er, when the p-code is removed but the source is not, the virus might be revived.
This happens when the document is created in Office 97 but is opened with Office
2000.

Most viruses break without the source because they often use a function such
as MacroCopy() that copies the source. In other cases such as worms, however, the
macro will continue to function properly because it does not refer to its source.

3.7 Interpreted Environment Dependency

75

In some other cases, the execode might run on its own without source and
p-code in the document. If the VBA project does contain execode and is opened by
the same version of the Office application as the one that created it, the execode
runs, and everything else is ignored. In fact, antivirus researchers experienced a
case with the X97M/Jini.A virus where both the p-code and the source were
removed from a document, but the execode was left behind when an antivirus pro-
gram “cleaned” the document. The virus runs from the execode when the infected
document is opened in the same version of Office that created it26; thus, some of
the “half-cooked repaired” viruses can still function and infect further. Life finds a
way, so to speak! Indeed, not all viruses will survive, but those that do don’t need
to refer to their sources or modules. Jini survives because it does not copy any
modules. Instead, it copies the victim’s data sheets to the workbook where it
resides and then overwrites the file of the victim with the file in which it resides.
Of course these tricky cases introduce major problems for the antivirus programs.
Viruses that exist only in execode form are especially hard to detect. (So far,
Microsoft has not provided information about this format to AV developers even
under NDA26

.)

3.7.1.7 Macro Viruses in the Form of the Multipartite Infection Strategy
There are a couple of binary viruses that attempt to infect documents. These virus-
es are not primarily dependent on the interpreted environments.

For instance, the multipartite virus, W32/Coke, drops a specially infected glob-
al template with a little loader code. This loader will fetch polymorphic macro
code (as discussed in Chapter 7) from a text file into the global template. As a
result, Coke is one of the most polymorphic binary viruses, as well as a macro
virus. Polymorphic macro viruses are usually very slow because of many iterations
required to run their code. However, it is normally the polymorphic engine that is
slow. Because Coke generates polymorphic macro virus code in a text file using its
Win32 code, the polymorphic macro of Coke is not as slow as most polymorphic
macro viruses based on macro polymorphic engines.

Other viruses do not need Word to infect Office documents. These viruses are
very rare and usually very buggy. Even the Word 6 file format is complicated
enough to parse and modify it in such a way that a macro is inserted in the file.
The W95/Navrhar virus injects macro code to load a binary file from the end of
the Word document. Thus, Navrhar can infect documents without Word installed
on the system.

Chapter 3—Malicious Code Environments

76

3.7.1.8 New Formula
Another set of problems occurred because Excel not only supported standard
macros, but formula macros as well. As you might expect, formulas are not stored
with macros; therefore, their locations had to be identified.

Viruses that need the Microsoft Excel Formula language to replicate are predi-
cated with the XF/ tag. Excel macros are stored in the Excel macro module area,
but Excel formulas are stored in the Excel 4 macro area instead. Therefore, these
viruses are not visible via the Tools/Macro menu, and users must create a special
macro to find them. The first such virus, known as XF/Paix32, was of French origin.

3.7.1.9 Infection of User Macros
Most macro viruses replicate their own set of macros to other documents.
However, infection is also possible by modifying existing user macros to spread
the virus code, similar to the techniques of binary infectors. In practice, very few
macro viruses use these parasitic techniques. This is because most of the docu-
ments do not contain user macros, and thus the spreadability of such parasitic
macro viruses is seriously limited. (In addition, macro viruses often delete any
existing macros in the objects they are infecting.) This kind of macro virus is very
difficult to detect and remove with precision.

3.7.1.10 New File Formats: XML (Extensible Markup Language)
Microsoft Office 2003 introduced the ability to save documents in XML, textual
format. This caused a major headache for antivirus developers, who must parse
the entire file to find the embedded, encoded OLE2 files within such documents
and then locate the possible macros within them. Currently, Word and Visio 2003
support the XML format with embedded macros33. Initially, such documents did
not have any fields in their headers that would indicate whether or not macros
were stored in them. Microsoft changed the file format of Word slightly in the
release of this version due to pressure from the AV community.

Visio 2003, however, was released without any such flags, leaving no choice for
AV software but to parse the entire XML file to figure out whether there are
macros in it. Thus, the overhead of scanning increases dramatically and is
particularly noticeable when files are scanned over the network.

3.7 Interpreted Environment Dependency

77

Note

XML infection was considered by virus writers years ago using
VBS (Visual Basic Script) code. The idea was that an XML file
can contain a Web link to reference code that is stored in an
XSL (Extensible Stylesheet Language) file. This technique was first
proposed by the virus writer, Rajaat, and was later introduced
by the W32/Press virus of Benny.

3.7.2 REXX Viruses on IBM Systems
IBM has a long tradition of implementing interpreted language environments.
Examples include the powerful Job Control languages on mainframe systems. IBM
also introduced the REXX command script language to better support both large
batch-like installations and simple menu-based installation programs. Not surpris-
ingly, virus writers used REXX to create new script viruses. In fact, some of the
first mass-mailer script viruses, such as the infamous CHRISTMA EXEC34 worm,
were written in REXX. The worm could execute on machines that supported the
REXX interpreter on an IBM VM/CMS system and were also connected to a net-
work. This worm was created by a German Informatics student35 in 1987.

CHRISTMA EXEC displayed the Christmas tree and message shown in Figure
3.7 when the REXX script was executed by the user. Obviously, such viruses rely
on social engineering for their execution on remote systems. However, users were
happy to follow the instructions in the source of the script. The worm looked
around for user IDs on the system and used the CMS command SENDFILE (or SF
in short form) to send CHRISTMA EXEC files to other users.

Chapter 3—Malicious Code Environments

78

3.7 Interpreted Environment Dependency

79

Figure 3.7 A snippet of the CHRISTMA EXEC worm.

At one point, such viruses were so common that IBM had to introduce a sim-
ple form of content filtering on its gateways to remove them.

REXX interpreters were made available on other IBM operating systems, such
as OS/2, as well; thus, a few REXX viruses appeared on OS/2.

3.7.3 DCL (DEC Command Language) Viruses on DEC/VMS
The Father Christmas worm was released in 1988. This worm attacked VAX/VMS
systems on SPAN and HEPNET. It utilized DECNET protocols instead of Internet
TCP/IP protocols and exploited TASK0, which allows outsiders to perform tasks
on the system.

This worm made copies of itself as HI.COM. Although DOS COM files have a
binary format, the DCL files with COM extensions are simple text files. The worm
sent mail from the infected nodes; however, it did not use e-mail to propagate

itself. In fact, this worm could not infect the Internet at all. It attacked remote
machines using the default user account and password and copied itself line by
line (151 lines) to the remote machine.

Then the worm exploited TASK0 to execute its own copy remotely. It used the
SET PROCESS/NAME command to run itself as a MAIL_178DC process on the
remote node36. Father Christmas mailed users on other nodes the following funny
message:

$ MAILLINE0 = “HI,”

$ MAILLINE1 = “”

$ MAILLINE2 = “ HOW ARE YA ? I HAD A HARD TIME PREPARING ALL THE PRESENTS.”

$ MAILLINE3 = “ IT ISN’T QUITE AN EASY JOB. I’M GETTING MORE AND MORE”

$ MAILLINE4 = “ LETTERS FROM THE CHILDREN EVERY YEAR AND IT’S NOT SO EASY”

$ MAILLINE5 = “ TO GET THE TERRIBLE RAMBO-GUNS, TANKS AND SPACE SHIPS UP HERE AT”

$ MAILLINE6 = “ THE NORTHPOLE. BUT NOW THE GOOD PART IS COMING.”

$ MAILLINE7 = “ DISTRIBUTING ALL THE PRESENTS WITH MY SLEIGH AND THE”

$ MAILLINE8 = “ DEERS IS REAL FUN. WHEN I SLIDE DOWN THE CHIMNEYS”

$ MAILLINE9 = “ I OFTEN FIND A LITTLE PRESENT OFFERED BY THE CHILDREN,”

$ MAILLINE10 = “ OR EVEN A LITTLE BRANDY FROM THE FATHER. (YEAH!)”

$ MAILLINE11 = “ ANYHOW THE CHIMNEYS ARE GETTING TIGHTER AND TIGHTER”

$ MAILLINE12 = “ EVERY YEAR. I THINK I’LL HAVE TO PUT MY DIET ON AGAIN.”

$ MAILLINE13 = “ AND AFTER CHRISTMAS I’VE GOT MY BIG HOLIDAYS :-).”

$ MAILLINE14 = “”

$ MAILLINE15 = “ NOW STOP COMPUTING AND HAVE A GOOD TIME AT HOME !!!!”

$ MAILLINE16 = “”

$ MAILLINE17 = “ MERRY CHRISTMAS”

$ MAILLINE18 = “ AND A HAPPY NEW YEAR”

$ MAILLINE19 = “”

$ MAILLINE20 = “ YOUR FATHER CHRISTMAS”

3.7.4 Shell Scripts on UNIX (csh, ksh, and bash)
Most UNIX systems also support script languages, commonly called shell scripts.
These are used for installation purposes and batch processing. Naturally, computer
worms on UNIX platforms often use shell scripts to install themselves. Shell
scripts have the advantage of being able to run equivalently on different flavors of
UNIX. Although binary compatibility between most UNIX systems is not provided,

Chapter 3—Malicious Code Environments

80

shell scripts can be used by attackers to circumvent this problem. Shell scripts can
use standard tools on the systems, such as GREP, that greatly enhances the func-
tionality of the viruses.

Shell scripts can implement most of the known infection techniques, such as
the overwriter, appender, and prepender techniques. In 2004 some new worms
appeared such as SH/Renepo.A that use bash script to copy themselves into the
StartupItems folders of mounted drives on MAC OS X. This indicates a renewed
interest of worm developments on MAC OS X. In addition, threats like Renepo
exposes MAC OS X systems to a flurry of attacks by turning the firewall off, run
the popular password cracker tool John The Ripper, and create new user accounts
for the attackers. However, current attacks require root privileges.

(It is expected that MAC OS X will be the target of future remote exploitation
attacks as well.)

3.7.5 VBScript (Visual Basic Script) Viruses on Windows Systems
Windows script viruses appeared after the initial macro virus attack period was
over. The VBS/LoveLetter.A@mm worm spread very rapidly around the world in
May of 2000. LoveLetter arrived with a simple message with the subject ILOVEY-
OU, as shown in Figure 3.8. The actual attachment has a “double extension.” The
“second” extension is VBS, which is necessary to run the attachment as a Visual
Basic Script. This “second” extension is not visible unless the Windows Explorer
Folder option Hide File Extensions for Known File Types is disabled. By default,
this option is enabled. As a result, many novice users believed they were clicking a
harmless text file, a “love letter.”

3.7 Interpreted Environment Dependency

81

Figure 3.8 Receiving a “love letter.”

On execution of the attachment, the VBS file runs with the script interpreter
WSCRIPT.EXE. Mass-mailer VBS script worms typically use Outlook MAPI func-
tions via CreateObject (“Outlook.Application”) followed by the NameSpace
(“MAPI”) method to harvest e-mail addresses with AddressLists(), and then they

Chapter 3—Malicious Code Environments

82

mass-mail themselves as an attachment to recipients via the Send() method. In
this way, many users receive e-mail from people they know. As a result, many
recipients are curious enough to run the attachment—often on more than one
occasion.

VBS viruses can use extended functionality via ActiveX objects. They have
access to file system objects, other e-mail applications, and locally installed
ActiveX objects.

3.7.6 BATCH Viruses
BATCH viruses were not particularly successful in the DOS years. Several unsuc-
cessful attempts were made to develop in-the-wild BATCH viruses, none of which
actually became wild. Nevertheless, common infection types, such as the prepen-
der, appender, and overwriting techniques, were all developed as successful
demonstrations. For example, BATCH files can be attacked with the appender
technique by placing a goto label instruction at the front of the file and appending
the extra lines of virus code to the end after the label.

BATCH viruses are also combined with binary attacks. BATVIR uses the tech-
nique of redirecting echo output to a DEBUG script; thus, the virus is a textual
BATCH command starting with

rem [BATVIR] ‘94 (c) Stormbringer [P/S]

This is followed by a set of echo commands to create a batvir.94 file with the
DEBUG script. The DEBUG command receives a G – GO command via the script
and runs the binary virus without ever creating it in a new file.

BAT/Hexvir uses a similar technique, but it simply echoes binary code into a
file and runs that as a DOS COM executable to locate and infect other files.

Some other tricky BATCH viruses use the FOR % IN () commands to look for
files with the BAT extension and insert themselves into the new files in packed
form using PKZIP. BAT/Zipbat uses PKUNZIP on execution of the infected
BATCH files to extract a new file called V.BAT, which will infect other files by plac-
ing itself in them, again in zipped form. Members of the BAT/Batalia family use
the compressor, ARJ, instead. Batalia, however, uses random passwords to pack
itself into BATCH files.

Similar to BAT/Zipbat, the BAT/Polybat family also uses the PKZIP and
PKUNZIP applications to pack and unpack itself at the ends of files. Polybat is
practically a polymorphic virus. The virus inserts garbage patterns of percent
signs (%) and ampersands (&) that are ignored during normal interpretation. For

instance, the ECHO OFF command is represented in some way similar to the fol-
lowing:

@ec%&%h%&%o o%&%f%&%f

@e%&%ch%o&% %&o%f%f&%

BATCH viruses, or at least multi-component viruses with a significant BATCH
part, are becoming a bigger threat on Windows systems. For instance, the
BAT/Mumu family got especially lucky in corporate environments by using a set of
binary shareware tools (such as PSEXEC) in combination with the BAT file–driven
virus code.

Several custom versions of BATCH languages do exist, such as the BTM files in
4DOS and 4NT products—just to name a few—which also have been used by mali-
cious attackers.

3.7.7 Instant Messaging Viruses in mIRC, PIRCH scripts
Instant messaging software, such as mIRC, supports script files to define user
actions and simplify communications with others. The script language allows the
definition of commands whenever a new member joins a conference and is often
stored in script.ini in the system’s mIRC folder.

IRC worms attempt to create or overwrite this file with an INI file that sends
copies of the worm to others on IRC. The command script supports the /dcc send
command. This command can be used to send a file to a recipient on a connected
channel.

3.7.8 SuperLogo Viruses
In April of 2001, a new LOGO worm was created and mass-mailed to some
antivirus companies. It never became wild, though, and there is definitely more
than one reason for that. Its author calls herself Gigabyte. Gigabyte has a back-
ground of creating other malware and has authored mIRC worms. As you will see,
she tried to use her existing mIRC knowledge to create the Logic worm37. The actu-
al worm is created in Super Logo, a reincarnation of the old Logo language for
Windows platforms, which claims to be “the Windows platform for kids.”

In 1984, I came across several Logo implementations for various 8-bit comput-
ers. Our 8-bit school computer, the HT 1080Z—a Z80-based TRS-80 clone built in
Hungary—had a top screen resolution of 128x48 dots in black and white. Although

3.7 Interpreted Environment Dependency

83

Chapter 3—Malicious Code Environments

84

we had not paid too much attention to the fact at the time, the built-in Basic of HT
1080Z was created by Microsoft in 1980.

The Logo language’s primary purpose is to provide drawing with the “Turtle.”
The Turtle is the pen, and its head can be turned and instructed to draw. For
instance, in Super Logo, the following commands are common: HIDETURTLE,
FORWARD, PENUP, PENDOWN, WAIT, and so on.

The set of commands can be formed as subroutines and saved in a Logo proj-
ect file with an LGP extension. The actual project file is a pretokenized binary for-
mat, but commands and variable names remain easily readable and stored as
Pascal-style strings. The project file can be loaded and executed with the Super
Logo interpreter. The original Logo language is well extended in Super Logo to
compete with other existing implementations. It can deal simultaneously with
multiple graphical objects (see the cute Turtle as an example in Figure 3.9) and
move them around the screen with complete mouse support.

Figure 3.9 Main Turtle ICON.

We can easily determine, however, that the Super Logo language does not sup-
port mailing or embedded executables; neither does it support spawning of other
executables or scripts—yet Super Logo does support a PRINTTO “XYZ” command.
XYZ can be a complete path to a file. With that statement, a Logo program might
modify any file, such as winstart.bat, overwriting its content with something like
the following:

@cls

@echo You think Logo worms don’t exist? Think again!

Get the idea? When the logic.lgp project is loaded and executed, the worm will
draw LOGIC on screen with a short message, as shown in Figure 3.10.

Figure 3.10 The payload of the Logic worm.

The worm will make sure that a STARTUP.VBS file is created in one of the
Windows startup folders and, as such, will be executed automatically the next
time Windows is booted. The worm also tries to modify the shortcuts (if any) of
some common Windows applications, such as notepad.exe, to start the VBS file
without a reboot.

This VBS file propagates the 4175-byte logic.lgp worm project file to the first
80 entries of the Outlook address book. This is a very standard VBS mail propaga-
tion that has a set of minor bugs. In 2004, Gigabyte was arrested by Belgian
authorities. She is facing criminal prosecution; the penalty might include impris-
onment and large fines.

3.7.9 JScript Viruses
One of the reasons to turn off JScript support in a Web browser such as Internet
Explorer has to do with JScript viruses. JScript viruses typically use functions via
ActiveX communication objects. They can access such objects in a way similar to
VBS scripts. For instance, the very first overwriting JScript viruses accessed the
file system object via the CreateObject (“Scripting.FileSystemObject”) method.
This kind of virus was first created by jacky of the Metaphase virus-writing group
around 1999.

The File System Object provides great flexibility to attackers. For example, an
attacker can use the CopyFile() method to overwrite files. This is how overwriting
JScript viruses work. Of course, more advanced attacks have been implemented by
the attackers using the OpenTextFile(), Read(), Write(), ReadAll(), and Close() func-
tions. Thus JScript viruses can carry out complex file infection functionality
similar to VBS viruses, using a slightly different syntax.

3.7 Interpreted Environment Dependency

85

Chapter 3—Malicious Code Environments

86

3.7.10 Perl Viruses
Perl is an extremely popular script language. Perl interpreters are commonly
installed on various operating systems, including Win32 systems. The virus writer,
SnakeByte, wrote many Perl viruses in this script language.

Perl scripts can be very short, but they have a lot of functionality in a very
compact form. Attackers can use Perl to develop not only encrypted and metamor-
phic viruses, but also entry point obscuring ones. The open(), print, and close()
functions are used to move newly created content to a target file located in storage
with the foreach() function.

For example, the following Perl sequence reads its source to the
CurrentContent variable:

open(File,$0);

@CurrentContent=<File>;

close(File);

Perl viruses are especially easy to write because Perl is such a powerful script
language to process file content.

3.7.11 WebTV Worms in JellyScript Embedded in HTML Mail
Microsoft WebTV is a special embedded device that allows users to browse the
Web over their televisions. In July 2002, a new, malicious WebTV worm appeared,
which at first glance was believed to be a Trojan horse. The payload of the worm
reconfigured the access number (dial-up number) for the WebTV network to call
911 (the phone emergency center of the U.S.) instead, to perform a DoS attack.

WebTV HTML (Hypertext Markup Language) files can run HREF (hyperlink
reference) within the <script> </noscript> tags using WebTV’s Internet Explorer.
The HREF would normally link a page to another location on the World Wide
Web; however, in WebTV JellyScript, these special commands were used to set up
the WebTV. Obviously, these commands have not been documented officially,
though many people tried to figure out something more about WebTV and pub-
lished detailed information about the available commands.

This malicious program, NEAT, was later identified as a worm that used the
sendpage commands to send HTML mail that contained the worm to others on
the WebTV network. The mail was sent by various fake “from” addresses, such as
Owner_, minimoo, masonman, and so on.

The worm also introduced many pop-up advertising messages on the recipi-
ent’s machine before it used the ConfirmPhoneSetup?AccessNumber command to
reconfigure the dial-up number to 911 to overload the emergency network with a
DoS attack.

3.7.12 Python Viruses
Python is an extremely handy programming language. Unlike shell script, which
can be rather limited in functionality because of speed issues, Python is fast and
modular. Because of its more general data types, Python can solve a larger prob-
lem. It has built-in modules to support I/O, system calls, sockets, and even inter-
faces to graphical user interface toolkits.

Although Python viruses are not extremely common, a few concept viruses
written in Python scripts exist. They typically combine the open(), close(), read(),
and write() functions to locate files with listdir() to replicate themselves to other
files. However, this virus type is probably the simplest imaginable form for a
Python virus, which could utilize much more on the system to implement a variety
of infection strategies.

3.7.13 VIM Viruses
A successor of the VI UNIX editor is VIM (VI IMproved). Unlike VI, VIM works on
Windows, Macintosh, Amiga, OS/2, VMS, QNX, and other systems. VIM is a text
editor that includes almost all VI commands and a lot of new ones.

Among its many new features, VIM supports a very powerful scripting lan-
guage that has already been used by virus writers to create worms. (The known
example of such a worm is an intended worm, which will not replicate.)

3.7.14 EMACS Viruses
Just like VIM, newer versions of the EMACS editor also support scripting. This
kind of virus is not common, but proof-of-concept creations exist for the environ-
ment.

3.7.15 TCL Viruses
TCL (Tool Command Language) is a portable script language that can run on sys-
tems such as HP-UX, Linux, Solaris, MAC, and even Windows. TCL is very similar
language to Perl. TCL scripts are executed by the tclsh interpreter.

3.7 Interpreted Environment Dependency

87

The first virus implemented in TCL (pronounced “tickle”) was Darkness, a
very simple virus written by Gigabyte in 2003. TCL supports foreach(), open(),
close(), gets(), and puts() functions, which are all TCL script viruses need to repli-
cate themselves.

3.7.16 PHP Viruses
PHP (a recursive acronym for PHP: hypertext preprocessor) is an open-source,
general-purpose scripting language. It is well suited to Web development and can
be embedded into HTML. PHP is different from client-side scripting, such as
JScript, because PHP runs on the server instead of on the local machine. However,
PHP also can be used in command-line mode without any server or browser.

PHP/Caracula was introduced in 2001 by the virus writer, Xmorfic, of the
BCVG virus-writing group. The virus spreads as an overwriter and creates mIRC
scripts to spread as a worm.

PHP viruses typically use the fopen(), fread(), fputs(), fclose() sequence to
write themselves to new files, which they locate with direct action infection tech-
niques using the opendir(), readdir(), closedir() sequence in combination with the
file_exists() function.

There are examples of polymorphic PHP viruses, such as PHP/Feast, written
by the virus writer, Kefi, in 2003. Feast looks for files to overwrite, but it over-
writes them with an evolved copy of itself. In particular, each variable in the body
of the virus will mutate to random character sequences.

3.7.17 MapInfo Viruses
MapInfo, developed by Geo-Information Systems, is not a widely used application.
It is used for mapping and geographical analysis. The MPB/Kynel38 virus demon-
strated that it is possible to make this platform virulent. Kynel was created by
Russian virus writers in late 2003.

MapInfo Professional has it own development environment called MapBasic,
which is a Basic-like language. MapBasic is very powerful and, as expected, sup-
ports Open, Close, Read, and Write to both ASCII and binary files. It also sup-
ports API calls from other DLLs, dynamic data exchange (DDE), and object linking
and embedding (OLE). When these programs are compiled, a new executable,
MBX, is created, called MapBasic eXecutable. As expected, however, these files can
be only executed by MapInfo.

The MPB/Kynel virus infects new tables. It enumerates for new tables each
time the function WinChangedHandler() is called. WinChangedHandler() is trig-

Chapter 3—Malicious Code Environments

88

gered whenever the user changes something in a document. The virus hooks this
function and uses this moment to create a copy of itself in the newly enumerated
tables, as tablename.mif. It then inserts a Run Application line to this MBX exe-
cutable into the TAB file of MapInfo documents. In this way, the MBX file will be
run whenever the infected document is opened.

MapInfo is available on both Windows and Macintosh platforms. It is not very
common, but like the SuperLogo virus threats, it demonstrates virus writers’ inter-
est in all platforms as possible targets.

3.7.18 ABAP Viruses on SAP
The first virus known to attempt to infect SAP was ABAP/Rivpas, written in April
2002. It is a proof-of-concept virus that is based on the Advanced Business
Application Programming scripting language. This creation had a few intentional
bugs and did not have a chance to replicate. However, other variants with the fix
appeared quickly—that were real viruses. In about 20 lines of script, the virus
replicates in databases by copying itself from one database to another.

3.7.19 Help File Viruses on Windows—When You Press F1…
A very powerful but surprisingly unpopular virus infection target is Windows
Help files. Windows Help files are in binary format and contain a script section.
The scripts have access to Windows API calls. Most Help viruses inject a little
script into the SYSTEM directory of HLP files. This script section will be executed
the next time the Help file is loaded. As a result, such a virus is triggered simply
by pressing the F1 button in an application that is associated with an infected HLP
file.

The major trick of such viruses is to define functions for their use, such as
EnumWindows() of the USER32.DLL. For example, the Dream virus uses this
technique to infect Windows Help files.

The RR (‘USER32.DLL’,’EnumWindows’,’SU’) script line will define an
EnumWindows() callback for use. Then an EnumWindows(virusbody) call is made
by the script, which will execute the “string,” the virus body, via the callback.
Thus execution can continue in native code, getting out of its script context.

The first virus to infect Windows Help files was the 32-bit polymorphic virus,
W95/SK39, written in Russia. Unlike Demo, SK uses WinExec() functions to exe-
cute a set of command.com /c echo commands to print code into a binary for exe-
cution outside of the HLP file in the root directory. The first native Help infector,
the HLP/Demo virus, also appeared to replicate from one Windows Help file to
another.

3.7 Interpreted Environment Dependency

89

3.7.20 JScript Threats in Adobe PDF
The PDF format is used by Adobe Acrobat products. In 2003, the
{W32,PDF}/Yourde virus infected PDF files using an executable that is dropped by
a JScript exploit (a PDF form is also dropped). The binary is executed by the form
when the form is loaded. The complete version of the Adobe Acrobat installation
is required to infect files because the virus relies on the user’s saving the infected
file. (Saving the infected file cannot be forced externally with Adobe Acrobat.
Additionally, the reader-only version cannot save PDFs at all.)

The JScript runs automatically by Acrobat itself, without relying on an external
interpreter such as Windows Scripting Host; thus, the vulnerability is Acrobat
version-specific.

3.7.21 AppleScript Dependency
AppleScript is used on Macintosh systems to support local scripting. Not surpris-
ingly, some threats can replicate only if AppleScript is installed. For example, the
AplS/Simpsons@mm worm is written in AppleScript. After it is executed, it uti-
lizes Outlook Express or Entourage to send a copy of itself to everybody in the
address book.

This particular worm was not reported frequently from the wild; however,
AppleScript threats expose Mac users to similar security problems as those of
other powerful script languages, such as VBS on Windows.

3.7.22 ANSI Dependency
IBM PCs introduced ANSI.SYS drivers that fulfill the needs of many users by pro-
viding the ability to reconfigure certain key functions via escape (ESC) sequences.
These sequences are usually stored in a file with an ANS extension. ESC
sequences can start with a special escape code (accessible via holding the Alt key
and typing40 on the numeric keypad).

Whenever the line DEVICE=ANSI.SYS is included in the CONFIG.SYS file, the
support to execute ESC sequences is available. For example, a simple ANSI
sequence can redefine the N key to Y and the n key to y. Consequently, the user
would give the wrong answer to confirmation questions asked by applications.
This would be done the following way:

ESC [78;89;13p ESC [110;121;13p

Chapter 3—Malicious Code Environments

90

This kind of redefinition might be desirable for other keys; the Enter key also
can be redefined, and del *.* or format c: might be displayed when Enter is
pressed.

ANSI sequences also can be used to redefine entire commands. Thus, the
wrong command name is displayed when a different command is typed.

3.7.23 Macromedia Flash ActionScript Threats
A newcomer on the malicious scene is ActionScript malware. The LFM virus uses
the ActionScript of Flash files to create and run a DOS COM executable. Such
threats, then, are fairly limited because they introduce several other dependencies.

For instance, LFM41 needs to be downloaded to the local machine from a Web
page. It can only infect files if it is downloaded to a folder that contains other
clean files and only as long as the external file V.COM can run properly.

3.7.24 HyperTalk Script Threats

“ An excellent beginning tool to teach average people, from 5th grade, on how to
control their computers as masters rather than slaves.”

—Steve Wozniak

HyperCard is a versatile environment that supports a scripting language called
HyperTalk. Created by Bill Atkinson, HyperTalk is one of the most linguistic script
languages available. Not surprisingly, some of the oldest computer viruses were
written in HyperTalk. The first HyperTalk script virus was Dukakis, written
around 1988.

HyperTalk scripts activate based on event handlers associated with a name in
the stack. The scripts are stored in HyperCard data files, called stacks, which are in
binary format. But the script code itself is purely textual inside the stacks.

For instance, upon opening a HyperCard stack, the openStack event handler
can be invoked. This is fairly similar to how Microsoft Office products work with
macros, though HyperCard is much more than a scripted text editor. It can be
used to create many different projects with menus and database front-ends for
cards (records in the database), and different stacks can share their functions with
each other. HyperCard extended the promise of easy-to-use systems to easy-to-
program environments.

HyperTalk script code is interpreted between the event handler tags of the
keywords on and end. Here is an example:

3.7 Interpreted Environment Dependency

91

on openStack

ask “What is your name?”

put it * it into field “Name”

end openStack

HyperCard was developed well before Microsoft’s Visual Basic. Like Microsoft
Office products’ global templates (or should I say, the other way around?),
HyperCard supports a so-called Home stack, which contains an arsenal of useful
scripts. Most HyperCard viruses infect the Home stack by copying themselves into
it with the help of put keywords. After this, they can copy themselves to the newly
opened stacks. Any stack can be a Home stack, as long as its name is home.

The Dukakis virus uses the following lines to select its script body for a new
copy:

put the script of stack “home” into temp2

get offset (“”-** The HyperAvenger **-,”temp2)

put char it to it+2426 of temp2 into theCode

This script snippet looks for the offset where the virus code starts in the home
stack and copies the virus script (2426 bytes) from that location to the variable,
theCode. The virus then only needs to copy theCode into another stack later. The
this stack is a reference to the currently opened stack. Its content can be accessed
with yet another put command.

Several other HyperCard viruses exist on the Mac; the most famous ones are
the Merry Xmas and 3 Tunes families.

3.7.25 AutoLisp Script Viruses
HyperTalk script viruses are very readable and easy to understand; AutoLisp
threats are a little more difficult to read. A few script viruses, such as Pobresito42

and ALS/Burstead43, use the AutoLisp scripting feature of AutoCAD environments.

Note

Newer versions of AutoCAD also support VBA.

Pobresito was written during the summer of 2001. Burstead appeared much
later, during December 2003 in Finland, and managed to infect a few major corpo-
rations that run modern versions of AutoCAD. AutoCAD is rather expensive soft-
ware, and it is not used as widely as other script language environments.

Chapter 3—Malicious Code Environments

92

AutoLisp scripts are stored in text files with the LSP extension. Burstead.A
looks for the location of the base.dcl file in the AutoCAD search path, using the
findfile function:

(setq

path

(findfile

“base.dcl”))

This is done to locate the directory where the other LISP files can be found.
Such viruses attempt to modify files with a load command to load their own LSP
file. Thus, whenever the modified LSP file is executed, the virus can get control
via the load command:

(load

“foobar”)

Here, foobar is the name of a file that has an LSP extension in the default
folder.

Obviously, AutoLisp allows write-line functions, which could be used by
attackers for different kinds of infection methods.

3.7.26 Registry Dependency
Some viruses are implemented to infect from Windows Registry files. The Registry
is a central storage database on Windows systems. Previous versions of Windows
mostly used INI files to store application settings. On modern Windows systems,
the Registry database, called a hive, is used to store such information in trees.

An interesting capability of the Registry is that it stores file paths for system
startup time execution under several different subentries of the hive, such as
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\RUN.

Keys like this are commonly attacked by all kinds of malicious code, and other
locations of the Registry provide similar attack points for virus writers. For
instance, the W32/PrettyPark worm family modifies the Registry key located at
HKEY_CLASSES_ROOT\exefile\shell\open\command to get executed whenever
an EXE file is run by the user. The worm executes the program that the user want-
ed to run—but only after itself.

Registry-dependent viruses use such keys to insert a reference to system com-
mands for later execution. Registry entry installation files are stored in textual

3.7 Interpreted Environment Dependency

93

Chapter 3—Malicious Code Environments

94

format, and they contain information about keys and values to install via Regedit.
Such viruses are implemented as a single command entry in the REG files.
Regedit will interpret the commands in the REG file; as a result, a new entry will
be stored in the Registry for later execution.

The malicious entry uses standard system commands with the passed parame-
ters to look for other REG files on local and network sites and modifies them to
include the command string to REG files. This technique is based on the fact that
DOS batch commands can be executed from the Registry.

3.7.27 PIF and LNK Dependency
Viruses also attack PIFs (program information files) and LNKs (link files) on
Windows systems. PIFs are created when you create a shortcut to or modify the
properties of an MS-DOS program and allow you to set default properties, such as
font size, screen colors, and memory allocation. PIFs also store the path of the exe-
cutable to run.

Some viruses attack PIFs by modifying their internal links that point to an exe-
cutable. The approach of typical PIF creations is to run commands via
command.com execution, using this link path. They use the copy command to
copy the PIF to other locations on the local disk, such as Windows, mIRC, or P2P
folders, or to attack network resources.

The LNK (link shortcut files) on Windows 95 and above can be attacked in a
manner similar to PIFs.

3.7.28 Lotus Word Pro Macro Viruses
Another class of macro viruses attacks Lotus Word Pro documents of Lotus
SmartSuite. For example, the LWP/Spenty virus only replicates in the Chinese ver-
sion of Word Pro. The virus infects files as they are opened by hooking the
DocumentOpened() and DocumentedCreated() macros. The security settings of
the document are changed in such a way that a password is set to 720401. In this
way, the virus attempts to prevent any modifications of infected objects.

The Spenty virus became widespread in China in 2002. Spenty introduced the
problem of Word Pro file parsing for antivirus producers. Word Pro uses a script-
like macro language.

3.7.29 AmiPro Document Viruses
Viruses do not frequently attack AmiPro documents, and there is a good reason
for this. Unlike most text editors, AmiPro saves documents and macros into two

separate files. The documents are stored in files with SAM extensions, and the
macro files are kept in files with SMM extensions. AmiPro viruses must connect
the two files in such a way that when the SAM file is opened, it invokes execution
of the SMM.

The APM/Greenstripe virus consists of four functions: Green_Stripe_Virus(),
Infect_File(), SaveFile(), and SaveAsFile(). The SaveFile() and SaveAsFile() func-
tions are hooks installed with the ChangeMenuAction() function, and they corre-
spond to the Save and Save As menus. The virus uses the AssignMacroToFile()
function to establish the connection between SAM and SMM files. The virus uses
the FindFirst() and FindNext() functions to search for new SAM files to attack.

AmiPro viruses are much less likely to spread via e-mail than Microsoft Office
macro viruses because of AmiPro’s use of separate document and macro files, as
opposed to a single container.

3.7.30 Corel Script Viruses
Corel Draw products also support a script language that is saved in files with CSC
extensions. (In addition, contemporary versions of Corel Draw also support VBA.)
Corel Script viruses typically look for victim files with the FindFirstFolder() func-
tion. The CSC/CSV virus identifies infected victim files by checking for the “REM
ViRUS” marker in the CSC files.

If CSV does not find the marker in the file, it will attempt to infect it by
prepending its script with print # commands. It then looks for the next file with
the FindNextFolder() function. In practice, the virus creates a new host script with
the same name, copies itself into it, and then appends the original host script to
itself.

REM ViRUS GaLaDRieL FOR COREL SCRIPT bY zAxOn/DDT

The CSC/PVT virus follows a similar strategy. It uses the same functions to
look for new files to infect. It even checks potential victims for REM PVT any-
where in the script before attempting to infect them.

REM PVT by Duke/SMF

Unlike CSV, the PVT virus appends itself to the end of the script. As a result,
the original script runs first, and upon the exit of the original script, the appended
script code is executed.

3.7 Interpreted Environment Dependency

95

3.7.31 Lotus 1-2-3 Macro Dependency
Although there are widespread rumors about a Lotus 1-2-3 macro virus with the
name Ramble, the actual threat is not viral. Rather, the known threat is a dropper
of a BATCH virus. (This is not to say, however, that Lotus 1-2-3 macros would not
be able to infect another set of Lotus 1-2-3 worksheets.)

The BAT/Ramble virus dropper, written by “Q The Misanthrope,” works the
following way: First, the user opens a Trojanized Lotus 1-2-3 document. The mali-
cious Lotus macro activates upon when the document is opened. The malicious
macro is then inserted in the A8167 … A8191 range of the sheet. In this way, it is
not visible to the user. After the macro runs, it creates a BATCH virus in the
C:\WINSTART.BAT file.

After the BATCH virus is created by the dropper, the macro dropper code
removes itself from the sheet, using the /RE command (Range Erase). It also
removes the \0 macro name that automatically runs whenever a worksheet is
opened.

It must be noted that newer versions of Lotus 1-2-3 have a different worksheet
format, which has allowed a macro up-conversion problem to be introduced on
this platform.

3.7.32 Windows Installation Script Dependency
The 32-bit Windows versions introduced a new installation script language in INF
files. These scripts are invoked via the Windows Setup API. The install scripts
have various sections for installation and uninstallation. The script can be generat-
ed manually or by using tools such as Microsoft’s BATCH.EXE or INF generators.

One of the many features of installation scripts is the use of the autoexec.bat
file. Commands can be directly installed into and removed from the automatically
executed batch file on system startup. This is done via the UpdateAutoBat com-
mand in the Install section associated with a named section of the script. That sec-
tion contains commands to delete lines—as well as to add new malicious
commands—with CmdDelete and CmdAdd, respectively. (CmdDelete is used to
delete the malicious code in case it was inserted into the file in a previous attack.)

The virus writer, 1nternal, introduced a couple of viruses, such as the
INF/Vxer family, that take advantage of INF file infection via batch execution. The
CmdAdd entries are used to deliver the source of the viral batch lines to
AUTOEXEC.BAT. As a result, on each system startup the virus will look into the
Windows\INF folder to infect other INF files.

Chapter 3—Malicious Code Environments

96

3.7.33 AUTORUN.INF and Windows INI File Dependency
AUTORUN.INF files and Windows INI files are very similar in structure to
Windows installation scripts. Some viruses modify the AUTORUN.INF file to get
auto-launched whenever a removable disk is loaded.

AUTORUN.INF was a new feature in Microsoft Windows 95 systems. It was
primarily designed to run an application automatically whenever a user inserted a
CD into the CD-ROM drive. Whenever an AUTORUN.INF file exists in the root
directory of a removable disk type, it is executed by most 32-bit Windows systems,
although some of the newer editions of Windows primarily support the CD-ROMs
only.

There are a couple of Registry entries associated with Autorun functionality.
Whenever such options are enabled, the AUTORUN.INF is interpreted, and its
Autorun section is invoked. The Autorun section supports an Open command that
can be used to run an executable via the feature. This is the command that mali-
cious code sets alter to be invoked automatically.

The HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer
Registry entry must be modified with a NoDriveAutoRun or
NoDriveTypeAutoRun entry set to customized values, such as 0xFF, to turn off the
feature for each drive.

Windows INI files are attacked for a similar reason. For instance, the WIN.INI
supports a Windows section. In that section, a run= entry can be used to RUN an
application during the startup of Windows. Malicious Trojans often modify this
entry to load themselves via system startup.

3.7.34 HTML (Hypertext Markup Language) Dependency
HTML does not support functionality to malicious attacks in its strict form, but it
supports embedded scripting, such as VBScript or JScript. Several viruses attack
HTML files. One of the most successful such attacks was implemented in the
W32/Nimda worm in September 2001.

Nimda attacks HTML files by inserting a little JScript section into them. This
section opens an EML file that contains a malformed MIME exploit. The JScript
code uses the window.open function to launch the EML file. The result is an
automatically executed worm executable upon accessing a compromised HTML
page using a vulnerable Internet Explorer.

Some HTML threats get invoked from HTML files via HREF entries. They trick
the user into clicking something that will, in turn, execute the referenced mali-
cious code.

3.7 Interpreted Environment Dependency

97

The first viruses that attacked HTML files were created by the virus writer,
1nternal. Although some vendors initially classified these threats as HTML virus-
es, the proper classification is based on the actual script language used, such
as VBS.

3.8 Vulnerability Dependency
Fast spreading worms, such as W32/CodeRed, Linux/Slapper, W32/Blaster, or
Solaris/Sadmind, can only infect a new host if the system can be exploited via a
known vulnerability. If the system is not vulnerable or is already patched, such
worms cannot infect them. However, several worms, such as W32/Welchia,
exploits multiple vulnerabilities to invade new systems. Therefore, the system
might remain exploitable by at least one of the nonpatched vulnerabilities.

Chapter 10 , “Exploits, Vulnerabilities, and Buffer Overflow Attacks,” is dedi-
cated to computer virus attacks that utilize exploits to spread themselves.

3.9 Date and Time Dependency

Tyrell: What seems to be the problem?

Roy: Death!

Tyrell: Death. Well, I am afraid that’s a little out of my jurisdiction.

Roy: I want more life…

—Blade Runner, 1982

Several viruses replicate only within a certain time frame of the day. Others refuse
to replicate before or after a certain date. For instance, the W32/Welchia worm
only attempted to invade systems until January 2004.

Another example is the original W32/CodeRed worm, which was set to kill
itself in 2001. However, other variants of the worm were modified to introduce an
“endless life” version without this limitation. The life cycle manager of worms is
discussed in more detail in Chapter 10.

Chapter 3—Malicious Code Environments

98

3.10 JIT Dependency: Microsoft .NET Viruses
A natural evolution of Microsoft’s ambitious computer language and execution
environment developments is .NET Framework’s Just-in-Time compilation. .NET
uses executables that are somewhat special portable executable (PE) files.
Currently, such executables contain a minimal architecture-dependent code (a sin-
gle API call to an init function)44. Elsewhere, the compiled PE file contains MSIL
(Microsoft Intermediate Language) and metadata information. The first viruses
that targeted .NET executables were not JIT-dependent. For example, Donut45 was
created by Benny in February of 2002. This virus attacked .NET executables at
their native entry point, replacing _CorExeMain() import (which currently runs
the JIT initialization) with its own code and appending itself to the end of the file.
A few months later, JIT-dependent viruses appeared that could infect other MSIL
executables. The first such virus was written by Gigabyte.

W32/HLLP.Sharpei40 implements a simple prepender infection technique. The
MSIL code of the virus is JIT compiled by the CLR (common language runtime) of
.NET Framework. JIT does not compile the module when it is loaded, but only
when a particular method is first used. Only then is the MSIL code translated to
the local architecture, and native code execution begins. Figure 3.11 shows the
payload message of the W32/HLLP.Sharpei virus.

3.10 JIT Dependency: Microsoft .NET Viruses

99

Figure 3.11 The payload message of Sharpei.

In 2004, new infection techniques appeared that targeted .NET executables.
These new viruses parasitically infect MSIL programs. It is not surprising that
such viruses did not show up any earlier because it is much more difficult to
implement them. In fact, some researchers argued that such complex MSIL viruses
will never appear. For example, the metamorphic virus, MSIL/Gastropod, uses the
System.Reflection.Emit namespace to rebuild its code and the host program to
alter the appearance of the virus body. Gastropod is a creation of the virus writer,
Whale, who also authored the W95/Perenast viruses. (Whale was captured by the
Russian police in November 2004. He was required to pay $50.)

On the other hand, the MSIL/Impanate virus is aware of both 32-bit and 64-bit
MSIL files and infects them using EPO (Entry Point Obscuring) techniques
without using any library code to do so. MSIL/Impanate was authored by the virus
writer, roy g biv.

Note

More information on infection techniques is available in Chapter
4, “Classification of Infection Strategies.” Metamorphic viruses
are discussed in Chapter 7, “Advanced Code Evolution
Techniques and Computer Virus Generator Kits.”

3.11 Archive Format Dependency
Some viruses might not be able to spread without packed files. A few viruses only
infect archive file formats. The majority of such viruses infect binary files, as well
as ZIP, ARJ, RAR, and CAB files (to name the most common archive formats).

Spreading viruses in archive files gained popularity when Microsoft imple-
mented a virus-protection feature for Outlook. Outlook no longer runs regular exe-
cutable extensions, and recent versions simply do not provide such attachments to
end users. However, virus writers quickly figured out that they could send packed
files, such as zipped files, which Outlook does not remove from e-mail messages.

Some tricky mailer or mass-mailer worms, such as W32/Beagle@mm46, even
use password-protected attachments. Because the password and instructions on
how to use it are available to the user, the malicious code can trick the user into
running an application, such as Winzip, and typing the given password to unpack
and then execute its content. Such viruses often carry their own packer engines,
such as InfoZIP libraries, to create new packer containers.

File infector viruses typically insert a new file into an archive file. For example,
ZIP infection is simple because ZIP stores a directory for each file in the contain-
er’s archive. By locating such headers, viruses can insert new files into the project
and trick the user into running the files. For example, viruses might insert a file
with a name such as “readme.com” and simply hope that the user will execute it
to read “the documentation” of the package.

Some very complex viruses, such as the Russian virus, Zhengxi47, infect self-
extracting EXE files with multiple archive infection capability, including the
packed file format, HA, inside such binary files.

Chapter 3—Malicious Code Environments

100

3.12 File Format Dependency Based on Extension

101

3.12 File Format Dependency Based on Extension
Some viruses have extension dependency. Depending on the extension, a file
might be placed in a different execution environment. A simple example of this is
COM and BAT (ASCII) extension replacement. As a COM file, the file can function
as binary. With a BAT extension, it looks like an ASCII BATCH file.

Other common examples of this kind of dependency are as follows:

� COM/VBS
� COM/OLE2 (a trivial variant has the header of an OLE2 file)
� HTA/SCRIPT
� MHTML (Binary+Script)
� INF/COM
� PIF/mIRC/BATCH

This method is often used as an attempt to confuse scanners about the type of
object they are scanning. Because scanners often use header and extension infor-
mation to determine the environment of the file, their scanning capabilities (such
as heuristics analysis) might be affected if they do not identify the type of object
properly.

For example, PIF worms typically use mIRC, BAT, or even VBS combinations,
based on extension dependency. A file with a PIF extension will function as a PIF.
However, with a BAT extension, it will run as a BATCH instead, and the PIF sec-
tion in the front of the file is simply ignored. Other examples include an mIRC
and BATCH combination based on extension dependency tricks.

Figure 3.12 demonstrates how the PIF is organized for extension dependency.
The Phager virus uses the previously discussed technique.

Figure 3.12 A high-level structure of a PIF with extension dependency.

Chapter 3—Malicious Code Environments

102

Another example that involves extension dependency tricks is INF/Zox, which
infects Windows INF files. The main virus body is stored in INF/Zox in an INF file
called ULTRAS.INF. However, this INF file can run as a DOS COM executable
when renamed.

In the INF form, the virus uses CmdAdd (add command) entries to attack
AUTOEXEC.BAT. It also uses the CopyFile entry of the DefaultInstall section to
copy the ULTRAS.INF file as Z0X.SYS. The trick is that the new AUTOEXEC.BAT
section will rename the Z0X.SYS file to Z0X.COM and run it. The virus starts with
a comment entry in the INF form using a semicolon (;) (0x3b).

When the file is loaded as a DOS COM file, the marker is ignored as a com-
pare (CMP) instruction. After the comment, binary code is inserted that “trans-
lates” to a jump (JMP) instruction to the binary portion of the virus code at the
end of the file:

13BE:0100 3B00 CMP AX,[BX+SI] ; Compare instruction ignored

13BE:0102 E9F001 JMP 02F5 ; Jump to binary virus start

Zox is a direct-action overwriter virus. It overwrites INF files with itself.

3.13 Network Protocol Dependency
Nowadays, the Internet is the largest target of virus attacks. TCP and UDP proto-
cols are used by malicious mobile code48 to attack new targets. There are some old
worms, however, such as the Father Christmas worm, that could not spread on the
Internet because they relied on DECNET protocols—thus, computer worms are typ-
ically network protocol–dependent.

3.14 Source Code Dependency
Some tricky computer viruses, such as those of the W32/Subit family, infect
source files such as Visual Basic or Visual Basic .NET source files. Other viruses
spread in C or Pascal sources. These threats have a very long history.

Consider the C source file shown in Listing 3.2, in clean and infected form.

Listing 3.2
A Source Infector Virus
#include <stdio.h>
void main(void)
{

printf(“Hello World!”);
}
The infected copy would look similar to the following:
#include <stdio.h>
void infect(void)
{

/* virus code to search for *.c files to infect */
}
void main(void)
{

infect(); /* Do not remove this function!! */
printf(“Hello World!”);

}

After the infected copy is compiled and executed, the virus will search for
other C sources and infect them.

Source code viruses typically use a large string to carry their own source code,
defined as a string. The W32/Subit family uses a concatenated string to define its
source code, starting with the following lines:

J = “44696D20532041732053797374656D2E494F2E53747265616D5772697465720D”

J = J & “0A44696D204F2C205020417320446174650D0A44696D2052204173204D696372”

J = J & “6F736F66742E57696E33322E52656769737472794B65790D0A52203D204D6963”

This will be converted to Visual Basic .NET source code:

Dim S As System.IO.StreamWriter

Dim O, P As Date

Dim R As Microsoft.Win32.RegistryKey

:

:

The source code infectors replicate in two stages. The first stage is the running
of an already infected application with the embedded virus code. After the New()
function is called in the infected program, the virus code will search for other
Visual Basic .NET project source files on the system and copy its own source code
into those files. In the second stage, Subit inserts a function call to run the virus
body itself. As a result, the virus can multiply again after the compromised source
is compiled and executed on a system.

The major problem with such viruses is that they can appear virtually any-
where in the application, inserted somewhere in the code flow. The code of the
virus will be translated differently, depending on the language and the compiler

3.14 Source Code Dependency

103

version and options, making the virus look different in binary form on various
systems.

3.14.1 Source Code Trojans
The idea of source-only viruses originates in the famous “self-reproducing pro-
gram” ideas of Ken Thomson (co-author of the UNIX operating system). In his arti-
cle, “Reflections on Trusting Trust,”49 Thomson introduced the idea of C programs,
so-called “guines,” that print an exact copy of their source as an output. The idea
is nice and simple. The program source’s code is defined as a string that is printed
to the output with the printf() function.

Thomson also demonstrated a CC (C compiler) hack. The idea was to modify
the source code of CC in such a way that whenever the modified compiler binary
is used, it will do the following two things:

� Recognize when the source code of login was compiled and insert a Trojan
function into the original source. The Trojanized version of login would let
anybody log in to the system with his or her own password. Furthermore, it
would let an attacker connect with a specific password for any user account.

� Introduce source modifications to the CC sources on the fly. Thus, the modi-
fication in the source code was available only during the compilation, and it
was quickly removed after the compiler’s source was compiled.

Source code infectors use the Thomson principle to inject themselves into
application source files. Such viruses will be more relevant in the future as open
source systems gain popularity.

3.15 Resource Dependency on Mac and Palm Platforms
Some computer viruses are dependent on system resources. For example, the
Macintosh environment is a very rich platform of resources. Various functions are
implemented in the form of resources that can be edited easily via Resource
Editors. For instance, there is a menu definition resource on the Mac. Such defini-
tions get invoked according to the applications’ menu items. Macs store informa-
tion in two forks for each file on the disk: the data fork and the resource fork.
Resources, stored in the resource fork, contain code. Because even data files can
contain resources on the Mac, the distinction between data and code files is not as
clear-cut as it is for the PC, for example.

Chapter 3—Malicious Code Environments

104

The MDEF (menu definition) viruses on the Apple Macintosh use the tech-
nique of replacing menu definitions with themselves. Thus, the virus code gets
invoked whenever a particular menu is activated.

Table 3.3 contains common resource types on the Mac. It is an incomplete list
of the most commonly attacked resources by malicious code on the Mac
platform36.

Table 3.3

Common Resource Types on the Mac

Resource Type Description

ADBS Apple Desktop Service

CDEF Control Definition Function

DRVR Device Driver

FMTR Disk Format Code

CODE Code Segment

INIT Initialization Code Resource

WDEF Windows Definition Function

FKEY Command-Shift-Number Function

PTCH ROM Patch Routine

MMAP Mouse Function

Similar dependencies exists in the Palm viruses. The Palm stores executable
applications in PRC files with special application resources. When the application
is executed, the resources are accessed from it. In particular, the DATA and CODE
resources are important for program execution. The virus Palm/Phage, discovered
in September 2000, reads its own DATA and CODE resources and overwrites
other applications resources with these. This resource dependency is very similar
to the one on the Macintosh platforms.

3.16 Host Size Dependency
To infect applications accurately, many computer viruses have limits on how small
or how large the applications they infect can be. For instance, COM files on DOS
cannot load if they are larger than a code segment. Consequently, most DOS virus-
es introduce limits to avoid infecting files that would grow past acceptable limits if
the virus code were included in them.

3.16 Host Size Dependency

105

In other cases, viruses such as W95/Zmist use an upper size limitation, such
as 400KB, for a file. This enhances the virus infection’s reliability by reducing the
risks involved in infecting files that are too large. Furthermore, host size depend-
ency also can be used as an antigoat technique (see more details in Chapter 6,
“Basic Self-Protection Strategies”) to avoid test files that computer virus
researchers use.

3.17 Debugger Dependency
Some viruses use an installed debugger, usually DEBUG.EXE of DOS, to convert
themselves from textual to binary forms or simply to create binary files. Such
threats typically use a piped debug script input to DEBUG, such as

DEBUG <debugs.txt

The input file contains DEBUG commands such as the following:

N example.com

E 100 c3
RCX

1

W

Q

This script would create a 1-byte long COM file containing a single RET
instruction. A single RET instruction in a COM file is the shortest possible COM
program. COM files are loaded to offset 0x100 of the program segment. Before the
program segment, the PSP (program segment prefix) is located at offset 0; thus, a
single RET instruction will give control to the top of the PSP, assuming that the
stack is clear and a zero is popped. The trick is that the top of the PSP contains a
0xCD, 0x20 (INT 20 – Return to DOS interrupt) pattern:

13BA:0000 CD20 INT 20

So whenever the execution of a program lands at offset 0, the program will
simply terminate.

Chapter 3—Malicious Code Environments

106

Note

The N command is used to name an output file. The E command
is used to enter data to a memory offset. The CX register holds
the lower 16-bit word of the file size, and BX holds the upper
16-bit word. The W command is used to write the content to a
file. Finally, the Q command quits the debugger. Viruses typical-
ly use several lines of data that use the Enter command to create
the malicious code in memory.

The virus writer, Vecna, used this approach in the W95/Fabi family to create
EXE files using Microsoft Word macros and debug scripts in combination. From
the infected MS Office documents, Fabi creates a new file in the root directory as
FABI.DRV and uses the PRINT commands to print the debug script into it:

OPEN “C:\FABI.DRV” FOR OUTPUT AS 1

PRINT #1, “N C:\FABI.EX”

PRINT #1, “E 0100 4D 5A 50 00 02 00 00 00 04 00 0F 00 FF FF 00 00”

PRINT #1, “E 0110 B8 00 00 00 00 00 00 00 40 00 1A 00 00 00 00 00”

The content of the FABI.DRV will look like the following:

N C:\FABI.EX

E 0100 4D 5A 50 00 02 00 00 00 04 00 0F 00 FF FF 00 00 ; DOS EXE header

E 0110 B8 00 00 00 00 00 00 00 40 00 1A 00 00 00 00 00

[Virus body is cut from here]

E 4D20 10 0F 10 0F 10 0F 10 0F 10 0F 10 0F 10 0F 10 0F

E 4D30 10 0F 10 0F 10 0F 10 FF FF FF

RCX

4C3A

W

Q

Another BATCH file is also created by the macro in a manner similar to the
debug script. This contains the command to drive DEBUG with the debug script:

DEBUG <C:\FABI.DRV >NUL

3.17 Debugger Dependency

107

Chapter 3—Malicious Code Environments

108

Note that DEBUG cannot create EXE files. At least, it cannot save them from
memory with an EXE suffix. It can, however, save the content of memory easily
without an EXE extension, which works when the file is loaded without an exten-
sion in the first place. This is the approach that W95/Fabi uses. It first saves the
file with DEBUG as FABI.EX and uses yet another BATCH file to copy FABI.EX as
FABI.EXE to run it.

Evidently, if DEBUG.EXE is not installed on the system or is renamed, some of
these viruses cannot function completely or at all.

3.17.1 Intended Threats that Rely on a Debugger
Some malicious code might require the user to trace code in a debugger to repli-
cate the virus. In some circumstances, this might happen easily in the case of
macro threats. For instance, an error occurs during the execution of the malicious
macro. Microsoft Word might then offer the user an option to run the macro
debugger to resolve the cause of the problem. When the user selects the macro
debugger command and traces the problem, the error might be bypassed. As a
result, the virus code can replicate itself in this limited, special environment.
There is an agreement between computer virus researchers, however, that such
threats should be classified as intended.

3.18 Compiler and Linker Dependency
Several binary viruses spread their own source code during replication. This tech-
nique can be found in worms that target systems where binary compatibility is not
necessarily provided. To enhance the replication of such worms on more than one
flavor of Linux, the Linux/Slapper worm replicates its own source code to new
systems. First, it breaks into the system via an exploit code, and then it uses gcc to
compile and link itself to a binary. The worm encodes its source on the attacker’s
system and copies that over to the target system’s temporary folder as a hidden
file. Then it uses the uudecode command to decode the file:

/usr/bin/uudecode -o /tmp/.bugtraq.c /tmp/.uubugtraq;

The source code is compiled on the target with the following command:

gcc -o /tmp/.bugtraq /tmp/.bugtraq.c –lcrypto;

The virus needs the crypto library to link its code perfectly, so not only must
gcc be installed with standard source and header files on the target system, but

the appropriate crypto libraries must also be available. Otherwise, the worm will
not be able to infect the target system properly, although it might successfully pen-
etrate the target by exploiting an Open SSL vulnerability.

The advantage of the source code-based infection method is the enhanced
compatibility with the target operating system version. Fortunately, these tech-
niques also have disadvantages. For example, it is a good practice to avoid
installing sources and compilers on the path (unless it is absolutely necessary),
greatly reducing the impact of such threats. Many system administrators tend to
overlook this problem because it looks like a good idea to keep compilers at hand.

3.19 Device Translator Layer Dependency
Many articles circulated that concluded that no Windows CE viruses would ever
be implemented, and for many years we did not know of any such creations.
However, in July 2004, the virus writer, Ratter, released the first proof of concept
virus, WinCE/Duts.1520, to target this platform, as shown in Figure 3.13.

3.19 Device Translator Layer Dependency

109

Figure 3.13 The message of the WinCE/Duts virus on an HP iPAQ H2200 Pocket PC.

Many recent devices run WinCE/Duts successfully because the ARM proces-
sor is available on a variety of devices, such as HP iPAQ H2200 (as well as many
other iPAQ devices), the Sprint PCS Toshiba 2032SP, T-Mobile Pocket PC 2003,
Toshiba e405, and Viewsonic V36, among others. Several additional GSM devices
are built on the top of Pocket PC.

Interestingly, WinCE/Duts.1520 is able to infect Portable Executable files on
several systems, despite the fact that the virus code looks “hard-coded” to a partic-
ular Windows CE release. For instance, the virus uses an ordinal-based function

importing mechanism that would appear to be a serious limitation in attacking
more than one flavor of Windows CE. In fact, it appears that the author of the
virus believed that WinCE/Duts was only compatible with Windows CE 4. In our
tests, however, we have seen the virus run correctly on Windows CE 3 as well.

It was not surprising that Windows CE was not attacked by viruses for so
long. Windows CE was released on a variety of processors that create incompati-
bility issues (an inhomogeneous environment) and appear somewhat to limit the
success of such viruses.

In addition, Windows CE does not support macros in Microsoft products such
as Pocket Word or Pocket Excel, but there might be some troubling threats to
come.

Prior to Windows CE 3.0, it was painful to create and distribute Windows CE
programs because of binary compatibility issues. The compiled executables were
developed in binary format as portable executable (PE) files, but the executable
could only run on the processor on which it was compiled. So for each different
device, the developer must compile a compatible binary. This can be a time-
consuming process for both the developer and the user (who is impatient to install
new executables).

The CPU dependency is hard-coded in the header of PE files. For instance, on
the SH3 processor, the PE file header will contain the machine type 0x01A2, and
its code section will contain compatible code only for that architecture.

Someone can easily create an application that is compiled to run on an SH3
platform; however, Windows CE was ported to support several processors, such as
the SH3, SH4, MIPS, ARM, and so on. Consequently, a native Windows CE virus
would be unable to spread easily among devices that use different processors. For
example, WinCE/Duts.1520 will not infect SH3 processor-based systems.

Virus writers might be able to create a Win32 virus that drops a Windows CE
virus via the Microsoft Active Sync. Such a virus could easily send mail and prop-
agate its Intel version (with an embedded Pocket version), but it would only be
able to infect a certain set of handheld devices that use a particular processor. In
the future, this problem is going to be less of an issue for developers as more com-
patible processors are released. For example, the new XScale processors are com-
patible with the ARM series. XScale appears not only in Pocket PC systems, but in
Palm devices as well. Obviously, this opens up possibilities for the attackers to cre-
ate “cross-platform” viruses to target Palm as well as Pocket PC systems with the
same virus.

Microsoft developed a new feature on the Pocket PC that made the Windows
CE developers’ jobs easier. In the Pocket PC, Microsoft started to support a new
executable file format: the common executable file (CEF) format.

Chapter 3—Malicious Code Environments

110

CEF executables can be compiled with Windows CE development tools, such
as eMbedded Visual C++ 3.0. A CEF executable is basically a special kind of PE
file. CEF is a processor-neutral code format that enables the creation of portable
applications across CPUs supported by Windows CE. In fact, CEF contains MSIL
code.

In eMbedded Visual C++, CEF tools (compilers, linkers, and SDK) are made
available to the developer the same way that a specific CPU target (such as MIPS
or ARM) is selected. When a developer compiles a CEF application, the compiler
and linker do everything but generate machine-specific code. You still get a DLL or
EXE, but the file contains intermediate language instructions instead of native
machine code instructions.

CEF enables WindowsCE application developers to deliver products that sup-
port all the CPU architectures that run the WindowsCE 3.0 and above operating
systems. Because CEF is an intermediate language, processor vendors can easily
add a new CPU family that runs CEF applications. For instance, HP Jornada 540
comes with such a built-in device translator layer. The CEF file might have an EXE
extension when distributed, so nothing really changes from the user’s perspective.

The device translator is specific to a particular processor and WindowsCE
device. The device version normally translates a CEF executable to the native code
of that processor when the user installs the CEF executable on the device. This
occurs seamlessly, without any indication to the user, other than a brief pause for
translation after the executable is clicked on. An operating system hook catches
any attempt to load and execute a CEF EXE, DLL, or OCX file automatically and
invokes the translator before running the file.

For example, if the Pocket PC is built on an SH3 processor, the translator layer
will attempt to compile the CEF file to an SH3 format. The actual CEF executable
will be replaced by its compiled SH3 native version, changing the content of the
file completely to a native executable. Indeed, the first reincarnation of MSIL, JIT
(Just-in-Time) compiling on Pocket PC rewrites the executables themselves on the
file system.

Obviously, virus writers might take advantage of the CEF format in the near
future. A 32-bit Windows virus could easily install a CEF version of itself to the
Pocket device, allowing it to run on all Pocket PC devices because the OS would
translate the CEF executable to native format. We can only hope that CEF will not
be supported on systems other than Windows CE. A desktop implementation, for
example, would be very painful to see in case the operating system would rewrite
CEF objects to native executables.

Because executables are converted to new formats on the fly, the content of
the file changes. This is an even bigger problem than the up-conversion of Macro

111

3.19 Device Translator Layer Dependency

viruses in Office products50. Obviously, this is going to be a challenge for antivirus
software, integrity checkers, and behavior blocker systems.

First of all, it is clearly a major problem for antivirus software given that the
virus code needs to be detected and identified in all possible native translations as
well as the original MSIL form. If the MSIL virus is executed on a device, before a
signature of the virus is known to the antivirus program, the virus will run and its
code will be converted to any of a number of native formats according to the actu-
al type of the system. As a result, the MSIL signature of the virus will not be use-
ful to find the virus afterwards. The virus needs to be detected in all possible
native translations as well, but this task is not trivial.

It is a problem for the integrity checkers because the content of the program
changes on the disk, not only in memory. As a result, integrity checkers cannot be
sure if the change was the result of a virus infection or a simple native code trans-
lation. Finally, it is a problem for behavior blocker systems because the content of
an executable is changed on the disk, which easily can be confused with virus
activity.

3.20 Embedded Object Insertion Dependency
The first known binary virus that could infect Word 6 documents, called
Anarchy.609351, appeared in 1997. Not surprisingly, we have not seen many other
viruses like this because attacking the document formats to add macros to them is
no trivial task. Anarchy was a DOS-based COM, EXE, and DOC file infector.

The first virus to infect VBA documents from binary code was released from
Russia. The virus is called {Win32,W97M}/Beast.41472.A, and it appeared in the
wild in April 1999. The virus is written in Borland Delphi and compiled to 32-bit
PE format.

Beast uses a different means of infection than other binary viruses that infect
documents. Instead of having it attack the VBA format on a bit-by-bit level, the
Beast author used OLE (Object Linking and Embedding) APIs, such as
AddOLEObject(), to inject macro code and embedded executable code into docu-
ments by using the internal OLE support of Microsoft Word. Via OLE support, the
virus injects an embedded object (executable) into VBA documents. However, this
embedded object will not be visible to the user, as it normally would. This is
because the virus uses a trick to hide the icon of the embedded object.

The virus looks for actively opened documents in Word. When a handle to an
active document is available, the virus calls its infection module. First it tries to

Chapter 3—Malicious Code Environments

112

check whether there are no embedded objects in the document, but in some cases
this routine fails because the virus might have added multiple embedded executa-
bles into the documents.

Next, Beast tries to add itself as C:\I.EXE shape into the document, named
3BEPb (Russian for beast). If this procedure goes as planned, then a new macro
called AutoOpen()also will be injected into the document.

The execution of the embedded object is facilitated by using the Activate
method for the 3BEPb shape in the active document:

ActiveDocument.Shapes(“3BEPb”).Activate

Beast introduced the need for detection and removal of malicious embedded
objects in documents—not the simplest problem to solve.

3.21 Self-Contained Environment Dependency
One interesting dependency appears when malicious code carries its own environ-
ment to the platform. The W32/Franvir virus family offers a good example.

Franvir is clearly a Win32 application. It is compiled with Borland Delphi to a
32-bit PE program. However, the actual Win32 binary part is known as the Game
Maker, written by Mark Overmars of the Netherlands (http://www.cs.uu.nl/
people/markov/gmaker/doc.html).

The Franvir virus was written by a French virus writer using the script lan-
guage of Game Maker, called GML (Game Maker Language). This is only available
in the registered version of Game Maker, which provides developers with security
options for using these functions (turning them on and off). It is up to the devel-
oper to set the security settings; therefore, a malicious author can easily use GML
of Game Maker for virus writing.

Game Maker is a professional game developer environment. Hundreds of bril-
liant games have been created in it by professionals. It can be used to develop all
kinds of games, including scrolling shooters, puzzle games, and even isometric
games. For instance, the shooter game called Doomed was created using Game
Maker.

3.21 Self-Contained Environment Dependency

113

http://www.cs.uu.nl/people/markov/gmaker/doc.html
http://www.cs.uu.nl/people/markov/gmaker/doc.html

Chapter 3—Malicious Code Environments

114

GML provides functions for Registry, File, and program execution. The File
operation functions are extremely rich and provide high flexibility for game devel-
opers to install and execute programs—but they also can be used by malicious
attackers. Some of the functions of GML include the following:

file_exists(fname)

file_delete(fname)

file_copy(fname,newname)

file_open_write(fname)

directory_create(dname)

file_find_first(mask,attr)

file_find_next()

file_attributes(fname,attr)

registry_write_string_ext()

GML scripts are stored in the resources of Game Maker, but they are accessed
and executed by the environment, the interpreter in Game Maker itself. Franvir is
an encrypted GML script. It copies itself all over the hard disk under various exist-
ing program names. It also installs itself to local P2P (peer-to-peer) folders or even
creates the shared folder for KaZaA if the directory is not installed (“kazaa\my
shared folder\”) and changes the KaZaA settings to share the folder. Furthermore,
it does damage by deleting the win.com file of Windows. Thus, ultimately Franvir
must be classified as a Win32 P2P worm. In reality, however, it is a GML script
that is carried by its own environment to new platforms. When the virus success-
fully executes, it eventually uses the show_message() function to display the false
error message shown in Figure 3.14.

Figure 3.14 The false error message of Franvir.

The virus could ultimately offer to play a game such as the DOS virus,
Playgame, instead of executing the malicious file delete action as an activation rou-
tine, but well…what can we expect from a typical virus writer?

3.22 Multipartite Viruses
The first virus that infected COM files and boot sectors, Ghostball, was discovered
by Fridrik Skulason in October 1989. Another early example of a multipartite
virus was Tequila. Tequila could infect DOS EXE files as well as the MBR (master
boot sector) of hard disks.

Multipartite viruses are often tricky and hard to remove. For instance, the
Junkie virus infects COM files and is also a boot virus. Junkie can infect COM files
on the hidden partitions52 that some computer manufacturers use to hide data and
extra code by marking the partition entries specifically. Because Junkie loads to
memory before these hidden files are accessed, these files can get infected easily.
Scanners typically scan the content of the visible partitions only, so such infec-
tions often lead to mysterious reinfections of the system. This is because the virus
has been cleaned from everywhere but from the hidden partition, so the virus can
infect the system again as soon as the hidden partition is used to run one of the
infected COM files.

In the past, boot and multipartite viruses were especially successful at infect-
ing machines that used the DOS operating system. On modern Windows systems,
such viruses are less of a threat, but they do exist.

The Memorial virus53 introduced DOS COM, EXE, and PE infection techniques
in the same virus. The payload of the Memorial virus is show in Figure 3.15.

3.22 Multipartite Viruses

115

Figure 3.15 The message of the W95/Memorial virus.

Chapter 3—Malicious Code Environments

116

W95/Memorial also used the VxD (Virtual Device Driver) format of Windows
9x systems to load itself into kernel mode and hook the file system to infect files
on the fly whenever they were accessed. As a result, Memorial also infects 16-bit
and 32-bit files.

Another interesting example of a multipartite infection is the Russian virus,
3APA3A, which was found in the wild in Moscow in October 199454. 3APA3A is a
normal boot virus on a diskette, occupying two sectors for itself, but it uses a spe-
cial infection method on the hard disk. It infects the DOS core file IO.SYS. First it
makes a copy of IO.SYS, and then it overwrites the original. After the infection,
the root directory contains two IO.SYS files, but the first is set as a volume label of
the disk; thus, the DIR command does not display two files, but a volume label
“IO SYS” and a single IO.SYS file. The point is to trick DOS into loading the
infected copy of IO.SYS. Then the virus starts the original one after itself. This
happens because DOS will load the first IO.SYS file regardless of its attributes.
This method represents a special subclass of companion infection techniques.

3.23 Conclusion
New viral environments are discovered each year. Over the last 20 years of PC
viruses, there has been tremendous dark energy in place to develop computer
viruses for almost every platform imaginable. All over the world, thousands of
people created computer viruses. Because of this we are experiencing an ever-
growing security problem with malicious code and, consequently, seeing the
development of computer virus research as a new scientific field. There is
absolutely no question whether computer viruses will stay with us and evolve to
future platforms in the upcoming decades.

Fred Cohen’s initial research with computer viruses in 1984 concluded that the
computer virus problem is ultimately an integrity problem. Over the last 20 years,
the scope of integrity expanded dramatically from file integrity to the integrity of
applications and operating system software. Modern computer viruses, such as
W32/CodeRed and W32/Slammer, clearly indicate this new era: Computer viruses
cannot be controlled by file-based integrity checking alone because they jump
from system to system over the network, injecting themselves into new process
address spaces in such a way that they are never stored on the disk.

Computer viruses changing their environments to suit their needs is a problem
that will likely begin to emerge. For example, the W32/Perrun virus appends itself

to JPEG picture files. Normally, pictures files are not infectious unless some seri-
ous vulnerability condition exists in a picture file viewer (such as the one
described in Microsoft Security Bulletin MS04-02855). However, Perrun modifies the
environment of the infected host to include an extractor component, resulting in
Perrun-compromised JPEG files not being infectious on a clean system but on
infected computers only. Such computer viruses can modify the host’s environ-
ment in such a way that previous assumptions about the environments no longer
hold.

References
1. Dr. Vesselin Bontchev, “Methodology of Computer Anti-Virus Research,” University of

Hamburg, Dissertation, 1998.

2. Dr. Harold Highland, “A Macro Virus,” Computers & Security, August 1989, pp. 178-188.

3. Joe Wells, “Brief History of Computer Viruses,” 1996, http://www.research.ibm.com
/antivirus/timeline.htm.

4. Dr. Peter Lammer, “Jonah’s Journey,” Virus Bulletin, November 1990, p. 20.

5. Peter Ferrie, personal communication, 2004.

6. Jim Bates, “WHALE…A Dinosaur Heading For Extinction,” Virus Bulletin, November
1990, pp. 17-19.

7. Eric Chien, “Malicious Threats to Personal Digital Assistants,” Symantec, 2000.

8. Dr. Alan Solomon, “A Brief History of Viruses,” EICAR, 1994, pp. 117-129.

9. Intel Pentium Processor III Specification Update, http://www.intel.com/design/
PentiumIII/specupdt/24445349.pdf.

10. Mikko Hypponen, Private Communication, 1996.

11. Thomas Lipp, “Computerviren,” 64’er, Markt&Technik, March 1989.

12. Peter Szor, “Stream of Consciousness,” Virus Bulletin, October 2000, p. 6.

13. Peter Szor and Peter Ferrie, “64-bit Rugrats,” Virus Bulletin, July 2004, pp. 4-6.

14. Marious Van Oers, “Linux Viruses—ELF File Format,” Virus Bulletin Conference, 2000,
pp. 381-400.

15. Jakub Kaminski, “Not So Quiet on the Linux Front: Linux Malware II,” Virus Bulletin
Conference, 2001, pp. 147-172.

16. Eugene Kaspersky, “Shifter.983,” http://www.viruslist.com, 1993.

17. Sarah Gordon, “What a (Winword.) Concept,” Virus Bulletin, September 1995, pp. 8-9.

References

117

http://www.research.ibm.com/antivirus/timeline.htm
http://www.research.ibm.com/antivirus/timeline.htm
http://www.intel.com/design/PentiumIII/specupdt/24445349.pdf
http://www.intel.com/design/PentiumIII/specupdt/24445349.pdf
http://www.viruslist.com

18. Sarah Gordon, “Excel Yourself!” Virus Bulletin, August 1996, pp. 9-10.

19. Yoshihiro Yasuda, personal communication, 2004.

20. Dr. Igor Muttik, “Macro Viruses—Part 1,” Virus Bulletin, September 1999, pp. 13-14.

21. Dr. Vesselin Bontchev, “The Pros and Cons of WordBasic Virus Up-conversion,” Virus
Bulletin Conference, 1998, pp. 153-172.

22. Dr. Vesselin Bontchev, “Possible Macro Virus Attacks and How to Prevent Them,” Virus
Bulletin Conference, 1996, pp. 97-127.

23. Dr. Vesselin Bontchev, “Solving the VBA Up-conversion Problem,” Virus Bulletin
Conference, 2001, pp. 273-300.

24. Nick FitzGerald, “If the CAP Fits,” Virus Bulletin, September 1999, pp. 6-7.

25. Jimmy Kuo, “Free Anti-Virus Tips and Techniques: Common Sense to Protect Yourself
from Macro Viruses,” NAI White Paper, 2000.

26. Dr. Vesselin Bontchev, personal communication, 2004.

27. Jakub Kaminski, “Disappearing Macros—Natural Devolution of Up-converted Macro
Viruses,” Virus Bulletin Conference, 1998, pp. 139-151.

28. Katrin Tocheva, “Multiple Infections,” Virus Bulletin, 1999, pp. 301-314.

29. Dr. Richard Ford, “Richard’s Problem,” private communication on VMACRO mailing
list, 1997.

30. Dr. Vesselin Bontchev, “Macro Virus Identification Problems,” Virus Bulletin Conference,
1997, pp. 157-196.

31. Dr. Vesselin Bontchev, private communication, 1998.

32. Vesselin Bontchev, “No Peace on the Excel Front,” Virus Bulletin, April 1998, pp. 16-17.

33. Gabor Szappanos, “XML Heaven,” Virus Bulletin, February 2003, pp. 8-9.

34. Peter G. Capek, David M. Chess, Alan Fedeli, and Dr. Steve R. White, “Merry
Christmas: An Early Network Worm,” IEEE Security & Privacy,
http://www.computer.org/security/v1n5/j5cap.htm.

35. Dr. Klaus Brunnstein, “Computer ‘Beastware’: Trojan Horses, Viruses, Worms—A
Survey,” HISEC’93, 1993.

36. David Ferbrache, “A Pathology of Computer Viruses,” Springer-Verlag, 1992, ISBN:
3-540-19610-2.

37. Peter Szor, “Warped Logic?” Virus Bulletin, June 2001, pp. 5-6.

38. Mikhail Pavlyushchik, “Virus Mapping,” Virus Bulletin, November 2003, pp. 4-5.

39. Eugene Kaspersky, “Don’t Press F1,” Virus Bulletin, January 2000, pp. 7-8.

Chapter 3—Malicious Code Environments

118

http://www.computer.org/security/v1n5/j5cap.htm

40. Peter Szor, “Sharpei Behaviour,” Virus Bulletin, April 2002, pp. 4-5.

41. Gabor Kiss, “SWF/LFM-926—Flash in the Pan?” Virus Bulletin, February 2002, p. 6.

42. Dmitry Gryaznov, private communication, 2004.

43. Sami Rautiainen, private communication, 2004.

44. Philip Hannay and Richard Wang, “MSIL for the .NET Framework: The Next
Battleground?,” Virus Bulletin Conference, 2001, pp. 173-196.

45. Peter Szor, “Tasting Donut,” Virus Bulletin, March 2002, pp. 6-8.

46. Peter Ferrie, “The Beagle Has Landed,” http://www.virusbtn.com/resources/
viruses/indepth/beagle.xml.

47. Eugene Kaspersky, “Zhengxi: Saucerful of Secrets,” Virus Bulletin, April 1996, pp. 8-10.

48. Roger A. Grimes, Malicious Mobile Code, O’Reilly, 2001, ISBN: 1-56592-682-X
(Paperback).

49. Ken Thomson, “Reflections on Trusting Trust,” Communication of the ACM, Vol. 27,
No. 8, August 1984, pp. 761-763, http://cm.bell-labs.com/who/ken/trust.html.

50. Peter Szor, “Pocket Monsters,” Virus Bulletin, August 2001, pp. 8-9.

51. Igor Daniloff, “Anarchy in the USSR,” Virus Bulletin, October 1997, pp. 6-8.

52. Lakub Kaminski, “Hidden Partitions vs. Multipartite Viruses—I’ll be back!,” Virus
Bulletin Conference, 1996.

53. Peter Szor, “Junkie Memorial,” Virus Bulletin, September 1997, pp. 6-8.

54. Dr. Igor Muttik, “3apa3a,” http://www.f-secure.com/v-descs/3apa3a.shtml, 1994.

55. “Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution,” MS04-028,
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx.

References

119

http://www.virusbtn.com/resources/viruses/indepth/beagle.xml
http://www.virusbtn.com/resources/viruses/indepth/beagle.xml
http://www.f-secure.com/v-descs/3apa3a.shtml
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx
http://cm.bell-labs.com/who/ken/trust.html

Index
Symbols

@m (computer virus naming conventions), 42
@mm (computer virus naming

conventions), 42
@mm worms (mass-mailer worms), 29
3 Tunes (virus), 92
3APA3A (virus), 116
16-bit Windows

EPO (entry-point obscuring) viruses,
147-150

NE viruses, 60
32-bit address spaces. See virtual memory

systems (Windows NT)
32-bit polymorphic viruses, 264-268
32-bit Windows. See Win32
64-bit platforms, kernel mode scanning on,

530-531
64-bit Windows, PE viruses, 61
911 attacks, 308
1260 virus, self-protection technique, 261-262

A
ABAP viruses, 89
ABAP/Rivpas (virus), 89

access
context-based access control (CBAC), 586
counterattacks, 596
Dumaru (worm), 640
early warning systems, 598
firewalls, 588-589
honeypot systems, 593-594
network intrusion detection system

(NIDS), 591-592
router access lists, 585-587
worm behavior patterns, 598-608

accidentally destructive payload viruses, 297
ACG (Amazing Code Generator) virus,

270, 277
code emulation, 463-464
disassembling, 463
heuristics, 465
self-protection technique, 253

Acrobat, PDF viruses, 90
ActionScript viruses, 91
activation methods. See payload activation
active instructions, tracking, 454
active pages, patching code in, 522
ActiveX controls

rights verification, 388
safe-for-scripting, 388-389, 417-419

675

Address Resolution Protocol (ARP)
requests, 595

address-book worms, 319
address spaces

process randomization, 570
return-to-LIBC attacks, 569-573
upper 2G of address space (memory

scanning), 527
user address space of processes

(scanning), 523
virtual address spaces (Windows NT),

501-505
addresses

GOT/IAT page attributes, 574
virtual, translation of, 500

AddressOfEntryPoint field (PE header), 164
Adleman, Leonard, 18
ADM (worm), avoiding buffer overflow

attacks, 413
administration

memory, 498-499
Virtual Memory Manager, 503

Admiral Bailey (virus writer), IVP (Instant
Virus Production Kit), 292

Adobe Acrobat, PDF viruses, 90
Adore (rootkit), 36
adware, definition of, 38
AIDS Information Diskette (Trojan horse),

31, 305
Alcopaul (virus writer), W32/Sand.12300

virus, 140
alerts, DeepSight, 598
algorithmic detection, metamorphic

viruses, 271
algorithmic scanning methods, 441-443

filtering, 443-444
static decryptor detection, 444-446
X-RAY method, 446-451

algorithms, Boyer-Moore, 431
Aliz (worm), 644
ALS/Burstead (virus), 92

altering module, 592
Amazing Code Generator (ACG) virus. See

ACG virus
AmiPro viruses, 94-95
Amoeba (infection technique), 140
analysis, malicious code analysis

techniques, 612
architecture guides, 615
collection maintenance, 661
dedicated system installation, 612, 615
Digital Immune System, 661-664
disassemblers, 626-632
dynamic analysis techniques, 634-655
knowledge bases, 615-616
process of, 618-625
unpacking, 625
Virus Analysis Toolkit (VAT), 656-659
VMWARE, 616-617

Anarchy.6093 (virus), 112
ANIMAL (game), 17
Anna Kournikova virus, 35, 292
ANSI.SYS drivers, reconfiguring key

functions, 90-91
Anthrax (virus), 210
Anti-AVP (virus), self-protection

technique, 248
ANTI-VIR.DAT file (antivirus program), 248
AntiCMOS (virus), 306
antidebugging techniques (armored viruses),

226-234
antidisassembly techniques (armored

viruses), 220-226
antiemulation techniques (armored viruses),

242-247
AntiEXE (virus), somewhat destructive

payload viruses, 300
antigoat techniques (armored viruses), 247
antiheuristics techniques (armored viruses),

234-242
AntiPascal (virus), 302

INDEX

676

antivirus defense techniques, 426-427
antivirus programs. See also disinfection

methods
“Are you there?” calls, 199
behavior-blocking programs, 19
disabling with retroviruses, 247-249
half-cooked repairs, 136
history of, 27-28
integrity checker programs, 19
modeling virus infections, 11-12
scanning, 252
testers, 672
vendor contact information, 670
versus computer security companies,

366-367
antivirus viruses, 357
API hooking (infection technique), 150-151
API strings, 241-242
APIs, control transfer, 246
AplS/Simpsons@mm (worm), 90
APM/Greenstripe (virus), 95
appending viruses (infection technique),

132-133, 174-175, 240-241
AppleScript viruses, 90
applications

algorithmic scanning methods. See
algorithmic scanning methods

antivirus defense techniques, 426-427
code emulation. See code emulation
disinfection methods, 474-477
first-generation antivirus scanners. See

first-generation antivirus scanners
heuristic analysis, 467-474
metamorphic virus detection. See

metamorphic virus detection
rights verification, 388
second-generation antivirus scanners.

See second-generation antivirus
scanners

architecture dependency. See computer
architecture dependency

architecture guides, malicious code analysis
techniques, 615

archive format dependency, 100
“Are you there?” calls (self-detection

technique), 198
arenas (sections of memory), 498
armored viruses, 220

antidebugging techniques, 226-234
antidisassembly techniques, 220-226
antiemulation techniques, 242-247
antigoat techniques, 247
antiheuristics techniques, 234-242

ARP (Address Resolution Protocol)
requests, 595

“Art of the Fugue” (Bach), 5
art versus science, 4
ASPACK (run-time packer), 625
Atkinson, Bill, 91
attachment inserters (worm infections), 334
attacks. See also blended attacks; buffer

overflow attacks; viruses; worm blocking
techniques

against memory scanning, 532-533
algorithmic scanning methods. See

algorithmic scanning methods
antivirus defense techniques, 426-427
code emulation. See code emulation
code injection attacks, 341-342, 543
dictionary attacks, 324
DoS (denial of service) attacks,

306-308, 539
e-mail worm attacks, 333-334
executable code-based attacks, 339
file parsing attacks, 319-320
first-generation antivirus scanners. See

first-generation antivirus scanners
future, 575-578
heuristic analysis, 467-474
injected code detection, 557-562
instant messaging attacks, 333
Linux/Slapper, 647
metamorphic virus detection. See

metamorphic virus detection
network share enumeration, 324-326

INDEX

677

network-level defense strategies. See net-
work-level defense strategies

NNTP attacks, 338
password-capturing attacks, 325
peer-to-peer network attacks, 332-333
phishing attacks, 308-309
remote login-based attacks, 341
return-to-LIBC, 543, 569-573
second-generation antivirus scanners.

See second-generation antivirus
scanners

shell code-based attacks, 342-344
SMTP proxy-based attacks, 334-335
SMTP-based attacks, 335-338
stack smashing, 546
vampire attacks, 358

attributes, GOT/IAT page, 574
authenticated updates (worm infections),

346-351
auto-rooters, definition of, 34
AutoLisp viruses, 92-93
automata. See cellular automata;

self-replicating systems
automated analysis, Digital Immune System,

661-664
automated exploit discovery, 578
AUTORUN.INF file viruses, 97
AV-Test.org, 672
AVP (antivirus software), 248
Azusa (virus), infection technique, 125

B
B0/S0 (virus writer), W32/Aldebera virus, 139
Bach, Johann Sebastian (“Art of the Fugue”), 5
Back Orifice (backdoor system), 331
backdoor features in worms, 309-311
backdoor-based updates (worm infections), 351
backdoor-compromised systems (worm

infections), 331-332
backdoors, definition of, 32
backward decryption, 230
BAD, marking sectors as, 128

Badboy (virus), self-protection technique,
260, 271

Badtrans (worm), 366
BAT/Batalia (virus), 82
BAT/Hexvir (virus), 82
BAT/Mumu (virus), 83

weak passwords, 324
BAT/Polybat (virus), 82
BAT/Ramble (virus dropper), 96
BAT/Zipbat (virus), 82
BATCH viruses, 82
BATVIR (virus), 82
Beast (virus), 112
behavior blockers, definition of, 19, 209
behavior patterns (worms), 598-608
Belcebu, Billy (virus writer), 233
beneficial viruses, 357
Benny (virus writer)

W2K/Installer virus, 137
W32/Donut virus, 99
W32/HIV virus, 59
W32/Press virus, 78

Bergroth, Ismo, 496
BHP (virus), 57-58
binary viruses

computer architecture dependency, 52
CPU dependency, 53-54
operating system dependency, 55

BIND (Berkeley Internet name domain)
servers, Linux/ADM worm, 397

BioWall project Web site, 12
Bizatch (virus), 61
Black Baron (virus writer), 448
black boxing, 624
black-box testing, 634
BlackIce firewall, 646
blank passwords, danger of, 324
Blaster (worm). See W32/Blaster (worm)
blended attacks. See also buffer overflow

attacks
danger of, 366-367
defined, 366

INDEX

678

INDEX

679

history of, 367-368
blocking

buffer overflow attacks (worms). See
buffer overflow attacks (worms)

Microsoft SQL Server exploits, 559-560
scripts, 539-541
self-sending code blocking, 563-565
shellcode, 558-562
SMTP, 539-541
W32/Blaster (worm) exploits, 561
W32/CodeRed (worm), 542, 560-561,

564-565
W32/Slammer (worm), 542-564
W32/Welchia (worm) exploits, 562

blocking mode, 592
Bluetooth and wireless mobile worms,

359-361
Bochs, 663
Bontchev, Vesselin, 39, 61, 74-75, 349, 447,

633, 661
bookmarks, first-generation antivirus

scanners, 433-434
boot sector viruses. See boot viruses
boot strap loader, 122

replacement of, 124-125
boot viruses, 122-124

computer architecture dependency, 52
DBR (DOS BOOT record) infection

techniques, 126-129
encryption, 303-304
hooking INT 13h (interrupt handler),

191-193
installation, 197
interrupt hooking, 188
MBR (master boot record) infection

techniques, 124-126
over networks, 129
in Windows 95, 129

Borland Quattro spreadsheet program, 187
Brain (virus), 52, 122, 197, 200, 497

attack by Denzuko virus, 127
competition between viruses, 357
read stealth viruses, 203

break points
detecting, 227
removing, 233
stopping, 454

broadcast segmentation technique, 353
Brown, Ralf, 615
Brunner, John (Shockwave Rider), 29
brute-force decryption, RDA viruses, 245, 256
BSD/Scalper (worm), 327, 353, 401, 406, 543
.bss section (PE files), 167
buffer overflow attacks (worms), 538-542

avoiding, 413-414
blocking, 543-544
code reviews, 544
CodeRed worm, 398-401
compiler-level solutions, 545-552
definition of, 368-369
first-generation buffer overflows, 369-371
kernel-mode extensions, 554-556
Linux/ADM worm, 397-398
Linux/Slapper worm, 401-407
Morris worm, 367, 395-397
opreating system-level solutions, 552-554
program shepherding, 556
script/SMTP blocking, 539-542
second-generation buffer overflows,

371-378
subsystem extensions, 554
third-generation buffer overflows,

378-394
W32/Blaster worm, 410-413
W32/Slammer worm, 407-410

Buffer Security Check feature, 552
BugTraq databases, 598
Bumblebee (virus writer), W32/RainSong

virus, 152
Burger, Ralf (virus writer), Virdem virus, 135
Burglar.1150.A (virus), system modification

attacks, 391
Burks, Arthur, 6
Butler, Max, 397

C
Cabanas. See W32/Cabanas (virus)
cache bypass vulnerability, W32/Blebla

worm, 419
cache viruses. See disk cache viruses
calc.exe, 619
CALL-to-POP trick, 240-241
calls, system tracing, 647-648
canonicalization, 385-386
captures

Linux/Slapper (worm), 600-602
network traffic, 643
W32/Blaster (worm), 598-600
W32/Sasser.D (worm), 603
W32/Slammer (worm), 607-608
W32/Welchia (worm), 605

CARO (Computer Antivirus Researchers
Organization), 38

Cascade (virus), 24-26, 53, 59
nondestructive payload viruses, 298
self-protection technique, 230, 253
X-RAY scanning, 447

cavity viruses (infection technique), 136-137
CBAC (context-based access control), 586
CC hack, 104
CEF file format, 111
cell phones, worms on, 359-361
cellular automata (CA) computer architec-

ture, 6. See also self-replicating systems
Edward Fredkin structures, 7-8
game of Life (Conway), 8-12

chain letters, definition of, 37
Characteristics field (PE header), 164
check bytes. See bookmarks
checksum

API strings, 242
CRC checksum, 248
detecting break points, 227
recalculation, 239
as self-protection technique, 224-225

Checksum field (PE header), 165
Cheeba (virus), self-protection technique, 257

Cheese (worm), 315, 318
Chess, Dave, 26, 277
Cheswick, Bill, 593
Chi, Darren, 75
CHRISTMA EXEC worm, 78-79
Cisco routers. See routers
classic parasitic viruses (infection technique),

135-136
cleaning goat files, 639
Clementi, Andreas, 673
cluster prepender infection method, 57
cluster viruses, file system dependency, 56-58
cluster-level stealth viruses, 207-208
CMOS viruses, 306
Codd, E.F., 6
code

in active pages, patching, 522
injected code detection, 557-562
malicious code analysis techniques. See

malicious code analysis techniques
quick examination during computer

virus analysis, 621
self-sending code blocking, 563-565
versus data in von Neumann machines, 5

code builders (infection technique), 155-156
code confusion. See obfuscated code
code emulation, 451-454

antiemulation techniques (armored
viruses), 242-247

dynamic decryptor detection, 459-461
encrypted/polymorphic virus detection,

455-458
metamorphic virus detection, 463-466

code emulation-based tunneling, 219
code evolution, 252-253
code injection attacks, 341-342, 398-401, 543
code integration viruses (infection

technique), 155, 278-281
code propagation techniques (worms), 338

code injection attacks, 341-342
executable code-based attacks, 339
HTML-based mail, 340

INDEX

680

links to Web sites or proxies, 339-340
remote login-based attacks, 341
shell code-based attacks, 342-344

code redirection, 469
code reviews, buffer overflow attacks

(worms), 544
code sections

naming, 469
packing, 237
PE entry points, 468
random entry point, 237-238
sizes in header, 241
writeable flag, 238

CodeGreen (antiworm). See W32/CodeGreen
(antiworm)

CodeRed (worm). See W32/CodeRed (worm)
CodeRed_II (worm), 310, 520
Cohen, Frederick, 18, 302

definition of computer viruses, 18-20
history of antivirus programs, 27

Coke. See W32/Coke (virus)
collection (viruses) maintenance, 661
COM viruses, 59
combined attacks. See blended attacks
Commander_Bomber (virus), infection

technique, 142-143
companion viruses (infection technique),

18, 176
competition between viruses, 357-358
compiler alignment areas, recycling, 238
compiler dependency, 108-109
compiler-level solutions, buffer overflow

attacks (worms), 545-546
Microsoft Visual .NET, 2003 (7.0 & 7.1),

549-552
ProPolice, 548-549
StackGuard, 546-548

compressing viruses (infection technique),
139-140

file system dependency, 59

compression
PE file-infection techniques, 235
run-time packers, 625
as self-protection technique, 225-226

Computer Antivirus Researchers
Organization (CARO), 38

computer architecture dependency, 52-53
computer security companies versus

antivirus programs, 366-367
computer simulations of nature. See

nature-simulation games
computer virus analysis, process of, 618-624
computer virus research. See virus research
computer viruses. See viruses
computer worms. See worms
computers, modeling virus infections, 11-12
connections, worm blocking techniques,

574-575. See also network-level defense
strategies

construction kits. See virus construction kits
contagion worms, 576
context-based access control (CBAC), 586
control transfer with APIs, 246
Conway, John Horton (game of Life), 8-12
cookies, security_cookie values, 550
cooperation between viruses, 354-357
coprocessor instructions, 242-243
copy-protection software, extra disk

sectors, 127
copycat worms. See worm blocking

techniques
Core War (game), 12-16, 534
Core Wars instructures (1994 revision), 14
Corel Script viruses, 95
corruption of macro viruses, 69-71
counterattacks, 596
CPU dependency, 53-54
CPU instructions, undocumented, 245
CPUs, Win32 platform support, 159

INDEX

681

CR0 control registers, 529
CRC checksums, 248
CreateFile() API, 232-233
CreateProcess() API, 559
Creeper (virus), 17
cross-platform binary viruses, 52
Cruncher (virus), infection technique, 139
Crypto API, 257
cryptographic detection, 446
cryptography, AIDS TROJAN DISK Trojan

horse, 31
Cryptor (virus), 232
Csakany, Antal, 11
CSC/CSV (virus), 95
CSC/PVT (virus), 95

D
-d command (UPX), 625
Dark Angel (virus writer), PS-MPC virus

construction kit, 290
Dark Avenger (virus writer), 26-27

Commander_Bomber virus, 142-143
MtE (mutation engine), 262-264
Number_Of_The_Beast virus, 193
self-protection technique, 220

Darkman (virus writer), 137
Darkness (virus), 88
DarkParanoid (virus), memory scanning

attacks, 532
Dark_Avenger.1800.A (virus), 218, 303
Darth_Vader (virus), 197

infection technique, 137
system buffer viruses, 209

Darwin (game), 12
data diddler viruses, 302-303
Data Fellows, 613
Data Rescue’s IDA. See IDA (disassembler)
.data section (PE files), 167
data stealing viruses, 308-311
data versus code in von Neumann machines, 5
date and time dependency, 98

DBR (DOS BOOT record), infection
techniques, 126-129

DCL viruses, 79-80
DDoS (distributed denial of service)

attacks, 36
de Wit, Jan, 35
deactivation of filter driver viruses, 527-529
dead virus code, reviving, 127
DEBUG command, 25, 367
debug interfaces, tracing with, 219
debug registers, clearing, 232
.debug section (PE files), 168
debugger dependency, 106-108
debugging, 648-651, 655

antidebugging techniques (armored
viruses), 226-234

DEC/VMS systems, DCL viruses, 79-80
deception, e-mail worm attacks, 333-334
decoders, packets, 591
decryption. See also encryption

backward decryption, 230
disassemblers, 626-632
nonlinear decryption, 256
RDA viruses, 245
with stack pointer (SP), 230

decryptors
dynamic detection, 459-461
static detection, 444-446
tracking, 454

dedicated virus analysis systems
installation of, 612-615
VMWARE, 616-617

DeepSight alerts, 598
Demon Emperor (virus writer), Hare virus,

129, 255
denial of service (DoS) attacks, 35,

306-308, 539
against Windows Update Web site, 413

Denzuko (virus)
competition between viruses, 357
infection technique, 127

INDEX

682

dependencies
archive format dependency, 100
compiler and linker dependency, 108-109
computer architecture dependency, 52-53
CPU dependency, 53-54
date and time dependency, 98
debugger dependency, 106-108
device translator layer dependency,

109-112
embedded object insertion dependency,

112-113
extension dependency, 101-102
file format dependency, 59-66
file system dependency, 56-59
host size dependency, 105-106
interpreted environment dependency,

66-98
JIT dependency, 99-100
language dependency of macro viruses,

71-72
multipartite viruses, 115-116
network protocol dependency, 102
operating system dependency, 55
operating system version dependency,

55-56
platform dependency of macro viruses,

73-74
Registry-dependent viruses, 93-94
resource dependency, 104-105
self-contained environment dependency,

113-115
source code dependency, 102-104
vulnerability dependency, 98

destructive payload viruses
highly destructive payloads, 301-306
somewhat destructive payloads, 300-301

detection. See also first-generation antivirus
scanners; second-generation antivirus
scanners

active viruses in memory, 497
cryptographic, 446
direct library function invocations,

571-573
dynamic decryptor, 459-461

engines, 592
geometric, 461-462
injected code, 557

shellcode blocking, 558-562
network intrusion detection system

(NIDS), 584, 591-592
static decryptor, 444-446
threads, 518-521

device driver viruses, 65
device translator layer dependency, 109-112
[<devolution>] (computer virus naming

conventions), 41
devolution of macro viruses, 74-75
Dewdney, A.K., 13
dialers, definition of, 33
dictionary attacks, 324
Digital Immune System, 661-664
Digital Millennium Copyright Act

(DMCA), 596
DIR-II (virus), 56
direct library function invocations, detection

of, 571-573
direct-action viruses, 186
directories, page (memory), 500
directory stealth viruses, 200-203
dirty memory pages, 455
disassemblers, 624

antidisassembly techniques (armored
viruses), 220-226

malicious code analysis techniques,
626-632

metamorphic virus detection, 462-463
discovery of automated exploits, 578
disinfection methods, 474-475. See also

antivirus programs; memory scanning
generic decryptors, 477
standard, 475-477

disk access with port I/O, 219
disk cache viruses, 209-210
Disk Killer (virus), 128, 303
Dispatch routine of DeactivatorDrivers, 529

INDEX

683

distributed denial of service (DDoS)
attacks, 36

divide-by-zero exceptions, 229
DLL viruses, 62-63
DLLs

disinfecting, 523
linking to executables, 168-171

DMCA (Digital Millennium Copyright
Act), 596

Donut (virus). See W32/Donut (virus)
Doomed (game), 113
Doomjuice (worm). See W32/Doomjuice

(worm)
DOS

cluster and sector-level stealth viruses,
207-208

COM viruses, 59
EPO (entry-point obscuring) viruses,

145-147
EXE viruses, 60
full-stealth viruses, 205-206
interrupt hooking, 188-196
memory-resident viruses, 196-199
metamorphic viruses, 270
system buffer viruses, 209
TSR (Terminate-and-Stay-Resident)

programs, 187
undocumented interrupt (Int, 21h/52h

function), 498
DoS (denial of service) attacks, 35,

306-308, 539
against Windows Update Web site, 413

DOS BOOT record (DBR), infection
techniques, 126-129

DOS stub in PE header, 162
“double extensions,” 81
down-conversion of macro viruses, 71
downloaders, definition of, 33
Doxtor L (virus writer), W32/Idele virus, 153
DR. DR. STROBE & PAPA HACKER (virus

writers), 57
Dream (virus), 89

driver-list scanning, detecting debuggers, 230
drivers

filter, 427, 527-529
kernel-mode, 503
lists of, 527

droppers, definition of, 33-34
Dukakis (virus), 91-92
Dumaru (worm), 635, 640
dumps

PEDUMP, 645
strings, 623-624

Dustbin, 619
Dwarf (Core War warrior program), 14-15
dynamic analysis techniques, 634-655
dynamic decryptor detection, 459-461
dynamic heuristics, 234
dynamic link library viruses, 62-63
dynamically allocated memory. See heaps

E
e-mail

executable code-based attacks, 339
HTML-based mail, 340
worm infections, 333-334

e-mail addresses
harvesting, 319-324
parsing files for, 320

e-mail attachment inserters (worm
infections), 334

early warning systems, 598, 669
Easter eggs, definition of, 30
ecophagy, 7
.edata section (PE files), 167
Eddie (virus), 218, 303
Eddie-2 (virus), 200
EICAR (European Institute for Computer

Antivirus Research), 672
ELF viruses, 64-65
Elk Cloner (virus), 17, 52
EMACS viruses, 87
embedded decryptor (infection technique),

141-142

INDEX

684

embedded decryptor and virus body
(infection technique), 142-143

embedded object insertion dependency,
112-113

emulation. See code emulation
encoding URLs, 385-386
encrypted viruses, 253-258
encryption, 221-222, 303-305. See also

decryption
of host file headers, 236
Linux/Slapper worm, 406
virus detection, 455-458
W95/Marburg virus, 632
X-RAY algorithmic scanning method,

446-451
entry points

obfuscation, 233
random entry points in code section,

237-238
entry-point obscuring viruses (infection

technique), 145-155, 237, 443, 459
W32/Simile virus, 282

entry-point scanning, first-generation
antivirus scanners, 435-436

enumeration
network enumeration attacks, 393-394
of network shares, 324-326
processes, 517

environments of malicious code, 50-52
archive format dependency, 100
compiler and linker dependency, 108-109
computer architecture dependency, 52-53
CPU dependency, 53-54
date and time dependency, 98
debugger dependency, 106-108
device translator layer dependency,

109-112
embedded object insertion dependency,

112-113
extension dependency, 101-102
file format dependency, 59-66
file system dependency, 56-59
host size dependency, 105-106

interpreted environment dependency,
66-98

JIT dependency, 99-100
multipartite viruses, 115-116
network protocol dependency, 102
operating system dependency, 55
operating system version dependency,

55-56
resource dependency, 104-105
self-contained environment dependency,

113-115
source code dependency, 102-104
vulnerability dependency, 98

EPO viruses. See entry-point obscuring
viruses (infection technique)

error detection and correction with
Hamming code, 233

ESC sequences, reconfiguring, 90-91
Etap.D (virus), 53, 64
ETG (executable trash generator) engine, 280
Ethereal

Linux/Slapper (worm), 601
W32/Aliz@mm (worm) captures, 644
W32/Blaster worm, 599
W32/Sasser.D (worm), 603

ethics of using virus construction kits, 293
Etoh, Hiroaki, 548
European Institute for Computer Antivirus

Research (EICAR), 672
Evol (virus). See W32/Evol (virus)
evolution

macro viruses, 74-75
virus code, 252-253

exact identification, 439-441
Excel viruses. See macro viruses
exception handlers, 232

CodeRed worm, 400-401
exception-handler validation, 565-569
exceptions

generating, 229
structured exception handling, 243-244

EXE viruses, 60

INDEX

685

Exebug (virus), 123
execode, macro viruses, 75-76
executable code-based attacks, 339
executable trash generator (ETG) engine, 280
executables, linking DLLs to, 168-171
executed images (Win32 viruses), 512-514
ExecuteOnly attribute (Novell NetWare),

attacks via, 389-393
execution, random execution logic, 244-245
execution environments. See environments of

malicious code
execve() function, 647
exploits. See also blended attacks;

vulnerability dependency
automated discovery, 578
definition of, 33
W32/Slammer (worm), 607-608

export table (PE files), 171-172
exporting functions, 171-172
extended access lists, 586
Extended Memory Specification (XMS), 198
extended tiny encryption algorithm

(XTEA), 346
extension dependency, 101-102
extensions

kernel-mode, 554-556
subsystems, 554

extra disk sectors, formatting, 126-128

F
F-PROT (antivirus program), 195, 438,

441, 451
F1 key, Help file viruses, 89
false positives, signatures, 608
<family_name> (computer virus naming

conventions), 40
FAT file systems, cluster viruses, 56-58
Father Christmas (worm), 79-80, 102
FC (File Compare), 622
Ferenc, Leitold, 673
Ferrie, Peter, 75, 154

File Compare tool, 645
file extension dependency, 101-102
file format dependency, 59-66
file formats, obfuscation, 233
file infection techniques. See infection

techniques
File Monitor log, 635
file parsing attacks, 319-320
file stealth viruses, 207-208
file structure infection, Win32, 239
file system dependency, 56-59
file systems, filter drivers, 427
file viruses, hooking INT 21h (interrupt

handler), 193-196
FileAlignment field (PE header), 165
files

goat (natural infection testing), 637-638
IDA command script (IDC), 631
images, scanning, 517
monitoring, 635-637

Filler (virus), 127, 198, 302
filter driver virus deactivation (memory

scanning), 527-529
filtering

algorithmic scanning methods, 443-444
drivers, 427
as process of computer virus analysis,

619-621
fingerd program, Morris worm attack

against, 395
fingerprinting worm targets, 326-330
Finnpoly (virus), 53
firewalls, 588-589, 646
first-generation antivirus scanners, 428

bookmarks, 433-434
entry-point scanning, 435-436
fixed-point scanning, 435-436
generic detection, 432
hashing, 432-433
hyperfast disk access, 436
mismatches, 432
string scanning, 428-430

INDEX

686

top-and-tail scanning, 435
wildcards, 430-431

first-generation buffer overflows, 369-371
first-generation Windows 95 viruses, 172-173
FitzGerald, Nick, 39
fixed-point scanning, first-generation

antivirus scanners, 435-436
flags, suspicious combinations of, 471
Flash ActionScript viruses, 91
Flash BIOS viruses, 305-306
Flip (virus), somewhat destructive payload

viruses, 300
flirt signatures, 628
flooders, definition of, 35
Ford, Richard, 74
Form (virus), infection technique, 128
format specifiers, 379
format string attacks, 378-384
formatting extra sectors, 126-128
formula macros, 77
FPU instructions, 242-243
fractionated cavity viruses (infection

technique), 137-139, 177
Franvir. See W32/Franvir (virus)
Fredkin, Edward (self-replicating structures),

7-8
free() function, 647
FreeBSD/Scalper (worm), shellcode

blocking, 558
Freitas, Robert A., Jr., 7
Frodo (virus)

hook table, 205-206
interrupt hooking, 193-195
self-protection technique, 218

full-stealth viruses, 193, 205-206, 497
function call-hooking (infection technique),

151-152
function pointer overflows, 377-378
functions

direct library invocation detection,
571-573

execve(), 647
exporting, 171-172
free(), 647
GetProcAddress(), 522, 645
KiUserExceptionDispatcher(), 566
LoadLibrary(), 645
malloc(), 647
NTDLL, 524
NtOpenThread(), 519
Object Manager, 527
OpenThread(), 519
run-time library (RTL), 545
VirtualAlloc(), 510
VirtualProtectEx(), 522
Windows NT for kernel-mode memory

scanning, 525
future worm attacks, 575-578

G
G2 (virus construction kit), 290
Game Maker (programming environment), 113
Game Maker Language (GML), 113-114
games. See nature-simulation games
Games with Computers (Csakany and Vajda), 11
Gaobot (worm). See W32/Gaobot.AJS (worm)
generic decryptors, 477
generic detection, first-generation antivirus

scanners, 432
generic disinfection methods, 474-475

generic decryptors, 477
standard, 475-477

GenVir (virus construction kit), 289
geometric detection, 461-462
germs, definition of, 32-33
GetProcAddress() function, 522, 645
ghost positive, definition of, 207
Ghostball (virus), 115
Gigabyte (virus writer)

Darkness virus, 88
JIT-dependent viruses, 99
Logic worm, 83-85

INDEX

687

Ginger (virus), 198
infection technique, 126
self-protection technique, 248

“glider” starting structure (game of Life), 10
global offset table (GOT), 570

page attributes, 574
GML (Game Maker Language), 113-114
goat files

antigoat techniques (armored viruses), 247
natural infection testing, 637-638

GoldBug (virus), 198
Good Times hoax, 37
GOT (global offset table), 570

page attributes, 574
Gömb (virus), nondestructive payload

viruses, 299
Green, Andy, 347
GriYo (virus writer), 27

symbiosis project, 356
W32/CTX and W32/Dengue viruses, 150
W32/Parvo worm, 321
W95/HPS and W95/Marburg viruses, 264

.<group_name> (computer virus naming
conventions), 41

Gryaznov, Dmitry, 257, 619

H
hackers, 12
half-cooked repairs, definition of, 136
Hamming, Richard, 233
Hamming code, error detection and

correction, 233
Happy99 (worm), 29, 62, 314, 350

e-mail address harvesting, 322-323
NNTP attacks, 338
nondestructive payload viruses, 299

hard-coded API addresses, 172-173
hardware destroying viruses, 305-306
hardware-level stealth viruses, 208-209
Hare (virus)

infection technique, 129
self-protection technique, 255

harvesting e-mail addresses (worms), 319-324
hashing, first-generation antivirus scanners,

432-433
header, PE files, 162-165
header infection viruses (infection

technique), 173
heap management, 384-385
heap overflows, 373-374

compiler-level solutions, 546
exploiting, 375-376
Linux/Slapper worm, 401-407

heaps
definition of, 373
exception-handler validation, 568

Helenius, Marko, 663, 673
Help file viruses, 89
heuristic analysis

of 32-bit Windows viruses, 467-472
antiheuristics techniques (armored

viruses), 234-242
code emulation, 465-466
using neural networks, 472-474

Heyne, Frank, 637
hidden window procedure (Win32

viruses), 512
HIEW tool, 621, 633, 639
High Memory Area (HMA), 198
high-interaction honeypot systems, 593
highly destructive payload viruses, 301-306
history

antivirus programs, 27-28
blended attacks, 367-368
computer viruses, 17-18
self-replicating systems, 4-16
Win32 viruses, 157

hit list method. See IP addresses, scanning
hive, definition of, 93
HLP/Demo (virus), 89
HMA (High Memory Area), 198
hoaxes, definition of, 37
holes in memory, 197
Honeyd, 595

INDEX

688

honeypot systems, 593-594
hook table for Frodo virus, 205-206
hooking

API hooking (infection technique),
150-151

function call-hooking (infection
technique), 151-152

IAT (import address table), 201-203
interrupts, 188-196, 226

host application mutation (metamorphic
viruses), 276-277

host file headers, encryption, 236
host size dependency, 105-106
host-based intrusion prevention techniques,

538-542
buffer overflow attacks

blocking, 543-544
code reviews, 544
compiler-level solutions, 545-552
kernel-mode extensions, 554-556
opreating system-level solutions,

552-554
program shepherding, 556
subsystem extensions, 554

script/SMTP blocking, 539-542
HTML files, WebTV worms, 86-87
HTML viruses, 97-98
HTML-based mail, 340
HybrisF (virus). See W32/HybrisF (virus)
HyperCard, HyperTalk viruses, 91-92
hyperfast disk access, first-generation

antivirus scanners, 436
HyperTalk viruses, 91-92
Hypervisor (virus), 310
Hypponen, Mikko, 326, 349, 496

I
IAT (import address table), 161, 522

hooking, 201-203
page attributes, 574
patches, 469

IBM Antivirus, mismatches, 432
IBM systems, REXX viruses, 78-79

ICA, harvesting e-mail addresses using, 322
ICMP (Internet control message protocol), 643
ICSA Labs, 672
IDA command script (IDC) files, 631
IDA disassemblers, 221, 428, 626-632
.idata section (PE files), 167
IDC (IDA command script) files, 631
IDEA (virus)

nondestructive payload viruses, 299
self-protection technique, 256

IDEA.6155 (virus), self-protection
technique, 248

IDT, entering kernel mode on Windows 9x,
228-229

“Igor’s problem,” 74
IIS Web servers, W32/Nimda.A@mm worm,

414-415
ImageBase field (PE header), 164
images, scanning, 517
IMP (Core War warrior program), 14
Implant (virus), 264
import address table (IAT), 161, 522

hooking, 201-203
page attributes, 574
patches, 469

import table (PE files), 168-171
import table-replacing (infection

technique), 153
imports by ordinal, 240, 469
“in the wild” viruses, 26
in-memory injectors over networks, 215
in-memory residency strategies. See memory

residency strategies
InCtrl tool, 637
indirection, layers of, 501
INETINFO.EXE process, 520
INF/Vxer (virus), 96
INF/Zox (virus), 102
infection propagator of worms, 315-316, 331

backdoor-compromised systems, 331-332
e-mail attachment inserters, 334
e-mail attacks, 333-334

INDEX

689

instant messaging attacks, 333
NNTP attacks, 338
peer-to-peer network attacks, 332-333
SMTP proxy-based attacks, 334-335
SMTP-based attacks, 335-338

infection techniques
Amoeba, 140
appending viruses, 132-133, 174-175
boot viruses, 122-129
cavity viruses, 136-137
classic parasitic viruses, 135-136
code builders, 155-156
companion viruses, 176
compressing viruses, 139-140
embedded decryptor, 141-142
embedded decryptor and virus body,

142-143
entry-point obscuring viruses, 145-155
first-generation Windows 95 viruses,

172-173
fractionated cavity viruses, 137-139, 177
header infection viruses, 173
KERNEL32.DLL infection, 175-176
lfanew field modification, 178
obfuscated tricky jump, 143-144
overwriting viruses, 130-131
PE (portable executable) file format, 160-

172, 235
prepending viruses, 133-135, 174
random overwriting viruses, 131-132
system loader comparison between

Windows 95 and Windows NT,
181-183

VxD-based viruses, 178-180
W32/Simile virus, 284-285
W95/Zmist virus, 278-280
Win32 viruses, growth of, 181

infections
goat files, 639
natural testing, 637-638

<infective_length> (computer virus naming
conventions), 41

Infis (virus). See {W2K, WNT}/Infis (virus)
information query class, 11, 527

INI file viruses, 97
initialization, W95/Zmist virus, 278
injected code detection, 557

shellcode blocking, 558-562
injectors

definition of, 34
in-memory injectors over networks, 215

input validation attacks, 385
MIME types, 387-388, 414-415
URL encoding, 385-386

installation script viruses, 96
installing

dedicated virus analysis systems, 612-615
memory-resident viruses under DOS,

196-198
instant messaging viruses, 83, 333
Instant Virus Production Kit (IVP), 292
instruction tracing (infection technique), 153
INT 13h (interrupt handler), hooking, 188,

191-193
INT 21h (interrupt handler), hooking with

file viruses, 193-196
integrity checker programs, 19
Intel, sysenter, 525
Intel Architecture Software Manuals, 615
intended debugger-dependent viruses, 108
intended viruses, 20
interactions between viruses, 354

competition, 357-358
cooperation, 354-357
sexual reproduction, 359
SWCP (simple worm communication

protocol), 359
interactive disassembler (IDA), 428
intercept mode, 587
1nternal (virus writer)

HTML viruses, 98
installation script viruses, 96

Internet control message protocol (ICMP), 643
Internet Explorer, MIME types, 387-388
Internet Relay Chat (IRC) worms, 83, 333
interpreted environment dependency, 66-98

INDEX

690

interrupt handlers, memory scanning for, 218
Interrupt Request Packets (IRPs), 529
Interrupt Spy tool, 392, 647
interrupt vector table (IVT), 188-189, 227
interrupts

calling with INT 1 and INT 3 228
divide-by-zero exceptions, 229
entering kernel mode on Windows 9x,

228-229
generating exceptions, 229
hooking, 188-196, 226
in polymorphic decryptors, 246
undocumented DOS interrupts

(Int 21h/52h), 498
intrusion. See NIDS
Invader (virus), 26
invalidation, exception frame pointers, 568
IP addresses, scanning, 326-330
IRC (Internet Relay Chat) worms, 83, 333
IRPs (Interrupt Request Packets), 529
IsDebuggerPresent() API, 229
ISO images, infecting, 59
IVP (Instant Virus Production Kit), 292
IVT (interrupt vector table), 188-189, 227

J
jacky (virus writer), 85
Jacky Qwerty (virus writer), 27

W32/Cabanas virus, 157
W32/Redemption virus, 139

JellyScript, WebTV worms, 86-87
Jerusalem (virus), 136, 197, 497
Jiskefet. See OS2/Jiskefet (virus)
JIT dependency, 99-100
joke programs, definition of, 37
JPEG files, W32/Perrun virus, 116
JS/Kak (virus), 417
JS/Spida (worm), remote login-based

attacks, 341
JScript viruses, 85
Junkie (virus), 115

K
Kaspersky, Eugene, 242, 349, 437-438,

447-448, 451
KAV (antivirus program), 438, 442
Kefi (virus writer), PHP/Feast virus, 88
Kelsey, John, 347
kernel mode

debuggers, 648
drivers, 503
entering on Windows 9x, 228-229
extensions, buffer overflow attacks

(worms), 554-556
viruses in, 212-215

kernel modification, W32/Bolzano virus,
415-417

KERNEL32.DLL
checksum recalculation, 239
hard-coded pointers to, 470
imports, 469-470
inconsistency, 471
infection of, 175-176

kernels, memory scanning, 523
64-bit platforms, 530-531
classes of context, 526
filter driver virus deactivation, 527-529
read-only memory, 529
upper 2G of address space, 527
user address space of processes, 523
Windows NT functions, 525
Windows NT service API entry

points, 524
key functions, reconfiguring, 90-91
keyboard, disabling, 231-232
keyloggers, definition of, 36
Khafir, Masouf, 264
Kinematic Self-Replicating Machines (Freitas

and Merkle), 7
kits, definition of, 34
KiUserExceptionDispatcher() function, 566
knowledge bases, malicious code analysis

techniques, 615-616
known plain-text attacks, 449

INDEX

691

KOH (virus), 304
Krishna (virus), infection technique, 129
Krukov, Andrew, 75

L
L0phtCrack (password cracking program), 326
LADS (tool), 637
Langton, Christopher G., 6
language dependency of macro viruses, 71-72
large scale damage due to worms, 577
layers of indirection, 501
LE (linear executable) file format, 160
Leapfrog (virus), infection technique, 144
Lehigh (virus), 137, 198
Leitold, Ferenc, 662
Lexotan engine, 463
lfanew field modification (infection

technique), 178
LFM (virus), 91
LIB viruses, 66
libraries

direct function invocation detection,
571-573

return-toLIBC attacks, 569-573
Libsafe (subsystem extension), 554
Life (game), 8-12
life-cycle manager of worms, 316-317
linear executable (LE) file format, 160
linker dependency, 108-109
linking DLLs to executables, 168-171
links to Web sites or proxies, 339-340
Linux, ELF viruses, 64
Linux/ADM (worm)

detailed description of, 397-398
shellcode blocking, 558

Linux/Cheese (worm), 315, 318
Linux/Jac.8759 (virus), 64
Linux/Lion (antiworm), 318
Linux/Slapper (worm), 64, 98, 108, 315, 538,

543, 647
blocking buffer overflow attacks,

548-549

capturing, 600-602
detailed description of, 401-407
DoS attack, 308
e-mail address harvesting, 323
GOT and IAT page attributes, 574
heap overflows, 376
peer-to-peer network control, 352-354
predefined class table for network

scanning, 326-329
shellcode blocking, 558
shellcode-based attacks, 344
worm blocking techniques, 557

Liston, Tom, 596
lists, router access, 585-587
Litchfield, David, 408, 559
LMF (lunar manufacturing facility), 7
LNK viruses, 94
loaded DLLs, disinfecting, 523
LoadLibrary() function, 645
:<locale_specifier> (computer virus naming

conventions), 42
logging module, 592
logic bombs, definition of, 30
Logic worm, 83-85
Logo language, Super Logo viruses, 83-85
logs, File Monitor, 635
long loops, 247
Lorez. See W95/Lorez (virus)
Lotus 1-2-3 macro viruses, 96
Lotus Word Pro viruses, 94
LoveLetter. See VBS/LoveLetter.A@mm (worm)
low-interaction honeypot systems, 593
Lucifer (virus), infection technique, 128
Ludwig, Mark, 304
lunar manufacturing facility (LMF), 7
LWP/Spenty (virus), 94
LX viruses, 60-61

M
Ma, Albert, 13
MAC OS X shell scripts, 81
Machine field (PE header), 163

INDEX

692

Macintosh platform
MAC OS X shell scripts, 81
resource-dependent viruses, 104-105

Macro Identification and Resemblance
Analyzer (MIRA), 620

macro viruses, 66-69, 157
corruption, 69-71
evolution and devolution, 74-75
formula macros, 77
infecting user macros, 77
language dependency, 71-72
Lotus 1-2-3, 96
Lotus Word Pro, 94
multipartite infection strategy, 76
naming conventions, 41
platform dependency, 73-74
source code, p-code, execode, 75-76
up-conversion and down-conversion, 71
XML, 77

Magic field (PE header), 164
Magistr (virus). See W32/Magistr (virus)
mailers

definition of, 29
naming conventions, 42

maintenance, virus collection, 661
malicious code analysis techniques, 612. See

also computer viruses
architecture guides, 615
collection maintenance, 661
dedicated system installation, 612-615
Digital Immune System, 661-664
disassemblers, 626-632
dynamic analysis techniques, 634-655
knowledge bases, 615-616
process of, 618-624
unpacking, 625
Virus Analysis Toolkit (VAT), 656, 659
VMWARE, 616-617

malloc() function, 647
malware. See computer viruses
<malware_type>:// (computer virus naming

conventions), 40

management
memory, 498-499
Virtual Memory Manager, 503

MapInfo viruses, 88-89
MARS (Memory Array Redcode Simulator), 12
Martin, Edwin, 9
Marx, Andreas, 672
mass-mailer worms (@mm worms)

definition of, 29
naming conventions, 42

matching patterns, 628
mathematical model for computer viruses, 18
MBR (master boot record), 122, 301

infection techniques, 124-126
McAfee SCAN (antivirus program), 248
MCB (memory control block), 197-198
MDEF viruses, 105
Memorial. See W95/Memorial (virus)
memory

buffer overflow attacks. See buffer
overflow attacks

dirty memory pages, 455
dynamically allocated memory. See

heaps
management, 499
read-only kernel, 529
video memory, checking, 232
VMM memory area, 471

Memory Array Redcode Simulator (MARS), 12
memory control block (MCB), 197-198
Memory Manager, paging, 515-517
memory residency strategies. See also

memory-resident viruses
direct-action viruses, 186
in-memory injectors over networks, 215
kernel mode, viruses in, 212-215
processes, viruses in, 211-212
swapping viruses, 211
temporary memory-resident viruses,

210-211
memory scanning, 497-498

attacks, 532-533
detecting debuggers, 230

INDEX

693

disinfection, 517-523
for interrupt handler, 218
in kernel mode. See kernels, memory

scanning
paging, 515-517
in user mode. See user mode, memory

scanning
Windows NT virtual memory system,

499-505
memory-resident viruses, 186-187

disk cache and system buffer viruses,
209-210

installation under DOS, 196-198
interrupt hooking, 188-196
self-detection techniques, 198-199
stealth viruses, 199-209

Mental Driller (virus writer), 27
W32/Simile virus, 281
W32/Simile.D virus, 53
W95/Drill virus, 224

Merkle, Ralph C., 7
Merry Xmas (virus), 92
metamorphic virus detection, 461

code emulation, 463-466
disassembling techniques, 462-463
geometric detection, 461-462

metamorphic viruses, 20, 269-270
complex permutation techniques,

273-275
host application mutation, 276-277
MSIL metamorphic viruses, 286-288
simple permutation techniques, 270-272
W32/Simile virus, 281-286
W95/Zmist virus, 277-281

metamorphic worms, 576-577
MetaPHOR (virus engine), 281
MICE (Core War warrior program), 13
Michelangelo (virus), 301
Microsoft .NET. See .NET
Microsoft IIS servers, W32/Nimda.A@mm

worm, 414-415
Microsoft Security Bulletin MS03-007, 545

Microsoft SQL Server 2000
exploits, blocking, 559-560
W32/Slammer worm, 407

Microsoft Visual .NET 2003 (7.0 & 7.1),
549-552

Microsoft Xbox, security vulnerabilities, 347
MIME types, 387-388

W32/Badtrans.B@mm worm, 414
W32/Nimda.A@mm worm, 414-415

MIRA (Macro Identification and
Resemblance Analyzer), 620

mIRC, instant messaging viruses, 83
mismatches, first-generation antivirus

scanners, 432
Mistfall engine, 278
mitigation, return-to-LIBC attacks, 569-573
mixed techniques. See blended attacks
MMX instructions, 243
mobile phones, worms on, 359-361
modeling virus infections, 11-12

mathematical model, 18
modification to files (tracking), 635-637
<modifiers> (computer virus naming

conventions), 41
modules

altering, 592
logging, 592

Mole virus. See W32/IKX (virus)
monitoring

files, 635-637
malicious code, 634-655
ports, 641
processes, 641
registries, 640
threads, 641

Monxla (virus), 211
Morris (worm), 32, 315, 318, 538, 543

avoiding buffer overflow attacks,
413, 547

copycat Linux/ADM worm, 397-398
detailed description of, 395-397
history of blended attacks, 367-368

INDEX

694

shellcode blocking, 558
weak passwords, 324

Morris, Robert, Sr. (Core War), 12
Mosquitos game, logic bomb in, 30
MPB/Kynel (virus), 88
Mr. Sandman (virus writer), 349

Anti-AVP virus, 248
MSAV (antivirus program), 247
MSIL metamorphic viruses, 286-288
MSIL/Gastropod (virus), 99

self-protection technique, 269, 286-288
MSIL/Impanate (virus), 100, 288
MtE (mutation engine), 262-264

static decryptor detection, 446
multipartite infection strategy, macro

viruses, 76
multipartite viruses, 115-116
multiple PE headers, 469
multiple virus sections, 235-236
multiple-fork support (NTFS), 58
multithreaded viruses, 246
Murkry (virus writer), 27, 242

infection technique, 138
mutation engine (MtE), 262-264

static decryptor detection, 446
mutation. See corruption
Muttik, Igor, 74-75

metamorphic viruses, 269
MX queries and SMTP-based worm

attacks, 338
Mydoom (virus). See W32/Mydoom (worm)
Myname. See OS2/Myname (virus)

N
naming conventions

computer viruses, 38-39
@m, 42
@mm, 42
[<devolution>], 41
<family_name>, 40
.<group_name>, 41
<infective_length>, 41

:<locale_specifier>, 42
<malware_type>://, 40
<modifiers>, 41
#<packer>, 42
<platform>/, 40-46
<variant>, 41
!<vendor-specific_comment>, 42

native viruses, 63-64
native Windows NT viruses, 496, 512
natural infection testing, 637-638
natural infections, 600
nature-simulation games, 5

Core War, 12-16
Edward Fredkin structures, 7-8
game of Life (Conway), 8-12
John von Neumann theory, 5-7

Navrhar (virus). See W95/Navrhar (virus)
NC (NetCat) tool, 593, 642
NCAs (Nexus Agents), 534
NE viruses, 60
nearly-exact identification, 437-438
NEAT (WebTV worm), 86
Neat (worm), 911 attacks, 308
Nebbett, Gary, 616
Needham, Roger, 346
.NET

JIT-dependent viruses, 99-100
W32/Donut virus, 143-145

NET$DOS.SYS file, boot viruses in, 129
NetCat (NC) tool, 593, 642
network enumeration attacks, 393-394
network injectors, definition of, 34
network intrusion detection system (NIDS),

584, 591-592
network protocol dependency, 102
network scanning, 326-330
network share enumeration attacks, 324-326
network-level defense strategies, 584

counterattacks, 596
early warning systems, 598
firewalls, 588-589
honeypot systems, 593-594

INDEX

695

network intrusion detection system
(NIDS), 584, 591-592

router access lists, 585-587
worm behavior patterns, 598-608

networks
boot viruses, 129
in-memory injectors over networks, 215
peer-to-peer network attacks, 332-333,

352-354
ports, monitoring, 641
traffic, capturing, 643

neural networks, heuristic analysis using,
472-474

Nexiv_Der (virus), 146-147, 153
Nexus Agents (NCAs), 534
NGSCB (Next Generation Secure Computing

Base), 534
NGVCK (Next Generation Virus Creation

Kit), 291
NIDS (network intrusion detection system),

584, 591-592
Nimda. See W32/Nimda (worm)
NNTP attacks, worm infections, 338
NNTP-based e-mail address collection,

320-321
no-payload viruses, 296-297
NoKernel (virus), 219
non-TSR viruses, 497
nondestructive payload viruses, 297-300
nonexecutable (NX) pages, 534, 579
nonlinear decryption, 256
nonstateful firewalls, 588
normal COM, definition of, 132
Norton AntiVirus (antivirus program), 442
Norton, Peter (Programmer’s Guide to the

IBM PC), 25
NOTEPAD.EXE

STR streams, 636
W32/Parvo (virus) inside, 511

Novell NetWare ExecuteOnly attribute,
attacks via, 389-393

Nowhere Man (virus construction kit

writer), 289
NTDLL functions, 524
NTFS file systems

compression viruses, 59
stream viruses, 58-59

NtOpenThread() function, 519
NtQueryInformationThread() API, 519
NtQuerySystemInformation() (NtQSI),

506-507
NtQueryVirtualMemory() API, 524
NumberOfSections field (PE header), 164
Number_Of_The_Beast (virus), 193, 207
NX (nonexecutable) pages, 534, 579

O
obfuscated code, 222-224
obfuscated entry points, 233
obfuscated file formats, 233
obfuscated tricky jump (infection technique),

143-144
object code viruses, 66
Object Manager functions, 527
objects (network enumeration), 394
octopus (worm), definition of, 29
off-by-one buffer overflows, 371-373
OLE2 files, macro viruses, 67-68
oligomorphic viruses, 259-260
Olivia (virus), infection technique, 145-146
OllyDBG tool, 648
Omud (virus), infection technique, 132
on-access antivirus scanners, 426. See also

scanners
on-demand antivirus scanners, 426. See also

scanners
One_Half (virus), 277, 304

infection technique, 141
opcode mixing-based code confusion,

223-224
OpenSSL, vulnerabilities in, 401
OpenThread() function, 519
operating system dependency, 55

INDEX

696

operating system version dependency, 55-56
operating systems, buffer overflow attacks

(worms), 552-554. See also names of specific
operating systems

ordinal-based imports, 240, 469
original boot sector, 128-129
OS/2

LX viruses, 60-61
NE viruses, 60

OS2/Jiskefet (virus), 61
OS2/Myname (virus), 60
outbreak statistics (worm), 670
outgoing e-mail messages, harvesting e-mail

addresses using, 322-323
overflows. See buffer overflow attacks
Overmars, Mark, 113
overwriting viruses (infection technique),

130-131, 301-302

P
p-code, macro viruses, 75-76
packed code sections, 237
#<packer> (computer virus naming

conventions), 42
packers. See compression
packets, decoders, 591
PAE (Physical Address Extension), 500
page directories (memory), 500
page directory entries (PDEs), 500
page frames (memory), 500
page table entry (PTE), 555
page tables (memory), 500
PAGE_READONLY access, 522
paging, memory scanning and, 515-517
Palm platform, resource-dependent

viruses, 105
Palm/Phage (virus), 105
parasitic viruses. See classic parasitic viruses

(infection technique)
parsing files for e-mail addresses, 319-320
partition table (PT) entries, 122

changing, 125-126
partitions, definition of, 122
password cracking, Morris worm, 367
password handling, vulnerabilities, 324
password protection, 249
password-capturing attacks, 325

definition of, 32
passwords, security problems, 324-326
Pasteur (antivirus program), 26, 436
patching

code in active pages, 522
import address table (IAT), 469

Pathogen (virus), X-RAY scanning, 448
patterns

of computer viruses, 630
matching, 628
worm behavior, 598-608

PaX (kernel mode extension), 554-556
payload activation

accidentally destructive payload
viruses, 297

highly destructive payload viruses,
301-306

no-payload viruses, 296-297
nondestructive payload viruses, 297-300
somewhat destructive payload viruses,

300-301
types of, 296
W32/Simile virus, 285-286
of worms, 318

PDEs (page directory entries), 500
PDF viruses, 90
PDF/Yourde (virus), 90
PE (portable executable) file format,

158-160, 513
entry points, 468
infection by W95/Zmist virus, 279-280
infection techniques, 160-172, 235
Windows CE, 110

PE header
avoiding infection, 240
code section sizes, 241
infection, 469

INDEX

697

multiple headers, 469
SizeOfCode field, 471
virtual size, 468

PE viruses, 61-64
PEDUMP, 622, 645
PeElf (virus). See {W32, Linux}/Peelf (virus)
peer-to-peer network attacks, worm

infections, 332-333, 352-354
Linux/Slapper worm, 406-407

PEID tools, 626
Pentium II processors, sysenter, 525
Perl viruses, 86
permutation

complex permutation techniques
(metamorphic viruses), 273-275

simple permutation techniques
(metamorphic viruses), 270-272

W95/Zmist virus, 279
Perriot, Frederic, 282, 317, 647
personal firewalls. See firewalls
Phager (virus), 101
Phalcon-Skism Mass Produced Code

Generator (PS-MPC), 290
phishing attacks, 308-309

definition of, 35
phones, wireless mobile worms, 359-361
PHP viruses, 88
PHP/Caracula (virus), 88
PHP/Feast (virus), 88
Physical Address Extension (PAE), 500
Pietrek, Matt, 616
PIF viruses, 94
Pile, Christopher (virus writer), 448
Ping Pong (virus), 54
pings, W32/Welchia (worm), 605
<platform>/ (computer virus naming

conventions), 40
list of officially recognized names, 42-46

platform dependency of macro viruses, 73-74
platform support for Win32, 158-160

Playgame (virus), nondestructive payload

viruses, 299
Ply (virus), self-protection technique, 253
Pobresito (virus), 92
Polimer.512.A (virus), 134
polymorphic decryptors

interrupts in, 246
W32/Simile virus, 282-283

polymorphic viruses, 261
32-bit polymorphic viruses, 264-268
1260 virus, 261-262
macro viruses, 76
MtE (mutation engine), 262-264
PHP viruses, 88

polymorphic worms, 576-577
polymorphism, virus detection, 455-458
Popp, Joseph, 31
port 80 (HTTP), NetCat, 594
port I/O, disk access, 219
portable executable. See PE (portable

executable) file format
ports, monitoring, 641
PPE (Prizzy polymorphic engine), 243
predefined class table (network scanning),

326-329
prefetch-queue attacks, 230-231
prepending viruses (infection technique),

133-135, 174, 236
preprocessors, network intrusion detection

system (NIDS), 591
printers, targeted by worms, 324
private pages, Win32 viruses that

allocate, 510
Prizzy (virus writer), W32/Crypto virus, 257
Prizzy polymorphic engine (PPE), 243
process address space randomization, 570
processes

computer virus analysis, 618-624
context (memory scanning), 526
enumerating, 517
memory scanning, 507-508
monitoring, 641
terminating, 518

INDEX

698

user address space of (scanning), 523
viruses in, 211-212

PROCESS_TERMINATE access, 518
PROCESS_VM_OPERATION access, 522
profiles, tracking decryptors, 454
program shepherding, buffer overflow

attacks (worms), 556
Programmer’s Guide to the IBM PC (Norton), 25
propagation (worms). See code propagation

techniques (worms)
ProPolice, 548-549
Provos, Niels, 595
proxy firewalls, 588
PS-MPC (Phalcon-Skism Mass-Produced

Code Generator), 290
PSD (virus), 621
pseudo-decryption loops, 460
PSMPC generators, 34
PT (partition table) entries, 122

changing, 125-126
PTE (page table entry), 555
Python viruses, 87

Q
Q the misanthrope (virus writer)

BAT/Ramble virus dropper, 96
GoldBug virus, 198
memory allocation techniques, 198

Qark (virus writer), 306
QAZ (virus), 309
Qpa (virus), infection technique, 136
Quantum (virus writer), 27, 61
Queeg (virus), X-RAY scanning, 448-450
quick examinations, process of computer

virus analysis, 619

R
rabbit (worm), definition of, 29
Radai, Yisrael, 302
Raiu, Costin, 75
Rajaat (virus writer), 78
Ralf Brown Interrupt List, 190

Ramble (virus), 96
Ramdhani, Denny Yanuar (virus writer), 127
Ramen (worm), 315
random decryption algorithm (RDA) viruses,

237, 245, 256
random entry points in code section, 237-238
random execution logic, 244-245
random overwriting viruses (infection

technique), 131-132
randomization, process address space, 570
randomized network scanning, 329-330
Raptor (firewall), 590
Ratter (virus writer)

W32/Kick virus, 65
WinCE/Duts.1520 virus, 109

RDA (random decryption algorithm) viruses,
237, 245, 256

RDA.Fighter (virus), 256
RDTSC instruction, 283
read stealth viruses, 203-205
read-only kernel memory, 529
ReadProcessMemory() API, 505-506
real permutating engine (RPME), 274
Reaper (antivirus program), 17
recalculating checksum, 239
reconfiguring key functions, 90-91
recycling compiler alignment areas, 238
Redcode language, 12-15
refiltering drivers (DeactivatorDriver), 529
registries, monitoring, 640
Registry keys

detecting debuggers, 229
macro viruses, 74

Registry-dependent viruses, 93-94
Regmon tool, 640
regular disinfection methods, 474-477
relative virtual address (RVA), 161
.reloc section (PE files), 167
relocation cavity viruses (infection

technique), 137
remote control of worms, 316, 351-352

peer-to-peer network control, 352-354

INDEX

699

remote login-based attacks, 341
RemoteExplorer virus. See WNT/RemEx (virus)
renaming sections, 239
replication. See self-replicating systems;

worm blocking techniques
Repus. See W95/Repus (virus)
requests

Address Resolution Protocol (ARP), 595
pings, capturing W32/Welchia (worm),

605
research honeypots, 596
research papers (virus), 670
resident viruses. See memory-resident viruses
resource dependency, 104-105
resources, early warning/up-to-date security

information, 669
retroviruses, 11, 247-249, 300
retroworms, 576
return-to-LIBC attacks, 543, 569-573
reviving dead virus code, 127
REXX viruses, 78-79
Riordan, Roger, 433
Ripper (virus), 303
Ritchie, Dennis (Core War), 12
rootkits, definition of, 36
routers, access lists, 585-587
Rowe, Mark, 360
roy g biv (virus writer), 27

Ginger virus, 198
MSIL/Impanate virus, 100, 288
W32/Chiton virus, 63, 154
W64/Rugrat.3344 virus, 62

RPME (real permutating engine), 274
.rsrc section (PE files), 167
RT Fishel (virus writer), Ginger virus, 198
RTL (run-time library) functions, 545
Rugrat. See W64/Rugrat.3344 (virus)
run-time code injection attacks. See code

injection attacks
run-time library (RTL) functions, 545

run-time packers, 625
Russel, Ryan, 594
RVA (relative virtual address), 161

S
Sadmind (worm), 315
safe-for-scripting ActiveX controls, 388-389

VBS/BubbleBoy worm, 417-418
W32/Blebla worm, 418-419

Sandman (virus writer), 27, 299
SAP, ABAP viruses, 89
saving

files locally, W32/Blebla worm, 418-419
original boot sector at end of disk,

128-129
SC Magazine, 672
scanners, 252

algorithmic scanning methods, 441-443
filtering, 443-444
static decryptor detection, 444-446
X-RAY method, 446-451

code emulation, 451-454
dynamic decryptor detection, 459-461
encrypted/polymorphic virus detec-

tion, 455-458
disinfection methods, 474-475

generic decryptors, 477
standard, 475-477

first-generation antivirus, 428
bookmarks, 433-434
entry-point scanning, 435-436
fixed-point scanning, 435-436
generic detection, 432
hashing, 432-433
hyperfast disk access, 436
mismatches, 432
string scanning, 428-430
top-and-tail scanning, 435
wildcards, 430-431

heuristic analysis
of 32-bit Windows viruses, 467-472
using neural networks viruses,

472-474

INDEX

700

second-generation antivirus, 437
exact identification, 439-441
nearly-exact identification, 437-438
skeleton detection, 437
smart scanning, 437

scanning
file images, 517
IP addresses, 326-330
memory. See memory scanning

SCANPROC.EXE, 515
Schneier, Bruce, 347
science versus art, 4
script viruses, REXX viruses, 78-79
scripts, blocking, 539-542
search engines, harvesting e-mail addresses

using, 321
searching VOOGLE, 621
second-generation antivirus scanners, 437

exact identification, 439-441
nearly-exact identification, 437-438
skeleton detection, 437
smart scanning, 437

second-generation buffer overflows, 371-378
definition of, 369

section table (PE files), 165-168
SectionAlignment field (PE header), 165
sections

code sections
naming, 469
sizes in header, 241

gaps between, 468
packed code sections, 237
PE files, 161
random entry points, 237-238
renaming, 239
shifting, 236
slack area infections, 236
suspeicious characteristics, 468
writeable flag, 238

sector-level stealth viruses, 207-208
sectors

formatting extra, 126-128
marking as BAD, 128

security
exploits. See blended attacks
information of, 669
updates, 669

buffer overflow attacks (worms),
544-545

security_cookie values, 550
seeding, definition of, 34
SEH (structured exception handling),

243-244, 565
self-contained environment dependency,

113-115
self-detection techniques, memory-resident

viruses, 198-199
self-modifying code. See obfuscated code
self-protection techniques (of viruses)

armored viruses. See armored viruses
encrypted viruses, 253-258
metamorphic viruses. See metamorphic

viruses
oligomorphic viruses, 259-260
polymorphic viruses, 261-268
retroviruses, 247-249
tunneling viruses, 218-220
virus construction kits, 288-293

self-replicating systems, history of, 4
Core War, 12-16
Edward Fredkin structures, 7-8
game of Life (Conway), 8-12
John von Neumann theory, 5-7

self-sending code blocking, 563-565
self-tracking of worms, 318
semistealth viruses, 200-203
sending, self-sending code blocking, 563-565
sendmail, Morris worm, 367
service viruses, native Windows NT, 512
SETI, use by computer worms, 318
sexual reproduction of viruses, 359
SH/Renepo.A (worm), 81
shape heuristic, 461
share-level password vulnerability, 324
sharepoints (network enumeration), 394

INDEX

701

shell scripts, 80-81
shellcode, blocking, 558-562
shellcode-based attacks, 342-344, 543
Shifter (virus), 66
shifting sections, 236
Shockwave Rider (Brunner), 29
“Shooter” starting structure (game of Life),

9-10
Short Message Service (SMS), 30
Sieben, Na’ndor, 13
signatures, 608

flirt, 628
Simile virus. See {W32, Linux}/Simile (virus)
Simile.D (virus). See {W32, Linux}/Simile.D

(virus)
simple worm communication protocol

(SWCP), 359
Simulated “Metamorphic” Encryption

Generator (SMEG), 448
simulations of nature. See nature-simulation

games
single-layer classifiers with thresholds, 473
single-stepping, detecting, 227
Sircam (worm)

e-mail address harvesting, 320
SMTP-based attacks, 335

SizeOfCode field (PE header), 164, 471
SizeOfImage field (PE header), 165, 468
skeleton detection, 437
Skrenta, Rich (Elk Cloner virus), 17
Skulason, Fridrik, 39, 115, 438
slack area infections, 236
Slammer (worm). See W32/Slammer (worm)
Slapper (worm). See Linux/Slapper (worm)
Sma. See W95/Sma (virus)
smart scanning, 437
SMEG (Simulated “Metamorphic”

Encryption Generator), 448-450
SMS (Short Message Service), 30
SMTP, blocking, 539-542

SMTP proxy-based attacks, worm infections,
334-335

SMTP spam relay, use by computer
worms, 318

SMTP-based attacks, worm infections, 335-
338, 643

SnakeByte (virus writer)
NGVCK (virus construction kit), 291
Perl viruses, 86

sniffing traffic, 643
SoftIce Debugger (antivirus program), 527
SoftICE tool, 648
Solaris on SPARC, 553-554
Solaris/Sadmind (virus), 98, 543
Solomon, Alan, 37, 39, 200, 293
somewhat destructive payload viruses,

300-301
source code, macro viruses, 75-76
source code dependency, 102-104
source spoofing, 587
Sourcer (disassembler), 221
SP (stack pointer), decryption with, 230
spammer programs, definition of, 35
Spanska (virus writer), 27, 350

Happy99 worm, 62
IDEA viruses, 256, 299
self-protection technique, 245, 248

spoofing source, 587
spyware, definition of, 38
SQL Server 2000, W32/Slammer worm, 407
ssnetlib.dll, W32/Slammer worm, 408
stack buffer overflows, 369-370

causes of, 371
CodeRed worm, 398-401
exploiting, 370
Linux/ADM worm, 397-398
Morris worm, 395-397
W32/Blaster worm, 410-413
W32/Slammer worm, 407-410

stack pointer (SP), decryption with, 230
stack smashing, 546

INDEX

702

stack state, checking, 227
stack-based overflow attacks, compiler-level

solutions, 546
StackGuard, 546-548
stacks

definition of, 91
exception-handler validation, 568
return-to-LIBC attacks, 569-573

standard access lists, 586
standard disinfection, 475-477
Starship (virus), 126, 198
stateful firewall solutions, 588
static decryptor detection, algorithmic

scanning methods, 444-446
static heuristics, 234
stealing data. See data stealing viruses
stealth viruses, 199-200

cluster and sector-level stealth viruses,
207-208

full-stealth viruses, 205-206
hardware-level stealth viruses, 208-209
read stealth viruses, 203-205
semistealth viruses, 200-203

Stoll, Clifford, 593
Stoned (virus), 24-25

accidentally destructive payload
viruses, 297

bookmarks, 433
exact identification, 439-440
infection technique, 124-126
interrupt hooking, 192-193
nearly exact identification, 437
string scanning, 429-430

stopping break points, 454
Stormbringer (virus writer), Shifter virus, 66
Strack, Stefan, 13
Strange (virus), 208
stream viruses, file system dependency,

58-59
Strike (virus), infection technique, 128
string scanning, 428-430

strings
API strings, 241-242
dumps, 623-624
mismatches, first-generation antivirus

scanners, 432
wildcards, first-generation antivirus

scanners, 430-431
structured exception handling (SEH),

243-244, 565
structures, self-replicating, 7-8
Struss, J. (virus construction kit writer), 289
Stupid (virus), 196
submissions, worm-blocking, 541
subsystems

extensions, buffer overflow attacks
(worms), 554

Win32 viruses, 508-511
super fast infectors, 56
Super Logo viruses, 83-85
Suslikov, Eugene, 633
swapping viruses, 211
SWCP (simple worm communication

protocol), 359
Symantec Security Response, 540
Symboot, 619
SymbOS/Cabir (worm), 359-361
sysenter, 525
system buffer viruses, 209-210
system call tracing, 647-648
System File Checker feature

(Windows 2000/XP), 417
system loader, Windows 95 versus

Windows NT, 181-183
system modification attacks, 389

Novell NetWare ExecuteOnly attribute,
389-393

W32/Bolzano virus, 415-417
system rights, memory scanning, 507-508

INDEX

703

T
target locator of worms, 315, 319

e-mail address harvesting, 319-324
IP address scanning, 326-330
network share enumeration, 324-326

TBCLEAN (antivirus program), 248
TBSCAN (antivirus program), 433, 436, 447
TCL viruses, 87-88
TCP (virus writer), 248
TCP-based attacks versus UDP-based

attacks, 539
TechnoRat (virus writer), 255
temporary memory-resident viruses, 210-211
Tentacle_II. See W16/Tentacle_II (virus)
Tequila (virus), 26, 115

infection technique, 126
self-protection technique, 248, 257
X-RAY scanning, 447

Terminate-and-Stay-Resident (TSR)
programs, 187

TerminateProcess() API, 518
termination

processes, 518
threads, 518-521

testers, antivirus software, 672
testing

black-box, 634
natural infection, 637-638

.text section (PE files), 167
third-generation buffer overflows, 378-394

definition of, 369
Thomson, Ken, 104
Thomson, Roger, 594
thread information block (TIB), 232, 565
thread local storage (TLS) data directory, 154
threads

monitoring, 641
terminating, 518-521
W32/Niko.5178 (virus), 514

THREAD_TERMINATE access, 519-520
TIB (thread information block), 232, 565
tiny viruses, definition of, 130

TLBs (translation look-aside buffers), 555
TLS (thread local storage) data directory, 154
TLSDEMO program, 154
top-and-tail scanning, first-generation

antivirus scanners, 435
TPE (Trident Polymorphic Engine), 264
Töltögetö (virus), 127, 302
tracing

code emulation-based tunneling, 219
with debug interfaces, 219
system calls, 647-648

tracking
active instructions, 454
decryptors, 454
malicious code, 634-655

traffic, sniffing, 643
translation of virtual addresses, 500
translation look-aside buffers (TLBs), 555
trapdoors. See backdoors
Tremor (virus), 198, 497
Trident Polymorphic Engine (TPE), 264
triggers, definition of, 133
Trivial (virus), infection technique, 130
Trojan horses

definition of, 31-32
source code Trojans, 104

troubleshooting
connections, worm blocking techniques,

574-575
debugging, 648-655

TruSecure Corporation, 672
TSR (Terminate-and-Stay-Resident) pro-

grams, 187
tunneling viruses, 218

code emulation, 219
disk access with port I/O, 219
memory scanning for interrupt

handler, 218
tracing with debug interfaces, 219
undocumented functions, 219-220

Turbo Debugger, 229, 649
Turing Machine, 5

INDEX

704

U
UDP-based attacks versus TCP-based

attacks, 539
Ulam, Stanislaw, 6
UMB (upper memory block), 198
undocumented CPU instructions, 245
undocumented functions, virus

self-protection techniques, 219-220
Unicode strings. See strings
University of Hamburg’s Virus Test Center

(VTC), 672
University of Magdeburg, 672
UNIX

ELF viruses, 64-65
shell scripts, 80-81
shellcode blocking, 558-562

unknown entry points (infection technique),
154-155

unpacking, malicious code analysis
techniques, 625

up-conversion of macro viruses, 71
update interface of worms, 316, 345-346

authenticated updates, 346-351
backdoor-based updates, 351

updates, security, 669
buffer overflow attacks (worms), 544-545

upper 2G of address space (memory
scanning), 527

upper memory block (UMB), 198
UPX (run-time packer), 625
URL encoding, 385-386
user address space of processes,

scanning, 523
user macros, infecting, 77
user mode

debuggers, 648
memory scanning in, 505-506

executed images (Win32 viruses),
512-514

hidden window procedure (Win32
viruses), 512

native Windows NT service
viruses, 512

NtQuerySystemInformation()
(NtQSI), 506-507

processes/rights, 507-508
Win32 viruses, 508-511

viruses in processes, 211-212
user mode rootkits, definition of, 31, 36
UTF-8 encoding, 385-386

V
V.T. (virus writer), Darth_Vader virus, 197
V2Px (virus), self-protection technique, 226
Vacsina (virus), 26, 132
Vajda, Ferenc, 11
validation

application rights verification, 388
exception-handler, 565-569
input validation attacks, 385-388, 414-415

ValleZ (virus writer), W32/Zelly virus, 255
vampire attacks, 358
vampire warriors (Core War game), 16
van Wyk, Ken, 137
<variant> (computer virus naming

conventions), 41
Varicella (virus), self-protection

technique, 248
VAT (Virus Analysis Toolkit), 613, 656–659
VAX/VMS systems, DCL viruses, 79-80
VBA document macros, 112-113
VBS/Bubbleboy (worm)

detailed description of, 417-418
HTML-based mail, 340
safe-for-scripting ActiveX controls, 389

VBS/LoveLetter.A@mm (worm), 29, 81,
314, 538

infection technique, 130
script blocking, 539

VBS/VBSWG.J (Anna Kournikova virus), 35.
See also Anna Kournikova virus

VBScript viruses, 81-82
VCL (Virus Creation Laboratory), 34, 289-290

INDEX

705

VCL.428 (virus), 186
VCS (Virus Construction Set), 289
Vecna (virus writer), 27

W32/Borm worm, 332
W32/Coke virus, 255
W32/HybrisF virus, 139, 248
W95/Fabi virus, 107
W95/Regswap virus, 270

Veldman, Frans, 264, 433, 447
Velvet (virus), self-protection technique, 229
!<vendor-specific_comment> (computer virus

naming conventions), 42
vendors, antivirus software (contact

information), 670
VET (antivirus program), 433
VGrep, 619
video memory, checking, 232
Vienna (virus), 26, 132, 186, 200
VIM viruses, 87
Virdem (virus), 59, 135, 186
VIRKILL (antivirus program), 436
VIROCRK (decryption tool), 451
virtual address spaces, 501-505
virtual addresses, translation of, 500
virtual debuggers, 649
virtual machine manager (VMM), 179, 471
virtual machines, 451-458, 465
Virtual Memory Manager, 503
virtual memory systems (Windows NT),

499-505
VirtualAlloc() function, 510
VirtualProtectEx() function, 522
VirtualQueryEx() API, 524
VirtualRoot (Trojan horse), 310
Virus Analysis Toolkit (VAT), 656, 659
Virus Bulletin Web site, 672
virus construction kits, 288

ethics of using, 293
GenVir, 289
list of, 291-292
NGVCK, 291
PS-MPC, 290

VCL (Virus Creation Laboratory), 34,
289-290

VCS (Virus Construction Set), 289
Virus Construction Set (VCS), 289
Virus Creation Laboratory (VCL), 34, 289-290
virus generators, definition of, 34
Virus Patrol (antivirus service), 320
virus research

art versus science, 4
author’s start in, 24-26
common patterns, 26-27

Virus Research Unit of the University of
Tampere in Finland, 673

virus throttling, 575
viruses

antivirus defense techniques, 426-427
code evolution, 252-253
definition of, 18-20, 28
history of, 17-18
interactions, 354

competition, 357-358
cooperation, 354-357
sexual reproduction, 359
SWCP (simple worm communication

protocol), 359
modeling virus infections, 11-12
naming conventions, 38-39

[<devolution>], 41
<family_name>, 40
.<group_name>, 41
<infective_length>, 41
:<locale_specifier>, 42
<malware_type>://, 40
<modifiers>, 41
#<packer>, 42
<platform>/, 40-46
<variant>, 41
@m, 42
@mm, 42
!<vendor-specific_comment>, 42

retro viruses, 11
terminology, 28-36
versus worms, 314

INDEX

706

Visual .NET 2003 (Microsoft), 549-552
VLAD (virus writer), 53

W95/Boza virus, 61
VM. See virtual machines
VMM (virtual machine manager), 179, 471
VMWARE, 613-617, 642
von Neumann, John, 4-7
von Neumann, Nicholas, 5
VOOGLE, 621
VPN (virtual private network). See

network-level defense strategies
VTC (University of Hamburg’s Virus Test

Center), 672
vulnerability dependency, 98. See also

blended attacks
VxD-based viruses (infection technique), 65,

178-180
VxDs, LE (linear executable) file format, 160
Vyssotsky, Victor (Core War), 12

W
W2K/Installer (virus), 137
{W2K, WNT}/Infis (virus), 65, 213-215
W16/Tentacle_II (virus), 60, 147-150
W16/Winvir (virus), 60
W32/Aldebera (virus), 139
W32/Aliz (worm), 337, 643
W32/Aplore (worm), 340
W32/Apparition (virus), 269
W32/Badtrans.B@mm (worm), 414
W32/Beagle (worm), 100

backdoor-based updates, 351
cooperation with viruses, 356
self-protection technique, 249, 258

W32/Beagle.T (worm), 340
W32/Blaster (worm), 315, 98

capturing, 598-600
competition between worms, 358
detailed description of, 410-413
DoS attack, 306-307
exploits, blocking, 561
return-to-LIBC attacks, 571

self-protection technique, 225
shell code-based attacks, 343

W32/Blebla (worm), 418-419
W32/Bobax (worm), 318
W32/Bolzano (virus)

detailed description of, 415-417
system modification attacks, 389

W32/Borm (worm)
backdoor-compromised systems, 331-332
cooperation with viruses, 356

W32/Brid@mm (worm), 539
W32/Bugbear (worm), 311

network share enumeration, 324
SMTP worm blocking, 539

W32/Bymer (worm), 318
W32/Cabanas (virus), 157, 201-203

infection technique, 144, 175, 183
self-protection technique, 232, 243

W32/Cabanas.3014.A (virus), 510
W32/Chiton (virus), 63-64

infection technique, 154
memory scanning attacks, 533
self-protection technique, 256-258

W32/Choke (worm), 333
W32/Cholera (worm, 356
W32/CodeGreen (antiworm), 318, 357-358
W32/CodeRed (worm), 98, 215, 315, 318, 366,

496, 517, 520, 538, 542
avoiding buffer overflow attacks, 413
blocking, 564-565
code injection attacks, 342, 543
competition between worms, 357-358
computer security versus antivirus pro-

grams, 366
detailed description of, 398-401
DoS attack, 307
exception-handler validation, 568
exploits, blocking, 560-561
history of blended attacks, 368
return-to-LIBC attacks, 570
self-sending code blocking, 563
stack buffer overflows, 370
system modification attacks, 389

INDEX

707

virus throttling, 575
W32/CodeRed_II (worm), 310, 520
W32/Coke (virus), 76, 255, 266
W32/Crypto (virus), 257, 305
W32/CTX (virus), 628

cooperation with W32/Cholera
worm, 356

infection technique, 137, 150
W32/Dabber (worm), 358
W32/Dengue (virus)

dynamic decryptor detection, 459
infection technique, 150
self-protection technique, 241

W32/Donut (virus), 99
infection technique, 143-144
naming, 145

W32/Doomjuice (worm)
backdoor-based updates, 351
cooperation with viruses, 356

W32/Elkern (virus), 532
W32/Evol (virus)

code emulation, 464
self-protection technique, 273

W32/ExploreZip (worm), 538
self-protection technique, 235
SMTP worm blocking, 541
SMTP-based attacks, 335

W32/Franvir (virus), 113-115
W32/Funlove (virus), 416, 427

blocking, 579
cooperation with worms, 356
network enumeration attacks, 324, 394

W32/Gaobot.AJS (worm)
competition between worms, 358
memory scanning attacks, 533

W32/Ghost (virus), 271
W32/Gobi (virus)

filtering, 443
self-protection technique, 247

W32/Harrier (virus), 255
W32/Heathen.12888 (virus), 73
W32/Heretic (virus), 522
W32/Heretic.1986.A (virus), 512-513

W32/HIV (virus), 59
W32/HLLP.Cramb (virus), 236
W32/HLLP.Sharpei (virus), 99
W32/HLLW.Bymer (virus), 394
W32/HLLW.Lovgate@mm (worm), 539
W32/HLLW.Qaz.A (worm), 309
W32/Holar@mm (worm), 539
W32/Hybris (worm), 577
W32/HybrisF (virus)

infection technique, 139
self-protection technique, 248

W32/Hyd (worm), 318, 334
W32/Idele (virus), 153
W32/IKX (virus), 236, 241
W32/Infynca (virus), 229
W32/Kick (virus), 65
W32/Klez (worm), 538

infection technique, 136
MIME header exploits, 414
SMTP worm blocking, 539-541

W32/Klez.H (worm), 320
W32/Kriz (virus), 239-240
W32/Leaves (worm), 332
W32/Legacy (virus), 243
{W32, Linux}/Peelf (virus), 52, 286
{W32, Linux}/Simile (virus), 258, 281-286
{W32, Linux}/Simile.D (virus), 53, 64,

256, 576
W32/Lespaul@mm (worm), 342
W32/Lirva@mm (worm), 539
W32/Lovegate@mm (worm), 533
W32/Maax (worm), 333
W32/Magistr (virus)

e-mail address harvesting, 319
heuristics, 466
SMTP-based attacks, 336

W32/Mimail.I@mm (phishing attack), 309
W32/Mydoom (worm)

backdoor-based updates, 351
cooperation with worms, 356
e-mail address harvesting, 320
self-protection technique, 249

INDEX

708

SMTP-based attacks with MX
queries, 338

W32/Mydoom.A@mm (worm), 540
W32/Mydoom.M@mm (worm), 321
W32/Niko.5178 (virus), 513-514
W32/Nimda (worm), 97, 311, 314, 366, 538

backdoor-compromised systems, 332
SMTP worm blocking, 539
SMTP-based attacks, 335

W32/Nimda.A@mm (worm), 29, 414-415
W32/Opaserv (worm), 318

network enumeration attacks, 394
password handling, 324

W32/Parvo (worm), 518
e-mail address harvesting, 321
e-mail worm attacks, 334

W32/Parvo.13857 (virus), 510-511
W32/Perenast (virus)

infection technique, 153
self-protection technique, 237

W32/Perrun (virus), 116
W32/Press (virus), 78
W32/PrettyPark (worm), 93
W32/Qint@mm (worm), 257
W32/RainSong (virus), 152
W32/Redemption (virus), 139
W32/Resure (virus), 235
W32/Sand.12300 (virus), 140
W32/Sasser (worm), 358
W32/Sasser.D (worm), 603
W32/Semisoft (virus), 518
W32/Serot (worm), 319
W32/SKA (worm), 299, 314, 538. See also

Happy99 worm
W32/SKA.A (worm), 29, 62, 522
W32/Slammer (worm), 215, 316, 496,

538-539, 542
blocking, 564
capturing, 607-608
code injection attacks, 341
detailed description of, 407-410
DoS attack, 306

randomized network scanning, 329-330
self-sending code blocking, 563
virus throttling, 575
worm blocking techniques, 557

W32/Smorph (Trojan), 277
W32/Sobig (worm)

e-mail address harvesting, 321
SMTP worm blocking, 539

W32/Subit (virus), 102-103
W32/Taripox@mm (worm), 334
W32/Tendoolf (worm), 351
W32/Thorin (virus), 243
W32/Toal@mm (worm), 322
{W32, W97M}/Beast.41472.A (virus), 112, 512
W32/Wangy (worm), 324
W32/Welchia (worm), 98

backdoor-based updates, 351
capturing, 605
competition between worms, 358
exploits, blocking, 562
network scanning and fingerprinting, 330
shell code-based attacks, 344

W32/Welchia.A (worm), 316-317
W32/Witty (worm), 34, 302, 316

large-scale damage, 578
self-sending code blocking, 565

W32/Yaha@mm (worm), 539
W32/Yourde (virus), 90
W32/Zelly (virus)

infection technique, 175
self-protection technique, 255

W64/Rugrat.3344 (virus), 62, 580
W64/Shruggle (virus), 62
W95/Aldabera (virus), 237
W95/Anxiety (virus), 166, 174, 179
W95/Babylonia (worm), 345-346, 349
W95/Bistro (virus), 275
W95/Boza (virus), 55, 61, 157, 166, 171, 174

heuristic analysis, 468
infection technique, 182

W95/Boza.A (virus), 172-173
W95/Cerebrus (virus), 178

INDEX

709

W95/Champ.5447.B (virus), 244
W95/CIH (virus), 213, 305, 613

infection technique, 137, 177, 180
large-scale damage, 577
self-protection technique, 228, 232, 240

W95/Darkmil (virus), 246
W95/Drill (virus), 281

self-protection technique, 224, 246, 256
X-RAY scanning, 448

W95/Fabi (virus), 107-108
W95/Fabi.9608 (virus), 455
W95/Fix2001 (worm), 221-222
W95/Fono (virus), 256
W95/Haiku (virus), 299
W95/Harry (virus), 174, 179
W95/Henky (virus), 156
W95/HPS (virus), 201

heuristic analysis, 467
self-protection technique, 264
somewhat destructive payload

viruses, 300
W95/Hybris (worm), 346-351, 538
W95/Invir (virus), 236, 244
W95/Kala.7620 (virus), 246
W95/Lorez (virus), 62, 176
W95/Mad (virus)

static decryptor detection, 445
X-RAY scanning, 446

W95/Marburg (virus), 632
goat files, 639
heuristic analysis, 467
infection technique, 175
nondestructive payload viruses, 298
self-protection technique, 225, 230, 264

W95/MarkJ.8 (virus), 471
W95/Memorial (virus), 115-116

heuristic analysis, 468
infection technique, 178, 183
self-protection technique, 259

W95/MTX (virus), 249
W95/Murkry (virus)

infection technique, 173
self-protection technique, 240

W95/Navrhar (virus), 76, 160, 180
W95/Opera (virus), 65
W95/Orez (virus), 238
W95/Padania (virus), 237
W95/Perenast (virus), 99
W95/Prizzy (virus), 243
W95/Puron (virus), 463
W95/Regswap (virus), 270
W95/Repus (virus), 210
W95/Resur (virus), 257
W95/Silcer (virus), 257
W95/SillyWR (virus), 240
W95/SK (virus), 89, 199, 277

self-protection technique, 230, 238-239
X-RAY scanning, 451

W95/Sma (virus), 204-205
W95/Spawn.4096 (virus), 176
W95/SST.951 (virus), 229
W95/Vulcano (virus)

infection technique, 137
self-protection technique, 245

W95/WG (virus), 65
W95/Zmist (virus), 106, 576

disassembling, 463
filtering, 444
geometric detection, 461
infection technique, 155-156
self-protection technique, 277-281
Virus Analysis Toolkit (VAT), 658

W95/Zmorph (virus), 272
W95/Zperm (virus), 274, 279
W97M/Coke (virus), 255
W97M/Fabi.9608 (virus), 455
W97M/Groov.A (worm), 318
W97M/Heathen.12888 (virus), 73
W97M/Killboot.A (virus), 68
W97M/Melissa@mm (worm), 314, 538

e-mail address harvesting, 319
e-mail worm attacks, 334

W97M/Pri.Q (virus), 620
W98/Yobe (virus), 223
Wagner, David, 347

INDEX

710

Walker, John (ANIMAL game), 17
Wangsaw, Mintardjo, 13
WANK (worm), 297
Warhol (worm), 326
warnings, information of, 669
Washburn, Mark (virus writer), 261
watch mode, 587
Watson and Crick, 6
Wazzu virus. See WM/Wazzu.A (virus)
weak passwords, danger of, 324
Web sites

BioWall project, 12
links to, 339-340

WebTV worms, 86-87
weeding as process of computer virus

analysis, 621
Wendell, Chip, 13
Whale (virus writer), MSIL/Gastropod virus,

99, 269
Whale (virus), 51

memory scanning attacks, 532
self-protection technique, 230-231, 259

Wheeler, David, 346
White, Steve, 51, 277
Whitehouse, Ollie, 360
whitepapers (virus), 670
wildcards, first-generation antivirus

scanners, 430-431
WildList Organization International, 673
Win/RedTeam (worm), 314

e-mail attachment inserters, 334
Win32

appending viruses, 174-175
companion viruses, 176
EPO (entry-point obscuring) viruses,

150-153
exception handlers, 232
file structure infection, 239
first-generation Windows 95 viruses,

172-173
fractionated cavity viruses, 177
function calls, macro viruses, 73

generating exceptions, 229
growth of viruses for, 181
header infection viruses, 173
heuristic analysis of viruses, 467-472
history of viruses on, 157
IsDebuggerPresent() API, 229
KERNEL32.DLL infection, 175-176
lfanew field modification, 178
PE (portable executable) file format,

infection techniques, 160-172
PE viruses, 61-64
platform support for, 158-160
prepending viruses, 174
viruses, 508-511
VxD-based viruses, 178-180

Win32/Beast.41472.A (virus), 112
Win32/Niko (virus), 519
Win32s, Win32 platform support, 158
Win64, 61, 160
WinCE/Duts.1520 (virus), 109
WinDBG tool, 649
Windows. See also 16-bit Windows; Win32

AUTORUN.INF file viruses, 97
device driver viruses, 65
EPO (entry-point obscuring) viruses,

147-153
Help file viruses, 89
INI file viruses, 97
installation script viruses, 96
LNK viruses, 94
memory-resident viruses, self-detection

techniques, 198-199
metamorphic viruses, 270
NE viruses, 60
PE viruses, 61-64
PIF viruses, 94
read stealth viruses, 204-205
Registry-dependent viruses, 93-94
system buffer viruses, 210
VBScript viruses, 81-82
viruses in kernel mode, 212-215

Windows 2000, Win32 platform support, 158
Windows 2003 Server, Win32 platform

support, 158

INDEX

711

Windows 95
appending viruses, 174-175
boot viruses, 129
companion viruses, 176
first-generation viruses, 172-173
fractionated cavity viruses, 177
header infection viruses, 173
history of Win32 viruses, 157
KERNEL32.DLL infection, 175-176
LE (linear executable) file format, 160
lfanew field modification, 178
prepending viruses, 174
system loader comparison with

Windows NT, 181-183
VxD-based viruses, 178-180
Win32 platform support, 158

Windows 95 System Programming Secrets, 616
Windows 98/ME, Win32 platform

support, 158
Windows 9x, kernel mode, 228-229
Windows CE

device translator layer dependent
viruses, 109-112

Win32 platform support, 158
Windows NT

class of context (memory scanning), 526
executed images (Win32 viruses), 512-514
filter driver virus deactivation (memory

scanning), 527-529
functions (memory scanning), 525
hidden window procedure (Win32

viruses), 512
memory scanning

and paging, 515-517
processes/rights, 507-508

native viruses, 496
service API entry points (memory

scanning), 524
service viruses, 512
system loader comparison with

Windows, 95, 181-183
upper 2G of address space (memory

scanning), 527
virtual memory system, 499-505

Win32 platform support, 158
Win32 viruses, 508-511

Windows Update Web site, DoS attack
against, 413

Windows XP, Win32 platform support, 158
WinNT/RemEx (virus), 496
Winvir. See W16/Winvir (virus)
wireless mobile worms, 359-361
WM/Cap.A (virus), 72, 157
WM/Concept (virus), 296
WM/Concept.A (virus), 67
WM/DMV (virus), 67
WM/Hot.A (virus), 73
WM/Npad (virus), 70
WM/ShareFun (worm), 314
WM/Wazzu.A (virus), 301
WNT/RemEx (virus), 512, 518
WNT/Stream (virus), 58
Word Pro viruses, 94
Word viruses. See macro viruses
WordSwap (virus), 260, 303
worm blocking techniques, 538-542, 557

buffer overflow attacks
blocking, 543-544
code reviews, 544
compiler-level solutions, 545-552
kernel-mode extensions, 554-556
opreating system-level solutions,

552-554
program shepherding, 556
subsystem extensions, 554

connections, 574-575
exception-handler validation, 565-569
GOT/IAT page attributes, 574
injected code detection, 557-562
return-to-LIBC attacks, 569-573
script/SMTP blocking, 539-542
self-sending code blocking, 563-565

worms
backdoor features, 309-311
behavior patterns, 598-608
code propagation techniques, 338

INDEX

712

code injection attacks, 341-342
executable code-based attacks, 339
HTML-based mail, 340
links to Web sites or proxies, 339-340
remote login-based attacks, 341
shell code-based attacks, 342-344

competition between, 357-358
cooperation with viruses, 354-357
definition of, 29-30, 314-315
future attacks, 575-578
outbreak statistics, 670
structure of, 315

infection propagator, 315-316, 331-338
life-cycle manager, 316-317
payload activation, 318
remote control, 316, 351-354
self-tracking, 318
target locator, 315, 319-330
update interface, 316, 345-351

SWCP (simple worm communication
protocol), 359

versus computer viruses, 314
wireless mobile worms, 359-361

writeable flag, 238
WS2_32!sentto() API, 564

X
X-RAY method, algorithmic scanning

methods, 446-451
X97M/Jini.A (virus), 76
Xbox, security vulnerabilities, 347
XF/Paix (virus), 77
XM/Laroux (virus), 67
XML, macro viruses, 77
Xmorfic (virus writer), 88
XMS (Extended Memory Specification), 198
XTEA (extended tiny encryption

algorithm), 346

Y
Yankee_Doodle (virus), 26, 54, 157, 219, 233

Z
Zachary, William B., 7
Zafi.A (worm), 320
Zbikowski, Mark, 60
zero bytes, 433
Zhengxi (virus writer), 100, 248, 348

heuristic analysis, 472
infection technique, 152

Zmist virus. See W95/Zmist (virus)
Zombie (virus writer), 27, 349

ETG (executable trash generator)
engine, 280

ISO image infection, 59
W95/Zmist virus, 155, 277
W95/Zperm virus, 279

zoo viruses, 26
Zox. See INF/Zox (virus)

INDEX

713

	PREFACE
	3 MALICIOUS CODE ENVIRONMENTS
	3.1 Computer Architecture Dependency
	3.2 CPU Dependency
	3.3 Operating System Dependency
	3.4 Operating System Version Dependency
	3.5 File System Dependency
	3.6 File Format Dependency
	3.7 Interpreted Environment Dependency
	3.8 Vulnerability Dependency
	3.9 Date and Time Dependency
	3.10 JIT Dependency: Microsoft .NET Viruses
	3.11 Archive Format Dependency
	3.12 File Format Dependency Based on Extension
	3.13 Network Protocol Dependency
	3.14 Source Code Dependency
	3.15 Resource Dependency on Mac and Palm Platforms
	3.16 Host Size Dependency
	3.17 Debugger Dependency
	3.18 Compiler and Linker Dependency
	3.19 Device Translator Layer Dependency
	3.20 Embedded Object Insertion Dependency
	3.21 Self-Contained Environment Dependency
	3.22 Multipartite Viruses
	3.23 Conclusion
	References

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

