

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the des-
ignations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Habeeb, Mocky, 1971-
A Developer’s Guide to Amazon SimpleDB / Mocky Habeeb.

p. cm.
ISBN 978-0-321-62363-8 (pbk. : alk. paper) 1. Web services. 2. Amazon SimpleDB

(Electronic resource) 3. Cloud computing. 4. Database management. I. Title.
TK5105.88813.H32 2010
006.7’8—dc22

2010016954

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671 3447

ISBN-13: 978-0-321-62363-8
ISBN-10: 0-321-62363-0

Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville, Indiana.

First printing, July 2010

Contents at a Glance

1 Introducing Amazon SimpleDB 1

2 Getting Started with SimpleDB 23

3 A Code-Snippet Tour of the SimpleDB API 41

4 A Closer Look at Select 87

5 Bulk Data Operations 111

6 Working Beyond the Boundaries 121

7 Planning for the Application Lifecycle 141

8 Security in SimpleDB-Based Applications 155

9 Increasing Performance 167

10 Writing a SimpleDB Client: A Language-Independent
Guide 185

11 Improving the SimpleDB Client 217

12 Building a Web-Based Task List 233

Contents

Preface xvi
Acknowledgments xviii

1 Introducing Amazon SimpleDB 1
What Is SimpleDB? 1

What SimpleDB Is Not 1

Schema-Less Data 2

Stored Securely in the Cloud 2

Billed Only for Actual Usage 3

Domains, Items, and Attribute Pairs 3

Multi-Valued Attributes 3

Queries 4

High Availability 4

Database Consistency 5

Sizing Up the SimpleDB Feature Set 6

Benefits of Using SimpleDB 6

Database Features SimpleDB Doesn’t Have 7

Higher-Level Framework Functionality 7

Service Limits 8

Abandoning the Relational Model? 8

A Database Without a Schema 9

Areas Where Relational Databases Struggle 10

Scalability Isn’t Your Problem 11

Avoiding the SimpleDB Hype 11

Putting the DBA Out of Work 12

Dodging Copies of C.J. Date 13

Other Pieces of the Puzzle 14

Adding Compute Power with Amazon EC2 14

Storing Large Objects with Amazon S3 14

Queuing Up Tasks with Amazon SQS 15

Comparing SimpleDB to Other Products and Services 15

Windows Azure Platform 15

Google App Engine 17

Apache CouchDB 17

Dynamo-Like Products 18

viiContents

viii Contents

Compelling Use Cases for SimpleDB 18

Web Services for Connected Systems 18

Low-Usage Application 19

Clustered Databases Without the Time Sink 19

Dynamic Data Application 19

Amazon S3 Content Search 20

Empowering the Power Users 20

Existing AWS Customers 20

Summary 21

2 Getting Started with SimpleDB 23
Gaining Access to SimpleDB 23

Creating an AWS Account 23

Signing Up for SimpleDB 24

Managing Account Keys 24

Finding a Client for SimpleDB 24

Building a SimpleDB Domain Administration Tool 25

Administration Tool Features 25

Key Storage 25

Implementing the Base Application 26

Displaying a Domain List 28

Adding Domain Creation 28

Supporting Domain Deletion 29

Listing Domain Metadata 29

Running the Tool 31

Packaging the Tool as a Jar File 31

Building a User Authentication Service 31

Integrating with the Spring Security Framework 32

Representing User Data 32

Fetching User Data with SimpleDBUserService 34

Salting and Encoding Passwords 36

Creating a User Update Tool 37

Summary 39

3 A Code-Snippet Tour of the SimpleDB API 41
Selecting a SimpleDB Client 41

Typica Setup in Java 42

ixContents

C# Library for Amazon SimpleDB Setup 43

Tarzan Setup in PHP 45

Common Concepts 45

The Language Gap 45

SimpleDB Endpoints 45

SimpleDB Service Versions 47

Common Response Elements 47

CreateDomain 48

CreateDomain Parameters 49

CreateDomain Response Data 49

CreateDomain Snippet in Java 49

CreateDomain Snippet in C# 50

CreateDomain Snippet in PHP 50

ListDomains 51

ListDomains Parameters 51

ListDomains Response Data 51

ListDomains Snippet in Java 52

ListDomains Snippet in C# 52

ListDomains Snippet in PHP 53

DeleteDomain 54

DeleteDomain Parameters 54

DeleteDomain Response Data 54

DeleteDomain Snippet in Java 55

DeleteDomain Snippet in C# 55

DeleteDomain Snippet in PHP 55

DomainMetadata 56

DomainMetadata Parameters 56

DomainMetadata Response Data 56

DomainMetadata Snippet in Java 57

DomainMetadata Snippet in C# 58

DomainMetadata Snippet in PHP 58

PutAttributes 59

PutAttributes Parameters 60

PutAttributes Response Data 62

PutAttributes Snippet in Java 63

PutAttributes Snippet in C# 64

PutAttributes Snippet in PHP 65

x Contents

GetAttributes 65

GetAttributes Parameters 65

GetAttributes Response Data 66

GetAttributes Snippet in Java 67

GetAttributes Snippet in C# 68

GetAttributes Snippet in PHP 69

DeleteAttributes 70

DeleteAttributes Parameters 70

DeleteAttributes Response Data 71

DeleteAttributes Snippet in Java 72

DeleteAttributes Snippet in C# 72

DeleteAttributes Snippet in PHP 73

BatchPutAttributes 73

BatchPutAttributes Parameters 74

BatchPutAttributes Response Data 75

BatchPutAttributes Snippet in Java 76

BatchPutAttributes Snippet in C# 77

BatchPutAttributes Snippet in PHP 78

Select 79

Select Parameters 79

Select Response Data 80

Select Snippet in Java 81

Select Snippet in C# 83

Select Snippet in PHP 85

Summary 86

4 A Closer Look at Select 87
Select Syntax 87

Required Clauses 88

Select Quoting Rule for Names 88

Output Selection Clause 89

WHERE Clause 90

Select Quoting Rules for Values 90

Sort Clause 91

LIMIT Clause 92

xiContents

Formatting Attribute Data for Select 93

Integer Formatting 94

Floating Point Formatting 95

Date and Time Formatting 95

Case Sensitivity 97

Expressions and Predicates 97

Simple Comparison Operators 98

Range Operators 98

IN() Queries 99

Prefix Queries with LIKE and NOT LIKE 99

IS NULL and IS NOT NULL 100

Multi-Valued Attribute Queries 100

Multiple Predicate Queries with the INTERSECTION
Operator 101

Selection with EVERY() 102

Query Results with the Same Item Multiple Times
102

Improving Query Performance 103

Attribute Indexes 103

Composite Attributes 104

Judicious Use of LIKE 105

Running on EC2 106

Skipping Pages with count() and LIMIT 106

Measuring Select Performance 107

Automating Performance Measurements 109

Summary 110

5 Bulk Data Operations 111
Importing Data with BatchPutAttributes 112

Calling BatchPutAttributes 112

Mapping the Import File to SimpleDB Attributes 112

Supporting Multiple File Formats 113

Storing the Mapping Data 113

Reporting Import Progress 113

Creating Right-Sized Batches 114

xii Contents

Managing Concurrency 114

Resuming a Stopped Import 115

Verifying Progress and Completion 115

Properly Handling Character Encodings 116

Backup and Data Export 116

Using Third-Party Backup Services 117

Writing Your Own Backup Tool 118

Restoring from Backup 119

Summary 119

6 Working Beyond the Boundaries 121
Availability: The Final Frontier 121

Boundaries of Eventual Consistency 123

Item-Level Atomicity 123

Looking into the Eventual Consistency Window 124

Read-Your-Writes 125

Implementing a Consistent View 125

Handling Text Larger Than 1K 128

Storing Text in S3 128

Storing Overflow in Different Attributes 129

Storing Overflow as a Multi-Valued Attribute 130

Entities with More than 256 Attributes 131

Paging to Arbitrary Query Depth 131

Exact Counting Without Locks or Transactions 133

Using One Item Per Count 134

Storing the Count in a Multi-Valued Attribute 136

Testing Strategies 138

Designing for Testability 138

Alternatives to Live Service Calls 139

Summary 139

7 Planning for the Application Lifecycle 141
Capacity Planning 141

Estimating Initial Costs 141

Keeping Tabs on SimpleDB Usage with AWS Usage
Reports 142

Creating More Finely Detailed Usage Reports 145

Tracking Usage over Time 146

xiiiContents

Storage Requirements 146

Computing Storage Costs 147

Understanding the Cost of Slack Space 147

Evaluating Attribute Concatenation 148

Scalability: Increasing the Load 148

Planning Maintenance 150

Using Read-Repair to Apply Formatting Changes 150

Using Read-Repair to Update Item Layout 152

Using a Batch Process to Apply Updates 152

Summary 153

8 Security in SimpleDB-Based Applications 155
Account Security 155

Managing Access Within the Organization 155

Limiting Amazon Access from AWS Credentials 157

Boosting Security with Multi-Factor Authentication
158

Access Key Security 159

Key Management 159

Secret Key Rotation 160

Data Security 161

Storing Clean Data 161

SSL and Data in Transmission 162

Data Storage and Encryption 164

Storing Data in Multiple Locations 165

Summary 165

9 Increasing Performance 167
Determining If SimpleDB Is Fast Enough 167

Targeting Moderate Performance in Small Projects
167

Exploiting Advanced Features in Small Projects 168

Speeding Up SimpleDB 169

Taking Detailed Performance Measurements 169

Accessing SimpleDB from EC2 169

Caching 170

Concurrency 172

Keeping Requests and Responses Small 173

xiv Contents

Operation-Specific Performance 174

Optimizing GetAttributes 174

Optimizing PutAttributes 178

Optimizing BatchPutAttributes 179

Optimizing Select 180

Data Sharding 181

Partitioning Data 181

Multiplexing Queries 181

Accessing SimpleDB Outside the Amazon Cloud 182

Working Around Latency 182

Ignoring Latency 183

Summary 183

10 Writing a SimpleDB Client: A Language-Independent
Guide 185
Client Design Overview 185

Public Interface 186

Attribute Class 188

Item Class 190

Client Design Considerations 191

High-Level Design Issues 191

Operation-Specific Considerations 193

Implementing the Client Code 196

Safe Handling of the Secret Key 196

Implementing the Constructor 197

Implementing the Remaining Methods 198

Making Requests 200

Computing the Signature 208

Making the Connections 210

Parsing the Response 214

Summary 216

11 Improving the SimpleDB Client 217
Convenience Methods 217

Convenient Count Methods 217

Select with a Real Limit 219

xvContents

Custom Metadata and Building a Smarter Client 219

Justifying a Schema for Numeric Data 220

Database Tools 221

Coordinating Concurrent Clients 221

Storing Custom Metadata within SimpleDB 221

Storing Custom Metadata in S3 222

Automatically Optimizing for Box Usage Cost 222

The Exponential Cost of Write Operations 223

QueryTimeout: The Most Expensive Way to Get Nothing
225

Automated Domain Sharding 228

Domain Sharding Overview 228

Put/Get Delete Routing 228

Query Multiplexing 231

Summary 232

12 Building a Web-Based Task List 233
Application Overview 233

Requirements 233

The Data Model 234

Implementing User Authentication 235

Implementing a Task Workspace 238

Implementing a Task Service 241

Adding the Login Servlet 244

Adding the Logout Servlet 249

Displaying the Tasks 249

Adding New Tasks 252

Deployment 252

Summary 254

Index 255

Preface
This book is a detailed guide for using Amazon SimpleDB. Over the years that I have
been using this web service, I have always tried to contribute back to the developer
community.This primarily involved answering questions on the SimpleDB forums and
on stackoverflow.com.What I saw over time was a general lack of resources and under-
standing about the practical, day-to-day use of the service.As a result, the same types of
questions were being asked repeatedly, and the same misconceptions seemed to be held
by many people.

At the time of this writing, there are no SimpleDB books available. My purpose in
writing this book is to offer my experience and my opinion about getting the most from
SimpleDB in a more structured and thorough format than online forums. I have made
every attempt to avoid rehashing information that is available elsewhere, opting instead
for alternate perspectives and analysis.

About This Book
SimpleDB is a unique service because much of the value proposition has nothing to do
with the actual web service calls. I am referring to the service qualities that include avail-
ability, scalability, and flexibility.These make great marketing bullet points, and not just
for SimpleDB.You would not be surprised to hear those terms used in discussions of just
about any server-side product.With SimpleDB, however, these qualities have a direct
impact on how much benefit you get from the service. It is a service based on a specific
set of tradeoffs; many features are specifically absent, and for good reason. In my experi-
ence, a proper understanding of these tradeoffs is essential to knowing if SimpleDB will
be a good fit for your application.

This book is designed to provide a comprehensive discussion of all the important
issues that come up when using SimpleDB.All of the available web service operations
receive detailed coverage.This includes code samples, notes on how to solve common
problems, and warnings about many pitfalls that are not immediately obvious.

Target Audience
This book is intended for software developers who want to use or evaluate SimpleDB.
Certain chapters should also prove to be useful to managers, executives, or technologists
who want to understand the value of SimpleDB and what problems it seeks to solve.

There is some difficulty in audience targeting that comes from the nature of the
SimpleDB service. On the one hand, it is a web-based service that uses specific message
formats over standard technologies like HTTP and XML. On the other hand, applica-
tion developers, and probably most users, will never deal directly with the low-level wire
protocol, opting instead for client software in his or her chosen programming language.

This creates (at least) two separate perspectives to use when discussing the service.
The low-level viewpoint is needed for the framework designers and those writing a
SimpleDB client, whereas a higher-level, abridged version is more suitable for application

xvi Preface

developers whose view of SimpleDB is strictly through the lens of the client software. In
addition, the app developers are best served with a guide that uses a matching program-
ming language and client.

The official Amazon documentation for SimpleDB is targeted squarely at the devel-
opers writing the clients.This is by necessity—SimpleDB is a web service, and the details
need to be documented.

What I have tried to accomplish is the targeting of both groups. One of the most vis-
ible methods I used is splitting the detailed API coverage into two separate chapters.

Chapter 3,“A Code-Snippet Tour of the SimpleDB API,” presents a detailed discus-
sion of all the SimpleDB operations, including all parameters, error messages, and code
examples in Java, C#, and PHP.This is fully suitable for both groups of developers, with
the inclusion of practical advice and tips that apply to the operations themselves.

Chapter 10,“Writing a SimpleDB Client:A Language-Independent Guide,” offers a
guide and walkthrough for creating a SimpleDB client from scratch.This adds another
layer to the discussion with much more detail about the low-level concerns and issues.
This is intended for the developers of SimpleDB clients and those adding SimpleDB
support to existing frameworks.Apart from Chapter 3, the remainder of the examples in
the book are written in Java.

Code Examples
All of the code listings in this book are available for download at this book’s website at
http://www.simpledbbook.com/code.

xviiPreface

http://www.simpledbbook.com/code

1
Introducing Amazon SimpleDB

Amazon has been offering its customers computing infrastructure via Amazon Web Ser-
vices (AWS) since 2006.AWS aims to use its own infrastructure to provide the building
blocks for other organizations to use.The Elastic Compute Cloud (EC2) is an AWS offer-
ing that enables you to spin up virtual servers as you need the computing power and shut
them off when you are done.Amazon Simple Storage Service (S3) provides fast and un-
limited file storage for the web.Amazon SimpleDB is a service designed to complement
EC2 and S3, but the concept is not as easy to grasp as “extra servers” and “extra storage.”
This chapter will cover the concepts behind SimpleDB and discuss how it compares to
other services.

What Is SimpleDB?
SimpleDB is a web service providing structured data storage in the cloud and backed by
clusters of Amazon-managed database servers.The data requires no schema and is stored
securely in the cloud.There is a query function, and all the data values you store are fully
indexed. In keeping with Amazon’s other web services, there is no minimum charge, and
you are only billed for your actual usage.

What SimpleDB Is Not
The name “SimpleDB” might lead you to believe that it is just like relational database
management systems (RDBMS), only simpler to use. In some respects, this is true, but it
is not just about making simplistic database usage simpler. SimpleDB aims to simplify
the much harder task of creating and managing a database cluster that is fault-tolerant in
the face of multiple failures, replicated across data centers, and delivers high levels of
availability.

One misconception that seems to be very common among people just learning about
SimpleDB is the idea that migrating from an RDBMS to SimpleDB will automatically
solve your database performance problems. Performance certainly is an important part of

2 Chapter 1 Introducing Amazon SimpleDB

the equation when you seek to evaluate databases. Unfortunately, for some people, speed
is the beginning and the end of the thought process. It can be tempting to view any of
the new hosted database services as a silver bullet when offered by a mega-company like
Microsoft,Amazon, or Google. But the fact is that SimpleDB is not going to solve your
existing speed issues.The service exists to solve an entirely different set of problems.
Reads and writes are not blazingly fast.They are meant to be “fast enough.” It is entirely
possible that AWS may increase performance of the service over time, based on user feed-
back. But SimpleDB is never going to be as speedy as a standalone database running on
fast hardware. SimpleDB has a different purpose.

Robust database clusters replicating data across multiple data centers is not a data stor-
age solution that is typically easy to throw together. It is a time consuming and costly un-
dertaking. Even in organizations that have the database administrator (DBA) expertise and
are using multiple data centers, it is still time consuming. It is costly enough that you
would not do it unless there was a quantifiable business need for it. SimpleDB offers data
storage with these features on a pay-as-you-go basis.

Of course, taking advantage of these features is not without a downside. SimpleDB is a
moderately restrictive environment, and it is not suitable for many types of applications.
There are various restrictions and limitations on how much data can be stored and trans-
ferred and how much network bandwidth you can consume.

Schema-Less Data
SimpleDB differs from relational databases where you must define a schema for each
database table before you can use it and where you must explicitly change that schema
before you can store your data differently. In SimpleDB, there is no schema requirement.
Although you still have to consider the format of your data, this approach has the benefit
of freeing you from the time it takes to manage schema modifications.

The lack of schema means that there are no data types; all data values are treated as
variable length character data.As a result, there is literally nothing extra to do if you
want to add a new field to an existing database.You just add the new field to
whichever data items require it.There is no rule that forces every data item to have
the same fields.

The drawbacks of a schema-less database include the lack of automatic integrity
checking in the database and an increased burden on the application to handle format-
ting and type conversions. Detailed coverage of the impact of schema-less data on queries
appears in Chapter 4,“A Closer Look at Select,” along with a discussion of the format-
ting issues.

Stored Securely in the Cloud
The data that you store in SimpleDB is available both from the Internet and (with less la-
tency) from EC2.The security of that data is of great importance for many applications,

3What Is SimpleDB?

while the security of the underlying web services account should be important to all
users.

To protect that data, all access to SimpleDB, whether read or write, is protected by
your account credentials. Every request must bear the correct and authorized digital sig-
nature or else it is rejected with an error code. Security of the account, data transmis-
sion, and data storage is the subject of Chapter 8,“Security in SimpleDB-Based
Applications.”

Billed Only for Actual Usage
In keeping with the AWS philosophy of pay-as-you-go, SimpleDB has a pricing structure
that includes charges for data storage, data transfer, and processor usage.There are no base
fees and there are no minimums.At the time of this writing,Amazon’s monthly billing for
SimpleDB has a free usage tier that covers the first gigabyte (GB) of data storage, the first
GB of data transfer, and the first 25 hours of processor usage each month. Data transfer
costs beyond the free tier have historically been on par with S3 pricing, whereas storage
costs have always been somewhat higher. Consult the AWS website at https://aws.
amazon.com/simpledb/ for current pricing information.

Domains, Items, and Attribute Pairs
The top level of data storage in SimpleDB is the domain.A domain is roughly analogous
to a database table.You can create and delete domains as needed.There are no configura-
tion options to set on a domain; the only parameter you can set is the name of the domain.

All the data stored in a SimpleDB domain takes the form of name-value attribute
pairs. Each attribute pair is associated with an item, which plays the role of a table row.
The attribute name is similar to a database column name but unlike database rows that
must all have identical columns, SimpleDB items can each contain different attribute
names.This gives you the freedom to store different data in some items without changing
the layout of other items that do not have that data. It also allows the painless addition of
new data fields in the future.

Multi-Valued Attributes
It is possible for each attribute to have not just one value, but an array of values. For ex-
ample, an application that allows user tagging can use a single attribute named “tags” to
hold as many or as few tags as needed for each item.You do not need to change a schema
definition to enable multi-valued attributes.All you need to do is add another attribute to
an item and use the same attribute name with a different value.This provides you with
flexibility in how you store your data.

https://aws.amazon.com/simpledb/
https://aws.amazon.com/simpledb/

4 Chapter 1 Introducing Amazon SimpleDB

Queries
SimpleDB is primarily a key-value store, but it also has useful query functionality.A SQL-
style query language is used to issue queries over the scope of a single domain.A subset of
the SQL select syntax is recognized.The following is an example SimpleDB select statement:

SELECT * FROM products WHERE rating > '03' ORDER BY rating LIMIT 10

You put a domain name—in this case, products—in the FROM clause where a table
name would normally be.The WHERE clause recognizes a dozen or so comparison opera-
tors, but an attribute name must always be on the left side of the operator and a literal
value must always be on the right.There is no relational comparison between attributes
allowed here. So, the following is not valid:

SELECT * FROM users WHERE creation-date = last-activity-date

All the data stored in SimpleDB is treated as plain string data.There are no explicit in-
dexes to maintain; each value is automatically indexed as you add it.

High Availability
High availability is an important benefit of using SimpleDB.There are many types of fail-
ures that can occur with a database solution that will affect the availability of your appli-
cation.When you run your own database servers, there is a spectrum of different
configurations you can employ.

To help quantify the availability benefits that you get automatically with SimpleDB, let’s
consider how you might achieve the same results using replication for your own database
servers.At the easier end of the spectrum is a master-slave database replication scheme, where
the master database accepts client updates and a second database acts as a slave and pulls all the
updates from the master.This eliminates the single point of failure. If the master goes down,
the slave can take over. Managing these failures (when not using SimpleDB) requires some
additional work for swapping IP addresses or domain name entries, but it is not very difficult.

Moving toward the more difficult end of the self-managed replication spectrum allows
you to maintain availability during failure that involves more than a single server.There is
more work to be done if you are going to handle two servers going down in a short period,
or a server problem and a network outage, or a problem that affects the whole data center.

Creating a database solution that maintains uptime during these more severe failures
requires a certain level of expertise. It can be simplified with cloud computing services
like EC2 that make it easy to start and manage servers in different geographical locations.
However, when there are many moving parts, the task remains time consuming. It can
also be expensive.

When you use SimpleDB, you get high availability with your data replicated to different
geographic locations automatically.You do not need to do any extra work or become an ex-
pert on high availability or the specifics of replication techniques for one vendor’s database
product.This is a huge benefit not because that level of expertise is not worth attaining, but
because there is a whole class of applications that previously could not justify that effort.

5What Is SimpleDB?

Database Consistency
One of the consequences of replicating database updates across multiple servers and data
centers is the need to decide what kind of consistency guarantees will be maintained.A
database running on a single server can easily maintain strong consistency.With strong
consistency, after an update occurs, every subsequent database access by every client re-
flects the change and the previous state of the database is never seen.

This can be a problem for a database cluster if the purpose of the cluster is to im-
prove availability. If there is a master database replicating updates to slave databases,
strong consistency requires the slaves to accept the update at the same time as the mas-
ter.All access to the database would then be strongly consistent. However, in the case
of a problem preventing communication between the master and a slave, the master
would be unable to accept updates because doing so out of sync with a slave would
break the consistency guarantee. If the database rejects updates during even simple
problem scenarios, it defeats the availability. In practice, replication is often not done
this way.A common solution to this problem is to allow only the master database to
accept updates and do so without direct contact with any slave databases.After the
master commits each transaction, slaves are sent the update in near real-time.This
amounts to a relaxing of the consistency guarantee. If clients only connect to the
slave when the master goes down, then the weakened consistency only applies to
this scenario.

SimpleDB sports the option of either eventual consistency or strong consistency for
each read request.With eventual consistency, when you submit an update to SimpleDB,
the database server handling your request will forward the update to the other database
servers where that domain is replicated.The full update of all replicas does not happen
before your update request returns.The replication continues in the background while
other requests are handled.The period of time it takes for all replicas to be updated is
called the eventual consistency window.The eventual consistency window is usually
small.AWS does not offer any guarantees about this window, but it is frequently less than
one second.

A couple things can make the consistency window larger. One is a high request load.
If the servers hosting a given SimpleDB domain are under heavy load, the time it takes
for full replication is increased.Additionally a network or server failure can block replica-
tion until it is resolved. Consider a network outage between data centers hosting your
data. If the SimpleDB load-balancer is able to successfully route your requests to both
data centers, your updates will be accepted at both locations. However, replication will fail
between the two locations.The data you fetch from one will not be consistent with up-
dates you have applied to the other. Once the problem is fixed, SimpleDB will complete
the replication automatically.

Using a consistent read eliminates the consistency window for that request.The results
of a consistent read will reflect all previous writes. In the normal case, a consistent read is
no slower than an eventually consistent read. However, it is possible for consistent read re-
quests to display higher latency and lower bandwidth on occasion.

6 Chapter 1 Introducing Amazon SimpleDB

Sizing Up the SimpleDB Feature Set
The SimpleDB API exposes a limited set of features. Here is a list of what you get:

n You can create named domains within your account.At the time of this writing,
the initial allocation allows you to create up to 100 domains.You can request a
larger allocation on the AWS website.

n You can delete an existing domain at any time without first deleting the data
stored in it.

n You can store a data item for the first time or for subsequent updates using a call to
PutAttributes.When you issue an update, you do not need to pass the full item;
you can pass just the attributes that have changed.

n There is a batch call that allows you to put up to 25 items at once.
n You can retrieve the data with a call to GetAttributes.
n You can query for items based on criteria on multiple attributes of an item.
n You can store any type of data. SimpleDB treats it all as string data, and you are free

to format it as you choose.
n You can store different types of items in the same domain, and items of the same

type can vary in which attributes have values.

Benefits of Using SimpleDB
When you use SimpleDB, you give up some features you might otherwise have, but as a
trade-off, you gain some important benefits, as follows:

n Availability— When you store your data in SimpleDB, it is automatically replicated
across multiple storage nodes and across multiple data centers in the same region.

n Simplicity— There are not a lot of knobs or dials, and there are not any configura-
tion parameters.This makes it a lot harder to shoot yourself in the foot.

n Scalability— The service is designed for scalability and concurrent access.
n Flexibility— Store the data you need to store now, and if the requirements change,

store it differently without changing the database.
n Low latency within the same region— Access to SimpleDB from an EC2 in-

stance in the same region has the latency of a typical LAN.
n Low maintenance— Most of the administrative burden is transferred to Amazon.

They maintain the hardware and the database software.

7Sizing Up the SimpleDB Feature Set

Database Features SimpleDB Doesn’t Have
There are a number of common database features noticeably absent from Amazon Sim-
pleDB. Programs based on relational database products typically rely on these features.You
should be aware of what you will not find in SimpleDB, as follows:

n Full SQL support— A query language similar to SQL is supported for queries
only. However, it only applies to “select” statements, and there are some syntax dif-
ferences and other limitations.

n Joins— You can issue queries, but there are no foreign keys and no joins.
n Auto-incrementing primary keys— You have to create your own primary keys in

the form of an item name.
n Transactions— There are no explicit transaction boundaries that you can mark or

isolation levels that you can define.There is no notion of a commit or a rollback.
There is some implicit support for atomic writes, but it only applies within the
scope of each individual item being written.

Higher-Level Framework Functionality
This simplicity of what SimpleDB offers on the server side is matched by the simplicity of
what AWS provides in officially supported SimpleDB clients.There is a one-to-one map-
ping of service features to client calls.There is a lot of functionality that can be built atop
the basic SimpleDB primitives. In addition, the inclusion of these advance features has al-
ready begun with a number of third-party SimpleDB clients. Popular persistence frame-
works used as an abstraction layer above relational databases are prime candidates for this.

Some features normally included within the database server can be written into Sim-
pleDB clients for automatic handling.Third-party client software is constantly improving,
and some of the following features may be present already or you may have to write it for
yourself:

n Data formatting— Integers, floats, and dates require special formatting in some cases.
n Object mapping— It can be convenient to map programming language objects to

SimpleDB attributes.
n Sharding— The domain is the basic unit of horizontal scalability in SimpleDB.

However, there is no explicit support for automatically distributing data across
domains.

n Cache integration— Caching is an important aspect of many applications, and
caching popular data objects is a well-understood optimization. Configurable
caching that is well integrated with a SimpleDB client is an important feature.

8 Chapter 1 Introducing Amazon SimpleDB

Service Limits
There are quite a few limitations on what you are allowed to do with SimpleDB. Most of
these are size and quantity restrictions.There is an underlying philosophy that small and
quickly serviced units of work provide the greatest opportunity for load balancing and
maintaining uniform service levels.AWS maintains a current listing of the service limita-
tions within the latest online SimpleDB Developer Guide at the AWS website.At the
time of this writing, the limits are as follows:

n Max storage per domain: 10GB
n Max attribute values per domain: 1 billion
n Initial max domains per account: 100
n Max attribute values per item: 256
n Max length of item name, attribute name, or value: 1024 bytes
n Max query execution time: 5 seconds
n Max query results: 2500
n Max query response size: 1MB
n Max comparisons per query: 20

These limits may seem restrictive when compared to the unlimited nature of data sizes
you can store in other database offerings. However, there are two things to keep in mind
about these limits. First, SimpleDB is not a general-purpose data store suitable for every-
thing. It is specifically designed for storing small chunks of data. For larger data objects
that you want to store in the cloud, you are advised to use Amazon S3. Secondly, consider
the steps that need to be taken with a relational database at higher loads when perform-
ance begins to degrade.Typical recommendations often include offloading processing
from the database, reducing long-running queries, and applying selective de-normaliza-
tion of the data.These limits are what help enable efficient and automatic background
replication and high concurrency and availability. Some of these limits can be worked
around to a degree, but no workarounds exist for you to make SimpleDB universally ap-
propriate for all data storage needs.

Abandoning the Relational Model?
There have been many recent products and services offering data storage but rejecting the
relational model.This trend has been dubbed by some as the NoSQL movement.There is
a fair amount of enthusiasm both for and against this trend.A few of those in the
“against” column argue that databases without schemas, type checking, normalization, and
so on are throwing away 40 years of database progress. Likewise, some proponents are
quick to dispense the hype about how a given NoSQL solution will solve your problems.
The aim of this section is to present a case for the value of a service like SimpleDB that
addresses legitimate criticism and avoids hype and exaggeration.

9Abandoning the Relational Model?

A Database Without a Schema
One of the primary areas of contention around SimpleDB and other NoSQL solutions
centers on the lack of a database schema. Database schemas turn out to be very important
in the relational model.The formalism of predefining your data model into a schema pro-
vides a number of specific benefits, but it also imposes restrictions.

SimpleDB has no notion of a schema at all. Many of the structures defined in a typical
database schema do not even exist in SimpleDB.This includes things such as stored pro-
cedures, triggers, relationships, and views. Other elements of a database schema like fields
and types do exist in SimpleDB but are flexible and are not enforced on the server. Still
other features, like indexes, require no formal definition because the SimpleDB service
creates and manages them behind the scenes.

However, the lack of a schema requirement in SimpleDB does not prevent you from
gaining the benefits of a schema.You can create your own schema for whatever portion
of your data model that is appropriate.This allows you to cherry-pick the benefits that are
helpful to your application without the unneeded restrictions.

One of the most important things you gain from codifying your data layout is a sepa-
ration between it and the application.This is an enabling feature for tools and application
plug-ins.Third-party tools can query your data, convert your data from one format to an-
other, and analyze and report on your data based solely on the schema definition.The al-
ternative is less attractive.Tools and extensions are more limited in what they can do
without knowledge of the formats. For example, you cannot compute the sum of values
in a numeric column if you do not know the format of that column. In the degenerate
case, developers must search through your source code to infer data types.

In SimpleDB, many of the most common database features are not available. Query,
however, is one important feature that is present and has some bearing on your data for-
matting. Because all the data you store in SimpleDB is variable length character data, you
must apply padding to numeric data in order for queries to work properly. For example, if
you want to store an attribute named “price” with a value of “269.94,” you must first add
leading zeros to make it “00000269.94.”This is required because greater-than and less-
than comparisons within SimpleDB compare each character from left to right. Padding
with zeros allows you to line up the decimal point so the comparisons will be correct for
all possible values of that attribute. Relational database products handle this for you be-
hind the scenes when you declare a column type is a numeric type like int.

This is a case in SimpleDB where a schema is beneficial.The code that initially im-
ports records into SimpleDB, the code that writes records as your app runs, and any code
that uses a numeric attribute in a query all need to use the exact same format. Explicitly
storing the schema externally is a much less error-prone approach than implicitly defin-
ing the format in duplicated code across various modules.

Another benefit of the predefined schema in the relational model is that it forces you
to think through the data relationships and make unambiguous decisions about your data
layout. Sometimes, however, the data is simple, there are no relationships, and creating a
data model is overkill. Sometimes you may still be in the process of defining the data

10 Chapter 1 Introducing Amazon SimpleDB

model. SimpleDB can be used as part of the prototyping process, enabling you to evolve
your schema dynamically as issues surface that may not otherwise have become known so
quickly.You may be migrating from a different database with an existing data model.The
important thing to remember is that SimpleDB is simple by design. It can be useful in a
variety of situations and does not prevent you from creating your own schema external to
SimpleDB.

Areas Where Relational Databases Struggle
Relational databases have been around for some time.There are many robust and mature
products available. Modern database products offer a multitude of features and a host of
configuration options.

One area where difficulty arises is with database features that you do not need or that
you should not use for a particular application.Applications that have simple data storage
requirements do not benefit from the myriad of available options. In fact, it can be detri-
mental in a couple different ways. If you need to learn the intricacies of a particular data-
base product before you can make good use of it, the time spent learning takes away from
time you could have spent on your application. Knowledge of how database products
work is good to have. It would be hard to argue that you wasted your time by learning it
because that information could serve you well far into the future. Similarly, if there is a
much simpler solution that meets your needs, you could choose that instead. If you had
no immediate requirement to gain product specific database expertise, it would be hard to
insist that you made the wrong choice. It is a tough sell to argue that the more time-con-
suming, yet educational, route is always better than the simple and direct route.This is a
challenge faced by databases today, when the simple problems are not met with simple
solutions.

Another pain point with relational databases is horizontal scaling. It is easy to scale a
database vertically by beefing up your server because memory and disk drives are inex-
pensive. However, scaling a database across multiple servers can be extremely difficult.
There is a whole spectrum of options available for horizontal scaling that includes basic
master-slave replication as well as complicated sharding strategies.These solutions each re-
quire a different, and sometimes considerable, amount of expertise. Nevertheless, they all
have one thing in common when compared to vertical scaling solutions. On top of the
implementation difficulty, each additional server results in an additional increase in ongo-
ing maintenance responsibility. Moreover, it is not merely the additional server mainte-
nance of having more servers. I am referring to the actual database administration tasks of
managing additional replicas, backups, and log shipping. It also includes the tasks of rolling
out schema changes and new indexes to all servers in the cluster.

If you are in a situation where you want a simple database solution or you want hori-
zontal scaling, SimpleDB is definitely a service to consider. However, you may need to be
prepared to defend your decision.

11Abandoning the Relational Model?

Scalability Isn’t Your Problem
Around every corner, you can find people who will challenge your efforts to scale hori-
zontally. Beyond the cost and difficulty, there is a degree of resistance to products and
services that seek to solve these problems.

The typical, and now clichéd, advice tends to be that scalability is not your problem,
and trying to solve scalability at the outset is a case of premature optimization.This is fol-
lowed by a discussion of how many daily page views a single high-performance database
server can support. Finally, it ends by noting that it is really just a problem for when you
reach the scale of Google or Amazon.

The premise of the argument is actually solid, although not applicable to all situations.
The premise is that when you are building a site or service that nobody has heard of yet,
you are more concerned about handling loads of people than about making the site re-
markable. It is good advice for these situations. Moreover, it is especially timely consider-
ing that there is a small but religious segment of Internet commentators who eagerly
chime,“X doesn’t scale,” where X is any alternative to the solution the commenter uses.
Among programmers, there is a general preoccupation with performance optimization
that seems somewhat out of balance.

The fact is that for many projects, scalability really is not your problem, but availability
can be. Distributing your data store across servers from the outset is not a premature opti-
mization when you can quantify the cost of down time. If a couple hours of downtime
will have an impact on your business, then availability is something worth thinking about.
For the IT department delivering a mission-critical application, availability is important.
Even if only 20 users will use it during normal business hours, when it provides a com-
petitive advantage, it is important to maintain availability through expected outages.
When you have a product launch, and your credibility is at stake as much as your rev-
enue, you are not putting the cart before the horse when you protect yourself against
hardware failures.

There are many situations where availability is an important system quality. Look at
how common it is for a multi-server web cluster to host one website. Before you can add
a second web server, you must first solve a small set of known problems. User sessions
have to be managed properly; load balancing has to be in place and routing around unre-
sponsive servers. However, web server clusters are useful for more than high-traffic load
handling.They are also beneficial because we know that hardware will fail, and we want
to maintain service during the failure.We can add another web server because it is neither
costly nor difficult, and it improves the availability.With the advent of systems designed to
provide higher database availability that are not costly nor hard, availability becomes
worth pursuing for less-critical projects.

Avoiding the SimpleDB Hype
There are many different application scenarios where SimpleDB is an interesting option.
That said, some people have overstated the benefits of using SimpleDB specifically and
hosted NoSQL databases in general.The reasoning seems to be that services running on

12 Chapter 1 Introducing Amazon SimpleDB

the infrastructure of companies like Amazon, Google, or Microsoft will undoubtedly have
nearly unlimited automatic scalability.Although there is nothing wrong with enthusiasm
for products and services that you like, it is good to base that enthusiasm on reality.

Do not be fooled into thinking that any of these new databases is going to be a
panacea. Make sure you educate yourself about the pros and cons of each solution as you
evaluate it.The majority of services in this space have a free usage tier, and all the open-
source alternatives are completely free to use.Take advantage of it, and try them out for
yourself.We live in an amazing time in history where the quantity of information avail-
able at our fingertips is unprecedented.Access to web-based services and open-source
projects is a huge opportunity.The tragedy is that in a time when it has never been easier
to gain personal experience with new technology, all too often we are tempted to adopt
the opinions of others instead of taking the time to form our own opinions. Do not be-
lieve the hype—find out for yourself.

Putting the DBA Out of Work
One of the stated goals of SimpleDB is allowing customers to outsource the time and ef-
fort associated with managing a web-scale database. Managing the database is traditionally
the world of the DBA. Some people have assumed that advocating the use of SimpleDB
amounts to advocating a world where the DBA diminishes in importance. However, this
is not the case at all.

One of the things that have come about from the widespread popularity of EC2 has
been a change in the role of system administrators.What we have found is that managing
EC2 virtual instances is less work than managing a physical server instance. However, the
result has not been a rash of system administrator firings. Instead, the result has been that
system administrators are able to become more productive by managing larger numbers
of servers than they otherwise could.The ease of acquisition and the low cost to acquire
and release the computing power have led, in many cases, to a greater and more dynamic
use of the servers. In other words, organizations are using more server instances because
the various levels of the organization can handle it, from a cost, risk, and labor standpoint.

SimpleDB and its cohorts seem to facilitate a similar change but on a smaller scale.
First, SimpleDB has less general applicability than EC2. It is a suitable solution for a much
smaller set of problems.AWS fully advocates the use of existing relational database prod-
ucts. SimpleDB is an additional option, not a replacement. Moreover, SimpleDB finds
good usage in some areas where a relational database might not normally be used, as in
the case of storing web user session data. In addition, for those projects that choose to use
SimpleDB instead of, or along with, a relational database, it does not mean that there is no
role for the DBA. Some tasks remain similar to EC2, which can result in a greater capac-
ity for IT departments to create solutions.

13Abandoning the Relational Model?

Dodging Copies of C.J. Date
There are database purists who wholeheartedly try to dissuade people from using any
type of non-relational database on principle alone. Not only that, but they also go to
great lengths to advocate the proper use of relational databases and lament the fact that no
current database products correctly implement the relational model. Having found the
one-true data storage paradigm, they believe that the relational model is “right” and is the
only one that will last.The purists are not wrong in their appreciation for the relational
model and for SQL.The relational model is the cornerstone of the database field, and
more than that, an invaluable contribution to the world of computing. It is one of the
two best things to come out of 1969. Invented by a mathematician and considered a
branch of mathematics itself, there is a solid theoretical rigor that underlies its principles.
Even though it is not a complete or finished branch, the work to date has been sound.

The world of mathematics and academic research is an interesting place.When you
have spent large quantities of your life and career there, you are highly qualified to make
authoritative comments on topics like correctness and provability. Nevertheless, being ei-
ther a relational model expert or merely someone who holds them in high regard does
not say anything about your ability to deliver value to users. It is clearly true that model-
ing your data “correctly” can provide measurable benefits and that making mistakes in
your model can lead to certain classes of problems. However, you can still provide signifi-
cant user value with a flawed model, and correctness is no guarantee of success.

It is like perfectly generated XHTML that always validates. It is like programming with
a functional style (in any programming language) that lets you prove your programs are
correct. It is like maintaining unit tests that provide 100% test coverage for every line of
code you write.There is nothing inherently bad you can say about these things. In fact,
there are plenty of good things to say about them.The problem is not a technical prob-
lem—it is a people problem.The problem is when people become hyper-focused on nar-
row technological aspects to the exclusion of the broader issues of the application’s
purpose.

The people conducting database research and the ones who take the time to help edu-
cate the computing industry deserve our respect. If you have a degree in computer sci-
ence, chances are you studied C.J. Date’s work in your database class.Among professional
programmers, there is no good excuse for not knowing data and relational fundamentals.
However, the person in the next row of cubicles who is only contributing condescending
criticism to your project is no C.J. Date. In addition, the user with 50 times your
stackoverflow.com reputation who ridicules the premise of your questions without pro-
viding useful suggestions is no E.F. Codd. Understanding the theory is of great impor-
tance. Knowing how to deliver value to your users is of greater importance. In the end,
avoid vociferous ignorance and don’t let anyone kick copies of C.J. Date in your face.

14 Chapter 1 Introducing Amazon SimpleDB

Other Pieces of the Puzzle
In the world of cloud computing, there are a growing number of companies and services
from which to choose. Each service provider seeks to align its offerings with a broader
strategy.With Amazon, that strategy includes providing very basic infrastructure building
blocks for users to assemble customized solutions.AWS tries to get you to use more than
one service offering by making the different services useful with each other and by offer-
ing fast and free data transfer between services in the same region.This section describes
three other Amazon Web Services, along with some ways you might find them to be use-
ful in conjunction with SimpleDB.

Adding Compute Power with Amazon EC2
AWS sells computing power by the hour via the Amazon Elastic Compute Cloud (Ama-
zon EC2).This computing power takes the form of virtual server instances running on
top of physical servers within Amazon data centers.These server instances come in vary-
ing amounts of processor horsepower and memory, depending on your needs and budget.
What makes this compute cloud elastic is the fact that users can start up, and shut down,
dozens of virtual instances at a moment’s notice.

These general-purpose servers can fulfill the role of just about any server. Some of the
popular choices include web server, database server, batch-processing server, and media
server.The use of EC2 can result in a large reduction in ongoing infrastructure mainte-
nance when compared to managing private in-house servers.Another big benefit is the
elimination of up-front capital expenditures on hardware in favor of paying for only the
compute power that is used.

The sweet spot between SimpleDB and EC2 comes for high-data bandwidth applica-
tions. For those apps that need fast access to high volumes of data in SimpleDB, EC2 is
the platform of choice.The free same region data transfer can add up to a sizable cost sav-
ings for large data sets, but the biggest win comes from the consistently low latency.AWS
does not guarantee any particular latency numbers but typically, round-tripping times are
in the neighborhood of 2 to 7 milliseconds between EC2 instances and SimpleDB in the
same region.These numbers are on par with the latencies others have reported between
EC2 instances. For contrast, additional latencies of 50 to 200 milliseconds or more are
common when using SimpleDB across the open Internet.When you need fast Sim-
pleDB, EC2 has a lot to offer.

Storing Large Objects with Amazon S3
Amazon Simple Storage Service (Amazon S3) is a web service that enables you to store
an unlimited number of files and charges you (low) fees for the actual storage space you
use and the data transfer you use.As you might expect, data transfer between S3 and other
Amazon Web Services is fast and free. S3 is easy to understand, easy to use, and has a mul-
titude of great uses.You can keep the files you store in S3 private, but you can also make

15Comparing SimpleDB to Other Products and Services

them publicly available from the web. Many websites are using S3 as a media-hosting
service to reduce the load on web servers.

EC2 virtual machine images are stored and loaded from S3. EC2 copies storage vol-
umes to and loads storage volumes from S3.The Amazon CloudFront content delivery
network can serve frequently accessed web files in S3.The Amazon Elastic MapReduce
service runs MapReduce jobs stored in S3. Publicly visible files in S3 can be served up via
the BitTorrent peer-to-peer protocol.The list of uses goes on and on.... S3 is really a
common denominator cloud service.

SimpleDB users can also find good uses for S3. Because of the high speed within the
Amazon cloud, S3 is an obvious storage location choice for SimpleDB import and export
data. It is also a solid location to place SimpleDB backup files.

Queuing Up Tasks with Amazon SQS
Amazon Simple Queue Service (Amazon SQS) is a web service that reliably stores mes-
sages between distributed computers. Placing a robust queue between the computers
allows them to work independently. It also opens the door to dynamically scaling the
number of machines that push messages and the number that retrieve messages.

Although there is no direct connection between SQS and SimpleDB, SQS does have
some complementary features that can be useful in SimpleDB-based applications.The se-
mantics of reliable messaging can make it easier to coordinate multiple concurrent clients
than when using SimpleDB alone. In cases where there are multiple SimpleDB clients,
you can coordinate clients using a reliable SQS queue. For example, you might have mul-
tiple servers that are encoding video files and storing information about those videos in
SimpleDB. SimpleDB makes a great place to store that data, but it could be cumbersome
for use in telling each server which file to process next.The reliable message delivery of
SQS would be much more appropriate for that task.

Comparing SimpleDB to Other Products and
Services
Numerous new types of products and services are now available or will soon be available
in the database/data service space. Some of these are similar to SimpleDB, and others are
tangential.A few of them are listed here, along with a brief description and comparison to
SimpleDB.

Windows Azure Platform
The Windows Azure Platform is Microsoft’s entry into the cloud-computing fray.Azure
defines a raft of service offerings that includes virtual computing, cloud storage, and reli-
able message queuing. Most of these services are counterparts to Amazon services.At the
time of this writing, the Azure services are available as a Community Technology Preview.
To date, Microsoft has been struggling to gain its footing in the cloud services arena.

16 Chapter 1 Introducing Amazon SimpleDB

There have been numerous, somewhat confusing, changes in product direction and
product naming.Although Microsoft’s cloud platform has been lagging behind AWS a bit,
it seems that customer feedback is driving the recent Azure changes.There is every reason
to suspect that once Azure becomes generally available, it will be a solid alternative to AWS.

Among the services falling under the Azure umbrella, there is one (currently) named
Windows Azure Table.Azure Table is a distributed key-value store with explicit support
for partitioning across storage nodes. It is designed for scalability and is in many ways simi-
lar to SimpleDB.The following is a list of similarities between Azure Table and SimpleDB:

n All access to the service is in the form of web requests.As a result, any program-
ming language can be used.

n Requests are authenticated with encrypted signatures.
n Consistency is loosened to some degree.
n Unique primary keys are required for each data entity.
n Data within each entity is stored as a set of properties, each of which is a name-

value pair.
n There is a limit of 256 properties per entity.
n A flexible schema allows different entities to have different properties.
n There is a limit on how much data can be stored in each entity.
n The number of entities you can get back from a query is limited and a query con-

tinuation token must be used to get the next page of results.
n Service versioning is in place so older versions of the service API can still be used

after new versions are rolled out.
n Scalability is achieved through the horizontal partitioning of data.

There are also differences between the services, as listed here:

n Azure Table uses a composite key comprised of a partition key followed by a row
key, whereas SimpleDB uses a single item name.

n Azure Table keeps all data with the same partition key on a single storage node. En-
tities with different partition keys may be automatically spread across hundreds of
storage nodes to achieve scalability.With SimpleDB, items must be explicitly placed
into multiple domains to get horizontal scaling.

n The only index in Azure Table is based on the composite key.Any properties you
want to query or sort must be included as part of the partition key or row key. In
contrast, SimpleDB creates an index for each attribute name, and a SQL-like query
language allows query and sort on any attribute.

n To resolve conflicts resulting from concurrent updates with Azure Table, you have a
choice of either last-write-wins or resolving on the client.With SimpleDB, last-
write-wins is the only option.

17Comparing SimpleDB to Other Products and Services

n Transactions are supported in Azure Table at the entity level as well as for entity
groups with the same partition key. SimpleDB applies updates atomically only
within the scope of a single item.

Windows Azure Table overall is very SimpleDB-like, with some significant differences
in the scalability approach. Neither service has reached maturity yet, so we may still see
enhancements aimed at easing the transition from relational databases.

It is worth noting that Microsoft also has another database service in the Windows
Azure fold. Microsoft SQL Azure is a cloud database service with full replication across
physical servers, transparent automated backups, and support for the full relational data
model.This technology is based on SQL Server, and it includes support for T-SQL, stored
procedures, views, and indexes.This service is intended to enable direct porting of exist-
ing SQL-based applications to the Microsoft cloud.

Google App Engine
App Engine is a service offered by Google that lets you run web applications, written in
Java or Python, on Google’s infrastructure.As an application-hosting platform,App En-
gine includes many non-database functions, but the App Engine data store has similarities
to SimpleDB.The non-database functions include a number of different services, all of
which are available via API calls.The APIs include service calls to Memcached, email,
XMPP, and URL fetching.

App Engine includes an API for data storage based on Google Big Table and in some
ways is comparable to SimpleDB.Although Big Table is not directly accessible to App En-
gine applications, there is support in the data store API for a number of features not avail-
able in SimpleDB.These features include data relations, object mapping, transactions, and
a user-defined index for each query.

App Engine also has a number of restrictions, some of which are similar to SimpleDB
restrictions, like query run time. By default, the App Engine data store is strongly consistent.
Once a transaction commits, all subsequent reads will reflect the changes in that transaction.
It also means that if the primary storage node you are using goes down,App Engine will fail
any update attempts you make until a suitable replacement takes over.To alleviate this issue,
App Engine has recently added support for the same type of eventual consistency that Sim-
pleDB has had all along.This move in the direction of SimpleDB gives App Engine apps
the same ability as SimpleDB apps to run with strong consistency with option to fall back
on eventual consistency to continue with a degraded level of service.

Apache CouchDB
Apache CouchDB is a document database where a self-contained document with metadata
is the basic unit of data. CouchDB documents, like SimpleDB items, consist of a group of
named fields. Each document has a unique ID in the same way that each SimpleDB item
has a unique item name. CouchDB does not use a schema to define or validate documents.
Different types of documents can be stored in the same database. For querying, CouchDB
uses a system of JavaScript views and map-reduce.The loosely structured data in CouchDB

18 Chapter 1 Introducing Amazon SimpleDB

documents is similar to SimpleDB data but does not place limits on the amount of data you
can store in each document or on the size of the data fields.

CouchDB is an open-source product that you install and manage yourself. It allows dis-
tributed replication among peer servers and has full support for robust clustering. CouchDB
was designed from the start to handle high levels of concurrency and to maintain high levels
of availability. It seeks to solve many of the same problems as SimpleDB, but from the stand-
point of an open-source product offering rather than a pay-as-you-go service.

Dynamo-Like Products
Amazon Dynamo is a data store used internally within Amazon that is not available to the
public.Amazon has published information about Dynamo that includes design goals, run-
time characteristics, and examples of how it is used. From the published information, we
know that SimpleDB has some things in common with Dynamo, most notably the even-
tual consistency.

Since the publication of Dynamo information, a number of distributed key-value stores
have been developed that are in the same vein as Dynamo.Three open-source products that
fit into this category are Project Voldemort, Dynomite, and Cassandra. Each of these projects
takes a different approach to the technology, but when you compare them to SimpleDB,
they generally fall into the same category.They give you a chance to have highly available
key-value access distributed across machines.You get more control over the servers and the
implementation that comes with the maintenance cost of managing the setup and the ma-
chines. If you are looking for something in this class of data storage, SimpleDB is a likely
touch-free hosted option, and these projects are hands-on self-hosted alternatives.

Compelling Use Cases for SimpleDB
SimpleDB is not a replacement for relational databases.You need to give careful consider-
ation to the type of data storage solution that is appropriate for a given application.This
section includes a discussion of some of the use cases that match up well with SimpleDB.

Web Services for Connected Systems
IT departments in the enterprise are tasked with delivering business value and support in
an efficient way. In recent years, there has been movement toward both service orienta-
tion and cloud computing. One of the driving forces behind service orientation is a de-
sire to make more effective use of existing applications. Simple Object Access Protocol
(SOAP) has emerged as an important standard for message passing between these con-
nected systems as a means of enabling forward compatibility. For new services deployed in
the cloud, SimpleDB is a compelling data storage option.

Data transfer between EC2 instances and the SimpleDB endpoint in the same region
is fast and free.The consistent speed and high availability of SimpleDB are helpful when
defining a Service Level Agreement (SLA) between IT and business units.All this meshes
with the ability of EC2 to scale out additional instances on demand.

19Compelling Use Cases for SimpleDB

Low-Usage Application
There are applications in the enterprise and on the open web that do not see a consistent
heavy load.They can be low usage in general with periodic or seasonal spikes—for in-
stance, at the end of the month or during the holidays. Sometimes there are few users at
all times by design or simply by lack of popularity.

For these types of applications, it can be difficult to justify an entire database server for
the one application.The typical answer in organizations with sufficient infrastructure is to
host multiple databases on the same server.This can work well but may not be an option
for small organizations or for individuals. Shared database hosting is available from hosting
companies, but service levels are notoriously unpredictable.With SimpleDB, low-usage
applications can run within the free tier of service while maintaining the ability to scale
up to large request volumes when necessary.This can be an attractive option even when
database-sharing options are available.

Clustered Databases Without the Time Sink
Clustering databases for scalability or for availability is no easy task. If you already have
the heavy data access load or if you have the quantifiable need for uptime, it is obviously a
task worth taking on. Moreover, if you already have the expertise to deploy and manage
clusters of replicated databases, SimpleDB may not be something you need. However, if
you do have the experience, you know many other things as well: you know the cost to
roll the clusters into production, to roll out schema updates, and to handle outages.This
information can actually make it easier to decide whether new applications will provide
enough revenue or business value to merit the time and cost.You also have a great
knowledge base to make comparisons between in-house solutions and SimpleDB for the
features it provides.

You may have a real need for scalability or uptime but not the expertise. In this case,
SimpleDB can enable you to outsource the potentially expensive ongoing database main-
tenance costs.

Dynamic Data Application
Rigid and highly structured data models serve as the foundation of many applications,
while others need to be more dynamic. It is becoming much more important for new ap-
plications to include some sort of social component than it was in the past.Along with
these social aspects, there are requirements to support various types of user input and cus-
tomization, like tagging, voting, and sharing. Many types of social applications require
community building, and can benefit from a platform, which allows data to be stored in
new ways, without breaking the old data. Customer-facing applications, even those with-
out a social component, need to be attentive to user feedback.

Whether it is dynamic data coming from users or dynamic changes made in response
to user feedback, a flexible data store can enable faster innovation.

20 Chapter 1 Introducing Amazon SimpleDB

Amazon S3 Content Search
Amazon S3 has become a popular solution for storing web-accessible media files.Appli-
cations that deal with audio, video, or images can access the media files from EC2 with
no transfer costs and allow end users to download or stream them on a large scale with-
out needing to handle the additional load.When there are a large number of files in S3,
and there is a need to search the content along various attributes, SimpleDB can be an
excellent solution.

It is easy to store attributes in SimpleDB, along with pointers to where the media is
stored in S3. SimpleDB creates an index for every attribute for quick searching. Different
file types can have different attributes in the same SimpleDB domain. New file types or
new attributes on existing file types can be added at any time without requiring existing
records to be updated.

Empowering the Power Users
For a long time, databases have been just beyond the edge of what highly technical users
can effectively reach. Many business analysts, managers, and information workers have
technical aptitude but not the skills of a developer or DBA.These power users make use
of tools like spreadsheet software and desktop databases to solve problems. Unfortunately,
these tools work best on a single workstation, and attempts at sharing or concurrent use
frequently cause difficulty and frustration; enterprise-capable database software requires a
level of expertise and time commitment beyond what these users are willing to spend.

The flexibility and scalability of SimpleDB can be a great boon to a new class of appli-
cations designed for power users. SimpleDB itself still requires programming on the client
and is not itself directly usable by power users. However, the ability to store data directly
without a predefined schema and create queries is an enabling feature. For applications
that seek to empower the power users, by creating simple, open-ended applications with
dynamic capabilities, SimpleDB can make a great back end.

Existing AWS Customers
This chapter pointed out earlier the benefits of using EC2 for high-bandwidth applica-
tions. However, if you are already using one or more of the Amazon Web Services, Sim-
pleDB can be a strong candidate for queryable data storage across a wide range of
applications. Of course, running a relational database on an EC2 instance is also a viable
and popular choice. Moreover, you would do well to consider both options. SimpleDB
requires you to make certain trade-offs, but if the choices provide a net benefit to your
application, you will have gained some great features from AWS that are difficult and time
consuming to develop on your own.

21Compelling Use Cases for SimpleDB

Summary
Amazon SimpleDB is a web service that enables you to store semi-structured data within
Amazon’s data centers.The service provides automatic, geographically diverse data repli-
cation and internal routing around failed storage nodes. It offers high availability and en-
ables horizontal scalability.The service allows you to offload hardware maintenance and
database management tasks.

You can use SimpleDB as a distributed key-value store using the GetAttributes,
PutAttributes, and DeleteAttributes API calls.You also have the option to query for
your data along any of its attributes using the Select API call. SimpleDB is not a relational
database, so there are no joins, foreign keys, schema definitions, or relational constraints
that you can specify. SimpleDB also has limited support for transactions, and updates
propagate between replicas in the background. SimpleDB supports strong consistency,
where read operations immediately reflect the results of all completed and eventual con-
sistency, where storage nodes are updated asynchronously in the background.

The normal window of time for all storage nodes to reach consistency in the back-
ground is typically small. During a server or network failure, consistency may not be
reached for longer periods of time, but eventually all updates will propagate. SimpleDB
is best used by applications able to deal with eventual consistency and benefit from the
ability to remain available in the midst of a failure.

Index

A
abandoning relational model, 8

access

caching for fast data access, 127-128
gaining access to SimpleDB, signing

up, 24
gaining to SimpleDB, 23

creating AWS accounts, 23-24
managing within organizations,

155-157
access key security, 159

secret key rotation, 160-161
access key security

key management, 159-160
accessing

SimpleDB from EC2, 169-170
SimpleDB outside the Amazon

cloud, 182
latency, 182-183

account keys, managing, 24

account security, 155

boosting with multi-factor
authentication, 158-159

limiting Amazon access from AWS
credentials, 157-158

managing access within the
organization, 155-157

accounts, creating AWS accounts, 23-24

adding

computing power with Amazon
EC2, 14

domain creation to domain
administration tool, 28-29

login servlet, 244-248
logout servlet, 249
new tasks, 252

addTask.java, 252

AdminTool.java, 26-27

advanced features in small projects,
168-169

Amazon access, limiting from AWS
credentials, 157-158

Amazon SQS (Amazon Simple Queue
Service), queuing up tasks, 15

Amazon Web Services (AWS). See AWS
(Amazon Web Services)

Apache CouchDB versus SimpleDB, 17-18

API, methods versus parameters, 192-193

AppConfig.java, 229

applications, web-based task lists

data model, 234-235
requirements, 233-234

arbitrary query depths, paging to, 131-133

asynchronous requests, threads, 173

Attribute class, clients, 188-190

attribute concatenation, evaluating, 148

attribute counting, write operations, 224-225

attribute data, formatting for Select, 93-94

case sensitivity, 97
date and time formatting, 95-96
floating point formatting, 95
integer formatting, 94-95

attribute indexes, improving query
performance, 103-104

attribute pairs, SimpleDB, 3

Attribute.java, 189

attributes

entities with more than 256 attributes,
131-122

multi-valued attributes
SimpleDB, 3
storing counts, 55-138

sort, 91
authentication, multli-factor authentication,

158-159

automated domain sharding, 228

overview, 228
Put/Get delete routing, 228-231
query multiplexing, 231-232

automatic attribute merging, 225

automating performance measurements,
109-110

availability, 121-123

AWS (Amazon Web Services),

accounts, creating, 23-24
existing AWS customers, use cases, 20
usage reports, 142-144

AWS credentials, limiting Amazon access
from, 157-158

B
backup tools, writing, 118-119

backups, 116

restoring, 119
third-party backup services, 117
writing backup tools, 118-119

BackupSDB.com, 117

base application, implementing domain
administration tool, 26-28

BaseServlet.java, 244-246

batch processes, applying updates, 152

batches, creating right-sized batches
(BatchPutAttributes), 114

BatchPutAttributes, 73-74, 112

C#, 77-78
calling, 112

256 adding

character encodings, 116
concurrency, managing, 114-115
creating right-sized batches, 114
Java, 76-77
mapping import files to SimpleDB

attributes, 112-113
optimizing, 179
parameters, 74-75
PHP, 78-79
reporting import progress, 113-114
response data, 75-76
resuming stopped imports, 115
storing mapping data, 113
supporting multiple file formats, 113
verifying progress and completion,

115-116
benefits of SimpleDB, 6

boosting security with multi-factor
authentication, 158-159

box usage cost, optimizing, 222

query timeouts, 225-228
write operations, 223-225

BoxUsage, 47-48

C
C#, 42

BatchPutAttributes, 77-78
CreateDomain, 50
DeleteAttributes, 72-73
DeleteDomain, 55
DomainMetadata, 58
GetAttributes, 68
ListDomains, 52-53
PutAttributes, 64
Select, 83-84
SimpleDB setup, 43-44

cache integration, 7

caching

dangers of, 171-172
distributed caching, 171
for fast data access, 127-128
local caching, 170-171
NextToken, 135
session scope caching, 127
speeding up SimpleDB, 170-172

calling BatchPutAttributes, 112

capacity planning, 141

estimating initial costs, 141-142
usage reports, 142-144

detailed reports, 145-146
case sensitivity, formatting attribute data for

Select, 97

character encodings, BatchPutAttributes,
116

client code, implementing, 196

connections, making, 210-214
constructors, 197-198
methods, 198-200
parsing responses, 214-216
requests, making, 200-208
secret keys, 196-197
signature computation, 208-210

clients

building smarter with metadata,
219-220

coordinating concurrent
clients, 221

database tools, 221
justifying schemas for numeric

data, 220
storing custom metadata in S3, 222
storing custom metadata within

SimpleDB, 221-222
coordinating concurrent clients, 221

257clients

design considerations
high-level design issues, 191-193
operation-specific considerations,

193-196
design overview, 185-186

Attribute class, 188-190
Item class, 190-191
public interfaces, 186-188

endpoints, 45-47
finding, 24
Java, 42
language gap, 45
PHP, 42, 45
Python, 42
response elements

BoxUsage, 47-48
request identifiers, 48

selecting, 41-42
service versions, 47

clouds, SimpleDB, 2-3

clustered databases without time sink,
use cases, 19

comparisons, predicates. See predicates

composite attributes, improving query
performance, 104-105

computeSignature(), 209

computing

signature hash, 209
signatures, 208-210
storage costs, 147

computing power, adding with Amazon
EC2, 14

concurrency

BatchPutAttributes, 114-115
clients, design considerations, 193
leveraging, 176-177
speeding up SimpleDB, 172-173

conditional writes, 195

limiting, 178-179
connections, client code, 210-214

consistency, SimpleDB, 5

consistent views, implementing, 125-128

consolidating writes, 179

constructors, implementing, 197-198

convenience methods, 217

convenient count methods, 217-219
convenient count methods, 217-219

selectWithRealLimit(), 219
coordinating concurrent clients, 221

costs

box usage cost, 222
query timeouts, 225-228
write operations, 223-225

computing storage costs, 147
estimating initial costs, capacity

planning, 141-142
of slack space, storage requirements,

147-148
count(), improving query performance,

106-107

count response formatting, Select, 89-90

counting, 133-134

cleaning up old counts with summary
records, 135-136

NextToken caching, 135
one item per count, 134-136
storing counts in multi-valued

attributes, 55-138
CreateDomain, 48-49

C#, 50
Java, 49-50
parameters, 49
PHP, 50-51
response data, 49

CreateTool.java, 28-29

CSV, usage reports, 143

258 clients

D
data

importing with
BatchPutAttributes, 112

splitting across domains, 149
storing clean data, 161-162

storing in multiple locations, 165

in transmission, data security, 162-164
data access patterns, optimizing, 125-127

data exports, 116

data formatting, 7

data model, web-based task lists
(applications), 234-235

data security, 161

SSL and data in transmission, 162-164
storage and encryption, 164-165
storing clean data, 161-162
storing data in multiple locations, 165

data sharding, 181

multiplexing queries, 181-182
partitioning data, 181

database tools, metadata, 221

databases without schemas, relational
model, 9-10

Date, C.J., 13

date and time formatting, 95-96

DBA, putting out of work, 12

DeleteAttributes, 70

C#, 72-73
Java, 72
parameters, 70-71
PHP, 73
response data, 71-72

DeleteDomain, 48, 54

C#, 55
Java, 55
parameters, 54

PHP, 55-56
response data, 54-55

DeleteTool.java, 29

deleting domains, domain administration
tool, 29

deployment, web-based task lists, 252-254

design, clients, 185-186

Attribute class, 188-190
high-level design issues, 191-193
Item class, 190-191
operation-specific considerations,

193-196
public interfaces, 186-188

designing for testability, 138-139

displaying tasks, 249-251

displaying domain lists, domain
administration tool, 28

distributed caching, 171

domain administration tool, 25

displaying domain lists, 28
domain creation, adding, 28-29
features, 25
implementing base application, 26-28
key storage, 25
listing domain metadata, 29-30
packaging as a Jar File, 31
running, 31
supporting domain deletion, 29

domain creation, adding to domain
administration tool, 28-29

domain deletion, domain administration
tool, 29

domain lists, displaying, 28

domain metadata, listing, 29-30

domain sharding. See automated domain
sharding

259domain sharding

DomainMetadata, 56, 194

C#, 58
Java, 57-58
parameters, 56
PHP, 58-59
response data, 56-57

DomainName, 51

domains

SimpleDB, 3
splitting data across, 149

dynamic data application, use cases, 19

Dynamo versus SimpleDB, 18

E
ease of use, clients (design

considerations), 192

EC2 (Elastic Compute Cloud), 12

accessing SimpleDB from, 169-170
computing power, adding, 14
data security, 162-164
(Elastic Compute Cloud),
improving query performance, 106

Eclipse plug-in, 25

empowering power users, 20

encoding

passwords, user authentication service,
36-37

requests, 204
encryption, data security, 164-165

endpoints, clients, 45-47

entities with more than 256 attributes,
131-122

estimating costs, capacity planning, 141-142

evaluating attribute concatenation, 148

eventual consistency, 123

counting, 134
implementing consistent views, 125

item-level atomicity, 123
read-your-writes, 125
window, 124

EVERY(), 102

existing AWS customers, use cases, 20

F
fetch(), 213

file formats, supporting multiple file formats
(BatchPutAttributes), 113

files, large text files, 128

finding clients for SimpleDB, 24

floating point formatting, 95

formatting

applying changes with read-repair,
150-152

attribute data for Select, 93-94
case sensitivity, 97
date and time formatting, 95-96
floating point formatting, 95
integer formatting, 94-95

G
Get delete routing, 228-231

GetAttributes, 65, 194

C#, 68
Java, 67-68
optimizing, 174-178
parameters, 65-66
PHP, 69
response data, 66-67

getStringToSign(), 210

Google App Engine

outage, 122
versus SimpleDB, 17

260 DomainMetadata

H
high availability, SimpleDB, 4

higher-level framework functionality,
SimpleDB, 7

hijacking NextToken, 195-196

horizontal scaling, 10

HTML, storing clean data, 162

HTTPClient.java, 211-212

I
implementing

base application, domain
administration tool, 26-28

client code, 196
connections, making, 210-214
constructors, 197-198
methods, 198-200
parsing responses, 214-216
requests, making, 200-208
secret keys, 196-197
signature computation, 208-210

consistent views, 125-128
task services, 241-244
task workspace, 238-241
user authentication, web-based task

lists, 235-238
import files, mapping to SimpleDB

attributes, 112-113

import progress, reporting
(BatchPutAttributes), 113-114

importing data with BatchPutAttributes, 112

improving query performance, 103

attribute indexes, 103-104
automating performance

measurements, 109-110
composite attributes, 104-105
EC2, 106

LIKE, 105-106
Select, 107-109
skipping pages with count() and

LIMIT, 106-107
IN() queries, 99

increasing speed of SimpleDB, 169

accessing from EC2, 169-170
caching, 170-172
concurrency, 172-173
keeping requests and responses small,

173-174
performance measurements, 169

index.jsp, 248

integer formatting, Select, 94-95

integrating Spring Security, user
authentication service, 32

INTERSECTION operator, multiple predicate
queries, 101-102

IS NOT NULL, 100

IS NULL, 100

ISimpleDB.java, 186-187

Item class, clients, 190-191

item layout, updating with read-repair, 152

Item.java, 190-191

item-level atomicity, 123

items, SimpleDB, 3

J
Jar files, packaging (domain administration

tool), 31

Java, 42

BatchPutAttributes, 76-77
CreateDomain, 49-50
DeleteAttributes, 72
DeleteDomain, 55
DomainMetadata, 57-58
GetAttributes, 67-68

261Java

ListDomains, 52
PutAttributes, 63-64
Select, 81-83
Typica, 42-43

jumping to arbitrary search pages, 132-133

K
key management, access key security,

159-160

key storage, domain administration tool, 25

keywords, Select, 88

L
language gap, clients, 45

large objects, storing with S3, 14-15

large text files, 128

storing in S3, 128
storing overflow as multi-valued

attributes, 130
storing overflow in different attributes,

129-130
latency, 182-183

leveraging concurrency, 176-177

LIKE, 99-100

improving query performance,
105-106

LIMIT clause

improving query performance,
106-107

Select, 92-93
limiting

Amazon access from AWS credentials,
157-158, 177-178

conditional writes, 178-179
ListDomains, 51

C#, 52-53
Java, 52
parameters, 51

PHP, 53
response data, 51-52

listing domain metadata, domain
administration tool, 29-30

ListingTool.java, 28

live service calls, alternatives to, 139

loadUserByUsername(), 36

local caching, 170-171

login servlet, adding, 244-248

Login.java, 246-247

logout servlet, adding, 249

logout.java, 249

low-usage applications, use cases, 19

M
maintenance, planning, 150

read-repair to apply formatting
changes, 150-152

read-repair to update item layout, 152
managing

access within organizations, 155-157
account keys, 24
concurrency, BatchPutAttributes,

114-115
mapping data, storing, 113

mapping import files to SimpleDB
attributes, 112-113

measuring performance

automating, 109-110
Select, 107-109

metadata, building smarter clients, 219-220

coordinating concurrent clients, 221
database tools, 221
justifying schemas for numeric

data, 220
storing custom metadata in S3, 222
storing custom metadata within

SimpleDB, 221-222

262 Java

MetadataTool.java, 29-30

methods, implementing, 198-200

minimizing request size, 178

multi-factor authentication, boosting security
with multi-factor authentication, 158-159

multiple predicate queries, INTERSECTION
operator, 101-102

multiplexing queries, data sharding,
181-182

multi-valued attribute queries, 100-101

multi-valued attributes

SimpleDB, 3
storing counts, 55-138
storing overflow as, 130

N
.NET platform, 43-44

NextToken, 51

caching, 135
hijacking, 195-196

NoSQL solution, 8

NOT LIKE, 99-100

numeric data, justifying schemas for
numeric data, 220

O
object mapping, 7

one item per count, 134-136

operation-specific performance, 174

optimizing
BatchPutAttributes, 179
GetAttributes, 174-178
PutAttributes, 178-179
Select, 180-181

operators

INTERSECTION operator, 101-102
range operators, 98-99
simple comparison operators, 98

optimizing

BatchPutAttributes, 179
box usage cost, 222

query timeouts, 225-228
write operations, 223-225

data access patterns, 125-127
GetAttributes, 174-178
PutAttributes, 178-179
Select, 180-181

ordering parameters, 210

organizations, managing access within,
155-157

output selection clause, Select, 89-90

P
packaging domain administration tool as a

Jar File, 31

paging to arbitrary query depths, 131-133

parallel range queries, 180

parallel requests, threads, 172-173

parameter strings, building, 209-210

parameters

BatchPutAttributes, 74-75
CreateDomain, 49
DeleteAttributes, 70-71
DeleteDomain, 54
DomainMetadata, 56
GetAttributes, 65-66
ListDomains, 51
optional parameters, 203-204
ordering, 210
PutAttributes, 60-62
requests, 201
Select, 79

parsing responses, 214-216

partitioning data, data sharding, 181

passwords, salting and encoding (user
authentication service), 36-37

263passwords, salting and encoding (user authentication service)

Percival, Colin, 223

performance, operation-specific. See
operation-specific performance

performance

improving query performance, 103
attribute indexes, 103-104
automating performance

measurements, 109-110
composite attributes, 104-105
EC2, 106
LIKE, 105-106
Select, 107-109
skipping pages with count() and

LIMIT, 106-107
speed of SimpleDB, 166

advanced features in small projects,
168-169

targeting performance in small
projects, 166-168

performance measurements, speeding up
SimpleDB, 169

PHP, 42

BatchPutAttributes, 78-79
CreateDomain, 50-51
DeleteAttributes, 73
DeleteDomain, 55-56
DomainMetadata, 58-59
GetAttributes, 69
ListDomains, 53
PutAttributes, 65
Select, 85-86
Tarzan setup, 45

planning

for capacity. See capacity planning
maintenance, 150

batch processes, 152
read-repair to apply formatting

changes, 150-152

read-repair to update item layout,
152

plug-ins, Eclipse, 25

power users, empowering, 20

predefined schemas, relational model, 10

predicates, 97

IN() queries, 99
IS NOT NULL, 100
IS NULL, 100
LIKE, 99-100
NOT LIKE, 99-100
range operators, 98-99
simple comparison operators, 98

prefix queries, 99-100

pricing structure, SimpleDB, 3

public interfaces, clients, 186-188

Put delete routing, 228-231

PutAttributes, 59-60, 131

C#, 64
Java, 63-64
optimizing, 178-179
parameters, 60-62
PHP, 65
response data, 62-63

Python, 42

Q
queries

EVERY(), 102
improving performance, 103

attribute indexes, 103-104
composite attributes, 104-105
EC2, 106
LIKE, 105-106
Select, 107-109
skipping pages with count() and

LIMIT, 106-107

264 Percival, Colin

improving query performance,
automating performance
measurements, 109-110

IN() queries, 99
multiple predicate queries,

INTERSECTION operator,
101-102

multiplexing queries, data sharding,
181-182

multi-valued attributes, 100-101
paging to arbitrary query depths,

131-133
parallel range queries, 180
prefix queries, 99-100
results with same item multiple times,

102-103
SimpleDB, 4

query multiplexing, automated domain
sharding, 231-232

query timeouts, box usage cost, 225-228

queuing tasks with Amazon SQS, 15

quoting rule for names, Select, 88-89

quoting rules for values, Select, 90-91

R
range operators, 98-99

read-repair, updating item layout, 152

read-repair to apply formatting changes,
150-152

relational model

abandoning, 8
challenges of, 10
databases without schemas, 9-10
Date, C.J., 13
DBA, putting out of work, 12
predefined schemas, 10
scalability, 11

reporting import progress,
BatchPutAttributes, 113-114

representing user data (user authentication
service), 32-34

request identifiers, 48

request size, minimizing, 178

request volume, throttling, 179

Request.java, 202-203, 204, 206

requests

encoding, 204
making, 200-208
SOAP requests versus REST

requests, 201
splitting, 225

requirements, applications (web-based task
lists), 233-234

response data

BatchPutAttributes, 75-76
CreateDomain, 49
DeleteAttributes, 71-72
DeleteDomain, 54-55
DomainMetadata, 56-57
GetAttributes, 66-67
ListDomains, 51-52
PutAttributes, 62-63
Select, 80-81

response elements, clients

BoxUsage, 47-48
request identifiers, 48

Response.java, 214-216

responses, parsing, 214-216

REST requests versus SOAP requests, 201

restoring backups, 119

results, queries (results with same item
multiple times), 102-103

resuming stopped imports,
BatchPutAttributes, 115

running domain administration tool, 31

265running domain administration tool

S
S3 (Simple Storage Service),

storing custom metadata, 222
storing large objects, 14-15
storing text, 128
use cases, 20

salting passwords, user authentication
service, 36-37

scalability, 148-150

relational model, 11
scaling, horizontal scaling, 10

schema-less data, SimpleDB, 2

schemas

justifying, 220
predefined schemas, relational

model, 10
sdb.amazonaws.com, 46

sdb.ap-southeast-1.amazonaws.com, 46

sdb.eu-west-1.amazonaws.com, 46

sdb.us-west-1.amazonaws.com, 46

secret key rotation, access key security,
160-161

secret keys, safe handling of, 196-197

security

access key security. See access key
security

account security, 155
boosting security with multi-factor

authentication, 158-159
limiting Amazon access from AWS

credentials, 157-158
managing access within

organizations, 155-157
data security. See data security

Select, 79, 86-88

C#, 83-84
count response formatting, 89-90

formatting attribute data, 93-94
case sensitivity, 97
date and time formatting, 95-96
floating point formatting, 95
integer formatting, 94-95

Java, 81-83
keywords, 88
LIMIT clause, 92-93
measuring performance, 107-109
optimizing, 180-181
output selection clause, 89-90
parameters, 79
PHP, 85-86
quoting rule for names, 88-89
quoting rules for values, 90-91
required clauses, 88
response data, 80-81
Sort clause, 91-92
WHERE clause, 90

SelectExpression, 79

selecting clients, 41-42

selectWithRealLimit(), 219

service limits, SimpleDB, 8

service versions, clients, 47

session scope caching, 127

setDomain(), 204

sharding, 7

ShardingClient.java, 230-231

signature computation, 208-210

signature hash, computing, 209

signing up for SimpleDB, 24

simple comparison operators, 98

Simple Storage Service

(S3). See S3 (Simple Storage Service)
SimpleBackr, 117

266 S3 (Simple Storage Service)

SimpleDB

versus Apache CouchDB, 17-18
attribute pairs, 3
avoiding the hype, 11-12
benefits of, 6
clouds, 2-3
consistency, 5
database features it doesn’t have, 7
defined, 1
domains, 3
versus Dynamo-like products, 18
feature set, 6
gaining access to, 23

creating AWS accounts, 23-24
signing up for, 24

versus Google App Engine, 17
high availability, 4
higher-level framework

functionality, 7
items, 3
multi-valued attributes, 3
pricing structure, 3
queries, 4
schema-less data, 2
service limits, 8
signing up for, 24
use cases

clustered databases without time
sink, 19

dynamic data application, 19
empowering power users, 20
existing AWS customers, 20
low-usage applications, 19
S3 content search, 20
Web Services for connected

systems, 18
what it is not, 1-2

versus Windows Azure Platform,
15-17

SimpleDB.java, 197-198, 218-219

SimpleDBUserService, fetching user data,
34-36

SimpleDBUserService.java, 34-36

SimpleDBUserTool.java, 37-39

skipping pages with count() and LIMIT,
improving query performance, 106-107

slack space, cost of, 147-148

small projects, targeting performance,
166-168

SOAP requests versus REST requests, 201

Sort attributes, guaranteeing existence
of, 91

Sort clause, Select, 91-92

speed

increasing, 169
performance measurements, 169

of SimpleDB, 166
accessing from EC2, 169-170
advanced features in small projects,

168-169
caching, 170-172
concurrency, 172-173
keeping requests and responses

small, 173-174
targeting performance in small

projects, 166-168
splitting

data across domains, 149
requests, 225

Spring Security, integrating with user
authentication service, 32

SSL, data security, 162-164

stopped imports, resuming
(BatchPutAttributes), 115

267stopped imports, resuming (BatchPutAttributes)

storage

data security, 164-165
key storage, domain administration

tool, 25
storage requirements, 146-

computing storage costs, 147
cost of slack space, 147-148
evaluating attribute concatenation, 148

storing

clean data, data security, 161-162
counts in multi-valued attributes,

55-138
custom metadata

in S3, 222
in SimpleDB, 221-222

data in multiple locations, 165
large objects with S3, 14-15
mapping data, BatchPutAttributes, 113
overflow as multi-valued attributes,

large text files, 130
overflow in different attributes, large

text files, 129-130
text in S3, 128

summary records, cleaning up old counts,
135-136

supporting multiple file formats,
BatchPutAttributes, 113

T
targeting performance in small projects,

166-168

Tarzan, PHP, 45

task services, implementing, 241-244

task workspace, implementing, 238-241

tasks

adding new, 252
displaying, 249-251
queuing up with Amazon SQS, 15

TaskService.java, 241-243

tasks.java, 249-250

tasks.jsp, 250-251

TaskWorkspace.java, 238-240

testability, designing for, 138-139

testing strategies, 138

alternatives to live service calls, 139
designing for testability, 138-139

text, storing in S3, 128

third-party backup services, 117

threads

asynchronous requests, 173
parallel requests, 172-173

throttling request volume, 179

tools

backup tools, writing, 118-119
domain administration tool. See

domain administration tool
User Update Tool, 37-39

tracking usage over time, capacity
planning, 146

Typica, Java, 42-43

U
unconditional writes, 195

updates, applying with batch processes, 152

usage, tracking over time (capacity
planning), 146

usage reports, capacity planning, 142-144

detailed reports, 145-146
use cases, SimpleDB

clustered databases without time
sink, 19

dynamic data application, 19
empowering power users, 20
existing AWS customers, 20
low-usage applications, 19

268 storage

S3 content search, 20
Web services for connected

systems, 18
user authentication, implementing, 235-238

user authentication service

fetching user data with
SimpleDBUserService, 34-36

integrating with Spring Security, 32
passwords, salting and encoding, 36-37
representing user data, 32-34
User Update Tool, creating AWS

accounts, 37-39
user data

fetching with SimpleDBUserService,
34-36

representing user authentication
service, 32-34

User Update Tool, creating AWS accounts,
37-39

User.java, 32-34

UserService, 243

UserService.java, 235-237

V
verifying progress and completion,

BatchPutAttributes, 115-116

W
web services for connected systems, use

cases, 18

web-based task lists

adding
login servlet, 244-248
logout servlet, 249
new tasks, 252

applications
data model, 234-235
requirements, 232-234

deployment, 252-254
displaying tasks, 249-251
implementing

task services, 241-244
task workspace, 238-241
user authentication, 235-238

web.xml, 252-254

WHERE clause, Select, 90

Windows Azure Platform versus SimpleDB,
15-17

write operations

attribute counting, 224-225
costs, 223-225

writes

conditional and unconditional, 195
consolidating, 179

writing backup tools, 118-119

X
XML, usage reports, 143

XSS (cross-site scripting), storing clean data,
161-162

269XSS (cross-site scripting), storing clean data

	Contents
	Preface
	1 Introducing Amazon SimpleDB
	What Is SimpleDB?
	What SimpleDB Is Not
	Schema-Less Data
	Stored Securely in the Cloud
	Billed Only for Actual Usage
	Domains, Items, and Attribute Pairs
	Multi-Valued Attributes
	Queries
	High Availability
	Database Consistency

	Sizing Up the SimpleDB Feature Set
	Benefits of Using SimpleDB
	Database Features SimpleDB Doesn’t Have
	Higher-Level Framework Functionality
	Service Limits

	Abandoning the Relational Model?
	A Database Without a Schema
	Areas Where Relational Databases Struggle
	Scalability Isn’t Your Problem
	Avoiding the SimpleDB Hype
	Putting the DBA Out of Work
	Dodging Copies of C.J. Date

	Other Pieces of the Puzzle
	Adding Compute Power with Amazon EC2
	Storing Large Objects with Amazon S3
	Queuing Up Tasks with Amazon SQS

	Comparing SimpleDB to Other Products and Services
	Windows Azure Platform
	Google App Engine
	Apache CouchDB
	Dynamo-Like Products

	Compelling Use Cases for SimpleDB
	Web Services for Connected Systems
	Low-Usage Application
	Clustered Databases Without the Time Sink
	Dynamic Data Application
	Amazon S3 Content Search
	Empowering the Power Users
	Existing AWS Customers

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

