

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The following terms are trademarks or registered trademarks of International Business Machines Cor-
poration in the United States, other countries, or both: Websphere, Websphere Service Registry and
Repository, IBM, and the IBM logo.

Capability Maturity Model Integration and SCAMPI are service marks of Carnegie Mellon University.

Post-it is a registered trademark of 3M Company in the United States, other countries, or both.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Poppendieck, Mary.
Leading lean software development : results are not the point / Mary and

Tom Poppendieck.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-62070-4 (pbk. : alk. paper)

1. Management information systems. 2. Computer software—Development. 3.
Organizational effectiveness. I. Poppendieck, Tom. II. Title.
HD30.213.P65 2010
658.4'038011—dc22 2009035319

Copyright © 2010 Poppendieck LLC

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-62070-4
ISBN-10: 0-321-62070-5
Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, Indiana.
First printing, October 2009.

xi

Foreword
I was a relative newbie to both agile and lean when I first met Mary and Tom
Poppendieck at an Agile Conference in Salt Lake City in 2003, so of course I
started our conversation with the question that had been bothering me: “How
do you reconcile the lean view that tests are waste with the need for tests in
software development?” Mary’s immediate response: “Unit tests are what let
you stop the line.”

I’ve learned a lot about both agile and lean since then, and the more I learn,
the more I appreciate the profound understanding that led to that simple
answer so clearly tying multiple agile practices to fundamental lean principles.

So, when Mary asked me to review her new book, I jumped at the chance,
and I wasn’t disappointed. The approach of framing various views into lean
leadership provided fresh perspectives on many of the issues that we must all
address if we are to be effective in developing software in the twenty-first cen-
tury. I could rave on about the book, but that would just keep you from reading
it, so I decided to limit myself to sharing my three favorite parts of the book (in
chronological order)—not an easy task when the whole book is packed with
valuable information.

Since I’m a geek at heart, my first favorite part of the book was Chapter 2,
Technical Excellence, with its fresh look at agile practices as a continuation and
extension of the fundamentals expressed in the early days of computer science
by giants such as Dijkstra, Parnas, and Mills. Seeing agile practices as an evolu-
tion of the best of the past, rather than as a revolution that rejects the past, is an
important step in enabling adoption of the best that agile has to offer.

Since I’m an idealist, my second favorite part of the book was in Chapter 4,
Relentless Improvement, with the discussion of the need for a shared vision of
what success will look like for your organization. When you couple this with
the material in the same chapter about the importance of managers as mentors
in developing problem solvers, you start to see the potential for an organization
where everyone works every day to remove the impediments to future success.

Finally, since I’m a realist, my third favorite part of the book was Chapter 5,
Great People. “Success comes from people. Results are not the point. Developing

xii FOREWORD

people so that they can achieve successful results is the point.” Statistically
speaking, no large company has all above-average employees, suppliers, and
customers. However, by following the principles and advice in this book, any
company, large or small, has the potential of getting above-average results from
its average employees, suppliers, and customers. That’s really what business
success is all about.

If I read the book again, would I pick the same three favorite parts? I don’t
know, but I’ll find out. As soon as the book is published, I’ll be starting book
clubs across our company to share these ideas and see where they lead us. I
encourage all of you to do the same.

Dottie Acton
Senior Fellow
Lockheed Martin

xiii

Introduction: Framing

Weathering the Perfect Storm1

 Sweden’s Handelsbanken has placed a large sum of money in an account
at the Riksbank in a bid to help the central bank safeguard the financial
system.

—Stockholm, June 17, 2009 (Reuters)

Svenska Handelsbanken is one of the top 25 banks in Europe. It was not just
the only bank that survived the Swedish banking crisis in the 1990s without
asking for government support—it has also done very well in the 2008/2009
crisis. Handelsbanken did not have to raise capital or ask for government sup-
port and its shares have been the best performing European bank stock by a
wide margin. Despite its large size Handelsbanken has, in many ways, acted as
a shock absorber, not a shock amplifier, to the financial system.2

In 1970, Svenska Handelsbanken was 100 years old and deeply troubled. It
was trying mightily to become the largest bank in Sweden, and costs had gotten
out of control. To make a bad situation worse, a small provincial bank in
northern Sweden was eating into its market share. When the Handelsbanken
management team abruptly resigned, its board decided to recruit the head of
the upstart competitor as Handelsbanken’s new managing director. Dr. Jan Wal-
lander was a professional economist turned banker who had his own ideas
about how to run a bank.

The first thing Wallander did was to make it clear that growth is not the
point; profitability is what matters. He insisted that everyone in the bank stop
trying to bring in as much revenue as possible and start focusing on generating

1. Information in this section is from Wallander, “Budgeting—An Unnecessary Evil,”
1999.

2. Jacket text for Kroner. Svenska Handelsbanken: A Blueprint for Better Banking,
2009.

xiv INTRODUCTION: FRAMING

profitable revenue instead. To accomplish this goal, he had information systems
publish a few key metrics for each branch immediately after the end of each
month, numbers such as the cost-to-income ratio (the inverse of profitability)
and income per employee (productivity). Then he gave branch managers the
freedom to manage their affairs locally. They could decide which products to
sell, how much money to spend, how many employees to hire, and so on. Wal-
lander felt that central control got in the way of the people closest to customers,
slowed down their reaction time, and stifled their creativity. So decision-making
authority devolved to branch managers; staff groups were dramatically reduced
in number and size, and those that remained had to sell their services to the
branches.

Each month branch managers could see how they stood relative to their
peers on the key measures. Wallander believed that this kind of competition
among branches provided a continuing challenge that drove each branch to
constantly improve the things that really mattered. To keep this competition
friendly, there were no bonuses based on the relative internal standings. Instead,
Wallander established one of the earliest profit-sharing programs in Sweden,
with payouts to a pension fund based on the overall profitability of the com-
pany relative to its external competitors.

The bank’s goal was to be more profitable than comparable banks. From
1972 onward, Handelsbanken has been more profitable than the mean of all of
its competitors, and generally it has been the most profitable bank in Sweden,
although occasionally it was in second or third place. Shortly after Wallander
took over, two Swedish banks merged to form a bank much larger than Han-
delsbanken; it took 23 years for Handelsbanken to grow back into the largest
bank in Sweden—this time without explicitly trying.

The results of Wallander’s approach were both immediate and long-lasting.
Svenska Handelsbanken is among the most cost-efficient banks in the world.
Moody ranks its financial strength among the top ten European banks, some-
thing that comes in handy during the periodic financial crises that plague the
banking industry. It has continued to grow, expanding to other Nordic coun-
tries as well as the UK. Frequently ranked as a top place to work, Handelsban-
ken has the most satisfied customers, the lowest employee turnover, and the
highest investor return of any Swedish bank.

Jan Wallander understood that the most effective, responsive organization is
one where small unit leaders make local decisions. He devised an organizational
structure, governance approach, and culture that reliably engaged the creativity
and dedication of knowledge workers at hundreds of local branches. Four
decades later, his vision is credited with helping Handelsbanken weather one of
the worst financial storms in a century.

WEATHERING THE PERFECT STORM xv

The Leadership Frame of Great Companies

What does Handelsbanken have in common with Nucor Steel, SAS Institute,
W. L. Gore, Southwest Airlines, Semco, and Toyota? Each of these companies
has developed a culture of high involvement, each thrives in an industry of high
change, and each has sustained best-in-industry performance over time. And
each company credits its unique culture for its success. Interestingly, the cul-
tures of these companies are not all that unique; in fact, they are remarkably
similar. Consider these descriptions of company culture, direct from each com-
pany’s Web site:

Nucor Steel3

Our Culture:
Safety First
Eliminating Hierarchy
Granting Trust and Freedom
Giving All Workers a Stake in the Company
Turning Everyone into a Decision Maker
Inspiring a Work Ethic

SAS Institute4

If you treat employees as if they make a difference to the company, they will make
a difference to the company. That has been the employee-focused philosophy
behind SAS’ corporate culture since our founding in 1976. At the heart of this
unique business model is a simple idea: satisfied employees create satisfied customers.

“We’ve worked hard to create a corporate culture that is based on trust between
our employees and the company,” explains SAS President and CEO Jim Good-
night, “a culture that rewards innovation, encourages employees to try new things
and yet doesn’t penalize them for taking chances, and a culture that cares about
employees’ personal and professional growth.”

W. L. Gore & Associates5

How we work at Gore sets us apart. Since Bill Gore founded the company in
1958, Gore has been a team-based, flat lattice organization that fosters personal
initiative. There are no traditional organizational charts, no chains of command,
nor predetermined channels of communication.

Instead, we communicate directly with each other and are accountable to fellow
members of our multi-disciplined teams. We encourage hands-on innovation,
involving those closest to a project in decision making. Teams organize around
opportunities and leaders emerge.

3. www.nucor.com/story/chapter3/.
4. www.sas.com/jobs/corporate/index.html.
5. www.gore.com/en_xx/aboutus/culture/index.html.

www.nucor.com/story/chapter3/
www.sas.com/jobs/corporate/index.html
www.gore.com/en_xx/aboutus/culture/index.html

xvi INTRODUCTION: FRAMING

Southwest Airlines6

The mission of Southwest Airlines is dedication to the highest quality of Customer
Service delivered with a sense of warmth, friendliness, individual pride, and Com-
pany Spirit.

We are committed to provide our Employees a stable work environment with equal
opportunity for learning and personal growth. Creativity and innovation are encour-
aged for improving the effectiveness of Southwest Airlines. Above all, Employees
will be provided the same concern, respect, and caring attitude within the organi-
zation that they are expected to share externally with every Southwest Customer.

Southwest Airlines is famous for its remarkable management philosophy:
employees first, customers second, shareholders a distant third. When we look
at other truly successful companies, we notice that they have a similar philoso-
phy. In these companies, front-line people are highly valued, are expected to
make local decisions, and are effectively engaged in delivering superior cus-
tomer outcomes. As a result, the companies gain two significant advantages: (1)
Workers routinely dedicate their intelligence and creativity to help the company
be successful, and (2) the company is adaptive; it can detect and quickly
respond to changing market conditions and opportunities.

The purpose of this book is to explore how we might adapt the way these
great companies frame the role of leadership to organizations involved in devel-
oping software-intensive systems.

Frames

Deep frames pervade TPS that fundamentally alter how the system is under-
stood and therefore how to proceed with implementation. If managers
and program leaders fail to understand the frameworks underlying TPS,
they miss the point and therefore fail to achieve the expected results.7

When coauthor Tom isn’t thinking about software development, he pursues his
passion, which is photography. He captures stunning scenic views and creates
dynamic photo journals of conferences. When you look at his photographs, you
see the world through his eyes; he has carefully framed each photograph to
guide your attention to the subject and purpose of the image, whether it is an

6. www.southwest.com/about_swa/mission.html.
7. We thank Michael Ballé, Godefroy Beauvallet, Art Smalley, and Durward Sobek for

their paper “The Thinking Production System,” 2006, which inspired the theme of
this book. This quote is from that paper. TPS is an abbreviation for the Toyota Pro-
duction System, and also the Thinking People System.

www.southwest.com/about_swa/mission.html

FRAMES xvii

engaged conversation, a sweeping view of a spectacular sunrise, or a tightly
framed view of an incongruous detail. The first thing Tom does when he creates
a photograph is to decide on the perspective and framing that will lead to an
effective composition. Sometimes he creates a frame with his hands to help him
concentrate both on how the elements inside the photograph flow together and
on which things to leave out of the frame because they would detract from the
subject. Only after Tom has framed a picture does he consider the details of focus,
depth of field, exposure, improving the lighting, and so on. In the end, each of
Tom’s photographs tells a story about the subject from his chosen perspective.

According to cognitive scientists, we all interpret our surroundings through
frames—mental constructs that shape our perspective of the world. Frames are
sets of beliefs about what elements to pay attention to and how these elements
interact with each other. Frames place significant limits on our perspective; we
can see only what our frames tell us is meaningful, and we usually ignore what
lies outside the boundaries. Most of us are unaware of the way our background
and experience shape the way we frame our decisions and actions; only a few of
us consciously adjust our frames as if we were photographers. In fact, we sel-
dom even think about the direction in which we are pointing our cameras.

Everyone shapes his or her view of the world through framing, and people
with different backgrounds are likely to see their surroundings through vastly
different frames. By themselves, frames are not inherently good or bad; they
just are. However, evidence has shown that certain frames are more likely than
others to lead to long-term business success. For example, as we will see later,
Southwest Airlines frames its business in a strikingly different manner from
most other airlines. And over its almost 40-year life span, Southwest has been
more successful than airlines employing different frames, including airlines that
have copied many of Southwest’s practices. Similarly, Toyota frames its business
differently from the Big Three automakers in Detroit, and although most auto-
makers have adopted lean practices, their thinking frames have not really
changed. Like Southwest, Toyota is a major player in the automotive business,
and not coincidentally, Toyota, Southwest Airlines, and Svenska Handelsban-
ken all see the world through similar frames.

Whatever frame you use limits the questions you think to ask, the decision
alternatives you consider, and the consequences you anticipate from those deci-
sions. Sometimes you may be surprised and perhaps disappointed when things
don’t work out as expected. It is possible that the execution of the decision was
at fault, or that events conspired to change the results. But it is more likely that
your frame of reference, your thinking system, is the culprit. If you are not seeing
the results you expect from your current direction, consider moving to a different
place, re-aim your camera, and look at the problem through a different frame.

xviii INTRODUCTION: FRAMING

Framing the System Development Process

This book is divided into six chapters. Each chapter contains four frames, so
over the course of the book we will look through 24 different frames to get a
good picture of how a lean development process should work. Taken as a
whole, the 24 frames present a coherent leadership framework for system devel-
opment. We conclude each chapter with a portrait of the leader who is respon-
sible for creating focus through its four frames. (See Figure I-1.)

Chapter 1, Systems Thinking, starts, appropriately enough, by focusing on
customers. It examines the nature of customer demand, distinguishing between
value demand and failure demand. It investigates how our work systems can
predictably and effectively anticipate and deal with demand, and how our poli-
cies often interfere and create waste. The chapter concludes with a portrait of a
leader who creates a vision of how to delight customers.

Chapter 2, Technical Excellence, covers the basics of excellent software
development—low-dependency architecture, a test-driven development process,
an evolutionary development approach, and the importance of deep expertise
among developers. The highlighted leader in this chapter is the competency
leader.

Chapter 3, Reliable Delivery, starts by finding the biggest constraint in the
system and learning how to manage the risk posed by that constraint. It dis-
cusses workflow and schedule, and the essential contribution of feedback. The
highlighted leader is the product champion—the same leader we met in Chapter
1, but this time in the role of leading implementation.

Chapter 4, Relentless Improvement, discusses the essential characteristic of
any lean organization: constant, ongoing, never-be-satisfied improvement. It
shows how improvement works, suggests some tools, and features the manager
as mentor of improvement.

Chapter 5, Great People, starts with the assumption that great results come
from great people, so the essential question is how to create great people. It
starts with the basic tenet that people treat others the way they are treated, then
walks through the four Ps: Purpose, Passion, Persistence, and Pride. The chap-
ter highlights the front-line leader, who has the most influence on the way peo-
ple think about their work.

Chapter 6, Aligned Leaders, discusses and gives examples of developing
alignment on the leadership team. It has several lists of ideas for your leadership
team to ponder as you turn theory into practice.

FRAMING THE SYSTEM DEVELOPMENT PROCESS xix

Figure I-1 The big picture

Policy-Driven
Waste

Product Champion, Take 1

End-to-End
Flow

Customer
Focus

System
Capability

Systems Thinking

Deep
Expertise

Competency Leader

Evolutionary
Development

Essential
Complexity

Quality by
Construction

Technical Excellence

Adaptive
Control

Product Champion, Take 2

Pull
Scheduling

Proven
Experience

Level
Workflow

Reliable Delivery

Learn to
Improve

Manager as Mentor

Expose
Problems

Visualize
Perfection

Establish a
Baseline

Relentless Improvement

Pride of
Workmanship

Front-Line Leader

Mutual
Respect

Knowledge
Workers

The Norm of
Reciprocity

Great People

Sustainability

Leaders at All Levels

Alignment

From Theory
to Practice

Governance

Aligned Leaders

1

Chapter 1

Systems Thinking
Snapshot

Southwest Airlines is a company that has defied the odds against success in the
rough world of the airline industry and become a model for others to follow—a model
that has been enormously difficult to copy. Why? Because would-be imitators copy
the parts of the system that fit their mental models, but they don’t copy the way
these parts work together as a system. They fail to appreciate the fundamentally
different way of thinking behind the Southwest Airlines system: systems thinking.

For decades, John Seddon has used systems thinking to dramatically improve
service organizations. “To take a systems view is to think about the organization
from the outside-in, to understand customer demand and to design a system that
meets it,” Seddon says. “To enable control in this high variety environment, it is
necessary to integrate decision-making with work (so the workers control the work)
and use measures derived from the work. . . . If workers are controlling the work,
they need managers to be working on the things beyond the control of the workers
which affect the system conditions: the way work works. The result is an adap-
tive, customer-centric system.”1

Seddon’s approach to systems thinking begins by asking an organization to
answer five questions:2 (1) Purpose: What is the purpose of this organization?
(2) Demand: What is the nature of customer demand? (3) Capability: What is the
system predictably achieving? (4) Flow: How does the work work? (5) System con-
ditions: What are the causes of waste in the system? We discuss these five
questions in this chapter. Then we introduce the leader whose job it is to bring sys-
tems thinking to the creation of a product idea, the product champion. We will meet
the product champion again in Chapter 3, leading the product development effort.

1. Seddon, Systems Thinking in the Public Sector, 2008, p. 70.
2. Seddon, Freedom from Command and Control: Rethinking Management for Lean Ser-

vice, 2005, pp. 101–10.

Policy-Driven
Waste

Product Champion, Take 1

End-to-End
Flow

Customer
Focus

System
Capability

Systems Thinking

2 Chapter 1 SYSTEMS THINKING

A Different Way to Run an Airline

Are empty airplane seats waste? If you were an airline executive, what would
your answer be?

Every month the Airline Transport Association publishes the load factors
(revenue passenger miles divided by available seat miles—a utilization measure)
for U.S. airlines. Business reporters are quick to praise airlines that increased
load factors over the previous year. Financial analysts maintain that once an
airline load factor exceeds its break-even point, more and more revenue will hit
the bottom line. So it’s pretty clear that empty seats are waste—unless you are
an airline passenger. Or Southwest Airlines.

Completely full airplanes aren’t very comfortable. It’s hard to find space for
carry-on luggage, and people carry on a lot more these days, since most U.S. air-
lines are charging to check bags. But the real problem comes during the holidays
when bad weather wreaks havoc with airline schedules, and there is no spare
capacity. Far too many airline passengers have spent Thanksgiving in Denver or
Christmas in Chicago instead of getting all the way home for the holidays.

It costs airlines a lot to untangle the mess of a winter storm at a hub, espe-
cially with load factors approaching 100%. To soften the financial blow, U.S.
airlines long ago stopped providing lodging for passengers who were stranded
because of a weather-caused delay, but they still have to find a way to get those
passengers to their destination. Inconvenienced passengers are not happy, but
most airlines don’t seem to worry about the cost of annoyed customers. After
all, the bad weather wasn’t their fault.

Over the years, Southwest Airlines has reported load factors that were
approximately 10% lower than those of other airlines of similar size. This
might lead you to suspect that Southwest has been struggling financially—but
you would be wrong. Donald Converse summed up the amazing track record of
Southwest Airlines in Fast Company magazine in June 2008:3

Founded in 1971, Southwest Airlines began to establish a consistent pattern of
deviating from convention. In 1978 the airline industry was deregulated and 120
plus airlines have gone bankrupt since. Why, in this difficult environment, has
SWA continued to grow and thrive? Notably, SWA is the only airline to continu-
ously show a profit every year since 1973. How has SWA managed to increase its
traffic by as much as 139%? Here are some facts that might help to understand
how SWA has achieved this incredible record:

• The company consistently leads the industry in low fares and dominates the
short haul market with an average of 60% market share.

3. Converse, “Thank You Herb!,” 2008.

A DIFFERENT WAY TO RUN AN AIRLINE 3

• The company serves over 2400 customers per employee annually—making
SWA employees by far the most productive workforce in the airline industry.

• Employee turnover averages 6.4%—again one of the best records in the
industry.

• SWA is consistently ranked in the top 100 of the best U.S. companies to
work for.

• They have never been forced to lay off employees regardless of external mar-
ket factors such as recession or high fuel prices.

• They have the best record for baggage handling in the industry.

• They have the best on-time performance record.

• Fewest customer complaints.

• Youngest fleet of airplanes, and the best safety record!

Southwest’s stated purpose is to make flying possible for those who would
not otherwise be able to afford it. Thus Southwest sees its main competitor as
the car, not other airlines.4 Southwest started out in Texas serving three cities—
Houston, Dallas, and San Antonio—that form a triangle, about a four-hour
drive, or an hour flight, apart. About a year after it was founded, Southwest
had four planes on these routes, but it was running out of money, so it sold one
of the planes. However, executives decided that canceling a quarter of its flights
would be a disaster—this would not lead to higher load factors; it would lead
to many fewer customers.

This was the start of Southwest’s famous ability to rapidly turn around air-
craft at the gate. The ground operations manager decided that planes could be
emptied of passengers and filled up for the next flight in ten minutes, allowing
three planes to fly the schedule designed for four.5 What Southwest realized is
that load factors don’t take into account the time that airplanes spend on the
ground. By operating with fewer planes, Southwest saved significantly on capi-
tal investment and labor costs. Maintaining the same number of flights pro-
vided plenty of options for passengers and empty seats for growing traffic and
absorbing variation—at a small marginal cost. James Parker, former Southwest
CEO, notes:6

4. In Europe, Southwest would compete with trains, but in the United States there are
few equivalent train systems.

5. Southwest planes used to leave the gate before everyone was seated, encouraging
people to find a seat. This is no longer allowed, and turnaround times are a bit
longer these days.

6. Parker, Do the Right Thing: How Dedicated Employees Create Loyal Customers
and Large Profits, 2008, p. 57. Italics in the original.

4 Chapter 1 SYSTEMS THINKING

With Southwest’s predominantly short and medium haul route structure, an
increase in turnaround times of 20 minutes per flight would reduce the available
flying time for each aircraft by about two hours every day. Spreading this effect
over the entire fleet of more than 450 airplanes would mean the loss of about 900
hours of flying every day. Remember, an aircraft doesn’t make any money sitting
on the ground. So Southwest would have to buy at least 80 more airplanes. With a
list price of around $40 million per 737, this comes to a tidy sum of well over $3
billion. This is money Southwest doesn’t have to spend because of its efficient
turnaround.

Southwest realizes that increasing its revenue potential is more profitable
than trying to make as much money as possible on every flight, and customers
get more of what they want at the same time. Southwest’s airplanes may be less
full than those of its competitors, but the planes spend a lot more time in the
air, which more than compensates for the lower load factors. By one account,
the typical Southwest 737 is used 11.5 hours a day, compared with an average
of 8.6 hours for other carriers.7 Rapid aircraft turnaround leading to high capi-
tal equipment utilization bears a resemblance to the use of short setup times in
manufacturing, pioneered by Toyota. Both companies discovered new, counter-
intuitive ways to make more productive use of both capital equipment and peo-
ple while maintaining increased flexibility in the face of variation in demand. In
both cases, their approach trumped the apparent economies of scale enjoyed by
their competitors.

Since Southwest can turn a plane around much faster than other airlines, the
people involved can be assigned to a new plane more quickly, and thus they are
more productive. Short turnarounds have been difficult for other airlines to
copy; Southwest’s times average 15 to 20 minutes faster than those of their best
competitors.8 One of the reasons short turnarounds are so difficult to emulate
is that many different departments must be coordinated in a short span of time:
pilots, flight attendants, caterers, cabin cleaners, gate agents, operations agents,
ramp agents, ticket agents, baggage agents, freight agents, fuelers, mechanics.
Southwest nurtures a strong culture of cooperation across these departments;
people from different areas routinely help each other out. At many other air-
lines, work rules and measurement systems discourage such cooperation.9

7. Freiberg and Freiberg, Nuts: Southwest Airlines’ Crazy Recipe for Business and Per-
sonal Success, 1998, p. 51.

8. Parker, Do the Right Thing: How Dedicated Employees Create Loyal Customers
and Large Profits, 2008, p. 57.

9. See Grittell, The Southwest Way, 2003, Chapter 3.

A DIFFERENT WAY TO RUN AN AIRLINE 5

Any Pilot Can Fly Any Plane, Any Plane Can Fly
Any Route
We were flying from Los Angeles to Denver on Southwest. We were pleas-
antly surprised by the waiting area: a double row of comfortable seats with
small tables and power outlets in between, right at the gate, and free! It was
just what we road warriors look for in an airline club room, especially when
the flight is delayed. And our flight was late, due to fog in San Francisco.
When it arrived, we experienced the famous rapid turnaround with a well-
managed boarding queue. But alas, we were not going to depart on that
plane; the pilot announced that it had a mechanical problem.

We were asked to go to another airplane and please take the same seat; we
didn’t have boarding passes, after all. The plane was about 70% full—typical
for Southwest—so most of the center seats were empty and no one was too
worried about seating. A quick exit from the plane and a short walk brought
us to a gate where the plane we were now going to take was just pulling up. It
was empty in short order, and two agents stood at the gate checking each of
us off on a paper list as we boarded. Soon we were all in the same seats with
the same crew and the same luggage in the hold. Less than a half hour after
the mechanical problem was discovered, we were leaving in a different plane.

Not long after that trip we found ourselves in Atlanta, flying home to Minneap-
olis on a late-evening flight, this time on a different airline. Again, fog took its
toll. As the evening wore on, our flight was delayed, first to 11:00 P.M. Then
11:30 P.M. Then a quarter past midnight. I checked the arrival time of the
plane coming in to our departing gate to be sure we would have a plane. An
arrival was scheduled at 11:05 P.M.—over an hour before our flight was
scheduled to depart. Surely this could not be our plane. How could a simple
turnaround take 80 minutes? We were soon to find out.

We went to the gate and found our future cabin crew already there; they’d been
waiting for the plane for a couple of hours, just like us. In this traditional system,
there was no concept that a flight and its crew could simply be assigned the
next available plane; everyone had to wait for the appropriate aircraft to arrive.
We could see why Southwest achieves higher productivity through its emphasis
on simplicity: Any flight and any crew can use any available plane.

When the plane we were to take finally arrived, it seemed to take forever for peo-
ple to get off. Of course it was completely full, but even worse, it was overflowing
with carry-on luggage. The airline had a $15 luggage fee, which encouraged
passengers to carry on everything they could. As we boarded, the same thing
happened—the plane was completely full and almost everyone was overbur-
dened with luggage. It took forever to get all the luggage stowed or checked.
The impact of luggage fees on turnaround times seems to be lost on most air-
lines. One wonders if the fees cover the decreased aircraft utilization.

Mary and Tom Poppendieck

6 Chapter 1 SYSTEMS THINKING

Jim Parker, Southwest’s former CEO, claims that Southwest Airlines isn’t
really in the airline business at all. The company is in the customer service busi-
ness; it just happens to fly airplanes.10 He believes that the secret to success in
the customer service business is to take good care of your employees, because
then they will take good care of your customers, and satisfied customers lead to
a successful business. So Southwest focuses on three things: Create a great place
to work, provide customers with what they really want, and make sure that the
airline always makes a profit so it can stay in business for the long term.

Frame 1: Customer Focus

If you think of your organization as a system,11 then a clear, customer-focused
purpose that can be used to drive holistic decisions is the starting point for sys-
tems thinking. Start by asking yourself, “Who are my customers, and what do
they really want from my organization?” This is not as easy as it sounds,
because it may not be clear who your customers really are. So let’s start by
defining whom we mean by customers.

Who Are Your Customers?

A customer is anyone who pays for, uses, supports, or derives value from the
systems you create. Thus you probably have a lot of different customers. But
wait; there’s more. If you are working on a subsystem of a larger system, you
have customers of your subsystem and customers of the overall system. So
arriving at clarity about who your customers are can be challenging.

We recommend that you simplify the issue of identifying your customers by
considering the whole system you are involved in creating, not just the soft-
ware. If you are creating a subsystem of a larger system, think of those creating
the other parts of the system as partners and focus on understanding the cus-
tomers of the overall system. For example, if you are developing the software
for a medical device programmer, the primary customers are those whose lives
are improved by the medical device, followed closely by the medical personnel
who select, deliver, and program the medical device. If you are developing soft-

10. Parker, Do the Right Thing: How Dedicated Employees Create Loyal Customers
and Large Profits, 2008, p. 65.

11. We use the word system in two ways: First, there is your organization’s work system,
and second, there are the systems you deliver to customers. The meaning should be
clear from context. Systems thinking should be applied to both types of systems.

FRAME 1: CUSTOMER FOCUS 7

ware to automate a business process, the purpose of the software is to support
the most effective business process possible, and the most appropriate measure-
ments of success would be the business results generated by the improved busi-
ness process.

Customers Who Pay for the System
Often the first customers who come to mind are the sponsors who pay for your
systems. Ask yourself, “Why do these customers spend good money for my sys-
tems? What purpose are they trying to achieve? What are their key con-
straints?” Sponsors usually have a clear purpose: They know the overall results
they expect from an investment. Cost is frequently constrained by a limit
beyond which the investment would not make sense, and sometimes there is a
deadline beyond which the system would not be useful.

Sponsors usually don’t care about the details of the system, as long as their
purpose is served. Thus it is very important to be clear about what this purpose
is and to focus on it separately from the details of implementation. The objec-
tive is to be sure that the sponsor’s purpose is achieved.

Customers Who Use the System
Customers who use your system may not be the same as those who pay for the
system, and sometimes these users have a different purpose. They have a job to
do, and they want the system to help them do their job more effectively, more
comfortably, and more intuitively. As Carl Kessler and John Sweitzer say in
Outside-in Software Development, “If your product makes end-users feel
smart, effective, and in control of their work, you have a winning product.”12

Customers Who Support the System
When you release a system, you may breathe a sigh of relief now that your
work is done; but the work is just beginning for those who support the system.
Do you know how consumable your systems are—that is, how rapidly and eas-
ily your customers can begin realizing value from your system? What does it
take to install a system or a release? How difficult is it to use? How much train-
ing is required?

You should also understand how robust your systems are. How often do
they fail in normal use? How long does it take to recover? How easy is it to find
and eliminate the cause? What does a failure cost your customers?

12. Kessler and Sweitzer, Outside-in Software Development: A Practical Approach to
Building Successful Stakeholder-Based Products, 2008, p. 25.

8 Chapter 1 SYSTEMS THINKING

Customers Who Derive Value from the System
One of the most effective ways to create a competitive advantage is to help your
customers be successful. So ask yourself whether you know how long it takes
your customers to start deriving value from your systems. Is there anything you
can do to help them?

Many companies expand their business by understanding their customers’
value chain and helping their customers’ customers be successful. For example,
if a company helps its customers develop a truly effective call center, or sell soft-
ware tools that increase the effectiveness of financial analysts, their customers
will be delighted.

Product Owners Aren’t Customers
I was giving a talk at a company with maybe 70 people in the room. “How
many here are developers?” my host asked. About 50 people raised their
hands. “And how many of you developers understand the purpose of the code
you work on?” Only two hands stayed up!

We found a similar sentiment in the developers who attended our class over
the next two days; few of them knew why they were working on their assigned
stories. I challenged them to take responsibility for understanding and achiev-
ing the purpose of their work; they should spend time with the production
workers in the manufacturing plant and find out how well the system was
working for them. As it turned out, many had already done that, but the issues
the production workers thought were important never made it to the develop-
ers’ “to do” list.

 “We are a central IT department,” the department manager told me. “When we
implemented Scrum, we decided that the IT people in the business units should
be the product owners. But the problem is they are actually project managers,
so they usually tell the development teams exactly what to do without telling
them why. They are measured on how many new features get into the sys-
tem, so they don’t put priority on maintenance work, even though our system
annoys the production workers and often slows down factory production.”

Product managers and product owners are not customers. Their job should
be to connect the development teams with customers, but that clearly wasn’t
happening here. Instead, the product owners represented a handover
between the development teams and their real customers, keeping develop-
ers from engaging in the purpose of their work.

Later in our class we did a problem-solving exercise, and two groups inde-
pendently decided to work on the problem of not being allowed to do the
maintenance work they knew should be done. Both groups came up with the

FRAME 1: CUSTOMER FOCUS 9

same solution to the problem: They decided they would reserve 20% of the
velocity of each iteration to work on tasks of their own choosing, which would
give them time to fix the system so they could be proud of it.

Mary Poppendieck

What Is Your Purpose?

A simple statement of purpose from a customer’s perspective can do wonders to
clarify what is important and what is not. For example, everyone at Southwest
knows that the company’s purpose is to make flying affordable and enjoyable
for everyone. This means that costs have to be low and hassles minimized. This
purpose guides both strategic initiatives and day-to-day decisions at all levels of
the company.

Once you have identified your customers, it is time to come to a clear under-
standing of your organization’s purpose from your customers’ perspective. Cre-
ate a brief, crisp statement of what is important for your organization to
succeed. This is what your work system must deliver. Note: Your purpose is
probably not to develop software. It is a rare customer who wants software;
customers want their problems solved. If customers could solve their problems
without software, they would be delighted.

As an example, let’s look at how we would describe the purpose of the devel-
opment group in the sidebar “Product Owners Aren’t Customers.” In this case,
the primary customers were the users, the production operators; another impor-
tant customer was the sponsor; and a third set of customers were the operations
people who supported the system. The purpose of the development group was to
provide a production information system that made production operators’ jobs
easier while improving quality and productivity in the manufacturing plant.

Let’s look at another example. Werner Vogels, CTO of Amazon.com, defines
the purpose of his IT organization thus: Provide a highly available, highly scalable
technology platform for Amazon.com and its business partners.13 By “available,”
Vogels means that shoppers can always browse a site and put things in their
shopping basket, even if other parts of the system aren’t working. By “scalable,”
Vogels means that there should be positive, not negative, economies of scale,
and scaling should be available on demand. Over the past several years, pursuing
this purpose has turned Amazon.com into an impressive technology provider as
well as a retailer, while Amazon’s IT department has become a true profit center.

13. Vogels, “A Conversation with Werner Vogels,” 2006; see also the videos Vogels,
“Availability & Consistency,” 2007, and Vogels, Keynote, 2008.

10 Chapter 1 SYSTEMS THINKING

What Is the Nature of Customer Demand?

The next step in establishing a systems view of your organization is to under-
stand the patterns of customer demand for the products and services you pro-
vide. Customer demand comes in two forms. First there is demand for products
and services that provide value. Second, when a product or service doesn’t meet
the customers’ expectations, there is demand for failure remediation—that is,
demand to fix something that appears to be broken, inadequate, or difficult to
use, configure, or modify.

Failure Demand
Failure demand is the demand on the resources of an organization caused by its
own failures. Support calls, for example, are almost always failure demand.
They may be caused by some aspect of the system that is unclear to a user, or
they may be caused by an outright failure of the system to perform.

Change requests may also be failure demand; for example, a change request
may come from a failure on your part to understand your customers or a pre-
mature decision on your part about what customers actually want. Even if you
deliver exactly what your customers asked for, once they see it they may realize
that it doesn’t solve their problem; from your customer’s perspective change
requests in this case are failure demand.

An insidious form of failure demand is the demand on your resources created
by technical debt: things such as defects you have chosen to ignore, messy coding
practices, duplication, lack of effective test automation, a tightly coupled archi-
tecture, multiple code branches—anything that makes it difficult to respond to a
request for a change. All these things increase the demand on your capacity when
customers ask for changes, even if the changes themselves are value demand.

Demand from support organizations that have to deal with your systems is
usually failure demand. When your product is difficult to integrate with other
systems, database migrations between versions are a nightmare, or intermittent
lockups bring down the data center, you have serious failure demand. Even if
your software performs exactly the way it was designed to operate, if it gives
operations and support organizations problems, both you and they are wasting
valuable time.

What Is Failure Demand?
We were explaining failure demand to a management team. I asked, “Is the
support manager here?” Yes, he was.

FRAME 1: CUSTOMER FOCUS 11

“So how much of the demand on your organization do you think is failure
demand?”

“About 95%,” he was quick to reply.

Later that day I was giving a talk to a larger group and a question came from
the audience: “You say that we should be able to rapidly update our code. But
how can we do that when so many of our customers have customized ver-
sions of our software?”

Suddenly the magnitude of the support problem dawned on me. “It sounds to
me like you have a huge branching problem,” I replied. And they did. The
branching and support policies had created ever-growing failure demand on
the organization.

Mary Poppendieck

The purpose of looking for failure demand is to identify as much failure
demand as possible, because failure demand is waste that you can do something
about. In the beginning you should expect to find a lot of failure demand. Wel-
come it; do not penalize anyone for it. Failure demand is created by the way
your work is done; exposing it gives you the opportunity for significant
improvement. Your primary objective is to find and eliminate failure demand so
that you have more time to accommodate additional value demand.

Once you have identified failure demand, calculate what percentage of the
demand on your organization is failure demand. It is likely to be a big number;
we have seen estimates between 30% and 70%. Think about it: If one-third of
your demand is failure demand, you would increase the capacity of your orga-
nization by 50% if you could eliminate that failure demand. Eliminating failure
demand provides a huge opportunity for increased productivity. In Chapter 4,
Relentless Improvement, you will find ideas for ways to uncover the causes and
reduce the amount of failure demand.

Of course, failure demand is not going to go away overnight, and while it
exists, your secondary objective is to remediate each problem as rapidly as pos-
sible. John Seddon says, “As a rule of thumb, end-to-end time from the cus-
tomer’s point of view is almost always an essential measure in any ‘break-fix’
system.”14 A break-fix system starts with a customer in distress (something is
broken) and ends when the problem is resolved (fixed). For all failure demand
that you choose to fix, the essential customer-focused measurement is the
request-to-resolution time. Clearly, your first priority should be to eliminate the

14. Seddon, Freedom from Command and Control: Rethinking Management for Lean
Service, 2005, p. 106.

12 Chapter 1 SYSTEMS THINKING

failure demand, but as long as it’s there, minimize your customers’ pain by fix-
ing their problem as rapidly as possible.

Value Demand
The primary demand on your organization should be value demand. This
demand can be in the form of requests for work that will add value from a cus-
tomer’s perspective, or it can be in the form of unmet needs that customers
don’t know they have, but that you discover and satisfy through your products
and services. Value demand, when satisfied, usually generates revenue for your
organization.

Almost every software development organization we know of has more
demand for its services than it can accommodate, so a good question to ask is
“What portion of incoming value demand does my organization have the
capacity to satisfy?” If value demand exceeds your capacity to deliver, there are
two steps to take: (1) Focus on eliminating failure demand so you have more
time to work on value demand, and (2) evaluate how you filter value demand
to decide which work you will accept and which you will turn down.

Once you have a good idea about the volume of value demand your organi-
zation is experiencing, how you qualify it, and what percentage you can accept,
the next step is to establish a customer-focused view of the value you deliver.
What do your customers really value? Once you understand what customers
value, you can establish customer-centric measures to focus everyone on
improving customer outcomes, rather than meeting internal targets. If you pro-
vide visibility into what it means to deliver customer value, development teams
can act independently and creatively to give customers more of what they really
want.

Examples of good customer-centric measurements might be the following:

1. Time-to-market for product development (for the whole product)

2. End-to-end response time for customer requests (request-to-resolution
time)

3. Success of a product in the marketplace (profitability, market share)

4. Business benefits attributable to a new system (measureable business
improvement)

5. Customer time-to-value after delivery (consumability)

6. Impact of escaped (post-release) defects (customer downtime, financial
impact)

FRAME 2: SYSTEM CAPABILITY 13

Frame 2: System Capability

Once you understand your customers and what it means to deliver value to
those customers, the next step is to gain a clear understanding of your capabil-
ity to deliver that value. What capabilities do you need to be successful in the
marketplace, both now and in the future? It is important to have the capability
to deliver what customers want today, but it is also necessary to look into the
future and make sure that today’s efforts are moving your organization toward
tomorrow’s success. Realistic long-term planning and risk assessment, along
with understanding the current and future competitive environment, are essen-
tial ingredients of sustainable success. If people and teams are going to use their
creative energy to decide what is important to do today, they need to under-
stand both the immediate customer needs and the challenges of the future.

What Is Your System Predictably Achieving?

The starting point for improving your capability to satisfy customers is to
understand how your current work methods actually work, what they are cur-
rently capable of delivering. You need to understand how your capability com-
pares with the needs of your customers and the capability of your competitors,
both now and in the future.

Understanding Capability
If you want to know how well your organization is performing, don’t just look
at a few data points; look at a sequence of data over time. All systems exhibit
variation, and looking at an occasional data point does not tell you much about
how much variation there is in your system. In fact, random data points give a
distorted view of your current capability.

A good way to visualize capability is to create a time series chart. Let’s say
that you want to look at your capability to quickly respond to a particular type
of demand, for example, small urgent requests from customers. When a request
arrives, give it a date stamp; when the request is closed out, subtract the arrival
date from the current date to get the end-to-end response time, then plot these
times. A time series plot of response times for small urgent requests might look
something like Figure 1-1.

Your immediate reaction to a chart like this might be to look for the cause of
the long delays for several of the requests. You don’t have to look very far—
your work methods are the cause. This is a chart showing what your work sys-
tem is currently capable of delivering. You are not going to change things by

14 Chapter 1 SYSTEMS THINKING

looking for scapegoats or setting more aggressive targets. Your current way of
working produces the results in the chart; if you don’t like the results, you have
to change the way the work is done.

W. Edwards Deming worked to spread an understanding of variation to
industry leaders, but we think that his message is often distorted. We frequently
see efforts aimed at removing variation from every process, without recognizing
that such efforts usually make things worse. When you try to remove normal
(common-cause) variation from a process, the process actually gets worse, not
better. Deming pointed out that almost all variation (perhaps 95%) is common-
cause variation—it is inherent in the system—and the only way to remove it is
to change the way work is done. He concluded that most variation is a manage-
ment problem. So if you are looking for scapegoats, start by looking in the mirror.

Positive or Negative Reinforcement?
A well-known approach to training is to give positive reinforcement when
someone does something especially well, because this is supposed to lead to
more of the same behavior.

We heard of a pilot training center that decided to test this theory. Careful
records were kept of the results of positive and negative reinforcement of
pilots in training. Much to the surprise of the researchers, they found that
whenever a trainee pilot was given positive reinforcement, performance got
worse, and whenever negative reinforcement was given, performance always
improved! The training center concluded that giving negative feedback for
poor performance was an effective training technique, and that positive feed-
back for good performance should be avoided.

Figure 1-1 Time series chart of end-to-end response time for small urgent requests

Request Number

End-to-End Response Time

D
ay
s
to

 C
om

p
le
te

0

5

10

15

20

25

30

35

40

Average
12.6

FRAME 2: SYSTEM CAPABILITY 15

What’s wrong with this research? Consider a time series of the performance
of a pilot in Figure 1-2.

This time series shows expected variation in performance—variation due to
random causes largely unrelated to pilot skill. Assume that the pilot is praised
at the high points (circled). Of course, performance will appear to be lower the
next time! If the pilot is reprimanded at the low points (boxed), performance
would appear to improve.

The evidence shows very little about positive or negative reinforcement, but it
clearly indicates that those gathering the data did not understand variation.

Tom Poppendieck

What Does Your System Need to Achieve?

The first step in changing the way work is done is to develop an understanding
of what capabilities you need for both short- and long-term success. Do you
have competitors who are better at delivering value to your customers than you
are, or is there a threat that such competitors might emerge in the future? Could
you attain a meaningful competitive advantage from significant improvements?
Will your performance deteriorate over time if you proceed down your current
path? Will your architecture support sustainable growth? Are you building up
technical debt that will slow you down in the future?

Once you understand where you need to be in order to be successful, both
now and in the future, you can create a long-term challenge that will make it clear
to everyone what the organization needs to happen in order to be successful both
now and over the long run. This will enable people and teams to balance short-
term or narrowly focused decisions against long-term and system-wide imperatives.

Don’t Set Targets
You should not set targets. Your current system is what it is; targets are not
going to change its capability. You measure system capability; you do not prescribe

Figure 1-2 Performance of a pilot in training

Pe
rf
or
m
an

ce

Training Flight

16 Chapter 1 SYSTEMS THINKING

it. As Deming once said, “If you have a stable system, then there is no use to
specify a goal. You will get whatever the system will deliver. A goal beyond the
capability of the system will not be reached. If you have not a stable system,
then there is no point in setting a goal. There is no way to know what the sys-
tem will produce: it has no capability.”15

Think of it this way. Let’s say you set a target that is beyond the capability of
your system, a goal that your current work processes cannot achieve. Since the
target is a strong motivator (no argument there), people have three choices: (1)
redesign the work, (2) distort the system (for instance, by ignoring defects), or
(3) cheat (game the system) to hit the target.16 If people do not have the know-
how to redesign the system, they are left with two options: distort or game the
system.

Suppose the people do have the know-how to redesign the work. In our
experience, redesigned work is likely to produce far better results than an arbi-
trary target—but where is the motivation to surpass the target? Similarly, if you
set a target below the current system capability, you are likely to get less than
the system is capable of delivering, because there is little motivation to surpass
the target.

Goals Gone Wild
Managers have no doubt heard that they should set challenging goals in
order to motivate the best performance. But in the paper “Goals Gone Wild,”17

researchers from four top business schools question this practice. They agree
that goals are powerful motivators, so powerful that the goals often have
severe side effects, ranging from dangerous products to unethical behavior to
seriously underperforming systems to reduced learning.

There may be too many goals, causing people to choose the ones they like.
Or they can be too specific, causing sub-optimizing behavior. Or they can be
too challenging, causing people to meet them at all costs—inducing unneces-
sary risk taking, cheating, or gaming. The authors issue this warning: “Goals
may cause systematic problems in organizations due to narrowed focus,
unethical behavior, increased risk taking, decreased cooperation, and

15. Deming, Out of the Crisis, 2000, p. 76.
16. From Seddon, Systems Thinking in the Public Sector, 2008, p. 97.
17. Ordóñez et al., “Goals Gone Wild: The Systematic Side Effects of Over-Prescribing

Goal Setting,” 2009. Italics in the original. See also Bazerman, “When Goal Setting
Goes Bad,” 2009.

FRAME 2: SYSTEM CAPABILITY 17

decreased intrinsic motivation.” And they postulate, “Aggressive goal setting
within an organization will foster an organizational climate ripe for unethical
behavior.”

There is no question that goals influence behavior; it’s just that they are a
blunt instrument. So be careful what you ask for; you will probably get it.

Mary Poppendieck

A target is a predetermined level of performance that people are expected to
achieve; if there is significant variance from the target (or plan), explanations
are usually required. Targets are generally associated with incentives; people are
rewarded or punished based on their variance from the target.

Incentive systems based on performance targets make the assumption that if
people would only try harder, they could achieve better results—hence targets
communicate an implicit assumption that people are not currently contributing
their best efforts. Wouldn’t it be better to challenge people and teams to excel at
delivering exceptional customer outcomes and communicate trust that they will
do their best?

Use Relative Goals with Caution
Not all goals are based on predetermined targets; they can be based on relative
measures. For example, goals can be based on performance relative to competi-
tors, performance relative to peers, or performance compared to past perfor-
mance. Relative performance goals do not attempt to set a fixed level of
performance for the future; they look backward to see how actual performance
compares against the performance of others. In most sports, winning or losing
depends upon relative performance: A swimmer only has to swim faster than
seven other swimmers in order to win; a baseball team has to score more runs
than the other team.

Relative goals can be very motivating, and they have some advantages over
targets or plans. Relative goals are not based on a prediction of the future, nor
do they encourage people to distort or game the system; and finally, they don’t
act as a floor on performance. On the other hand, relative goals leave competi-
tors with little motivation to help each other out—quite the contrary: Relative
goals can motivate competitors to sabotage each other’s performance. Thus
ranking performance relative to peers can be damaging inside a company, espe-
cially if reward systems are based on this ranking. If, however, the competition
is friendly and performance rewards are shared equally among all competitors,
the destructive side effects of tracking performance against peers can be mitigated.

18 Chapter 1 SYSTEMS THINKING

Challenge: Pull from the Future
Perhaps the best way to engage people in making the organization better is to
create a long-term vision of where you want to be—where you need to be to
survive—and challenge everyone to help move the organization from where it is
now to where it needs to be. Challenge people and teams to improve the way
work is done by redesigning their work methods. Challenge them to develop
systems that provide clear business value. Challenge them to devise an architec-
ture that will meet future growth projections. Challenge them to create new
products that will be successful in the marketplace.

Let’s say that you would like to decrease the “hardening” time at the end of
a release cycle. A target might be “Cut the verification time in half!” Given
enough emphasis on this target, the verification time will probably be cut in
half, but often at the expense of more defects escaping to production.

A far better approach is to challenge teams to redesign the way development
works so that defects are discovered and fixed as soon as possible after they are
injected into the code. With this challenge, a team would quit focusing on how
many features are delivered and start thinking about how to make sure that
every delivered feature is defect-free. The team would introduce automated tests
and continuous integration and adopt the practice of stopping to fix every
defect as soon as it is detected. When done well, this approach has a track
record of dramatically decreasing back-end testing time—by far more than
half—at the same time as it increases quality and productivity. But these results
are achieved only when a team works to improve the capability of its work
methods to produce defect-free code. They are rarely achieved by a decree that
system verification time must be cut in half.

Challenges are different from fixed performance targets:

1. Challenges are not necessarily SMART;18 they are open-ended, customer-
centric, and designed to elicit passion and pride.

2. Challenges communicate confidence that people and teams are intelligent,
innovative, capable of thinking for themselves, and trusted to do their best
to further the purpose of the organization.

3. Challenges flow from a long-term vision of what is necessary to be suc-
cessful over time and contain enough information that people and teams
can act independently and with confidence that their work will contribute
to achieving the vision.

4. Thus challenges are a pull from the future rather than a forecast of the future.

18. SMART goals are specific, measurable, attainable, realistic, timely.

FRAME 3: END-TO-END FLOW 19

Frame 3: End-to-End Flow

Far too often, providing customer value is thought of as a series of separate
input-process-output steps, rather than an integrated flow of work through an
organization. But if no one takes an end-to-end view of a customer problem or
a product as it moves through a work system, customer problems fall into the
cracks between departments, hard-earned knowledge evaporates at handovers,
and the things that customers will really value get lost along the way. Develop-
ing an understanding of the end-to-end flow of work through a work system is
fundamental to systems thinking.

One way to evaluate the end-to-end workflow through your system is to
draw a process flow map—also known as a value stream map—of the end-to-
end flow of a product or a customer problem as it makes its way through your
organization. There are two reasons for drawing these maps. They help you

1. Discover the reasons for failure demand, so it can be eliminated

2. Find waste in the workflow, so it can be removed

Eliminate Failure Demand

Failure demand is waste. So the best questions to ask are “Why is the process
producing failure demand? What can be changed to prevent failure demand?”
In general, your bias should be against creating a process map for failure
demand, because every activity on that map would be waste. But there are times
when a process map for failure demand can help you discover how to reduce
and eventually eliminate the waste.

Failure Demand Process Map
We were at a Web portal company drawing a process map of the critical
defect resolution process. The group wanted to start their map when a critical
defect report reached the development team. But critical defect resolution is a
break-fix problem, so the process should always be mapped starting when
the customer discovers that something is broken (see Figure 1-3).

“I’m one of your customers,” I said to get the mapping process started in the
right place. “So let’s say that I discover a critical defect. What do I do?”

“Call Level 1 customer support.”

20 Chapter 1 SYSTEMS THINKING

“Right. I know how that goes: They tell me I must be doing something wrong;
nothing can be wrong with your system. So how long does it take me to con-
vince them that it’s your problem, not mine?”

“Maybe a couple of days” came the sheepish answer. Next my problem
moves to Level 2 customer support; a day later my problem makes it to Level
3 customer support. Often there is not enough information at this point, so
they need to get back to me about 30% of the time. This might take two days.

Just over a day later my problem reaches the development team, which looks
at the problem report immediately. Thirty percent of the time they have to get
back to Level 3 customer support, which takes another two days. But often
(30% of the time) Level 3 customer support needs to get back to me to
answer the development team’s question. It takes two days to contact me and
another day to get the answer back to the development team.

Once it’s clear what the problem is, it takes four hours to develop a solution
and one day to wait for testing, which takes another two days. An additional
half day, on the average, is needed to fix problems discovered in testing.
Finally the fix is deployed.

All told it takes an average of six and a half days for the customer support pro-
cess and another three and a half days for development. So it takes an aver-
age of ten days to solve my problem.

“What if the first six and a half days disappeared?” I asked.

“You mean have customers call developers directly?” The development VP
was appalled. It didn’t seem like a productive path to take.

But then someone spoke up from the back of the room. “We did that,” she
said. “A few years ago when I was working in another company, we were
going crazy, we needed to try something. So we got the CEO to let us bypass
customer support. It worked well.”

“Who answered the phones?” the development VP challenged.

“The developers did, in rotation,” she responded.

Figure 1-3 Critical defect process map

Level 1
Customer
Support

Level 2
Customer
Support

Level 3
Customer
Support

Write
Problem
Report

Quick
Assessment

Second-
Level

Analysis

Develop
and Test
Solution

Deploy

Critical
Defect

48 hr

4 hr

24 hr 10 min 12 hr

1 day 2 days

30% - 2 days

30% - 2 days

1 hr

1x 0.5 day

0.5 day

Total Cycle Time 10.0 days
Customer Support 6.5 days
Development 3.5 days

FRAME 3: END-TO-END FLOW 21

“How much of their time did that take?” He was clearly skeptical.

“Well, we did a lot of experiments, and we quickly settled on two rules: (1)
Immediately after a release, the responsible team staffed the phones. (2)
Developers were required to create a knowledge base report accessible to
customers for every call, before they could close it out.

“With those two rules, we were astonished at the results. We had 800 devel-
opers. Before we changed the process, 60% of development time was spent
on critical defects. After we changed the process, 20% of development time
was spent on critical defects.”

By connecting developers directly with customers, this company effectively
gained 320 experienced developers—for free.

Mary Poppendieck

Remember, all time spent handling failure demand is waste. So it is usually
better to create a map of the process that creates failure, rather than mapping
the process that handles failure. Your objective is not to handle failure demand
more efficiently; it is to eliminate failure altogether. Before mapping the flow of
failure demand, ask yourself, “What is causing the development process to pro-
duce failure demand in the first place? What can be changed in the process to
prevent (or dramatically reduce) the failure demand?”

In particular, we recommend that you think hard before creating a process
map for handling a change approval process. Customers don’t usually see
change approval systems as a value; they see the changes they need as a value,
but asking for permission to make the change is annoying. If customers see your
change request approval process as a nuisance, that process is handling failure
demand. Instead of improving your change request approval process, consider
why you should have one in the first place. A change request approval process
for a system under development is usually a sign that the development process
can’t absorb new ideas or handle typical variation in your customers’ situation.
Perhaps you are making decisions too soon, or waiting too long to ask for feed-
back, or not leaving enough space in your plan to accommodate that feedback.
Perhaps your customer engagement and collaboration practices are ineffective.
Ask yourself, “How can we reorganize our process so it can discover changes
more rapidly and accommodate changes more easily?”

Map Value Demand

A value stream map is a diagram of the end-to-end flow of value-creating work
through your process; its purpose is to help you understand the workflow for

22 Chapter 1 SYSTEMS THINKING

value demand so you can improve your process. Usually a value stream map
starts when a customer has a need and ends when the need is met; however, a
time-to-market map may start when a product concept is approved and end
when customers start realizing value from the product. Before you start a value
stream map, use a time series chart, as we discussed in Frame 2: System Capa-
bility, to visualize the end-to-end flow time for an average item moving through
your system. This is your current capability. The value stream map will show
you how much of that time is spent actually adding value.19

Value Stream Map
Henrik Kniberg showed a value stream map of the development process at a
video game development company.20 The company was experiencing very
long development times, which led to missed market windows and high over-
head costs, not to mention the toll that lack of success took on the people
developing the products.

Henrik described the value stream like this:

When someone—call him Sam—came up with an idea for a new game, he
took a couple of hours to prepare a concept presentation. After about a
month, the presentation was made to the idea review committee, and since
this was a good idea, it went into the game backlog. This was not the only
game in the queue, however; there were several others, so it took six months
for graphics and sound designers to become available (see Figure 1-4).

Once the designers were free, Lisa assigned the new game to them, and two
months later the design was done. Only a week was wasted during those two
months, but when the game was designed, it was put in the design-ready
queue, where it languished for six months. When the development team
finally got to the game, it was working on two other games at the same time,
so it took three months to complete development, even though the team
spent only one month of that time actually working on Sam’s game. When the
team was done, the game sat in the product-ready queue for six months,
waiting for final integration and deployment. Finally, over two years after Sam
initially had his idea, the game was released. During those two years, only
three and a half months—or 14% of the time—were spent actually adding
value to the game.

19. More examples of value stream maps can be found in Poppendieck, Implementing
Lean Software Development: From Concept to Cash, 2006, pp. 83–92.

20. Henrik Kniberg of Crisp, a Stockholm company, drew this value stream map at the
Deep Lean Conference in Stockholm, September 2008. Mattias Skarin of Crisp
helped us understand the case in more detail. Used with permission.

23

Figure 1-4 Time-to-market value stream map

Lisa
Assigns

Resources

Concept
Presentation

Graphics
Design

Sound
Design

Develop
and Test

Integrate
and

Deploy

8 15 12

Approved
Game Backlog

Design-Ready
Games

Product-Ready
Games

Sam Has
an Idea!

Waste
Value

2d 1m 6m 1w 6m 2 m 6m
2h 4h 1d 1m 3w 1m 3w

= 21.3m Waste
= 3.5m Value

Process Cycle Efficiency = 3.5 / (21.3 + 3.5) = 14%

Sam
Writes

Up Idea

24 Chapter 1 SYSTEMS THINKING

Diagnosis:

There is obviously too much in-process inventory in this system, too many
handovers, and a lot of multitasking. To address all of these issues at the
same time, the company created cross-functional teams, each of which
developed one game at a time, end-to-end, with no handovers. The first team
demonstrated that it could repeatedly develop new games in less than four
months (six times faster than before).

Mary and Tom Poppendieck

Find the Biggest Opportunity

The purpose of a value stream map is to help spot opportunities to improve your
process capability. When you compare the value-added time to the total process
time, you get a feel for how much better things could be. Ask yourself, “Why do we
have so much non-value-adding time? Is it really necessary? What’s causing it?”

Generally the biggest delays or loopbacks in a value stream map provide the
biggest opportunity for improving the process capability. We recommend that
you pick the most likely opportunity and tackle it. Forget the value stream map
while you work on improving your process; you can draw a new one once you
have changed the process.

Don’t take the ratio of value-added time to total process cycle time (the pro-
cess cycle efficiency) too literally. We find that after the process is improved, a
new value stream map might show that the process cycle efficiency has
decreased! Why? Because there was a lot of waste in the process that was not
recognized when the first value stream map was drawn; once you get used to
seeing and removing waste, you tend to find a lot more of it.

Frame 4: Policy-Driven Waste

Waste is anything that depletes resources of time, effort, space, or money with-
out adding customer value. Most people do not frame their view of a system in
terms of waste, so waste tends to fall outside their field of view. You can remove
only the waste you see, so it is important to adjust the way you look at work so
that the always-present waste becomes clearly visible.

You would be amazed at how much waste in a system is caused by the system
itself, that is, by the way the work in the system is done. Too often waste is disguised
under the cloak of habit or conventional wisdom—and more often than not, these
sources of waste are embedded in the policies and standard procedures of the orga-
nization. Unless and until these policies change, the waste is not going to go away.

FRAME 4: POLICY-DRIVEN WASTE 25

How Can Policies Cause Waste?

There are many ways that policies can cause waste. For example, leaders in
many companies believe that developers should not talk to customers because this
is a waste of valuable developer time. In Frame 3: End-to-End Flow, we discussed
a critical defect process in which three levels of customer support insulated devel-
opers from customers (see Figure 1-3). By simply removing the three levels of cus-
tomer support and having developers talk directly to customers, 40% of the total
time of 800 developers was freed up. This is not an isolated case. We will see in a
case study in Chapter 6 that direct developer-customer interaction delivered more
of the right content, increased sales, and dramatically reduced support calls.

Of course, simply providing direct customer-developer interaction does not
necessarily eliminate the biggest cause of waste; other policies can overwhelm
the advantages of good customer interaction.

“We Felt Like Pawns in a Game”
“I was part of a team where we had very strong pull incentives, from a cus-
tomer point of view. We could add features and reprioritize every two weeks if
we wanted to. We had in fact worked very hard to turn a waterfall company
more flexible. And succeeded in a way. We listened to the customers, the
ones really using the product. And we could build a release rather quickly.

“What we, the team, didn't realize was how hard the product was to install.
This dawned on me when I went to a site using the product to do an upgrade.
The end user asked me why he couldn't do the upgrade himself. He pointed
out that he was a very seasoned end user. He had lots and lots of experience
with computers and programming. I told him I didn't doubt his capabilities and
explained how things were for me. I was told to travel tens of thousands of
kilometers through Europe to do upgrades of systems that could have been
designed to be more easily upgraded if one would have thought of it earlier. I
kept on telling him about how I felt it should have been done and we felt more
and more like pawns in a game. I guess he did more than I.

“What I realized at a later point was this: The upgrades and responsibilities for
the data the application generated were regulated with contracts. The cus-
tomer wasn't allowed to do upgrades; this was controlled by contracts.

“So, I guess, whatever your intentions are during the development of a prod-
uct, they can easily be destroyed by early thoughts (or lack thereof) on how to
handle your customers.”

Ola Ellnestam, CEO, Owner, and Agile Coach at Agical AB, Sweden

26 Chapter 1 SYSTEMS THINKING

Another example of policy-driven waste was depicted in the time-to-market
value stream map in Frame 3: End-to-End Flow (see Figure 1-4). A quick glance
showed that three long queues were the cause of most of the delay in getting
products to market, yet the organization was blind to them. This was probably
because the queues were not the responsibility of any department manager;
their real purpose was to buffer departments from the variation of neighboring
departments. Failure to see the impact of queues is often caused by focusing
exclusively on department-level performance or by trying to achieve high utili-
zation of scarce talent. These policies leave most companies oblivious to the tre-
mendous drag local optimization has on time-to-market and end-to-end flow
and hence on cost, revenue, and yes, even utilization.

The Five Biggest Causes of Policy-Driven Waste

In our experience, the most common causes of policy-driven waste in software
development are

1. Complexity

2. Economies of scale

3. Separating decision making from work

4. Wishful thinking

5. Technical debt

Complexity
In “No Silver Bullet” Fred Brooks wrote, “Software entities are more complex
for their size than perhaps any other human construct. . . . Many of the classic
problems of developing software products derive from this essential complexity
and its nonlinear increases with size.”21 We know this. And yet . . .

1. Our software systems contain far more features than are ever going to be
used.22 Those extra features increase the complexity of the code, driving
up costs nonlinearly. If even half of our code is unnecessary—a conserva-
tive estimate—the cost of the system with that extra code is not just dou-
ble; it’s perhaps ten times more expensive than it needs to be. Our best
opportunity to improve software development productivity is this: Stop
putting features into our systems that aren’t absolutely necessary.

21. Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,” 1986.
22. More detail on this is provided in Poppendieck, Implementing Lean Software

Development: From Concept to Cash, 2006, p. 24.

FRAME 4: POLICY-DRIVEN WASTE 27

2. Many of our policies are predicated on the assumption that scope is non-
negotiable. This leaves us no way to stop adding those unnecessary features.
We need a process that lets us develop the first 20% of a system, get it in
production, get feedback, and add features incrementally as time and money
permit. We need policies that say: If something has to be compromised—
cost, schedule, or scope—the default choice should routinely be scope.

3. Even our measurements give subtle messages that we should squeeze as
much code into a system as possible. We measure productivity based on
lines of code or function points, as if these things were good. They’re not;
they’re bad. Function points might provide interesting relative data, but
they should never be used as performance metrics.

4. We need to keep our code bases simple. This means we shouldn’t add fea-
tures until they are needed. Forget just in case; develop just in time. We
need architectures that foster incremental development. We need policies
that make refactoring—removing complexity introduced when changing
the code—a normal and expected part of adding new features.

5. Our customers often want to use software to automate their complex pro-
cesses. This is not a good idea. Business processes should be simplified first
and automated later. How often do we help our customers simplify their
processes before automating them?

The lean frame of reference focuses on simplicity. Lean thinkers know that
complexity clogs up the flow of work and inevitably slows things down. The
cost of complexity is hidden; it has a second-order effect on cost, so we just
don’t see it in our financial systems. This makes complexity all the more perni-
cious—it’s hard to cost-justify spending money to keep things simple.

At the end of this chapter we introduce the concept of ideation, the process
of coming up with a design so fitting to the problem that it seems inevitable.
Solutions that “just fit” are necessarily simple; great designs always make us
wonder how something so obvious could have escaped us for so long.

Cut Scope, Meet the Deadline
“We were doing very well,” they said. “The code base was solid, our velocity
was stable, we were proud of the way our system was coming along. But we
weren’t getting done fast enough for the management team. So one day our
boss took the senior people aside and offered us a very large bonus if we
could meet the deadline. We mean, it was really big.”

28 Chapter 1 SYSTEMS THINKING

I was surprised at their candor, since they were presenting at a public
conference.

“We agreed to go for it. We worked day and night and weekends. We shov-
eled code out as fast as we could. We stopped testing; it didn’t matter if it
worked, it just had to be done. And we made it; we got the bonus.

“But the code is a mess. Nothing works right. The work-arounds are terrible.
It’s going to take us years to clean it up.”

I wasn’t surprised. I could tell they were not proud of what they had done.

“What do you think you should have done?” came a question from the
audience.

They were quick to answer: “We should have said no. We should have been
late.”

I wasn’t so sure. I had been at their company a year before, and I admired
their boss. He was a good manager in an impossible position, I suspected. I
was pretty sure that missing the deadline was not an option.

Later at break I asked to the two speakers, “Wouldn’t it have been possible to
cut scope and meet the deadline without abandoning your testing discipline?”

“Oh, yes, definitely!” came the immediate reply. “A lot of what we coded isn’t
being used yet anyway. But we couldn’t. When you visited us a year ago, you
told our management that they had to cut scope if they wanted to succeed.
So a senior engineer went around to all the managers and got an agreement
on moving a bunch of features to later releases. But once that was done, no
one was willing to cut any more. We couldn’t even talk about it.”

I think that management was not close enough to the work to realize that
delaying the implementation of major features was an easy and logical option.
I expect they had no idea of the havoc they would create by setting impossible
goals and leaving the team to figure out how to reach them. It was a very
costly mistake.

In my experience, cutting scope and meeting the deadline is almost always
the best approach.

Mary Poppendieck

Economies of Scale
Many of our instincts, policies, and procedures are rooted in the economies of
scale, which drove huge improvements in productivity as industrial production
replaced craft production in the first half of the twentieth century. But during
the second half of that century, it became apparent that in any system with high
variety, the economies of flow outperform the economies of scale, even in man-
ufacturing. Software groups develop one-of-a-kind systems—the essence of

FRAME 4: POLICY-DRIVEN WASTE 29

variety. It should be obvious that we should base our policies and processes on
the economies of flow. And yet . . .

1. It’s difficult to abandon batch and queue mentality. We sort work into
batches so we can assign each batch to the appropriate specialist, making
maximum use of the specialist’s time and skills. Full utilization of our most
skilled workers is considered essential, and people are conditioned to focus
on doing their part of the work without regard to its impact on the next
step or the final customers. As a result, neither our workflow nor our
workers are capable of absorbing variety.

2. It is so difficult to abandon batch and queue mentality that we fail to see
queues that are staring us in the face. We can’t figure out why it takes so
long for things to move through our backlog-laden processes. We are blind
to lists of customer requests that would take years to clear. We can’t bring
ourselves to shorten our queues because it would mean saying no to cus-
tomers rather than letting their requests die a slow death.

3. Instead of designing a system that can absorb urgent requests, we pull
workers off their current job to rush a yet-more-important job through
our system. We ask people to work on three, five, ten, or more things at
once. We are blind to the enormous amount of time wasted in context
switching. It never occurs to us that if we did one thing at a time rather
than three, everything would get done a lot faster and we would deliver
value a lot sooner.

4. Sometimes we do let people work on one thing at a time, and then use
computer systems to make sure that everyone is busy all of the time. We
schedule projects and assign teams with an eye to full utilization. This
scheme has little capability to absorb ever-present variation, so it is
absorbed in the ramp-up time of newly formed teams. It would be much
better to assign work to established teams than to reconstitute teams
around projects.

5. We create annual budgets or long project plans that justify every person by
committing to what they will deliver. Then we dump this big batch of
work on our organization all at once. We must deliver everything that was
promised, but as time goes on, reality intervenes. Customers want other
things but aren’t willing to pay more or give up what was promised. We
know this system never works, but we don’t see a way to escape the policy
of making big batch promises.

Lean thinking uses economies of flow, rather than economies of scale, to frame
the world we look at. Variety is an essential ingredient of software development,

30 Chapter 1 SYSTEMS THINKING

and so we need processes that absorb the variety gracefully. We will discuss
such flow processes in Chapter 3. The problem is, when the world is framed
with economies of scale, these approaches seem counterintuitive.

Separating Decision Making from Work
Any solution to a problem is necessarily simplified and abstracted when
removed from its source, and it is for this reason that a design should not be
separated from the concrete context in which it is implemented. We know that
our deepest insights into our work are based on the tacit knowledge we get
from being there: watching, experiencing, and getting our hands dirty. We
know that great designs come from designers who are deeply engaged with
solving the problem. We know that throwing things over the wall doesn’t work.
And yet . . .

1. There is widespread belief that it’s not necessary for managers to under-
stand work they manage. Yet without a technical background, managers
are not in a position to provide guidance to technical workers. Some man-
agers simply establish targets and leave it to workers to figure out how to
meet them. Others put a team together and charter the members with fig-
uring out how to do the right thing. From a lean perspective, the funda-
mental job of managers is to understand how the work they manage
works, and then focus on how to make it better.23 This is not to say that
all leaders must know all the answers; the critical thing is that they know
what questions to ask.

2. We have created organizational cultures where the only available career
path is to leave the technical details behind. We do not honor or ade-
quately reward the seasoned architect or brilliant user interaction designer.
What future awaits a tech lead who can reinvent the testing process and
put together a set of tools that runs every bit of code through every operat-
ing system and database every single night? When the only career path for
these people is to leave their core expertise behind and become managers,
we will never have top-notch technical leadership on the ground, where we
need it.

3. In Lean Product and Process Development, Allen Ward writes that hand-
offs (handovers) are the biggest waste in product development. He says
that a handoff occurs whenever we separate responsibility (what to do),

23. See Seddon, Freedom from Command and Control: Rethinking Management for
Lean Service, 2005, Chapter 4.

FRAME 4: POLICY-DRIVEN WASTE 31

knowledge (how to do it), action (doing the work), and feedback (learning
from the results).24 Our processes are full of these handovers, and we fail
to see what’s wrong with them. But in practice, many day-to-day decisions
are based on tacit knowledge, which gets left behind in a handover. We
must think that tacit knowledge transfers by magic, if we understand tacit
knowledge in the first place.

4. Our language betrays us when we talk about “The Business.” With these
words we separate development decisions from the work they are auto-
mating (see Figure 1-5).

Even agile software development methodologies make this mistake. They
may recommend a “customer” or a “product owner” who is supposed to
decide what all of our customers want and prioritize the order of develop-
ment. But the most successful development occurs when developers talk
directly to customers or are part of business teams. And those things called
requirements? They are really candidate solutions; separating require-
ments from implementation is just another form of handover.

5. Once our systems are deployed, there are policies and interpretations of
laws (Sarbanes-Oxley, for example) that keep developers away from their
code. So we walk away and leave the support team to deal with any prob-
lems that occur. The support team members are the ones who get the
phone calls in the middle of the night, yet we wonder why they don’t like
frequent deployments. They are the victims of our risky design practices,
but we are not interested in hearing about the causes of system failures.
Perhaps our world would be a better place if all developers had to walk in
the shoes of the operations and support team for a month every year.

24. Ward, Lean Product and Process Development, 2007, p. 43. We use the word hand-
over instead of handoff because it seems to translate better into other languages.

Figure 1-5 From “the” business to “our” business

"The" Business

Executives Finance

Sales Marketing HR

Purchasing

Engineering Manufacturing

OUR Business!

Executives Finance

Sales Marketing HR

Purchasing

Engineering Manufacturing

IT
IT

vs.

32 Chapter 1 SYSTEMS THINKING

Ever since Adam Smith wrote about division of labor in a pin factory,25 it has
been commonly accepted wisdom that division of labor increases productivity—
the more specialization the better. Fortunately, this “fact” was lost on Toyota’s
Taiichi Ohno, who devised a system where multiskilled workers and easy-to-
reconfigure machines are more productive than specialists. There are two rea-
sons for this: First, lean systems are designed to absorb variety, and second,
they are designed to be relentlessly improved as the workers devise ever better
ways to do the work. In the context of system development, Adam Smith was
dead wrong.

Developer on Site
What CIO wouldn’t love to read this kind of article?

Agile Development and SOA at Standard Life26

Thursday, 18th October 2007

Investors Chronicle is not famed for its hyperbole, but it certainly likes what it sees in
Standard Life. . . . its rise has been “little short of meteoric”, the magazine gushes.
Half-year financials show how huge leaps in efficiency led to a 71% jump in operat-
ing profit and a 31% rise in new business.

A great deal of the credit for that gilded resurgence is being placed at the door of
Standard Life’s IT organization. . . . It has created one of the most advanced imple-
mentations of service-oriented architecture, put into practice lean processes and
radically shaken up the structure of the development of its core applications, with IT
staff “embedded” within the business units they deliver to.

We were pretty impressed, because we had been there two years earlier. We
read on:

Keith Jones, CIO recalls: “The light bulb moment for me was when [Mary Poppen-
dieck] said that something like 60% of all code that is delivered is never exercised. I
thought that was astonishing, that there must be some terrible companies out there
doing some really bad things. Then she said, ‘By the way, we have done a sample
of Standard Life’s projects and it’s something like 64% for you guys’.”

The article goes on to say that the leadership group asked themselves why
they had analysts and developers located in a different place from their cus-
tomers. Why not have the people building the software located with the busi-
ness team, listening to what customers are struggling with, talking with the
people creating the business case? So Standard Life created one depart-
ment, roughly half IS staff and half pensions people, all sitting together and
working as a team.

25. Smith, An Inquiry into the Nature and Causes of the Wealth of Nations, 1776.
26. Swabey, “Agility Applied at Standard Life,” 2007.

FRAME 4: POLICY-DRIVEN WASTE 33

Putting developers on the business team is a successful pattern. We once
taught a class at a bank that scanned mortgage closing papers to archive
them digitally. It had a large lean effort for the paper scanning process; the
problem was the lean teams could not get anyone to make changes to the
workflow software that governed their work. The changes seemed so minor
that they couldn’t get enough priority. The leader of the lean effort com-
plained, “In the past 18 months, I have submitted 1536 requests for changes
to the software, and not one of them has been implemented.”

I knew the workflow software they were using and I was pretty sure that it was
relatively easy to configure. So I suggested that they put a couple of develop-
ers on the operations teams for a while and just let them help their teammates
out. We later heard that this approach was very successful, and much of the
software development work is now done by developers who are embedded in
cross-functional business teams.

Mary Poppendieck

Wishful Thinking27

Frederick Winslow Taylor got one thing right. He insisted that work improve-
ment should be based on the scientific method. Taiichi Ohno embraced this
idea—but instead of having “experts” measure and improve the work of pro-
duction workers, he trained production workers to measure and improve their
own work. We know that making decisions based on data rather than opinion
is the right approach. Being in software, we can create tools to gather any data
we want any day of the week. And yet . . .

1. We chase the latest ideas in software development without bothering with
the scientific method. We think it is a waste of time to understand the the-
ory, create hypotheses, run experiments, gather data, and find out what
really works in our environment. We fail to appreciate that “best prac-
tices” are somebody else’s solutions to their problems, not necessarily the
right solutions to our problems. We adopt new development approaches
with an unhealthy dose of wishful thinking, rather than determining the
most appropriate practices for our environment—and then we are sur-
prised at the disappointing results.

2. We manage by looking at single data points instead of a series of data in
context. We set targets without understanding our process capability relative

27. The idea of wishful thinking as waste, as well as many other ideas in this section,
are from Allen Ward (Lean Product and Process Development, 2007).

34 Chapter 1 SYSTEMS THINKING

to the target. We don’t appreciate the fact that trying to remove normal
(common-cause) variation will make the situation worse, not better.

3. We don’t like uncertainty, so we try to make decisions and get them out of
the way. Our natural inclination is to look at one alternative for solving a
problem, because we think that’s cheaper and faster than looking at sev-
eral alternatives. For tough problems, this is usually wrong; making early
decisions when we are the most ignorant is the least likely way to get good
results and the most likely way to force us to start over again.

4. Despite our prowess in handling information, we have very few techniques
for preserving knowledge. One approach has been to collect massive,
detailed documents. But who reads them? Even search engines fail us.
Another approach has been whiteboards, coupled with a camera if we
really need to save the sketches. Still another approach is to video a white-
board talk on the fundamental architecture of an application. There is no
doubt a middle ground, but we’re still searching for it. We might learn a
lesson from the open-source movement, where all communication is writ-
ten and the focus is on making the communication system extremely sim-
ple, appropriately concise, quickly searchable, and never bypassed by
verbal communication.

5. We feel a great sense of accomplishment when our code passes its tests and
we celebrate because it meets the specification—as if the specification
could contain everything we needed to think about. What about that secu-
rity hole or the memory leak or the ungraceful exit from the database that
occasionally causes a lockup? How easy will the system be to install, inter-
face to, populate with data? Thinking we’re done when the regression tests
pass is wishful thinking.

When you think of learning as uncovering the shortcomings of plans, somehow
plan-driven development loses its charm. Instead, creating useful knowledge
becomes the essence of developing a new product. But there’s more to learn
about than the product being developed; we also learn about our process for
developing products. Constant learning is the essence of improving both the
product itself and the product development process.

Technical Debt
We know that all successful software gets changed.28 So if we think we’re work-
ing on code that will be successful, we know we need to keep it easy to change.

28. See Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,”
1986.

FRAME 4: POLICY-DRIVEN WASTE 35

Anything that makes code difficult to change is technical debt.29 We know that
technical debt drives the total cost of software ownership relentlessly higher,
and that eventually we will have to pay it off or the system will go bankrupt.
And yet . . .

1. We tolerate obscure code, instead of making sure that all code reveals its
intentions to the next person who comes along. Developers, especially
apprentices, should be taught how to write “clean code”:30 code that is
simple and direct, with straightforward logic. Senior technical people need
to ensure that messy code, even if it passes the tests, is never admitted into
the code base.

2. Far too often we don’t take the time for refactoring: consolidating changes
into existing code. Refactoring is essential for iterative development. Add-
ing new features to existing code creates complexity, ambiguity, and dupli-
cation; refactoring pays down the debt.

3. We run regression tests on our systems before deployment. At first they are
quick, but with each addition of code, regression tests take longer and
longer and longer. As the regression deficit31 grows, we increase the inter-
val between releases. The only way to break this unending cycle of increas-
ing release overhead is to decrease the regression deficit. If we had started
with automated test harnesses back when the code base was small and
added to and maintained them, we could make changes to our code almost
as quickly today as when the code base was new.

4. We know that dependencies are one of the biggest generators of technical
debt, and yet we are ambivalent about replacing obsolete systems with
massive dependencies. We must develop, and migrate to, architectures that
minimize dependencies. We have known for a long time how to do this:
Focus on information hiding32 and separation of concerns.33

29. The idea of debt as a metaphor was introduced by Ward Cunningham, “The
WyCash Portfolio Management System,” 1992.

30. See Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2009. Def-
initions are from pp. 7–11.

31. We first heard the term regression deficit from Owen Rogers.
32. Information hiding means putting features that change together into a single module.

See Parnas, “On the Criteria to Be Used in Decomposing Systems into Modules,”
1972.

33. Separation of concerns means keeping features that will change separately in differ-
ent modules. See Dijkstra, “On the Role of Scientific Thought,” 1982.

36 Chapter 1 SYSTEMS THINKING

5. We branch code for many reasons: to isolate new development, to focus on
an individual application, to create parallel feature sets. And we know that
the longer two branches of code are apart, the harder they will be to
merge. And yet we wait for days to build our code, and worse, we delay
system testing until the end of development. We don’t realize that this isn’t
necessary anymore; the big bang is obsolete.

We need to expose technical debt for what it is: a costly burden to be avoided
lest it lead us into bankruptcy. Chapter 2 will look at software development
through a technical frame and discuss solid techniques for avoiding technical debt.

Portrait: Product Champion, Take 1

We close out this chapter by taking a look at what is probably the most impor-
tant part of the system development process—even though it happens before
most people would think the development process has begun. Before you dive
into developing a system, it is critical to define its purpose in customer terms,
just as you defined the purpose of your organization in customer terms earlier
in this chapter.

When Thomas Edison invented the light bulb in 1879, it was a rather useless
novelty. So he invented an electric power distribution system, formed a com-
pany to distribute power, and built a steam power-generating plant—to make
the light bulb broadly useful. Edison’s genius lay in his ability to envision how
people would want to use light bulbs and to imagine a fully developed market-
place. We saw this same genius in Steve Jobs, as the iPod and iPhone came to
life as complete ecosystems. This is the essential challenge of development:
imagining how people will want to use a product and envisioning a complete
system and fully developed marketplace. We call this ideation.34

Just as Edison went on to found the companies that brought his light bulb to
the masses, we expect that ideation leaders will remain at the helm as their con-
cepts are implemented. After all, people develop a certain passion around their
creative ideas and are eager to bring them to life. In honor of that passion and
dedication, we call this leader a product champion.35

34. The term ideation is from Tim Brown, CEO of IDEO, as described in Brown,
“Design Thinking,” 2008.

35. The term product champion is borrowed from 3M, where Mary worked for 20
years. The term chief engineer is widely used for the same role and is interchange-
able with product champion.

PORTRAIT: PRODUCT CHAMPION, TAKE 1 37

A product champion, much like an entrepreneur, has business responsibility
for the success or failure of the product. This means that for a product with a
profit-and-loss statement (P&L), they are responsible for the P&L of that prod-
uct. This is why the product champion leads the ideation effort—if ideation is
not done well, the product will not be successful.36

The Story of a Chief Engineer
Mr. Nobuaki Katayama, former chief engineer of the Lexus/SC, IS, & Altezza,
took the time to discuss the job of a chief engineer with a group of us on a
study tour of Japan in April 2009.37 He noted that new car development is led
by a chief engineer who is responsible for the business success of the car.
This person should have a passion for the car; so if the car is to be a sports
car, the chief engineer should love to drive fast.

Toyota develops new cars in three phases: creation, development, and
production.

Creation: The creation stage of a new car is the backbone of the develop-
ment process, and also the most difficult part. During this stage planning and
concept development take place, including market research, predevelopment,
styling, and cost and profit targets. The chief engineer negotiates with section
heads (heads of body styling, engine, transmission, etc.) concerning what
kind of performance and key features the car will have, what it will take to
develop the car, and so on. Creation is not timeboxed; work continues until
the concept is ready and typically takes about a year. As handshake agree-
ments are reached, the product concept is refined and reviewed and, ulti-
mately, approved by the board.

Development: This is the easier part of creating a new car, and Toyota is
good at it. A schedule of 20 to 24 months is established by the chief engineer,
who leads the work, with support from section managers. There are clear
milestones that can be expected to be met, with, of course, more negotiations
and ongoing design decisions.

36. See Levine, A Tale of Two Systems: Lean and Agile Software Development for Busi-
ness Leaders, 2009, for an in-depth example of the role of a chief engineer in soft-
ware development.

37. This meeting summary is used with permission. Some information in this sidebar is
from a presentation by Kenji Hiranabe at Agile 2008, reporting on a presentation
by Mr. Nobuaki Katayama to Developers Summit 2008, February 13, 2008,
Gajoen, Tokyo (Hiranabe, “New Car Development at Toyota,” 2008). Used with
permission.

38 Chapter 1 SYSTEMS THINKING

Keeping development on schedule requires honest communication and a phi-
losophy of “bad news first” so that problems can be addressed as early as
possible. Key decisions during development are made by choosing among
well-developed options so that the best combination of quality, cost, and deliv-
ery can be achieved.

Production: The chief engineer remains responsible for the business suc-
cess of the car as it goes into production and over its lifetime.

Mary and Tom Poppendieck

For the sake of simplicity, we use the term product champion, although we
recognize that you may not use the word product to refer to your systems. You
may be developing

1. Software as a product

2. Software embedded in a product

3. Software enabling a process

4. Software under contract

In the first two cases, the product champion should be the person with busi-
ness responsibility for the final product. With larger systems, the champion may
need assistance with subsystem leadership. Even then, division into subsystems
should not be along technology lines, but along subsystem lines, for example,
an engine for a car, a medical device programmer, the human interface for an
electronic device, and so on.

In the third case—software that enables a process—it is particularly impor-
tant that the product champion (actually, in this case, the process champion) be
responsible for the design and success of the overall process, not just the software.

The fourth case—software developed under contract—is the most problematic
for a product champion, especially if the contracting party divorces software
development from the rest of system development. In the end, software developed
under contract serves a broader purpose, and it would be best to have a product
champion responsible for the broader purpose guiding the learning and feedback
necessary for system development. We recognize that this is not always possible,
but in any case, the product champion(s) must keep the whole system in mind.

A product champion leads two critical activities: a customer-facing role and
a technology-facing role. Very often these roles reside in one person, but they
can also be successfully shared by two people working in close harmony. In
either case, the product champion initiates development by leading a team
through the ideation phase.

PORTRAIT: PRODUCT CHAMPION, TAKE 1 39

Customer-Facing Ideation

IDEO is a design firm in California that has been extraordinarily successful at
discovering unmet needs and matching them with technically feasible, commer-
cially viable designs. These have led to a remarkable lineup of products that
have been extremely successful in delighting customers. As design awards pile
up year after year, IDEO has gone into the business of helping other companies
copy its design process.38

IDEO’s design approach is outlined by general manager Tom Kelley in The
Art of Innovation:39

1. Understand the market, the client, the technology, and the perceived con-
straints on the problem. Later we often challenge those constraints, but it’s
important to understand current perceptions.

2. Observe real people in real life situations to find out what makes them tick;
what confuses them, what they like, what they hate, where they have latent
needs not addressed by current products and services.

3. Visualize new-to-the-world concepts and the customers who will use them.
Some people think of this step as predicting the future, and it is probably the
most brainstorming-intensive phase of the process.

4. Evaluate and refine the prototypes in a series of quick iterations. We try not
to get too attached to the first few prototypes, because we know they’ll
change. No idea is so good that it can’t be improved upon, and we plan on a
series of improvements. . . . We watch for what works and what doesn’t,
what confuses people, what they seem to like, and we incrementally improve
the product.

5. Implement the new concept for commercialization.

We can find no better summary of how to go about ideation. First frame the
problem with its constraints. Then become an ethnographer and carefully
observe people in that frame. This isn’t about focus groups or market studies;
go and watch the people who will use the product. Get inside their heads.

The next step is to visualize, model, and discuss what was observed. Add to
the mix a forward-looking view of technology trends over the next few years.
You want to skate to where the puck is going,40 and our technology puck
moves fast. Brainstorm, concoct scenarios, tell stories about customers, whip
up some prototypes, keep ideas alive.

38. This section summarizes sections of Brown, “Design Thinking,” 2008. See also
Brown, “Strategy by Design,” 2007.

39. From Kelley and Littman, The Art of Innovation, 2001, pp. 6–7.
40. Hockey star Wayne Gretzky gave the secret to his success: “I skate to where the

puck will be, not to where it is.”

40 Chapter 1 SYSTEMS THINKING

Visualization leads to evaluation, a series of quick experiments that incre-
mentally improve the product. “It doesn’t matter how clever you are, your first
idea about something is never right,” says Tim Brown, CEO of IDEO. “So the
great value of prototyping—and prototyping quickly and inexpensively—is that
you learn about the idea and make it better.”41

So That’s How They Do It!
I have always loved cooking, and for years my kitchen was equipped with the
same gadgets that I had grown up with as a child. Then a company called
OXO invented a new kind of measuring cup. It’s called an angled measuring
cup, and it has an indentation so you can read the liquid level by looking
inside the cup. I immediately loved it. No more bending over or holding the
cup up high to read the liquid level on the outside of the cup. I could simply
glance down inside the measuring cup and see the level. I bought several for
my house and plenty for gifts.

Then I started seeing other OXO products: A peeler that felt a lot better in my
hand. Utensils that were easy to store. Great cutting boards. Soon my kitchen
was full of OXO gadgets. I wondered, “How can a company routinely come
out with improvements on cooking tools that have been around for decades?
How did they know that I would rather not bend over to measure liquids, that I
prefer a bigger handle on a peeler? I didn’t even know it myself!”

Then I read about how IDEO does ethnography; they call it archaeology. They
go into houses of people like me and watch me using a measuring cup. They
look for times when I’m a bit uncomfortable—bending over or holding a full
cup high in the air. They notice when I pick up the peeler that I use an uncom-
fortable grip. And they invent a gadget that gets rid of these annoyances that I
didn’t even know were there.

So that’s how they do it! Simple enough, really. You’d think that if we used the
same approach, we might get similar results—fantastic systems that solve
problems our customers didn’t even know they had.

Mary Poppendieck

In due time, a product concept is ready for implementation. Ideation should
not be a long, drawn-out affair, and the resulting concept should be at a high
level to leave plenty of room for further learning.

41. Brown, “The Deans of Design,” 2006.

PORTRAIT: PRODUCT CHAMPION, TAKE 1 41

Technology-Facing Ideation

Envisioning the product from a customer perspective is not enough in software
development. Without an equally effective technology vision—let’s call it an
architecture—you aren’t ready to proceed. The same design steps that worked
to create a customer-centric view of the product can be used to develop the
architectural vision:

1. Understand: Technology is forever changing. Start by understanding
where it has been and, especially, where it is likely to go over the life of the
product.

2. Observe: Take some time to observe the people struggling with the prob-
lem, from a technology point of view. The technical-facing concept and the
customer-facing concept gain their integrity as a system when they are
developed together and inform each other.

3. Visualize: Model, discuss, brainstorm, test ideas with spikes.42 Inform
these discussions with a keen awareness of where technology is heading
and what will be possible over the life of the product.

4. Evaluate: Don’t get caught up in the first idea that comes to mind. Experi-
ment. Select three or four options and use set-based design during imple-
mentation to make the final choice. Above all, remember that a good
software architecture is one that facilitates change in the code over the
short term and evolution of the architecture over the long term.

5. Implement: At this point the architecture is a technical vision that will
grow and evolve as development proceeds and learning takes place. It’s
time to start implementation.

The ideation phase will be done when it is done; it shouldn’t have a deadline.
It’s not that ideation takes a lot of time; it usually doesn’t. But without a break-
away concept, there can be no breakaway product. So don’t short-change this
important step. Develop a clear vision of how the product will meet market
needs, how the architecture will support that vision, and how development will
proceed. We call this a product concept. A product concept is not a detailed
plan; it is a framework for proceeding with development.

What is the difference between a detailed plan and a framework for proceed-
ing? Think of it this way: Plans are subject to change as learning occurs,
whereas frameworks provide a space for learning to occur. So if you find that

42. A spike is a quick technical prototype to test out the viability of a technical
approach.

42 Chapter 1 SYSTEMS THINKING

you have to make substantial changes to the product concept after approval, it
was too detailed and did not provide for learning.

How do you know when ideation is done? This differs from one context to
another, so we don’t have a canned answer. In companies with good ideation
processes, the product champion knows when the concept is developed suffi-
ciently to move on to implementation. If you aren’t quite sure, you’ll have to
experiment and find out what works for you. We recommend that you start
your experiments with a bias toward action. If you wonder whether you’re
ready to start implementation, the answer is probably yes.

Your Shot

1. Answer John Seddon’s five questions about your organization:

a. Purpose: What is the purpose of this organization?

b. Demand: What is the nature of customer demand?

c. Capability: What is the system predictably achieving?

d. Flow: How does the work work?

e. System conditions: What are the causes of waste in the system?

2. Choose two to five customer-centric measurements for your system. Some you
might consider are

a. Time-to-market for product development (for the whole product)

b. End-to-end response time for customer requests (request-to-resolution time)

c. Success of the product in the marketplace (profitability, market share)

d. Business benefits attributable to a new system (measureable business
improvement)

e. Customer time-to-value after delivery (consumability)

f. Impact of escaped (post-release) defects (customer downtime, financial
impact)

3. Create time series charts for each of your customer-centric measures. (Some
people call these charts the “voice of the process.”) If the data doesn’t exist, now
would be a good time to start measuring.

a. What do the charts say to you?

b. Are your work processes stable?

c. Can you distinguish between common-cause and special-cause variation?

d. Is the way you do work delivering the results your customers expect?

e. If not, what should be done?

4. Analyze how you handle requests from your customers:

a. How much value demand do you receive in a month?

YOUR SHOT 43

b. How much failure demand do you receive in a month?

c. What is the ratio of failure demand to value demand?

d. What kind of approval process do you use to filter customer demand?

e. What criteria are used?

f. What percentage of the requests are accepted?

g. How long does the approval process take?

h. How long on the average does it take for customers to find out about rejected
requests?

i. Do you measure after the fact to see that the projected customer outcomes
are achieved?

j. How long does an average approved request take to complete?

k. What do your customers think about your approval process?

5. Gather a team that includes the person responsible for an end-to-end process, if
that person exists. Sketch a value stream map of an actual end-to-end flow of a
customer demand through your organization’s various processes, through the
customer’s processes, and back to the original customer.

a. What is the total cycle time?

b. How much of that time was spent adding value?

6. Have the team brainstorm the goals, policies, and beliefs that cause waste that
might exist in your organization in each of the five categories:

a. Complexity

b. Economies of scale

c. Separating decision making from work

d. Wishful thinking

e. Technical debt

7. How does ideation take place in your company?

a. Does your organization have the role of product champion or chief engineer?

b. How do you move ideas from the fuzzy front end of product development into
an approved product concept?

c. How does it work for you?

257

Index

A

A3 problem-solving report, 176–180
Abe, Namiko, 187
Abstraction. See Information hiding.
Acceptance tests, 73–74
Adaptive control, 145
Adaptive control Frame 12, 143–147

consumability, 145
customer feedback, 143–144
customer outcomes, 146–147
escaped defects, 146
frequent releases, 144–145

Adler, Nancy, 191
Agical AB, 25
Agile development

cross-functional teams, 69
future of, 61–63
in large systems with tightly

coupled architecture, 65
Agile Manifesto, 192
Agile@IBM

changing the business process, 224
continuous integration, 226
creating a sense of urgency,

229–230
an early experiment, 223
focus on customer outcomes, 228
governance, 230
key characteristics, 221
key problems, 224–225
lessons learned, 223–227
stakeholder feedback, 226
stakeholder involvement, 222
support call reduction, 223,

228–229

technical debt, 226
test automation, 227
from theory to practice, 228–230
training teams, 225–226
transformation, 220–221
understanding “done,” 226
WebSphere Service Registry and

Repository team, 223
Airline industry. See Southwest

Airlines.
Alcoa safety record, 156, 159–161
Alignment Frame, 236–241
Amazon.com

experiencing the workplace, 172
IT organization, statement of

purpose, 9
team size, 66–67
waste, identifying, 172

Ambiguity, 157–158, 166, 190
Arbitrating with value, 134
Architectural vision, ideation, 41–42
ARPANET, history of software

development, 57–60
The Art of Innovation, 39
Articles. See Publications.
Assembly language, history of

software development, 52

B

B-17 bomber, case study, 154–155
Backus, John, 52
Bad news first, 38, 169–170
Balzer, Robert, 56
Barrier to rapid learning, 161

258 INDEX

Baseline, establishing
boundary-spanning problems, 163
overview, 163
workflow, designing

connections, 164–165
handovers, immediate failure

detection, 165–166
immediate customers, 164
immediate suppliers, 164
methods, 164
output, 163, 164, 166–167
pathway, 164
process standards, 167–169
test-driven handovers, 165–166

Batch and queue mentality, 29, 239
Batch size, 54, 62, 127, 144, 158–159
Batching work, 72, 114–127, 132–133
BBRT (Beyond Budgeting Roundtable),

233–234. See also Budgeting
problems.

leadership principles, 234
overview, 230–231
process principles, 234–235
productivity, 235–236

Beck, Kent, 71–72
Benchmarking, 161
Beyond Budgeting, 233–234
Bezos, Jeff, 67, 172
Black box design, 64
Boehm, Barry

on assembly language, 52
controlling complexity, 64
software development processes, 54

Bogsnes, Bjarte, 231
Bonuses, Agile@IBM, 232
Booch, Grady, 81
Books. See Publications.
Boundary-spanning problems, 163
Boyd, John, 215
Brooks, Fred, 26, 63, 90

Brown, Tim, 40
Budgetary commitments, cause of

waste, 29
Budgeting problems

bonuses, 232
cost management, 231–232
efficiency, 233
quality, 232
target-setting and evaluation, 232
timing, 232
trust, 231

Business process, 7, 27, 70, 146, 224

C

Cadence, kanban, 127–128
Capacity

arbitrating with value, 134
cost-benefit ratio of scheduled

activities, 134
kanban, 128–129

Case studies. See also Agile@IBM;
Southwest Airlines; Svenska
Handelsbanken; Toyota.

Amazon.com, IT organization
statement of purpose, 9

B-17 bomber, 154–155
continuous improvement. See

Continuous improvement.
cross-cultural teams, 204–205
ethnography, 40, 85–86
expertise, developing, 91–92
I&CS (Instrumentation and

Control Systems), 139–140
ideation, 39–40
IDEO, design process, 39–40
Intuit, 85–86
Orpheus Chamber Orchestra, 206
OXO, identifying customer needs, 40

INDEX 259

policy-driven waste, 25
pride in workmanship, 210–211
product champions, 37–38
pull scheduling large systems,

139–140
Quicken, 85–86
ready-ready to be done-done,

118–120
reliable delivery. See Empire State

Building construction.
self-organizing teams, 206
Systematic, 118–120
Tandberg, 210–211
waste, causes, 32–33
waste, cures, 32–33

Cash flow thinking, 107, 240
Cause and effect, 178, 236–242
Cerf, Vinton, 65
Champions. See Product champions.
Change requests, customer focus,

10, 21
Chasing the Rabbit, 154, 156,

160–161, 181, 183
Checklists, 154–156, 165, 169
Chief engineer. See Product

champions.
Cho, Fujio, 153, 171, 246
Christensen, Clayton, 236
Code, social setting, 76
Code branching, cause of waste,

10–11, 36
Code clarity 93, 95–96

information hiding, 82
overview, 80–82
refactoring, 82

Code reviews, developing expertise,
95–96

Collaborative modeling, 84, 86–88
Collective decisions, 206
“The Coming Commoditization of

Processes,” 167

“The Coming Commoditization of
Processes,” 167

Commitment, 68–69, 108, 179,
201–202, 238

deferring, 193
kanban, 126–127
shape the details, 129–130, 139

Company culture. See also
Knowledge workers.

collective decisions, 206
cross-cultural teams, 204–206
customers, respect for, 203–204
diversity, value of, 205–206
groupthink, 205–206
internal customers, respect for,

203–204
managers, respect for, 204
mutual respect, 193, 203–209
need for consensus, 204–205
pride of workmanship, 209–211
purpose-passion-persistence-pride,

210
reciprocity, 200–203
remuneration, 201–202
self-organizing teams, 206–209
subordinates, respect for, 204
suppliers, respect for, 204
teammates, respect for, 204
Toyota Motor Corporation,

195–196
Competency leaders, 41, 95–97, 182
Complexity, 35, 41, 47, 51, 53, 62, 80

cause of waste, 26–28
constraint, 109
Conway’s Law, 67–70
cross-functional teams, 68–69
divide and conquer

black box design, 63–64
Empire State Building

construction, 112
error recovery, 64

260 INDEX

Complexity (continued)
gateways, 64
Internet architecture, 64–65
network connectivity, 64
by process, 64
by responsibility, 64
routers, 64
by structure, 64
by value, 64

effects of, 154
in hospitals, 154–155
inherent, 63
Internet architecture, 64–65
learning about, 161
low-dependency architecture, 65–67
schedules, reducing, 112–114, 137
software development, separating

from larger system, 69–70
work design, 163

“Complexity Controlled by
Hierarchical Order . . .”, 47

Conformance to plan, question for
leadership teams, 238–239

Connections, workflow design,
164–165

Consensus
need for, 153, 176, 193, 204–205
pull-based authority, 180

Constraints, 7, 39, 108–109, 166
exposing risks, 109–110
scheduling, 129, 138

“A Constructive Approach to . . .
Program Correctness,” 47

Consumability, 12, 145, 222, 229–230
Context switching, cause of waste, 29
Continuous improvement

exposing problems
bad news first, 169–170
experiencing the workplace, 172
test failures, analyzing, 169–170

hospitals
ambiguity, 157–158
checklists for procedures,

154–156
complexity, effects of, 154
filling prescriptions, 157–158
medical and medication errors,

154
missing medications, 158–159
organizing patient charts,

156–157
quick experiments, 158–159
work-arounds, 156

learning to improve
A3 problem-solving report,

176–180
directive management, 184
disincentives for sharing

knowledge, 182
fishbone diagrams, 179
five whys, 178–179
goal of, 173–174
managers as mentors, 183–184
problem owners, 180–181
problem solving, 174
problem/countermeasure board,

174–175. See also Kanban
boards.

pull-based authority, 180–181
responsibility authority, 181
retrospectives, 173
root causes, identifying, 179–180
self-organizing teams, 184
sharing knowledge, 181–182
suggestion systems, 175–176

Toyota Motor Corporation, 153,
195

visualizing perfection
Alcoa’s safety record, 159–160
barrier to rapid learning, 161

INDEX 261

benchmarking, 161
customer focus, 162
high-velocity organizations,

161–162
low-velocity organizations, 161
theoretical limit, 160–161
Toyota Motor Corporation,

160–161
variance, as a learning

opportunity, 162
workflow across boundaries, 162

Continuous improvement,
establishing a baseline. See also
Workflow, designing.

boundary-spanning problems, 163
overview, 163

Continuous integration
Agile@IBM, 226
code, social setting, 76
defect injection processes, 76
frequency of, 78–80
history of software development, 49
integration testing, time budget

for, 77
step-wise integration, 76–77
stress testing, system level, 79–80
user acceptance tests, 80

Contracts, 25, 38, 108, 204, 234
design by, 50, 72
development, 231
effect on flexibility, 88, 103,

110–111
Converse, Donald, 2
Convis, Gary, 162, 246
Conway, Mel, 67–70
Conway's Law, 67–70, 92
Cost management

budgeting problems, Agile@IBM,
231–232

questions for leadership teams,
237–238

Cost-benefit ratio of scheduled
activities, 134

Crescêncio, Samuel, 96
Critical path schedules, 112–114, 140
Cross-cultural commonalties,

188–190. See also Company
culture.

Cross-cultural factors, 193
Cross-cultural psychology, 188–191.

See also Company culture.
Cross-cultural teams, 204–206. See

also Company culture.
Cross-functional teams, 24, 33, 68–70,

88, 132, 142, 163–164, 176
Cultural assumptions, 188–191. See

also Company culture.
Cunningham, Ward, 58–59, 81
Customer feedback, adaptive control,

143–144, 219, 228, 232
Customer focus, Frame 1, 6–12

change requests, 10
customer needs, identifying, 40.

See also Ideation.
customer-centric measurements,

12
customers, identifying, 6
failure demand, 10–12
product managers, 8–9
product owners, 8–9
product purpose, 9
respect for customers, 203–204
support calls, 10
Toyota Motor Manufacturing

Kentucky, 162
types of, 7–8
value demand, 12
visualizing perfection, 162
whole-system view, 6

Customer outcomes, 17, 112, 134,
142–143, 146–147, 200

adaptive control, 146–147

262 INDEX

Customer outcomes (continued)
Agile@IBM, 228
BBRT principles, 234–236

Customer-centric measurements, 12
Customer-facing ideation, 39–40
Cycles, evolutionary development.

See Evolutionary development,
Frame 7.

Cycles of discovery, 88

D

Dahl, Ole-Johan, 51
Data hiding. See Information hiding.
Davenport, Thomas, 167
Decisions

cross-cultural factors, 194
premature, cause of waste, 34
separating from work, cause of

waste, 30–33
Decoupling activities, 106, 132
Deep Expertise, Frame 8. See

Expertise.
Defect avoidance, 71–76
Defect injection processes, 73, 76
Deliberate practice, 92–93, 95, 145
Deming, W. Edwards, 14, 16, 209
Deming approach, 199, 241
Denning, Peter, 83
Dependencies

cause of waste, 35, 60, 65, 81, 166
schedules, 112
between teams 113, 132–133

Design, separating from
implementation, 54–56

“Design and Code Inspections . . .”,
53, 62, 70

Design loopbacks, 110–114
Detailed command versus mission

command, 214–215

Development processes, history of, 54
Dijkstra, Edsger W.

“A Constructive Approach to . . .
Program Correctness,” 47

on COBOL, 53
“Complexity Controlled by

Hierarchical Order . . .”, 47
controlling complexity, 64
design, separating from

implementation, 54–56
on impact of high-level languages,

53
information hiding, 51

Directive management, 184, 214
Disincentives for sharing knowledge,

182
Disruptive technologies, history of, 59
Distribution, Internet architecture, 65
Diversity, value of, 205–206
Divide and conquer. See Complexity,

divide and conquer.
“Done-done,” understanding, 118,

120, 165, 226

E

Economies of scale, 4, 9, 28–30
Efficiency, 66, 118, 224, 233, 239,

243. See also Process cycle
efficiency.

The Elegant Solution, 87
Ellnestam, Ola, 25
E-mail, history of, 59
Empire State Building construction.

See also Reliable delivery.
cash flow thinking, 107
complexity, reducing by

decomposition, 112
constraints exposing risks, 109
contracts, effect on flexibility, 111

INDEX 263

Empire State Building construction
(continued)

decoupling activities, 106
design loopbacks, 110–111
design mistakes, 111
designing effort to fit constraints,

109
four pacemakers, 104–106
implementation complexity,

112–114
logistics, 106–107
overview, 102–103
proven experience, 108–114
subcontracting, 112
system design, 109–111
team design, 103–104
workflow, 104

Empire State Building construction,
schedules

alternate approaches, 113–114
critical path, 113–114
dependencies, 112
per workflow, 104–106
pull scheduling, 129
push scheduling, 129–130
reducing complexity, 112–114
set-based design, 113–114
utilization, 113

End-to-end Flow, Frame 3, 19–24,
process flow maps

evaluating, 19
failure demand, eliminating, 19–21
process flow maps

definition, 19
of failure demand, 19–21
improving process capability, 24
of value demand, 21–24

Error recovery
complexity, 64
history of software development, 54
Internet architecture, 64

Escaped defects, 146
Essential Complexity, Frame 5,

63–70. See also Complexity.
Establish a Baseline, Frame 14,

163–169. See also Baseline,
establishing.

Ethnography
case study, 40, 85–86
identifying customer needs, 40
phase of evolutionary

development, 84–86
“Evolutionary Development,” 57
Evolutionary development. Frame 7,

83–88
collaborative modeling, 84, 86–87
cycles of discovery, 88
ethnography, 84–86
history of, 57–61
iterative development, 87–88
Moore’s Law, 83
overview, 84
prototyping, 86–87
quick experimentation, 84, 87–88
set-based design, 87–88
types of, 83

Experiencing the workplace, 172
Experiment, 21, 23, 40–42, 87, 158,

225
Expertise, 89–95

developing
case studies, 91–92
code reviews, 95
competency leaders, 95–97
deliberate practice, 92–93
maestros, 96–97
overview, 91–92
retention, 94
standards, 94–95
ten-year rule, 93
turnover, 94

importance of, 90–91

264 INDEX

Exploratory testing, 75
Exposing problems Frame 15,

169–172. See also Problems,
exposing.

F

Fagan, Michael, 53
Failure, main cause, 86
Failure, testing to, 75–80
Failure demand

customer focus, 10–12
eliminating, 19–21
process flow maps, 19–21
support calls, 10
waste caused by, 21, 31

Feathers, Michael, 81
Fifer, Julian, 206
Filling prescriptions, 157–158
Finances, question for leadership

teams, 240
Fishbone diagrams, 179
Five whys, 178–179
Flight 1549, 91
FLOW-MATIC language, 52
Four pacemakers, 104–106
Framing

for business success, xviii–xix
mental constructs, xviii–xix
system development process,

xviii–xix
Fraser, Robin, 233
Freeman, Peter, 47
Frequency of, 78–80
Frequent releases, adaptive control,

144–145
From Theory to Practice, Frame 21,

228–230
Front-line leaders, 212–216

Full utilization of manpower, cause of
waste, 29, 239–40

G

Gamma, Erich, 72
Gateways, 64
GE, leadership traits, 95
Gibson, Paul, 221, 223
Gilb, Tom

divide by value, 64
evolutionary development, 57, 84
on system design, 109–110

Goals. See also Targets.
history of software development,

61–63
of learning to improve, 173–174
motivation for unethical behavior,

17
pulling from the future, 18
relative measures, 17
setting targets, 15–17
for system capability, 15–18

“Goals Gone Wild,” 16
Governance, Frame 22, 230–236,

budgeting problems
Groupthink, 205–206

H

Handoffs. See Handovers.
Handovers

cause of waste, 19, 24, 30–31, 111
immediate failure detection,

163–166
test-driven, 165–166

Hierarchical layers, history of, 48
Higashi, Kan, 246

INDEX 265

High-level languages, history of, 52–53
High-velocity organizations,

161–162, 167
Hill, Ployer, P., 154–155
History of software development

agile development, future of, 61–63
ARPANET, 57–60
assembly language, 52
consistent goals, 61–63
continuous integration, 49
design, separating from

implementation, 54–56
development processes, 54
disruptive technologies, 59
early error correction, 54
e-mail, 59
evolutionary development, 57–61
FLOW-MATIC language, 52
hierarchical layers, 48
high-level languages, 52–53
information cascades, 46–47
Internet, 57–60
milestones, 58
object-oriented programming,

50–52
open source, 60–61
personal computers, 57–60
plank road analogy, 46–47
project management versus system

development, 62
Simula language, 51
Smalltalk language, 51
software life cycle concept, 53–57
spreadsheets, 58–59
step-wise integration, 49
structured programming, 47–50
test-driven development, 48
top-down programming, 48–49
Y2K problem, 61

Hooper, Grace, 52

Hope, Jeremy, 233
Hospitals, continuous improvement.

See Continuous improvement,
hospitals.

Hughes, Chris, 147–149

I

IBM
agile development. See Agile@IBM.
evolutionary development, 57–61
personal computers, 57–60
software life cycle concept, 53
top-down programming, 48–49

I&CS (3M Instrumentation and
Control Systems), 139–140

Ideation
architectural vision, 41–42
case studies, 39–40
customer-facing, 39–40
definition, 36
ethnography, 40
product champion, 37–38
product concept, 41
prototyping, 40
technology-facing, 41–42

IDEO, design process, 39–40
Immediate customers, 164
Immediate suppliers, 164
Immelt, Jeff, 95
Implementation

complexity, 112–114
Implementing Beyond Budgeting,

231
“On the Inevitable Intertwining of

Specification and
Implementation,” 56

versus preparation, 194
separating from design, 54–56

266 INDEX

Implementing Beyond Budgeting, 231
Improvement. See Continuous

improvement.
Individualism, cross-cultural, 189
Information cascades, history of,

46–47
Information hiding, 35, 82
Inherent complexity, 63
Inside Intuit, 85–86
Integration. See Continuous

integration.
Integration testing, time budget for, 77
Internal customers, respect for,

203–204
International Dimensions of

Organizational Behavior, 191
Internet architecture

black box design, 64
complexity, 64–65
distribution, 65
error recovery, 64
gateways, 64
history of, 57–60
network connectivity, 64
routers, 64
TCP/IP protocol, 64

Intuit, case study, 85–86
Ishikawa, Kaoru, 169
Iterations

capacity, 135
customer feedback, 143–144
decomposing features. See Stories.
experimentation, 87
versus kanban technique, 126–129
making work ready, 118–122
overlapping steps, 120–122
overview, 117–122
ready-ready to be done-done,

118–122
small batches, 114

stories, 118
testing, 39, 79
velocity, 128
workflow chart, 117–122

Iterative development phase, 87–88

J

Jackson, Michael, 56–57
Jishuken (voluntary self-study), 199
Jobs, Steve, 36
Johnson, H. Thomas, 199
Jones, Bassett, 103
Jones, Keith, 32–33
Journals. See Publications.

K

Kahn, Robert, 65
Kaizen. See Continuous

improvement.
Kanban boards, 123–125
Kanban cards, 122–123
Kanban technique

batch size, 127
cadence, 127–128
capacity, 128–129
commitment, 126
definition, 122
versus iterations, 126–129
kanban boards, 123–125
kanban cards, 122–123
process description, 122–126
teamwork, 127
throughput, 129
velocity, 128

Katayama, Nobuaki, 37
Kelley, Tom, 39, 85–86

INDEX 267

Kerr, Steven, 182
Kessler, Carl, 7, 222
Kniberg, Henrik, 22–24, 126
Knowledge. See also Ethnography.

domain, 131
loss at handovers, 30–31
mentoring, 184
preservation, cause of waste, 34
product development, 34
sharing, 181–182

Knowledge workers Frame 17. See also
People in lean development.

building on strengths, 197–198
competency leader, 95
definition, 196
Deming approach, 199
jishuken (voluntary self-study), 199
kaizen events, 199
versus manual workers, 197
problem-solving skills, importance

of, 200
productivity, 196–198
results, importance of, 198–200
sensei (mentor), 199
The Toyota Way, 199

Kroll, Per, 224

L

Laws and policies, cause of waste, 31
Layoffs, 202–203
The Leader's Handbook, 184
Leadership of great companies. See

also Agile@IBM; Management;
Southwest Airlines; Svenska
Handelsbanken; Toyota;
specific leaders.

Agile@IBM, 244–246
Nucor Steel, xv

personal traits, 245
SAS Institute, xv
W.L. Gore & Associates, xv

Leadership principles, 234
Leadership teams, questions for

conformance to plan, 238–239
cost control, 237–238
finances, 240
maturity, 239–240
performance measurements, 241
utilization, 239
work standards, 239–240

Lean Product and Process
Development, 30

Learning to improve, Frame 16,
173–182. See also Continuous
improvement.

A3 problem-solving report, 176–180
directive management, 184
disincentives for sharing

knowledge, 182
fishbone diagrams, 179
five whys, 178–179
goal of, 173–174
managers as mentors, 183–184
problem owners, 180–181
problem solving, 174
problem/countermeasure board,

174–175
pull-based authority, 180–181
responsibility authority, 181
retrospectives, 173
root causes, identifying, 179–180
self-organizing teams, 184
sharing knowledge, 181–182
suggestion systems, 175–176

Lennox, Tomo, 208–209
Level Workflow, Frame 10

iterations, overview, 117–122
iterations, vs. kanban, 126–129

268 INDEX

Level Workflow (continued)
overview, 114
small batches, 114–117
staging, 115

“Life Cycle Concept Considered
Harmful,” 56–57, 56-57

Literature. See Publications.
Logistics, Empire State Building

construction, 106–107
Long-term orientation, 190
Low-dependency architecture, 65–67
Low-velocity organizations, 161
Luggage fees, impact of, 5

M

Maestros, developing expertise,
96–97

Making work ready, 118–122
Malinowski, Bronislaw, 200–201
Management. See also Capacity;

Knowledge workers.
cross-cultural traits, 190–191
cultural heritage, 191–194
customer focus, 162
front-line leaders, 212–216
military organizations, 212–215
mission command versus detailed

command, 214–215
mission tactics, 212–215
OODA (Observe-Orient-Decide-

Act) loop, 215
policy driven waste, 24–34
quality of, 207–208
refactoring into agile, 208–209

Management Challenges for the 21st
Century, 196–197

Management theories, 191–192

Managers
lack of technical expertise, cause

of waste, 30
as mentors, 95–97, 183–184
respect for, 204

Managing to Learn, 180, 183
Manual workers versus knowledge

workers, 197
Manuals. See Publications.
Medical and medication errors, 154
Mental constructs, xvii
Mentors

among knowledge workers, 199
managers as, 183–184
sensei, 199

Methods, workflow design, 164
Milestones in the history of software

development, 58
Military organizations, management,

212–215
Mutual respect, Frame 19, 193,

203–209

N

Network connectivity, 64
“Never” lists, 137
“No Silver Bullet,” 26, 63
The Norm of Reciprocity, Frame 18,

200–209
Nygaard, Kristen, 51

O

Obama, Barack, 147–149
Object-oriented programming,

history of, 50–52

INDEX 269

Obscure code, 35
Obscure code, cause of waste, 35
Ohno, Taiichi

on process standards, 168–169
specialization, 32
work improvement through

scientific methods, 33–34
Workplace Management, 168

“On the Inevitable Intertwining of
Specification and
Implementation,” 56

OnCast Technologies, 96
O’Neill, Paul, 156–157, 159–160
On-site developers, waste prevention,

32–33
OODA (Observe-Orient-Decide-Act)

loop, 215
Open source, history of, 60–61
Organizing patient charts, 156–157
Output, workflow design, 163–164,

166–167
Outside-in Software Development,

222
Overlapping steps, 120–122
OXO, identifying customer needs, 40

P

Papers. See Publications.
Parker, James

customer service, 6
leadership, 244–245
Southwest Airlines, 3, 202, 215

Parnas, David
controlling complexity, 64–66
information hiding, 82

Pathway, workflow design, 164
Patient charts, organizing, 156–157

People and Performance: The Best of
Peter Drucker . . . , 197–198

People in lean development. See also
Management; specific people.

Agile Manifesto principles, 192
cross-cultural commonalties,

188–190
cross-cultural psychology, 188–191
cultural assumptions, 188–191
decision making, 194
individualism, 189
long-term orientation, 190
masculinity, 189
motivation theories, 190
power distance, 189
preparation versus

implementation, 194
principles of lean development,

193–194
short-term orientation, 194
uncertainty avoidance, 189–190

People in lean development, company
culture. See also Knowledge
workers.

collective decisions, 206
cross-cultural teams, 204–206
customers, respect for, 203–204
diversity, value of, 205–206
groupthink, 205–206
internal customers, respect for,

203–204
managers, respect for, 204
mutual respect, 203–209
need for consensus, 204–205
pride of workmanship, 209–211
purpose-passion-persistence-pride,

210
reciprocity, 200–203
remuneration, 201–202

270 INDEX

People in lean development (continued)
self-organizing teams, 206–209
subordinates, respect for, 204
suppliers, respect for, 204
teammates, respect for, 204
Toyota Motor Corporation,

195–196
Perfection, visualizing. See

Visualizing perfection.
Performance measurements, question

for leadership teams, 241
Personal computers, history of, 57–60
Plank road analogy, history of

software development, 46–47
Policies and laws, 31
Policy-driven waste, Frame 4, 24–36.

See also Waste, policy-driven.
Portfolio management, 141–142
Positive versus negative

reinforcement, 14
Power distance, cross-cultural, 189
The Practice of Management, 196
Premature decisions, cause of waste, 34
Preparation versus implementation,

194
Prescriptions

filling, 157–158
medical and medication errors, 154
missing medications, 158–159

Presentation layer, testing, 75
Pride of workmanship, Frame 20,

209–211
Principles of lean development,

193–194
The Principles of Product

Development Flow, 115
Problem owners, 180–181
Problem/countermeasure board,

174–175. See also Kanban
boards.

Problems, exposing. See also
Continuous improvement.

bad news first, 169–170
experiencing the workplace, 172
test failures, analyzing, 169–170

Problem-solving skills
importance of, 200
learning, 174

Process cycle efficiency, 24
Process description, 122–126
Process flow maps. See Value stream

maps.
Process principles, 234–235
Process standards, workflow design,

167–169
Processes, dividing projects by, 64
Product champions

Barack Obama's Facebook page,
147–149

case studies, 37–38, 147–149
critical activities, 38
definition, 36
Hughes, Chris, 147–149
Leading Ideation, 39–41
MyBarackObama.com, 148
responsibility, 37–38
system design, 109

Product concept, 41
Product managers as customers, 8–9
Product owners as customers, 8–9
Product purpose, determining, 9
Productivity

definition, 235–236
knowledge workers, 196–198
self measurement, 33–34

Programmers, authors versus
translators, 89–90

Project management
agile, 63
lifecycle, 56, 62

INDEX 271

portfolio management, 141–142
versus system development, 62
versus technical competence, 71

Prototyping
meeting customer expectations, 40
phase of evolutionary

development, 86–87
Proven experience, Frame 9, 108–114
Publications

The Art of Innovation, 39
Beyond Budgeting, 233–234
Chasing the Rabbit, 161
“The Coming Commoditization of

Processes,” 167
“Complexity Controlled by

Hierarchical Order . . .”, 47
“A Constructive Approach to . . .

Program Correctness,” 47
“Design and Code Inspections . . .”,

53
The Elegant Solution, 87
“Evolutionary Development,” 57
“Goals Gone Wild,” 16
Implementing Beyond Budgeting,

231
Inside Intuit, 85–86
International Dimensions of

Organizational Behavior, 191
The Leader’s Handbook, 184
Lean Product and Process

Development, 30
“Life Cycle Concept Considered

Harmful,” 56–57
Management Challenges for the

21st Century, 196–197
Managing to Learn, 180, 183
“No Silver Bullet,” 26, 63
“On the Inevitable Intertwining of

Specification and
Implementation,” 56

Outside-in Software Development,
222

People and Performance: The Best
of Peter Drucker . . . ,
197–198

The Practice of Management, 196
The Principles of Product

Development Flow, 115
Reward Systems, 182
A Sense of Urgency, 229–230
“Simple Smalltalk Testing,” 71
“Software Engineering,” 54
Structured Programming, 51
What Is Total Quality Control? . . . ,

169
The Wisdom of Crowds, 205
Workplace Management, 168

Pull scheduling Frame 11
arbitrating with value, 134
cost-benefit ratio of scheduled

activities, 134
decoupling, 132
definition, 129
description, 131
feature teams, 132–133
larger systems, 137–140
limiting queues, 135–136
medium-sized projects, 131–132
MUFs (minimum useful feature

sets), 132
“never” lists, 137
portfolio management, 141–142
small, frequent requests, 133–136
timeboxing versus scopeboxing,

138–139
Pull-based authority, 180–181
Pulling from the future, 18
Purpose-passion-persistence-pride,

210
Push scheduling, 129–130

272 INDEX

Q

Quality, budgeting problems at
Agile@IBM, 232

Quality by construction, Frame 6. See
also Test-driven development.

code clarity
information hiding, 82
overview, 80–82
refactoring, 82

continuous integration
code, social setting, 76
defect injection processes, 76
frequency of, 78–80
integration testing, time budget

for, 77
step-wise integration, 76–77
stress testing, system level, 79–80
user acceptance tests, 80

sequential development
drawbacks, 70–71

Queues, limiting, 135–136
Quick experimentation phase, 84,

87–88
Quick experiments in hospitals,

158–159
Quicken, case study, 85–86

R

Ready-ready to be done-done,
118–122

Reciprocity, as motivation, 200–203
Refactoring code, 35, 82
Regression deficits, cause of waste, 35
Reinertsen, Donald, 115
Relative goals, 17
Reliable delivery. See also Empire

State Building construction;
Schedules.

adaptive control
consumability, 145
customer feedback, 143–144
customer outcomes, 146–147
escaped defects, 146
frequent releases, 144–145

iterations
versus kanban technique,

126–129
making work ready, 118–122
overlapping steps, 120–122
ready-ready to be done-done,

118–122
stories, 118
workflow chart, 117

kanban technique
batch size, 127
cadence, 127–128
capacity, 128–129
commitment, 126
definition, 122
versus iterations, 126–129
kanban boards, 123–125
kanban cards, 122–123
process description, 122–126
teamwork, 127
throughput, 129
velocity, 128

Reliable delivery, workflow leveling
iterations

versus kanban, 126–129
overview, 117–122

overview, 114
small batches, 114–117
staging, 115

Remuneration, as motivation,
201–202

Resources. See Publications.
Respect for people

customers, 203–204
internal customers, 203–204

INDEX 273

managers, 204
mutual respect, 193, 203–209
subordinates, 204
suppliers, 204
teammates, 204
Toyota Motor Corporation, 153,

195
Responsibility, dividing projects by, 64
Responsibility authority, 181
Results, importance of, 198–200
Retention, developing expertise, 94
Retrospectives, 173
Reward Systems, 182
Rivera, Ted, 221
Root causes, identifying, 179–180
Routers, 64

S

SAS Institute, corporate culture, xv
Schedules. See also Pull scheduling.

alternate approaches, 113–114
critical path, 113–114
dependencies, 112
per workflow, 104–106
push scheduling, 129–130
reducing complexity, 112–114
set-based design, 113–114
utilization, 113

Scholtes, Peter, 184
Scope of projects, cutting, 27–28
Scopeboxing versus timeboxing,

138–139
Seddon, John, 1, 11
Self-organizing teams, 184, 206–209
A Sense of Urgency, 229–230
Sense of urgency, creating, 229–230
Sensei (mentor), results are not the

point, 199

Separating responsibility, knowledge,
action, and feedback, 31. See
also Handovers.

Separation of concerns, 35. See also
Information hiding.

Sequential development drawbacks,
70–71

Set-based design, 87–88, 113–114
Sharing knowledge, 181–182
Shook, John, 180, 183–184, 207,

242–243
Short-term orientation, 194
Shreve, Richmond, 102
“Simple Smalltalk Testing,” 71
Simula language, history of, 51
Skiles, Jeffrey, 92
Small batches, 114–117
Smalltalk language, history of

software development, 51
Smith, Adam, 32
Software development

history of. See History of software
development.

separating from larger system,
69–70

“Software Engineering,” 54
Software life cycle concept, history

of, 53–57
Southwest Airlines, xvi, corporate

culture
history of, 2–3
layoffs, 203
luggage fees, impact of, 5
quick turnaround, 5
reciprocity, 202
secrets of success, 3–6, 215–216
systems thinking, 1
turnover rate, 202

Spear, Steven
on complexity, 163

274 INDEX

Spear, Steven (continued)
exposing problems, 169
high-velocity organizations, 161
sharing knowledge, 181–182

Spreadsheets, history of, 58–59
Staging work, 115
Stakeholder feedback, 144, 222–223,

226, 228, 230
Stakeholder involvement, 8, 156,

181, 221–225
Standard Life, 32–33
Standards, developing expertise,

94–95
Starrett, Paul, 103
Starrett, William, 103
Step-wise integration, 49, 76–77
Stories, 118
Stress testing, 76, 79–80
Stroustrup, Bjarne, 81
Structure, dividing projects by, 64
Structured Programming, 51
Structured programming, history of,

47–50
Subcontracting, Empire State

Building, 112
Subordinates, respect for, 204
Suggestion systems, 175–176
Sullenberger, Chesley B., 91
Suppliers, respect for, 204
Support calls

failure demand, 10
reducing, 223, 228–229

Support organization, 32–33, 80,
111, 185

as customers, 6–7, 9
delegation to, 31, 67
help desk, 10
mental model discrepancies, 223
waste in, 19-25

Sustainability, Frame 24, 215,
242–243. See also System
capability.

developing leaders, 243
implementation, 194

Svenska Handelsbanken, xiii-xiv, 233
Swartout, William, 56
Sweitzer, John, 7, 222
System capability, Frame 2

current work methods, 13–15
goals, 15–18
measuring versus prescribing,

15–16
targets, setting, 15–18
time series charts, 13–14
variation, as a management

problem, 14
System design, Empire State Building,

109–111
System development versus project

management, 62
Systematic, case study, 118–120

T

Targets, setting, 15–17. See also
Goals.

Target-setting and evaluation, 232
Taylor, Frederick Winslow, 33
TCP/IP protocol, 64
Teachers. See Mentors.
Team design, Empire State Building,

103–104
Teammates, respect for, 204
Teams

at Amazon.com, 66–67
and architectural complexity, 68–69
cross functional, 68–69

INDEX 275

cross-cultural, 204–206
decoupling, 133
feature, 132–133
groupthink, 205–206
ideal size, 66–67
self-organizing

cross-cultural factors, 193
versus directive management,

184
mutual respect, 193, 206–209

teammates, respect for, 204
training, Agile@IBM, 225–226
two-pizza, 67
WebSphere Service Registry and

Repository team, 223
Teamwork, kanban, 127
Technical debt, 15, 34–36, 66, 80, 82

Agile@IBM, 226
cause of waste, 34–36
failure demand, 10

Technical excellence. See specific
topics.

Technology-facing ideation, 41–42
Ten-year rule for developing

expertise, 93
Test failures, analyzing, 169–170
Test-driven development

acceptance tests, 73–74
automation, 10, 74–75, 79, 227
defect avoidance, 71–76
exploratory, 75
failure analysis, 169–170
history of software development, 48
integration testing, time budget

for, 77
presentation layer, 75
stress, 76
stress testing, description, 76
stress testing, system level, 79–80
testing to failure, 75–76

through the user interface, 75
timing of, 70–71
unit tests, 72
usability, 76
user acceptance tests, 80
writing tests before code, 73–74
xUnit frameworks, 71–72

Test-driven handovers, 165–166
Theoretical limits, 160–161
Thomas, Dave, 81
Throughput, 129
Throughput, kanban, 129
Time series charts, 13–14
Timeboxing versus scopeboxing,

138–139
Timing, budgeting problems at

Agile@IBM, 232
Top-down programming, history of,

48–49
Toyota Motor Corporation

car development phases, 37–38
continuous improvement, 153, 195
core tenets, 153, 195
layoffs, 203
respect for people, 153, 195
secret of success, 243
suggestion implementations,

175–176
TPS (Toyota Production System),

162
visualizing perfection, 160–161
working with American

employees, 170–172, 195
Toyota Motor Manufacturing

Kentucky, 162, 246
The Toyota Way

company culture, 195
creation of, 153
meeting targets, 199
self-organizing teams, 207

276 INDEX

TPS (Toyota Production System), 162
Training, 97, 221, 230

Agile@IBM, 222–227
costs, 116
military, 200
reciprocity, 202
reinforcement, 14
retention, 94
testing, 75–76

Trust, budgeting problems at
Agile@IBM, 231

Turnover, developing expertise, 94
Two-pizza teams, 67

U

Uncertainty avoidance, cross-
cultural, 189–190

Unethical behavior, motivated by
unrealistic goals, 17

Unit tests, 72
Urgency, 115, 229–230
Usability testing, 76
User acceptance tests, 80
User interface, 75–76
Utilization

of manpower, cause of waste, 29
questions for leadership teams, 239
scheduling, 113

V

Value, dividing projects by, 64
Value demand, 12, 21–24
Value stream maps

definition, 19
of failure demand, 19–21

improving process capability, 24
of value demand, 21–24

Variance
as a learning opportunity, 162
as a management problem, 14–15
versus targets, 17, 232–334

Velocity, kanban, 128
Visualizing perfection Frame 13,

160–163. See also Continuous
improvement.

Alcoa’s safety record, 159–160
barrier to rapid learning, 161
benchmarking, 161
customer focus, 162
high-velocity organizations,

161–162
low-velocity organizations, 161
theoretical limit, 160–161
Toyota Motor Corporation,

160–161
variance, as a learning

opportunity, 162
workflow across boundaries, 162

Vogels, Werner, 9, 67
Voluntary self-study (jishuken), 199

W

Wallander, Jan, xiii-xiv, 233, 236
Ward, Allen, 30
Waste

handling failure demand, 11, 19,
21

in process-flow maps, 19
Waste, policy-driven

case study, 25
causes

batch and queue mentality, 29

INDEX 277

budgetary commitments, 29
case study, 32–33
code branching, 36
complexity, 26–28
context switching, 29
dependencies, 35
economies of scale, 28–30
full utilization of manpower, 29
handoffs, 30–31
inadequate knowledge

preservation, 34
insufficient refactoring, 35
managers’ lack of technical

expertise, 30
obscure code, 35
overview, 25–26
policies and laws, 31
premature decisions, 34
regression deficits, 35
separating decision making

from work, 30–33
separating responsibility,

knowledge, action, and
feedback, 31

technical debt, 34–36
wishful thinking, 33–34

cures
case study, 32–33
information hiding, 35
on-site developers, 32–33
separation of concerns, 35
work improvement through

scientific methods, 33–34
worker self measurement, 33–34

definition, 24
Watanabe, Katsuaki, 195
WebSphere Service Registry and

Repository team, 223
What Is Total Quality Control? . . . ,

169

The Wisdom of Crowds, 205
Wiseman, James, 171
Wishful thinking, cause of waste,

33–34
Work, improvement through

scientific methods, 33–34
Work standards, question for

leadership teams, 239–240
Work-arounds in hospitals, 156
Worker productivity, self

measurement, 33–34
Worker self measurement, 33–34
Workflow

across boundaries, 162
designing

connections, 164–165
handovers, immediate failure

detection, 165–166
immediate customers, 164
immediate suppliers, 164
methods, 164
output, 163, 164, 166–167
pathway, 164
process standards, 167–169
test-driven handovers,

165–166
Empire State Building

construction, 104
scheduling. See Schedules.

Workflow, leveling
iterations

versus kanban, 126–129
overview, 117–122

overview, 114
small batches, 114–117
staging, 115

Workmanship, pride in, 209–211
Workplace, firsthand experience, 172
Workplace Management, 168
Writing versus programming, 89–90

278 INDEX

X

xUnit frameworks, 71–72

Y

Y2K problem, history of, 61
Yamaguchi, Masayuki, 194

	Foreword
	Introduction: Framing
	Chapter 1: Systems Thinking
	A Different Way to Run an Airline
	Frame 1: Customer Focus
	Who Are Your Customers?
	What Is Your Purpose?
	What Is the Nature of Customer Demand?

	Frame 2: System Capability
	What Is Your System Predictably Achieving?
	What Does Your System Need to Achieve?

	Frame 3: End-to-End Flow
	Eliminate Failure Demand
	Map Value Demand
	Find the Biggest Opportunity

	Frame 4: Policy-Driven Waste
	How Can Policies Cause Waste?
	The Five Biggest Causes of Policy-Driven Waste

	Portrait: Product Champion, Take 1
	Customer-Facing Ideation
	Technology-Facing Ideation

	Your Shot

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

