

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered
in quantity for bulk purchases or special sales, which may include
electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Fields, Jay, 1979-

 Refactoring / Jay Fields, Shane Harvie, and Martin Fowler. -- Ruby ed.

 p. cm.

 ISBN-13: 978-0-321-60350-0 (hardback : alk. paper)

 ISBN-10: 0-321-60350-8 (hardback : alk. paper) 1. Software refactoring. 2. Ruby (Computer
program

language) I. Harvie, Shane, 1980- II. Fowler, Martin, 1963- III. Title.

 QA76.76.R42F54 2010

 005.1’17--dc22

 2009027577

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax (617) 671 3447

ISBN-13: 978-0-321-60350-0

ISBN-10: 0-321-60350-8

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana .

First printing October 2009

Associate Publisher
Mark Taub

Acquisitions Editor
Greg Doench

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Geneil Breeze

Indexer
Erika Millen

Proofreader
Jennifer Gallant

Technical Reviewers
Chad Fowler
Clinton Begin
Justin Gehtland

Publishing
Coordinator
Michelle Housley

Cover Designer
Chuti Prasertsith

Compositor
Jake McFarland

Foreword

I remember what it was like to learn object-oriented (OO) programming; As
I learned OO, I was left with a low-grade tension—a feeling that I was missing
something. Some new concepts felt simple and familiar in a way that told you
there was a depth underlying them waiting to be discovered. That can be an
unsettling feeling.

I read the literature on design patterns with great interest but, disappoint-
ingly, derived little enlightenment. I talked to other developers, browsed the
Web, read books, and perused source code but remained convinced that there
was something important that wasn’t coming through. I understood how the
tools of object orientation worked, but I was unable to apply them in a way that
felt right to me.

Then I picked up the first edition of this book.
Software is not created in one inspired moment. The usual focus on the arti-

facts of the development process obscures the fact that software development
is in fact a process. More specifically, as Refactoring taught me, it is a series of
small decisions and actions all made through the filter of a set of values and the
desire to create something excellent.

Understanding that software development is a constant activity and not a
static event helps us to remember that code can and should be organic. Good
code is easy to change. Bad code can incrementally be made easier to change.
Code that’s easy to change is fun to work with. Code that’s hard to change is
stressful to work with. And the more changes you make, without refactoring it,
the more stressful working with it becomes.

So becoming a software developer is less about what good code is than about
how to make good code. Software doesn’t just spring into being. It’s created by
humans, one keystroke at a time. Refactoring is the book from which I learned
how to do that process well. It taught me how to sit down and write great code,
one tiny piece at a time.

When I initially read Refactoring, I was on a small team whose responsibility
was to help larger groups write better software. At meetings and code reviews,

Forewordxiv

I would carry the hard-covered book around with me, wielding it as both a
weapon and a shield. I was passionate about my job and (more strongly) the
craft of software development, and I’m sure that the developers we worked with
often dreaded the sight of me and this book heading toward their cubicles. I
didn’t so much refer to the book’s contents in these meetings as just have it with
me as a reminder of what it represented for me: Our work can be great if we
always remember that it should be great and we take the simple steps to make
it great.

Looking back on that time with the advantage of hindsight, I realize that the
languages and tools we were using were working against us. The techniques
in this book were born out of Smalltalk development. In a dynamic environ-
ment, refactoring flourishes. So it’s only fitting that they should be reborn here
in Ruby. As a longtime Rubyist it is thrilling to see the book that made such a
profound difference for me become available to developers who speak Ruby as
their primary programming language.

Refactoring: Ruby Edition will serve as a guiding light for a new generation
of Rubyists who will learn to create better, more flexible software and (I hope)
to love the craft of software development as much as I have.

—Chad Fowler
Co-Director, Ruby Central, Inc.
CTO, InfoEther, Inc.

Preface

Just over a decade ago I (Martin) worked on a project with Kent Beck. This
project, called C3, became rather known as the project that marked the birth of
extreme programming and helped fuel the visibility of what we now know as
the agile software movement.

We learned a lot of things on that project, but one thing that particularly
struck me was Kent’s methodical way of continually reworking and improv-
ing the design of the system. I had always been a fan of writing clear code, and
felt it was worthwhile to spend time cleaning up problematic code to allow a
team to develop features swiftly. Kent introduced me to a technique, used by
a number of leading Smalltalkers, that did this far more effectively than I had
done it before. It’s a technique they called refactoring, and soon I wanted to
talk about it wherever I went. However, there was no book or similar resource I
could point people to so that they could learn about this technique themselves.
Kent and the other Smalltalkers weren’t inclined to write one, so I took on the
project.

My Refactoring book was popular and appears to have played a significant
role in making refactoring a mainstream technique. With the growth of Ruby
in the past few years, it made sense to put together a Ruby version of the book,
this is where Jay and Shane stepped in.

What Is Refactoring?

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of intro-
ducing bugs. In essence when you refactor you are improving the design of the
code after it has been written.

Prefacexvi

Many people find the phrase improving the design after it has been written
rather odd. For many years most people believed that design comes first, and
the coding comes second. Over time the code gets modified, and the integrity
of the system, its structure according to that design, gradually fades. The code
slowly sinks from engineering to hacking.

Refactoring is the opposite of this practice. With refactoring you can take a
bad design, chaos even, and rework it into well-designed code. Each step is sim-
ple, even simplistic. You move an instance variable from one class to another,
pull some code out of a method to make into its own method, and push some
code up or down a hierarchy. Yet the cumulative effect of these small changes
can radically improve the design. It is the exact reverse of the normal notion of
software decay.

With refactoring you find the balance of work changes. You find that design,
rather than occurring all up front, occurs continuously during development.
You learn from building the system how to improve the design. The resulting
interaction leads to a program with a design that stays good as development
continues.

What’s in This Book?

This book is a guide to refactoring; it is written for a professional Ruby
programmer. Our aim is to show you how to do refactoring in a controlled and
efficient manner. You learn to refactor in such a way that you don’t introduce
bugs into the code but instead methodically improve the structure.

It’s traditional to start books with an introduction. Although I agree with
that principle, I don’t find it easy to introduce refactoring with a generalized
discussion or definitions. So we start with an example. Chapter 1 takes a small
program with some common design flaws and refactors it into a more accept-
able object-oriented program. Along the way we see both the process of refac-
toring and the application of several useful refactorings. This is the key chapter
to read if you want to understand what refactoring really is about.

In Chapter 2 we cover more of the general principles of refactoring, some
definitions, and the reasons for doing refactoring. We outline some of the prob-
lems with refactoring. In Chapter 3 Kent Beck helps us describe how to find
bad smells in code and how to clean them up with refactorings. Testing plays
an important role in refactoring, so Chapter 4 describes how to build tests into
code with a simple testing framework.

The heart of the book, the catalog of refactorings, stretches from Chapter
5 through Chapter 12. This is by no means a comprehensive catalog. It is the

Preface xvii

beginning of such a catalog. It includes the refactorings that we have written
down so far in our work in this field. When we want to do something, such as
Replace Conditional with Polymorphism, the catalog reminds us how to do it
in a safe, step-by-step manner. We hope this is the section of the book you come
back to often.

Refactoring in Ruby

When I wrote the original Refactoring book, I used Java to illustrate the
techniques, mainly because Java was a widely read language. Most of the refac-
toring techniques apply whatever the language, so many people have used the
original book to help them in their refactoring outside Java.

But obviously it helps you to learn refactoring in the language that you mostly
program in. With many people learning the Ruby language, and with refactor-
ing being a core part of the Ruby culture, we felt it was particularly important
to provide a way for Rubyists to learn about refactoring—particularly if they
don’t have a background in curly-brace languages.

So Jay and Shane took on the task of going through my original book, and
reworking it for Ruby. They started with the original text and meticulously
went through it to remove all the Javaisms and rework the text to make sense in
a Ruby context. They are experienced Ruby programmers who also have a good
background in Java and C#, so they have the right background to do this well.

They also added some new refactorings that are particular to Ruby. Truth be
told most of the refactorings are the same as those you need in any other object-
oriented language, but there are a few new ones that come into play.

Who Should Read This Book?

This book is aimed at a professional programmer, someone who writes soft-
ware for a living. The examples and discussion include a lot of code to read and
understand.

Although it is focused on the code, refactoring has a large impact on the
design of a system. It is vital for senior designers and architects to understand
the principles of refactoring and to use them in their projects. Refactoring is best
introduced by a respected and experienced developer. Such a developer can best
understand the principles behind refactoring and adapt those principles to the
specific workplace.

Prefacexviii

Here’s how to get the most from this book without reading all of it.

• If you want to understand what refactoring is, read Chapter 1; the exam-
ple should make the process clear.

• If you want to understand why you should refactor, read the first two
chapters. They will tell you what refactoring is and why you should do it.

• If you want to find where you should refactor, read Chapter 3. It tells you
the signs that suggest the need for refactoring.

• If you want to actually do refactoring, read the first four chapters com-
pletely. Then skip-read the catalog. Read enough of the catalog to know
roughly what is in there. You don’t have to understand all the details.
When you actually need to carry out a refactoring, read the refactoring
in detail and use it to help you. The catalog is a reference section, so you
probably won’t want to read it in one go.

We wrote this book assuming you haven’t come across refactoring before and
haven’t read the original book, so you can treat this as a fully blown introduc-
tion to the subject. You start with either this book or the original, depending on
which language you prefer as your focus.

I Have the Original Book—Should I Get This?

Probably not. If you’re familiar with the original book you won’t find a lot
of new material here. You’ll need to adjust the original refactorings to the Ruby
language, but if you’re like us you shouldn’t find that an inordinate challenge.

There are a couple of reasons where we think an owner of the original book
might consider getting a copy of the Ruby edition. The first reason is if you’re
not too familiar with Java and found the original book hard to follow because
of that unfamiliarity. If so we hope you find a Ruby-focused book easier to
work with. The second reason is if you’re leading a Ruby team that has people
who would struggle with the original book’s Java focus. In that case a Ruby
book would be a better tool to help pass on your understanding of refactoring.

Building on the Foundations Laid by Others

Occasionally people referred to me (Martin) as something like, “The Father
of Refactoring.” I always cringe when they do this because, although my book

Preface xix

has helped to popularize refactoring, it certainly isn’t my creation. In particular
I built my work on the foundations laid by some leading people in the Smalltalk
community

Two of the leading developers of refactoring were Ward Cunningham and
Kent Beck. They used it as a central part of their development process in the
early days and adapted their development processes to take advantage of it. In
particular it was my collaboration with Kent that really showed me the impor-
tance of refactoring, an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-
Champaign that is notable for its long series of practical contributions to object
technology. Ralph has long been a champion of refactoring, and several of his
students have worked on the topic. Bill Opdyke developed the first detailed
written work on refactoring in his doctoral thesis. John Brant and Don Roberts
developed the world’s first automated refactoring tool: the Smalltalk Refactor-
ing Browser.

Many people have developed ideas in refactoring since my book. In particu-
lar, tool development has exploded. Any serious IDE now needs a “refactor-
ing” menu, and many people now treat refactoring as an essential part of their
development tools. It’s important to point out that you can refactor effectively
without a tool—but it sure makes it easier!

Making the Ruby Edition

People often wonder about how a book gets made, particularly when there’s
several people involved.

Martin began the original Refactoring book in early 1997. He did it by mak-
ing notes of refactorings he did while programming, so these notes could remind
him how to do certain refactorings efficiently. (These turned into the mechanics
section of the book.) The book was published in 1999 and has sold steadily—
around 15,000 copies a year.

Jay approached Martin in 2006 about doing a Ruby version. Jay looked
around for people to help, and Shane was soon contributing enough to be a full
author. Martin hasn’t done much on this edition as his writing attention has
been on other projects, but we left his name on the cover since he essentially
provided the first draft, much of which is still there.

73

Chapter 3

Bad Smells in Code

If it stinks, change it.

Grandma Beck, discussing child-rearing philosophy

By now you have a good idea of how refactoring works. But just because you
know how doesn’t mean you know when. Deciding when to start refactoring,
and when to stop, is just as important to refactoring as knowing how to operate
the mechanics of a refactoring.

Now comes the dilemma. It is easy to explain how to delete an instance vari-
able or create a hierarchy. These are simple matters. Trying to explain when you
should do these things is not so cut-and-dried. Rather than appealing to some
vague notion of programming aesthetics (which frankly is what we consultants
usually do), I wanted something a bit more solid.

I was mulling over this tricky issue when I visited Kent Beck in Zurich. Per-
haps he was under the influence of the odors of his newborn daughter at the
time, but he had come up with the notion describing the “when” of refactoring
in terms of smells. “Smells,” you say, “and that is supposed to be better than
vague aesthetics?” Well, yes. We look at lots of code, written for projects that
span the gamut from wildly successful to nearly dead. In doing so, we have
learned to look for certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring. (We are switching over to “we” in this
chapter to reflect the fact that Kent and I wrote this chapter jointly. You can tell
the difference because the funny jokes are mine and the others are his.)

One thing we won’t try to do here is give you precise criteria for when a
refactoring is overdue. In our experience no set of metrics rivals informed
human intuition. What we will do is give you indications that there is trouble
that can be solved by a refactoring. You will have to develop your own sense
of how many instance variables are too many instance variables and how many
lines of code in a method are too many lines.

Chapter 3 Bad Smells in Code74

Long
Method

You should use this chapter and the table on the inside back cover as a way
to give you inspiration when you’re not sure what refactorings to do. Read the
chapter (or skim the table) to try to identify what it is you’re smelling, and then
go to the refactorings we suggest to see whether they will help you. You may
not find the exact smell you can detect, but hopefully it should point you in the
right direction.

Duplicated Code

Number one in the stink parade is duplicated code. If you see the same code
structure in more than one place, you can be sure that your program will be bet-
ter if you find a way to unify them.

The simplest duplicated code problem is when you have the same expression
in two methods of the same class. Then all you have to do is Extract Method
and invoke the code from both places.

Another common duplication problem is when you have the same expression
in two sibling subclasses. You can eliminate this duplication by using Extract
Method in both classes and then Pull Up Method. If the code is similar but
not the same, you need to use Extract Method to separate the similar bits from
the different bits. You may then find you can use Form Template Method. If
the methods do the same thing with a different algorithm, you can choose the
clearer of the two algorithms and use Substitute Algorithm. If the duplication is
in the middle of the method, use Extract Surrounding Method.

If you have duplicated code in two unrelated classes, consider using Extract
Class or Extract Module in one class and then use the new component in the
other. Another possibility is that the method really belongs only in one of the
classes and should be invoked by the other class or that the method belongs in
a third class that should be referred to by both of the original classes. You have
to decide where the method makes sense and ensure it is there and nowhere else.

Long Method

The object programs that live best and longest are those with short methods.
Programmers new to objects often feel that no computation ever takes place,
that object programs are endless sequences of delegation. When you have lived
with such a program for a few years, however, you learn just how valuable all
those little methods are. All of the payoffs of indirection—explanation, sharing,

Long Method 75

Long
Method

and choosing—are supported by little methods (see the section “Indirection and
Refactoring” in Chapter 2, “Principles in Refactoring.”)

Since the early days of programming people have realized that the longer a
procedure is, the more difficult it is to understand. Older languages carried an
overhead in subroutine calls, which deterred people from small methods. Mod-
ern Object Oriented languages have pretty much eliminated that overhead for
in-process calls. There is still an overhead to the reader of the code because you
have to switch context to see what the subprocedure does. Development envi-
ronments that allow you to see two methods at once help to eliminate this step,
but the real key to making it easy to understand small methods is good naming.
If you have a good name for a method you don’t need to look at the body.

The net effect is that you should be much more aggressive about decompos-
ing methods. A heuristic we follow is that whenever we feel the need to com-
ment something, we write a method instead. Such a method contains the code
that was commented but is named after the intention of the code rather than
how it does it. We may do this on a group of lines or on as little as a single line
of code. We do this even if the method call is longer than the code it replaces,
provided the method name explains the purpose of the code. The key here is not
method length but the semantic distance between what the method does and
how it does it.

Ninety-nine percent of the time, all you have to do to shorten a method is
Extract Method. Find parts of the method that seem to go nicely together and
make a new method.

If you have a method with many parameters and temporary variables, these
elements get in the way of extracting methods. If you try to use Extract Method,
you end up passing so many of the parameters and temporary variables as
parameters to the extracted method that the result is scarcely more readable
than the original. You can often use Replace Temp with Query or Replace Temp
with Chain to eliminate the temps. Long lists of parameters can be slimmed
down with Introduce Parameter Object and Preserve Whole Object.

If you’ve tried that, and you still have too many temps and parameters, it’s
time to get out the heavy artillery: Replace Method with Method Object.

How do you identify the clumps of code to extract? A good technique is to
look for comments. They often signal this kind of semantic distance. A block of
code with a comment that tells you what it is doing can be replaced by a method
whose name is based on the comment. Even a single line is worth extracting if
it needs explanation.

Conditionals and loops also give signs for extractions. Use Decompose Con-
ditional to deal with conditional expressions. Replace loops with Collection

Chapter 3 Bad Smells in Code76

Long
Parameter

List

Closure Methods and consider using Extract Method on the call to the closure
method and the closure itself.

Large Class

When a class is trying to do too much, it often shows up as too many instance
variables. When a class has too many instance variables, duplicated code cannot
be far behind.

You can Extract Class to bundle a number of the variables. Choose vari-
ables to go together in the component that makes sense for each. For example,
deposit_amount and deposit_currency are likely to belong together in a component.
More generally, common prefixes or suffixes for some subset of the variables in
a class suggest the opportunity for a component. If the component makes sense
as a subclass, you’ll find Extract Subclass often is easier. Another option if the
component doesn’t make sense as a delegate is Extract Module.

Sometimes a class does not use all of its instance variables all of the time. If
so, you may be able to Extract Class, Extract Module, or Extract Subclass many
times.

As with a class with too many instance variables, a class with too much
code is prime breeding ground for duplicated code, chaos, and death. The sim-
plest solution (have we mentioned that we like simple solutions?) is to eliminate
redundancy in the class itself. If you have five hundred-line methods with a lot
of duplicate code, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original.

As with a class with a huge wad of variables, the usual solution for a class
with too much code is either to Extract Class, Extract Module, or Extract Sub-
class. A useful trick is to determine how clients use the class and to use Extract
Module for each of these uses. That may give you ideas on how you can further
break up the class.

Long Parameter List

In our early programming days we were taught to pass in as parameters every-
thing needed by a routine. This was understandable because the alternative was
global data, and global data is evil and usually painful. Objects change this
situation because if you don’t have something you need, you can always ask
another object to get it for you. Thus with objects you don’t pass in every-
thing the method needs; instead you pass enough so that the method can get to

Divergent Change 77

Divergent
Change

everything it needs. A lot of what a method needs is available on the method’s
host class. In object-oriented programs parameter lists tend to be much smaller
than in traditional programs.

This is good because long parameter lists are hard to understand, because
they become inconsistent and difficult to use, and because you are forever
changing them as you need more data. Most changes are removed by passing
objects because you are much more likely to need to make only a couple of
requests to get at a new piece of data.

Use Replace Parameter with Method when you can get the data in one
parameter by making a request of an object you already know about. This
object might be an instance variable or it might be another parameter. Use Pre-
serve Whole Object to take a bunch of data gleaned from an object and replace
it with the object itself. If you have several data items with no logical object,
use Introduce Parameter Object to clump them together, or Introduce Named
Parameter to improve the fluency.

There is one important exception to making these changes. This is when you
explicitly do not want to create a dependency from the called object to the
larger object. In those cases, unpacking data and sending it along as parameters
is reasonable, but pay attention to the pain involved. If the parameter list is too
long or changes too often, you need to rethink your dependency structure.

Divergent Change

We structure our software to make change easier; after all, software is meant to
be soft. When we make a change we want to be able to jump to a single clear
point in the system and make the change. When you can’t do this you are smell-
ing one of two closely related pungencies.

Divergent change occurs when one class is commonly changed in different
ways for different reasons. If you look at a class and say, “Well, I will have to
change these three methods every time I get a new database; I have to change
these four methods every time there is a new financial instrument,” you likely
have a situation in which two objects are better than one. That way each object
is changed only as a result of one kind of change. Of course, you often dis-
cover this only after you’ve added a few databases or financial instruments. Any
change to handle a variation should change a single class or module, and all the
typing in the new class/module should express the variation. To clean this up
you identify everything that changes for a particular cause and use Extract Class
to put them all together.

Chapter 3 Bad Smells in Code78

Feature
Envy

Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. You whiff
this when every time you make a kind of change, you have to make a lot of little
changes to a lot of different classes. When the changes are all over the place,
they are hard to find, and it’s easy to miss an important change.

In this case you want to use Move Method and Move Field to put all the
changes into a single class. If no current class looks like a good candidate, create
one. Often you can use Inline Class to bring a whole bunch of behavior together.
You get a small dose of divergent change, but you can easily deal with that.

Divergent change is one class that suffers many kinds of changes, and shotgun
surgery is one change that alters many classes. Either way you want to arrange
things so that, ideally, there is a one-to-one link between common changes and
classes.

Feature Envy

The whole point of objects is that they are a technique to package data with
the processes used on that data. A classic smell is a method that seems more
interested in a class other than the one it actually is in. The most common focus
of the envy is the data. We’ve lost count of the times we’ve seen a method that
invokes half a dozen getting methods on another object to calculate some value.
Fortunately the cure is obvious, the method clearly wants to be elsewhere, so
you use Move Method to get it there. Sometimes only part of the method suffers
from envy; in that case use Extract Method on the jealous bit and Move Method
to give it a dream home.

Of course not all cases are cut-and-dried. Often a method uses features of
several classes, so which one should it live with? The heuristic we use is to deter-
mine which class has most of the data and put the method with that data. This
step is often made easier if Extract Method is used to break the method into
pieces that go into different places.

Of course there are several sophisticated patterns that break this rule. From
the Gang of Four [Gang of Four] Strategy and Visitor immediately leap to mind.
Kent Beck’s Self-Delegation pattern from his Smalltalk Best Practices book
[Beck] is another. You use these to combat the divergent change smell. The fun-
damental rule of thumb is to put things together that change together. Data and
the behavior that references that data usually change together, but there are

Primitive Obsession 79

Primitive
Obsession

exceptions. When the exceptions occur, we move the behavior to keep changes
in one place. Strategy and Visitor allow you to change behavior easily, because
they isolate the small amount of behavior that needs to be overridden, at the
cost of further indirection.

Data Clumps

Data items tend to be like children; they enjoy hanging around in groups
together. Often you’ll see the same three or four data items together in many
places: instance variables in a couple of classes, and parameters in many method
signatures. Bunches of data that hang around together really ought to be made
into their own object. The first step is to look for where the clumps appear as
instance variables. Use Extract Class on the instance variables to turn the clumps
into an object. Then turn your attention to method signatures using Introduce
Parameter Object or Preserve Whole Object to slim them down. The immediate
benefit is that you can shrink a lot of parameter lists and simplify method call-
ing. Don’t worry about data clumps that use only some of the attributes of the
new object. As long as you are replacing two or more instance variables with the
new object, you’ll come out ahead.

A good test is to consider deleting one of the data values: If you did this,
would the others make any sense? If they don’t, it’s a sure sign that you have an
object that’s dying to be born.

Reducing instance variable lists and parameter lists will certainly remove
a few bad smells, but once you have the objects, you get the opportunity to
make a nice perfume. You can now look for cases of feature envy, which suggest
behavior that can be moved into your new classes. Before long these classes will
be productive members of society.

Primitive Obsession

Most programming environments have two kinds of data. Record types allow
you to structure data into meaningful groups. Primitive types are your building
blocks. Records always carry a certain amount of overhead: They may mean
tables in a database, or they may be awkward to create when you want them for
only one or two things.

One of the valuable things about objects is that they blur or even break the
line between primitive and larger classes. You can easily write little classes that

Chapter 3 Bad Smells in Code80

Case
Statements

are indistinguishable from the built-in types of the language. Ruby makes every-
thing an object, but for the sake of this discussion, we’re designating built-in
types such as Fixnum and String as primitives.

People new to objects are usually reluctant to use small objects for small
tasks, such as money classes that combine number and currency, and special
strings such as telephone numbers and ZIP codes. You can move out of the cave
into the centrally heated world of objects by using Replace Data Value with
Object on individual data values. If you have conditionals that depend on a
type code, use Replace Type Code with Polymorphism, Replace Type Code with
Module Extension, or Replace Type Code with State/Strategy.

If you have a group of instance variables that should go together, use Extract
Class. If you see these primitives in parameter lists, try a civilizing dose of Intro-
duce Parameter Object. If you find yourself picking apart an array, use Replace
Array with Object.

Case Statements

One of the most obvious symptoms of object-oriented code is its comparative
lack of case statements. The problem with case statements is essentially that of
duplication. Often you find the same case statement scattered about a program
in different places. If you add a new clause to the case, you have to find all these
case statements and change them. The object-oriented notion of polymorphism
gives you an elegant way to deal with this problem.

Most times when you see a case statement you should consider polymor-
phism. The issue is where the polymorphism should occur. Often the case state-
ment matches on a type code. You want the method or class that hosts the type
code value. So use Extract Method to extract the case statement and then Move
Method to get it onto the class where the polymorphism is needed. At that point
you have to decide whether to Replace Type Code with Polymorphism, Replace
Type Code with Module Extension, or Replace Type Code with State/Strategy.

If you only have a few cases that affect a single method, and you don’t expect
them to change, then polymorphism is overkill. In this case Replace Parameter
with Explicit Methods is a good option. If one of your conditional cases is a
null, try Introduce Null Object.

Speculative Generality 81

Speculative
Generality

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In this
case, every time you make a subclass of one class, you also have to make a sub-
class of another. You can recognize this smell because the prefixes of the class
names in one hierarchy are the same as the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure that
instances of one hierarchy refer to instances of the other. If you use Move
Method and Move Field, the hierarchy on the referring class disappears.

Lazy Class

Each class you create costs money to maintain and understand. A class that isn’t
doing enough to pay for itself should be eliminated. Often this might be a class
that used to pay its way but has been downsized with refactoring. Or it might
be a class that was added because of changes that were planned but not made.
Either way, you let the class die with dignity. If you have subclasses or modules
that aren’t doing enough, try to use Collapse Hierarchy. Nearly useless compo-
nents should be subjected to Inline Class or Inline Module.

Speculative Generality

Speculative generality is a smell to which we are very sensitive. You get it when
people say, “Oh, I think we need the ability to do this kind of thing some-
day” and thus want all sorts of hooks and special cases to handle things that
aren’t required. The result often is harder to understand and maintain. If all
this machinery were being used, it would be worth it. But if it isn’t, it isn’t. The
machinery just gets in the way, so get rid of it.

If you have classes or modules that aren’t doing much, use Collapse Hierar-
chy. Unnecessary delegation can be removed with Inline Class. Methods with
unused parameters should be subject to Remove Parameter. Methods named
with odd names should be brought down to earth with Rename Method.

Speculative generality can be spotted when the only users of a method, a code
branch, or an entire class are test cases. If you find this type of code, delete it
and the test case that exercises it. If you have a method or class that is a helper
for a test case that exercises legitimate functionality, you have to leave it in, of
course.

Chapter 3 Bad Smells in Code82

Message
Chains

Temporary Field

Sometimes you see an object in which an instance variable is set only in cer-
tain circumstances. Such code is difficult to understand, because you expect an
object to need all of its variables. Trying to understand why a variable is there
when it doesn’t seem to be used can drive you nuts.

Use Extract Class to create a home for the poor orphan variables. Put all the
code that concerns the variables into the component. You may also be able to
eliminate conditional code by using Introduce Null Object to create an alterna-
tive component for when the variables aren’t valid.

A common case of temporary field occurs when a complicated algorithm
needs several variables. Because the implementer didn’t want to pass around
a huge parameter list (who does?), he put them in instance variables. But the
instance variables are valid only during the algorithm; in other contexts they are
just plain confusing. In this case you can use Extract Class with these variables
and the methods that require them. The new object is a Method Object [Beck].

Message Chains

You see message chains when a client asks one object for another object, which
the client then asks for yet another object, which the client then asks for yet
another object, and so on. You may see these as a long line of get_this methods,
or as a sequence of temps. Navigating this way means the client is coupled to
the structure of the navigation. Any change to the intermediate relationships
causes the client to have to change.

The move to use here is Hide Delegate. In principle you can apply Hide Del-
egate to potentially every object in the chain, but doing this often turns every
intermediate object into a middle man. Often a better alternative is to see what
the resulting object is used for. See whether you can use Extract Method to take
a piece of the code that uses it and then Move Method to push it down the
chain. If several clients of one of the objects in the chain want to navigate the
rest of the way, add a method to do that.

Some people consider any method chain to be a terrible thing. We are known
for our calm, reasoned moderation. Well, at least in this case we are.

Alternative Classes with Different Interfaces 83

Alternative
Classes with
Different
Interfaces

Middle Man

One of the prime features of objects is encapsulation—hiding internal details
from the rest of the world. Encapsulation often comes with delegation. You ask
a director whether she is free for a meeting; she delegates the message to her
diary and gives you an answer. All well and good. There is no need to know
whether the director uses a diary, an electronic gizmo, or a secretary to keep
track of her appointments.

However, this can go too far. You look at a class’s interface and find half the
methods are delegating to this other class. After a while it is time to use Remove
Middle Man and talk to the object that really knows what’s going on. If only a
few methods aren’t doing much, use Inline Method to inline them into the caller.
If there is additional behavior, you can use Replace Delegation with Hierarchy
to turn the real object into a module and include it in the middle man. That
allows you to extend behavior without chasing all that delegation.

Inappropriate Intimacy

Sometimes classes become far too intimate and spend too much time delving
into each other’s private parts. We may not be prudes when it comes to people,
but we think our classes should follow strict, puritan rules.

Overly intimate classes need to be broken up as lovers were in ancient days.
Use Move Method and Move Field to separate the pieces to reduce the intimacy.
See whether you can arrange a Change Bidirectional Association to Unidirec-
tional. If the classes do have common interests, use Extract Class to put the
commonality in a safe place and make honest classes of them. Or use Hide Del-
egate to let another class act as go-between.

Inheritance often can lead to over-intimacy. Subclasses are always going to
know more about their parents than their parents would like them to know. If
it’s time to leave home, apply Replace Inheritance with Delegation.

Alternative Classes with Different Interfaces

Use Rename Method on any methods that do the same thing but have different
signatures for what they do. Often this doesn’t go far enough. In these cases the
classes aren’t yet doing enough. Keep using Move Method to move behavior to
the classes until the protocols are the same. If you have to redundantly move

Chapter 3 Bad Smells in Code84

Refused
Bequest

code to accomplish this, you may be able to use Extract Module or Introduce
Inheritance to atone.

Incomplete Library Class

Reuse is often touted as the purpose of objects. We think reuse is overrated (we
just use). However, we can’t deny that much of our programming skill is based
on library classes so that nobody can tell whether we’ve forgotten our sort algo-
rithms.

Builders of library classes are rarely omniscient. We don’t blame them for
that; after all, we can rarely figure out a design until we’ve mostly built it, so
library builders have a really tough job.

In other languages extending an existing library class can be impossible or
messy. However, Ruby’s open classes make this easy to fix using Move Method
to move the behavior needed directly to the library class.

Data Class

These are classes that have attributes, and nothing else. Such classes are dumb
data holders and are almost certainly being manipulated in far too much detail
by other classes. Use Remove Setting Method on any instance variable that
should not be changed. If you have collection instance variables, check to see
whether they are properly encapsulated and apply Encapsulate Collection if
they aren’t.

Look for where these getting and setting methods are used by other classes.
Try to use Move Method to move behavior into the data class. If you can’t move
a whole method, use Extract Method to create a method that can be moved.
After a while you can start using Hide Method on the getters and setters.

Data classes are like children. They are okay as a starting point, but to par-
ticipate as a grownup object, they need to take some responsibility.

Refused Bequest

Subclasses get to inherit the methods and data of their parents. But what if they
don’t want or need what they are given? They are given all these great gifts and
pick just a few to play with.

Comments 85

Comments

The traditional story is that this means the hierarchy is wrong. You need to
create a new sibling class and use Push Down Method to push all the unused
methods to the sibling. That way the parent holds only what is common.

You’ll guess from our snide use of “traditional” that we aren’t going to advise
this, at least not all the time. We do subclassing to reuse a bit of behavior all the
time, and we find it a perfectly good way of doing business. There is a smell,
we can’t deny it, but usually it isn’t a strong smell. So we say that if the refused
bequest is causing confusion and problems, follow the traditional advice. How-
ever, don’t feel you have to do it all the time. Nine times out of ten this smell is
too faint to be worth cleaning.

The smell of refused bequest is much stronger if the subclass is reusing behav-
ior but does not want to support the public methods of the superclass. We don’t
mind refusing implementations, but refusing public methods gets us on our high
horses. In this case, however, don’t fiddle with the hierarchy; you want to gut it
by applying Replace Inheritance with Delegation.

Comments

Don’t worry, we aren’t saying that people shouldn’t write comments. In our
olfactory analogy, comments aren’t a bad smell; indeed they are a sweet smell.
The reason we mention comments here is that comments often are used as a
deodorant. It’s surprising how often you look at thickly commented code and
notice that the comments are there because the code is bad.

Comments lead us to bad code that has all the rotten whiffs we’ve discussed
in the rest of this chapter. Our first action is to remove the bad smells by refac-
toring. When we’re finished, we often find that the comments are superfluous.

If you need a comment to explain what a block of code does, try Extract
Method. If the method is already extracted but you still need a comment to
explain what it does, use Rename Method. If you need to state some rules about
the required state of the system, use Introduce Assertion.

Tip When you feel the need to write a comment, first try to refactor
the code so that any comment becomes superfluous.

A good time to use a comment is when you don’t know what to do. In addi-
tion to describing what is going on, comments can indicate areas in which you
aren’t sure. A comment is a good place to say why you did something. This kind
of information helps future modifiers, especially forgetful ones.

Chapter 3 Bad Smells in Code86

Repetitive
Boilerplate

Metaprogramming Madness

While in most cases Ruby’s dynamic nature provides great benefits, it can be
misused. Some metaprogramming techniques can result in obfuscated code. The
 method_missing hook, for example, often results in code that is difficult to under-
stand. It can be a powerful tool if an object’s interface cannot be determined at
coding time, but unless it’s absolutely necessary I use Replace Dynamic Receptor
with Dynamic Method Definition or even a simple Extract Method to remove
the method_missing definition. If the method_missing definition is truly needed, I might
use Isolate Dynamic Receptor to separate concerns.

Disjointed API

Libraries are often written with flexibility as the number one priority. The
author needs to build in this flexibility so that her library can be used by many
different people in many different ways. This flexibility often presents itself as a
relatively fine-grained, disjointed API, with many configuration options.

More often than not, an individual project will not take advantage of all the
configuration options. The same configuration options will be used over and
over. If this is the case, use Introduce Gateway to interact with the API in a
simplified way.

Introduce Expression Builder can be applied to both internal and external
APIs to interact with the public interface in a more fluent manner.

Repetitive Boilerplate

One of the easiest ways to remove duplication is Extract Method. Extract the
method and call it from multiple places. Some kinds of methods become so
commonplace that we can go even further. Take for example attr_reader in Ruby.
Implementing attribute readers is so common in object-oriented languages that
the author of Ruby decided to provide a succinct way to declare them. Intro-
duce Class Annotation involves annotating a class by calling a class method
from the class definition in the same way that attr_reader is called. Most code
isn’t simple enough to declare in this way, but when the purpose of the code can
be captured clearly in a declarative statement, Introduce Class Annotation can
clarify the intention of your code.

Symbols

||= operator, 257

A

Account class, 129
Introduce Parameter Object

refactoring, 322-324
Move Field refactoring,

174-175
Move Method refactoring,

170-172
Remove Setting Method

refactoring, 325-326
Replace Error Code with

Exception refactoring,
334-335

AccountNumberCapture module,
360-362

ActiveDeal class, 403
add_charge method, 322-323
add_course method, 223
add_customer method, 213
add_front_suspension method, 247
add_option method, 117
add_order method, 213

Add Parameter
overview, 300
step-by-step description,

301-302
when to use, 300-301

add_rear_suspension method, 247
adjusted_capital method, 278-279
advantages of refactoring

easier-to-understand software,
55-56

faster programming, 56-57
improved software design,

54-55
why refactoring works, 60-61

algorithms, substituting
goals, 132
overview, 131-132
step-by-step description, 132

alternative classes with difference
interfaces, 83

Ambler, Scott, 65
a_method method, 125
amount calculation (video store

program), moving, 12-18
amount_for method, moving, 12-18
APIs, disjointed, 86
apply method, 388

423

Index

assert_equal method, 89
assertions, adding

example, 294-295
goals, 293
overview, 292
step-by-step description,

293-294
AssertValidKeys module, 146-147
attributes, 255-259

B

base_charge method, 309
base_price method, 111
Beck, Kent, 51, 54, 56, 69, 73
behavior, moving into classes,

223-224
benefits of refactoring

easier-to-understand software,
55-56

faster programming, 56-57
improved software design,

54-55
why refactoring works, 60-61

Bid class, Extract Module
refactoring, 360-361

bidirectional association, changing
to unidirectional

example, 215-217
goals, 214
overview, 213
step-by-step description,

214-215
bidirectional association, changing

unidirectional association to
example, 211-213
goals, 210-211
overview, 210
step-by-step description, 211

Billing Scheme class, 414-416
Books class, 145-146
bugs

finding by refactoring, 56
refactoring when fixing bugs, 58

C

calculate_outstanding method, 107
case statement, 80

replacing with polymorphism
(video store program exam-
ple), 32-49

chains, replacing temps with
example, 115-117
goals, 115
overview, 114
step-by-step description, 115

Change Bidirectional Association to
Unidirectional refactoring, 83

example, 215-217
overview, 213
step-by-step description,

214-215
when to use, 214

Change Reference to
Value refactoring

example, 199-201
overview, 198
step-by-step description, 199
when to use, 198-199

Change Unidirectional Association
to Bidirectional refactoring

example, 211-213
overview, 210
step-by-step description, 211
when to use, 210-211

Index424

Change Value to
Reference refactoring

example, 196-198
overview, 194
step-by-step description, 195
when to use, 195

changing
bidirectional association to uni-

directional
example, 215-217
goals, 214
overview, 213
step-by-step description,

214-215
divergent change, 77
interfaces, 63-64
reference objects to value

objects
example, 199-201
goals, 198-199
overview, 198
step-by-step

description, 199
unidirectional association to

bidirectional
example, 211-213
goals, 210-211
overview, 210
step-by-step

description, 211
value objects to reference

objects
example, 196-198
goals, 195
overview, 194
step-by-step

description, 195
Charge class, 322
charge method, 33-34, 45, 135

check_security method,
271-273, 305

Chrysler Comprehensive
Compensation case study, 69-72

class annotations, adding
examples, 141-142
goals, 140
overview, 139-140
step-by-step description,

140-141
classes. See also specific classes

alternative classes with
difference interfaces, 83

data classes, 84
delegate classes

calling directly with Remove
Middle Man, 185-186

hiding with Hide Delegate,
181-184

extracting. See extracting
inappropriate intimacy, 83
incomplete library classes, 84
large classes, eliminating, 76
lazy classes, 81
merging hierarchy, 371-372
merging modules into, 362
moving behavior into, 223-224
moving into another class with

Inline Class
example, 180-181
overview, 179
step-by-step

description, 180
when to use, 179

order, 128
replacing records with, 224
replacing with modules

example, 393-395
overview, 392

Index 425

Index426

Collapse Hierarchy, 81
overview, 371
step-by-step description, 372
when to use, 371

collection closure methods,
replacing loops with

example, 133-135
goals, 133
step-by-step description, 133

collections, encapsulating
example, 220-223
goals, 219
overview, 219
step-by-step description,

219-220
CommandCenter class, 163
comments, 85
communication, telling managers

about refactoring, 61
Company class

Expression Builder, adding,
348-352

Introduce Gateway refactoring,
343-346

compute method, 130-131
Concurrent Programming in Java

(Lea), 297
conditional expressions

assertions
example, 294-295
goals, 293
overview, 292
step-by-step description,

293-294
consolidating

examples, 266-267
goals, 265-266
overview, 265
step-by-step

description, 266

step-by-step
description, 393

when to use, 392
special case classes, 292

Code Complete: A Practical
Handbook of Software
Construction (McConnel), 71

code reviews, refactoring with,
58-59

code smells
alternative classes with

difference interfaces, 83
case statements, 80
comments, 85
data classes, 84
data clumps, 79
disjointed APIs, 86
divergent change, 77
duplicated code, 74
feature envy, 78-79
inappropriate intimacy, 83
incomplete library classes, 84
large classes, 76
lazy classes, 81
long methods, 74-76
long parameter lists, 76-77
message chains, 82
metaprogrammming, 86
middle man, 83
overview, 73-74
parallel inheritance

hierarchies, 81
primitives, 79-80
refused bequests, 84-85
repetitive boilerplate, 86
shotgun surgery, 78
speculative generality, 81
temporary fields, 82

Index 427

consolidating duplicate
conditional fragments

example, 269
goals, 268
overview, 268
step-by-step description,

268-269
control flags, removing

examples, 271-274
goals, 269-270
overview, 269
step-by-step description,

270-271
decomposing

example, 263
goals, 262
overview, 261
step-by-step

description, 262
nested conditionals, replacing

with guard clauses
examples, 276-279
goals, 275-276
overview, 274-275
step-by-step

description, 276
null objects, adding

examples, 288-291
goals, 285-287
overview, 284
special cases, 292
step-by-step description,

287-288
recomposing

examples, 264-265
goals, 264
overview, 264

replacing with polymorphism
example, 282-284
goals, 280-281

overview, 279
step-by-step

description, 281
conditional logic, removing,

225-226
Consolidate Conditional

Expression refactoring
examples, 266-267
overview, 265
step-by-step description, 266
when to use, 265-266

Consolidate Duplicate Conditional
Fragments refactoring

example, 269
overview, 268
step-by-step description,

268-269
when to use, 268

consolidating
conditional expressions

examples, 266-267
goals, 265-266
overview, 265
step-by-step

description, 266
duplicate conditional fragments

example, 269
goals, 268
overview, 268
step-by-step description,

268-269
constants, replacing magic

numbers with
goals, 218
overview, 217
step-by-step description, 218

constructors, replacing with factory
methods

example, 330-332
goals, 329

Index428

D

databases, problems with
refactoring, 64-65

data classes, 84
data clumps, eliminating, 79
data organization

changing bidirectional
association to unidirectional

example, 215-217
goals, 214
overview, 213
step-by-step description,

214-215
changing reference objects into

value objects
example, 199-201
goals, 198-199
overview, 198
step-by-step

description, 199
changing unidirectional

association to bidirectional
example, 211-213
goals, 210-211
overview, 210
step-by-step

description, 211
changing value objects into ref-

erence objects
example, 196-198
goals, 195
overview, 194
step-by-step

description, 195
eagerly initialized attributes,

257-259
encapsulating collections

example, 220-223
goals, 219

overview, 328-329
step-by-step description, 329

control flags, removing
examples, 271-274
goals, 269-270
overview, 269
step-by-step description,

270-271
controller classes, separating domain

logic from
example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408
converting procedural design to

objects
example, 406
goal of, 405
overview, 405
step-by-step description, 406

Convert Procedural Design to
Objects

example, 406
overview, 405
step-by-step description, 406
when to use, 405

count_descendants_matching
method, 138-139

Course class, 220
create_bill method, 355, 415
Cunningham, Ward, 51
Currency class, 199
Customer class, 3, 196-198, 212,

215-216, 375
CustomInitializers module, 141, 144

Index 429

step-by-step description,
252-253

replacing type code with
module extensions

example, 234-238
goals, 233
overview, 232
step-by-step

description, 233
replacing type code

with polymorphism
example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
replacing type code with

state/strategy
example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240
self-encapsulating fields

example, 189-191
goals, 188-189
overview, 188
step-by-step

description, 189
data values, replacing with objects

example, 192-194
goals, 191
overview, 191
step-by-step description, 192

@days_overdrawn instance
variable, 170

overview, 219
step-by-step description,

219-220
lazily initialized attributes,

255-257
moving behavior into classes,

223-224
overview, 187-188
replacing arrays with objects

example, 202-206
goals, 201
overview, 201
step-by-step

description, 202
replacing data values

with objects
example, 192-194
goals, 191
overview, 191
step-by-step

description, 192
replacing hashes with objects

example, 207-209
goals, 206
overview, 206
step-by-step

description, 207
replacing magic numbers with

symbolic constants
goals, 218
overview, 217
step-by-step

description, 218
replacing records with data

classes, 224
replacing subclasses with fields

example, 253-255
goals, 252
overview, 251

Index430

overview, 389
step-by-step

description, 390
deprecation, refactoring

with, 205-206
design

design changes that are difficult
to refactor, 65-66

improving with refactoring,
54-55

relationship with refactoring,
67-68

developer tests, 91-92
development of refactoring, 51-52
disability_amount method, 265-266
discount_factor method, 114
discount method, 124-125
disjointed APIs, 86
distance_traveled method, 123
divergent change, 77
domain logic, separating from view

example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408
duplicated code, 74
duplicate methods, eliminating with

Extract Surrounding Method
example, 137-139
overview, 135-136
step-by-step description,

136-137
when to use, 136

Dynamic Method
Definition refactoring

examples, 153-157
overview, 152
step-by-step description, 153
when to use, 153

Deal class, Tease Apart Inheritance
refactoring, 401-404

Decompose Conditional refactoring
example, 263
overview, 261
step-by-step description, 262
when to use, 262

decomposing conditional
expressions

example, 263
goals, 262
overview, 261
step-by-step description, 262

Decorator class, 159
def_each method, 154-155
definition of refactoring, 52-54
delegate classes

calling directly with Remove
Middle Man

example, 186
overview, 185
step-by-step

description, 185
when to use, 185

hiding with Hide Delegate
example, 183-184
overview, 181
step-by-step

description, 183
when to use, 182-183

delegation
replacing inheritance with

example, 387-389
goals of, 386
overview, 386
step-by-step description,

386-387
replacing with hierarchy

example, 390-392
goals, 390

Index 431

overview, 219
step-by-step description,

219-220
eql? method, 200
error codes, replacing

with exceptions
examples, 334-33
goals, 333
overview, 332
step-by-step description,
333-334

eval, moving from runtime to parse
time, 165-166

exceptions
replacing error codes with

examples, 334-337
goals, 333
overview, 332
step-by-step description,

333-334
replacing with tests

example, 338-341
goals, 338
overview, 337
step-by-step

description, 338
expense_limit method, 292
explaining variables, adding

examples, 119-121
goals, 118
overview, 117-118
step-by-step description, 119

Expression Builders, adding
example, 348-352
goals, 347
overview, 346
step-by-step description, 347

expressions. See
conditional expressions

dynamic method definitions
examples, 153-157
goals, 153
overview, 152
replacing dynamic

receptors with
examples, 158-160
goals, 158
overview, 158
step-by-step

description, 158
step-by-step description, 153

dynamic receptors
isolating, 160

example, 162-165
goals, 161
step-by-step

description, 162
replacing with dynamic method

definitions, 158-160

E

Eagerly Initialized Attribute
refactoring, 257-259

Employee class
assertions, 294-295
Replace Delegation with

Hierarchy refactoring,
390-391

Encapsulate Collection
refactoring, 84

example, 220-223
overview, 219
step-by-step description,

219-220
when to use, 219

encapsulating collections
example, 220-223
goals, 219

Index432

methods with no local
variables, 104-105

overview, 102
reassigning local variables,

106-108
step-by-step

description, 103
modules

example, 360-362
goals, 358-359
overview, 357-358
step-by-step

description, 359
subclasses

example, 364-367
goals, 363
overview, 363
step-by-step description,

363-364
surrounding methods

example, 137-139
overview, 135-136
step-by-step description,

136-137
when to use, 136

Extract Method refactoring
eliminating duplicated code, 74
methods with local variables,

105-106
methods with no local variables,

104-105
overview, 102
reassigning local variables,

106-108
removing duplication, 86
shortening long methods, 75
step-by-step description, 103
video store program

example, 10
when to use, 102

Extract Class refactoring
changing data clumps into

objects, 79
eliminating large classes, 76
example, 177-179
organizing orphan variables, 82
overview, 175
step-by-step description,

176-177
when to use, 175-176

Extract Hierarchy refactoring
example, 414-416
overview, 412
step-by-step description,

413-414
when to use, 413

extracting
classes

changing data clumps into
objects, 79

eliminating large classes, 76
example, 177-179
organizing orphan

variables, 82
overview, 175
step-by-step description,

176-177
when to use, 175-176

frequent renter points (video
store program), 18-21

hierarchy of classes
example, 414-416
goals, 413
overview, 412
step-by-step description,

413-414
methods

goals, 102
methods with local

variables, 105-106

Index 433

replacing subclasses with
goals, 252
overview, 251
step-by-step description,

252-255
temporary fields, 82

File class, writing tests for, 89-91
FileTest class, 89
finding references, 99
Foo class, 205
format of refactorings, 97-98
Form Template Method refactoring

elmininating duplicated code, 74
overview, 372
step-by-step description, 374
template method with

extension of modules
(example), 380-385

template method with
inheritance (example),
374-379

when to use, 373
found_friends method, 131-132
found_miscreant method, 273-274,

305-306
found_person method, 305
Fowler, Martin, 69
frequent_renter_points method, 47
frequent_renter_points temporary

variable, 19, 22
frequent renter points (video store

program), extracting, 18-21
FrontSuspensionMountainBike

class, 228-231, 236-237,
245, 369-371

FullSuspensionMountainBike class,
228-231, 237, 284

Extract Module refactoring
example, 360-362
overview, 357-358
step-by-step description, 359
when to use, 358-359

Extract Subclass refactoring
example, 364-367
overview, 363
step-by-step description,

363-364
when to use, 363

Extract Surrounding
Method refactoring

eliminating duplicated code, 74
example, 137-139
overview, 135-136
step-by-step description,

136-137
when to use, 136

eXtreme Programming eXplained
(Beck), 51

F

failure method, 152-153
feature envy, 78-79
fields

encapsulating fields
example, 189-191
goals, 188-189
overview, 188
step-by-step

description, 189
moving with Move Field

example, 174-175
overview, 172
step-by-step

description, 173
when to use, 173

Index434

Introduce Inheritance
example, 369-371
overview, 368
step-by-step

description, 369
when to use, 368

Pull Down Method
overview, 356
step-by-step

description, 357
when to use, 357

Pull Up Method
example, 355-356
overview, 353
step-by-step

description, 355
when to use, 354

Replace Abstract Superclass
with Module

example, 393-395
overview, 392
step-by-step

description, 393
when to use, 392

Replace Delegation
with Hierarchy

example, 390-392
overview, 389
step-by-step

description, 390
when to use, 390

Replace Inheritance
with Delegation

example, 387-389
overview, 386
step-by-step description,

386-387
when to use, 386

goals, setting, 418

G

Gamma class, 130
Gateways, adding

example, 342-346
goals, 341-342
overview, 341
step-by-step description, 342

GemStone, 71
generalization refactorings

Collapse Hierarchy
overview, 371
step-by-step

description, 372
when to use, 371

Extract Module
example, 360-362
overview, 357-358
step-by-step

description, 359
when to use, 358-359

Extract Subclass
example, 364-367
overview, 363
step-by-step description,

363-364
when to use, 363

Form Template Method
overview, 372
step-by-step

description, 374
template method with

extension of modules
(example), 380-385

template method with
inheritance (example),
374-379

when to use, 373
Inline Module, 362

Index 435

HtmlStatement class, 376-378,
381-382

html_statement method, 30, 375

I

immutable objects, 199
importance of big refactorings, 398
ImportedItem class, 190
inappropriate intimacy, 83
incomplete library classes, 84
indirection and refactoring, 61-63
inheritance, 374-379

adding to code
example, 369-371
goals, 368
overview, 368
step-by-step

description, 369
refactoring

examples, 401-404
goal of, 400
overview, 399
step-by-step description,

400-401
parallel inheritance

hierarchies, 81
replacing with delegation

example, 387-389
goals of, 386
overview, 386
step-by-step description,

386-387
video store program

example, 36-49
initialize_courses method, 222
initialize method, 130, 190, 254
initializing attributes, 255-259

H

Hash class, 157
Haungs, Jim, 71
HeatingPlan class, 315-317
Hide Delegate refactoring, 82

example, 183-184
overview, 181
step-by-step description, 183
when to use, 182-183

Hide Method refactoring
overview, 327
step-by-step description, 328
when to use, 327

hiding
delegates

example, 183-184
overview, 181
step-by-step

description, 183
when to use, 182-183

methods
goals, 327
overview, 327
step-by-step

description, 328
hierarchy

hierarchy of classes, creating
example, 414-416
goals, 413
overview, 412
step-by-step description,

413-414
replacing delegation with

example, 390-392
goals, 390
overview, 389
step-by-step

description, 390
history of refactoring, 51-52

Index436

Introduce Explaining
Variable refactoring

examples, 119-121
overview, 117-118
step-by-step description, 119
when to use, 118

Introduce Expression Builder
refactoring, 86

example, 348-352
overview, 346
step-by-step description, 347
when to use, 347

Introduce Gateway refactoring, 86
example, 342-346
overview, 341
step-by-step description, 342
when to use, 341-342

Introduce Inheritance refactoring
example, 369-371
overview, 368
step-by-step description, 369
when to use, 368

Introduce Named
Parameter refactoring

examples, 143-147
overview, 142
shortening long parameter

lists, 77
step-by-step description, 143
when to use, 142-143

Introduce Null Object
refactoring, 82

examples, 288-291
overview, 284
special cases, 292
step-by-step description,

287-288
when to use, 285-287

Inline Class refactoring, 81
example, 180-181
organizing changes

into single class, 78
overview, 179
removing unnecessary

delegation, 81
step-by-step description, 180
when to use, 179

Inline Method refactoring
overview, 108-109
step-by-step description,

109-110
when to use, 109

inline methods
goals, 109
overview, 108-109
step-by-step description,

109-110
Inline Module refactoring, 81, 362
Inline Temp refactoring, 110
inline temps, 110
instance_variable_defined?

method, 257
@interest_rate field, moving, 174
interfaces, changing, 63-64
Introduce Assertion refactoring, 85

example, 294-295
overview, 292
step-by-step description,

293-294
when to use, 293

Introduce Class Annotation
refactoring, 86

examples, 141-142
overview, 139-140
step-by-step description,

140-141
when to use, 140

Index 437

libraries, incomplete library
classes, 84

local variables
example, 105-106
reassigning, 106-108

long methods, shortening, 74-76
long parameter lists, shortening,

76-77
loops, replacing with collection

closure methods, 133-135

M

magic numbers, replacing with
symbolic constants

goals, 218
overview, 217
step-by-step description, 218

managers, telling about
refactoring, 61

measuring performance, Chrysler
Comprehensive Compensation case
study, 69-72

merging
class hierarchy, 371-372
modules into including

class, 362
message chains, 82
MessageCollector class, 164
metaprogramming, 86
method_missing method, 156, 160
methods

add_charge, 322-323
add_course, 223
add_customer, 213
add_front_suspension, 247
add_option, 117
add_order, 213
add_rear_suspension, 247

Introduce Parameter
Object refactoring

example, 321-324
reducing parameter lists, 79
shortening long parameter

lists, 77
step-by-step description, 321
when to use, 320

Isolate Dynamic
Receptor refactoring

example, 162-165
overview, 160
step-by-step description, 162
when to use, 161

Item class, 189-190

J-K

Jeffries, Ron, 69, 285
JobItem class, extracting LaborItem

subclass from, 364-367
Johnson, Ralph, 51
Join class, 394
joins_for_table method, 394
Knuth, Donald, 166

L

LaborItem class, extracting from
JobItem class, 364-367

Laptop class, 346-352
large classes, eliminating, 76
large refactorings, tips for, 420
Lazily Initialized Attributes,

255-257
lazy classes, 81
Lea, Doug, 297
learning refactoring, 418-419
Ledger class, 126

Index438

def_each, 154-155
defining dynamically

examples, 153-157
goals, 153
overview, 152
replacing dynamic

receptors with dynamic
method definition,
158-160

step-by-step
description, 153

disability_amount, 265-266
discount, 124-125
discount_factor, 114
distance_traveled, 123
duplicate methods, eliminating,

135-139
eql?, 200
expense_limit, 292
Expression Builders, adding

example, 348-352
goals, 347
overview, 346
step-by-step

description, 347
extracting

goals, 102
methods with local

variables, 105-106
methods with no local

variables, 104-105
overview, 102
reassigning local variables,

106-108
step-by-step

description, 103
failure, 152-153
found_friends, 131-132

adjusted_capital, 278-279
a_method, 125
amount_for, 12-18
apply, 388
assert_equal, 89
base_charge, 309
base_price, 111
calculate_outstanding, 107
charge, 33-34, 45, 135
check_security, 271-273, 305
class annotations, adding

examples, 141-142
goals, 140
overview, 139-140
step-by-step description,

140-141
collection closure methods,

replacing loops with
example, 133-135
goals, 133
step-by-step

description, 133
compute, 130-131
constructors, replacing with

factory methods, 328-332
count_descendants_matching,

138-139
create_bill, 355, 415
creating

goals, 373
overview, 372
step-by-step

description, 374
template method with

extension of modules
(example), 380-385

template method with
inheritance (example),
374-379

Index 439

goals, 354
overview, 353
step-by-step

description, 355
moving with Move Method

example, 170-172
overview, 167
step-by-step description,

168-170
when to use, 168

not_summer, 263
number_of_descendants_named,

138-139
number_of_living_descendants,

138-139
office_telephone_number, 300
off_road_ability, 228, 244
overdraft_charge, 170-171
parameters

adding, 300-302
named parameters, 142-147
named parameters, remov-

ing, 147-150
parameterized methods,

creating, 307-310
parameter objects, creating,

320-324
removing, 302-303
removing assignments to,

124-127
replacing with explicit

methods, 310-313
replacing with methods,

317-320
unused default parameters,

removing, 150-152
pay_amount, 275-277
price, 112-121, 228, 247,

319-320

found_miscreant, 273-274,
305-306

found_person, 305
frequent_renter_points, 47
Gateways, adding

example, 342-346
goals, 341-342
overview, 341
step-by-step

description, 342
hiding

goals, 327
overview, 327
step-by-step

description, 328
html_statement, 30, 375
initialize, 130, 190, 254
initialize_courses, 222
inline methods

goals, 109
overview, 108-109
step-by-step description,

109-110
instance_variable_defined?, 257
isolating dynamic receptors, 160

example, 162-165
goals, 161
step-by-step

description, 162
joins_for_table, 394
long methods, shortening, 74-76
method_missing, 156, 160
MountainBike, 250
moving to subclasses

goals of, 357
overview, 356
step-by-step

description, 357
moving up to superclass

example, 355-356

Index440

initial code listing, 3-4
moving amount

calculation, 12-18
removing temporary

variables, 22-31
renaming variables, 10-11

substituting algorithms
goals, 132
overview, 131-132
step-by-step

description, 132
summer_charge, 263
telephone_number,

renaming, 299
temporary variables

explaining variables,
117-121

inline temps, 110
replacing with chains,

114-117
replacing with queries,

111-114
splitting, 121-124

total_amount_for_order_lines,
411

total_charge, 23-25
triple, 126
usage_in_range, 309
value, 379, 383
winter_charge, 263
withdraw, 336

middle man classes, removing,
83, 185-186

MissingCustomer class, 289
Module class, 205
module extensions, replacing type

code with
example, 234-238
goals, 233

price_code, 48
print_owing, 104-108
product_count_items, 150-151
remove_customer, 213
remove_order, 213
removing

example, 325-327
goals, 325
overview, 324
step-by-step

description, 325
renaming, 298

example, 299-300
goals, 298-299
step-by-step

description, 299
replacing with method objects

example, 129-131
goals, 128
overview, 127
step-by-step

description, 129
resource, 339-341
reward_points, 264
RigidMountainBike, 250
send_alert_if_miscreant_in, 306
separating query from modifier

concurrency issues, 307
example, 305-307
goals, 304
overview, 303
step-by-step description,

304-305
statement, 374, 380

code listing after
refactoring, 9

code listing before
refactoring, 7-8

extracting frequent renter
points, 18-21

Index 441

moving behaviors into data
classes, 84

organizing changes into single
class, 78

overview, 167
reducing inappropriate

intimacy, 83
step-by-step description,

168-170
when to use, 168

Movie class, 2
moving

amount calculation (video store
program), 12-18

behavior into classes, 223-224
fields. See Move

Field refactoring
methods. See Move

Method refactoring
methods to subclasses

goals of, 357
overview, 356
step-by-step

description, 357
methods up to superclass

example, 355-356
goals, 354
overview, 353
step-by-step

description, 355

N

named parameters
adding

examples, 143-147
goals, 142-143
overview, 142
step-by-step

description, 143

overview, 232
step-by-step description, 233

modules
AccountNumberCapture,

360-362
AssertValidKeys, 146-147
CustomInitializers, 141-144
extracting

example, 360-362
goals, 358-359
overview, 357-358
step-by-step

description, 359
merging into including

class, 362
Person, 391
replacing superclasses with

example, 393-395
overview, 392
step-by-step

description, 393
when to use, 392

MonthlyStatement class, 385
MountainBike class, 227-229,

234-236, 240-248, 280-283, 369
MountainBike method, 250
Move Eval from Runtime to Parse

Time refactoring, 165-166
Move Field refactoring

example, 174-175
organizing changes into single

class, 78
overview, 172
reducing inappropriate

intimacy, 83
step-by-step description, 173
when to use, 173

Move Method refactoring, 13
example, 170-172

Index442

special cases, 292
step-by-step description,

287-288
parameter objects, creating,

320-324
preserving whole objects

example, 315-317
goals, 313-314
overview, 313
step-by-step description,

314-315
reference objects

changing into value objects,
198-201

changing value objects into,
194-198

replacing arrays with
example, 202-205
goals, 201
overview, 201
step-by-step

description, 202
replacing data values with

example, 192-194
goals, 191
overview, 191
step-by-step

description, 192
replacing hashes with

example, 207-209
goals, 206
overview, 206
step-by-step

description, 207
replacing with arrays, 206
value objects

changing reference objects
into, 198-201

changing to reference
objects, 194-198

removing
example, 148-150
goals, 148
overview, 147
step-by-step

description, 148
nature of refactoring, 397-398
nested conditionals, replacing with

guard clauses
examples, 276-279
goals, 275-276
overview, 274-275
step-by-step description, 276

NetworkResult class, 208-210
not_summer method, 263
NullCustomer class, 290-291
null objects, adding

examples, 288-291
goals, 285-288
overview, 284
special cases, 292

number_of_descendants_named
method, 138-139

number_of_living_descendants
method, 138-139

O

objects
converting procedural design to

example, 406
goal of, 405
overview, 405
step-by-step

description, 406
method objects, replacing

methods with, 127-131
null objects, adding

examples, 288-291
goals, 285-287
overview, 284

Index 443

step-by-step
description, 125

removing from methods
goals, 302
overview, 302
step-by-step description,

302-303
replacing with explicit methods

example, 311-313
goals, 310-311
overview, 310
step-by-step

description, 311
replacing with methods

example, 318-320
goals, 318
overview, 317
step-by-step

description, 318
unused default parameters,

removing
example, 151-152
goals, 151
overview, 150
step-by-step

description, 151
partners, value of, 419
pay_amount method, 275-277
performance

effect of refactoring on, 70-71
measuring, Chrysler

Comprehensive Compensation
case study, 69-72

Performance class, 203-204
Person class, 165, 220-222, 253-254

Expression Builder, adding,
348-352

Extract Class refactoring,
177-179

office_telephone_number
method, 300

off_road_ability method, 228, 244
Opdyke, Bill, 52
Order class, 128, 192-193, 196,

212-216, 411
OrdersController class, 409-410
organizing data. See

data organization
orphan variables, organizing, 82
overdraft_charge method, 170-171

P

parallel inheritance hierarchies, 81
parameterized methods, creating

example, 308-310
goals, 308
overview, 307
step-by-step description, 308

Parameterize Method refactoring
example, 308-310
overview, 307
step-by-step description, 308
when to use, 308

parameter lists, shortening, 76-77
parameters

adding to methods
goals, 300-301
overview, 300
step-by-step description,

301-302
named parameters

adding, 142-147
removing, 147-150

parameter objects, creating,
320-324

removing assignments to
example, 125-127
goals, 124-125

Index444

print_owing method, 104-108
problems with refactoring

databases, 64-65
design changes, 65-66
interface changes, 63-64
when not to refactor, 66-67

procedural design, converting to
objects

example, 406
goal of, 405
overview, 405
step-by-step description, 406

Product class, 127
ProductController class, 330-332
product_count_items method,

150-151
programs. See video store program
Pull Down Method refactoring

overview, 356
step-by-step description, 357
when to use, 357

Pull Up Method refactoring
example, 355-356
overview, 353
step-by-step description, 355
when to use, 354

Push Down Method refactoring, 85

Q

QA (quality assurance) tests, 91-92
queries

replacing temps with
example, 112-114
goals, 111-112
step-by-step

description, 112
separating from modifiers

concurrency issues, 307
example, 305-307

Hide Delegate refactoring,
183-184

Remove Middle Man
refactoring, 186

Person module, 391
Policy class, 387-389
polymorphism

replacing conditional logic with
example, 282-284
goals, 280-281
overview, 279
step-by-step

description, 281
video store program

example, 32-49
replacing type code with

example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
PostData class, 156
The Pragmatic Programmer

(Thomas), 87
Preserve Whole Object refactoring

example, 315-317
overview, 313
reducing parameter lists, 79
shortening long parameter

lists, 77
step-by-step description,

314-315
when to use, 313-314

price_code method, 48
price method, 112-121, 228, 247,

319-320
primitives, 79-80

Index 445

overview, 194
step-by-step

description, 195
references, finding, 99
refused bequests, 84-85
Remove Assignments to Parameters

refactoring
example, 125-127
overview, 124
step-by-step description, 125
when to use, 124-125

Remove Control Flag refactoring
examples, 271-274
overview, 269
step-by-step description,

270-271
when to use, 269-270

remove_customer method, 213
Remove Middle Man refactoring, 83

example, 186
overview, 185
step-by-step description, 185
when to use, 185

Remove Named
Parameter refactoring

example, 148-150
overview, 147
step-by-step description, 148
when to use, 148

remove_order method, 213
Remove Parameter refactoring

overview, 302
step-by-step description,

302-303
when to use, 302

Remove Setting Method
refactoring, 84

example, 325-327
overview, 324

goals, 304
overview, 303
step-by-step description,

304-305

R

reassigning local variables, 106-108
Recompose Conditional refactoring

examples, 264-265
overview, 264
when to use, 264

recomposing conditional expressions
examples, 264-265
goals, 264
overview, 264

Recorder class, 162-164
records, replacing with data

classes, 224
Red/Green/Refactor movement,

87-88
Refactoring Databases (Sadalage

and Ambler), 65
refactorings. See

specific refactorings
refactoring tips

learning refactoring, 418-419
overview, 417-418
tips for large refactorings, 420
working with a partner, 419

reference objects
changing into value objects

example, 199-201
goals, 198-199
overview, 198
step-by-step

description, 199
changing value objects into

example, 196-198
goals, 195

Index446

overview, 150
step-by-step

description, 151
Rename Method refactoring

example, 299-300
step-by-step description, 299
when to use, 298-299

renaming
methods

example, 299-300
goals, 298-299
step-by-step

description, 299
variables, 10-11

Rental class, 2-3
repetitive boilerplate, removing, 86
Replace Abstract Superclass with

Module refactoring
example, 393-395
overview, 392
step-by-step description, 393
when to use, 392

Replace Array with
Object refactoring, 80

example, 202-206
overview, 201
step-by-step description, 202
when to use, 201

Replace Conditional with
Polymorphism refactoring

example, 282-284
overview, 279
step-by-step description, 281
when to use, 280-281

Replace Constructor with Factory
Method refactoring

example, 330-332
overview, 328-329

step-by-step description, 325
when to use, 325

Remove Unused Default Parameter
refactoring

example, 151-152
overview, 150
step-by-step description, 151
when to use, 151

removing
assignments to parameters

example, 125-127
goals, 124-125
step-by-step

description, 125
code smells. See code smells
control flags

examples, 271-274
goals, 269-270
overview, 269
step-by-step description,

270-271
middle man, 83
named parameters

example, 148-150
goals, 148
overview, 147
step-by-step

description, 148
repetitive boilerplate, 86
setting methods

example, 325-327
goals, 325
overview, 324
step-by-step

description, 325
temporary variables, 22-31
unused default parameters

example, 151-152
goals, 151

Index 447

step-by-step description, 207
when to use, 206

Replace Inheritance with Delegation
refactoring, 85

example, 387-389
overview, 386
step-by-step description,

386-387
when to use, 386

Replace Loop with Collection
Closure Method refactoring

example, 133-135
overview, 133
step-by-step description, 133
when to use, 133

Replace Magic Number with
Symbolic Constant refactoring

overview, 217
step-by-step description, 218
when to use, 218

Replace Method with Method
Object refactoring

example, 129-131
overview, 127
shortening long methods, 75
step-by-step description, 129
when to use, 128

Replace Nested Conditional with
Guard Clauses refactoring

examples, 276-279
overview, 274-275
step-by-step description, 276
when to use, 275-276

Replace Parameter with Explicit
Methods refactoring, 80

example, 311-313
overview, 310
step-by-step description, 311
when to use, 310-311

step-by-step description, 329
when to use, 329

Replace Data Value with Object
refactoring, 80

example, 192-194
overview, 191
step-by-step description, 192
when to use, 191

Replace Delegation with Hierarchy
refactoring, 83

example, 390-392
overview, 389
step-by-step description, 390
when to use, 390

Replace Dynamic Receptor with
Dynamic Method Definition
refactoring, 86

examples, 158-160
overview, 158
step-by-step description, 158
when to use, 158

Replace Error Code with
Exception refactoring

examples, 334-337
overview, 332
step-by-step description,

333-334
when to use, 333

Replace Exception with
Test refactoring

example, 338-341
overview, 337
step-by-step description, 338
when to use, 338

Replace Hash with
Object refactoring

example, 207-209
overview, 206

Index448

removing conditional logic,
225-226

step-by-step description,
226-227

when to use, 225
Replace Type Code with State/

Strategy refactoring, 80
example, 240-251
overview, 239
step-by-step description,

239-240
video game program example,

38-45
when to use, 239

replacing
algorithms

goals, 132
overview, 131-132
step-by-step

description, 132
arrays with objects

example, 202-206
goals, 201
overview, 201
step-by-step

description, 202
conditional logic

with polymorphism
example, 282-284
goals, 280-281
overview, 279
step-by-step

description, 281
video store program

example, 32-49
constructors with

factory methods
example, 330-332

Replace Parameter with Method
refactoring

example, 318-320
overview, 317
shortening long parameter

lists, 77
step-by-step description, 318
when to use, 318

Replace Record with Data Class
refactoring, 224

Replace Subclass with
Fields refactoring

example, 253-255
overview, 251
step-by-step description,

252-253
when to use, 252

Replace Temp with
Chain refactoring

example, 115-117
overview, 114
when to use, 115

Replace Temp with
Query refactoring

example, 112-114
overview, 111
step-by-step description, 112
when to use, 111-112

Replace Type Code with Module
Extension refactoring, 80

example, 234-238
overview, 232
step-by-step description, 233
when to use, 233

Replace Type Code with
Polymorphism refactoring, 80

example, 227-232
overview, 225

Index 449

description, 133
magic numbers with symbolic

constants
goals, 218
overview, 217
step-by-step

description, 218
methods with method objects

example, 129-131
goals, 128
overview, 127
step-by-step

description, 129
nested conditionals with

guard clauses
examples, 276-279
goals, 275-276
overview, 274-275
step-by-step

description, 276
parameters with methods

example, 318-320
goals, 318
overview, 317
step-by-step

description, 318
records with data classes, 224
subclasses with fields

example, 253-255
goals, 252
overview, 251
step-by-step description,

252-253
temps with chains

example, 115-117
goals, 115
overview, 114
step-by-step

description, 115

goals, 329
overview, 328-329
step-by-step

description, 329
data values with objects

example, 192-194
goals, 191
overview, 191
step-by-step

description, 192
delegation with hierarchy

example, 390-392
goals, 390
overview, 389
step-by-step description,

390
dynamic receptors with dynamic

method definitions
examples, 158-160
goals, 158
overview, 158
step-by-step

description, 158
hashes with objects

example, 207-209
goals, 206
overview, 206
step-by-step

description, 207
inheritance with delegation

example, 387-389
goals of, 386
overview, 386
step-by-step description,

386-387
loops with collection

closure methods
example, 133-135
goals, 133
step-by-step

Index450

Select class, 115-117
Self-Delegation pattern, 78
Self Encapsulate Field

refactoring, 174
example, 189-191
overview, 188
step-by-step description, 189
when to use, 188-189

self-testing code, 87-88
send_alert_if_miscreant_in

method, 306
Separate Domain from Presentation

refactoring
example, 408-412
overview, 406
step-by-step description,

407-408
when to use, 406-407

Separate Query from
Modifier refactoring

concurrency issues, 307
example, 305-307
overview, 303
step-by-step description,

304-305
when to use, 304

separating domain logic from view
example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408
shortening

methods, 74-76
parameter lists, 76-77

shotgun surgery, 78
Smalltalk, 51
smells. See code smells
software design, improving with

refactoring, 54-55

temps with queries
example, 112-114
goals, 111-112
step-by-step

description, 112
type code with

module extensions
example, 234-238
goals, 233
overview, 232
step-by-step

description, 233
type code with polymorphism

example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
type code with state/strategy

example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240
resource method, 339-341
ResourceStack class, 338-339
reward_points method, 264
RigidMountainBike class, 228-231,

243-244, 247, 282-283
RigidMountainBike method, 250
Roberts, Don, 51, 57
Room class, 315
Rule of Three, 57

S

Sadalage, Pramod, 65
SearchCriteria class, 141-144

Index 451

moving methods into
goals of, 357
overview, 356
step-by-step

description, 357
replacing with fields

example, 253-255
goals, 252
overview, 251
step-by-step description,

252-253
Substitute Algorithm refactoring

overview, 131-132
step-by-step description, 132
when to use, 132

substituting algorithms
goals, 132
overview, 131-132
step-by-step description, 132

summer_charge method, 263
superclasses, replacing with modules

example, 393-395
overview, 392
step-by-step description, 393
when to use, 392

symbolic constants, replacing magic
numbers with

goals, 218
overview, 217
step-by-step description, 218

T

tangled inheritance, refactoring
examples, 401-404
goal of, 400
overview, 399
step-by-step description,

400-401

special case class, 292
speculative generality, 81
Split Temporary

Variable refactoring
example, 122-124
overview, 121-122
step-by-step description, 122
when to use, 122

splitting temporary variables
example, 122-124
goals, 122
overview, 121-122
step-by-step description, 122

Statement class, 379
statement method, 374, 380

code listing after refactoring, 9
code listing before

refactoring, 7-8
extracting frequent renter

points, 18-21
initial code listing, 3-4
moving amount calculation,

12-18
removing temporary variables,

22-31
renaming variables, 10-11

state/strategy, replacing type
code with

example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240
subclasses

extracting
example, 364-367
goals, 363
overview, 363
step-by-step description,

363-364

Index452

replacing with queries
example, 112-114
goals, 111-112
overview, 111
step-by-step

description, 112
splitting

example, 122-124
goals, 122
overview, 121-122
step-by-step

description, 122
total_amount, 22-23

TestCase class, 89
Test::Unit testing framework, 88-91
testing

developer tests, 91-92
importance of, 9-10
QA (quality assurance) tests,

91-92
self-testing code, 87-88
Test::Unit testing framework,

88-91
video store program, 6-7
writing tests, 92-95

tests, replacing exceptions with
example, 338-341
goals, 338
overview, 337
step-by-step description, 338

TextStatement class, 376-377, 381
Thomas, Dave, 87
tips for refactoring

learning refactoring, 418-419
overview, 417-418
tips for large refactorings, 420
working with a partner, 419

total_amount_for_order_lines
method, 411

Tease Apart Inheritance refactoring
examples, 401-404
overview, 399
step-by-step description,

400-401
when to use, 400

TelephoneNumber class
defining, 177-178
Inline Class refactoring

example, 180-181
telephone_number method,

renaming, 299
telling managers about

refactoring, 61
template methods, creating

goals, 373
overview, 372
step-by-step description, 374
template method with

extension of modules
(example), 380-385

template method with inheri-
tance (example), 374-379

temporary fields, 82
temporary variables

explaining variables, adding
examples, 119-121
goals, 118
overview, 117-118
step-by-step

description, 119
frequent_renter_points, 19, 22
inline temps, 110
removing, 22-23, 26-31
replacing with chains

example, 115-117
goals, 115
overview, 114
step-by-step

description, 115

Index 453

goals, 214
overview, 213
step-by-step description,

214-215
changing to bidirectional

example, 211-213
goals, 210-211
overview, 210
step-by-step

description, 211
Unified Modeling Language (UML)

diagrams, 20-21
unused default

parameters, removing
example, 151-152
goals, 151
overview, 150
step-by-step description, 151

usage_in_range method, 309

V

value method, 379, 383
value objects

changing reference objects into,
198-201

changing to reference objects,
194-198

variables
@days_overdrawn, 170
local variables

example, 105-106
reassigning, 106-108

orphan variables, organizing, 82
renaming, 10-11
temporary variables

explaining variables, add-
ing, 117-121

frequent_renter_points,
19, 22

total_amount temporary variable,
22-23

total_charge method, 23-25
triple method, 126
troubleshooting refactoring

databases, 64-65
design changes, 65-66
interface changes, 63-64
when not to refactor, 66-67

two hat metaphor, 54
type code

replacing with
module extensions

example, 234-238
goals, 233
overview, 232
step-by-step

description, 233
replacing with polymorphism

example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
replacing with state/strategy

example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240

U

UML (Unified Modeling Language)
diagrams, 20-21

unidirectional association
changing bidirectional to

example, 215-217

Index454

views, separating domain logic from
example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408

W-X-Y-Z

when not to refactor, 66-67
when to refactor

for greater understanding, 59-60
overview, 57
Rule of Three, 57
when adding function, 57-58
when fixing bugs, 58
with code reviews, 58-59

why refactoring works, 60-61
winter_charge method, 263
withdraw method, 336
writing tests, 92-95

inline temps, 110
removing, 22-31
replacing with chains,

114-117
replacing with queries,

111-114
splitting, 121-124
total_amount, 22-23

video store program
charge method, 33-34, 45
Customer class, 3
design issues, 5-6
frequent_renter_points

method, 47
html_statement method, 30
inheritance, 36-49
Movie class, 2
overview, 1-2
price_code method, 48
Rental class, 3
replacing conditional logic with

polymorphism, 32-49
statement method

code listing after
refactoring, 9

code listing before
refactoring, 7-8

extracting frequent renter
points, 18-21

initial code listing, 3-4
moving amount calculation,

12-18
removing temporary

variables, 22-31
renaming variables, 10-11

testing, 6-7
total_charge method, 23-25
Unified Modeling Language

(UML) diagrams, 20-21

	Foreword
	Preface
	Chapter 3: Bad Smells in Code
	Duplicated Code
	Long Method
	Large Class
	Long Parameter List
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Data Clumps
	Primitive Obsession
	Case Statements
	Parallel Inheritance Hierarchies
	Lazy Class
	Speculative Generality
	Temporary Field
	Message Chains
	Middle Man
	Inappropriate Intimacy
	Alternative Classes with Different Interfaces
	Incomplete Library Class
	Data Class
	Refused Bequest
	Comments
	Metaprogramming Madness
	Disjointed API
	Repetitive Boilerplate

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

