

Praise for Eloquent Ruby
“Reading Eloquent Ruby is like programming in Ruby itself: fun, surprisingly deep,
and you’ll find yourself wishing it was always done this way. Wherever you are in your
Ruby experience from novice to Rails developer, this book is a must read.”

—Ethan Roberts
Owner, Monkey Mind LLC

“Eloquent Ruby lives up to its name. It’s a smooth introduction to Ruby that’s both
well organized and enjoyable to read, as it covers all the essential topics in the right
order. This is the book I wish I’d learned Ruby from.”

—James Kebinger
Senior Software Engineer, PatientsLikeMe
www.monkeyatlarge.com

“Ruby’s syntactic and logical aesthetics represent the pinnacle for elegance and beauty
in the ALGOL family of programming languages. Eloquent Ruby is the perfect book
to highlight this masterful language and Russ’s blend of wit and wisdom is certain to
entertain and inform.”

—Michael Fogus
Contributor to the Clojure programming
language and author of The Joy of Clojure

www.monkeyatlarge.com

This page intentionally left blank

ELOQUENT RUBY

The Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information about

applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

Visit informit.com/ruby for a complete list of available products.

Addison-Wesley

Professional Ruby Series
Obie Fernandez, Series Editor

ELOQUENT RUBY

Russ Olsen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data

Olsen, Russ.
Eloquent Ruby / Russ Olsen.

p. cm.
Includes index.
ISBN-13: 978-0-321-58410-6 (pbk. : alk. paper)
ISBN-10: 0-321-58410-4 (pbk. : alk. paper)

1. Ruby (Computer program language) I. Title.
QA76.73.R83O47 2011
005.13'3—dc22

2010048388

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-58410-6
ISBN-10: 0-321-58410-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, July 2011

www.informit.com/aw

To My Dad
Charles J. Olsen

Who never had a chance to write a book of his own,
which is a shame because it would have been

hilarious

This page intentionally left blank

Contents

Foreword xix

Preface xxi

Acknowledgments xxv

About the Author xxvii

PART I: The Basics 1

Chapter 1: Write Code That Looks Like Ruby 3
The Very Basic Basics 4
Go Easy on the Comments 6
Camels for Classes, Snakes Everywhere Else 8
Parentheses Are Optional but Are Occasionally Forbidden 9
Folding Up Those Lines 10
Folding Up Those Code Blocks 11
Staying Out of Trouble 12
In the Wild 13
Wrapping Up 15

Chapter 2: Choose the Right Control Structure 17
If, Unless, While, and Until 17
Use the Modifier Forms Where Appropriate 19
Use each, Not for 20
A Case of Programming Logic 21

ix

Staying Out of Trouble 23
In the Wild 25
Wrapping Up 27

Chapter 3: Take Advantage of Ruby’s Smart Collections 29
Literal Shortcuts 29
Instant Arrays and Hashes from Method Calls 30
Running Through Your Collection 33
Beware the Bang! 36
Rely on the Order of Your Hashes 38
In the Wild 38
Staying Out of Trouble 40
Wrapping Up 42

Chapter 4: Take Advantage of Ruby’s Smart Strings 43
Coming Up with a String 44
Another API to Master 47
The String: A Place for Your Lines, Characters, and Bytes 49
In the Wild 50
Staying Out of Trouble 51
Wrapping Up 52

Chapter 5: Find the Right String with Regular Expressions 53
Matching One Character at a Time 54
Sets, Ranges, and Alternatives 55
The Regular Expression Star 57
Regular Expressions in Ruby 58
Beginnings and Endings 60
In the Wild 62
Staying Out of Trouble 63
Wrapping Up 64

Chapter 6: Use Symbols to Stand for Something 65
The Two Faces of Strings 65
Not Quite a String 66
Optimized to Stand for Something 67

x Contents

In the Wild 69
Staying Out of Trouble 70
Wrapping Up 71

Chapter 7: Treat Everything Like an Object—Because Everything Is 73
A Quick Review of Classes, Instances, and Methods 74
Objects All the Way Down 76
The Importance of Being an Object 77
Public, Private, and Protected 79
In the Wild 81
Staying Out of Trouble 82
Wrapping Up 84

Chapter 8: Embrace Dynamic Typing 85
Shorter Programs, But Not the Way You Think 85
Extreme Decoupling 89
Required Ceremony Versus Programmer-Driven Clarity 92
Staying Out of Trouble 93
In the Wild 94
Wrapping Up 96

Chapter 9: Write Specs! 97
Test::Unit: When Your Documents Just Have to Work 98
A Plethora of Assertions 101
Don’t Test It, Spec It! 101
A Tidy Spec Is a Readable Spec 104
Easy Stubs 105
. . . And Easy Mocks 107
In the Wild 108
Staying Out of Trouble 110
Wrapping Up 113

PART II: Classes, Modules, and Blocks 115

Chapter 10: Construct Your Classes from Short, Focused Methods 117
Compressing Specifications 117
Composing Methods for Humans 121

Contents xi

Composing Ruby Methods 122
One Way Out? 123
Staying Out of Trouble 126
In the Wild 127
Wrapping Up 128

Chapter 11: Define Operators Respectfully 129
Defining Operators in Ruby 129
A Sampling of Operators 131
Operating Across Classes 134
Staying Out of Trouble 135
In the Wild 137
Wrapping Up 139

Chapter 12: Create Classes That Understand Equality 141
An Identifier for Your Documents 141
An Embarrassment of Equality 142
Double Equals for Everyday Use 143
Broadening the Appeal of the == Method 145
Well-Behaved Equality 146
Triple Equals for Case Statements 149
Hash Tables and the eql? Method 150
Building a Well-Behaved Hash Key 152
Staying Out of Trouble 153
In the Wild 154
Wrapping Up 156

Chapter 13: Get the Behavior You Need with Singleton and
Class Methods 157

A Stubby Puzzle 158
A Hidden, but Real Class 160
Class Methods: Singletons in Plain Sight 162
In the Wild 164
Staying Out of Trouble 165
Wrapping Up 167

xii Contents

Chapter 14: Use Class Instance Variables 169
A Quick Review of Class Variables 169
Wandering Variables 171
Getting Control of the Data in Your Class 174
Class Instance Variables and Subclasses 175
Adding Some Convenience to Your Class Instance Variables 176
In the Wild 177
Staying Out of Trouble 179
Wrapping Up 179

Chapter 15: Use Modules as Name Spaces 181
A Place for Your Stuff, with a Name 181
A Home for Those Utility Methods 184
Building Modules a Little at a Time 185
Treat Modules Like the Objects That They Are 186
Staying Out of Trouble 189
In the Wild 190
Wrapping Up 191

Chapter 16: Use Modules as Mixins 193
Better Books with Modules 193
Mixin Modules to the Rescue 195
Extending a Module 197
Staying Out of Trouble 198
In the Wild 202
Wrapping Up 205

Chapter 17: Use Blocks to Iterate 207
A Quick Review of Code Blocks 207
One Word after Another 209
As Many Iterators as You Like 210
Iterating over the Ethereal 211
Enumerable: Your Iterator on Steroids 213
Staying Out of Trouble 215
In the Wild 217
Wrapping Up 218

Contents xiii

Chapter 18: Execute Around with a Block 219
Add a Little Logging 219
When It Absolutely Must Happen 224
Setting Up Objects with an Initialization Block 225
Dragging Your Scope along with the Block 225
Carrying the Answers Back 227
Staying Out of Trouble 228
In the Wild 229
Wrapping Up 231

Chapter 19: Save Blocks to Execute Later 233
Explicit Blocks 233
The Call Back Problem 234
Banking Blocks 236
Saving Code Blocks for Lazy Initialization 237
Instant Block Objects 239
Staying Out of Trouble 240
In the Wild 243
Wrapping Up 244

PART III: Metaprogramming 247

Chapter 20: Use Hooks to Keep Your Program Informed 249
Waking Up to a New Subclass 250
Modules Want To Be Heard Too 253
Knowing When Your Time Is Up 255
. . . And a Cast of Thousands 256
Staying Out of Trouble 257
In the Wild 259
Wrapping Up 261

Chapter 21: Use method_missing for Flexible Error Handling 263
Meeting Those Missing Methods 264
Handling Document Errors 266
Coping with Constants 267
In the Wild 268

xiv Contents

Staying Out of Trouble 270
Wrapping Up 271

Chapter 22: Use method_missing for Delegation 273
The Promise and Pain of Delegation 274
The Trouble with Old-Fashioned Delegation 275
The method_missing Method to the Rescue 277
More Discriminating Delegation 278
Staying Out of Trouble 279
In the Wild 281
Wrapping Up 283

Chapter 23: Use method_missing to Build Flexible APIs 285
Building Form Letters One Word at a Time 286
Magic Methods from method_missing 287
It’s the Users That Count—All of Them 289
Staying Out of Trouble 289
In the Wild 290
Wrapping Up 292

Chapter 24: Update Existing Classes with Monkey Patching 293
Wide-Open Classes 294
Fixing a Broken Class 295
Improving Existing Classes 296
Renaming Methods with alias_method 297
Do Anything to Any Class, Anytime 299
In the Wild 299
Staying Out of Trouble 303
Wrapping Up 303

Chapter 25: Create Self-Modifying Classes 305
Open Classes, Again 305
Put Programming Logic in Your Classes 308
Class Methods That Change Their Class 309
In the Wild 310

Contents xv

Staying Out of Trouble 314
Wrapping Up 315

Chapter 26: Create Classes That Modify Their Subclasses 317
A Document of Paragraphs 317
Subclassing Is (Sometimes) Hard to Do 319
Class Methods That Build Instance Methods 321
Better Method Creation with define_method 324
The Modification Sky Is the Limit 324
In the Wild 327
Staying Out of Trouble 330
Wrapping Up 332

PART IV: Pulling It All Together 333

Chapter 27: Invent Internal DSLs 335
Little Languages for Big Problems 335
Dealing with XML 336
Stepping Over the DSL Line 341
Pulling Out All the Stops 344
In the Wild 345
Staying Out of Trouble 347
Wrapping Up 349

Chapter 28: Build External DSLs for Flexible Syntax 351
The Trouble with the Ripper 352
Internal Is Not the Only DSL 353
Regular Expressions for Heavier Parsing 356
Treetop for Really Big Jobs 358
Staying Out of Trouble 360
In the Wild 362
Wrapping Up 364

Chapter 29: Package Your Programs as Gems 367
Consuming Gems 367
Gem Versions 368

xvi Contents

The Nuts and Bolts of Gems 369
Building a Gem 370
Uploading Your Gem to a Repository 374
Automating Gem Creation 375
In the Wild 376
Staying Out of Trouble 377
Wrapping Up 380

Chapter 30: Know Your Ruby Implementation 381
A Fistful of Rubies 381
MRI: An Enlightening Experience for the C Programmer 382
YARV: MRI with a Byte Code Turbocharger 385
JRuby: Bending the “J” in the JVM 387
Rubinius 388
In the Wild 389
Staying Out of Trouble 389
Wrapping Up 390

Chapter 31: Keep an Open Mind to Go with Those Open Classes 391

Appendix: Going Further 393

Index 397

Contents xvii

This page intentionally left blank

Foreword

Do you know why experienced Ruby programmers tend to reach for basic collections
and hashes while programmers from other languages go for more specialized classes?
Do you know the difference between strip, chop, and chomp, and why there are three
such similar methods when apparently one might suffice? (Not to mention lstrip and
rstrip!) Do you know the downsides of dynamic typing? Do you know why the dif-
ferences between strings and symbols get so blurry, even to experienced Ruby devel-
opers? How about metaprogramming? What the heck is an eigenclass? How about
protected methods? Do you know what they’re really about? Really? Are you sure?

Russ knows all that stuff and more. And if books are like babies, then Russ is that
experienced mom who pops out her second child after a couple of hours of labor and
is back at work a week later in her pre-pregnancy clothes as if nothing out of the ordi-
nary happened. You know: the one all the other moms talk about in hushed tones of
disbelief and reverence. That’s the way my series authors discuss Russ.

Not that there’s anything small or insignificant about Russ’ bouncing new baby . . .
eh, I mean book. On the contrary, weighing in at just over 400 pages, this tome is
slightly larger than its older sibling Design Patterns in Ruby. The family resemblance is
crystal clear: Russ is first and foremost your friend. His approachable writing style
makes even the driest Ruby language topics engaging and funny. Like the way that
symbols remind Russ “of the eyes peering out from the tilted head of a confused but
friendly dog.”

Truth is, we need this kind of book now more than ever. Ruby has hit the main-
stream with the force of a Hulk Smash, and the masses are paddling along well-known
routes without full (heck, sometimes any) understanding of what makes their favorite

xix

frameworks and library APIs so vibrant and navigable. So for those not content with
the basics, those who want to go beyond shallow understanding, this book goes deep.
It helps readers achieve true mastery of Ruby, a programming language with some of
the deepest, darkest pools of nuance and texture of all the major languages of modern
times.

I know you’re going to enjoy this book, just like I did. And if you do, please join
me in encouraging Russ to get knocked up again soon.

—Obie Fernandez, Professional Ruby Series Editor

xx Foreword

Preface

I’ve taught a fair number of Ruby classes over the years, but one particular class stands
out in my mind. Class was over, and as I was going out the door one of my students,
an experienced Java programmer, stopped me and voiced a complaint that I have
heard many times since. He said that the hardest part of learning Ruby wasn’t the syn-
tax or the dynamic typing. Oh, he could write perfectly correct Ruby, sans semicolons
and variable declarations. The problem was that something was missing. He con-
stantly found himself falling back into his same old Java habits. Somehow his Ruby
code always ended up looking much like what he would have written in Java. My
answer to him was not to worry, you haven’t missed anything—you just aren’t done
learning Ruby.

What does it mean to learn a new programming language? Clearly, like my frus-
trated student, you need to understand the basic rules of the grammar. To learn Ruby
you need to be aware that a new line usually starts a new statement, that a class defi-
nition starts with the word class, and that variable names start with a lowercase let-
ter—unless they start with an @. But you can’t really stop there. Again, like my
erstwhile student you will also need to know what all of that code does. You’ll need to
know that those statements are really expressions (since they all return a value) and
that all of those classes starting with the class keyword can change over time. And you’ll
need to know why those @variables are different from the plain vanilla variables.

But the punch line is that even after you master all of this, you are still not quite
there. It turns out that computer languages share something fundamental with our
everyday order-a-pizza human tongues: Both kinds of languages are embedded in a
culture, a way of thinking about the world, an approach to solving problems. A formal

xxi

understanding of the mechanics of Ruby isn’t the same as really looking at the pro-
gramming world through Ruby-colored glasses. You need to absorb the cultural part
of Ruby, to see how real Rubyists use the language to solve problems.

This is a book about making that final leap, about absorbing the Ruby program-
ming culture, about becoming truly fluent in Ruby. The good news is that for most
people the final step is the best part of learning Ruby—a series of “Ah ha!” moments—
as it suddenly becomes clear why those funny symbol things exist, why classes are never
final, and how this wonderful language works so hard to just stay out of your way.

Who Is This Book For?
This book is for you if you have a basic understanding of Ruby but feel that you
haven’t quite gotten your arms around the language. If you find yourself wondering
what anyone could possibly do with all those odd language features that seem so
important to Ruby, keep reading.

This book is also for you if you are a programmer with experience in other object
oriented languages, perhaps Java or C# or Python, and you want to see what this Ruby
thing is all about. While I’m not going to explain the basic details of Ruby in this
book, the basics of Ruby are really very basic indeed. So, if your learning style involves
simply jumping into the deep end, welcome to the pool.

How Is This Book Organized?
Mostly, this book works from small to large. We will start with the most tactical ques-
tions and work our way up to the grand strategy behind pulling whole Ruby projects
together. Thus the first few chapters will concentrate on one-statement, one-method,
one-test, and one-bug–sized issue :

• How do you write code that actually looks like Ruby?

• Why does Ruby have such an outsized collection of control structures?

• Why do Ruby programmers use so many hashes and arrays in their code?

• How do I get the most out of Ruby’s very powerful strings and regular
 expressions?

• What are those symbol things, and what do you do with them?

xxii Preface

• Is everything in Ruby really an object?

• How do I take advantage of dynamic typing?

• How can I make sure that my code actually works?

From there we will move on to the bigger questions of building methods and
classes:

• Why are Ruby classes so full of tiny little methods?

• Why would you overload an operator? And, more importantly, why would you
not?

• Do I really need to care about object equality?

• What good is a module?

• Can I really assign a method to an individual object? And what does that have to
do with class methods?

• How do I hang some data on a class?

• How do you use blocks to good effect?

• Why would you ever call a method that doesn’t actually exist?

• Can I really get notified when a class gets created? Why would I do that?

• Can I really modify classes on the fly? Why would I do that?

• Can I really write code that writes code? Why would I do that?

Finally, we will look at some of the techniques you can use to pull your program-
ming project together into a unified whole:

• Would you really build a whole language simply to solve an ordinary program-
ming problem?

• How do I make it easy for others to use my work?

• How does my Ruby implementation work?

• Where do I go from here?

Preface xxiii

About the Code Examples
The trouble with writing books about programming is that all the interesting stuff is
in a constant state of flux. This is, after all, what makes it interesting. Certainly Ruby
is something of a moving target these days: Although the great bulk of the Ruby code
base was written for Ruby 1.8.X, version 1.9 has been out for some time and is clearly
the future. In the pages that follow I have tried to split the coding difference by writ-
ing all of the examples in the 1.9 dialect,1 taking care to note where Ruby 1.8 would
be different. The good news is that there aren’t all that many differences.

I have also consistently used the traditional pp command to print out more com-
plex objects. However, to keep from driving everyone2 crazy, I’m not going to end-
lessly repeat the require 'pp' call needed to make pp work. Just assume it is there at
the top of each example.

xxiv Preface

1. Specifically, the examples all use Ruby-1.9.1-p430.

2. Especially me!

Acknowledgments

Sometimes I love to write and other times it’s like squeezing out that last bit of tooth-
paste—from the point of view of the tube. At those times the constant support of my
friends and family made the difference between a finished book and a smashed com-
puter. In return I would like to say thanks, starting with my lovely wife Karen and my
noble son Jackson for their constant support, and for putting up with me when that
last sentence would just not settle down. Thanks especially to Karen for sneaking into
my office in the middle of the night to remove the extraneous of ’s and the’s from the
manuscript.

Thanks to my good friend Bob Kiel for his constant encouragement. Couldn’t
have done it without you, Bob.

Thanks, too, to Eileen Cross for simply being there for me for all these years.
Thanks to the fine folks at FGM, especially Scott Gessay, Mike Fortier, Mike

Morehouse, and Kirk Maskalenko. It really is a great place to work. Also thanks to
George Croghan for continuing to speak to me even after I had used the parental voice
of death on him.

Thanks to Chris Bailey for keeping me from taking a match to the whole project.
I also owe some serious gratitude to Gene, Laura, and Derek Stokes for their com-

pany and cheer as well as occasionally providing me with a quiet place to think and
write: I’ve spent many a happy hour toiling away at the kitchen table of their beach
house. I’d especially like to thank Gene for his rocket fuel martinis. I have only myself
to blame if Gene’s concoctions occasionally enhanced the happiness of the hour at the
expense of the toiling. And thanks to Laura for injecting just the right level of zani-
ness into my life.

xxv

Special thanks to Scott Downie (the brightest intern who ever fetched coffee) for
introducing me to the TV series Firefly and thereby getting me through the dark days
of Chapters 15 and 16.1

Thanks to everyone behind the Northern Virginia Ruby Users’ Group, RubyNation,
and the National Capital Area Clojure User Group for their encouragement. Through
their efforts hundreds of gallons of beer have found a decent home.

Thanks to everyone who reviewed the early versions of this book, including Rob
Sanheim, James Kebinger, and Ethan Roberts.

Special thanks for Beth Gutierrez for providing her unique perspective on the
manuscript.

Thanks to Carl Fyffe for helping me find a way out of the dark days of Chapters
15 and 16.

Thanks to Mike Abner and the aforementioned Carl for helping me to settle on
a title.

Thanks also to Steve Ingram for starting the e-mail discussion that eventually gave
birth to Chapter 6.

Thanks to my friend Diana Greenberg for her constant support, and for not buy-
ing a copy of this book before I can give her one.

Special thanks to Diane Freed. If you can imagine trying to correct a manuscript
full of technical terms, tortured syntax, and typos (I can’t), you have an idea of the job
of a copy editor, a job that Diane performed with real finesse.

Thanks also to Rob and Denise Cross for putting up with me over a long
Thanksgiving weekend as I went through my end of the copyediting of this book.

Thanks to Raina Chrobak of Addison-Wesley for her help and patience.
Finally special thanks to my editor Chris Guzikowski for putting up with the

delays caused by the dark days of Chapters 15 and 16.
P.S. Thanks to Peter Cooper, Sonia Hamilton, John G. Norman, and Bodo Tasche

for suggesting corrections to the first printing.

xxvi Acknowledgments

1. Well, originally they were Chapters 11, 12, and 13, and then they became Chapter 10 before set-
tling down as 15 and 16. Now you know why those days were so dark.

About the Author

Russ Olsen’s career spans three decades, during which he has written everything from
graphics device drivers to document management applications. These days, Russ dili-
gently codes away at GIS systems, network security, and process automation solutions.
Otherwise, Russ spends a lot of his free time writing and talking about programming,
especially Ruby and Clojure.

Russ’ first book is the highly regarded Design Patterns in Ruby (Addison-Wesley,
2008). Russ is also the lurking presence behind the Technology As If People Mattered
blog (www.russolsen.com). Russ’ technical pontifications have been translated into six
languages, and Russ is a frequent speaker at technical conferences.

Russ lives in the Washington, D.C., area with his lovely wife, Karen, and noble
son, Jackson, both of whom are smarter than he is.

xxvii

www.russolsen.com

This page intentionally left blank

CHAPTER 6
Use Symbols to Stand for
Something

I have to admit that I tend to be a bit anthropomorphic about the technologies I work
with. I just can’t help but think of all those complex piles of software as somehow alive,
each with its own personality—sometimes friendly, sometimes not. Early in my career
I imagined FORTRAN as a grouchy old camel—capable of carrying a huge load, but
fairly ugly and not a creature you would want to turn your back on. Later on I had
this mental image of the -> operator in the C programming language (it dereferences
pointers) as an arrow in flight: also very powerful, also nothing to mess with. These
days, the colon that precedes every Ruby symbol always makes me think of the eyes
peering out from the tilted head of a confused but friendly dog. The key word here is
confused—symbols probably have the dubious distinction of being the one bit of syn-
tax that perplexes the greatest number of new Ruby programmers.

In this chapter I am going to try to stamp out all of that confusion and show sym-
bols for what they really are: very simple, useful programming language constructs
that are a key part of the Ruby programming style. So let’s get started and see why
symbols are such handy little mutts to have around.

The Two Faces of Strings
Sometimes a good way to explain a troublesome topic is to engage in a little creative
fiction. You start out with an oversimplified explanation and, once that has sunk in a

65

bit, you work your way from there back to the real world. In this spirit, let’s start our
exploration of symbols with a slight simplification: Symbols are really just strings. This
is not as far fetched as it sounds: Think about the string "dog" and its closest symbolic
cousin, :dog. The thing that hits you in the face about these two objects is that they
both are essentially three characters: a “d”, an “o”, and a “g”.

Strings and symbols are also reasonably interchangeable in real life code: Take this
familiar example of some ActiveRecord code, which finds all of the records in the
books table:1

book = Book.find(:all)

The argument to the find method is simply a flag, there to tell find that we want
all of the records in the books table—not just the first record, not just the last record,
but all of them. The actual value that we pass into Book.find doesn’t really matter
very much. We might imagine that if we had the time and motivation, we could go
into the guts of ActiveRecord and rewrite the code so that we could use a string to sig-
nal that we wanted all the books:

book = Book.find('all')

So there is my simplified explanation of symbols: Other than the fact that typing
:all requires one less keystroke than typing 'all', there is not really a lot to distin-
guish a symbol from a string. So why does Ruby give us both?

Not Quite a String
The answer is that we tend to use strings of characters in our code for two rather dif-
ferent purposes: The first, and most obvious, use for strings is to hold some data that
we are processing. Read in those Book objects from the database and you will very
likely have your hands full of string data, things like the title of the book, the author’s
name, and the actual text.

The second way that we use strings of characters is to represent things in our pro-
grams, things like wanting to find all of the records in a table. The key thing about

66 Chapter 6. Use Symbols to Stand for Something

1. If you are not familiar with ActiveRecord, don’t worry. In ActiveRecord there is a class for each
database table. In our example we have the (unseen) Book class that knows about the books table.
Every ActiveRecord table class has a class method called find, which takes various arguments
telling the method for what it should search.

:all in our Book ActiveRecord example is that ActiveRecord can recognize it when it
sees it—the code needs to know which records to return, and :all is the flag that says
it should return every one. The nice thing about using something like :all for this
kind of “stands for” duty is that it also makes sense to the humans: You are a lot more
likely to recognize what :all means when you come across it than 0, or -1, or even
(heaven forbid!) 0x29ef.

These two uses for strings of characters—for regular data processing tasks on the
one hand and for internal, symbolic, marker-type jobs on the other—make very dif-
ferent demands on the objects. If you are processing data, you will want to have the
whole range of string manipulation tools at your fingertips: You might want the first
ten characters of the title, or you might want to get its length or see whether it matches
some regular expression. On the other hand, if you are using some characters to stand
for something in your code, you probably are not very interested in messing with the
actual characters. Instead, in this second case you just need to know whether this thing
is the flag that tells you to find all the records or just the first record. Mainly, when
you want some characters to stand for something, you simply need to know if this is
the same as that, quickly and reliably.

Optimized to Stand for Something
By now you have probably guessed that the Ruby String class is optimized for the
data processing side of strings while symbols are meant to take over the “stands for”
role—hence the name. Since we don’t use symbols for data processing tasks, they lack
most of the classic string manipulation methods that we talked about in Chapter 4.
Symbols do have some special talents that make them great for being symbols. For
example, there can only ever be one instance of any given symbol: If I mention :all
twice in my code, it is always exactly the same :all. So if I have:

a = :all

b = a

c = :all

I know that a, b, and c all refer to exactly the same object. It turns out that Ruby
has a number of different ways to check whether one object is equal to another,2 but

Optimized to Stand for Something 67

2. For more on object equality, see Chapter 12.

with symbols it doesn’t matter: Since there can only be one instance of any given sym-
bol, :all is always equal to itself no matter how you ask:

True! All true!

a == c

a === c

a.eql?(c)

a.equal?(c)

In contrast, every time you say "all", you are making a brand new string. So if
you say this:

x = "all"

y = "all"

Then you have manufactured two different strings. Since both the strings happen to
contain the same three characters, the two strings are equal in some sense of the word,
but they are emphatically not identically the same object. The fact that there can only
be one instance of any given symbol means that figuring out whether this symbol is
the same as that symbol is not only foolproof, it also happens at lightning speeds.

Another aspect of symbols that makes them so well suited to their chosen career
is that symbols are immutable—once you create that :all symbol, it will be :all
until the end of time.3 You cannot, for example, make it uppercase or lob off the sec-
ond 'l'. This means that you can use a symbol with confidence that it will not change
out from under you.

You can see all these issues at play in hashes. Since symbol comparison runs at
NASCAR speeds and symbols never change, they make ideal hash keys. Sometimes,
however, engineers want to use regular strings as hash keys:

author = 'jules verne'

title = 'from earth to the moon'

hash = { author => title }

68 Chapter 6. Use Symbols to Stand for Something

3. Or at least until your Ruby interpreter exits.

So what would happen to the hash if you changed the key out from underneath it?

author.upcase!

The answer is that nothing will happen to the hash, because the Hash class has special
defenses built in to guard against just this kind of thing. Inside of Hash there is spe-
cial case code that makes a copy of any keys passed in if the keys happen to be strings.
The fact that the Hash class needs to go through this ugly bit of special pleading pre-
cisely to keep you from coming to grief with string keys is the perfect illustration of
the utility of symbols.

In the Wild
In practice, the line between symbols and regular strings is sometimes a bit blurry. It
is, for example, trivially easy to turn a symbol into a string: You just use the ubiqui-
tous to_s method:

the_string = :all.to_s

To go in the reverse direction, you can use the to_sym method that you find on your
strings:

the_symbol = 'all'.to_sym

The blurriness between symbols and strings sometimes also extends into the
minds of Ruby programmers. For example, every object in Ruby has a method called
public_methods, which returns an array containing the names of all of the public
methods on that object. Now, you might argue that method names are the poster chil-
dren for objects that stand for something (in this case a bit of code), and therefore the
public_methods method should return an array of symbols. But call public_methods
in a pre-1.9 version of Ruby, like this:

x = Object.new

pp x.public_methods

In the Wild 69

And you will get an array of strings, not symbols:

["inspect",

"pretty_print_cycle",

"pretty_print_inspect",

"clone",

...

]

Is there something wrong with our reasoning? Apparently not, because in Ruby
1.9 public_methods does indeed return an array of symbols:

[:pretty_print,

:pretty_print_cycle,

:pretty_print_instance_variables,

:pretty_print_inspect,

:nil?,

...

]

The lesson here is that if you find symbols a bit confusing, you seem to be in very good
company.

Staying Out of Trouble
Given the curious relationship between symbols and strings, it probably will come as
no surprise that the best way to screw up with a symbol is to use it when you wanted
a string, and vice versa. As we have seen, you want to use strings for data, for things
that you might want to truncate, turn to uppercase, or concatenate. Use symbols when
you simply want an intelligible thing that stands for something in your code.

The other way to go wrong is to forget which you need at any given time. This
seems to happen a lot when using symbols as the keys in hashes. For example, take a
look at this code fragment:

Some broken code

person = {}

person[:name] = 'russ'

70 Chapter 6. Use Symbols to Stand for Something

person[:eyes] = 'misty blue'

A little later...

puts "Name: #{person['name']} Eyes: #{person['eyes']}"

The code here is broken, but you might have to look at it a couple of times to see that
the keys of the person hash are symbols, but the puts statement tries to use strings.
What you really want to say here is:

puts "Name: #{person[:name]} Eyes: #{person[:eyes]}"

This kind of mistake is common enough that Rails actually provides a Band-Aid
for it in the form of the HashWithIndifferentAccess class. This convenient, but
somewhat dubious bit of code is a subclass of Hash that allows you to mix and match
strings and symbols with cheerful abandon.

Wrapping Up
In this chapter we have looked at symbols and saw that they exist purely to stand for
something in your code. Symbols and garden variety strings have a lot in common—
both are mostly just a stretch of characters. Unlike strings, symbols are specially tuned
to their “stands for” purpose: Symbols are both unique—there can only ever be one
:all symbol in your Ruby interpreter—and immutable, so that :all will never
change. The good news is that once you understand that symbols and strings are like
two siblings—related, but with different talents—you will be able to take advantage
of the things that each does best.

Wrapping Up 71

This page intentionally left blank

CHAPTER 8
Embrace Dynamic Typing

How? Why? These are the two questions that every new Ruby coder—or at least those
emigrating from the more traditional programming languages—eventually gets
around to asking. How can you possibly write reliable programs without some kind
of static type checking? And why? Why would you even want to try? Figure out the
answer to those two questions and you’re on your way to becoming a seasoned Ruby
programmer. In this chapter we will look at how dynamic typing allows you to build
programs that are simultaneously compact, flexible, and readable. Unfortunately, noth-
ing comes for free, so we will also look at the downsides of dynamic typing and at how
the wise Ruby programmer works hard to make sure the good outweighs the bad.

This is a lot for one chapter, so let’s get started.

Shorter Programs, But Not the Way You Think
One of the oft-repeated advantages of dynamic typing is that it allows you to write
more compact code. For example, our Document class would certainly be longer if we
needed to state—and possibly repeat here and there—that @author, @title, and
@content are all strings and that the words method returns an array. What is not quite
so obvious is that the simple “every declaration you leave out is one bit less code” is just
the down payment on the code you save with dynamic typing. Much more significant
savings comes from the classes, modules, and methods that you never write at all.

To see what I mean, let’s imagine that one of your users has a large number of doc-
uments stored in files. This user would like to have a class that looks just like a

85

Document,1 but that will delay reading the contents of the file until the last possible
moment: In short, the user wants a lazy document. You think about this new require-
ment for a bit and come up with the following: First you build an abstract class that
will serve as the superclass for both the regular and lazy flavors of documents:

class BaseDocument

def title

raise "Not Implemented"

end

def title=

raise "Not Implemented"

end

def author

raise "Not Implemented"

end

def author=

raise "Not Implemented"

end

def content

raise "Not Implemented"

end

And so on for the content=

words and word_count methods...

end

Then you recast Document as a subclass of BaseDocument:

class Document < BaseDocument

attr_accessor :title, :author, :content

86 Chapter 8. Embrace Dynamic Typing

1. Again, to keep things simple we are going to start over here with the very minimal functionality
of the original Document class of Chapter 1.

def initialize(title, author, content)

@title = title

@author = author

@content = content

end

def words

@content.split

end

def word_count

words.size

end

end

Finally, you write the LazyDocument class, which is also a subclass of BaseDocument:

class LazyDocument < BaseDocument

attr_writer :title, :author, :content

def initialize(path)

@path = path

@document_read = false

end

def read_document

return if @document_read

File.open(@path) do | f |

@title = f.readline.chomp

@author = f.readline.chomp

@content = f.read

end

@document_read = true

end

def title

read_document

@title

end

Shorter Programs, But Not the Way You Think 87

def title=(new_title)

read_document

@title = new_title

end

And so on...

end

The LazyDocument class is a typical example of the “leave it to the last minute”
technique: It looks like a regular document but doesn’t really read anything from the
file until it absolutely has to. To keep things simple, LazyDocument just assumes that
its file will contain the title and author of the document on the first couple of lines,
followed by the actual text of the document.

With the classes above, you can now do nice, polymorphic things with instances
of Document and LazyDocument. For example, if you have a reference to one or the
other kind of document and are not sure which:

doc = get_some_kind_of_document

You can still call all of the usual document methods:

puts "Title: #{doc.title}"

puts "Author: #{doc.author}"

puts "Content: #{doc.content}"

In a technical sense, this combination of BaseDocument, Document, and Lazy -
Document do work. They fail, however, as good Ruby coding. The problem isn’t with
the LazyDocument class or the Document class. The problem lies with BaseDocument:
It does nothing. Even worse, BaseDocument takes more than 30 lines to do nothing.
BaseDocument only exists as a misguided effort to provide a common interface for the
various flavors of documents. The effort is misguided because Ruby does not judge an
object by its class hierarchy.

Take another look at the last code example: Nowhere do we say that the variable
doc needs to be of any particular class. Instead of looking at an object’s type to decide
whether it is the correct object, Ruby simply assumes that if an object has the right
methods, then it is the right kind of object. This philosophy, sometimes called duck

88 Chapter 8. Embrace Dynamic Typing

typing,2 means that you can completely dispense with the BaseDocument class and
redo the two document classes as a couple of completely independent propositions:

class Document

Body of the class unchanged...

end

class LazyDocument

Body of the class unchanged...

end

Any code that used the old related versions of Document and LazyDocument will
still work with the new unrelated classes. After all, both classes support the same set
of methods and that’s what counts.

There are two lessons you can take away from our BaseDocument excursion. The
first is that the real compactness payoff of dynamic typing comes not from leaving out
a few int and string declarations; it comes instead from all of the BaseDocument
style abstract classes that you never write, from the interfaces that you never create,
from the casts and derived types that are simply irrelevant. The second lesson is that
the payoff is not automatic. If you continue to write static type style base classes, your
code will continue to be much bulkier than it might be.

Extreme Decoupling
Compact code is a great thing, but compact code is by no means the only advantage
of dynamic typing. There is also the free and easy flexibility that flows from writing
code sans type declarations. For example, let’s imagine that the editorial department
of your company also has an enhancement request. It seems that the folks over at edi-
torial are putting in a more formal system to keep track of authors and publications.
In particular, they have invented a couple of new classes:

class Title

attr_reader :long_name, :short_name

attr_reader :isbn

Extreme Decoupling 89

2. As in, “If it walks like a duck and quacks like a duck, then it must be a duck.”

def initialize(long_name, short_name, isbn)

@long_name = long_name

@short_name = short_name

@isbn = isbn

end

end

class Author

attr_reader :first_name, :last_name

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

end

The editorial department would like you to change the Document class so that
they can use Title and Author instances instead of strings as the @title and @author

values in Document instances, like this:

two_cities = Title.new('A Tale Of Two Cities',

'2 Cities', '0-999-99999-9')

dickens = Author.new('Charles', 'Dickens')

doc = Document.new(two_cities, dickens, 'It was the best...')

Being a nice person and a consummate professional you immediately agree to
undertake this task. And then you do nothing. Absolutely nothing. You do nothing
because the Document class already works with Title and Author instances. There are
no interfaces to extract, no declarations to change, no class hierarchies to adjust, noth-
ing. It just works.

It works because Ruby’s dynamic typing means that you don’t declare the classes
of variables and parameters. That means that your classes are not frozen together in a
rigid network of type relationships. In Ruby, any two classes that can work together
will work together. Flexibility is a huge advantage when it comes to constructing pro-
grams. In our example, the Document class does not really do anything with @title
and @author other than carry them around; the Document class therefore has
absolutely no opinion as to what the class of these objects should be.

90 Chapter 8. Embrace Dynamic Typing

Even if Document did make some demands on @title and @author, perhaps like
this:

class Document

Most of the class omitted...

def description

"#{@title.long_name} by #{@author.last_name}"

end

end

Then we will have increased the coupling between Document and the @author and
@title objects just a bit. With the addition of the description method, Document
now expects that @title will have a method called long_name and @author will have
a last_namemethod. But the bump in coupling is as small as it can be. Documentwill,
for example, accept any object that has a long_name method for @title.

Taking advantage of the loose coupling offered by dynamic typing is easy: As you
can see from this last example, it is right there for you—unless you go out of your way
to mess it up. Programmers new to Ruby will sometimes try to cope with the loss of
static typing by adding type-checking code to their methods:

def initialize(title, author, content)

raise "title isn't a String" unless title.kind_of? String

raise "author isn't a String" unless author.kind_of? String

raise "content isn't a String" unless content.kind_of? String

@title = title

@author = author

@content = content

end

This kind of pseudo-static type checking combines all the disadvantages of the two
camps: It destroys the wonderful loose coupling of dynamic typing. It also bloats the
code while doing little to improve reliability. Don’t do this.

This last example illustrates another, more subtle advantage to dynamic typing.
Programming is a complex business. Writing a tricky bit of code is like that old circus
act where the performer keeps an improbably large number of plates spinning atop
vertical sticks, except that here it’s the details of your problem that are spinning and

Extreme Decoupling 91

it’s all happening in your head. When you are coding, anything that reduces the num-
ber of revolving mental plates is a win. From this perspective, a typing system that you
can sum up in a short phrase, “The method is either there or it is not,” has some def-
inite appeal. If the problem is complexity, the solution might just be simplicity.

Required Ceremony Versus Programmer-Driven
Clarity
One thing that variable declarations do add to code is a modicum of documentation.
Take the initialize method of our Document class:

def initialize(title, author, content)

Considerations of code flexibility and compactness aside, there is simply no arguing
with the fact that a few type declarations:

Pseudo-Ruby! Don't try this at home!

def initialize(String title, String author, String content)

Would make it easier to figure out how to create a Document instance. The flip side of
this argument is that not all methods benefit—in a documentation sense—from type
declarations. Take this hypothetical Document method:

def is_longer_than?(n)

@content.length > n

end

Even without type declarations, most coders would have no trouble deducing that
is_longer_than? takes a number and returns a boolean. Unfortunately, when type
declarations are required, you need put them in your code whether they make your
code more readable or not—that’s why they call it required. Required type declarations
inevitably become a ceremonial part of your code, motions you need to go through
just to get your program to work. In contrast, making up for the lost documentation
value of declarations in Ruby is easy: You write code that is painfully, blazingly obvi-
ous. Start by using nice, full words for class, variable, and method names:

92 Chapter 8. Embrace Dynamic Typing

def is_longer_than?(number_of_characters)

@content.length > number_of_characters

end

If that doesn’t help, you can go all the way and throw in some comments:

Given a number, which needs to be an instance of Numeric,

return true if the number of characters in the document

exceeds the number.

def is_longer_than?(number_of_characters)

@content.length > number_of_characters

end

With dynamic typing, it’s the programmer who gets to pick the right level of doc-
umentation, not the rules of the language. If you are writing simple, obvious code, you
can be very minimalistic. Alternatively, if you are building something complex, you
can be more elaborate. Dynamic typing allows you to document your code to exactly
the level you think is best. It’s your job to do the thinking.

Staying Out of Trouble
Engineering is all about trade-offs. Just about every engineering decision involves get-
ting something, but at a price, and there is a price to be paid for dynamic typing.
Undeniably, dynamic typing opens us up to dangers that don’t exist in statically typed
languages. What if we missed the memo saying that the Document class now expects
the @title to have a long_name method? We might just end up here:

NoMethodError: undefined method `long_name' for "TwoCities":String

This is the nightmare scenario that virtually everyone who comes to Ruby from a stat-
ically typed language background worries about. You think you have one thing, per-
haps an instance of Author, when in fact you actually have a reference to a String or
a Time or an Employee and you don’t even know it. There is just no getting around
the fact that this kind of thing can happen in Ruby code.

What’s a Ruby programmer to do? My first bit of advice is to simply relax. The
experience that has accumulated over the past half century of dynamic language use is
that horrible typing disasters are just not all that common. They are, in fact, downright
rare in any carefully written program. The best way to avoid mixing your types, like

Staying Out of Trouble 93

metaphors, is to write the clearest, most concise code you can, which explains why
Ruby programmers place such a high premium on (wait for it!) clear and concise code.
If it’s easy to see what’s going on, you will make fewer mistakes.

Fewer mistakes, but not zero mistakes. Inevitably you are going to experience a
type-related bug now and then. Unsurprisingly, you are also going to have non-type-
related bugs as well. The Ruby answer to both kinds of bugs is to write automated
tests, lots and lots of automated tests. In fact, automated tests are such a core part of
writing good Ruby code that the next chapter is devoted to them.

You should also keep in mind that there is a difference between concise and cryp-
tic. Ruby allows you to write wonderfully expressive code, code that gets things done
with a minimum of noise. Ruby also allows you to write stuff like this:

class Doc

attr_accessor :ttl, :au, :c

def initialize(ttl, au, c)

@ttl = ttl; @au = au; @c = c

end

def wds; @c.split; end

end

In any language, this kind of “damn the reader” terseness, with its cryptic variable
and method names, is bad. In Ruby it’s a complete disaster. Since bad Ruby code does
not have the last resort crutch of type declarations to lean on, bad Ruby code can be
very bad indeed. The only solution is to not write bad Ruby code. Try to make your
code speak to the human reader as much as it speaks to the Ruby interpreter. It comes
down to this: Ruby is a language for grown-ups; it gives you the tools for writing clear
and concise code. It’s up to you to use them.

In the Wild
A good example of the Ruby typing philosophy of “if the method is there, it is the
right object” is as close as your nearest file and string. Every Ruby programmer knows
that if you want to open a Ruby file, you do something like this:3

94 Chapter 8. Embrace Dynamic Typing

3. Actually, most Ruby programmers would call File.open with a block, but that is beside the
point here.

open_file = File.open('/etc/passwd')

Sometimes, however, you would like to be able to read from a string in the same
way that you read from a file, so we have StringIO:

require 'stringio'

open_string = StringIO.new("So say we all!\nSo say we all!\n")

The idea is that you can use open_file and open_string interchangeably: Call readchar
on either and you will get the next character, either from the file or the string. Call
readline and you will get the next line. Calling open_file.seek(0) will put you
back at the beginning of the file while open_string.seek(0) will put you at the
beginning of the string.

Surprisingly, the File and StringIO classes are completely unrelated. The earliest
common ancestor of these two classes is Object! Apparently reading and writing files
and strings is different enough that the authors of StringIO (which was presumably
written after File) decided that there was nothing to gain—in terms of implementa-
tion—from inheriting from File, so they simply went their own way. This is fairly
typical of Ruby code, where subclassing is driven more from practical considera-
tions—“Do I get any free implementation from inheriting from this class?”—than a
requirement to make the types match up.

You can find another interesting example of the “don’t artificially couple your
classes together” thinking in the source code for the Set class, which we looked at
briefly in Chapter 3. It turns out that you can initialize a Set instance with an array,
like this:

five_even = [2, 4, 6, 8, 10]

five_even_set = Set.new(five_even)

In older versions of Set, the code that inserted the initial values into the new Set
instance looked like this:4

enum.is_a?(Enumerable) or raise ArgumentError, "not enumerable"

enum.each { |o| add(o) }

In the Wild 95

4. I did take some liberties with this code to make it fit within the formatting restrictions of this book.

96 Chapter 8. Embrace Dynamic Typing

These early versions of Set first checked to see if the variable enum, which held
the initial members of the set, was an instance of Enumerable—arrays and many other
Ruby collections are instances of Enumerable—and raised an exception if it wasn’t.
The trouble with this approach is that the requirement that enum be Enumerable is
completely artificial. In the spirit of dynamic typing, all that Set should really care
about is that enum has an each method that will iterate through all of the elements.
Apparently the maintainers of the Set class agree, because the Enumerable check has
disappeared from the current version of set.rb.

Wrapping Up
So how do you take advantage of dynamic typing? First, don’t create more infrastruc-
ture than you really need. Keep in mind that Ruby classes don’t need to be related by
inheritance to share a common interface; they only need to support the same meth-
ods. Don’t obscure your code with pointless checks to see whether this really is an
instance of that. Do take advantage of the terseness provided by dynamic typing to
write code that simply gets the job done with as little fuss as possible—but also keep
in mind that someone (possibly you!) will need to read and understand the code in
the future.

Above all, write tests. . . .

Symbols
" (double quotes), use with string literals,

44–45
' (single quotes), use with string literals, 44–45
- (subtraction) operator

as binary or unary operator, 132
overloading, 131

. (period)
for matching any single character, 54
in module syntax, 185
using asterisk (*) in conjunction with, 58

/ (division) operator, 131
/ (forward slashes), in regular expression syntax,

58–59
: (colon), in symbol syntax, 66–67
:: (double-colon), in module syntax, 185
; (semicolon), for separating statements in Ruby

code, 10–11
\ (backslash)

escaping special meanings of punctuation
characters in regular expressions, 54

escaping strings, 44–45
| (or) operator, 131
| (vertical bar), in syntax of alternatives in

regular expressions, 56–57
||= operator, in expression-based initialization,

26–27
+ (addition) operator

as binary or unary operator, 132
non-commutative nature of, 137

overloading, 131
when to use, 136–137

=~ operator, testing if regular expression matches
a string, 59–60

== (double-equals) operator
broadening the scope of, 145–146
numeric classes accepting Float as equals,

154–156
overview of, 143–144
RSpec and, 138
symmetry principal and, 146–147
transitive property of, 147–149

=== (triple equals) operator, for case statements,
23, 149–150

=> (hash rocket), 30
! method names ending with, 48
! unary operator, 131–132
#, in comment syntax, 6
$, as string delimiter, 45
% (formatting operator), strings, 137–138
% (modulo) operator, 131, 152
%q, for arbitrarily quoted strings, 45–46
& (and) operator, 131
() (parentheses)

readability and, 12
Ruby conventions for calling defining/

methods, 9–10
* (asterisk)

in method definition with extra arguments,
31–32

in regular expressions, 57–58

397

Index

* (multiplication) operator, 131
? (question mark), using with regular

expressions, 62–63
?: (ternary operator), in expression-based

decision making, 26
@@, in class variable syntax, 169
[] (square brackets)

adding to indexing-related class, 135
operator-like syntax and, 133
as string delimiter, 45
using with regular expressions, 55

[]=
adding to indexing-related class, 135
operator-like syntax and, 133

^ (exclusive or) operator, 131
{} (braces), in code block syntax, 11
<< (left shift operator), 131, 135
<=> operator
Float and Fixnum classes and, 154–156
sort method and, 214

A
accessor methods, using with class variables, 170
ActiveRecord

callbacks and, 177
composed method approach and, 127–128
as database interface library, 335
DataMapper compared with. see DataMapper
example of delegation, 282–283
example of execute around, 230
example of saved code blocks, 243
examples of internal DSLs, 346
find method, 66–67
magic methods, 291–292
silence method, 231

add_unique_word method, 120
addition (+) operator. see + (addition) operator
alias_method, for renaming methods, 297–299
alternatives, in regular expressions, 55–57
ancestors method, for viewing inheritance

ancestry, 199
and (&) operator, 131
APIs

avoiding trouble when using method_missing
for, 289–290

building form letters one word at a time,
286–288

building with method_missing, 292
examples of use of method_missing for,

290–292
review of applying method_missing to, 292
supported by strings, 47–49
transition from API to DSL, 341–344
user focus in creating easy-to-use APIs, 289
when to use instead of internal DSLs, 348

archives, gems and, 370
arguments

code blocks taking, 208
execute around methods taking, 226–227
methods taking fixed or variable numbers of,

30–31
naming conventions, 8
singleton methods accepting, 159

arrays
APIs for, 35
caution when iterating over, 40–41
each method, 34, 217
improper use of, 41
method-passing with, 30–32
monkey patching for adding methods to, 302
order of, 38
overview of, 29
public methods for array instances, 36
reverse method, 36–37
shortcuts for accessing, 30
sort method, 37

assert method, Test::Unit, 98
assert_equal method, Test::Unit, 98
assert_match method, Test::Unit, 101
assert_nil method, Test::Unit, 101
assert_not_equal method, Test::Unit, 101
assert_not_nil method, Test::Unit, 101
assertions, in Test::Unit, 101
asterisk (*)

in method definition with extra arguments,
31–32

in regular expressions, 57–58
asymmetrical equality relationships, 147
at_exit hook

informing when time is up, 255–256
in Test::Unit, 259–260

398 Index

attr_accessor

accessing class instance variables, 176
in default set of methods in Object class, 82
as subclass-changing method, 327–328

attr_reader, as subclass-changing method, 327
attr_writer, as subclass-changing method,

327–328
attributes, at class level, 176–177
automating

gem creation, 375–377
testing gems, 94

B
backslash (\)

escaping special meanings of punctuation
characters, 54

escaping strings, 44–45
BasicObject, use in delegation with

method_missing, 280–281
Bignum class, 154–156
binary operators

operating across classes, 134–135
overview of, 131–132

bitwise operators, 131
blank? method, adding to String class, 301
block_given? passing code blocks in methods,

208, 233
blocks. see code blocks
boolean logic

false and true values in Ruby, 23–25
mapping boolean operators to union and

intersection operations, 135
braces ({}), in code block syntax, 11
break, in code blocks, 216
bugs, 94. see also tests
bytes, strings as collections of, 49–50

C
C language, 382
C# language, 336
call backs

ActiveRecord objects and, 177
creating listeners for, 234–236
using explicit code blocks for, 236–237

call method
calling code blocks explicitly, 234
Proc.new and, 241

camel case, class naming conventions, 8
Capistrano, 243–244
Cardinal, 382
case sensitivity, working with strings, 47
case statements

example of use of, 21–23
triple equals operator (===) for, 149–150

characters
matching any one of a bunch of characters, 55
matching one character at a time, 54–55
strings as collections of, 49

chomp method, working with strings, 47
chop method, working with strings, 47
clarity

of code, 94
qualities of good code, 4

class definitions, executable. see classes, self
modifying

class instance variables
avoiding trouble when using, 179
examples of use of, 177–179
for holding onto classwide values, 174–175
review of, 179
singleton class used to add convenience to,

176–177
subclasses and, 175–176

class methods. see also singleton methods
adding convenience to class instance variables,

176–177
avoiding trouble when using, 165–166
for building instance methods, 321–323
defining, 163–164
extending modules and, 197–198
handling missing constants. see const_missing
included hook used with, 254–255
making structural changes to classes, 309–310
overview of, 162
uses of, 164–165

class variables
avoiding trouble when using, 179
example of use of, 170
problems associated with global nature of,

171–174

Index 399

class variables (continued)
review of, 179
storing class level data with, 169
tendency to wander from class to class, 171
URI class and, 177–178

class_eval, for creating methods, 322–323,
329

classes
accessing in modules, 182–183
adding iterator methods to, 210–211
avoiding name collisions, 377–378
benefits of dynamic typing, 85, 89
binary operators used across, 134–135
as both factory and container, 182
changing class definition, 305–308
class/instance approximation in defining

methods, 157
composed method for building, 122–123
as container for methods, 74
defining, 294
do anything to any class, anytime, 297–299
as factory for creating instances, 74–75
fixing broken, 295–296
flexibility resulting from decoupling, 90–91
holding onto classwide values, 174–175
hook for informing when a class gains a

subclass, 250–253, 257–259
hook for informing when a module gets

included in a class, 253–255
mixins for sharing code between unrelated

classes, 195–197
modifying, 295–297
modules for grouping related, 182
modules for organizing into hierarchies, 181
modules for swapping groups of related classes

at runtime, 186–187
naming conventions, 8
open nature in Ruby. see open classes
preference for bare collections over specialized

classes, 38–40
renaming methods using alias_method,

297–299
storing class level data, 169
superclasses, 75–76
when to use modules vs. naked classes, 189
writing methods for. see methods, writing

classes, self modifying
adding programming logic to classes, 308–309
avoiding trouble when using, 314–315
class methods that change class, 309–310
defining classes and, 305–308
examples of use of, 310–313
overview of, 305
review of, 315–316

classes, that modify subclasses
avoiding trouble when using, 330–332
class methods that build instance methods,

321–323
define_method for creating methods, 324
difficulty of subclassing and, 319–321
example of paragraph subclass of document

class, 317–319
examples of use of, 327–329
no limits on modifying subclasses from

superclass methods, 324–326
overview of, 317
review of, 332

closure (scope)
avoiding trouble when using, 241–242
code blocks drag scope along to wherever they

are applied, 225–227
code

clarity and conciseness of, 94
concise vs. cryptic, 94
dynamic typing increasing compactness of,

85–89
embedding in classes, 308
format of. see code format
less code, less likelihood of error, 84
qualities of good code, 4
readability of, 12–13
sharing between unrelated classes, 195

code blocks
at_exit hook, 255–256
multiline vs. single line, 12
Ruby conventions, 11

code blocks, as iterators
adding multiple iterators, 210–211
adding single iterator, 209–210
avoiding trouble when using, 215–216
creating by tacking on to the end of method

calls, 207–208

400 Index

Enumerable module and, 213–215
overview of, 207
returning values, 208–209
review of, 218
spectrum of iterator types, 217–218
taking arguments, 208
writing iterators for collections that do not yet

exist, 211–213
code blocks, saving for later use

applying to call backs, 234–237
applying to lazy initialization, 237–239
avoiding trouble when using, 240–242
examples of use of, 243–244
explicit vs. implicit approaches to passing

blocks, 233–234
overview of, 233
producing instant block objects, 239–240
review of, 244–245

code blocks, using execute around
applying to logging, 222–224
applying to object initialization, 225, 229–230
avoiding trouble when using, 228–229
delivering code where needed, 219
dragging scope along to wherever they are

applied, 225–227, 241–242
for functions that must happen before or after

operations, 224
returning something from, 227–228
silence method for turning logging off, 231

code format
breaking rules and, 14–15
code blocks, 11
indentation, 5–6
naming conventions, 8–9
"one statement per line" convention, 10–11
parentheses in calling/defining methods, 9–10
qualities of good code, 4
readability and, 12–13
review of conventions, 15

collections
adding left shift operator to collection class, 135
caution when iterating over, 40–41
collection-related methods in Enumerable

class, 213
improper use of arrays and hashes, 41–42
iterating through, 33–36

knowing which methods change and which
leave as is, 36–38

method calls for accessing, 30–33
order of hashes, 38
overview of, 29
preference for bare collections over specialized

classes, 38–40
review of, 42
shortcuts for accessing, 29–30

colon (:), in symbol syntax, 66–67
comments

dynamic typing and, 93
example in set.rb class, 13–14
when and how often to use, 6–8

comparison operator, 23
complexity, simplicity as solution to, 92
composed method
ActiveRecord::Base class example, 127–128
applying to TextCompressor class, 121
for building classes, 122–123
characteristics of, 121–122

compression algorithm, 117–118
conciseness, of code, 4, 94
conditions, syntax in control statements, 10
consistency, of Ruby object system, 76–77
const_missing

avoiding trouble when using, 270–271
examples of use of, 269–270
handling missing constants, 267–268
review of, 271

constants
accessing in modules, 183
handling missing. see const_missing
modules for organizing into hierarchies,

181–182
modules for swapping groups of related

constants at runtime, 186–187
naming conventions, 8–9
stashing in mixins, 204–205

containers
modules as, 181–182
treating modules as object rather than static

containers, 186
control structures

||= in expression-based initialization, 26–27
boolean logic and, 23–25

Index 401

control structures (continued)
case statement, 21–23
code capturing values of while or if

statements, 25
each method preferred over for loops, 20–21
if, unless, while, and until statements,

17–19
modifier forms, 19–20
overview of, 17
review of, 27
syntax for conditions in, 10
ternary operator (?:) in decision making, 26

Cucumber testing tool, 363–364

D
data

storing class level, 169, 174
using strings for processing, 66–67

data types
built-in, 58–60
disadvantages of adding type checking code, 91
dynamic. see dynamic typing
static. see static typing
type documentation, 92

DataMapper
example of use of modules in, 190–191
mixins used by, 202–203

debugging, logging for, 219
decomposing classes

into small methods, 123
troubles arising from, 126–127

decoupling, with dynamic typing, 89–92
def

class methods that build instance methods, 322
last def principle, 295

define_method, for creating methods, 324, 328
defined? boolean logic and, 24
delegate.rb file, 281–282
delegation

avoiding trouble when using, 279–281
example of use by ActiveRecord, 282–283
method_missing applied to, 277–278
overview of, 273
problems with traditional style of, 275
pros/cons of, 274–275

review of, 283
selective approach to, 278–279
SimpleDelegator class, 281–282

delete method, for arrays, 37
Dir class, 217
directories

generating directory structure of gems, 377
organizing for gems packaging, 370–372

division (/) operator, 131
DLL Hell, 370
do keyword, in code block syntax, 11
documentation

compensating for lost documentation due to
required type declarations, 92–93

Ruby implementations, 389
DocumentIdentifier class, 142
documents

compressing specification documents, 117–118
creating identifier, 142
handling document errors, 266–267
lazy documents, 86–89
paragraph subclass of document class, 317–319
Ruby coding conventions illustrated in

Document class, 5
Domain Specific Languages, external. see DSLs

(Domain Specific Languages), external
Domain Specific Languages, internal. see DSLs

(Domain Specific Languages), internal
double quotes ("), use with string literals, 44–45
double-colon (::), in module syntax, 185
double-equals (==) operator. see == (double-

equals) operator
downcase method, working with strings, 47
DSLs (Domain Specific Languages), external

avoiding trouble when using, 360–362
building parser for XML processing language,

353–356
examples of use of, 362–364
overview of, 336, 351–352
regular expressions for parsing, 356–358
review of, 364–365
Treetop parsing tool, 358–360
when to use as alternative to internal DSL, 352

DSLs (Domain Specific Languages), internal
avoiding trouble when using, 347–349
based on Ruby code, 352

402 Index

dealing with XML, 336–341
examples of use of, 345–346
method_missing used with, 344
narrow focus of, 336
overview of, 335
review of, 349
transition from API to DSL, 341–344
when to use as alternative to external DSL, 352

duck typing, 88–89
dynamic typing

compactness of code and, 85–89
comparing File and StringIO classes, 94–95
compensating for lost documentation due to

required type declarations, 92–93
extreme decoupling with, 89–92
overview of, 85
Set class and, 95–96
trade offs in use of, 93–94

E
each method

adding iterator methods to classes, 210–212
avoiding trouble when iterating arrays, 40
iteration with, 34
preferred over for loops, 20–21
types of iterators and, 217

each_address method, Resolv class, 217
each_cons method, Enumerable module and,

213–214
each_object method, ObjectSpace class,

217–218
each_splice method, Enumerable module

and, 214
eigenclasses. see singleton classes
encryption

managing with class methods, 309–310
managing with programming logic in classes,

308–309
end keyword, in code block syntax, 11
Enumerable module, 213–215
Enumerator class, 214
eql? method
Hash class using, 152–153
overview of, 150–152
restrictive view of equality in, 153

equal? method, for testing object identity, 143
equality

avoiding trouble when using, 153–154
broadening the scope of double-equals

operator, 145–146
double-equals (==) operator, 143–144
eql? method, 150–153
equal? method, 143
Float and Fixnum classes and <=> operator,

154–156
identifiers and, 142
methods for, 142–143
overview of, 141
review of, 154–156
symbols and, 67–68
symmetry principal and, 146–147
transitive property and, 147–149
triple equals operator (===), 149–150

ERB, 362–363
eval method, Object class, 78
exception handling. see also method_missing,

error handling with
with execute around, 228
handling document errors, 266–267
internal DSLs and, 347
logging and, 222, 224

exclusive or (^) operator, 131
executable class definitions. see classes, self

modifying
execute around

avoiding trouble when using, 228–229
for functions that must happen before or after

operations, 224
initializing objects with, 225, 229–230
passing arguments and, 226–227
returning something from code blocks,

227–228
external DSLs. see DSLs (Domain Specific

Languages), external

F
false

in boolean logic, 23–24
false as an object, 76

File class, comparing with StringIO class, 94–95

Index 403

filenames, avoiding name collisions, 378
find method, ActiveRecord, 66–67
find_index, map method compared with, 35
Fixnum class, 154–156
Float class, 154–156
floating point numbers, 296
for loops, 20–21
formatting operator (%), for strings, 137–138
forward slashes (/), in regular expression syntax,

58–59
forwardable.rb, 328–329
Fowler, Martin, 336

G
gem files, 370
gem install command, 374
gem list command, 368–369
Gemcutter, adding gems to Gemcutter

repository, 375–376
gems

automating creation of, 375–376
avoiding trouble when using, 377–380
building, 370–374
creating, 378–379
examples of use of, 376–377
installing and consuming, 367–368
nuts and bolts of, 369–370
packaging programs as, 367
review of, 380
shoulda gem, 108
uploading to repository, 374–375
versioning support, 368–369

gemspec file, 373–374
GEM::Specification instances, 229–230
gets method, Object class, 78
global variables, class variables compared

with, 174
gsub

inflection rules based on, 50–51
passing regular expressions into, 60

H
HAML, 361
hash rocket (=>), 30

hashes
APIs for, 35
caution when iterating over, 40–41
each method, 34, 217
Hash class, 69
hash tables and eql? method, 150–153
hash values, 152
improper use of, 41–42
method-passing with, 33
order of, 38
overview of, 29
public methods, 36
shortcut for accessing, 30
symbols as hash keys, 68–71

HashWithIndifferenceAccess class, 71
helper methods, Rails, 203–204
hoe, for automating creation of gems, 376–377
hooks

avoiding trouble when using, 257–259
examples of use of, 259–260
informing when a class gains a subclass,

250–253
informing when a module gets included in a

class, 253–255
informing when time is up, 255–256
method_missing. see method_missing
overview of, 249
review of, 261
set_trace_func, 256–257
value of, 332

HTML
HAML for HTML templating, 361
Rails helper methods for creating, 203–204

I
identifiers

creating document identifier, 142
testing object identity, 143

if statements
case statement compared with, 23
code capturing values of, 25
example of use of, 17–18
modifier forms of, 20

included method, informing when a module
gets included in a class, 253–255

404 Index

indentation, Ruby conventions, 5–6
indexing strings, 52
inflection rules, for strings, 50–51
inheritance
ancestors method, 199
class variables searching for associated classes,

171, 173
mixin modules and, 201–202
superclasses in inheritance tree, 193

inherited method
avoiding trouble when using, 257–259
hook for informing when a class gains a

subclass, 250–253
initialization

defining classes, 294
of objects using execute around, 225
saved code blocks used for lazy initialization,

237–239
of variables, 26

initialize method, for defining classes, 294
inject method, collection methods, 35–36
instance _of?, 145
instance methods

class methods that build, 321–323
instance_methods method, 307
instance.method_name, 74

instance variables
attaching to class objects, 174
instance_variables method, 79
naming conventions, 8

instances
classes as factory for creating, 74–75
class/instance approximation in defining

methods, 157
inheriting methods of Object class, 78
singleton methods defined for single object

instance, 158–159
integers, 154–156
interfaces, 285. see also APIs
internal DSLs. see DSLs (Domain Specific

Languages), internal
intersection operations, mapping boolean

operators to, 135
IronRuby implementation, 382
iteration

adding an iterator, 209–210

adding multiple iterators, 210–211
avoiding trouble when using, 215–216
caution when iterating over arrays and hashes,

40–41
code blocks used as iterators, 207
Enumerable module and, 213–215
spectrum of iterator types, 217–218
through collections, 33–36
writing iterators for collections that do not yet

exist, 211–213

J
JAR file Hell, 370
Java

examples of general purpose languages, 336
JRuby and, 387

Java Virtual Machine (JVM), 387
JRuby

overview of, 382, 387–388
support and documentation, 389

JVM (Java Virtual Machine), 387

K
kind_of? method

double-equals (==) operator and, 146
locating modules in classes with, 199

L
lambda method, creating default Proc object

using, 239–241
lazy initialization, 237–239
"leave it to the last minute" technique, 88
left shift operator (<<), 131, 135
lib directory

organizing for gems packaging, 372
sow command generating, 377

lines, strings as collections of, 50
listeners, for call backs, 234–236
literals, shortcuts for accessing collections, 29–30
load methods, managing logging with, 221–222
logging

adding to database interactions, 220
capturing return values, 228

Index 405

logging (continued)
for debugging, 219
load and save methods for managing, 221–222
passing arguments and, 227
silence method for turning off, 231
using code blocks for, 222–223
using explicit log messages, 220–221

long running tests, 110
lstrip method, for strings, 47

M
magic methods. see also method_missing,

building APIs with
example in ActiveRecord, 291–292
example in OpenStruct class, 290–291
overview of, 288

map method, for collections, 35
Matsumoto, Yukihiro, 382
Matz's Ruby Interpreter. see MRI (Matz's Ruby

Interpreter)
metaclasses. see singleton classes
metadata, gems and, 370, 373
metaprogramming

hooks. see hooks
monkey patching. see monkey patching
need for testing in, 315–316
overview of, 249
self modifying classes. see classes, self modifying
superclasses as basis for class modifying code.

see classes, that modify subclasses
when to use, 331–332

method_added, 256
method_missing

types of hooks, 256
used in conjunction with internal DSL, 344
value of, 332

method_missing, building APIs with
avoiding trouble when using, 289–290
building form letters one word at a time,

286–288
examples of use of, 290–292
overview of, 285
review of, 292
user focus in creating easy-to-use APIs, 289

method_missing, delegation with
avoiding trouble when using, 279–281
example of use by ActiveRecord, 282–283
overview of, 273
problems with traditional style of delegation,

275
process of applying delegation, 277–278
pros/cons of delegation, 274–275
review of, 283
selective approach to delegation, 278–279
SimpleDelegator class, 281–282

method_missing, error handling with, 263–264
avoiding trouble when using, 270–271
handling document errors, 266–267
overriding, 265
review of, 271
what occurs when Ruby fails to find a method,

264–265
whiny nil facility in Rails as example of use of,

268–269
methods

array method-passing feature, 30–32
calling on object instances, 74–75
class methods that build instance methods,

321–323
classes as container for, 74
class/instance approximation in defining, 157
creating code blocks by tacking on to end of

method calls, 207–208
define_method for creating, 324
defining module-level, 189
defining operators vs. using methods, 135
determining when methods are defined, 307
dynamic typing and, 85
for equality, 142–143
fundamental nature of method calls in Ruby,

81–82
handling missing. see method_missing
hash method-passing feature, 33
“if the method is there, it is the right object,” 94
inheriting default set from Object class,

77–78
looking for in superclasses, 75–76
mixing instance methods with class methods,

254–255

406 Index

modifying classes and, 295
modifying subclasses from superclass methods,

324–326
modules as container for, 182, 184–185
naming conventions, 8
operator-to-method translation, 130
parentheses in calling/defining, 9–10
public, private, and protected, 79–81
public methods for arrays and hashes, 36
redefining on broken classes, 295–296
reflection-oriented, 79
renaming using alias_method, 297–299
singleton methods overriding class-defined

methods, 159–160
that take code blocks, 223–224

methods, writing
ActiveRecord::Base class example,

127–128
composed method way of building classes,

122–123
compressing specifications, 117–121
overview of, 117
qualities of good methods, 121–122
review of, 128
single-exit approach, 123–126
troubles arising from decomposing methods,

126–127
MiniSpec, 110
MiniTest, 110
mixin modules

as alternative to superclasses, 193–195
avoiding trouble when using, 198–202
constants stored in, 204–205
DataMapper example of use of, 202–203
for extending modules, 197–198
inheritance relationships and, 201–202
overview of, 193
Rails helper methods using, 203–204
review of, 205
as solution for sharing code between unrelated

classes, 195–197
mocha

singleton methods and, 165
utilities for Test::Unit, 109

mocks
RSpec, 107–108
singleton methods and, 165

models, object oriented programming as support
system for, 157

modifier forms, of control structures, 19–20
modifiers, strings, 48
module variables, 178–179
module_eval, for creating methods, 329
modules

accessing classes in, 182–183
accessing constants in, 183
adding module variables to, 178–179
avoiding name collisions, 377–378
avoiding trouble when using, 189–190
benefits of dynamic typing, 85
building incrementally, 185
class hierarchy and, 201
as containers, 181–182
economical use of, 190–191
extending, 197–198
grouping related classes in, 182
grouping utility methods in, 184–185
hook for informing when a module gets

included in a class, 253–255
including in classes, 195–196
mixing into class. see mixin modules
nesting, 183–184
review of, 191
treating as objects, 186–189

modulo (%) operator, 131, 152
monkey patching. see also open classes

do anything to any class, anytime, 297–299
examples of use of, 299–302
how it works, 307–308
modifying existing classes, 296–297
renaming methods using alias_method,

297–299
MRI (Matz's Ruby Interpreter)

overview of, 382–385
support and documentation, 389
YARV as next generation implementation of,

385
multiline strings, 46, 61–62

Index 407

multiplication (*) operator, 131
mutability, of strings, 51–52

N
names

accessing classes in modules by, 182–183
alias_method for renaming methods,

297–299
avoiding collisions, 377–378
example in set.rb class, 14
execute around and, 228–229
gems and, 371
method, 122
objects and name collisions, 82–83
Ruby conventions, 8–9
variable, 8

namespaces, creating name-space modules, 189
NaN (Not a Number), 296
nesting modules, 183–184
nil

boolean logic and, 23–25
initializing variables and, 26
as an object, 77, 84
whiny nil facility in Rails, 268–269

Not a Number (NaN), 296
not operator, 132
numeric classes

accepting Float as equals, 154–156
not supporting singleton methods, 159

O
object oriented programming

Ruby as OO programming language, 73
as support system, for models, 157

object relational mappers
ActiveRecord. see ActiveRecord
DataMapper. see DataMapper

objects
avoiding trouble when using, 82–84
BasicObject, 280–281
classes, instances, and methods, 74–76
consistency of Ruby object system, 76–77
dynamic typing. see dynamic typing
equality. see equality

fundamental nature of method calls in Ruby,
81–82

“if the method is there, it is the right object,” 94
initializing using execute around, 225,

229–230
methods, 77–79
modules as, 186–189
name collisions and, 82–83
Object class, 77
overview of, 73–74
public, private, and protected methods, 79–81
referencing with variables, 77
review of, 84
singleton methods, 158–159

ObjectSpace class, 217–218
open classes. see also monkey patching

avoiding trouble when using, 303
creating self-modifying classes, 305
defining classes, 294
examples of use of, 299–302
fixing broken classes, 295–296
improving existing classes, 296–297
modifying classes, 295
overview of, 293–294
renaming methods using alias_method,

297–299
review of, 303–304
value of, 332

OpenStruct class, 290–291
operators

cases/situations calling for, 135–137
commutative, 137
defining, 129–131
overview of, 129
review of, 139
string formatting, 137–138
types in Ruby, 131–133
using across classes, 134–135

or (|) operator, 131
order, of arrays and hashes, 38
overloading operators, 129
overriding methods

errors and, 83
method_missing, 265
methods in superclass unable to override

methods in subclasses, 200

408 Index

P
packaging programs, as gems. see gems
parentheses (())

readability and, 12
Ruby conventions for calling

defining/methods, 9–10
parse_statement method, 357
parsers

based on regular expressions, 356–358
building for XML processing language,

353–356
examples of external DSLs, 364
HAML and, 361–362
Treetop for building, 358–360

Pathname class, 299–300
pattern matching, 150
period (.)

for matching any single character, 54
in module syntax, 185
using asterisk (*) in conjunction with, 58

polymorphism, 88
pop method, for arrays, 37
print method, Object class, 78
private methods, 79–81
Proc class, 239–241
Proc.new, 240–241
programming

metaprogramming. see metaprogramming
object oriented, 73, 157
trade offs in programming languages, 336

programming logic, adding to classes, 308–309,
314

programs, packaging as gems, 367
protected methods, 81
public methods

overview of, 79
returning all public methods of an object, 69

public_methods, Object class, 79
push method, for arrays, 37
puts method, Object class, 78

Q
question mark (?), using with regular

expressions, 62–63

R
RACC, for building parsers, 359
Rails

example of const_missing hook, 270
example of on-the-fly class modification,

312–313
example of saved code blocks, 243
helper methods using mixins, 203–204
whiny nil facility, 268–269

Rake
as build tool, 335
example of const_missing hook,

269–270
example of saved code blocks, 243–244
examples of internal DSLs, 345–346
specifying executable scripts in gems, 374

rake command, 374
rake push command, 376
Rakefiles

automating creation of gems, 375–376
sow command generating, 377

ranges
of characters in regular expressions, 56
indexing strings and, 52

readability, of code, 12–13
reflection-oriented methods, 79
Regexp data type, 58
regular expressions

asterisk (*) symbol in, 57–58
case statement detecting match, 23
HAML and, 361
matching beginnings and endings of strings,

60–62
matching one character at a time, 54–55
mistakes to avoid, 63
as objects, 76
overview of, 53
parser based on, 356–358
pattern matching against strings, 150
resources for use of, 394
review of, 64
sets, ranges, and alternatives, 55–57
time.rb example, 62–63

repository, uploading gems to, 374–375
require method, Object class, 82

Index 409

required type declarations, compensating for lost
documentation due to, 92–93

Resolv class, 217
resources, for Ruby, 393–395
respond_to method, 146–147
return, in code blocks, 216
reverse method, for arrays, 36–37
REXML XML parsing library, 338–339
Ripper DSL, 352–353
RSpec

double-equals (==) operator, 138
examples, 104
independence of test, 111
internal DSLs and, 345–346
MiniSpec, 110
mocks, 107–109
overview of, 102–104
parameters, 105
saved code blocks and, 243
shoulda gem providing RSpec-like example, 108
singleton methods and, 165
specifying executable scripts in gems, 374
stubs, 106–107
as testing utility, 335
tidy and readable specs, 104–105

rstrip method, for strings, 47
Rubinius, 382, 388–389
Ruby implementations

avoiding trouble when using, 389
extending, 389
JRuby, 387–388
MRI, 382–385
overview of, 381
review of, 390
Rubinius, 388–389
versions and, 381–382
YARV, 385–387

Ruby versions
comparing Ruby versions, 381–382
managing transition between, 311–312
MRI supporting Ruby 1.8, 383
YARV supporting Ruby 1.9, 381–382

RubyForge, 375
RubyGems. see gems
ruby-mp3info, 368
RubySpec project, 109–110

run-time decisions, putting programming logic
in classes and, 308

S
save methods, 221–222
scope (closure)

avoiding trouble when using, 241–242
code blocks drag scope along to wherever they

are applied, 225–227
scope, of class methods, 165–166
scripts, specifying executable scripts in gems, 374
self

class methods and, 309
as default object in method calls, 75
knowing value of during class definition,

330–331
semicolon (;), for separating statements in Ruby

code, 10–11
set

regular expression for matching any one of a
bunch of characters, 55–56

using asterisk (*) in conjunction with, 58
Set class

dynamic typing and, 95–96
mapping boolean operators to union and

intersection operations, 135
set_trace_func hook, 256–257
setup method, Test::Unit, 100
shift method, for arrays, 37
shoulda gem, utilities for Test::Unit, 108
silence method, for turning logging off, 231
SimpleDelegator class, 281–282
simplicity, as solution to code complexity, 92
single quotes ('), use with string literals, 44–45
single-exit approach, to writing methods,

123–126
singleton classes

adding convenience to class instance variables,
176–177

class methods, 162–165
visibility of, 160–161

singleton methods
alternative syntax for, 160
avoiding trouble when using, 165–167
class methods, 162–165

410 Index

defining, 158, 163–164
extending modules and, 198
invisibility of singleton class, 160–161
overriding class-defined methods, 159–160
overview of, 157–158
review of, 167

software
resources for building software with Ruby, 394
trade offs in software engineering, 335

sort method
<=> operator and, 214
for arrays, 37

source code, for Ruby projects, 394
sow command, generating directory structure of

gems, 377
spec command

running specifications with, 103–104
specifying executable scripts in gems, 374

specs. see also tests
MiniSpec, 110
mocks and, 107–108
overview of, 103
RubySpec project, 109–110
running with spec command, 103–104
stubs and, 105–107
tidy and readable, 104–105
when to write, 113

splat, for star jargon, 32
split method, working with strings, 48
square brackets. see [] (square brackets)
squish! method, adding to String class, 301–302
static typing

adding type-checking code to methods and, 91
bulkier code with, 89
dangers of dynamic typing and, 93
overview of, 85

StringIO class, comparing with File class,
94–95

strings. see also regular expressions
adding methods to String class, 300–302
APIs supported, 47–49
converting symbols to/from, 69
formatting operator (%) for, 137–138
indexing, 52
inflection rules based on gsub, 50–51
mutability of, 51–52

as objects, 76
optimizing String class for data processing, 67
options for writing, 44–46
overview of, 43
pattern matching regular expressions against

strings, 150
review of, 52
String class, 43
symbols as, 65–66
types of thing collected in, 49–50
uses of, 66–67
when to use symbols vs. when to use strings,

70–71
strip method, 47
stubs

RSpec, 105–107
singleton methods and, 165

sub method, working with strings, 47–48
subclasses

calling private methods from, 80
class instance variables and, 175–176
difficulty of subclassing, 319–321
example of paragraph subclass, 317–319
examples of subclass-changing methods, 327
hook for informing when a class gains a

subclass, 250–253, 257–259
methods in superclass unable to override

methods in subclasses, 200
no limit to modifying from superclass method,

324–326
practical basis of, 95

subtraction (-) operator
as binary or unary operator, 132
overloading, 131

sudo, for running gems, 368
superclasses

in inheritance tree, 193
methods in superclass that can add methods to

subclasses, 324
methods in superclass unable to override

methods in subclasses, 200
mixins as alternative to, 193–195
modules and, 198
no limit to modifying subclasses from

superclass method, 324–326
overview of, 75–76

Index 411

swapcase method, working with strings, 47
switch statement, case statement compared

with, 21
symbols

compared with strings, 65–66
confusing nature of, 69–70
converting strings to/from, 69
as hash keys, 68–69
immutability of, 68
not supporting singleton methods, 159
as objects, 76
overview of, 65
review of, 71
single instance of, 67–68
using strings as symbolic markers, 66–67
when to use symbols vs. when to use strings,

70–71
symmetry principal, double-equals (==) operator

and, 146–147

T
tabs, Ruby indentation conventions and, 5–6
TAR files, 370
teardown method, Test::Unit, 100
ternary operator (?:), in expression-based

decision making, 26
test directory, sow command generating, 377
test-first development, 113
tests

applying to gems, 380
assertions in Test::Unit, 101
automated testing for resolving bugs, 94
limitations of Test::Unit, 101–102
MiniTest, 110
mocha utilities for Test::Unit, 109
mocks and, 107–108
overview of, 97
qualities of good tests, 110–113
review of, 113
RSpec testing framework, 102–104
RubySpec project, 109–110
shoulda gem utilities for Test::Unit, 108
stubs and, 105–107

tidy and readable specs, 104–105
when to write, 113

Test::Unit
at_exit hook used in, 259–260
assertions in, 101
limitations of, 101–102
mocha utilities for, 109
overview of, 98–100
shoulda gem utilities for, 108

text processing, strings and, 43
TextCompressor class, 119
time zones, regular expression for offsetting,

62–63
time.rb, regular expressions and, 62–63
times method, iterators, 211–212
to_s method

of Object class, 77–78
turning symbols into strings, 69

to_sym method, turning strings into symbols, 69
transitive property, of double-equals (==)

operator, 147–149
Treetop

for building parsers, 358–360
examples of external DSLs, 364

triple equals operator (===), for case
statements, 23, 149–150

true, as an object, 76
two space rule, Ruby indentation convention,

5–6
type declaration

documentation and, 92
dynamic typing. see dynamic typing
static typing. see static typing

type-checking code, disadvantages of adding, 91

U
unary operators, 131–132, 134
union operations, mapping boolean operators

to, 135
unique_index_of method, 120
unit tests. see also Test::Unit

minimum tests, 112–113
speed as factor in, 110

412 Index

Unix, 370
unless statements

example of use of, 18–19
modifier forms of, 20

until statements
comments, 6
example of use of, 19
modifier forms of, 20

upcase method, working with strings, 47
URIs

using class variables with, 177–178
using modules with, 191

user interfaces, 285. see also APIs

V
values
case statement returning, 22
code blocks returning, 208–209

variables
adding module variables to modules,

178–179
attaching instance variable to class objects

(class instance variables), 174–175
class variables. see class variables
documenting declaration of, 92
initializing, 26
modules and, 186
naming, 8
open classes and, 294
referencing objects with, 77

VCIS (Version Conflict Induced Insanity),
370

versions
Ruby implementations and, 381–382
versioning support in gems, 368–369

vertical bar (|), in syntax of alternatives in
regular expressions, 56–57

visibility, of methods, 79–81

W
while statements

code capturing values of, 25
example of use of, 19
modifier forms of, 20

whiny nil facility, Rails, 268–269
white space, managing in strings, 47
with_logging methods

capturing return values, 228
managing logging with, 222
passing arguments and, 227

X
XML

accessing/manipulating data in, 336–337
building parser for, 353–356
creating reader for, 251–252
processing in Ruby with REXML, 337–339
XmlRipper class for writing XML processing

scripts, 340–341
XmlRipper class

building parser for XML processing language,
354

transition from API to DSL and, 341–344
for writing XML processing scripts, 340

XPath, 338–339, 344
XSLT, 337
XUnit testing frameworks, 98

Y
YAML

compared with XML, 250
example of use of modules in, 191

YARV
overview of, 385–387
support and documentation, 389

yield, firing code blocks, 233

Index 413

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 6: Use Symbols to Stand for Something
	The Two Faces of Strings
	Not Quite a String
	Optimized to Stand for Something
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 8: Embrace Dynamic Typing
	Shorter Programs, But Not the Way You Think
	Extreme Decoupling
	Required Ceremony Versus Programmer-Driven Clarity
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

