

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

AirPort, Apple, the Apple logo, Aqua, Bonjour, Cocoa, Cover Flow, Dashcode, Finder,
FireWire, iMac, iPhone, iPod, iTunes, the iTunes logo, Mac, Mac logo, Macintosh,
Multi-Touch, Objective-C, QuickTime, QuickTime logo, Safari, Spotlight, and Xcode are
trademarks of Apple, Inc., registered in the U.S. and other countries.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Sadun, Erica.
The iPhone developer’s cookbook : building mobile applications with the iPhone SDK

/ Erica Sadun.
p. cm.

ISBN-10: 0-321-55545-7 (pbk. : alk. paper)
ISBN-13: 978-0-321-55545-8 (pbk. : alk. paper) 1. iPhone (Smartphone)–

Programming. 2. Computer software–Development. 3. Mobile computing. I. Title.
QA76.8.I64S33 2009
005.26—dc22

2008030294

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-55545-8
ISBN-10: 0-321-55545-7

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
Second printing, October 2008

Editor-in-Chief
Karen Gettman

Senior Acquisitions
Editor
Chuck Toporek

Senior
Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Chelsey Marti

Copy Editor
Keith Cline

Indexers
Cheryl Lenser,
Erika Millen

Proofreader
San Dee Phillips

Technical
Reviewers
Tim Burks, Daniel
Pasco, Alex C.
Schaefer

Publishing
Coordinator
Romny French

Cover Designer
Gary Adair

Composition
Nonie Ratcliff

Preface

Few platforms match the iPhone’s unique developer technologies. It combines
OS X-based mobile computing with an innovative multitouch screen, location aware-
ness, an onboard accelerometer, and more.When Apple introduced the iPhone Cocoa
Touch SDK beta in early March 2008, developers responded in numbers that brought
Apple’s servers to its knees.Apple delivered more than one hundred thousand SDK
downloads in less than one week.The iPhone Developer’s Cookbook was written to address
this demand, providing an accessible resource for those new to iPhone programming.

Who This Book Is For
This book is written for new iPhone developers with projects to get done and a new
unfamiliar SDK in their hands.Although each programmer brings different goals and
experiences to the table, most developers end up solving similar tasks in their develop-
ment work:“How do I build a table?”;“How do I create a secure keychain entry?”;
“How do I search the Address Book?”;“How do I move between views?”; and “How do
I use Core Location?”

The iPhone Developer’s Cookbook is aimed squarely at anyone just getting started with
iPhone programming.With its clear, fully documented examples, it will get you up to
speed and working productively. It presents already tested ready-to-use solutions, letting
programmers focus on the specifics of their application rather than on boilerplate tasks.

How This Book Is Structured
This book offers single-task recipes for the most common issues new iPhone developers
face: laying out interface elements, responding to users, accessing local data sources, and
connecting to the Internet.The cookbook approach delivers cut-and-paste convenience.
Programmers can add source recipes into their projects and then customize them to their
needs. Each chapter groups related tasks together. Readers can jump directly to the kind
of solution they’re looking for without having to decide which class or framework best
matches that problem.

Here’s a rundown of what you’ll find in this book’s chapters:

n Chapter 1: Getting Started with the iPhone SDK

Chapter 1 introduces the iPhone SDK and explores the iPhone as a delivery plat-
form, limitations and all. It explains the breakdown of the standard iPhone applica-
tion and enables you to build your first Hello World style samples.

xviii Preface

n Chapter 2: Views

Chapter 2 introduces iPhone views, objects that live on your screen.You see how
to lay out, create, and order your views to create backbones for your iPhone appli-
cations.You read about view hierarchies, geometries, and animations as well as how
users can interact with views through touch.

n Chapter 3: View Controllers

The iPhone paradigm in a nutshell is this: small screen, big virtual worlds. In
Chapter 3, you discover the various UIViewController classes that enable you to
enlarge and order the virtual spaces your users interact with.You learn how to let
these powerful objects perform all the heavy lifting when navigating between
iPhone application screens.

n Chapter 4: Alerting Users

The iPhone offers many ways to provide users with a heads up, from pop-up
dialogs and progress bars to audio pings and status bar updates. Chapter 4 shows
how to build these indications into your applications and expand your user-alert
vocabulary.

n Chapter 5: Basic Tables

Tables provide an interaction class that works particularly well on a small, cramped
device. Many, if not most, apps that ship with the iPhone and iPod touch center
on tables, including Settings,YouTube, Stocks, and Weather. Chapter 5 shows how
iPhone tables work, what kinds of tables are available to you as a developer, and
how you can use table features in your own programs.

n Chapter 6: Advanced Tables

iPhone tables do not begin and end with simple scrolling lists.You can build tables
with titled sections, with multiple scrolling columns, and more.You can add con-
trols such as switches, create translucent cell backgrounds, and include custom
fonts. Chapter 6 starts from where “Basic Tables” left off. It introduces advanced
table recipes for you to use in your iPhone programs.

n Chapter 7: Media

As you’d expect, the iPhone can load and display media from a wide variety of
formats. It does music; it does movies. It handles images and Web pages.You can
present PDF documents and photo albums and more. Chapter 7 shows way after
way that you can import or download data into your program and display that data
using the iPhone’s multitouch interface.

n Chapter 8: Control

The UIControl class provides the basis for many iPhones interactive elements,
including buttons, text fields, sliders, and switches. Chapter 8 introduces controls
and their use, both through well-documented SDK calls and through less-
documented ones.

xixPreface

n Chapter 9: People, Places, and Things

In addition to standard user interface controls and media components that you’d
see on any computer, the iPhone SDK provides a number of tightly focused devel-
oper solutions specific to iPhone and iPod touch delivery. Chapter 9 introduces
the most useful of these, including Address Book access (“people”), core location
(“places”), and sensors (“things”).

n Chapter 10: Connecting to Services

As an Internet-connected device, the iPhone is particularly suited to subscribing to
Web-based services.Apple has lavished the platform with a solid grounding in all
kinds of network computing services and their supporting technologies.The
iPhone SDK handles sockets, password keychains, SQL access, XML processing,
and more. Chapter 10 surveys common techniques for network computing and
offering recipes that simplify day-to-day tasks.

n Chapter 11: One More Thing: Programming Cover Flow

Although Cover Flow is not officially included in the iPhone SDK, it offers one of
the nicest and most beautiful features of the iPhone experience.With Cover Flow,
you can offer your users a gorgeously intense visual selection experience that puts
standard scrolling lists to shame. Chapter 11 introduces Cover Flow and shows
how you can use it in your applications.

Prerequisites
Here are basics you need on hand to begin programming for the iPhone or iPod touch:

n A copy of Apple’s iPhone SDK. Download your copy of the iPhone SDK
from Apple’s iPhone Dev Center (http://developer.apple.com/iphone/).You must
join Apple’s (free) developer program before you download.

n An iPhone or iPod touch. Although Apple supplies a simulator as part of its
SDK, you really do need to have an actual unit to test on if you’re going to develop
any serious software.You’ll be able to use the cable that shipped with your iPhone
or iPod touch to tether your unit to the computer and install the software you’ve
built.

n An Apple iPhone Developer License. You will not be able to test your soft-
ware on an actual iPhone or iPod touch until you join Apple’s iPhone Developer
program (http://developer.apple.com/iphone/program). Members receive a
certificate that allows them to sign their applications and download them to the
platforms in question for testing and debugging.The program costs $99/year for
individuals and companies, $299/year for in-house enterprise development.

n An Intel-based Macintosh running Leopard. The SDK requires a Macintosh
running Leopard OS X 10.5.3 or later.Apple requires an Intel-based computer in
32-bit mode. Many features do not work properly on PPC-based Macs or Intel
Macs in 64-bit mode. Reserve plenty of disk space and at least 1GB of RAM.

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/program

xx Contents

n At least one available USB 2.0 port. This enables you to tether your develop-
ment iPhone or iPod touch to your computer for file transfer and testing.

n An Internet connection. This connection enables you to test your programs
with a live WiFi connection as well as with EDGE.

n Familiarity with Objective-C. The SDK is built around Objective-C 2.0.The
language is based on standard C with object-oriented extensions. If you have any
object-oriented and C background, making the move to Objective-C is both
quick and simple. Consult any Objective-C/Cocoa reference book to get up to
speed.

Note
Although the SDK supports development for the iPhone and iPod touch, as well as possible
yet-to-be-announced platforms, this book refers to the target platform as iPhone for the
sake of simplicity. When developing for the touch, most material is applicable. This
excludes certain obvious features such as telephony and onboard speakers. This book
attempts to note such exceptions in the manuscript.

Contacting the Author
If you have any comments or questions about this book, please drop me an e-mail
message at erica@ericasadun.com or stop by www.ericasadun.com. My Web site hosts
many of the applications discussed in this book. Please feel free to visit, download
software, read documentation, and leave your comments.

www.ericasadun.com

2
Views

Pretty much everything that appears on the iPhone’s screen is a view.Views act like
little canvases that you can draw on with colors, pictures, and buttons.You can drag them
around the screen.You can resize them.You can layer them. In this chapter, you discover
how to design and build screen content using Cocoa Touch and UIViews.You learn
about view hierarchy, geometry, and animation, and find out how to combine event
feedback from UITouches into meaningful UIView responses.There’s so much that
UIViews can do that a single chapter has no hope of covering the entire class with the
thoroughness it deserves. Instead, this chapter introduces essential functionality and
recipes that you can use as a starting point for your own UIView exploration.

UIView and UIWindow
The iPhone rule goes like this: one window, many views. If you keep that idea in mind,
the iPhone interface design scenario simplifies. Metaphorically speaking, UIWindow is the
TV set, and UIViews are the actors on your favorite show.They can move around the
screen, appear, and disappear, and may change the way they look and behave over time.

The TV set, on the other hand, normally stays still. It has a set screen size that doesn’t
change even if the virtual world you see through it is practically unlimited.You may
even own several TVs in the same household (just like you can create several UIWindow
instances in the same application), but you can watch just one at a time.

UIViews are GUI building blocks.They provide visual elements that are shown
onscreen and invite user interaction. Every iPhone user interface is built from UIViews
displayed within one UIWindow, which is itself a specialized kind of UIView.The win-
dow acts a container; it is the root of the display hierarchy. It holds all the visible applica-
tion components within itself.The following sections will give you just a taste of the
kind of ways you can control and manipulate views, their hierarchy, and their geometry.

Hierarchy
A tree-based hierarchy orders what you see on your iPhone screen. Starting with the
main window, views are laid out in a specifically hierarchical way.All views may have

children, called subviews. Each view, including the root window, owns an ordered list of
these subviews.Views might own many subviews; they might own none.Your application
determines how views are laid out and who owns whom.

Subviews display onscreen in order, always from back to front.And because the iPhone
supports view transparency, this works exactly like a stack of animation cells—those trans-
parent sheets used to create cartoons. Only the parts of the sheets that have been painted
are shown.The clear parts allow any visual elements behind that sheet to be seen.

Figure 2-1 shows a little of the layering used in a typical window. Here you see the
window that owns a UINavigationController-based window.The window (repre-
sented by the clear, rightmost element) owns a Navigation subview, which in turn owns
two subview buttons (one left and one right) and a table.These items stack together to
build the GUI.

38 Chapter 2 Views

Figure 2-1 Adding subview hierarchies
allows you to build complex GUIs.

Notice how the buttons appear over the navigation bar and how the table is sized so
that it won’t obscure either the buttons or bar.The button frames are small, taking up
very little space onscreen.The table frame is large, occupying the majority of screen
space. Here are some ways you can manage subviews in your programs:

n To add a subview, use a call to [parentView addSubview:child]. Newly added
subviews are always frontmost on your screen.

n Query any view for its children by asking it for [parentView subviews].This
returns an array of views, ordered from back to front.

n Remove a subview from its parent with [childView removeFromSuperview].
n Reorder subviews using [parentView exchangeSubviewAtIndex:i
withSubviewAtIndex:j]. Move subviews to the front or back using
bringSubviewToFront: or sendSubviewToBack:.

n Tag your subviews using setTag:.This identifies views by tagging them with a
number. Retrieve that view from the child hierarchy by calling viewWithTag: on
the parent.

Note
You can tag any instance that is a child of UIView, including windows and controls. So if
you have many onscreen buttons and switches, for example, add tags so that you can tell
them apart when users trigger them.

Geometry and Traits
Every view uses a frame to define its boundaries.The frame specifies the outline of the
view: its location, width, and height.You define the frame rectangle using Core Graphics
structures. For frames, this usually means a CGRect rectangle made up of an origin
(a CGPoint, x and y) and a size (a CGSize, width and height). Here are some quick facts
about these types.

CGRect
The CGRect structure defines an onscreen rectangle. It contains an origin (rect.origin)
and a size (rect.size).These are CGRect functions you’ll want to be aware of:

n CGRectMake(origin.x, origin.y, size.width, size.height) defines
rectangles in your code.

n NSStringFromCGRect(someCGRect) converts a CGRect structure to a formatted
string.

n CGRectFromString(aString) recovers a rectangle from its string representation.
n CGRectInset(aRect) enables you to create a smaller or larger a rectangle that’s

centered on the same point. Use a positive inset for smaller rectangles, negative for
larger ones.

n CGRectIntersectsRect(rect1, rect2) lets you know whether rectangle
structures intersect. Use this function to know when two rectangular onscreen
objects overlap.

n CGRectZero is a rectangle constant located at (0,0) whose width and height are
zero.You can use this constant when you’re required to create a frame but you’re still
unsure what that frame size or location will be at the time of creation.

CGPoint and CGSize
Points refer to locations defined with x and y coordinates; sizes have width and height.
Use CGPointMake(x, y) to create points. CGSizeMake(width, height) creates

39UIView and UIWindow

sizes.Although these two structures appear to be the same (two floating-point values),
the iPhone SDK differentiates between them. Points refer to locations. Sizes refer to
extents.You cannot set myFrame.origin to a size.

As with rectangles, you can convert them to and from strings:
NSStringFromCGPoint(), NSStringFromCGSize(), CGSizeFromString(), and
CGPointFromString() perform these functions.

Defining Locations
You can define a view’s location by setting its center (which is a CGPoint) or bounds
(CGRect). Unlike the frame, a view’s bounds reflect the view’s frame in its own coordi-
nate system. In practical terms, that means the origin of the bounds is (0.0, 0.0), and its
size is its width and height.

When you want to move or resize a view, update its frame’s origin, center, or size.You
don’t need to worry about things such as rectangular sections that have been exposed or
hidden.The iPhone takes care of the redrawing.This lets you treat your views like tangi-
ble objects and delegate the rendering issues to Cocoa Touch. For example

[myView setFrame:CGRectMake(0.0f, 50.0f, mywidth, myheight)];

Transforms
Standard Core Graphics calls transform views in real time. For example, you can apply
clipping, rotation, or other 2D geometric effects. Cocoa Touch supports an entire suite of
affine transforms (translate, rotate, scale, skew, and so on).The drawRect: method for
any UIView subclass provides the entry point for drawing views through low-level Core
Graphics calls.

Note
When calling Core Graphics functions, keep in mind that Quartz lays out its coordinate
system from the bottom left, whereas UIViews have their origin at the top left.

Other View Traits
In addition to the physical screen layout, you can set the following view traits among
others:

n Every view has a translucency factor (alpha) that ranges between opaque and
transparent.Adjust this by issuing [myView setAlpha:value], where the alpha
values falls between 0.0 (fully transparent) and 1.0 (fully opaque).

n You can assign a color to the background of your view. [myView
setBackgroundColor:[UIColor redColor]] colors your view red.

View Layout
Figure 2-2 shows the layout of a typical iPhone application screen. For current releases of
the iPhone, the screen size is 320x480 pixels in portrait mode, 480x320 pixels in landscape.
At the top of the screen, whether in landscape or portrait mode, a standard status bar

40 Chapter 2 Views

occupies 20 pixels of height.To query the status bar frame, call [[UIApplication
sharedApplication] statusBarFrame].

If you’d rather free up those 20 pixels of screen space for other use, you can hide the
status bar entirely. Use this UIApplication call: [UIApplication sharedApplication]
setStatusBarHidden:YES animated:NO].Alternatively, set the UIStatusBarHidden
key to <true/> in your application Info.plist file.

To run your application in landscape-only mode, set the status bar orientation to
landscape. Do this even if you plan to hide the status bar (that is, [[UIApplication
sharedApplication] setStatusBarOrientation:

UIInterfaceOrientationLandscapeRight]).This forces windows to display side to
side and produces a proper landscape keyboard.

The UIScreen object acts as a stand in for the iPhone’s physical screen ([UIScreen
mainScreen]).The screen object maps view layout boundaries into pixel space. It
returns either the full screen size (bounds) or just the rectangle that applies to your
application (applicationFrame).This latter takes the size of your status bar and, if used,
any toolbars/navigation bars into account.

By default, UINavigationBar, UIToolbar, and UITabBar objects are 44 pixels in
height each. Use these numbers to calculate the available space on your iPhone screen
and lay out your application views when not using Interface Builder’s layout tools.

41UIView and UIWindow

Figure 2-2 On current generations of the iPhone, the status bar is
20 pixels high, often followed below by a 44-pixel-high navigation bar. If you
use a toolbar at the bottom of your screen, that will also occupy 44 pixels.
It helps to use Photoshop or some other image layout program to design

your screens taking these geometries into account.

Gestures
Views intercept user touches.This integration between the way things look and the way
things react enables you to add a meaningful response to taps, drags, and what have you.
Adding touch handlers like touchesBegan: withEvent: to your views allows you to
intercept user touches, determine the phase of the touch (the equivalent of mouse down,
mouse dragged, mouse up), and produce feedback based on those touches.

The UITouch class tells you where the event took place (locationInView:) and the
tap count (tapCount), which is vital for distinguishing between single- and double-taps.
Several recipes in this chapter demonstrate how to use these gesture responses and how
to integrate view geometry and hierarchy into your applications for enticing, layered,
direct-manipulation interfaces.

Recipe: Adding Stepwise Subviews
Expand your view hierarchy by calling addSubview:.This adds a subview to some other
view. Recipe 2-1 shows a simple UIViewController’s loadView method that defines a
series of stepped subviews. It demonstrates the basics of allocating, framing, and adding views.

These subviews are not nested, in that they all belong to the same parent.They’re
indented so that you can see them all at once.The indentation uses the handy
CGRectInset() function. Pass it a rectangle (using the CGRect structure) and two
insets—horizontal and vertical—and it returns the inset, centered rectangle. Here, each
subview is inset from its parent or sibling’s frame by 32 pixels on each side.

In their simplest form, views are little more than transparent placeholders. Coloring
the view backgrounds distinguishes one view from another in the absence of meaningful
content (see Figure 2-3). It’s a useful trick when trying to test layouts before committing
to an actual design.

Always keep your coordinate system in mind.When working with view hierarchy,
you must define a view’s frame in its parent’s coordinate system.The example in
Recipe 2-1 requests the application frame to lay out the main view and then resets its
origin to (0, 0). Resetting the origin updates the frame from the screen’s to the main
view’s coordinate system.This reset forms the basis for the view layout that follows.

Recipe 2-1 Adding Nested Subviews

- (void)loadView

{

// Create the main view

CGRect appRect = [[UIScreen mainScreen] applicationFrame];

contentView = [[UIView alloc] initWithFrame:appRect];

contentView.backgroundColor = [UIColor whiteColor];

// Provide support for autorotation and resizing

contentView.autoresizesSubviews = YES;

contentView.autoresizingMask = (UIViewAutoresizingFlexibleWidth |
➥UIViewAutoresizingFlexibleHeight);

42 Chapter 2 Views

Recipe 2-1 Continued

self.view = contentView;

[contentView release];

// reset the origin point for subviews. The new origin is 0,0

appRect.origin = CGPointMake(0.0f, 0.0f);

// Add the subviews, each stepped by 32 pixels on each side

UIView *subview = [[UIView alloc] initWithFrame:CGRectInset(appRect, 32.0f,
➥32.0f)];

subview.backgroundColor = [UIColor lightGrayColor];

[contentView addSubview:subview];

[subview release];

subview = [[UIView alloc] initWithFrame:CGRectInset(appRect, 64.0f, 64.0f)];

subview.backgroundColor = [UIColor darkGrayColor];

[contentView addSubview:subview];

[subview release];

subview = [[UIView alloc] initWithFrame:CGRectInset(appRect, 96.0f, 96.0f)];

subview.backgroundColor = [UIColor blackColor];

[contentView addSubview:subview];

[subview release];

}

43Recipe: Adding Stepwise Subviews

Figure 2-3 The code in Recipe 2-1 defines a UIView controller’s
main view with three colored, nested subviews.

Reorienting
Extending Recipe 2-1 to enable orientation changes takes thought.You cannot just swap
each subview’s heights and widths as you might assume.That’s because the shapes of
horizontal and vertical applications on the iPhone use different aspect ratios.Assuming a
20-pixel status bar, portrait view areas are 320 pixels wide by 460 pixels high; landscapes
are 480 pixels wide by 300 pixels high (refer to Figure 2-2).This difference throws off
interfaces that depend solely on rotation to reorient.

To rotate this example, add code that distinguishes landscape orientations from portrait
ones and adjust the frames accordingly.This is shown in Recipe 2-2.

Avoid reorientation schemes that rely on toggling (for example,“I was just in portrait
mode so, if the orientation changed, I must be in landscape mode.”) It’s entirely possible
to switch from left-landscape to right-landscape without hitting a portrait state in-
between. Orientation is all about sensors and feedback, and the iPhone is not guaranteed
to catch any middle state between two orientations. Fortunately, UIKit provides a
UIViewController callback that alerts you to new orientations and that specifies what
that orientation will be.

Recipe 2-2 Adding Reorientation Support to the Preceding Subview Example

- (void)willRotateToInterfaceOrientation:

(UIInterfaceOrientation)orientation

duration:(NSTimeInterval)duration {

CGRect apprect;

apprect.origin = CGPointMake(0.0f, 0.0f);

// adjust the frame size based on actual orientation

if ((orientation == UIInterfaceOrientationLandscapeLeft) ||
➥(orientation == UIInterfaceOrientationLandscapeRight))

apprect.size = CGSizeMake(480.0f, 300.0f);

else

apprect.size = CGSizeMake(320.0f, 460.0f);

// resize each subview accordingly

float offset = 32.0f;

for (UIView *subview in [contentView subviews]) {

CGRect frame = CGRectInset(apprect, offset, offset);

[subview setFrame:frame];

offset += 32.0f;

}

}

// Allow the view to respond to iPhone Orientation changes

-(BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

44 Chapter 2 Views

Recipe 2-2 Continued

{

return YES;

}

Recipe: Dragging Views
Cocoa Touch simplifies direct view manipulation.When dealing with many onscreen
views, the iPhone takes charge of deciding which view the user touched and passes any
touch events to the proper view for you.This helps you write concrete direct-manipulation
interfaces where users touch, drag, and interact with onscreen objects.

Recipe 2-3 centers on touches in action.This example creates a child of
UIImageView called DragView that enables users to drag the view around the iPhone
screen. Being an image view, it’s important to enable its user interaction, via [dragger
setUserInteractionEnabled:YES].This holds true for backdrops as well as direct-
interaction views.Whenever working with UIImageView in direct-manipulation interfaces,
make sure to enable interaction, no matter what role in the view hierarchy.With image
views, the user interaction toggle affects all the view’s children as well as the view itself.

When a user first touches any DragView (see the flowers in Figure 2-4), the object
stores the start location as an offset from the view’s origin.As the user drags, the view
moves along with the finger—always maintaining the same origin offset so that the
movement feels natural.

45Recipe: Dragging Views

Figure 2-4 The code in Recipe 2-3 creates an interface with
16 flowers that can be dragged around the iPhone screen.

Note
The way the example in Figure 2-4 is built, you can use multiple fingers to drag more than
one flower around the screen at once. It’s not multitouch per se because each flower
(UIView) responds to only one touch at a time. A discussion of true multitouch interaction
follows later in this chapter.

Touching an object also does one more thing in this code: It pops that object to the
front of the parent view.This means any dragged object always floats over any other
object onscreen. Do this by telling the view’s parent (its superview) to bring the view
to its front.

UITouch
The UITouch class defines how fingers move across the iPhone screen.Touches are sent
while invoking the standard began, moved, and ended handlers.You can also query user
events (of the UIEvent class) to return touches affecting a given view through
touchesForView: and touchesForWindow:.These calls return an unordered set
(NSSet) of touches.

Note
Send allObjects to any NSSet to return an array of those objects.

A touch tells you several things: where the touch took place (both the current and
most recent previous location), what stage of the touch was used (essentially mouse
down, mouse moved, mouse up), a tap count (for example, single-tap/double-tap), when
the touch took place (through a time stamp), and so forth.

For nonmultitouch interaction styles, assume that you’re dealing with a single touch
at any time.The code in Recipe 2-3 recovers the first available touch for each event by
calling anyObject on the returned touch set.

Recipe 2-3 Building Multiple Draggable Views

/*

* DragView: Draggable views

*/

@interface DragView : UIImageView

{

CGPoint startLocation;

}

@end

@implementation DragView

// Note the touch point and bring the touched view to the front

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

46 Chapter 2 Views

Recipe 2-3 Continued

{

CGPoint pt = [[touches anyObject] locationInView:self];
➥startLocation = pt;

[[self superview] bringSubviewToFront:self];

}

// As the user drags, move the flower with the touch

- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event

{

CGPoint pt = [[touches anyObject] locationInView:self];

CGRect frame = [self frame];

frame.origin.x += pt.x - startLocation.x;

frame.origin.y += pt.y - startLocation.y;

[self setFrame:frame];

}

@end

/*

* Hello Controller: The primary view controller

*/

@interface HelloController : UIViewController
{

UIView *contentView;

}

@end

@implementation HelloController

#define MAXFLOWERS 16

CGPoint randomPoint() {return CGPointMake(random() % 256, random() % 396);}

- (void)loadView

{

// Create the main view with a black background

CGRect apprect = [[UIScreen mainScreen] applicationFrame];

contentView = [[UIView alloc] initWithFrame:apprect];

contentView.backgroundColor = [UIColor blackColor];

self.view = contentView;

[contentView release];

// Add the flowers to random points on the screen

for (int i = 0; i < MAXFLOWERS; i++)

{

47Recipe: Dragging Views

Recipe 2-3 Continued

CGRect dragRect = CGRectMake(0.0f, 0.0f, 64.0f, 64.0f);

dragRect.origin = randomPoint();

DragView *dragger = [[DragView alloc] initWithFrame:dragRect];

[dragger setUserInteractionEnabled:YES];

// select random flower color

NSString *whichFlower = [[NSArray arrayWithObjects:@"blueFlower.png",
➥@"pinkFlower.png", @"orangeFlower.png", nil] objectAtIndex:(random() %
➥3)];

[dragger setImage:[UIImage imageNamed:whichFlower]];

// add the new subview

[contentView addSubview:dragger];

[dragger release];

}

}

-(void) dealloc

{

[contentView release];

[super dealloc];

}

@end

Adding Persistence
Persistence represents a key iPhone design touch point.After users leave a program,
Apple strongly recommends that they return to a state that matches as closely to where
they left off as possible.Adding persistence to this sample code involves several steps:

1. Storing the data

2. Resuming from a saved session

3. Providing a startup image that matches the last session

Storing State
Every view knows its position because you can query its frame.This enables you to
recover and store positions for each onscreen flower.The flower type (green, pink, or
blue) is another matter. For each view to report its current flower, the DragView class
must store that value, too.Adding a string instance variable enables the view to return
the image name used. Listing 2-1 shows the extended DragView class definition.

Listing 2-1 The Updated DragView Class Includes a String to Store the Flower Type

@interface DragView : UIImageView

{
CGPoint startLocation;

48 Chapter 2 Views

Listing 2-1 Continued

NSString *whichFlower;

}

@property (nonatomic, retain) NSString *whichFlower;

@end

Adding this extra variable enables the HelloController class to store both a list of
colors and a list of locations to its defaults file.A simple loop collects both values from
each draggable view and then stores them. Listing 2-2 presents an updateDefaults
method, as defined in HelloController.This method saves the current state to disk. It
should be called in the application delegate’s applicationWillTerminate: method,
just before the program ends.

Notice the use here of NSStringFromCGRect(). It provides a tight way to store
frame information as a string.To recover the rectangle, issue CGRectFromString().
Each call takes one argument: a CGRect in the first case, an NSString * in the second.
The UIKit framework provides calls that translate points and sizes as well as rectangles to
and from strings.

Defaults, as you can see, work like a dictionary. Just assign an object to a key and the
iPhone “automagically” updates the preferences file associated with your application ID.
Your application ID is defined in Info.plist. Defaults are stored in Library/Preferences
inside your application’s sandbox. Calling the synchronize function updates those
defaults immediately instead of waiting for the program to terminate.

Listing 2-2 Storing Flower Locations via User Defaults

// Collect all the colors and locations and save them for the next use

- (void) updateDefaults

{

NSMutableArray *colors = [[NSMutableArray alloc] init];

NSMutableArray *locs = [[NSMutableArray alloc] init];

for (DragView *dv in [contentView subviews]) {

[colors addObject:[dv whichFlower]];

[locs addObject:NSStringFromCGRect([dv frame])];

}

[[NSUserDefaults standardUserDefaults] setObject:colors forKey:@"colors"];

[[NSUserDefaults standardUserDefaults] setObject:locs forKey:@"locs"];

[[NSUserDefaults standardUserDefaults] synchronize];

[colors release];

[locs release];

}

49Recipe: Dragging Views

Recovering State
Persistence awareness generally resides in the view controller’s init or loadView (for
example, before the view actually appears).These methods should find any previous state
information and, for this example, match the flowers to that state.When querying user
defaults, this code checks whether state data is unavailable (for example, the value
returned is nil).When state data goes missing, the method creates random flowers at ran-
dom points. Listing 2-3 shows a state-aware version of loadView.

Note
When working with large data sources, you may want to initialize and populate your saved
object array in the UIViewController‘s init method, and then draw them in loadView.
Where possible, use threading when working with many objects to avoid blocking.

Listing 2-3 Checking for Previous State

- (void)loadView

{

// Create the main view

CGRect apprect = [[UIScreen mainScreen] applicationFrame];

contentView = [[UIView alloc] initWithFrame:apprect];

contentView.backgroundColor = [UIColor blackColor];

self.view = contentView;

// Attempt to read in previous colors and locations

NSMutableArray *colors, *locs;

colors = [[NSUserDefaults standardUserDefaults] objectForKey:@"colors"];

locs = [[NSUserDefaults standardUserDefaults] objectForKey:@"locs"];

for (int i = 0; i < MAXFLOWERS; i++)

{

// Use a random point unless there’s a previous location

CGRect dragRect = CGRectMake(0.0f, 0.0f, 64.0f, 64.0f);

dragRect.origin = randomPoint();

if (locs && ([locs count] == MAXFLOWERS))
➥dragRect = CGRectFromString([locs objectAtIndex:i]);

DragView *dragger = [[DragView alloc] initWithFrame:dragRect];

[dragger setUserInteractionEnabled:YES];

// Use a random color unless there’s a previous color

NSString *whichFlower = [[NSArray arrayWithObjects:@"blueFlower.png",
➥@"pinkFlower.png", @"orangeFlower.png", nil] objectAtIndex:(random()
➥% 3)];

if (colors && ([colors count] == MAXFLOWERS))
➥whichFlower = [colors objectAtIndex:i];

[dragger setWhichFlower:whichFlower];

[dragger setImage:[UIImage imageNamed:whichFlower]];

50 Chapter 2 Views

Listing 2-3 Continued

// Add the subview

[contentView addSubview:dragger];

[dragger release];

}

}

Startup Image
Apple has not yet included persistence screenshot capabilities into its official SDK
release, although the functionality is partially available in the UIKit framework as an
undocumented call.To access the _writeApplicationSnapshot feature shown in
Listing 2-4, you must add it by hand to the UIApplicationClass interface. Once
added, you can build a cached shot of your screen before ending the application.

Note
See Chapter 1, “Introducing the iPhone SDK,” for further discussion about using
undocumented calls and features in your programs.

The idea is this:When you leave the application, you snap a picture of the screen.
Then when your application starts up (presumably returning you to the same state you
left with), the cached image acts as the Default.png image, giving the illusion that you’re
jumping directly back without any startup sequence.

Apple has yet to enable this feature with the iPhone SDK, and at the time of writing,
applications cannot check in to find updated snapshots. Hopefully,Apple will provide
this functionality in a future firmware release.

Listing 2-4 Screenshotting Before Application Termination

@interface UIApplication (Extended)

-(void) _writeApplicationSnapshot;

@end

[[UIApplication sharedApplication] _writeApplicationSnapshot];

Recipe: Clipped Views
When working with direct-manipulation interfaces, it’s unlikely that you’ll want to deal
solely with rectangular views. Soft borders, rounded corners, and other visual enhance-
ments are easily added to UIView instances.

Clipping creates view shapes that fill only part of a view’s frame.You can produce
clipping with Core Graphics using the drawRect: method of a UIView object, just as

51Recipe: Clipped Views

you would on a Macintosh. Core Graphics enables you to build paths from sources
including points, lines, standard shapes (such as ellipses), and Bézier curves. Clipping your
views to these paths creates the illusion of nonrectangular onscreen objects. Figure 2-5
shows a number of onscreen circular clipped views, clearly overlapping with each other.
These views were created by the code shown in Listing 2-5.This code creates a path,
performs the clipping, and then draws into the clipped view.

52 Chapter 2 Views

Figure 2-5 Clipping enables you to create
nonrectangular views onscreen from rectangular source

material, using rectangular UIView frames.

Listing 2-5 Clipping a View to a Circular Path

- (void) drawRect: (CGRect) aRect

{

CGRect bounds = CGRectMake(0.0f, 0.0f, SIDELENGTH, SIDELENGTH);

// Create a new path

CGContextRef context = UIGraphicsGetCurrentContext();

CGMutablePathRef path = CGPathCreateMutable();

// Add circle to path

CGPathAddEllipseInRect(path, NULL, bounds);

CGContextAddPath(context, path);

Listing 2-5 Continued

// Clip to the circle and draw the logo

CGContextClip(context);

[logo drawInRect:bounds];

CFRelease(path);

}

Balancing Touches with Clipping
Visual clipping does not affect how UIViews respond to touches.The iPhone senses user
taps throughout the entire view frame.This includes the undrawn area such as the
corners of the frame outside the actual circles of Figure 2-5 just as much as the clipped
presentation.That means that unless you add some sort of hit test, users may attempt to
tap through to a view that’s “obscured” by the clear portion of the UIView frame.

Listing 2-6 adds a simple hit test to the clipped views, determining whether touches
fall within the clipping path. I implemented circular clipping and circular hit tests to
provide the simplest example. Use any computable test method you like to determine
whether a user touch intersects the view.Add pointInside:withEvent: to your
UIView subclass and return YES when the touch has properly hit your view or NO when
it does not.

Listing 2-6 Checking Circular Views against Touches

- (BOOL) pointInside:(CGPoint)point withEvent:(UIEvent *)event

{

CGPoint pt;

float HALFSIDE = SIDELENGTH / 2.0f;

// normalize with centered origin

pt.x = (point.x - HALFSIDE) / HALFSIDE;

pt.y = (point.y - HALFSIDE) / HALFSIDE;

// x^2 + y^2 = hypoteneus length

float xsquared = pt.x * pt.x;

float ysquared = pt.y * pt.y;

// If the length < 1, the point is within the clipped circle

if ((xsquared + ysquared) < 1.0) return YES;

return NO;

}

53Recipe: Clipped Views

Accessing Pixel-by-Pixel Values
There are many ways to test user touches against views. Listing 2-6 computed whether a
touch fell within a circle’s radius.With hit masks and variable transparency images, you
can test against a point’s alpha value.Translucency controls whether you trigger a
response. Listing 2-7 extends the UIImageView class to add an image’s bitmap represen-
tation. It tests touches against alpha values in the bitmap, point by point. Pixels whose
alpha levels fall below 0.5 will not respond to touches using this code.

Note
The code in this listing returns a bitmap context, and its bitmap data is based on Apple
sample code.

Listing 2-7 Testing Touch Hits Against a Bitmap

// Return a bitmap context using alpha/red/green/blue byte values

CGContextRef CreateARGBBitmapContext (CGImageRef inImage)

{

CGContextRef context = NULL;

CGColorSpaceRef colorSpace;

void * bitmapData;

int bitmapByteCount;

int bitmapBytesPerRow;

size_t pixelsWide = CGImageGetWidth(inImage);

size_t pixelsHigh = CGImageGetHeight(inImage);

bitmapBytesPerRow = (pixelsWide * 4);

bitmapByteCount = (bitmapBytesPerRow * pixelsHigh);

colorSpace = CGColorSpaceCreateDeviceRGB();

if (colorSpace == NULL)

{

fprintf(stderr, "Error allocating color space\n");

return NULL;

}

// allocate the bitmap & create context

bitmapData = malloc(bitmapByteCount);

if (bitmapData == NULL)

{

fprintf (stderr, "Memory not allocated!");

CGColorSpaceRelease(colorSpace);

return NULL;

}

54 Chapter 2 Views

Listing 2-7 Continued

context = CGBitmapContextCreate (bitmapData, pixelsWide, pixelsHigh, 8,
➥bitmapBytesPerRow, colorSpace, kCGImageAlphaPremultipliedFirst);

if (context == NULL)

{

free (bitmapData);

fprintf (stderr, "Context not created!");

}

CGColorSpaceRelease(colorSpace);

return context;

}

// Return Image Pixel data as an ARGB bitmap

unsigned char *RequestImagePixelData(UIImage *inImage)

{

CGImageRef img = [inImage CGImage];

CGSize size = [inImage size];

CGContextRef cgctx = CreateARGBBitmapContext(img, size);

if (cgctx == NULL) return NULL;

CGRect rect = {{0,0},{size.width, size.height}};

CGContextDrawImage(cgctx, rect, img);

unsigned char *data = CGBitmapContextGetData (cgctx);

CGContextRelease(cgctx);

return data;

}

// Create an Image View that stores a copy of its image as an addressable bitmap

@interface BitMapView : UIImageView

{

unsigned char *bitmap;

CGSize size;

UIView *colorView;

}

@end

@implementation BitMapView

// Hit test relies on the alpha level of the touched pixel

- (BOOL) pointInside:(CGPoint)point withEvent:(UIEvent *)event

{

long startByte = (int)((point.y * size.width) + point.x) * 4;

int alpha = (unsigned char) bitmap[startByte];

return (alpha > 0.5);

}

55Recipe: Clipped Views

Listing 2-7 Continued

-(void) setImage:(UIImage *) anImage

{

[super setImage:anImage];

bitmap = RequestImagePixelData(anImage);

size = [anImage size];

}

@end

Recipe: Detecting Multitouch
By enabling multitouch interaction in your UIViews, the iPhone enables you to recover
and respond to multifinger interaction.This recipe, shown in Recipe 2-4, demonstrates
how to add multitouch to your iPhone applications.

To begin, set multipleTouchEnabled to YES or override
isMultipleTouchEnabled for your view.This tells your application to poll for more
than one UITouch at a time. Now when you call touchesForView:, the returned set
may contain several touches. Use NSSet’s allObjects method to convert that set into
an addressable NSArray.When the array’s count exceeds one, you know you’re dealing
with multitouch.

In theory, the iPhone could support an arbitrary number of touches. In practice, multi-
touch is limited to five finger touches at a time. Even five at a time goes beyond what
most developers need.There aren’t many meaningful gestures you can make with five
fingers at once.This particularly holds true when you grasp the iPhone with one hand
and touch with the other. Perhaps it’s a comfort to know that if you need to, the extra
finger support has been built in. Unfortunately, when you are using three or more touches
at a time, the screen has a tendency to lose track of one or more of those fingers. It’s hard
to programmatically track smooth gestures when you go beyond two finger touches.

Touches are not grouped. If, for example, you touch the screen with two fingers from
each hand, there’s no way to determine which touches belong to which hand.The touch
order is arbitrary.Although grouped touches retain the same finger order for the lifetime
of a single touch event (down, move, up), the order may change the next time your user
touches the screen.When you need to distinguish touches from each other, build a touch
dictionary indexed by the touch objects.

Note
The drawRect: routine in Recipe 2-4 clears its context each time it is called. This
removes previous circles and lines from the display. Comment out this line if you want to
see an event trail.

56 Chapter 2 Views

Recipe 2-4 Visualizing Multitouch

@interface MultiTouchView : UIView
{

CGPoint loc1, loc2;

}

@property (nonatomic) CGPoint loc1;

@property (nonatomic) CGPoint loc2;

@end

@implementation MultiTouchView

@synthesize loc1;

@synthesize loc2;

- (BOOL) isMultipleTouchEnabled {return YES;}

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

{

NSArray *allTouches = [touches allObjects];

int count = [allTouches count];

if (count > 0) loc1 = [[allTouches objectAtIndex:0] locationInView:self];

if (count > 1) loc2 = [[allTouches objectAtIndex:1] locationInView:self];

57Recipe: Detecting Multitouch

Figure 2-6 The iPhone enables you to capture
multitouch events as well as single-touch ones.
In this example, two circles mark the points at

which the user has touched the screen.

Recipe 2-4 Continued

[self setNeedsDisplay];

}

// React to moved touches the same as to "began"

- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event

{

[self touchesBegan:touches withEvent:event];

}

- (void) drawRect: (CGRect) aRect

{

// Get the current context

CGContextRef context = UIGraphicsGetCurrentContext();

CGContextClearRect(context, aRect);

// Set up the stroke and fill characteristics

CGContextSetLineWidth(context, 3.0f);

CGFloat gray[4] = {0.5f, 0.5f, 0.5f, 1.0f};

CGContextSetStrokeColor(context, gray);

CGFloat red[4] = {0.75f, 0.25f, 0.25f, 1.0f};

CGContextSetFillColor(context, red);

// Draw a line between the two location points

CGContextMoveToPoint(context, loc1.x, loc1.y);

CGContextAddLineToPoint(context, loc2.x, loc2.y);

CGContextStrokePath(context);

CGRect p1box = CGRectMake(loc1.x, loc1.y, 0.0f, 0.0f);

CGRect p2box = CGRectMake(loc2.x, loc2.y, 0.0f, 0.0f);

float offset = -8.0f;

// circle point 1

CGMutablePathRef path = CGPathCreateMutable();

CGPathAddEllipseInRect(path, NULL, CGRectInset(p1box, offset, offset));

CGContextAddPath(context, path);

CGContextFillPath(context);

CFRelease(path);

// circle point 2

path = CGPathCreateMutable();

CGPathAddEllipseInRect(path, NULL, CGRectInset(p2box, offset, offset));

CGContextAddPath(context, path);

CGContextFillPath(context);

CFRelease(path);

}

@end

58 Chapter 2 Views

Note
Apple provides many Core Graphics/Quartz 2D resources on its developer Web site.
Although these forums, mailing lists, and source code samples are not iPhone specific,
they offer an invaluable resource for expanding your iPhone Core Graphics knowledge.

UIView Animations
UIView animation provides one of the odd but lovely perks of working with the iPhone
as a development platform. It enables you to slow down changes when updating views,
producing smooth animated results that enhance the user experience. Best of all, this all
occurs without you having to do much work.

UIView animations are perfect for building a visual bridge between a view’s current
and changed states.With them, you emphasize visual change and create an animation
that links those changes together.Animatable changes include the following:

n Changes in location—moving a view around the screen
n Changes in size—updating the view’s frame
n Changes in transparency—altering the view’s alpha value
n Changes in rotation or any other affine transforms that you apply to a view

Building UIView Animation Blocks
UIView animations work as blocks, a complete transaction that progresses at once. Start
the block by issuing beginAnimations:context:. End the block with
commitAnimations.These class methods are sent to UIView and not to individual
views. In the block between these two calls, you define the way the animation works and
perform the actual view updates.The animation controls you’ll use are as follows:

n beginAnimations:context. Marks the start of the animation block.
n setAnimationCurve. Defines the way the animation accelerates and decelerates.

Use ease-in/ease-out (UIViewAnimationCurveEaseInOut) unless you have
some compelling reason to select another curve.The other curve types are ease in
(accelerate into the animation), linear (no animation acceleration), and ease out
(accelerate out of the animation). Ease-in/ease-out provides the most natural-
feeling animation style.

n setAnimationDuration. Specifies the length of the animation, in seconds.This
is really the cool bit.You can stretch out the animation for as long as you need it
to run. Be aware of straining your user’s patience and keep your animations below
a second or two in length.

n commitAnimations. Marks the end of the animation block.

59UIView Animations

Sandwich your actual view change commands after setting up the animation details
and before ending the animation. Listing 2-8 shows UIView animations in action by set-
ting an animation curve and the animation duration (here, one second).The actual
change being animated is a transparency update.The alpha value of the content view
goes to zero, making it invisible. Instead of the view simply disappearing, this animation
block slows down the change and fades it out of sight.

Note
Apple often uses two animation blocks one after another to add bounce to their anima-
tions. For example, they might zoom into a view a bit more than needed and then use a
second animation to bring that enlarged view down to its final size. Use “bounces” to add
a little more life to your animation blocks. Be sure that the animations do not overlap.
Either add a delay so that the second animation does not start until the first ends
(performSelector: withObject: afterDelay:) or assign an animation delegate
callback (animationDidStop: finished:) to catch the end of the first animation and
start the second.

Listing 2-8 Using UIView Animation Calls

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
[UIView setAnimationDuration:1.0];

[contentView setAlpha:0.0f];

[UIView commitAnimations];

Recipe: Fading a View In and Out
There are times you’ll want to add information to your screen that overlays your view
but does not of itself do anything. For example, you might show a top scores list or some
instructions or provide a context-sensitive tool tip. Recipe 2-5 demonstrates how to use
a UIView animation block to slowly fade a noninteractive overlay view into and out of
sight.

This is done by creating a custom ToggleView.As defined by this code,
ToggleViews are UIViews with one child, an image view.When tapped, the animation
block toggles the alpha setting from off to on or on to off.The key bits for making this
happen well and reliably are as follows:

n Make sure the child does not look for interaction events. Cocoa Touch does not
allow transparent views to catch touches. So you must allow the parent, the
ToggleView, to handle all user interactions instead.When creating the child, the
method sets the child’s property userInteractionEnabled to NO.

60 Chapter 2 Views

n Make sure to catch only mouse down events. For simple on-off-on-off toggles,
catch and respond only to presses for the most natural user feedback. Otherwise,
user taps will hide and then immediately show your image view again.

n Pick a reasonable animation time. If you lengthen the animation beyond what your
user is willing to handle, you’ll end up handling new taps before the first anima-
tion has completed.The one-second animation shown here is just about the
longest time you’ll want to use. Half- or quarter-second animations are better for
common interface changes.

Recipe 2-5 Using UIView Animations with Transparency Changes

@interface ToggleView: UIView
{

BOOL isVisible;

UIImageView *imgView;

}

@end

@implementation ToggleView

- (id) initWithFrame: (CGRect) aFrame;

{

self = [super initWithFrame:aFrame];

isVisible = YES;

imgView = [[UIImageView alloc] initWithFrame:[[UIScreen mainScreen]
➥applicationFrame]];

[imgView setImage:[UIImage imageNamed:@"alphablend.png"]];

imgView.userInteractionEnabled = NO;

[self addSubview:imgView];

[imgView release];

return self;

}

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

{

// only respond to mouse down events

UITouch *touch = [touches anyObject];

if ([touch phase] != UITouchPhaseBegan) return;

isVisible = !isVisible;

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
[UIView setAnimationDuration:1.0];

[imgView setAlpha:(float)isVisible];

61Recipe: Fading a View In and Out

Recipe 2-5 Continued

[UIView commitAnimations];

}

- (void) dealloc

{

[imgView release];

[super dealloc];

}

@end

Recipe: Swapping Views
The UIView animation block doesn’t limit you to a single change. Recipe 2-6 combines
frame size updates with transparency changes to create a more compelling animation.
You do this by adding several directives at once to the animation block. Recipe 2-6 per-
forms four actions at a time. It zooms and fades one view into place, while zooming out
and fading away another. Figure 2-7 provides a preview of this animation in action.

62 Chapter 2 Views

Figure 2-7 Issuing several view changes
within a single UIView animation block can

create complex visual effects.

Recipe 2-6 Combining Multiple View Changes in Animation Blocks

@interface ToggleView: UIView
{

BOOL isOne;

UIImageView *imgView1, *imgView2;

}

@end

@implementation ToggleView

#define BIGRECT CGRectMake(0.0f, 0.0f, 320.0f, 435.0f)

#define SMALLRECT CGRectMake(130.0f, 187.0f, 60.0f, 60.0f)

- (id) initWithFrame: (CGRect) aFrame;

{

self = [super initWithFrame:aFrame];

// Load both views, make them noninteractive

imgView1 = [[UIImageView alloc] initWithFrame:BIGRECT];

imgView2 = [[UIImageView alloc] initWithFrame:SMALLRECT];

[imgView1 setImage:[UIImage imageNamed:@"one.png"]];

[imgView2 setImage:[UIImage imageNamed:@"two.png"]];

imgView1.userInteractionEnabled = NO;

imgView2.userInteractionEnabled = NO;

// image 1 is in front of image 2 to begin

[self addSubview:imgView2];

[self addSubview:imgView1];

isOne = YES;

[imgView1 release];

[imgView2 release];

return self;

}

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

{

// Determine which view occupies which role

UIImageView *big = isOne ? imgView1 : imgView2;

UIImageView *little = isOne ? imgView2 : imgView1;

isOne = !isOne;

// Pack all the changes into the animation block

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
[UIView setAnimationDuration:1.0];

[big setFrame:SMALLRECT];

63Recipe: Swapping Views

Recipe 2-6 Continued

[big setAlpha:0.5];

[little setFrame:BIGRECT];

[little setAlpha:1.0];

[UIView commitAnimations];

// Hide the shrunken "big" image.

[big setAlpha:0.0f];

[[big superview] bringSubviewToFront:big];

}

-(void) dealloc

{

[imgView1 release];

[imgView2 release];

[super dealloc];

}

@end

Recipe: Flipping Views
Transitions enable you to extend your UIView animation blocks to add even more
visual flair.Two transitions—UIViewAnimationTransitionFlipFromLeft and
UIViewAnimationTransitionFlipFromRight—enable you to do just what their
names suggest.At this time, you can flip views left or flip views right.These are the only
two official transitions available for UIViews.

Note
During the SDK beta period, Apple promised additional animations that were never
realized, specifically UIViewAnimationTransitionCurlUp and
UIViewAnimationTransitionCurlDown. These extra animations may appear at some
future time.

To use transitions in UIView animation blocks, you need to do two things. First, you
must add the transition as a block parameter. Use setAnimationTransition: to assign
the transition to the enclosing UIView animation block. Second, you should rearrange
the view order while inside the block.This is best done with
exchangeSubviewAtIndex: withSubviewAtIndex:. Recipe 2-7 demonstrates how
to create a simple flip view using these techniques.When tapped, the views use the ani-
mation to flip from one side to the next, as shown in Figure 2-8.

Do not confuse the UIView animation blocks with the Core Animation
CATransition class. Unfortunately, you cannot assign a CATransition to your UIView
animation.To use a CATransition, you must apply it to a UIView’s layer, which is
shown in the next recipe.

64 Chapter 2 Views

Recipe 2-7 Using Transitions with UIView Animation Blocks

@interface FlipView : UIImageView

@end

@implementation FlipView

- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event

{

// Start Animation Block

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationTransition: UIViewAnimationTransitionFlipFromLeft
➥forView:[self superview] cache:YES];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
[UIView setAnimationDuration:1.0];

// Animations

[[self superview] exchangeSubviewAtIndex:0 withSubviewAtIndex:1];

// Commit Animation Block

[UIView commitAnimations];

}

@end

65Recipe: Flipping Views

Figure 2-8 Use UIView’s built-in
transition animations to flip your
way from one view to the next.

Recipe: Applying CATransitions to Layers
Core Animation Transitions expand your UIView animation vocabulary with just a few
small differences in implementation. CATransitions work on layers rather than on
views. Layers are the Core Animation rendering surfaces associated with each UIView.
When working with Core Animation, you apply CATransitions to a view’s default
layer ([myView layer]) rather than the view itself.

You don’t set your parameters through UIView the way you do with UIView animation.
You create a Core Animation object, set its parameters, and then add the parameterized
transition to the layer. Listing 2-9 shows a simple pushFromLeft method that you might
swap out for the flip method shown in Recipe 2-7.

Animations use both a type and a subtype. The type specifies the kind of transition
used.The subtype sets its direction.Together the type and subtype tell how the views
should act when you apply the animation to them.

Core Animation Transitions are distinct from the two UIView flips discussed in the
previous recipe. Cocoa Touch offers four types of Core Animation.These available types
include cross fades, pushes (used in Listing 2-9), reveals (where one view slides off another),
and covers (where one view slides onto another).The last three types enable you to
specify the direction of motion for the transition through subtypes. For obvious reasons,
cross fades do not have a direction and they do not use subtypes.

Core Animation is part of the Quartz Core framework.To use this sample code, you
must add the Quartz Core framework to your project and import <QuartzCore/
QuartzCore.h> into your code.

Note
Apple’s Core Animation features 2D and 3D routines built around Objective-C classes.
These classes provide graphics rendering and animation for your iPhone and Macintosh
applications. Core Animation avoids many low-level development details associated with,
for example, direct OpenGL while retaining the simplicity of working with hierarchical views.

Listing 2-9 Adding a Core Animation Transition to a UIView Layer

@implementation PushView

- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event

{

CATransition *animation = [CATransition animation];

[animation setDelegate:self];

[animation setDuration:1.0f];

[animation setTimingFunction:UIViewAnimationCurveEaseInOut];
[animation setType: kCATransitionPush];

[animation setSubtype: kCATransitionFromLeft];

[[self superview] exchangeSubviewAtIndex:0 withSubviewAtIndex:1];

66 Chapter 2 Views

Listing 2-9 Continued

[[[self superview] layer] addAnimation:animation
➥forKey:@"transitionViewAnimation"];

}

@end

Undocumented Animation Types
The iPhone actually implements more animation types than official documents would
suggest.As Listing 2-10 shows, the iPhone is perfectly capable of handling map curls à la
the Google Maps application.This code, which works on the iPhone but not the
Simulator, relies on extracting animation names from the UIKit binary framework file.

Like all undocumented calls, this is not without risk.Apple may change or delete
these animations at any time. Other animation types include pageCurl, pageUnCurl,
suckEffect, spewEffect, cameraIris (from the Photos application),
cameraIrisHollowOpen, cameraIrisHollowClose, genieEffect (typically used
for deleting garbage), unGenieEffect, rippleEffect, twist, tubey, swirl,
charminUltra, zoomyIn, zoomyOut, and oglFlip.

Note the use of setRemovedOnCompletion: NO.This freezes the animation at its
end, allowing the curled map to remain visible, as shown in Figure 2-9.

67Recipe: Applying CATransitions to Layers

Figure 2-9 This eye-catching effect uses an
undocumented Core Animation type called mapCurl.

Listing 2-10 Calling Undocumented Animation Types

- (void) performCurl

{

// Curl the image up or down

CATransition *animation = [CATransition animation];

[animation setDelegate:self];

[animation setDuration:1.0f];

[animation setTimingFunction:UIViewAnimationCurveEaseInOut];

[animation setType:(notCurled ? @"mapCurl" : @"mapUnCurl")];

[animation setRemovedOnCompletion:NO];

[animation setFillMode: @"extended"];

[animation setRemovedOnCompletion: NO];

notCurled = !notCurled;

[[topView layer] addAnimation:animation forKey:@"pageFlipAnimation"];

}

General Core Animation Calls
The iPhone provides partial support for Core Animation calls. By partial, I mean that
many standard classes are missing in action. CIFilter is one such class. It’s not included
in Cocoa Touch, although the CALayer and CATransition classes are both filter-aware.
If you’re willing to work through these limits, you can freely use standard Core
Animation calls in your programs.

Listing 2-11 shows iPhone native Core Animation code based on a sample from
Lucas Newman (http://lucasnewman.com).When run, this method scales down and
fades away the contents of a UIImageView.The source adds a translucent reflection layer,
which follows the view.

This code remains virtually unchanged from the Mac OS X sample it was based on.
More complex Core Animation samples may offer porting challenges, but for simple
reflections, shadows, and transforms, all the functionality you need can be had at the
native iPhone level.

Listing 2-11 Native iPhone Core Animation Calls

// Adapted from http://lucasnewman.com/animationsamples.zip

- (void) scaleAndFade

{

// create the reflection layer

CALayer *reflectionLayer = [CALayer layer];

// share the contents image with the screen layer

reflectionLayer.contents = [contentView layer].contents;

reflectionLayer.opacity = 0.4;

reflectionLayer.frame = CGRectOffset([contentView layer].frame, 0.5,
➥416.0f + 0.5);

68 Chapter 2 Views

http://lucasnewman.com

Listing 2-11 Continued

// flip the y-axis

reflectionLayer.transform = CATransform3DMakeScale(1.0, -1.0, 1.0);
reflectionLayer.sublayerTransform = reflectionLayer.transform;

[[contentView layer] addSublayer:reflectionLayer];

#define ANIMATION_DURATION (4.0)

[CATransaction begin];

[CATransaction setValue:[NSNumber numberWithFloat:ANIMATION_DURATION]
➥forKey:kCATransactionAnimationDuration];

// scale it down

CABasicAnimation *shrinkAnimation = [CABasicAnimation
➥animationWithKeyPath:@"transform.scale"];

shrinkAnimation.timingFunction = [CAMediaTimingFunction
➥functionWithName:kCAMediaTimingFunctionEaseIn];

shrinkAnimation.toValue = [NSNumber numberWithFloat:0.0];

[[contentView layer] addAnimation:shrinkAnimation forKey:@"shrinkAnimation"];

// fade it out

CABasicAnimation *fadeAnimation = [CABasicAnimation
➥animationWithKeyPath:@"opacity"];

fadeAnimation.toValue = [NSNumber numberWithFloat:0.0];

fadeAnimation.timingFunction = [CAMediaTimingFunction functionWithName:
➥kCAMediaTimingFunctionEaseIn];

[[contentView layer] addAnimation:fadeAnimation forKey:@"fadeAnimation"];

[CATransaction commit];

}

Recipe: Swiping Views
Swipes are a convenient but often-overlooked iPhone interaction style.When a user
quickly drags his or her finger across the screen, the UITouch objects returned for that
gesture include an info property.This property defines the direction in which the user
swiped the screen, (for example, up, down, left, or right).This behavior is best seen in the
iPhone’s Photos application, when users swipe left or right to move between album
pictures.

Early versions of the iPhone SDK offered swipe detection as a standard part of the
UITouch object, but later releases dropped that capability. Instead,Apple offered
workaround code in its iPhone Developers Guide. Recipe 2-8 is based on that code. It
ensures that a user continues finger movement in one direction by defining a safety zone
around the movement. If the user strays diagonally more than 6 pixels off course, the
swipe cancels. Stay on-course for at least 12 pixels and the swipe is set.

69Recipe: Swiping Views

Recipe 2-8 applies a Core Animation Transition on completion of a successful swipe.
It uses the swipe direction to set the animation’s subtype. Subtypes are used in Core
Animation to specify the overall movement of the animation, whether up, down, or
sideways.

This sample mimics the interaction style used for browsing through album pictures in
Photos but allows you to move up and down as well as left and right. If you comment
out the kCATransitionPush animation type and replace it with the undocumented
oglFlip in the line that immediately follows it, you’ll receive an even nicer surprise. Far
from being limited to the two core flip directions, the iPhone actually supports a full
four-way flip style, albeit one that Apple has not included in its public SDK.

Note
In early releases of the iPhone SDK, swipes didn’t work in the Simulator. In later versions,
they did. Should you encounter platform limitations while developing (for example, when
working with the Camera), you can easily add workarounds based on testing the platform.
Add compiler directives such as #if defined(TARGET_IPHONE_SIMULATOR) to your
source.

Recipe 2-8 Detecting and Responding to User Swipes in Your Views

- (CATransition *) getAnimation:(NSString *) direction

{

CATransition *animation = [CATransition animation];

[animation setDelegate:self];

[animation setType:kCATransitionPush];

// [animation setType:@"oglFlip"];

[animation setSubtype:direction];

[animation setDuration:1.0f];

[animation setTimingFunction:[CAMediaTimingFunction
➥functionWithName:kCAMediaTimingFunctionEaseInEaseOut]];

return animation;

}

#define HORIZ_SWIPE_DRAG_MIN 12

#define VERT_SWIPE_DRAG_MAX 4

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

UITouch *touch = [touches anyObject];

startTouchPosition = [touch locationInView:self];

dirString = NULL;

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

{

70 Chapter 2 Views

Recipe 2-8 Continued

UITouch *touch = touches.anyObject;

CGPoint currentTouchPosition = [touch locationInView:self];

if (fabsf(startTouchPosition.x - currentTouchPosition.x) >=

HORIZ_SWIPE_DRAG_MIN &&

fabsf(startTouchPosition.y - currentTouchPosition.y) <=

VERT_SWIPE_DRAG_MAX)

{

// Horizontal Swipe

if (startTouchPosition.x < currentTouchPosition.x) {

dirString = kCATransitionFromLeft;

}

else

dirString = kCATransitionFromRight;

}

else if (fabsf(startTouchPosition.y - currentTouchPosition.y) >=

HORIZ_SWIPE_DRAG_MIN &&

fabsf(startTouchPosition.x - currentTouchPosition.x) <=

VERT_SWIPE_DRAG_MAX)

{

// Vertical Swipe

if (startTouchPosition.y < currentTouchPosition.y)

dirString = kCATransitionFromBottom;

else

dirString = kCATransitionFromTop;

} else

{

// Process a non-swipe event.

// dirString = NULL;

}

}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

{

if (dirString)

{

CATransition *animation = [self getAnimation:dirString];

[[self superview] exchangeSubviewAtIndex:0 withSubviewAtIndex:1];

[[[self superview] layer] addAnimation:animation forKey:kAnimationKey];

}

}

71Recipe: Swiping Views

Recipe: Transforming Views
Affine transforms enable you to change an object’s geometry by mapping that object
from one view coordinate system into another.The iPhone SDK fully supports standard
affine 2D transforms.With them, you can scale, translate, rotate, and skew your views
however your heart desires and your application demands.

Transforms are defined in Core Graphics, and consist of calls such as
CGAffineTransformMakeRotation and CGAffineTransformScale.These build and
modify the 3-by-3 transform matrices. Once built, use UIView‘s setTransform: call to
apply 2D affine transformations to UIView objects.

Recipe 2-9 demonstrates how to build and apply an affine transform of a UIView.To
create the sample, I kept things simple. I build an NSTimer that ticks every 1/30th of a
second. On ticking, it rotates a view by 1% of pi and scales over a cosine curve. I use the
cosine’s absolute value for two reasons. It keeps the view visible at all times, and it pro-
vides a nice bounce effect when the scaling changes direction.This produces a rotating
and undamped bounce animation.

This is one of those samples that it’s best to build and view as you read through the
code.You’ll be better able to see how the handleTimer: method correlates to the visu-
al effects you’re looking at.

Recipe 2-9 Example of an Affine Transform of a UIView

#import "math.h"

#define PI 3.14159265

@interface HelloController : UIViewController
{

UIView *contentView;

UIImageView *rotateView;

int theta;

}

@end

@implementation HelloController

- (id)init

{

if (self = [super init]) self.title = @"Affine Demo";

return self;

}

- (void) handleTimer: (NSTimer *) timer

{

// Rotate each iteration by 1% of PI

float angle = theta * (PI / 100);

CGAffineTransform transform = CGAffineTransformMakeRotation(angle);

theta = (theta + 1) % 200;

72 Chapter 2 Views

Recipe 2-9 Continued

// For fun, scale by the absolute value of the cosine

float degree = cos(angle);

if (degree < 0.0) degree *= -1.0f;

degree += 0.5f;

CGAffineTransform scaled = CGAffineTransformScale(transform, degree, degree);

// Apply the affine transform

[rotateView setTransform:scaled];

}

- (void)loadView

{

theta = 0;

contentView = [[UIView alloc] initWithFrame:[[UIScreen mainScreen]
➥applicationFrame]];

rotateView = [[UIImageView alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 240.0f,
➥240.0f)];

[rotateView setImage:[UIImage imageNamed:@"rotateart.png"]];

[rotateView setCenter:CGPointMake(160.0f, 208.0f)];

[contentView addSubview:rotateView];

[rotateView release];

self.view = contentView;

[contentView release];

[NSTimer scheduledTimerWithTimeInterval: 0.03f target: self selector:
➥@selector(handleTimer:)

userInfo: nil repeats: YES];

}

// Allow the view to respond to iPhone Orientation changes

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation

{

return NO;

}

-(void) dealloc

{

[contentView release];

[rotateView release];

[super dealloc];

}

@end

73Recipe: Transforming Views

Centering Landscape Views
Use the same affine transform approach to center landscape-oriented views. Listing 2-12
creates a 480-by-320 pixel view, centers it at [160, 240] (using portrait view coordinates),
and then rotates it into place. Half of pi corresponds to 90 degrees, creating a landscape-
right rotation. Centering keeps the entire view onscreen.All subviews, including text
fields, labels, switches, and so on rotate into place along with the parent view.

If you want to work with a landscape keyboard for this view, make sure to call
[[UIApplication sharedApplication] setStatusBarOrientation:

UIInterfaceOrientationLandscapeRight].This sets the status bar orientation,
which controls the keyboard regardless of whether the status bar is hidden or shown.

Listing 2-12 Rotating Landscape Views into Place

@implementation HelloController

- (void)loadView

{

contentView = [[UIView alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 480.0f,
➥320.0f)];

[contentView setCenter:CGPointMake(160.0f, 240.0f)];

[contentView setBackgroundColor:[UIColor blackColor]];

[contentView setTransform:CGAffineTransformMakeRotation(3.141592f / 2.0f)];

self.view = contentView;

[contentView release];

}

-(void) dealloc

{

[contentView release];

[super dealloc];

}

@end

Summary
UIViews provide the onscreen components your users see and interact with.As this
chapter has shown, even in their most basic form, they offer incredible flexibility and
power.You’ve discovered how to use views to build up elements on a screen, create
multiple interaction objects, and introduce eye-catching animation. Here’s a collection of
thoughts about the recipes you’ve seen in this chapter that you might want to ponder
before moving on:

n When dealing with multiple onscreen views, hierarchy should always remain front-
most in your mind—no pun! Use your view hierarchy vocabulary
(bringSubviewToFront:, sendSubviewToBack:,

74 Chapter 2 Views

exchangeSubviewAtIndex:withSubviewAtIndex:) to take charge of your
views and always present the proper visual context to your users.

n You’re not limited to rectangles. Use UIView / Core Graphics clipping to create
compelling interaction objects that don’t necessarily have right corners.

n Be concrete.The iPhone has a perfectly good touch screen.Why not let your users
drag items around the screen with their fingers? It adds to the reality and the plat-
form’s interactive nature.

n Animate everything.Animations don’t have to be loud, splashy, or bad design.The
iPhone’s strong animation support enables you to add smooth transitions between
user tasks. Short, smooth, focused changes are the iPhone’s bread and butter.

n Users typically have five fingers per hand. Don’t limit yourself to a one-finger
interface when it makes sense to expand your interaction into multitouch territory.

n A solid grounding in Quartz graphics and Core Animation will be your friend.
Using drawRect:, you can build any kind of custom UIView presentation you’d
like, including text, Bézier curves, scribbles, and so forth.

n Explore! This chapter has only touched lightly on the ways you can use UIViews
in your applications. Use this material as a jumping-off point to explore the full
vocabulary of the UIView class.

75Summary

A
ABNewPersonViewController class, 78

ABPeoplePickerNavigationController
class, 274

ABPersonCopyImageData function, 271

ABPersonGetTypeOfProperty function, 271

ABPersonHasImageData function, 271

ABPersonViewController class, 273-274, 277

acceleration sensors

catching acceleration events, 291-292
locating “up” direction, 290-292
moving objects based on

accelerometer feedback, 292-295
accessing

Address Book image data, 271-273
core device information, 288-289
maps, 286-288
pixel-by-pixel values, 54

accessoryButtonTappedForRowWithIndex
Path: method, 163

ad hoc distribution, 35-36

Address Book

AddressBook.framework
Address Book queries, 270-271
overview, 270
people picker calls, handling, 270

AddressBookUI.framework, 269-270
contact information

adding, 277-278
browsing, 274-278
displaying, 273-274

image data, accessing, 271-273
overview, 269
querying, 270-271

AddressBook.framework

Address Book queries, 270-271
overview, 270
people picker calls, handling, 270

AddressBookUI.framework, 269-270

addresses, e-mail, 277

addStatusBarImageNamed: method, 131

addSubview: method, 38, 42-43

addTextFieldWithValue: method, 113

affine transforms (views), 72-74

albums (image), 207

alerts

application badges, 132-134
audio alerts, 134-136
autotimed no-button alerts, 112-113
creating, 109-110
customizing, 110
displaying, 110
logging results

with custom log functions, 108
with freeopen function, 108
with printf function, 108

menus, 115-116
multiline button displays, 110-112
overview, 107
“Please,Wait” overlay, 123-127
progress indicators

head-up display progress indicators,
117-119

overview, 117
progress bar, 121-123
spinning circle, 117-120

scroll-down alerts, 127-131
status bar, adding images to, 131-132
text fields, 113-115
UIAlertView class, 107-109
vibration alerts, 136

alignment in toolbars, 267

alloc method, 140

animations

animated butterfly project, 292-295
animated overlays, 123-127
buttons

adding to, 236-237
animating responses to, 238-239

UIView animations
Core Animation Transitions, 66-69
flipping views, 64-65
methods, 60
overview, 59
swapping views, 62-64
transitions, 64-65
with transparency changes, 60-62

application badges, 132-134

application compiles, 33-34

application distribution

ad hoc distribution, 35-36
compiling applications for, 33-34

application identifiers, 29

application limits, 9

application sandbox

Application Support folder, 197
Documents folder

backups, 197
browsing folders by file type, 198
finding documents in, 198
table of contents creation, 199-200
writing images to, 207-208

Library backups, 197
tmp folder, deleting files from, 197

Application Support folder (application
sandbox), 197

application testing, 32-33

applicationDidFinishLaunching:
method, 18-20

applicationIconBadgeNumber property, 132

applications. See specific applications, 19

applicationWillTerminate: method, 18, 49

arrays, view controller arrays, 102-103

assembling projects, 2-3

assigning

data sources, 140-141
delegates, 141
text styles to table cells, 151-152

338 addresses, e-mail

audio

alerts, 134-136
Audio Queue services, 134, 214
AVController class, 215-217
Celestial media framework

playing audio via, 215-217
stopping audio playback via, 217

Media Player, playing via, 215-219
MPArrayQueueFeeder class, 215
MPAVController class, 215
MPItem class, 215-216
recording, 219-226
System Audio services, 214

Audio Queue services, 134, 214

AudioServicesAddSystemSoundCompletion
method, 135

AudioServicesCreateSystemSoundID
method, 135

AudioServicesDisposeSystemSoundID
method, 135

AudioServicesPlaySystemSound
method, 135

autotimed no-button alerts, 112-113

availability of sites, checking, 307-308

AVController class, playing audio
via, 215-217

B
backgrounds

of cells, 172-175
of views, 40

backups

Documents folder (application
sandbox), 197

Library (application sandbox), 197
recovering media files from, 228-229

badges, adding to applications, 132-134

bitmaps, testing touch hits against, 54-56

blue and white table cells, creating, 177-178

Bonjour, 320

breakponts, 26

bringSubviewToFront: method, 39

browsing Address Book information

contacts, adding, 277-278
for e-mail addresses, 277
overview, 274-276
people picker events,

handling, 276-277
butterfly animation project, 292-295

buttons

adding color to, 242
animation

adding to, 236-237
button responses, 238-239

Contact Add button type, 232
custom buttons, creating, 233-236
customizing, 241-242
Detail Disclosure button type, 232
glass buttons, 236
hidden buttons in toolbars, 267
Info Light/Dark button type, 232
multiline button displays,

creating, 110-112
Navigation bar, adding to, 231-232
“precooked” button types, 232
Rounded Rectangle button type, 232
toolbars, view configuration in, 267
Undo button, adding to text

views, 250-251

C
callout views, 258-260

camera (iPhone)

accessing, 213
camera rolls, editing images

from, 209-212
images, snapping via, 212
screenshots, snapping via, 212

catching acceleration events, 291-292

339catching acceleration events

CATransitions. See Core Animation
Transitions

Celestial media framework

playing audio via, 215-217
stoppimg audio playback via, 217

cellForRowAtIndexPath: method, 173, 190

cells (table)

adding, 159-160
alternate blue and white cells,

creating, 177-178
cell selections, removing, 152-153
check mark selections,

creating, 155-156
coupled cell controls, 180-182
custom backgrounds, 172-175
customizing, 153-155
deleting

on-the-fly deletion, 159-160
with remove controls, 157-158
swiping cells, 158-159

disclosures, 162-163
loading images into, 149-150
reordering, 161-162
reusing, 143
swiping, 158-159
text styles, setting, 151-152

centering landscape views, 74

CGPoint structure, 39

CGPointMake method, 39

CGRect structure, 39

CGRectFromString method, 49

CGRectInset method, 39, 42

CGRectMake method, 39

CGRectZero method, 39

CGSize structure, 39

check mark cell selections,
creating, 155-156

checking site availability, 307-308

chevrons (in cells). See disclosures

circular path, clipping views to, 51-53

classes

ABNewPersonViewController, 78
ABPeoplePickerNavigation

Controller, 274
ABPersonViewController,

273-274, 277
DragView, 46-48
HelloController, 20
MPMoviePlayerController, 78
multiple inheritance, 11
NSScanner, 286
UIActionSheet, 107
UIActivityIndicatorView, 117-120
UIActivityIndicatorViewStyle

Gray, 119
UIActivityIndicatorViewStyle

White, 119
UIActivityIndicatorViewStyleWhite

Large, 119
UIAlertSheet, 108
UIAlertView, 107-109. See also alerts
UIApplication, 17
UIApplicationWillChangeStatusBar

OrientationNotification, 16
UICoverFlowLayer, 327-329
UIDatePicker, 186

properties, 188
selecting times/dates, 188-189

UIDevice, 288-289
UIDeviceOrientationDidChange

Notification, 16
UIImagePickerController, 78
UINavigationController

controller initialization, 91-92
creating two-item menu

with, 93-95
drilling through views

with, 100-103
modal presentation, 92
overview, 78, 91
pushing/popping controllers, 92

340 CATransitions

segmented controls, 95-97
UINavigationItem class, 92-93
UIToolbar class, 97-100

UINavigationItem, 92-93
UIProgressHUD, 117-119
UIProgressView, 121-123
UIRemoveControl, 157-158
UITabBarController

creating, 103-105
overview, 78, 103

UITableView, 139-140, 172
UITableViewCell, 149, 174
UITableViewCellAccessoryDetail

DisclosureButton, 162
UITableViewCellAccessoryDisclosure

Indicator, 162
UITableViewController, 78, 139, 141
UITableViewIndex, 173
UIToolbar, 97-100
UITouch, 42, 46-48
UIView, 12-13, 37. See also views
UIViewAnimationTransitionFlipFrom

Left, 64
UIViewAnimationTransitionFlipFrom

Right, 64
UIViewController

creating, 79-80
didRotateFromInterface

Orientation: method, 80
Fahrenheit to Celsius conversion

example, 81-90
init method, 79
overview, 12-13, 77
shouldAutorotateToInterface

Orientation: method, 80
viewDidAppear: method, 80
viewDidDisappear: method, 80

UIView
UIWindow, 37

clearColor method, 173

clickedButtonAtIndex: method, 110

clipping views

accessing pixel-by-pixel values, 54
checking views against touches, 53
testing touch hits against

bitmap, 54-56
to circular path, 51-53

Cocoa Touch

definition, 2
progress indicators. See

progress indicators
color

of buttons, 242
in tables, 177-178
of views, 40

commitAnimations method, 59

compiling applications, 33-34

configuring views, 267

connectivity. See networking support

Console tab (Organizer), 31

Contact Add button type, 232

contacts

adding, 277-278
contact information

browsing, 274-277
displaying, 273-274

images, accessing, 271-273
controls

buttons. See buttons
cell controls, 180-182
disclosures, 162-163
keyboards, dismissing, 246-248
page indicator controls, 260-263
remove controls

creating, 157-158
dismissing, 158

segmented controls, 95-97
slider thumbs

adding text to, 246
creating, 242-245

switches, 239-241

341controls

converting XML into trees, 311-313

Core Animation Transitions

applying to layers, 66-67
general Core Animation calls, 68-69
undocumented animation types, 67-68

core device information, accessing, 288-289

Core Location

accessing maps with, 286-288
Google Maps cell tower

positioning, 279
GPS positioning, 278
how it works, 279-280
latitude and longitude,

retrieving, 280-283
overview, 278
reverse geocoding to

addresses, 283-286
SkyHook Internet provider

positioning, 279
SkyHook WiFi positioning, 279

countDownDuration property (UIDatePicker
class), 188

cover flipping, 329

Cover Flow

UICoverFlowLayer class, 327-329
view controller

building, 331-332
data source methods, 332-333
delegate methods, 333
sample code listing, 333-336

views, building, 329-331
coverFlowFlipDidEnd: method, 332-333

Crash Logs tab (Organizer), 31

Crash Reporter, 25

createSectionList method, 166

custom settings bundles, adding, 297-302

custom URL schemes, subscribing
applications to, 302-304

customizing

alerts, 110
buttons, 233-236, 241-242

cell backgrounds, 172-175
group tables, 189-194
Hello World project, 24-25
log functions, 108
overlays, 123-127
switches, 239-241
table cells, 153-155
table views, 176-177
toolbars, 263-266

D
Dashcode, 2

data access limits, 8

data recovery, 228-229

data sources

assigning, 140-141
functions, 142-143
overview, 16-17
section-based data sources, 166-170
uncovering, 18

databases, interacting with, 308-311

dataFromDictionary: method, 318

date pickers

available styles, 186
creating, 186-188
selecting times/dates, 188-189

date property (UIDatePicker class), 188

Debugger window, opening, 26

debugging, 26-27

default images, 6

Default.png files, 6

delegates, assigning, 141

delegation, 13-14

deleting

table cells
on-the-fly deletion, 159-160
with remove controls, 157-158
swiping cells, 158-159

tmp files, 197

342 converting XML into trees

deselect method, 152

Detail Disclosure button type, 232

Developer Mode for Crash Reporter, 25

developer program

application identifiers, 29
development phones, 28
fees, 28

development phones, 28

Devices list (Organizer), 31

dictionaries, converting to and from
data, 318

dictionaryFromData: method, 318

didEndElement: method, 312

didRotateFromInterfaceOrientation:
method, 80

didSelectRowAtIndexPath: method, 143, 191

didSelectRow: inComponent method, 184

didStartElement: method, 312

disclosures, 162-163

dismissing remove controls, 158

dismissModalViewControllerAnimated:
method, 92

displaying

Address Book information, 273-274
alerts, 110
progress indicators

head-up display progress indicators,
117-119

overview, 117
progress bar, 121-123
spinning circle, 117-120

distribution

ad hoc distribution, 35-36
compiling applications for, 33-34

Documents folder (application sandbox)

backups, 197
browsing folders by file type, 198
finding documents in, 198
images, writing to, 207-208
table of contents, creating, 199-200

Done button, adding to Navigation
bar, 248-250

downloading

image data, 202-203
SDK (Software Developer Kit),

downloading, 1
Yahoo maps, 287-288

dragging views

multiple draggable views,
building, 46-48

overview, 45-46
persistence, 48-51
UITouch class, 46-48

DragView class, 46-48

drawRect: method, 40

drilling through views with
UINavigationController, 100-103

dynamic linking, 133-134

E
e-mail, 320

addresses, browsing, 277
editing

identification information, 25-26
images, 209-212

enabling proximity sensor, 289-290

energy limits, 9

events

acceleration events, catching, 291-292
people picker events,

handling, 276-277
exchangeSubviewAtIndex: method, 39, 64

executable files, 4

F
fading views in and out, 60-62

Fahrenheit to Celsius conversion
application, 81-90

feedback, live, 256

File Transfer Protocol (FTP), 320

343File Transfer Protocol (FTP)

files

Default.png files, 6
executable files, 4
HelloWorld_Prefix.pch file, 3
Icon.png files, 6
info.plist files, 4-6
receiving, 320-321
sandboxes, 7
sending, 320-321
UICoverFlowLayer.h, 327-329
XIB files

loading, 90
overview, 6

finding documents in Documents folder
(application sandbox), 198

fixed spaces in toolbars, 266

flipping views, 64-65

floating semitranslucent tables, creating,
176-177

FMDB Cocoa wrappers, 309-311

folders

hierarchy, 4
Library, 269

font table example, 143-145

foundCharacters: method, 312

framed tables, 179-180

frame geometry

background color, 40
CGPoint structure, 39
CGRect structure, 39
CGSize structure, 39
transforms, 40
translucency, 40
view layout, 40-41

frameworks, 3

freeopen function, 108

FTP (File Transfer Protocol), 320

functions. See methods

G
general Core Animation calls, 68-69

geometry (views)

background color, 40
CGPoint structure, 39
CGRect structure, 39
CGSize structure, 39
transforms, 40
translucency, 40
view layout, 40-41

gestures, 42

getIPAddressForHost: method, 307

Google Maps, 278-279

GPS positioning, 278

grouped tables

fully customized group tables,
189-194

grouped preferences tables, 189-194
overview, 165-166
section headers, 171
section-based data sources, 166-170

H
handleOpenURL: method, 303

handleWebRequest: method, 321-322

headers

section headers for grouped
tables, 171

UICoverFlowLayer.h, 327-329
heads-up display progress indicator, 117-119

heightForRowAtIndexPath: method, 190

Hello World application

applicationDidFinishLaunching:
method, 20

classes, 19-20
code listing, 20-22
creating, 23-24
customizing, 24-25
debugging, 26-27

344 files

HelloController class, 20
identification information,

editing, 25-26
main function, 20
running skeleton, 24
shouldAutorotateToInterface

Orientation: method, 20
HelloController class, 20

HelloWorld_Prefix.pch file, 3

hidden buttons in toolbars, 267

hierarchy

of folders, 4
of views, 37-39

hit tests, 53

HTML

text view editor creation, 253-255
UIWebView class objects, loading

into, 206

I
IB (Interface Builder), 2

IBOutlet keyword, 81

Icon.png files, 6

icons. See images

identification information, editing, 25-26

image picker controllers, 78

images

adding to status bar, 131-132
Address Book image data,

accessing, 271-273
albums, 207
application badges, 132-134
custom button creation, 233-236
default images, 6
displaying, 200-205
Documents folder (application

sandbox), writing to, 207-208
downloading data of, 202-203
editing, 209-212
libraries, browsing in, 206-207

loading, 200
loading into table cells, 149-150
snapping with iPhone camera, 212
startup images, 51

Info Light/Dark button type, 232

Info.plist files, 4-6, 228

inheritance, multiple, 11

init method, 79

initializing navigation controllers, 91-92

initWithFrame: method, 140, 165

initWithRootViewController: method, 91

initWithStyle: method, 165

Instruments (SDK), 1

interaction limits, 9

Interface Builder (IB), 2

interfaces, ToggleView, 60-62

IP addresses

local IP addresses, retrieving, 305-306
site IP addresses, querying, 306-307

iPhone databases, interacting with, 308-311

iPhone developer program

application identifiers, 29
development phones, 28
fees, 28

iTunes backups, recovering manifest data
from, 228-229

J-K
keyboards, dismissing, 246

UITextField control, 247
UITextView control, 248

keychain items, storing and retrieving, 313

keychain password keeper wrapper,
314-317

multiple keychain values, 318-319
persistence, 319-320

keywords, IBOutlet, 81

kSCNetworkFlagsConnectionRequired
flag, 304

kSCNetworkFlagsReachable flag, 304

345kSCNetworkFlagsReachable flag

kSCNetworkReachabilityFlagsIsDirect
flag, 305

kSCNetworkReachabilityFlagsIsWWAN
flag, 304

L
landscape views, centering, 74

latitude, retrieving, 280-283

launchApplicationWithIdentifier: method,
149, 326

layers, applying Core Animation Transitions
to, 66-67

layout of views, 40-41

libraries

application sandbox, 197
image libraries, browsing in, 206-207
Library folder, 269

Library folder, 269

linking, dynamic, 133-134

list tables

creating, 143-145
data source functions, 142-143
overview, 142
reusable cells, 143

live feedback, 256

loading

view controller arrays, 102-103
XIB files, 90

loadNibNamed: method, 90

loadView method, 18, 42

local IP addresses, retrieving, 305-306

locations of views, defining, 40

logging results, 108

longitude, retrieving, 280-283

M
main function, 18-20

Manifest.plist files, 228

maps, accessing with Core Location data,
286-288

maximumDate property (UIDatePicker
class), 188

Mdbackup files, 228

media files, recovering from
backup, 228-229

Media Player

playing audio via, 215-219
playing video via, 217-219

memory limits, 8

menus, creating, 93-95, 115-116

methods

ABPersonCopyImageData, 271
ABPersonGetTypeOfProperty, 271
ABPersonHasImageData, 271
accessoryButtonTappedForRow

WithIndexPath:, 163
addStatusBarImageNamed:, 131
addSubview:, 38, 42-43
addTextFieldWithValue:, 113
alloc, 140
applicationDidFinishLaunching:,

18-20
applicationWillTerminate:, 18, 49
AudioServicesAddSystemSound

Completion, 135
AudioServicesCreateSystemSound

ID, 135
AudioServicesDisposeSystemSound

ID, 135
AudioServicesPlaySystemSound, 135
bringSubviewToFront:, 39
cellForRowAtIndexPath:, 173, 190
CGPointMake, 39
CGRectFromString, 49
CGRectInset, 39, 42
CGRectMake, 39
CGRectZero, 39
clearColor, 173
clickedButtonAtIndex:, 110
commitAnimations, 59
coverFlowFlipDidEnd:, 332-333

346 kSCNetworkReachabilityFlagsIsDirect flag

createSectionList, 166
custom log functions, 108
dataFromDictionary:, 318
deselect, 152
dictionaryFromData:, 318
didEndElement:, 312
didRotateFromInterface

Orientation:, 80
didSelectRow:, 184
didSelectRowAtIndexPath:, 143, 191
didStartElement:, 312
dismissModalViewController

Animated:, 92
drawRect:, 40
exchangeSubviewAtIndex:, 39, 64
foundCharacters:, 312
freeopen, 108
getIPAddressForHost:, 307
handleOpenURL:, 303
handleWebRequest:, 321-322
heightForRowAtIndexPath:, 190
init, 79
initWithFrame:, 140, 165
initWithRootViewController:, 91
initWithStyle:, 165
launchApplicationWithIdentifier:,

149, 326
loadNibNamed:, 90
loadView, 18, 42
main, 18-20
NSStringFromCGRect, 49
numberOfComponentsInPicker

View:, 184
numberOfRowsInComponent:, 184
numberOfRowsInSection:, 167, 190
numberOfSectionsInTableView:,

142, 167, 190
parseXMLFile:, 312
peoplePickerNavigation

Controller, 275

peoplePickerNavigationController
DidCancel, 276

popToRootViewController
Animated:, 102

popToViewController:, 102
printf, 108
removeFromSuperview, 39
removeStatusBarImageNamed:, 131
requestFlipLayerAtIndex:, 333
respondsToSelector:, 18
SCNetworkReachabilityCreateWith

Address, 304, 307
sectionIndexTitlesForTableView, 171
sendSubviewToBack:, 39
setAnimationCurve:, 59
setAnimationTransition:, 64
setApplicationBadge:, 132
setBackgroundColor:, 40
SetCustomLeftItem:, 93
SetCustomRightItem:, 93
setDataSource:, 141
setDimsBackground:, 111
setNumberOfRows:, 110, 121
setRemovedOnCompletion:, 67
setStatusBarOrientation:, 41
setTag:, 39
setText:, 117
setTransform:, 72
shouldAutorotateToInterface

Orientation:, 18-20, 80
showFromTabBar, 115
showInView:, 115
showsReorderControl:, 161
titleForHeaderInSection:, 170, 190
titleForRow:, 184
toIndexPath:, 161
touchesForView:, 46
touchesForWindow:, 46
trackNotifications:, 16
UIApplicationDelegate, 326

347methods

UIImageJPEGRepresentation, 286
UIImageWroteToSavedPhotos

Album, 286
undocumented API calls, 34-35
viewDidAppear:, 80
viewDidDisappear:, 80
willRotateToInterfaceOrientation:, 44

minimumDate property (UIDatePicker
class), 188

minuteInterval property (UIDatePicker
class), 188

modal presentation, 92

model

data sources, 16-17
UIApplication class, 17

Model-View-Controller. See MVC
design pattern

moving onscreen objects based on
accelerometer feedback, 292-295

MPArrayQueueFeeder class, 215

MPAVController class, 215

MPItem class, 215-216

MPMoviePlayerController class, 78, 218-219

Mueller, Gus, 309

multiline button displays, 110-112

multiple draggable views, 46-48

multiple inheritance, 11

multiple keychain values, storing, 318-319

multitouch, detecting, 56-58

multiwheel tables, 182-186

MVC (Model-View-Controller) design pattern

controllers
delegation, 13-14
target-actions, 14-15

model
data sources, 16-17
UIApplication class, 17

notifications, 15-16
overview, 11-12
view classes, 12-13

N
Navigation bar

adding buttons to, 231-232
adding Done button to, 248-250

navigation controllers

creating two-item menu with, 93-95
drilling through views with, 100-103
initializing, 91-92
overview, 78, 91
pushing/popping, 92
segmented controls, 95-97
UINavigationItem class, 92-93
UIToolbar class, 97-100

nested subviews, 42-43

network status, testing, 304-305

networking support

custom settings bundles,
adding, 297-302

custom URL schemes, subscribing
applications to, 302-304

files, sending and receiving, 320-321
iPhone databases, interacting with,

308-311
keychain items, storing and

retrieving, 313
keychain password keeper

wrapper, 314-317
multiple keychain values, 318-319
persistence, 319-320

local IP addresses, retrieving, 305-306
network status, testing, 304-305
push notifications, 325-326
site availability, checking, 307-308
site IP addresses, querying, 306-307
Web servers, building, 321-325
XML, converting into trees, 311-313

Newman, Lucas, 68

no-button alerts, 112-113

notifications, 15-16, 325-326

NSDistributedNotificationCenter, 15

348 methods

NSNotificationCenter, 15

NSScanner class, 286

NSString class, 227

NSStringFromCGRect method, 49

NSXMLParser, 311

numberOfComponentsInPickerView:
method, 184

numberOfRowsInComponent: method, 184

numberOfRowsInSection: method, 167, 190

numberOfSectionsInTableView: method, 142,
167, 190

O
object-oriented programming, 11

Objective-C 2.0, 2

objects

UIAcceleration, 291
UIImage, 271
UITableCell, 271

onscreen objects, moving based on
accelerometer feedback, 292-295

opening Debugger window, 26

Organizer

Console tab, 31
Crash Logs tab, 31
Devices list, 31
Projects & Sources list, 30
Screenshot tab, 32
Summary tab, 31

overlays, “Please, Wait” overlay, 123-127

P
page indicator controls, 260-263

parseXMLFile: method, 312

people picker events, handling,
270, 276-277

peoplePickerNavigationController
method, 275

peoplePickerNavigationControllerDidCancel
method, 276

persistence

adding to views
recovering state, 50-51
startup images, 51
storing state, 48-49

of keychain data, 319-320
pictures

adding to status bar, 131-132
Address Book image data,

accessing, 271-273
albums, 207
application badges, 132-134
custom button creation, 233-236
default images, 6
displaying, 200-205
Documents folder (application

sandbox), writing to, 207-208
downloading data of, 202-203
editing, 209-212
libraries, browsing in, 206-207
loading, 200
loading into table cells, 149-150
snapping with iPhone camera, 212
startup images, 51

pixel-by-pixel values, accessing, 54

platform limitations

application limits, 9
data access limits, 8
energy limits, 9
interaction limits, 9
memory limits, 8
overview, 8
storage limits, 8
user behavior limits, 10

playing audio alerts, 134-136

“Please, Wait” overlay, 123-127

popping items off navigation stack, 92

popToRootViewControllerAnimated:
method, 102

popToViewController: method, 102

349popToViewController: method

“precooked” button types, 232

preferences tables, grouped, 189-194

printf function, 108

progress bars, 121-123

progress indicators

head-up display progress indicators,
117-119

overview, 117
progress bar, 121-123
spinning circle, 117-120

projects

assembling, 2-3
creating, 23-24

Projects & Sources list (Organizer), 30

property lists, displaying, 227

proximity sensor, enabling, 289-290

push notifications, 325-326

pushing items onto navigation stack, 92

Q
Quartz Core framework, 66. See also Core

Animation Transitions

querying

Address Book, 270-271
site IP addresses, 306-307
views, 38

R
reading text data, 227

receiving files, 320-321

recording audio, 219-226

recovering

media files, 228-229
state, 50-51

redirecting stderr, 108

registering custom URL schemes, 303-304

remove controls

creating, 157-158
dismissing, 158

removeFromSuperview method, 39

removeStatusBarImageNamed: method, 131

removing

cell selections, 152-153
status bar images, 132
subviews, 39

reordering

subviews, 39
table cells, 161-162

reorientation support (views), 44-45

requestFlipLayerAtIndex: method, 333

resizing contact images, 272

respondsToSelector: method, 18

results, logging, 108

reusing table cells, 143

reverse geocoding to addresses, 283-286

Rounded Rectangle button type, 232

running Hello World skeleton, 24

S
sandbox (application), 7

Application Support folder, 197
Documents folder

backups, 197
browsing folders by file type, 198
finding documents in, 198
table of contents creation, 199-200
writing images to, 207-208

Library, 197
tmp folder, deleting files from, 197

SCNetworkReachabilityCreateWithAddress
method, 304, 307

Screenshot tab (Organizer), 32

screenshots, snapping with iPhone
camera, 212

scroll-down alerts, 127-131

SDK (Software Developer Kit) download, 1

SDK (Software Developer Kit) limitations, 10

350 “precooked” button types

search bars

creating, 255
live feedback with, 256

section headers, adding to grouped
tables, 171

section tables, 171

section-based data sources, 166-170

sectionIndexTitlesForTableView method, 171

segmented controls, adding to navigation
bars, 95-97

selection sheets, table-based, 145-149

semitranslucent tables, 176-177

sending files, 320-321

sendSubviewToBack: method, 39

sensors

acceleration sensors
catching acceleration events,

291-292
locating “up” direction, 290-292
moving objects based on

accelerometer feedback, 292-295
proximity sensor, 289-290

serialization, 318

serialized data, appearance of, 228

servers, Web, 321-325

services, connecting to. See
networking support

setAnimationCurve: method, 59

setAnimationTransition: method, 64

setApplicationBadge: method, 132

setBackgroundColor: method, 40

SetCustomLeftItem: method, 93

SetCustomRightItem: method, 93

setDataSource: method, 141

setDimsBackground: method, 111

setNumberOfRows: method, 110, 121

setRemovedOnCompletion: method, 67

setStatusBarOrientation: method, 41

setTag: method, 39

setText: method, 117

Settings screen, 297-302

setTransform: method, 72

shouldAutorotateToInterfaceOrientation:
method, 18-20, 80

showFromTabBar method, 115

showInView: method, 115

showsReorderControl: method, 161

Simulator, 2

site availability, checking, 307-308

site IP addresses, querying, 306-307

SkyHook Wireless, 278-279

slide-down alerts, 127-131

slider thumbs

adding text to, 246
creating, 242-245

sliding onscreen objects based on
accelerometer feedback, 292-295

Software Developer Kit (SDK) download, 1

Software Developer Kit (SDK) limitations, 10

sound alerts, 134-136

spaces, fixed spaces in toolbars, 266

spinning circle progress indicator, 117-120

SpringBoard, 4, 133-134

SQLite access routine, 309

startup images, 51

state

recovering, 50-51
storing, 48-49

status of network, testing, 304-305

status bar, adding images to, 131-132

stderr, redirecting, 108

storage limits, 8

storing

keychain items, 313
keychain password keeper

wrapper, 314-317
multiple keychain values, 318-319
persistence, 319-320

state, 48-49
stuctures, 39

351structures

subviews, 38-39

adding, 38, 42-43
nested subviews, 42-43
querying, 38
removing, 39
reordering, 39
reorientation support, 44-45
tagging, 39

Summary tab (Organizer), 31

swapping views, 62-64

swiping

table cells, 158-159
views, 69-71

switches, customizing, 239-241

System Audio services, 214

T
tab bars

creating, 103-105
overview, 78, 103

table-based selection sheets, 145-149

tables

cells
adding, 159-160
alternate blue and white cells,

creating, 177-178
cell selections, removing, 152-153
check mark selections, creating,

155-156
coupled cell controls, 180-182
custom backgrounds, 172-175
customizing, 153-155
deleting, 157-160
disclosures, 162-163
loading images into, 149-150
reordering, 161-162
reusing, 143
swiping, 158-159
text styles,setting, 151-152

creating
data sources, 140-141
delegates, 141
table views, 140

data sources, 142-143
date pickers

available styles, 186
creating, 186-188
selecting times/dates, 188-189

of documents, 199-200
floating semitranslucent tables,

creating, 176-177
font table example, 143-145
framed tables, 179-180
grouped tables

fully customized group
tables, 189-194

grouped preferences
tables, 189-194

overview, 165-166
section headers, 171
section-based data sources, 166-170

list tables
creating, 143-145
data source functions, 142-143
overview, 142
reusable cells, 143

multiwheel tables, 182-186
section tables, 171
table-based selection sheets, 145-149
UITableView class, 139-140
UITableViewController class, 139-141
views, customizing, 176-177

target-actions, 14-15

temperature conversion application, 81-90

testing

applications, 32-33
network status, 304-305

tethering, 32

352 subviews

text

customizing in switches, 240-241
property lists, 227
reading data, 227
slider thumbs, adding to, 246
soliciting text input from

users, 113-115
text field keyboards, dismissing

UITextField control, 247
UITextView control, 248

text styles, assigning to cells, 151-152
text views

adding Undo button to, 250-251
HTML editor text view

creation, 253-255
thumbnails, adding to table cells, 149-150

titleForHeaderInSection: method, 170, 190

titleForRow: forComponent method, 184

tmp folder (application sandbox), deleting
files from, 197

ToggleView interface, 60-62

toIndexPath: method, 161

toolbars

adding to navigation bars, 97-100
alignment in, 267
buttons, 267
customizing, 263-266
fixed spaces in, 266
hidden buttons, 267
Navigation bar

adding buttons to, 231-232
adding Done button to, 248-250

search bars
creating, 255
live feedback with, 256

touches

checking views against, 53
multitouch, detecting, 56-58
testing touch hits against

bitmap, 54-56

touchesForView: method, 46

touchesForWindow: method, 46

trackNotifications: method, 16

transform views, 40

transforming views, 72-74

transitions

Core Animation Transitions
applying to layers, 66-67
general Core Animation

calls, 68-69
undocumented animation

types, 67-68
views, 64

translucency of views, 40

transparency, animations with transparency
changes, 60-62

trees

converting XML into, 311-313
nodes, defining, 311

two-item menus, creating with
UINavigationController, 93-95

U
U.S. Department of Defense Global

Positioning System, 278

UIAcceleration object, 291

UIActionSheet class, 107, 242

UIActivityIndicatorView class, 117-120

UIActivityIndicatorViewStyleGray class, 119

UIActivityIndicatorViewStyleWhite class, 119

UIActivityIndicatorViewStyleWhiteLarge
class, 119

UIAlertSheet class, 108

UIAlertView class, 107-109, 241-242. See
also alerts

UIAlertViewDelegate protocol, 110

UIApplication class, 17

UIApplicationDelegate method, 326

UIApplicationWillChangeStatusBar
OrientationNotification class, 16

UIBarButtonItem class, 231-232

353UIBarButtonItem class

UIButton class, 232

button animations, 236-237
custom button creation, 233-236

UICalloutView class, 258-260

UIControl class, 239-241

UICoverFlowLayer class, 327-329

UIDatePicker class, 186

properties, 188
selecting times/dates, 188-189

UIDevice class, 288-289

UIDeviceOrientationDidChangeNotification
class, 16

UIGlassButton class, 236

UIImage objects, 271

UIImageJPEGRepresentation method, 286

UIImagePickerController class, 78

browsing image libraries, 206-207
editing images, 209-212

UIImageView class, 201

UIImageWroteToSavedPhotosAlbum
method, 286

UINavigationController class

controller initialization, 91-92
creating two-item menu with, 93-95
drilling through views with, 100-103
modal presentation, 92
overview, 78, 91
pushing/popping controllers, 92
segmented controls, 95-97
UINavigationItem class, 92-93
UIToolbar class, 97-100

UINavigationItem class, 92-93

UIPageControl class, 260-263

UIPickerView instances, 182-186

UIProgressHUD class, 117-119

UIProgressView class, 121-123

UIRemoveControl class, 157-158

UIScrollView class, 202-203

UISearchBar class, 255-256

UISlider class, 242-245

UISwitch class, 240-241

UITabBar class, 263

UITabBarController class

creating, 103-105
overview, 78, 103

UITableCell object, 271

UITableView class, 139-140, 172

UITableViewCell class, 149, 174

UITableViewCellAccessoryCheckmark
accessory type, 155

UITableViewCellAccessoryDetailDisclosure
Button, 162

UITableViewCellAccessoryDisclosure
Indicator, 162

UITableViewController class, 78, 139-141

UITableViewDataSource protocol, 141

UITableViewIndex class, 173

UITextField class, 246-247

UITextView class

adding Done button to Navigation
bar, 248-250

creating text view-based HTML
editors, 253-255

dismissing keyboards, 248
UIToolbar class

adding to navigation bars, 97-100
customizing toolbars, 263-266

UITouch class, 42, 46-48

UIView class, 37. See also views

animating button responses, 238-239
overview, 12-13

UIViewAnimationTransitionFlipFromLeft
class, 64

UIViewAnimationTransitionFlipFromRight
class, 64

UIViewController class

creating, 79-80
didRotateFromInterfaceOrientation:

method, 80
Fahrenheit to Celsius conversion

example, 81-90
init method, 79

354 UIButton class

overview, 12-13, 77
shouldAutorotateToInterface

Orientation: method, 80
viewDidAppear: method, 80
viewDidDisappear: method, 80

UIWebView class

loading HTML source, 206
viewing images, 200, 203-205

UIWindow class, 37

Undo button, adding to text views, 250-251

undocumented animation types, 67-68

undocumented API calls, 34-35

“up” direction, locating with acceleration
sensors, 290-292

URLs, custom URL schemes, 302-304

users

alerting. See alerts
soliciting text input from, 113-115

V
vibration alerts, 136

video, playing, 217-219

view controllers

ABNewPersonViewController
class, 78

delegation, 13-14
loading view controller

arrays, 102-103
MPMoviePlayerController class, 78
overview, 13, 77
popping back to root, 102
target-actions, 14-15
UIImagePickerController class, 78
UINavigationController class

controller initialization, 91-92
creating two-item menu

with, 93-95
drilling through views

with, 100-103
modal presentation, 92

overview, 78, 91
pushing/popping controllers, 92
segmented controls, 95-97
UINavigationItem class, 92-93
UIToolbar class, 97-100

UITabBarController class
creating, 103-105
overview, 78, 103

UITableViewController class, 78
UIViewController class

creating, 79-80
didRotateFromInterface

Orientation: method, 80
Fahrenheit to Celsius conversion

example, 81-90
init method, 79
overview, 77
shouldAutorotateToInterface

Orientation: method, 80
viewDidAppear: method, 80
viewDidDisappear: method, 80

viewDidAppear: method, 80

viewDidDisappear: method, 80

views, 77. See also view controllers

animations
Core Animation Transitions, 66-69
flipping views, 64-65
methods, 60
overview, 59
swapping views, 62-64
transitions, 64-65
with transparency changes, 60-62

background color, 40
clipping

accessing pixel-by-pixel values, 54
checking views against touches, 53
testing touch hits against

bitmap, 54-56
to circular path, 51-53

configuring, 267

355views

Cover Flow views
building, 329-331
view controller, 331-336

disclosure views, 162-163
dragging

multiple draggable views,
building, 46-48

overview, 45-46
persistence, 48-51
UITouch class, 46-48

drilling through with
UINavigationController, 100-103

fading in and out, 60-62
flipping, 64-65
frame geometry

CGPoint structure, 39
CGRect structure, 39
CGSize structure, 39
transforms, 40
view layout, 40-41

gestures, 42
hierarchy, 37-39
landscape views, centering, 74
locations, defining, 40
multitouch, detecting, 56-58
overview, 12-13, 37
querying, 38
subviews, 38-39

adding, 38, 42-43
nested subviews, 42-43
querying, 38
removing, 39
reordering, 39
reorientation support, 44-45
tagging, 39

swapping, 62-64
swiping, 69-71
table views

customizing, 176-177
laying out, 140
UITableView class, 139

ToggleView interface, 60-62
transforming, 72-74
transitions, 64
translucency, 40
UIActivityIndicatorView, 117-120
UIAlertView, 107-109. See also alerts
UIPickerView instances for

multicolumn selection, 182-186
UIProgressHUD, 117-119
UIProgressView, 121-123
UIVie, 37
UIWindow, 37

W
Web servers, building, 321-325

white and blue table cells, creating, 177-178

willRotateToInterfaceOrientation: method, 44

X-Y-Z
XCode

Organizer
Console tab, 31
Crash Logs tab, 31
Devices list, 31
Projects & Sources list, 30
Screenshot tab, 32
Summary tab, 31

overview, 1
XIB files

loading, 90
overview, 6

XML, converting into trees, 311-313

Yahoo

maps, accessing with Core Location,
286-288

ZoneTag, 283-286

ZoneTag, 283-286

356 views

	Preface
	2 Views
	UIView and UIWindow
	Hierarchy
	Geometry and Traits
	Gestures

	Recipe: Adding Stepwise Subviews
	Reorienting

	Recipe: Dragging Views
	UITouch
	Adding Persistence

	Recipe: Clipped Views
	Balancing Touches with Clipping
	Accessing Pixel-by-Pixel Values

	Recipe: Detecting Multitouch
	UIView Animations
	Building UIView Animation Blocks

	Recipe: Fading a View In and Out
	Recipe: Swapping Views
	Recipe: Flipping Views
	Recipe: Applying CATransitions to Layers
	Undocumented Animation Types
	General Core Animation Calls

	Recipe: Swiping Views
	Recipe: Transforming Views
	Centering Landscape Views

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

