

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.
CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordination Cen-
ter are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolutionary
Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Soft-
ware Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE;
SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.
IEEE Std 1471 is a trademark of the Institute of Electrical and Electronics Engineers, Inc.
Special permission to reproduce portions of the following is granted by the Software Engineering Institute:
• Robert L. Nord, Paul C. Clements, David Emery, and Rich Hilliard, “A Structured Approach for Reviewing Architecture Doc-

umentation” (CMU/SEI-2009-TN-030). Copyright © 2009 by Carnegie Mellon University.
• Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert Nord, and Judith Stafford, “Doc-

umenting Software Architecture: Documenting Behavior” (CMU/SEI-2002-TN-001). Copyright © 2002 by Carnegie Mellon
University.

• Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert Nord, and Judy Stafford, “Doc-
umenting Software Architectures: Organization of Documentation Package” (CMU/SEI-2001-TN-010). Copyright © 2001
by Carnegie Mellon University.

• Felix Bachmann, Len Bass, Jeromy Carriere, Paul Clements, David Garlan, James Ivers, Robert Nord, and Reed Little,
“Software Architecture Documentation in Practice: Documenting Architectural Layers” (CMU/SEI-2000-SR-004). Copy-
right © 2000 by Carnegie Mellon University.

• Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Robert Nord, Reed Little, and Judith Stafford, “Soft-
ware Architecture Documentation in Practice: Documenting Software Interfaces” (CMU/SEI-2002-TN-015). Copyright ©
2002 by Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data
Documenting software architectures : views and beyond / Paul Clements
... [et al.]. — 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-55268-6 (hardcover : alk. paper)

1. Computer architecture. 2. Software documentation. I. Clements,
Paul, 1955– II. Title.

QA76.9.A73D63 2010
005.1'5—dc22

2010024318
Copyright © 2011 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-55268-6
ISBN-10: 0-321-55268-7
Text printed in the United States on Recycled paper at Courier in Westford, Massachusetts.
First printing, October 2010

ix

Contents

About the Cover xxi
Foreword to the Second Edition xxiii
Foreword to the First Edition xxv
Preface xxix
Acknowledgments xxxiii
Reader’s Guide xxxv

Prologue: Software Architectures and Documentation 1
The prologue establishes the necessary concepts and vocabulary for the
remainder of the book. It discusses how software architecture docu-
mentation is used and why it is important. It defines the concepts that
provide the foundation of the book’s approach to documentation. It also
contains seven basic rules for sound documentation.

P.1 A Short Overview of Software Architecture 1
P.1.1 Overview 1
P.1.2 Architecture and Quality Attributes 2

Coming to Terms: What Is Software Architecture? 3
Perspectives: What’s the Difference Between Architecture and Design? 6

P.2 A Short Overview of Architecture Documentation 9
P.2.1 Why Document Software Architecture? 9

Coming to Terms: Specification, Representation, Description, Documentation 10
P.2.2 Uses and Audiences for Architecture

Documentation 12
P.2.3 Architecture Documentation and Quality

Attributes 17
P.2.4 Economics of Architecture Documentation 18
P.2.5 The Views and Beyond “Method” 19
P.2.6 Views and Beyond in an Agile Environment 20
P.2.7 Architectures That Change Faster Than You

Can Document Them 20

x ■ Contents

P.3 Architecture Views 22

Coming to Terms: A Short History of Architecture Views 23

P.4 Architecture Styles 25
P.4.1 Three Categories of Styles 29

Coming to Terms: Module, Component 29
Coming to Terms: “Architecture Style” and “Architecture Pattern” 32

P.5 Seven Rules for Sound Documentation 36

Perspectives: Beware Notations Everyone “Just Knows” 38
Perspectives: Quivering at Arrows 41

P.6 Summary Checklist 45

P.7 Discussion Questions 46

P.8 For Further Reading 47

Part I A Collection of Software Architecture Styles 49
Part I introduces the basic tools for software architecture documentation: archi-
tecture styles. A style is a specialization of element and relationship types,
together with constraints on how they may be used. By identifying element and
relationship types, styles identify the architecture structures that architects design
to achieve the system’s quality and behavioral goals. There are three fundamental
kinds of structures: module structures, component-and-connector structures,
and allocation structures. Within each category reside a number of architecture
styles. The introduction to Part I includes a brief catalog of the styles that are
described in Chapters 1–5.

I.1 Three Categories of Styles 49

I.2 Style Guides: A Standard Organization for Explaining
a Style 50

I.3 Choosing Which Element and Relation Properties to
Document 52

I.4 Notations for Architecture Views 53

I.5 Examples 54

Chapter 1 Module Views 55
A module is an implementation unit of software that provides a coherent
unit of functionality. Modules form the basis of many standard architec-
ture views. This chapter defines modules and outlines the information
required for documenting module views.

1.1 Overview 55

1.2 Elements, Relations, and Properties of Module Views 56
1.2.1 Elements 56
1.2.2 Relations 57
1.2.3 Properties 57

1.3 What Module Views Are For 59

Contents ■ xi

1.4 Notations for Module Views 60
1.4.1 Informal Notations 60
1.4.2 Unified Modeling Language 61
1.4.3 Dependency Structure Matrix 62
1.4.4 Entity-Relationship Diagram 62

1.5 Relation to Other Views 63

1.6 Summary Checklist 63

1.7 Discussion Questions 64

1.8 For Further Reading 64

Chapter 2 A Tour of Some Module Styles 65
This chapter introduces some common and important styles in the
module category. Each style is presented in terms of how it specializes
the overall elements and relations found in module styles.

2.1 Decomposition Style 65
2.1.1 Overview 65
2.1.2 Elements, Relations, and Properties 66
2.1.3 What the Decomposition Style Is For 67
2.1.4 Notations for the Decomposition Style 67
2.1.5 Relation to Other Styles 68
2.1.6 Examples Using the Decomposition Style 69
Coming to Terms: Subsystem 73

2.2 Uses Style 74
2.2.1 Overview 74
2.2.2 Elements, Relations, and Properties 75
2.2.3 What the Uses Style Is For 75
2.2.4 Notations for the Uses Style 76
2.2.5 Relation to Other Styles 79
2.2.6 Examples Showing the Uses Style 79
Coming to Terms: Uses 81

2.3 Generalization Style 82
2.3.1 Overview 82
2.3.2 Elements, Relations, and Properties 83
2.3.3 What the Generalization Style Is For 84
2.3.4 Notations for the Generalization Style 84
2.3.5 Relation to Other Styles 84
2.3.6 Examples Using the Generalization Style 85

2.4 Layered Style 87
2.4.1 Overview 87
2.4.2 Elements, Relations, and Properties 89
2.4.3 What the Layered Style Is For 90
2.4.4 Notations for the Layered Style 92
2.4.5 Relation to Other Styles 96

xii ■ Contents

2.4.6 Examples Using the Layered Style 97
Coming to Terms: Virtual Machines 99
Perspectives: Calling Higher Layers 100
Perspectives: Using a DSM to Maintain a Layered Architecture 101

2.5 Aspects Style 104
2.5.1 Overview 104
2.5.2 Elements, Relations, and Properties 104
2.5.3 What the Aspects Style Is For 105
2.5.4 Notations for the Aspects Style 105
2.5.5 Relation to Other Styles 106
2.5.6 Examples Using the Aspects Style 106
Coming to Terms: Aspect-Oriented Programming 107

2.6 Data Model 109
2.6.1 Overview 109
2.6.2 Elements, Relations, and Properties 111
2.6.3 What the Data Model Is For 114
2.6.4 Notations for the Data Model Style 116
2.6.5 Relations to Other Styles 117
2.6.6 Examples 118
Coming to Terms: Entity 118

2.7 Summary Checklist 120

2.8 Discussion Questions 120

2.9 For Further Reading 121

Chapter 3 Component-and-Connector Views 123
Component-and-connector views represent units of execution plus the
pathways and protocols of their interaction. This chapter defines com-
ponents and connectors and describes the rules for documenting them.

3.1 Overview 123

3.2 Elements, Relations, and Properties of C&C Views 126
3.2.1 Elements 127
3.2.2 Component-and-Connector Types and

Instances 129
3.2.3 Relations 131
3.2.4 Properties 133
Perspectives: Are Complex Connectors Necessary? 135

3.3 What C&C Views Are For 136

Perspectives: Choosing Connector Abstractions 137

3.4 Notations for C&C Views 139
3.4.1 Informal Notations 139
3.4.2 Formal Notations 139
3.4.3 Semiformal Notations: UML 139

Perspectives: Data Flow and Control Flow Models 146

Contents ■ xiii

3.5 Relation to Other Kinds of Views 148

3.6 Summary Checklist 150

3.7 Discussion Questions 151

3.8 For Further Reading 152

Chapter 4 A Tour of Some Component-and-Connector Styles 155
This chapter introduces some important component-and-connector
(C&C) styles. The chapter describes how each style is a specialization of
the generic elements and relations of C&C styles, discusses what makes
each style useful, and explains how each style is documented.

4.1 An Introduction to C&C Styles 155

4.2 Data Flow Styles 157
4.2.1 Pipe-and-Filter Style 158

4.3 Call-Return Styles 161
4.3.1 Client-Server Style 162
4.3.2 Peer-to-Peer Style 166
4.3.3 Service-Oriented Architecture Style 169

4.4 Event-Based Styles 172
4.4.1 Publish-Subscribe Style 174

4.5 Repository Styles 178
4.5.1 Shared-Data Style 178

4.6 Crosscutting Issues for C&C Styles 182
4.6.1 Communicating Processes 182
4.6.2 Tiers 183
4.6.3 Dynamic Creation and Destruction 184

4.7 Summary Checklist 185

4.8 Discussion Questions 186

4.9 For Further Reading 187

Chapter 5 Allocation Views and a Tour of Some
Allocation Styles 189

Software architects are often obliged to document nonsoftware struc-
tures and show how the software designs are mapped to the structures:
the computing environment in which their software will run, the organi-
zational environment in which it will be developed, and so on. This chap-
ter introduces the allocation view category, which is used to express the
allocation of software elements to nonsoftware structures, and three major
allocation styles.

5.1 Overview 189

5.2 Deployment Style 191
5.2.1 Overview 191
5.2.2 Elements, Relations, and Properties 192
5.2.3 What the Deployment Style Is For 194

xiv ■ Contents

5.2.4 Notation for the Deployment Style 196
5.2.5 Relation to Other Styles 197

5.3 Install Style 198
5.3.1 Overview 198
5.3.2 Elements, Relations, and Properties 199
5.3.3 What the Install Style Is For 200
5.3.4 Notations for the Install Style 200
5.3.5 Relation to Other Styles 202

5.4 Work Assignment Style 202
5.4.1 Overview 202
5.4.2 Elements, Relations, and Properties 202
5.4.3 What a Work Assignment Style Is For 203
5.4.4 Notations for the Work Assignment Style 203
5.4.5 Relation to Other Styles 204
Perspectives: Why Is a Work Assignment View Architectural? 205

5.5 Other Allocation Styles 206

Perspectives: Coordination Views 209

5.6 Summary Checklist 213

5.7 Discussion Questions 213

5.8 For Further Reading 214

Part II Beyond Structure: Completing the
Documentation 215

Part II concentrates on the rest of the information an architect should include in
architecture documentation, such as context diagrams, variation points, inter-
faces, and software behavior.

Chapter 6 Beyond the Basics 217
This chapter introduces documentation approaches to handle some spe-
cial architecture issues and situations, such as breaking a view into chunks,
documenting context and variation points, and combining views.

6.1 Refinement 218
6.1.1 Decomposition Refinement 218
6.1.2 Implementation Refinement 219
6.1.3 Spectrum of Design 220
6.1.4 Style Specialization 221

6.2 Descriptive Completeness 222

6.3 Documenting Context Diagrams 225
6.3.1 Create Context Diagrams Using the

Vocabulary of the View 226
6.3.2 Content of a Context Diagram 228
6.3.3 Context Diagrams and Other Supporting

Documentation 229
6.3.4 Notations for Context Diagrams 229

Contents ■ xv

6.4 Documenting Variation Points 231
6.4.1 What Are Variation Points? 231
6.4.2 Variation Mechanisms 232
Coming to Terms: Product-Line Architectures 234
6.4.3 Dynamism and Dynamic Architectures 234
6.4.4 Documenting Variation Points 235

6.5 Documenting Architectural Decisions 239
6.5.1 Why Document Architectural Decisions? 239
6.5.2 A Template for Documenting Architectural

Decisions 239
6.5.3 Documenting Alternatives 242
6.5.4 Which Decisions to Document 242
Perspectives: “It may sound like a lot of effort to do this, but here’s how
we do it in the trenches.” 244
6.5.5 The Payback for Documenting Architectural

Decisions 245
Perspectives: From Documenting Architectures to Architecting As
Decision Making 246
Perspectives: An Ontology of Architecture Decisions 247

6.6 Combining Views 250
6.6.1 Types of Associations Between Views 251
6.6.2 Combined Views 252
6.6.3 When to Combine Views 254
6.6.4 Examples of Combined Views 255

6.7 Summary Checklist 258

6.8 Discussion Questions 259

6.9 For Further Reading 260

Chapter 7 Documenting Software Interfaces 261
The interfaces of the elements are critical parts of any architecture, and
documenting them is an important responsibility for the architect. This
chapter tells you how to specify an interface.

7.1 Overview 261

Coming to Terms: Provided vs. Required Interfaces 264

7.2 Interface Documentation 265
7.2.1 Showing the Existence of Interfaces in

Diagrams 268

7.3 A Standard Organization for Interface Documentation 271
Coming to Terms: Error Handling 277

7.4 Stakeholders of Interface Documentation 278

7.5 Conveying Syntactic Information 279

7.6 Conveying Semantic Information 280
Coming to Terms: Signature, Interface, API 280

xvi ■ Contents

7.7 Examples of Interface Documentation 281
7.7.1 Zip Component API 281
7.7.2 Interface to a SOAP Web Service 285

7.8 Summary Checklist 285

7.9 Discussion Questions 286

7.10 For Further Reading 286

Chapter 8 Documenting Behavior 289
Documenting behavior is an essential counterpoint to documenting
structure. This chapter covers the techniques and notations available for
expressing the behavior of elements, groups of elements, and the sys-
tem as a whole.

8.1 Beyond Structure 289

8.2 How to Document Behavior 290
8.2.1 Step 1: Decide What Kinds of Questions

You Need to Answer 290
8.2.2 Step 2: Determine What Types of

Information Are Available or Can Be
Constrained 291

8.2.3 Step 3: Choose a Notation 293

8.3 Notations for Documenting Behavior 295
8.3.1 Notations for Capturing Traces 295
8.3.2 Notations for Capturing Comprehensive

Models 303

8.4 Where to Document Behavior 306

8.5 Why to Document Behavior 306
8.5.1 Driving Development Activities 306
8.5.2 Analysis 307

8.6 Summary Checklist 308

8.7 Discussion Questions 309

8.8 For Further Reading 311

Part III Building the Architecture Documentation 313
Part III covers what you have to do to create and maintain the documentation
artifacts: choosing views to include, laying out and packaging the information,
and reviewing the document.

Chapter 9 Choosing the Views 315
This chapter provides guidance for selecting views, given the intended use
of an architecture: analysis, reconstruction, achieving common under-
standing, the basis for deriving code, and so on.

9.1 Stakeholders and Their Documentation Needs 316

Contents ■ xvii

9.2 A Method for Choosing the Views 326
Perspectives: Listening to the Stakeholders 327

9.3 Example 329
Perspectives: How Not to Introduce an Architecture 333

9.4 Summary Checklist 335

9.5 Discussion Questions 335

9.6 For Further Reading 335

Chapter 10 Building the Documentation Package 337
This chapter explains how the documentation is organized to serve its
stakeholders. The chapter shows how the elements discussed in the
prior chapters fit together to produce usable documentation. The chap-
ter includes templates for architecture documentation.

10.1 Documenting a View 337
10.1.1 A Standard Organization for Documenting

a View 337
Perspectives: From Context Diagrams to a Context View 341
10.1.2 Useful Variations in the Standard Organization

for a View 344
10.1.3 Avoiding Unnecessary Repetition Across

Views or View Packets 349

10.2 Documentation Beyond Views 350
10.2.1 A Standard Organization for Documenting

Information Beyond Views 351
10.2.2 Useful Variations in the Standard Organization

for Documentation Beyond Views 356

10.3 Documenting a Mapping to Requirements 357
Perspectives: A Mapping to Requirements: You Might Already Have It 362

10.4 Packaging the Architecture Documentation 362
10.4.1 Packaging Schemes 362
10.4.2 Online Documentation, Hypertext, and Wikis 365

Coming to Terms: Wiki 366
10.4.3 Configuration Management 368
10.4.4 Follow a Release Strategy 368
Perspectives: Presentation Is Also Important 369
Perspectives: Tooling Requirements 370

10.5 Summary Checklist 372

10.6 For Further Reading 373

Chapter 11 Reviewing an Architecture Document 375
This chapter describes a step-by-step approach for conducting a struc-
tured review of an architecture document, and it includes a large selection
of review questions.

11.1 Steps of the Procedure 376
Coming to Terms: Active Design Reviews 380

xviii ■ Contents

11.2 Sample Question Sets for Reviewing the
Architecture Document 382
11.2.1 Example Question Set for Capturing the

Right Stakeholders and Concerns 385
11.2.2 Example Question Set for Supporting

Evaluation 386
11.2.3 Example Question Set for Supporting

Development 389
11.2.4 Example Question Set for Reviewing for

Conformance to ISO/IEC 42010 391

11.3 An Example of Constructing and Conducting a Review 393

11.4 Summary Checklist 395

11.5 Discussion Questions 396

11.6 For Further Reading 396

Epilogue: Using Views and Beyond with Other Approaches 399
The epilogue compares the “Views and Beyond” approach to other doc-
umentation approaches. It ties related work to the prescriptions given in
this book.

E.1 ISO/IEC 42010, née ANSI/IEEE Std 1471-2000 400
E.1.1 Overview 400
E.1.2 42010 and Views and Beyond 404

E.2 Rational Unified Process/Kruchten 4+1 406
E.2.1 RUP/4+1 and Views and Beyond 406

E.3 Using the Rozanski and Woods Viewpoint Set 408

Coming to Terms: Architecture Perspectives 410
E.3.1 Rozanski and Woods Viewpoints and Views

and Beyond 411

E.4 Documenting Architecture in an Agile Development
Project 414
E.4.1 Overview 414
E.4.2 Agile Development and Views and Beyond 415

E.5 U.S. Department of Defense Architecture Framework 419
E.5.1 Overview of DoDAF 419
E.5.2 DoDAF and Software Architecture 421
E.5.3 DoDAF and Views and Beyond 421
E.5.4 A Strategy to Use DoDAF to Document

Software Architecture 426

E.6 Where Architecture Documentation Ends 428

E.7 A Final Word 429

E.8 For Further Reading 429

Contents ■ xix

Appendix A UML—Unified Modeling Language 431
This appendix gives an overview of the Unified Modeling Language and
tells how it should be used to document the architecture constructs
described in this book.

A.1 Introduction 431

A.2 Documenting a Module View 433
A.2.1 Decomposition Style 433
A.2.2 Uses Style 433
A.2.3 Generalization Style 434
A.2.4 Layered Style 434
A.2.5 Aspects Style 434
A.2.6 Data Model Style 435

Perspectives: UML Class Diagrams: Too Much, Too Little 436

A.3 Documenting a Component-and-Connector View 438

A.4 Documenting an Allocation View 443
A.4.1 Deployment Style 443
A.4.2 Install and Implementation Styles 445
A.4.3 Work Assignment Style 446

A.5 Documenting Behavior 449
A.5.1 Activity Diagram 450
A.5.2 Sequence Diagram 450
A.5.3 Communication Diagram 453
A.5.4 Timing Diagram 454
A.5.5 Interaction Overview Diagram 455
A.5.6 State Machine Diagram 457
A.5.7 Use Case Diagram 458

A.6 Documenting Interfaces 460
Perspectives: UML Tools 461

Appendix B SysML—Systems Modeling Language 465
The Systems Modeling Language (SysML) is a general-purpose systems
modeling language intended to support a broad range of analysis and
design activities for systems engineering applications. This appendix
gives a short overview of using SysML to represent an architecture.

B.1 Architecture Documentation 466

B.2 Requirements 466

B.3 Documenting a Module View 468

B.4 Documenting a Component-and-Connector View 469

B.5 Documenting an Allocation View 470

B.6 Documenting Behavior 471

B.7 Documenting Interfaces 472

B.8 Summary 472

xx ■ Contents

Appendix C AADL—The SAE Architecture Analysis and
Design Language 473

The Architecture Analysis and Design Language (AADL) provides a tex-
tual and graphical language to represent the runtime architecture of soft-
ware systems as a component-based model in terms of tasks and their
interactions, the hardware platform on which the system executes, and the
physical environment with which it interfaces. This appendix summarizes
AADL and briefly describes how it can be used to document architectures.

C.1 Introduction 473

C.2 Documenting a Module Style 475

C.3 Documenting a Component-and-Connector View 478

C.4 Documenting a Deployment View 481

C.5 Documenting Behavior 482

C.6 Documenting Interfaces 484

C.7 Summary 484

Acronyms 487
Glossary 491
References 497
About the Authors 509
About the Contributors 513
Index 517

xxiii

Foreword to the
Second Edition

A colleague of mine, in the market for a home, fell in love with
an older property that had been designed by a student of
Frank Lloyd Wright himself. Curious about its history, its struc-
ture, its evolution, he contacted the local planning office,
which happily and quickly provided him with a copy of the
original blueprints.

Why, my friend asked me, can we get the drawings for a
house that’s several decades old, but we are unable to see the
architecture of software written last year?

In this book, the authors offer some pragmatic wisdom that
helps attend to my friend’s lament.

The theory and the practice of the architecture of software-
intensive systems are in a very vibrant phase. The early work of
Mary Shaw and David Garlan in particular gave rise to software
architecture as an identifiable domain of study, and in the
years since, we’ve seen the emergence of architecture-as-an-
artifact as a mainstream concern for the development and evo-
lution of systems. This has manifest itself in notations such as
the Unified Modeling Language (which was explicitly influ-
enced by Philippe Kruchten’s 4+1 model view of software archi-
tecture) as well as a panoply of architectural frameworks, such
as The Open Group Architecture Framework and the Depart-
ment of Defense Architecture Framework. Add to these meth-
ods such as IBM’s Unified Process and, at another extreme, the
Federal Segment Architecture Methodology, and it is clear that
architecture-as-an-artifact has found an important role in the
reasoning about and governing of software-intensive systems.

There are some things we can say with confidence. Every sys-
tem has an architecture. All complex systems are hierarchical
in nature, but also exhibit other patterns of regularity. There’s

xxiv ■ Foreword to the Second Edition

an intimate dance that occurs between the processes of archi-
tecting and of implementation. And, to understand and rea-
son about the architecture of a software-intensive system, one
has to consider multiple views from the perspectives of specific
concerns from multiple classes of stakeholders.

The most commonly used notation and tool for describing a
system’s architecture is a boxes-and-lines sketch created on a
whiteboard. Such documentation is both expeditious and use-
ful, but it is neither enduring nor rigorous nor complete. In
this book the authors offer the definitive reference on the doc-
umenting of the architecture of software-intensive systems, in
ways that are enduring and rigorous and complete. And useful,
by the way!

I remember reading the first edition of this book, and
e-mailing my compliments to the authors for producing such a
comprehensive reference. Well, they’ve outdone themselves.
This new edition is brighter, shinier, more complete, more
pragmatic, more focused than the previous one, and I wouldn’t
have thought it possible to improve on the original. As the field
of software architecture has grown over these past decades,
there is much more to be said, much more that we know, and
much more that we can reflect upon of what’s worked and
what hasn’t—and the authors here do all that, and more.

So, my hope for you, dear reader, is this: May the software
you write today have an architecture that your children’s chil-
dren may discern and celebrate.

—Grady Booch
IBM Fellow

xxv

Foreword to the
First Edition

Ten years ago, I was brought in to lead the architecture team
of a new and rather ambitious command-and-control system.
After some rocky beginnings, the architectural design work
started to proceed full speed, and the architects were finally
forging ahead, inventing and resolving and designing and try-
ing, almost in a euphoric state. We had many brainstorming
sessions, filling whiteboards with design fragments and note-
books with scribblings; various prototypes validated or invali-
dated our reasoning. As the development team grew in size,
the architects had to explain the principles of the nascent
architecture to a wider and wider audience, consisting of not
only new developers but also many parties external to the
development group. Some were intrigued by this new concept
of a software architecture. Some wanted to know how this
architecture would impact them: for planning, for organizing
the teams and the contractors, for delivery of the system, for
acquisition of some of the system parts. Some parties wanted to
influence the design of this architecture. Further removed
from development, customers and prospects wanted a peek,
too. So the architects had to spend hours and days describing
the architecture in various forms and levels and tones to varied
audiences, so that each party could better understand it.

Becoming this center of communication slowly stretched
our capacity. On the one hand, we were busy designing the
architecture and validating it; on the other hand, and at the
same time, we were communicating to a large audience what it
was and why it was that way and why we did not choose some
other solution. A few months into the project, overwhelmed,
we even began having a difficult time agreeing among our-
selves about what it was we had actually decided.

xxvi ■ Foreword to the First Edition

This led me to the conclusion that “if it is not written down,
it does not exist.” This became sort of a leitmotiv in the archi-
tecture team for the following two years. As the ancient Chi-
nese poet Lao-Tsu says in the Tao Te Ching:

Let your workings remain a mystery.
Just show people the results.

(Tablet #36)

The architecture could be whatever we had talked about,
argued, imagined, or even drafted on a board, and so on. But
the architecture of this system was only what was described in
one major document: the Software Architecture Document (SAD).
Architectural elements and architectural decisions not cap-
tured in this document simply did not exist. This one rule—“If
it is not in the SAD, it does not exist.”—became our incentive to
evolve and to keep the document up-to-date, almost to the
week; there was also an incentive to not include anything and
everything and untried ideas, as this was the project’s definite
arbiter.

The SAD rapidly became a central element in the life of the
project. It became our best display window for showing off our
stuff, our comfort when we were down, and our shield when
attacked.

The key problem we faced at the time was: What do we doc-
ument for a software architecture? How do we document it?
What outline do we use? What notation? How much or how lit-
tle? There were few exemplars of architectural description for
systems as ambitious as ours. Driven by necessity, we improvised.
We made some mistakes and corrected some. We discovered
rapidly that architecture is not flat but rather a multidimen-
sional reality, with several intertwined facets, and some facets—
or views—of interest to only a few parties. We found out that
many readers would not even open a document that weighed
more than a pound, and we would have a difficult time updat-
ing it anyhow. We realized that without capturing the reasons
for our choices, we were doomed to reconstruct them again
and again, every time a new stakeholder with a sharp mind
came around. We picked a visual notation, not too vague and
fuzzy but not too esoteric and convoluted, either, in order to
not discourage most parties.

Today, software architects have a great starting point for
deciding how to document their software architectures. You
have it in your hands. The authors went through many experi-
ences similar to mine and extracted the important lessons
learned. They read many software architecture documents.

Foreword to the First Edition ■ xxvii

They reviewed the academic literature, studied all the pub-
lished books, checked the standards, and synthesized all this
wisdom in this handbook: the essential things you need to
know to define your own software architecture document. You
will find guidance for the scope of software architecture; its
organization; the techniques, tools, and notation to use or not
to use; and comparisons, advice, and rules of thumb. In here,
you’ll find the templates to get you started and the continuing
guidance for when you get lost or despairing on the way.

This book is of immense value. The description and commu-
nication of software architecture is quite crucial to its many
stakeholders, and this handbook should save you months of tri-
als and errors, lots of undeserved hassle, and many costly mis-
takes that could potentially jeopardize the whole endeavor. It
will become an important reference on the shelf of the soft-
ware architect.

—Philippe Kruchten
Director of Process Development
Rational Software Canada, Vancouver

This page intentionally left blank

xxix

Preface

The purpose of this book is to answer the following question:

How do you document an architecture so that others can success-
fully use it, maintain it, and build a system from it?

The audience for this book includes all the people involved
in the production and consumption of architecture documen-
tation. The goal of this book is to help you decide what infor-
mation about an architecture is important to capture and to
provide guidelines, notations, and examples for capturing it.
We intend this book to be a practitioner-oriented guide to the
various kinds of information that constitute an architecture.
We give practical guidance for choosing what information
should be documented and show—with examples in various
notations, including but not limited to the Unified Modeling
Language (UML)—how to describe that information in writ-
ing so that others can use it to carry out their architecture-
based work: implementation, analysis, and recovery. We also
show how to create a comprehensive software architecture doc-
ument that others can use.

Although piles of books exist about how to use a particular
notation (UML comes to mind), we believe what an architect
really needs is guidance in which architecture and its stake-
holders are the first-class citizens, and language is relegated
more appropriately to a supporting role. That’s what we’ve
tried to provide with this book.

Languages and Tools for Architecture
Commercial languages and tool suites are available for capturing
design information, especially in the realm of object-oriented

xxx ■ Preface

systems. Some of these tools are bound up with associated
design methods, notations, and commercial products. Some
tools are aimed at points in the design space other than archi-
tecture. If you have decided to adopt one of these tools and/
or notations, will this book relate to you?

Very few things become obsolete faster than references to
specific tools, so we’ve avoided those. Instead, we have concen-
trated on the information you should capture about an archi-
tecture. We believe that is the approach you should take, too:
Concentrate on the information you need to capture, and then
figure out how to capture it using an available tool. Almost all
tools provide ways to add free-form annotations to the building
blocks they provide; if all else fails, these annotations will let
you capture and record information in ways you see fit.
Remember that not all the people for whom architecture doc-
umentation is prepared will be able to use the tool environ-
ment you’ve chosen or understand the commercial notation
you’ve adopted.

Having said that, however, we acknowledge that a few stan-
dard languages and notations have come to dominate, chief
among them UML. And so this book provides a plethora of
examples showing UML 2 representing the architecture views
we cover, as well as other concepts such as refinement and
behavior. If you have chosen UML as your modeling language,
you’ll feel at home.

Appendix A contains a summary of UML’s visual notation
and its applicability to document the concepts in this book.
Appendices B and C summarize the Systems Modeling Lan-
guage (SysML) and the Architecture Analysis and Design
Language (AADL), respectively. Our purpose is not to teach
these languages, but to offer a quick refresher for those famil-
iar with them and a flavor-providing introduction for every-
one else.

What’s New in the Second Edition
• A number of new architecture styles have entered the main-

stream, and this edition talks about documenting those.
These include service-oriented architectures, multi-tier
architectures, and architectures for aspect-oriented systems.
We also treat the architecture-level documentation of a soft-
ware system’s data model, as well as its installation and pro-
duction environment, as first-class styles.

Preface ■ xxxi

• This edition is much more Agile-friendly, orienting its
advice to be consistent with the Agile Manifesto’s entreaty to
value working software over comprehensive documentation.

• We treat the systematic documentation of rationale with
much greater depth, reflecting best industrial practices.
We’ve added a new chapter about reviewing an architecture
document to make sure it’s serving its stakeholders as
intended.

• The suggested templates for architecture documentation
have several improvements, reflecting years of use and feed-
back. They are also more flexible, and we lay out different
options for arranging your documentation.

• We have replaced the comprehensive example of a docu-
mented software architecture with a new one. The architec-
ture is for a Web-based service-oriented system, more in
today’s industrial mainstream. To make the book smaller
and allow us to maintain the example over time, we put the
example online. And many of our in-line examples have
been replaced or updated.

• Since the first edition was published, the Unified Modeling
Language has graduated to version 2.0 and beyond. That
opened up new possibilities for more straightforwardly doc-
umenting various architecture constructs, especially compo-
nents and connectors. Where necessary, our figures are
updated to reflect the new constructs.

• This edition has concise appendices summarizing three
important languages and notations useful for documenting
architectures: UML, AADL, and SysML. Each appendix con-
stitutes a mini-reference guide on the language.

• Finally, this edition reflects the experience we’ve gained
with Views and Beyond in the intervening years since the
first edition was published. This experience has come from
creating documented architectures for very challenging sys-
tems, and helping other people do so. It also comes from
using architecture documentation in practice, such as when
we evaluate other organizations’ software architectures.
Finally, it has come from interacting with more than a thou-
sand participants in our two-day industrial course based on
the book. These interactions with practicing software archi-
tects have let us make our advice more prescriptive and
crisp and reflect the problems and situations that architects
face daily.

xxxii ■ Preface

Complete Example of a Software Architecture Document
Online
You can see a fully worked-out example of a software architec-
ture document using the approaches and templates described
in this book at wiki.sei.cmu.edu/sad.

—P.C.
Austin, Texas

—F.B., L.B., D.G., J.I., R.L., R.N.
Pittsburgh, Pennsylvania

—P.M.
Brasilia, Brazil

—J.S.
Boston, Massachusetts

1

PPrologue:
Software Architectures and

Documentation

The prologue establishes a small but fundamental set of con-
cepts that will be used throughout the book. We begin with
short overviews of software architecture (Section P.1) and
architecture documentation (Section P.2), and then we go on
to discuss the following topics:

• Section P.3: Architecture views

• Section P.4: Architecture styles (and their relation to archi-
tecture patterns) and the classification of styles into three
categories: module styles, component-and-connector styles,
and allocation styles

• Section P.5: Rules for sound documentation

P.1 A Short Overview of Software Architecture
P.1.1 Overview

Software architecture has emerged as an important subdisci-
pline of software engineering. Architecture is roughly the pru-
dent partitioning of a whole into parts, with specific relations
among the parts. This partitioning is what allows groups of
people—often separated by organizational, geographical, and
even time-zone boundaries—to work cooperatively and pro-
ductively together to solve a much larger problem than any of
them could solve individually. Each group writes software that
interacts with the other groups’ software through carefully
crafted interfaces that reveal the minimal and most stable
information necessary for interaction. From that interaction
emerges the functionality and quality attributes—security,
modifiability, performance, and so forth—that the system’s
stakeholders demand. The larger and more complex the sys-

The software architec-
ture of a computing
system is the set of
structures needed to
reason about the sys-
tem, which comprise
software elements, rela-
tions among them, and
properties of both.

2 ■ Prologue: Software Architectures and Documentation

tem, the more critical is this partitioning—and hence, archi-
tecture. And as we will see, the more demanding those quality
attributes are, the more critical the architecture is.

A single system is almost inevitably partitioned simulta-
neously in a number of different ways. Each partitioning
results in the creation of an architectural structure: different
sets of parts and different relations among the parts. Each is
the result of careful design, carried out to satisfy the driving
quality attribute requirements and the most important busi-
ness goals behind the system.

Architecture is what makes the sets of parts work together as
a coherent and successful whole. Architecture documentation
help architects make the right decisions; it tells developers how
to carry them out; and it records those decisions to give a sys-
tem’s future caretakers insight into the architect’s solution.

P.1.2 Architecture and Quality Attributes

For nearly all systems, quality attributes such as performance,
reliability, security, and modifiability are every bit as important
as making sure that the software computes the correct answer.
A software system’s ability to produce correct results isn’t help-
ful if it takes too long doing it, or the system doesn’t stay up
long enough to deliver it, or the system reveals the results to
your competition or your enemy. Architecture is where these
concerns are addressed. For example:

• If you require high performance, you need to

– Exploit potential parallelism by decomposing the work
into cooperating or synchronizing processes.

– Manage the interprocess and network communication
volume and data access frequencies.

– Be able to estimate expected latencies and throughputs.

– Identify potential performance bottlenecks.

• If your system needs high accuracy, you must pay attention
to how the data elements are defined and used and how
their values flow throughout the system.

• If security is important, you need to

– Legislate usage relationships and communication restric-
tions among the parts.

– Identify parts of the system where an unauthorized intru-
sion will do the most damage.

– Possibly introduce special elements that have earned a
high degree of trust.

Many projects make the
mistake of trying to
impose a single parti-
tion in multiple compo-
nent domains, such as
equating threads with
objects, which are
equated with modules,
which in turn are
equated with files. Such
an approach never suc-
ceeds fully, and adjust-
ments eventually must
be made, but the dam-
age of the initial intent is
often hard to repair. This
invariably leads to prob-
lems in development
and occasionally in final
products.

—Jazayeri, Ran, and
van der Linden (2000,
pp. 16–17)

P.1 A Short Overview of Software Architecture ■ 3

• If you need to support modifiability and portability, you
must carefully separate concerns among the parts of the sys-
tem, so that when a change affects one element, that change
does not ripple across the system.

• If you want to deploy the system incrementally, by releasing
successively larger subsets, you have to keep the dependency
relationships among the pieces untangled, to avoid the
“nothing works until everything works” syndrome.

The solutions to these concerns are purely architectural in
nature. It is up to architects to find those solutions and com-
municate them effectively to those who will carry them out.
Architecture documentation has three obligations related to
quality attributes. First, it should indicate which quality attribute
requirements drove the design. Second, it should capture the
solutions chosen to satisfy the quality attribute requirements.
Finally, it should capture a convincing argument why the solu-
tions provide the necessary quality attributes. The goal is to
capture enough information so that the architecture can be
analyzed to see if, in fact, the system(s) derived from it will pos-
sess the necessary quality attributes.

COMING TO TERMS

What Is Software Architecture?

If we are to agree on what it means to document a soft-
ware architecture, we should establish a common basis
for what it is we’re documenting. No universal definition
of software architecture exists. The Software Engineering
Institute’s Web site collects definitions from the literature
and from practitioners around the world; so far, more
than 150 definitions have been collected.

It seems that new fields try to nail down standard defini-
tions or their key terms as soon as they can. As the field
matures, basic concepts become more important than
ironclad definitions, and this urge seems to fade. When
object-oriented development was in its infancy, you
could bring any OO meeting to a screeching halt by put-
ting on your best innocent face and asking, “What
exactly is an object?” This largely ended when people
realized that the scatter plot of definitions had an appar-
ent (if unarticulated) centroid, from which very useful
progress could be made. Sometimes “close enough” is,
well, close enough.

Chapter 10 will show
where in the documen-
tation to record the driv-
ing quality attribute
requirements, the solu-
tions chosen, and the
rationale for those
solutions.

Software architecture is
the set of design deci-
sions which, if made
incorrectly, may cause
your project to be
cancelled.

—Eoin Woods (SEI
2010)

You can read the SEI
collection of definitions,
or contribute your own,
at www.sei.cmu.edu/
architecture.

www.sei.cmu.edu/architecture
www.sei.cmu.edu/architecture

4 ■ Prologue: Software Architectures and Documentation

This seems to be the case with software architecture.
Looking at the major attempts to nail down its definition
gives us a good glimpse at our own centroid. With that in
mind, here are a few influential definitions:

By analogy to building architecture, we propose the follow-
ing model of software architecture: Software Architecture =
{Elements, Form, Rationale}. That is, a software architec-
ture is a set of architectural (or, if you will, design) elements
that have a particular form. We distinguish three different
classes of architectural elements: processing elements;
data elements; and connecting elements. The processing
elements are those components that supply the transfor-
mation on the data elements; the data elements are those
that contain the information that is used and transformed;
the connecting elements (which at times may be either
processing or data elements, or both) are the glue that
holds the different pieces of the architecture together.
(Perry and Wolf 1992, p. 44)

 . . . beyond the algorithms and data structures of the com-
putation; designing and specifying the overall system
structure emerges as a new kind of problem. Structural
issues include gross organization and global control struc-
ture; protocols for communication, synchronization, and
data access; assignment of functionality to design ele-
ments; physical distribution; composition of design ele-
ments; scaling and performance; and selection among
design alternatives. (Garlan and Shaw 1993, p. 1)

The structure of the components of a program/system,
their interrelationships, and principles and guidelines gov-
erning their design and evolution over time. (Garlan and
Perry 1995, p. 269)

An architecture is the set of significant decisions about the
organization of a software system, the selection of the
structural elements and their interfaces by which the sys-
tem is composed, together with their behavior as specified
in the collaborations among those elements, the composi-
tion of these structural and behavioral elements into pro-
gressively larger subsystems, and the architecture style
that guides this organization—these elements and their
interfaces, their collaborations, and their composition.
(Booch, Rumbaugh, and Jacobson 1999, p. 31)

The fundamental organization of a system embodied in its
components, their relations to each other, and to the envi-
ronment, and the principles guiding its design and evolu-
tion. (IEEE 1471 2000, p. 9)

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which

P.1 A Short Overview of Software Architecture ■ 5

comprise software elements, the externally visible proper-
ties of those elements, and the relations among them. By
“externally visible properties,” we are referring to those
assumptions other components can make of a compo-
nent, such as its provided services, performance charac-
teristics, fault handling, shared resource usage, and so on.
(Bass, Clements, and Kazman 2003, p. 27)

The set of principal design decisions governing a system.
(Taylor, Medvidovic, and Dashofy 2009, p. xv)

A few other “mainstream” definitions have emerged
since then, but they are largely restatements and recom-
binations of the ones we just listed. The centroid seems
to have stabilized.

That centroid takes a largely structural perspective on
software architecture: Software architecture is com-
posed of elements, connections or relations among
them, and, usually, some other aspect or aspects, such
as (take your pick) configuration; constraints or seman-
tics; analyses or properties; or rationale, requirements, or
stakeholders’ needs.

These perspectives do not preclude one another, nor do
they represent a fundamental conflict about what soft-
ware architecture is. Instead, they represent a spectrum
in the software architecture community about the empha-
sis that should be placed on architecture: its constituent
parts, the whole entity, the way it behaves once built, or
the building of it. Taken together, they form a consensus
view of software architecture.

In this book we use a definition similar to the one from
Bass, Clements, and Kazman (2003). We chose it
because it helps us know what to document about an
architecture. The definition emphasizes the plurality of
structures present in every software system. These
structures, carefully chosen and designed by the archi-
tect, are the key to achieving and reasoning about the
system’s design goals. And those structures are the key
to understanding the architecture. Therefore, they are the
focus of our approach to documenting a software archi-
tecture. Structures consist of elements, relations among
the elements, and the important properties of both. So
documenting a structure entails documenting those
things.

6 ■ Prologue: Software Architectures and Documentation

PERSPECTIVES

What’s the Difference Between Architecture and
Design?

The question of how architecture is different from design
has nipped at the heels of the software development
community for years. It is a question I often hear when
teaching an introductory course on architecture. It mat-
ters here because the question deals with what we
should put in an architecture document and what we
should put somewhere else.

The first thing we can say is that clearly architecture is
design, but not all design is architecture. That is, many
design decisions are left unbound by the architecture
and are happily left to the discretion and good judgment
of downstream designers and even implementers. The
architecture establishes constraints on downstream
activities, and those activities must produce artifacts—
finer-grained designs and code—that comply with the
architecture.

It’s tempting to stop there, but if you’re paying attention
you’ve seen that we’ve just translated the question: Archi-
tecture consists of architectural design decisions, and all
others are nonarchitectural. So what decisions are
nonarchitectural? That is, what design decisions does the
architect leave to the discretion of others?

To answer this question, we return to the primary pur-
pose of architecture, which is to assure the satisfaction
of the system’s quality and behavioral requirements and
business goals. The architect does this by making design
decisions that manifest themselves in the system’s archi-
tectural structures.

Thus, architectural decisions are ones that permit a sys-
tem to meet its quality attribute and behavioral require-
ments. All other decisions are nonarchitectural.

Clearly any design decisions resulting in element proper-
ties that are not visible—that is, make no difference out-
side the element—are nonarchitectural. A typical example
is the selection of a data structure, along with the algo-
rithms to manage and access that data structure.

You may have been hoping for a more concrete answer,
such as “the first three levels of module decomposition

P.1 A Short Overview of Software Architecture ■ 7

are architectural, but any subsequent decomposition is
not.” Or, “the classes, packages and their relations in a
UML class diagram are architectural, but sequence dia-
grams are not.” Or “defining the services of an SOA sys-
tem is architectural, but designing the internal structure
of each service provider component is not.”

But those don’t work because they draw arbitrary and
artificial boundaries. Attempts like that to be practical
end up being impractical because true architecture bleeds
across those boundaries.

Here are some more sometimes-heard artificial definitions.

First, “architecture is the small set of big design deci-
sions.” Some people define “small set” by insisting that
an architecture document should be no more than 50
pages. Or 80. Or 30. Their feeling, apparently, is that
architecture is the set of design decisions that you can
squeeze into a given page quota, and everything beyond
that is not. This is, of course, utter nonsense.

Another oft-heard nonanswer is “architecture is what you
get before you start adding detail to the design.” Termi-
nology often directs our thinking, rather than serves it. A
pernicious example that puts us in the wrong mind set is
“detailed design.” Detailed design is what many people
say follows architecture. The term is everywhere, and
needs to be stamped out. It implies that the difference
between architectural and nonarchitectural design is
something called “detail.” Architecture is apparently not
allowed to be detailed, because if it is, well, you’re doing
detailed design then, aren’t you? Never mind that we
have no idea how to measure “detail” nor to set a thresh-
old for when there is too much of it to be architectural. If
your design starts to look “detailed” then you aren’t doing
architecture and you’ll be reported to the Detailed Design
Police for overstepping your authority. More utter nonsense.

It’s true that some architectural design decisions may
lack much specificity; that is, they preserve freedom of
choice for downstream designers. Some architectural
design decisions may not be “decisions” at all, but broad
constraints. Plug-ins that populate your Web browser are
an example. No architecture nails down the complete set,
but the architecture does constrain new ones to meet
certain standards and interfaces. Or the architect might
describe an element by saying, “The element delivers its
computational result through this published interface, is

Don’t use the term
“detailed design”! Use
“nonarchitectural
design” instead.

8 ■ Prologue: Software Architectures and Documentation

thread-safe, puts no more than three messages on the
network per invocation, and returns its answer in less
than 20 ms.” The team implementing that element is free
to make whatever design decisions they wish as long as
they satisfy the architect’s prescription for it.

On the other hand, some architectural decisions can be
quite “detailed,” such as the adoption of specific proto-
cols, an XML schema, or communication or technology
standards. Such decisions are usually made for pur-
poses of interoperability or various flavors of modifiability
(such as scalability or extensibility).

Even interfaces of elements, which some decry as “obvi-
ously” outside the realm of architecture, can be supremely
architectural. For instance, in a service-oriented architec-
ture (SOA), components interact through published inter-
faces. Important design decisions made when defining
these interfaces include the granularity of the operations,
the data format, and the type of interaction (synchronous
or asynchronous) for each operation. Or consider an ele-
ment that processes data from a real-time sensor. Mak-
ing this element’s interface process a stream as opposed
to individual data elements will make an enormous differ-
ence in the ability of the element (and hence the system)
to meet real-time performance requirements. This deci-
sion cannot be left up to the element’s development
team; everything depends on it.

A legitimate question about detail does arise when con-
sidering modules and other hierarchical elements:
When do you stop? When have you designed enough
levels in the hierarchy? Are submodules enough, or does
the architect need to design sub-sub-sub-submodules?
Here’s a good test of our claim for when architecture
stops. Module decomposition is about achieving inde-
pendent development and modifiability. Both are achieved
by carefully assigning coherent responsibilities to each
module. When the modules you’ve designed are fine-
grained enough to satisfy the system’s modifiability and
independent development requirements, you’ve dis-
charged your obligation as an architect.

Finally, what is architectural is sensitive to context. Sup-
pose the architect identifies an element but is content to
sketch the element’s interface and behavior in broad
terms. If the element being prescribed is very large and
complex, the team developing it may choose to give it an

A hierarchical element
is any kind of element
that can consist of like-
kind elements. A module
is a hierarchical element
because modules consist
of submodules, which
are themselves modules.
A task or a process is not
a hierarchical element.

P.2 A Short Overview of Architecture Documentation ■ 9

internal substructure of its own, which for all the world
looks like an architecture. And within the context of that
element, it is. But in the context of the overall system, the
substructure is not architectural but merely an internal
design decision made by the development team for that
element.

To summarize, architecture is design, but not all design is
architectural. The architect draws the boundary between
architectural and nonarchitectural design by making
those decisions that need to be bound in order for the
system to meet its development, behavioral, and quality
goals. All other decisions can be left to downstream
designers and implementers. Decisions are architectural
or not, according to context. If structure is important to
achieve your system’s goals, that structure is architec-
tural. But designers of elements, or subsystems, that you
assign may have to introduce structure of their own to
meet their goals, in which case such structures are archi-
tectural: to them but not to you.

And (repeat after me) we all promise to stop using the
phrase “detailed design.” Try “nonarchitectural design”
instead.

—P.C.

P.2 A Short Overview of Architecture Documentation
P.2.1 Why Document Software Architecture?

Even the best architecture, most perfectly suited for the job,
will be essentially useless if the people who need to use it do
not know what it is, cannot understand it well enough to apply
it, or (worst of all) misunderstand it and apply it incorrectly. All
of the effort, analysis, hard work, and insightful design on the
part of the architecture team will have been wasted. They
might as well have gone on vacation for all the good their
architecture will do.

Creating an architecture isn’t enough. It has to be commu-
nicated in a way to let its stakeholders use it properly to do
their jobs. If you go to the trouble of creating a strong architec-
ture, you must go to the trouble of describing it in enough
detail, without ambiguity, and organized so that others can
quickly find needed information.

Documentation speaks for the architect. It speaks for the
architect today, when the architect should be doing other things
besides answering a hundred questions about the architecture.

Doing business without
advertising [or design-
ing an architecture with-
out documenting it] is
like winking at a girl in
the dark. You know
what you’re doing, but
nobody else does.

—Steuart Henderson
Britt

10 ■ Prologue: Software Architectures and Documentation

And it speaks for the architect tomorrow, when he or she has
left the project and now someone else is in charge of its evolu-
tion and maintenance.

Documentation is often treated as an afterthought, some-
thing people do because they have to. Maybe a contract
requires it. Maybe a customer demands it. Maybe a company’s
standard process calls for it. In fact, these may be legitimate
reasons. But none of them are compelling enough to produce
high-quality documentation. Why should the architect spend
valuable time and energy just so a manager can check off a
deliverable?

The best architects produce the best documentation not
because it’s “required,” but because they see that it is essential
to the matter at hand: producing a high-quality product, pre-
dictably and with as little rework as possible. They see their
immediate stakeholders as the people most intimately involved
in this undertaking: developers, deployers, testers, and analysts.

But the best architects also see documentation as delivering
value to themselves. Documentation serves as the receptacle to
hold the results of design decisions as they are made. A well-
thought-out documentation scheme can make the process of
design go much more smoothly and systematically. Documen-
tation helps the architect while the architecting is in progress,
whether in a six-month design phase or a six-day Agile sprint.

COMING TO TERMS

Specification, Representation, Description,
Documentation

What shall we call the activity of writing down a software
architecture for the benefit of others or for our own ben-
efit at a later time? Leading contenders are documenta-
tion, representation, description, and specification. None
of these terms has a standardized meaning in our field:
the difference between them is unclear. For the most
part, we use documentation throughout this book, and
we want to explain why.

Specification tends to connote an architecture rendered
in a formal language. Now, we are all for formal specs.
But formal specs are not always practical, nor are they
always necessary. Sometimes, they aren’t even useful:
How, for example, do you capture in a formal language
the rationale behind your architectural decisions, and
why would you try?

P.2 A Short Overview of Architecture Documentation ■ 11

Representation connotes a model, an abstraction, a rendi-
tion of a thing that is separate or different from the thing
itself. Is architecture something more than what some-
one writes down about it? Arguably yes, but it’s certainly
pretty intangible in any case. We felt that raising the issue
of a model versus the thing being modeled would only
elicit needlessly diverting questions best left to those
whose hobby, or calling, is philosophy: Does an abstrac-
tion of a tree falling in a model of a forest make a repre-
sentation of a sound? This does not seem like the start of
a productive conversation.

Description has been staked out by the architecture
description language (ADL) community, and more
recently by the standards community coming up with
mandates for how to write down an architecture. It’s curi-
ous that the people you’d think would be the most formal
snagged the least rigorous sounding term of the bunch.
(The next time you board a jet, sit in front of a computer-
controlled X-ray machine, or watch the launch of a billion-
dollar space vehicle your tax dollars paid for, ask yourself
whether you hope the control software has been speci-
fied to the implementers, or merely described.) We
eschewed description, then, because it all at once
sounds too formal—we didn’t want people to think that
writing down an architecture requires an architecture
description language—and too informal. Descriptions
can be notoriously vague, such as when your friends
describe the blind date they set you up with. Sometimes
we need a little more specificity in our lives, and certainly
we need it in our architectures.

That leaves documentation. Documentation connotes
the creation of an artifact: namely, a document, which
may of course consist of electronic files, Web pages, a
snapshot of a whiteboard, or paper. Thus, documenting
a software architecture becomes a concrete task: pro-
ducing a software architecture document. Viewing the
activity as creating a tangible product has advantages.
We can describe good architecture documents and bad
ones. We can use completeness criteria to judge how
much work is left in producing this artifact and determin-
ing when the task is done. Planning or tracking a project’s
progress around the creation of artifacts, or documents,
is an excellent way to manage. Making the architecture
information available to its consumers and keeping it up
to date reduces to a solved problem of configuration

ADLs are discussed in
Section 3.4.2 and in the
For Further Reading
section of Chapter 8.
For an overview of
ADLs, see the work by
Stafford and Wolf
(2001).

12 ■ Prologue: Software Architectures and Documentation

control. Documentation can be formal or not, as appro-
priate, and may contain models or not, as appropriate.
Documents may describe, or they may specify. Hence,
the term is appropriately general.

No matter what you call it, the essence of the activity is
writing down—and keeping current—the results of architec-
tural decisions so that the stakeholders of the architecture—
people who need to know what it is to do their job—have
the information they need in an accessible, nonambigu-
ous form.

P.2.2 Uses and Audiences for Architecture Documentation

Architecture documentation must serve varied purposes. It
should be sufficiently abstract to be quickly understood by new
employees. It should be sufficiently concrete to serve as a blue-
print for construction. It should have enough information to
serve as a basis for analysis.

Architecture documentation is both prescriptive and
descriptive. For some audiences, it prescribes what should be
true, placing constraints on decisions yet to be made. For other
audiences, it describes what is true, recounting decisions
already made about a system’s design.

The best architecture documentation for, say, performance
analysis may well be different from the best architecture docu-
mentation we would wish to hand to an implementer. And
both of these will be different from what we put in a new hire’s
“welcome aboard” package or a briefing we put together for an
executive. The process of documentation planning and review
needs to ensure support for all the relevant needs.

We can see that many different kinds of people are going to
have a vested interest in an architecture document. They hope
and expect that the architecture document will help them do
their respective jobs. Understanding their uses of architecture
documentation is essential, as those uses determine the impor-
tant forms.

Fundamentally, architecture documentation has three uses.

1. Architecture serves as a means of education. The educational
use consists of introducing people to the system. The peo-
ple may be new members of the team, external analysts, or
even a new architect. In many cases, the “new” person is the
customer to whom you’re showing your solution for the
first time, a presentation you hope will result in funding or
go-ahead approval.

Section 6.1.3 (“Spec-
trum of Design”)
discusses how archi-
tecture documentation
captures the very
abstract to the very
detailed.

In Chapter 9, the docu-
mentation’s expected
uses, along with the
documentation obliga-
tions each use imparts,
become the basis for
helping an architect
plan the documentation
package.

Chapter 9 discusses
planning the contents
of a documentation
package. Chapter 11
discusses reviewing
documentation.

P.2 A Short Overview of Architecture Documentation ■ 13

2. Architecture serves as a primary vehicle for communication among
stakeholders. An architecture’s precise use as a communica-
tion vehicle depends on which stakeholders are doing the
communicating. Some examples are described in Table P.1.

Perhaps one of the most avid consumers of architecture
documentation is none other than the architect in the
project’s future. The future architect may be the same person
as the present one, or he or she may be a replacement, but
in either case he or she is guaranteed to have an enormous
stake in the documentation. New architects are interested
in learning how their predecessors tackled the difficult
issues of the system and why particular decisions were made.
Even if the future architect is the same person, he or she will
use the documentation as a repository of thought, a store-
house of design decisions too numerous and hopelessly
intertwined ever to be reproducible from memory alone.

Even in the short term, documenting an architecture
helps in the process of designing the architecture. First, the
documentation provides dedicated compartments for
recording various kinds of design decisions as soon as they
are made. Second, the documentation gives you a rough
but helpful way to gauge progress and the work remaining:
As “TBD”s disappear from the document, completion
draws near. Finally, documentation provides a framework
for systematic attack on designing the architecture. Key
design decisions, usually made early, should be written
down so that the shadow they cast on subsequent design
decisions is explicit and remembered.

QUOTE

In our organization, a development group writes design
documents to communicate with other developers, exter-
nal test organizations, performance analysts, the techni-
cal writers of manuals and product helps, the separate
installation package developers, the usability team, and
the people who manage translation testing for interna-
tionalization. Each of these groups has specific ques-
tions in mind that are very different from the ones that
other groups ask:

• What test cases will be needed to flush out functional
errors?

• Where is this design likely to break down?

• Can the design be made easier to test?

A stakeholder of an
architecture is someone
who has a vested interest
in it. (Many of an archi-
tecture’s stakeholders
are listed in Table P.1.)

Chapter 9 is about how
stakeholders’ needs will
help determine the con-
tents of the architecture
documentation.

Stakeholders (explicitly or
implicitly) drive the whole
shape and direction of the
architecture, which is
developed solely for their
benefit and to serve their
needs. . . . Without stake-
holders, there would be
no point in developing the
architecture because
there would be no need
for the system it will turn
into, nor would there be
anyone to build it, deploy
it, run it, or pay for it. . . .
Architectures are created
solely to meet stake-
holder needs.

—Rozanski and Woods
(2005, p. 21)

14 ■ Prologue: Software Architectures and Documentation

• How will this design affect the response of the system
to heavy loads?

• Are there aspects of this design that will affect its per-
formance or ability to scale to many users?

• What information will users or administrators need to
use this system, and can I imagine writing it from the
information in this design?

• Does this design require users to answer configuration
questions that they won’t know how to answer?

• Does it create restrictions that users will find onerous?

• How much translatable text will this design require?

• Does the design account for the problems of dealing
with double-byte character sets or bi-directional
presentation?

—Kathryn Heninger Britton (Hoffman and Weiss 2001,
pp. 337–338)

3. Architecture serves as the basis for system analysis and construction.

– Architecture tells implementers what to implement.

– For those interested in the ability of the design to meet
the system’s quality objectives, the architecture docu-
mentation serves as the fodder for evaluation. The archi-
tecture documentation must contain the information
necessary to evaluate a variety of attributes, such as secu-
rity, performance, usability, availability, and modifiability.
Analyses of each one of these attributes have their own
information needs.

– For system builders who use automatic code-generation
tools, the documentation may incorporate the models
used for generation.

Get the habit of analysis—
analysis will in time
enable synthesis to
become your habit of
mind.

—Frank Lloyd Wright

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it

Name Description Use for Architecture Documentation

Analyst Responsible for analyzing the
architecture to make sure it meets
certain critical quality attribute
requirements. Analysts are often
specialized; for instance, perfor-
mance analysts, safety analysts,
and security analysts may have
well-defined positions in a project.

Analyzing satisfaction of quality
attribute requirements of the system
based on its architecture.

P.2 A Short Overview of Architecture Documentation ■ 15

Architect Responsible for the development
of the architecture and its docu-
mentation. Focus and responsibil-
ity is on the system.

Negotiating and making trade-offs
among competing requirements and
design approaches. A vessel for
recording design decisions. Provid-
ing evidence that the architecture
satisfies its requirements.

Business
manager

Responsible for the functioning of
the business/organizational entity
that owns the system. Includes
managerial/executive responsibil-
ity, responsibility for defining busi-
ness processes, and more.

Understanding the ability of the
architecture to meet business goals.

Conformance
checker

Responsible for assuring con-
formance to standards and pro-
cesses to provide confidence in a
product’s suitability.

Basis for conformance checking, for
assurance that implementations
have been faithful to the architectural
prescriptions.

Customer Pays for the system and ensures
its delivery. The customer often
speaks for or represents the end
user, especially in a government
acquisition context.

Assuring required functionality and
quality will be delivered, gauging
progress, estimating cost, and set-
ting expectations for what will be
delivered, when, and for how much.

Database
administrator

Involved in many aspects of the
data stores, including database
design, data analysis, data model-
ing and optimization, installation
of database software, and moni-
toring and administration of data-
base security.

Understanding how data is created,
used, and updated by other archi-
tectural elements, and what proper-
ties the data and database must
have for the overall system to meet
its quality goals.

Deployer Responsible for accepting the
completed system from the devel-
opment effort and deploying it,
making it operational, and fulfilling
its allocated business function.

Understanding the architectural ele-
ments that are delivered and to be
installed at the customer’s or end
user’s site, and their overall respon-
sibility toward system function.

Designer Responsible for systems and/or
software design downstream of
the architecture, applying the
architecture to meet specific
requirements of the parts for
which they are responsible.

Resolving resource contention and
establishing performance and other
kinds of runtime resource consump-
tion budgets. Understanding how
their part will communicate and inter-
act with other parts of the system.

Evaluator Responsible for conducting a for-
mal evaluation of the architecture
(and its documentation) against
some clearly defined criteria.

Evaluating the architecture’s ability
to deliver required behavior and
quality attributes.

Implementer Responsible for the development
of specific elements according to
designs, requirements, and the
architecture.

Understanding inviolable constraints
and exploitable freedoms on devel-
opment activities.

continues

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it (continued)

Name Description Use for Architecture Documentation

16 ■ Prologue: Software Architectures and Documentation

Integrator Responsible for taking individual
components and integrating them,
according to the architecture and
system designs.

Producing integration plans and pro-
cedures, and locating the source of
integration failures.

Maintainer Responsible for fixing bugs and
providing enhancements to the
system throughout its life (includ-
ing adaptation of the system for
uses not originally envisioned).

Understanding the ramifications of a
change.

Network
administrator

Responsible for the maintenance
and oversight of computer hard-
ware and software in a computer
network. This may include the
deployment, configuration, main-
tenance, and monitoring of net-
work components.

Determining network loads during
various use profiles and understand-
ing uses of the network.

Product line
manager

Responsible for development of
an entire family of products, all
built using the same core assets
(including the architecture).

Determining whether a potential new
member of a product family is in or
out of scope and, if out, by how
much.

Project
manager

Responsible for planning,
sequencing, scheduling, and allo-
cating resources to develop soft-
ware components and deliver
components to integration and
test activities.

Helping to set budget and schedule,
gauging progress against estab-
lished budget and schedule, and
identifying and resolving develop-
ment-time resource contention.

Representative
of external
systems

Responsible for managing a sys-
tem with which this one must
interoperate, and its interface with
our system.

Defining the set of agreement
between the systems.

System
engineer

Responsible for design and devel-
opment of systems or system
components in which software
plays a role.

Assuring that the system environ-
ment provided for the software is
sufficient.

Tester Responsible for the (independent)
test and verification of the system
or its elements against the formal
requirements and the architecture.

Creating tests based on the behavior
and interaction of the software ele-
ments.

User The actual end users of the sys-
tem. There may be distinct kinds
of users, such as administrators,
superusers, and so on.

Users, in the role of reviewers, might
rely on architecture documentation
to check whether desired functional-
ity is being delivered. Users might
also refer to the documentation to
understand what the major system
elements are, which can aid them in
emergency field maintenance.

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it (continued)

Name Description Use for Architecture Documentation

P.2 A Short Overview of Architecture Documentation ■ 17

P.2.3 Architecture Documentation and Quality Attributes

If architecture is largely about the achievement of quality
attributes, and if one of the main uses of architecture docu-
mentation is to serve as a basis for analysis (to make sure the
architecture will achieve its required quality attributes), where
do quality attributes show up in the documentation? There are
five major ways:

1. Any major design approach (such as an architecture pat-
tern or style) chosen by the architect will have quality
attribute properties associated with it. Client-server is good
for scalability, layering is good for portability, an informa-
tion-hiding-based decomposition is good for modifiability,
services are good for interoperability, and so forth. Explain-
ing the choice of approach is likely to include a discussion
about the satisfaction of quality attribute requirements and
trade-offs incurred. Look for the place in the documenta-
tion where such an explanation occurs. In our approach,
we call that rationale.

2. Individual architectural elements that provide a service
often have quality attribute bounds assigned to them. Con-
sumers of the services need to know how fast, secure, or
reliable those services are. These quality attribute bounds
are defined in the interface documentation for the ele-
ments, sometimes in the form of a Quality of Service con-
tract. Or they may simply be recorded as properties that the
elements exhibit.

3. Quality attributes often impart a “language” of things that
you would look for. Security involves things like security lev-
els, authenticated users, audit trails, firewalls, and the like.
Performance brings to mind buffer capacities, deadlines,
periods, event rates and distributions, clocks and timers,
and so on. Availability conjures up mean time between fail-
ure, failover mechanisms, primary and secondary function-
ality, critical and noncritical processes, and redundant
elements. Someone fluent in the “language” of a quality
attribute can search for the kinds of architectural elements
(and properties of those elements) that were put in place
precisely to satisfy that quality attribute requirement.

4. Architecture documentation often contains a mapping to
requirements that shows how requirements (including quality
attribute requirements) are satisfied. If your requirements
document establishes a requirement for availability, for
instance, then you should be able to look up that require-
ment by name or reference in your architecture document
to see the place(s) where that requirement is satisfied.

For more on styles and
patterns, see “Coming
to Terms: ‘Architecture
Style’ and ‘Architecture
Pattern’ ” on page 32, in
this chapter.

Documenting rationale
is covered in Section 6.5.

Interface documentation
is covered in Chapter 7.

Properties are discussed
in Section I.3, in the
introduction to Part I.

Documenting a map-
ping to requirements is
covered in Section 10.3.

18 ■ Prologue: Software Architectures and Documentation

5. Every quality attribute requirement will have a constituency
of stakeholders who want to know that that quality attribute
requirement is going to be satisfied. For these stakeholders,
the architect should provide a special place in the docu-
mentation’s introduction that either provides what the
stakeholder is looking for or tells the stakeholder where in
the document to find it. It would say something like “If you
are a performance analyst, you should pay attention to the
processes and threads and their properties (defined
[here]), and their deployment on the underlying hardware
platform (defined [here]).” In our documentation approach,
we put this here’s-what-you’re-looking-for information in a
section called the documentation roadmap.

P.2.4 Economics of Architecture Documentation

We’d all like to make our stakeholders happy, of course. Giddy,
in fact. So why is producing high-quality architecture docu-
mentation often relegated to the “I’ll do it if I have time” cate-
gory of an architect’s many tasks? Why do project managers
often fail to insist that architecture documentation accompany
the other archival artifacts produced during development?
The answer, of course, is that an architecture document, let
alone one that induces giddiness, costs time and money.

Project managers are, by and large, rational people. (No,
seriously, they are.) They are willing to invest resources in activ-
ities that yield demonstrable benefit, and not so much other-
wise. As architects, we should be able to make a business case
for producing and maintaining architecture documentation.
And here it is: Activities that the project manager is going to
have to fund will be less costly in the presence of high-quality,
up-to-date documentation than they would otherwise.

A formula to show the savings looks like this:

over all activities A(Cost of A without AD – Cost of A with AD) > Cost of AD,

where “Cost of A without AD” and “Cost of A with AD” are the
cost of performing activity A without and with (respectively) an
architecture document. “Cost of AD” is the cost of producing
and maintaining the architecture documentation. In other
words, the payback from good architecture documentation
should exceed the effort to create it. Payback is measured in
terms of effort saved.

This formula gives us a way to think about documentation,
its effort, and its payoff. When deciding whether you should
produce a particular piece of documentation, ask yourself how

The documentation
roadmap is described in
Section 10.2.

The man who stops
advertising to save
money is like the man
who stops the clock to
save time. [The same
could be said for the
architect who stops
documenting.]

—Thomas Jefferson

P.2 A Short Overview of Architecture Documentation ■ 19

much effort it will take to do so, and what activities will be
cheaper as a result. By choosing even a small number of key
activities that will benefit from the presence of documentation,
you should be able to make a convincing back-of-the-envelope
argument that the effort invested will more than pay for itself.

And if you can’t—that is, if the effort doesn’t pay for itself—
then you shouldn’t expend it. Put your resources elsewhere.

The formula is nicely general; it does not require that you
actually enumerate all the activities involved. The ones that are
not affected by the presence or absence of architecture docu-
mentation at all simply wash out of the formula. But other
activities such as coding, re-engineering, launching a change
effort, and so on should have significant cost savings.

P.2.5 The Views and Beyond “Method”

We call our approach to documentation Views and Beyond.
This is to emphasize that we use the concept of a view—
explained in the next section—as the fundamental organizing
principle for architecture documentation, but also because we
go beyond views to include additional information that
belongs in an architecture document.

Views and Beyond is not actually a method. It does not have
a sequence of steps, with entry and exit criteria for each.
Rather, it is more a collection of techniques that carry out an
underlying philosophy. The philosophy is that an architecture
document should be helpful to the people who depend on it
to do their work (far from least of which is the architect). The
techniques can be bundled into a few categories:

1. Finding out what stakeholders need. If you don’t do this,
you’re going to end up with documentation that may serve
no one.

2. Providing the information to satisfy those needs by record-
ing design decisions according to a variety of views, plus the
beyond-view information.

3. Checking the resulting documentation to see if it satisfied
the needs.

4. Packaging the information in a useful form to its stakeholders.

While items 3 and 4 denote document-centric activities,
items 1 and 2 denote activities that should be carried out in
conjunction with performing the architecture design. That is,
we don’t want Views and Beyond to be an architecture documen-
tation method; rather, we want it to help the architect identify
and record the necessary design decisions as they are made.
Documentation should be the helpful result of making an

Chapter 9 covers a way
to use stakeholder
needs to determine the
views you include in your
architecture document.

Chapter 11 covers
reviewing documentation.

Chapter 10 covers
packaging and organiza-
tion of documentation.

Don’t consider architec-
ture documentation as a
task separate from
design; rather, make it
an essential part of the
architecture design pro-
cess, serving as a ready
vessel for holding the
output of architectural
decisions as soon as
those decisions are made.

20 ■ Prologue: Software Architectures and Documentation

architecture decision, not a separate step in the architecture
process. The more that documentation is treated like a follow-
on to design, with its own separate method, the less likely it is
to be done at all.

P.2.6 Views and Beyond in an Agile Environment

It is an unfortunate myth that Agile development and docu-
mentation (particularly architecture documentation) are at
odds with each other. They aren’t, and there are many exam-
ples of Agile leaders saying exactly that. Nevertheless, it is pos-
sible to interpret the advice in this book as prescribing a
heavyweight and cumbersome approach to documentation.
You can imagine an architect lagging hopelessly behind the
project, which has gone on to deliver the product while he or
she is still struggling to complete a Views-and-Beyond-style doc-
umentation package from six iterations ago. Neither the archi-
tect (nor this book) would likely be invited back to the next
project.

Here is some advice that applies to all projects but especially
to Agile projects: The Views and Beyond approach provides
guidance for documenting many kinds of architecture infor-
mation: structures, elements, relations, behavior, interfaces,
rationale, traces to requirements, style guides, system context,
and a whole lot more. But nowhere is it written that you have
to do all of that. Decide what is useful (you can use the formula
in Section P.2.4 to help you decide). Then, for example, if you
decide that documenting the rationale behind a certain design
decision is going to pay off in the future, then you can use the
available guidance to help you do it. If you decide that docu-
menting certain views is useful, then you can use the available
guidance to help you do it. And so forth.

Choose what’s useful and cost-effective to document. Docu-
ment that. Period.

P.2.7 Architectures That Change Faster Than You Can Document
Them

When your Web browser encounters a file type it’s never seen
before, odds are that it will go to the Internet, download the
appropriate plug-in to handle the file, install it, and reconfig-
ure itself to use it. Without even needing to shut down, let
alone go through the code-integrate-test development cycle,
the browser is able to change its own architecture by adding a
new component.

Service-oriented systems that utilize dynamic service discov-
ery and binding also exhibit these properties. More challenging
systems that are highly dynamic, self-organizing, and reflective

[W]e have come to value
. . . working software
over comprehensive
documentation.

—The Agile Manifesto
(Agile Alliance 2002)

Section E.4 in the
epilogue elaborates on
architecture documen-
tation in an Agile
environment.

P.2 A Short Overview of Architecture Documentation ■ 21

(meaning self-aware) are on the horizon. In these cases, the
identities of the components interacting with each other can-
not be pinned down, let alone their interactions, in any static
architecture document.

Another kind of architectural dynamism, equally challeng-
ing from a documentation perspective, is found in systems that
are rebuilt and redeployed with great rapidity. Some develop-
ment shops, such as those responsible for commercial Web
sites, build and “go live” with their system many dozens of times
every single day.

Whether an architecture changes at runtime, or as a result
of a high-frequency release-and-deploy cycle, both share some-
thing in common with respect to documentation: They change
much faster than the documentation cycle. In either case,
nobody is going to hold up things until a new architecture doc-
ument is produced, reviewed, and released.

But knowing the architecture of these systems is every bit as
important, and arguably more so, than for systems in the world
of more traditional life cycles. Here’s what you can do if you’re
an architect in a highly dynamic environment:

1. Document what is true about all versions of your system.
Your Web browser doesn’t go out and grab just any piece of
software when it needs a new plug-in; a plug-in must have
specific properties and a specific interface. And it doesn’t
just plug in anywhere, but in a predetermined location in the
architecture. Record those invariants as you would for any
architecture. This may make your documented architecture
more a description of constraints or guidelines that any
compliant version of the system must follow. That’s fine.

2. Document the ways the architecture is allowed to change.
In the previous examples, this will usually mean adding new
components and/or replacing components with new
implementations. In the Views and Beyond approach, the
place to do this is called the variability guide.

3. Make your system capture its own architecture-of-the-
moment automatically. When your Web browser or SOA sys-
tem crashes, your recovery team is going to want to know
exactly what configuration was running when the problem
occurred. This ability can run the spectrum from primitive
(write changes in a log file) to sophisticated (drive a real-
time display of the components and their interactions,
much like what is found in network service centers).

Using a variability guide
to document an archi-
tecture’s variation
points is covered in
Section 6.4.

22 ■ Prologue: Software Architectures and Documentation

P.3 Architecture Views
Perhaps the most important concept associated with software
architecture documentation is that of the view. A software
architecture is a complex entity that cannot be described in a
simple one-dimensional fashion. Our analogy with the bird
wing proves illuminating. If you are interested in any but the
most superficial understanding, then no single rendition of a
bird wing will do. Instead, you need many: feathers, skeleton,
circulation, muscular views, and many others. Which of these
views is the “architecture” of the wing? None of them. Which
views convey the architecture? All of them.

In this book, we use the concept of views to give us the most
fundamental principle of architecture documentation, illus-
trated in Figure P.1:

Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

What are the relevant views? It depends on your goals. As we
saw previously, architecture documentation can serve many
purposes: a mission statement for implementers, a basis for
analysis, the specification for automatic code generation, the
starting point for system understanding and asset recovery, or
the blueprint for project planning.

Different views also expose different quality attributes to dif-
ferent degrees. Therefore, the quality attributes that are of
most concern to you and the other stakeholders in the system’s
development will affect the choice of what views to document.
For instance, a layered view will tell you about your system’s port-
ability, a deployment view will let you reason about your system’s
performance and reliability, and so forth.

Different views support different goals and uses. This is funda-
mentally why we do not advocate a particular view or collection

A view is a representa-
tion of a set of system
elements and the rela-
tionships associated
with them.

For more information
about the bird wing
analogy, see “About the
Cover” on page xxi.

Chapter 9 shows how to
choose the relevant
views. Section 10.1
shows how to document
a view, and Section 10.2
shows how to docu-
ment the information
that applies to more
than one view.

Layered views are cov-
ered in Section 2.4.
Deployment views are
covered in Section 5.2.

Figure P.1
A documentation package
for a software architecture
can be composed of one or
more view documents and
documentation that
explains how the views
relate to one another,
introduces the package to
its readers, and guides
them through it.

S
o

ftw
are

A
rch

itectu
re

Softw
are

Arch
ite

cture

for

Syste
m XYZ

P
art n

+
1

:
D

o
cu

m
en

tatio
n

B
eyo

n
d

 V
iew

s Documentatio
n

Beyond Views

P
art 1

: V
iew

P
art 2

: V
iew

•••

P
art n

: V
iew

P.3 Architecture Views ■ 23

of views. The views you should document depend on the uses
you expect to make of the documentation. Different views will
highlight different system elements and/or relations.

It may be disconcerting that no single view can fully repre-
sent an architecture. Additionally, it feels somehow inadequate
to see the system only through discrete, multiple views that may
or may not relate to one another in any straightforward way.
The essence of architecture is the suppression of information
not necessary to the task at hand, and so it is somehow fitting
that the very nature of architecture is such that it never pre-
sents its whole self to us but only a facet or two at a time. This is
its strength: Each view emphasizes certain aspects of the system
while deemphasizing or ignoring other aspects, all in the inter-
est of making the problem at hand tractable. Nevertheless, no
one of these individual views adequately documents the software
architecture for the system. That is accomplished by the com-
plete set of views along with information that transcends them.

The documentation for a view contains

• A primary presentation, usually graphical, that depicts the
primary elements and relations of the view

• An element catalog that explains and defines the elements
shown in the view and lists their properties

• A specification of the elements’ interfaces and behavior

• A variability guide explaining any built-in mechanisms avail-
able for tailoring the architecture

• Rationale and design information

The documentation that applies to all of the views contains

• An introduction to the entire package, including a reader’s
guide that helps a stakeholder find a desired piece of infor-
mation quickly

• Information describing how the views relate to one another,
and to the system as a whole

• Constraints and rationale for the overall architecture

• Such management information as may be required to effec-
tively maintain the whole package

COMING TO TERMS

A Short History of Architecture Views

Nearly all modern approaches to designing and docu-
menting architectures rely on the concept of an architec-
tural view. Where did this concept come from?

An object-oriented pro-
gram’s runtime struc-
ture often bears little
resemblance to its code
structure. The code
structure is frozen at
compile-time; it con-
sists of classes in fixed
inheritance relation-
ships. A program’s run-
time structure consists
of rapidly changing net-
works of communicat-
ing objects. In fact, the
two structures are
largely independent.
Trying to understand
one from the other is
like trying to understand
the dynamism of living
ecosystems from the
static taxonomy of
plants and animals, and
vice versa.

—Gamma et al. (1995,
p. 22)

Section 10.1 substan-
tially elaborates this
outline.

Section 10.2 substan-
tially elaborates this
outline.

24 ■ Prologue: Software Architectures and Documentation

More than three decades ago, David Parnas
(1974) observed that software consists of many
structures, which he defined as partial descrip-
tions showing a system as a collection of parts

and showing some relations among the parts. This defi-
nition largely survives in architecture papers today. Par-
nas identified several structures prevalent in software. A
few were fairly specific to operating systems, such as the
structure that defines what process owns what memory
segment, but others are more generic and broadly appli-
cable. These include the module structure, in which the
units are work assignments and the relation is is-a-part-
of or shares-part-of-the-same-secret-as; the uses struc-
ture, in which the units are programs, and the relation is
depends on the correctness of; and the process struc-
ture, in which the units are processes, and the relation is
gives computational work to.

Quite a bit later, DeWayne Perry and
Alexander Wolf recognized that, sim-
ilar to building architecture, a variety
of views of a system are required.

Each view emphasizes certain architectural aspects that
are useful to different stakeholders or for different pur-
poses (Perry and Wolf 1992).

Later, Philippe Kruchten (1995) of the Rational
Software Corporation wrote an influential paper
describing four main views of software archi-
tecture (logical, process, development, physi-

cal) that can be used to great advantage in system
building, along with a distinguished fifth view that ties the
other four together by showing how they satisfy key use
cases: the “4+1” approach to architecture. The 4+1
approach has since been embraced as a foundation
piece of the Rational Unified Process.

At about the same time,
Dilip Soni, Robert Nord, and
Christine Hofmeister of Sie-
mens Corporate Research

made a similar observation about views of architecture
they found in use in industrial practice (Soni, Nord, and
Hofmeister 1995). They wrote about the conceptual view,
module interconnection view, execution view, and code
view. These views, which correspond more or less to
Kruchten’s four views, have become known as the Sie-
mens Four View model for architecture.

To see how the 4+1
views correspond to
views described in this
book, see Section E.2 of
the epilogue.

The Siemens Four View
model is explained in
the book by Hofmeister,
Nord, and Soni (2000).

P.4 Architecture Styles ■ 25

Other “view sets” have emerged since these. In their
book Software Systems Architecture, Rozanski and
Woods (2005) advocate using functional, information,
concurrency, development, deployment, and operational
views. Philips Research, the R&D arm of the giant Dutch
electronics company, has created the “CAFCR” model of
architecture, which calls for five views: the customer,
application, functional, conceptual, and realization views.

In the year 2000, the IEEE adopted a standard (IEEE
1471-2000) for architecture descriptions. Unlike approaches
that prescribe a fixed set of views, this standard advo-
cates creating your own views that best serve the stake-
holders and their concerns associated with your system.
(The Views and Beyond approach also advises flexibility
in choosing your view set.)

P.4 Architecture Styles
Recurring forms have been widely observed, even if written for
completely different systems. These forms occur often enough
that they are worth writing and learning about in their own
right. We call these forms architecture styles. (In this book, we
usually just say styles.) Styles have implications for architecture
documentation and deserve definition and discussion in their
own right.

Styles allow one to apply specialized design knowledge to a
particular class of systems and to support that class of system
design with style-specific tools, analysis, and implementations.
The literature is replete with a number of styles, and most
architects have a wide selection in their repertoires.

For example, we’ll see that modules can be arranged into a
useful configuration by restricting what each one is allowed to
use. The result is a layered style that imparts to systems that use
it qualities of modifiability and portability. Different systems
will have a different number of layers, different contents in
each layer, and different rules for what each layer is allowed to
use. However, the layered style is abstract with respect to these
options and can be studied and analyzed without binding them.

For another example, we’ll see that client-server is a com-
mon architecture style. The elements in this style are clients,
servers, and the protocol connectors that depict their interaction.
When used in a system, the client-server style imparts desirable

IEEE 1471-2000 is
now known as ISO/IEC
42010:2007. We
describe this standard
in Section E.1 of the
epilogue.

An architecture style is
a specialization of ele-
ment and relation types,
together with a set of
constraints on how they
can be used.

In all processes of life
people imitate, and so
must artists. They are
influenced by their peers
as by their antecedents
because this is the way
of organic development.
Late Beethoven and early
Schubert, for instance,
are almost indistinguish-
able; while Brahms took
certain themes, note for
note, from Beethoven;
and Shakespeare stole
nearly all of his plots—all
the good ones certainly.

—Agnes de Mille, Amer-
ican dancer and cho-
reographer (Atlantic
1956)

26 ■ Prologue: Software Architectures and Documentation

properties to the system, such as the ability to add clients with
little effort. Different systems will have different protocols, dif-
ferent numbers of servers, and different numbers of clients
each can support. However, the client-server style is abstract
with respect to these options and can be studied and analyzed
without binding them.

Some styles are applicable in every software system. For
example, every system is decomposed into modules to divide
the work; hence, the decomposition style applies everywhere.
Other examples of “universal styles” are uses, deployment, and
work assignment. Some styles occur only in systems in which
they were explicitly chosen and designed in by the architect:
layered, service oriented, and multi-tier, for example.

Choosing a style, whether it’s one covered in this book or
somewhere else, imparts a documentation obligation to record
the specializations and constraints that the style imposes and
the characteristics that the style imparts to the system. We call
this piece of documentation a style guide. The obligation to
document a style can usually be discharged by citing a descrip-
tion of the style in the literature: this book, for example. If you
invent your own style, however, you should write a style guide
for it because it will help you and your peers to apply that style
in other systems.

No system is built exclusively from a single style. On the con-
trary, every system can be seen to be an amalgamation of many
different styles. Some (such as decomposition and work assign-
ment) occur in every system, but in addition to these, systems
can exhibit a combination of one or more “chosen” styles as
well.

Even restricting our attention to component-and-connector
styles, it’s possible for one system to exhibit several styles in the
following ways:

• Different “areas” of the system might exhibit different styles.
For example, a system might use a pipe-and-filter style to
process input data but route the result to a database that is
accessed by many elements. This system would be a blend of
pipe-and-filter and shared-data styles. Documentation for
this system would include (1) a pipe-and-filter view that
showed one part of the system and (2) a shared-data view
that showed the other part. In a case like this, one or more
elements must occur in both views and have properties of
both kinds of elements. (Otherwise, the two parts of the sys-
tem could not communicate with each other.) These bridging
elements provide the continuity of understanding from one
view to the next. They likely have multiple interfaces, each

The layered style is
described in Section 2.4.

The client-server style is
described in Section 4.3.1.

A style guide is the
description of an archi-
tecture style that speci-
fies the vocabulary of
design (sets of element
and relationship types)
and the rules (sets of
topological and semantic
constraints) for how that
vocabulary can be used.

The contents of a style
guide are given in Sec-
tion I.2, in the introduc-
tion to Part I. Section
6.1.4 discusses how to
create and document a
new style.

Combining views is an
important concept cov-
ered in Section 6.6.

A bridging element is
an element that is com-
mon to two views and is
used to provide the
continuity of under-
standing from one view
to the other. A bridging
element appears in both
views and has support-
ing documentation,
usually a mapping
between views, that
makes the correspon-
dence clear, perhaps by
showing the combined
picture.

P.4 Architecture Styles ■ 27

providing the mechanisms for letting the element work with
other elements in each of the views to which it belongs. The
filter/database connector in Figure P.2 is an example.

• An element playing a part in one style may itself be com-
posed of elements arranged in another style. For example,
a service provider in an SOA system might, unknown to
other service providers or its own service users, be imple-
mented using a multi-tier style. Documentation for this sys-
tem would include an SOA view showing the overall system,
as well as a multi-tier view documenting that server, as illus-
trated in Figure P.3.

• Finally, the same system might simply be seen in different
lights, as though you were looking at it through filtered
glasses. For example, a system featuring a database reposi-
tory, as in Figure P.4, may be seen as embodying either a
shared-data style or a client-server style. The glasses you
choose will determine the style that you “see.”

In the last case, your choice of style-filtered glasses depends,
once again, on the uses to which you and your stakeholders
intend to put the documentation. For instance, if the shared-
data style is more easily understood by the stakeholders that
will consume that view, you might choose it. If you need the
perspective afforded by more than one style, however, you have
a choice. You can document the corresponding views separately,
or you can combine them into a single view that is, roughly
speaking, the union of what the separate views would be.

This combined view is
called an overlay. Over-
lays are discussed in
Section 6.6.

Figure P.2
A system combining a
pipe-and-filter style with a
shared-data style. The
“filter/database connector”
is a bridging element.

Key

Filter

Pipe

Database

Filter/
database
connector

Accessor

Accessor
connector

28 ■ Prologue: Software Architectures and Documentation

Figure P.3
A system combining two
styles. Here a service
provider is composed
internally in a multi-tier
style.

Key

Key

SOAP call

http REST

SOA participant (service
consumer or provider)

Interface of service provider

Client tier

Client
component

Web
component

Business
component

Database

http/https Method call Database
access

Tier

Web tier Business logic tier Back end

Figure P.4
This system could be in the
shared-data style, or the
client-server style,
depending on your
perspective.

Action
handler 1

Action
handler 3

Action
handler 2

File server

Request-reply
Key

P.4 Architecture Styles ■ 29

P.4.1 Three Categories of Styles

Although no fixed set of views is appropriate for every system,
broad guidelines can help us gain a footing. Architects need to
think about their software in three ways simultaneously:

1. How it is structured as a set of implementation units

2. How it is structured as a set of elements that have runtime
behavior and interactions

3. How it relates to nonsoftware structures in its environment

Each style we present in this book falls into one of these
three categories:

1. Module styles

2. Component-and-connector (C&C) styles

3. Allocation styles

When we apply a style to a system, the result is a view. Module
views document a system’s principal units of implementation.
C&C views document the system’s units of execution. And allo-
cation views document the relations between a system’s soft-
ware and nonsoftware resources of the development and
execution environments.

COMING TO TERMS

Module, Component

In this book, we rely on three categories of styles: mod-
ule, component-and-connector, and allocation. This three-
way distinction allows us to structure the information
we’re presenting in an orderly way and, we hope, allows
you to recall it and access it in an orderly way, so that you
can write an architecture document that presents its
information in an orderly way. But for this strategy to suc-
ceed, the distinctions have to be meaningful. Two of the
categories rely on words for which we give precise
meanings, but which are not historically well differenti-
ated: module and component.

Like many words in computing, these two have mean-
ings outside our field. Furthermore, both terms have
come to be associated with movements in software engi-
neering that have overlapping goals.

During the 1960s and 1970s, software systems increased
in size and were no longer able to be produced by one

A selection of module
styles is presented in
Chapter 2. A selection
of C&C styles is pre-
sented in Chapter 4. A
selection of allocation
styles is presented in
Chapter 5.

One of the best ways to
avoid confusion in your
architecture is to be
meticulous about
making it clear whether
each architecture ele-
ment is a module or a
component.

30 ■ Prologue: Software Architectures and Documentation

person. It became clear that new techniques were
needed to manage software complexity and to partition
work among programmers. To address such issues of
“programming in the large,” various criteria were intro-
duced to help programmers decide how to partition their
software. Encapsulation, information hiding, and abstract
data types became the dominant design paradigms of
the day. Until this movement, computer programs were
largely about calculating the correct answer, but thought
leaders were now saying that how you structure your
code determines other important properties of the system.
Module became the carrier of their meaning. The 1970s
and 1980s saw the advent of “module interconnection
languages” and features of new programming languages
such as Modula modules, Smalltalk classes, and Ada
packages. Today’s dominant design paradigm—object-
oriented programming—has these module concepts at
its heart. Components, by contrast, are in the limelight
with component-based software engineering and the
component-and-connector perspective in the software
architecture field.

Both movements aspire to achieve rapid system con-
struction and evolution through the selection, assembly,
and wholesale replacement of independent subpieces.
Both modules and components are about the decompo-
sition of a whole software system into constituent parts.
But beyond that, the two terms take on different shades
of meaning.

• A module refers first and foremost to a unit of imple-
mentation. Parnas’s foundational work in module
design (Parnas 1972) used information hiding as the
criterion for allocating responsibility to a module.
Information that was likely to change over the lifetime
of a system, such as the choice of data structures or
algorithms, was assigned to a module, which had an
interface through which its facilities were accessed.
Modules have long been associated with source code,
but information models, XML files, config files, BNF
files for parsers, and other implementation artifacts
are all perfectly fine modules.

• A component refers to a runtime entity. Szyperski says
that a component “can be deployed independently
and is subject to composition by third parties”
(Szyperski 1998, p. 30). The emphasis is clearly on the
finished product and not on the implementation con-
siderations that went into it. Indeed, the operative

P.4 Architecture Styles ■ 31

model is that a component is delivered in the form of
an executable binary only: Nothing upstream from that
is available to the system builder.

In short, a module suggests implementation units and
artifacts, with less emphasis on the delivery medium and
what goes on at runtime. A component is about units of
software active at runtime with no visibility into the imple-
mentation structure.

Who cares? If every module turned into exactly one com-
ponent at runtime, it would be easy to sweep the differ-
ence under the rug. But this is often far from reality! In
many systems, a single module might turn into many
components, or it might take many modules to turn into
a single component. An easy way to see this is to imag-
ine a trivially simple client-server system. Suppose our
system has a single server, which at runtime serves up
some interesting piece of data to ten interested clients,
all of which do the same thing. This system has eleven
components but only two modules. The server module
maps 1:1 onto the server component S1. The client mod-
ule maps 1:10 to the client components C1–C10. Failing
to distinguish between modules and components makes
it too easy to blithely assume that every unit of implemen-
tation turns into exactly one unit of execution. It isn’t so.

Our use of the terms in this book reflects their pedigrees.
Module styles described in this book reflect implementa-
tion artifact considerations: decompositions that assign
parts of the problem to units of design and implementation,

Figure P.5
A client-server system
might consist of two
modules but eleven
components.

Key Key

Decomposition view

System

Client-server view

Client

Server

Module
Component
Request-reply

S1

C10

C5

C9

C8

C7

C2

C3

C1

C6 C4

32 ■ Prologue: Software Architectures and Documentation

layers that reflect what uses are allowed when software
is being written, and classes that factor out commonality
from a set of instances. Modules in these styles are often
units of source code, but there’s also the data model
style, where the module is a model of the data that the
system manipulates. Of course, all these module styles
have runtime implications; that’s the end game of soft-
ware design, after all. C&C styles described in this book
focus on how processes interact and data travels around
the system during execution.

In many architectures, there is a one-to-one mapping
between modules and components. Further, the module
and its component counterpart are usually given the same
name in this case. This makes it tempting to believe that
the modules and components are the same, which in
turn makes it tempting to believe there is no difference.
Don’t be tempted. Although a one-to-one mapping does
no harm, the truth is that the module and component are
different elements sharing the same name. In such an
architecture, the module will show up in a module view,
and a component with the same name will show up in
one or more component-and-connector views.

Modules and components represent the current bedrock of
the software engineering approach to rapidly constructed,
easily changeable software systems. As such, modules
and components serve as fundamental building blocks
for creating and documenting software architectures.

COMING TO TERMS

“Architecture Style” and “Architecture Pattern”

What do the two terms mean?

In this book we use “architecture style” as the term for a
package of design decisions that explains a generic design
approach for a software system. Another term for a similar
concept, used by many architects and authors, is “architec-
ture pattern.” What is the difference between these two
concepts and why did we choose style over pattern?

An architecture style is a “specialization of element and
relation types, together with a set of constraints on how
they can be used” (Bass, Clements, and Kazman 2003).

Section 10.2 describes
how to document the
mapping between a
system’s modules and
its components. Sec-
tions 1.5 and 3.5 dis-
cuss how modules and
components relate to
each other.

P.4 Architecture Styles ■ 33

An architecture pattern “expresses a fundamental
structural organization schema for software systems”
(Buschmann et al. 1996, p. 12). It is, above all, a pattern,
which in the context of architecture “describes a partic-
ular recurring design problem that arises in specific
design contexts, and presents a well-proven generic
scheme for its solution. The solution scheme is specified
by describing its constituent components, their respon-
sibilities and relations, and the ways in which they collab-
orate” (Buschmann et al. 1996, p. 8).

An essential part of an architecture pattern is its focus on
the problem and context as well as how to solve the
problem in that context. That last part we’ll call the archi-
tecture approach. An architecture style focuses on the
architecture approach, with more lightweight guidance
on when a particular style may or may not be useful. Very
informally, we can put it this way (where the arrow means
“suggests”):

• Architecture pattern: {problem, context}
architecture approach

• Architecture style: architecture approach

How did these two terms come about?

“Architecture style” as we use it today traces to some
early writing from the formative days of software archi-
tecture study.

In 1990 and 1991, Mary Shaw was noticing and
describing recurring architecture concepts she
found in many systems. She called these
“elements of a design language for software

architecture” or “design idioms” (Shaw 1990, 1991). In
1992 Dewayne Perry and Alexander Wolf wanted to
“build an intuition” about the still-new field of software
architecture (Perry and Wolf 1992). Looking around at
other kinds of architecture—network architecture, com-
puter architecture, and others—they hit upon building
architecture as rich in fertile (and borrowable) concepts.
One of those concepts was architecture style. Like
Shaw before them, they were also noticing recurring
design forms in software architectures, and they saw that
this would be a useful term to appropriate to describe
those forms. Styles, then, were observed phenomena,
approaches (manifest in the kinds of elements and rela-
tions employed) that the authors noticed were being

Q UO TE S

Thus, we find in building
architecture some fun-
damental insights about
software architecture:
multiple views are
needed to emphasize
and to understand dif-
ferent aspects of the
architecture; styles are a
cogent and important
form of codification that
can be used both
descriptively and pre-
scriptively; and, engi-
neering principles and
material properties are
of fundamental impor-
tance in the develop-
ment and support of a
particular architecture
and architectural style.

—Perry and Wolf (1992)

[In building architecture,]
architectural styles
classify architecture in
terms of form, tech-
niques, materials, time
period, region, etc. . . .
leading to a terminology
such as Gothic “style.”

—Wikipedia (2010a)

34 ■ Prologue: Software Architectures and Documentation

used over and over. The emphasis was on discovery and
categorization of utilized forms.

In 1996 Frank Buschmann and his colleagues
at Siemens made the inevitable connection
between two powerful concepts: software
architecture and design patterns (the latter hav-

ing electrified software engineering the previous year).
Their book, Pattern-Oriented Software Architecture, Vol-
ume 1: A System of Patterns (Buschmann et al. 1996;
PoSA, for short), is where the term architectural pattern
was first used. Followed over the years by (at this writing)
four sequels, the PoSA series does for architects what
Design Patterns (Gamma et al. 1995) did for designers
and programmers.

Both design patterns and (software) architec-
ture patterns owe their meaning to the building
architect Christopher Alexander, who in the
1970s wrote several books detailing architec-

ture approaches to solve common building design prob-
lems. People love to sit next to windows, he wrote, so
make every room have a place where they can comfort-
ably do so. People love balconies, he wrote, but obser-
vations show they won’t spend time on a balcony less
than 10 feet wide. So make your balconies at least 10
feet wide. People love outdoor spaces, he wrote, but not
if they’re in the shadow of a building. So in the northern
hemisphere put your courtyards on the south side. He
called these design nuggets patterns: “a three-part rule,
which expresses a relation between a certain context, a
problem, and a solution” (Alexander 1979, p. 247). The
patterns community (of whatever flavor) has tried to
remain faithful to his meaning.

Why do patterns seem more specific?

It has turned out, not as a matter of the intrinsic nature of
these things but rather as a matter of practice, that the
published architecture patterns tend to be more con-
straining—that is, they embed more design decisions—
than the published architecture styles. Patterns often
look “more detailed” or “less abstract” than styles. Styles
tend to tell people what the element and relation types of
interest are, and give topological constraints: Put layers
on top of layers; pipes connect to filters, not pipes; and
so on. Patterns tend to be more specific, showing
instances of the element type interacting with each other.

“Anarchitectural pattern
expresses a fundamental
structural organization
schema for software
systems. It provides a
set of predefined sub-
systems, specifies their
responsibilities, and
includes rules and
guidelines for organiz-
ing the relationships
between them.”
(Buschmann et al. 1996,
p. 12)

We must not forget that
the wheel is reinvented
so often because it is a
very good idea; I've
learned to worry more
about the soundness of
ideas that were
invented only once.

—D. L. Parnas (1996)

P.4 Architecture Styles ■ 35

That’s because the collectors of styles were motivated to
find commonality where none had been observed before.
Broad categories are more inclusive. Pattern writers have
tended to record very specific and context-dependent prob-
lems; hence their solutions are correspondingly specific.

Architects can use this de facto distinction to their
advantage. For instance, if you’re handling a lot of data
in your system, you might want to consider a style (the
shared-data style is a good candidate) and ask yourself
if the element and relation types are what you need: That
is, do you really need a database? Yes? OK, now go look
for a more constrained architecture approach (which
might very well be given as a pattern).

Why did we use “architecture style” in this book?

In this book, which is about documenting software architec-
tures and not so much about designing them, we concen-
trate on presenting a variety of solution approaches—
architecture styles—so that we can show how to document
systems built using them. In a software architecture docu-
ment, one doesn’t document a pattern, one documents an
application of it—that is, the instantiated solution approach.

How do I document the use of a style or pattern in a software
architecture document?

Architects can use either patterns or styles as a starting
point for their design. They might be published in existing
catalogs, stored in an organization’s proprietary repository
of standard designs, or created specifically for the prob-
lem at hand by the architect. In either case, they provide
a generic (that is, incomplete) solution approach that the
architect will have to refine and instantiate.

First, record the fact that the given style or pattern is
being used. Then say why this solution approach was
chosen—why it is a good fit to the problem at hand. If the
chosen approach comes from a pattern, show that the
problem at hand fits the problem and context of the pat-
tern. If the chosen approach comes from a style, explain
why the style does the needed job.

Using a pattern or a style means making successive
design decisions that eventually result in an architecture.
These design decisions manifest themselves as newly
instantiated elements and relations among them. The
architect can document a snapshot of the architecture at

The shared-data style is
described in Section
4.5.1.

The software architec-
ture document tem-
plates in Chapter 10 will
provide a place for all of
this information.

The concept of making
successively more
constrained design
decisions is called a
“spectrum of design”
and is discussed in Sec-
tion 6.1.3.

36 ■ Prologue: Software Architectures and Documentation

each stage. How many stages there are depends on
many things, not the least of which is the ability of read-
ers to follow the design process in case they have to
revisit it in the future.

Summary

Architecture styles represent observed architecture
approaches. A style description does not generally include
detailed problem/context information. Architecture pat-
terns do. An architecture approach might be docu-
mented (and several are) as an architecture style and an
architecture pattern. Both styles and patterns are a set of
prepackaged design decisions involving the choice of
element types, relation types, properties, and constraints
on the topology and interaction among the elements via
the relations. Both provide vocabularies that shortcut
explanation and allow greatly facilitated communication
(“My system is layered.” “Ah, I understand. What are the
layers?”), and help chart a course to the satisfaction of
specific quality attribute requirements. Both can be used
in combination—it is a rare system that uses only one
style or one architecture pattern. And both represent
essential elements of an architect’s vocabulary.

P.5 Seven Rules for Sound Documentation
Architecture documentation is much like the documentation
we write in other facets of our software development projects.
As such, it obeys the same fundamental rules for what distin-
guishes good, usable documentation from poor, ignored doc-
umentation. We close the prologue with seven rules for sound
software documentation. Use this checklist when you write
technical documentation. (You can also use it when you read
technical documentation: the rules provide objective criteria
for judging a document’s quality, and they let you say some-
thing constructive in a critical review.)

Rule 1: Write Documentation from the Reader’s Point of View

This rule simply reminds us to keep the end game in mind as
we produce our documentation: Make your document serve its
stakeholders and their intended uses of it. It is surprisingly easy
to forget that rule in the midst of looming deadlines, an over-
flowing e-mail queue, and a cell phone that won’t shut up.

The great computing scientist Edsger Dijkstra (1930–2002),
the inventor of many of the software engineering principles we

Styles are described
using a common set of
information; this layout
is called a style guide.
The style guide we use
to describe the styles
covered in this book is
explained in the intro-
duction to Part I.

These are the rules for
any technical documen-
tation, including soft-
ware architecture
documentation:

1. Write documentation
from the reader’s
point of view.

2. Avoid unnecessary
repetition.

3. Avoid ambiguity.
4. Use a standard

organization.
5. Record rationale.
6. Keep documentation

current but not too
current.

7. Review documentation
for fitness of purpose.

The consumer isn’t a
moron. She is your wife.

—David Ogilvy, writing
about advertising

P.5 Seven Rules for Sound Documentation ■ 37

now take for granted, once said that he would happily spend
two hours pondering how to make a single sentence clearer.
He reasoned that if the paper were read by a couple of hun-
dred people—a decidedly modest estimate for someone of
Dijkstra’s caliber—and he could save each reader a minute or
two of confusion, it was well worth the effort. Professor Dijk-
stra’s consideration for the reader reflects his classic manners,
but it also gives us a new and useful concept of the effort asso-
ciated with a document. Usually we just count how long it takes
to write. Dijkstra taught us to be concerned with how long it
takes to use. Writing a document that a reader finds easy to use
will help tilt the economics of documentation in our favor, as
defined in the formula in Section P.2.4.

Writing for the reader is just plain polite, but it has a practi-
cal advantage as well. A reader who feels that the document
was written with him or her in mind appreciates the effort but,
more to the point, will come back to the document again and
again in the future. Documents written for the reader will be
read; documents written for the convenience of the writer will
not. All of us like to shop at stores that seem to want our busi-
ness, and we avoid stores that do not. This is no different.

Tips on how to write for the reader include:

• Find out who your readers are, what they know, and what
they expect of the document. Have an informal chat with
some representatives of various kinds of readers and see
what their expectations are. Don’t make uninformed
assumptions about what your readers know.

• Avoid stream of consciousness writing. If you find yourself
writing things down in the order they occur to you, without
an overall organizational plan, stop. Work out where spe-
cific kinds of information should go and put them where
they belong. Make sure that you know what question(s) are
being answered by each section of a document.

• Avoid unnecessary insider jargon. The documentation may
be read by someone new to the field or from a company that
does not share the same jargon. Add a glossary to define
specialized terms.

• Avoid overuse of acronyms. Resist using an acronym when
the spelled-out phrase is short or it appears only a few times.
Always provide a dictionary that decodes whatever acronyms
you do use.

Rule 2: Avoid Unnecessary Repetition

Each kind of information should be recorded in exactly one
place. This makes documentation easier to use and much easier

I have made this letter
rather long only
because I have not had
time to make it shorter.

—Blaise Pascal, French
mathematician, phys-
icist, and moralist

The true measure of a
man is how he treats
someone who can do
him absolutely no good.

—Attributed to Samuel
Johnson

Rozanski and Woods’s
book Software Systems
Architecture (2005) lists
the following properties
of an “effective archi-
tectural description”:
correctness, sufficiency,
conciseness, clarity,
currency, and precision.

38 ■ Prologue: Software Architectures and Documentation

to change as it evolves. It also avoids confusion: information
that is repeated is likely to be in a slightly different form, and
now the reader must wonder “Was the difference intentional?
If so, what is the meaning of the difference? Did the author
change one place and forget to update the other?”

It should be a goal that information never be repeated. How-
ever, at times the cost to the reader of not repeating informa-
tion in the other places where it’s needed is high. Readers
don’t like to flip pages or click hyperlinks unnecessarily. The
information may be repeated in two or more different places
for clarity or to make different points. Also, expressing the
same idea in different forms is often useful for achieving a
thorough understanding. If keeping the information separate
comes at too high a cost to the reader, repeat the information.

In a document maintained and viewed online, hyperlinks
make this rule easier to follow. For example, each term can be
hyperlinked to its definition; a concept can be hyperlinked to
an explanation or elaboration.

PERSPECTIVES

Beware Notations Everyone “Just Knows”

Rule 3 admonishes us to avoid ambiguity. “A well-
defined notation with precise semantics,” we say, “goes
a long way toward eliminating whole classes of linguistic
ambiguity from a document.” Here we want to empha-
size the part about “precise semantics.” Just having a
well-defined notation is not enough.

Consider data flow diagrams. Years ago Michael Jackson
wrote a wonderful Socratic dialogue that showed how a
data flow diagram is largely incapable of conveying use-
ful information about a software design unless you
already have a pretty good idea what the design is by the
time you start looking at it (Jackson 1995, pp. 42–47; we
reprinted the dialogue in Chapter 11 of the first edition of
this book [Clements et al. 2003]). Data flow diagrams, for
heaven’s sake! They’ve been around for decades. Can it
really be that nobody understands what they mean?
Jackson was able to show convincingly how easily they
can be misinterpreted.

Consider layer diagrams. Layered systems were first
described more than four decades ago. We’ve all seen
them; we’ve all written them. Yet how many times have

The data flow diagrams
. . . don’t seem to be
much use. They’re just
vague pictures suggest-
ing what someone
thinks might be the
shape of a system to
solve a problem, and no
one’s saying what the
problem is. [T]he big
picture isn’t much use if
it doesn’t say anything
you can understand.
You’re all just guessing
what Fred’s diagram
means. It wouldn’t
mean anything at all to
you if you didn’t already
have a pretty good idea
of what the problem is
and how to solve it.

—A character in a
parable about data
flow diagrams written
by Michael Jackson
(1995)

P.5 Seven Rules for Sound Documentation ■ 39

we stopped to ask exactly what they mean? A layer dia-
gram is about the only graphical representation of archi-
tecture in which position is significant. Box 1 on top of
Box 2 is quite a different system than Box 2 on top of Box
1. What does it mean, exactly, that some rectangles are
stacked up on top of each other? “Oh, the programs on
top can call programs below” is an answer I often get
when I ask this question in class. Well, can programs at
the top call any programs below, or just the programs in
the next lower layer? Ask this question in a room full of
professional software engineers, and (if my experience
teaching to these groups is any measure) you’ll usually
get one-third nods, one-third head shakes, and one-third
looking as though you just told them the sun is made of
really shiny cheese. Can programs in a layer call other
programs in the same layer? Generally the same
response. And everyone, absolutely everyone, forgets to
tell me that programs below are not allowed to call pro-
grams above, which is a rather important thing to
remember about layers.

So, surprise: Simple layer diagrams are inherently ambig-
uous. Common variants, such as what I call “layers with
a sidecar,” where a vertical box is smooshed up against
the stack on one side, are even more ambiguous. (The
good news is that they can be easily disambiguated.)

A well-defined notation is one in which you can look at an
example and tell whether it’s a legal example of using the
notation or not. Layers and data flow diagrams both have
this property. But neither, traditionally presented, have
precise enough semantics to be unambiguous.

Notations like this, where software engineers “just know”
what they mean, are the most dangerous. We all might
“know” what a layer diagram means. The problem is that
what I “know” it means will be different from what you
“know” it means, and different still from what the archi-
tect meant. So we’ll all go merrily along with no hint of a
problem until late in the project when our errors in under-
standing may cause us to miss a deadline or suffer an
operating failure.

—P.C.

40 ■ Prologue: Software Architectures and Documentation

Rule 3: Avoid Ambiguity

Ambiguity occurs when documentation can be interpreted in
more than one way and at least one of those ways is incorrect.
The most dangerous kind of ambiguity is undetected ambigu-
ity. Here, each reader will think he or she understands the doc-
ument, but unwittingly each reader will come to different
conclusions about what it is saying.

Following two of the other rules will help you avoid ambiguity:

• By avoiding needless repetition (rule 2), you avoid the
“almost but not quite alike” form of ambiguity.

• Reviewing the document with members of its intended audi-
ence (rule 7) will help spot and weed out ambiguities.

A well-defined notation with precise semantics goes a long
way toward eliminating whole classes of linguistic ambiguity
from a document. This is one area where standard languages
and notations help a great deal, but using a formal language
isn’t always necessary. Simply adopting a set of notational con-
ventions and then using them consistently and rigorously will
help eliminate many sources of ambiguity. But if you do adopt
a notation, then the following corollary applies:

ADVICE

We have several things to say about box-and-line dia-
grams masquerading as architecture documentation.

• Don’t be guilty of drawing one and claiming that
it’s anything more than a start at an architecture
description.

• If you draw one yourself, make sure that you explain
precisely what the boxes and lines mean.

• If you see one, ask its author what the boxes mean
and what, precisely, the arrows connote. The result is
usually illuminating, even if the only thing illuminated is
the author’s confusion.

Rule 3a: Explain Your Notation

The ubiquitous box-and-line diagrams that people always draw
on whiteboards are one of the greatest sources of ambiguity in
architecture documentation. Although not a bad starting
point, these diagrams are certainly not good architecture doc-
umentation. First, most such diagrams suffer from ambiguity.

Q UO TE

It is far better to be
explicit and wrong than
to be vague.

—Frederick Brooks, Jr.
(1995, p. 259)

Clarity is our only
defense against the
embarrassment felt on
completion of a large
project when it is dis-
covered that the wrong
problem has been
solved.

—C. A. R. Hoare (1985,
p. 85)

P.5 Seven Rules for Sound Documentation ■ 41

Are the boxes supposed to be modules, objects, classes, ser-
vices, clients, servers, databases, processes, functions, tiers, pro-
cedures, processors, or something else? Do the arrows mean
calls, uses, data flow, I/O, inheritance, communication, pro-
cessor migration, or something else?

Make it as easy as possible for your reader to determine the
meaning of the notation. The best way to do this is always to
include a key in your diagrams. If you’re using a standard visual
language defined elsewhere, the key can simply name it or
refer readers to the source of the language’s semantics. Even if
the language is standard or widely used, different versions
often exist. Let your reader know, by citation, which one you’re
using. For example, “Key: UML 2.0” is a perfectly fine key, and
it puts readers and authors on the same page. For a home-
grown informal notation, include a key to the symbology. This
is good practice because it compels you to understand what the
pieces of your system are and how they relate to one another;
it’s also courteous to your readers.

PERSPECTIVES

Quivering at Arrows

Many architecture diagrams with an informal notation
use arrows to indicate a directional relationship among
architecture elements. Although this might seem like a
good and innocuous way to indicate that two elements
interact, it creates a great source of confusion in many
cases. What do the arrows mean?

Consider the following architecture snippet:

What does the arrow mean? Here are some possibilities:

• C1 calls C2.

• Data flows from C1 to C2.

• C1 instantiates C2.

• C1 sends a message to C2.

• C1 is a subtype of C2. (Usually C2 would be posi-
tioned above C1, but that is not mandatory.)

Every diagram in the
architecture documen-
tation should include a
key that explains the
meaning of every sym-
bol used. The key
should identify the nota-
tion. If a predefined
notation is being used
(such as UML), the key
should name it and if
necessary cite the doc-
ument that defines the
version being used.
Otherwise, the key
should define the sym-
bology and the mean-
ing, if any, of colors,
shapes, position, and
other information-carry-
ing aspects of the dia-
gram. If your diagram
uses color but the color
has no particular mean-
ing or is only there to
enhance readability, say
so in the key.

If you define an informal
notation for your dia-
grams, try to use the
same notation consis-
tently across diagrams
of the same type. Use
different symbols for
different types of ele-
ments and relations. For
example, if you used a
rounded rectangle for
Web components in a
diagram, avoid using a
different shape for Web
components in other
diagrams.C1 C2

42 ■ Prologue: Software Architectures and Documentation

• C2 is a data repository and C1 is writing data to C2.

• Conversely, C1 is a repository and C2 is reading data
from C1.

Any of these might make sense, and people use arrows
to mean all these things and more, often using multiple
interpretations in the same diagram.

Suppose we know the arrow indicates that component
C1 calls component C2. If your system uses different
kinds of calls, it’s a good idea to differentiate them in the
diagrams. In particular, it is important to distinguish syn-
chronous from asynchronous calls, and local from
remote calls. Both aspects may have implications for
behavior, performance, modifiability, and reliability of the
interaction. It may also be useful to differentiate the tech-
nology used to implement the call when the solution will
accommodate different ones. For example, a synchro-
nous remote call can be implemented via a Web service
such as SOAP, REST, Java RMI, or .NET remoting,
among other options. To differentiate the types of inter-
action in the diagram, use distinct arrowheads (open,
closed, solid, hollow) and lines (solid, dotted, dashed,
double).

Suppose that we know that C1 calls C2. Sometimes we
feel tempted to also show a data flow between the two.
We could use the preceding figure and assume the arrow
indicates data flow (instead of “calls”), but if C2 returns a
value to C1, shouldn’t an arrow go both ways? Or should
a single arrow have two arrowheads? These two options
are not interchangeable. A double-headed arrow typi-
cally denotes a symmetric relationship between two ele-
ments, whereas two single-headed arrows suggest two
asymmetric relationships at work. In either case, the dia-
gram will lose the information that C1 initiated the inter-
action. Suppose that C2 also invokes C1. Would we need
to put two double-headed arrows between C1 and C2?
When a component C1 calls a component C2, C1 may
pass data as arguments to C2 and C2 may return data
back to C1. Therefore, it’s often a better idea to use the
arrow to indicate the call’s relation rather than data flow;
otherwise the diagram may easily end up full of double-
headed arrows that don’t tell much.

Although arrows are often used to indicate interactions,
often one can avoid confusion by not using them where
they are likely to be misinterpreted. For example, one can

SOAP and REST are
defined in Section 4.3.3.
In previous versions of
the SOAP specification,
SOAP was an acronym,
but this is no longer the
case. See www.w3.org/
TR/soap12-part1/#intro.

www.w3.org/TR/soap12-part1/#intro
www.w3.org/TR/soap12-part1/#intro

P.5 Seven Rules for Sound Documentation ■ 43

use lines without arrowheads. Sometimes physical
placement, rather than lines, can convey the same infor-
mation. For example, a layer A on top of a layer B indi-
cates that modules in A can use modules in B. Nesting
one element inside another often means “is part of.”

Finally, a good key is essential for understanding the
meaning of arrows, even ones that represent “simple”
interactions such as “calls.” A useful arrow, suitably
explained in the key, will leave no doubt as to which is the
calling end and which is the called end of a call-return
connector, and which way the data flows.

—D.G. and P.M.

Rule 4: Use a Standard Organization

Establish a standard, planned organization scheme, make your
documents adhere to it, and ensure that readers know about it.
A standard organization, also called a template, offers many
benefits.

• It helps the reader navigate the document and find specific
information quickly. Thus, this benefit is also related to the
write-for-the-reader rule.

• It also helps the document writer plan and organize the con-
tents. The writer doesn’t have to start with a blank page
when answering the question “What topics and in what
order should I have in this document?” The template
already provides an outline of the important topics to cover.

• It allows the writer to record information as soon as it’s
known. For example, pieces of section 4 may be written
before sections 1–3 are there.

• It reveals what work remains to be done by the number of
sections labeled “TBD” (to be determined) or “To Do.”

• It embodies completeness rules for the information; the sec-
tions of the document constitute the set of important aspects
that need to be conveyed. Hence, the standard organization
can form the basis for a first-order validation check of the
document at review time.

Corollaries to this rule are these:

1. Organize documentation for ease of reference. Software docu-
mentation may be read from cover to cover at most once,
probably never. But a document is likely to be referenced
hundreds or thousands of times. Do what you can to make
it easy to find information quickly. Adding a table of contents,

Section I.2, in the intro-
duction to Part I, con-
tains a standard
organization for a style
guide. Sections 10.1
and 10.2 contain a stan-
dard organization that
we recommend for doc-
umenting views and
information beyond
views. Chapter 7 contains
a standard organization
for the documentation
of a software interface.

Take any long explana-
tions of figures that are
in the main text and
move these to the fig-
ures’ captions. In-text
explanations would
serve first-time readers
well, but putting expla-
nations in captions will
serve second-time
readers better: When
they see a figure they’re
looking for they won’t
have to go search the
text for its explanation.

—Instructions to the
editors of this book,
explaining one way in
which we tried to
organize the book for
ease of reference

44 ■ Prologue: Software Architectures and Documentation

an index, a glossary, and an acronym list are all good ways
to help readers look up specific information.

2. Don’t leave any section blank; mark as “TBD” what you don’t yet
know or “NA” what you know is not applicable. Many times, we
can’t fill in a document completely because we don’t yet
know the information, or because decisions have not been
made, or because we didn’t yet have time to do it. In that
case, mark the document accordingly (for example, “TBD”
or “To Do”). Templates are by nature generic and hence
comprehensive. If a given section of the template does not
apply for the document you’re creating, mark it as “NA.” If
the section is blank, the reader will wonder whether the
information is coming later or whether it is indeed sup-
posed to be blank. Thus this advice is related to the rule
about avoiding ambiguity.

Rule 5: Record Rationale

Architecture is the result of making a set of important design
decisions, and architecture documentation records the out-
comes of those decisions. For the most important decisions,
you should record why you made them the way you did. You
should also record the important or most likely alternatives
you rejected and state why. Later, when those decisions come
under scrutiny or pressure to change, you will find yourself
revisiting the same arguments and wondering why you didn’t
take another path. Recording your rationale will save you enor-
mous time in the long run, although it requires discipline to
record your rationale in the heat of the moment.

Of course, not every single design decision should have the
rationale captured in the architecture documentation. If a
design decision is key to achieve a quality requirement of the
system, its rationale is probably worth capturing. If a design
decision required a long meeting with stakeholders, that’s a
good decision to capture. If you conducted technical experi-
ments and studies or created prototypes to evaluate design
alternatives, the conclusions of this effort should be captured
as rationale for the chosen alternative. Keep in mind that one
week, one month, or one year from now, you may not remem-
ber why you did things that way, and other people will not
know either.

Rule 6: Keep Documentation Current but Not Too Current

Documentation that is incomplete or out of date does not
reflect truth, does not obey its own rules for form and internal
consistency, and is not used. Documentation that is kept cur-
rent and accurate is used. Why? Because questions about the

Don’t leave sections
blank. Mark them as
“not applicable” or “to
be determined,” as
appropriate. Better:
“Not applicable
because [reason]” and
“To be determined by
[date or milestone].”

“Well, it’s an idea, and
even a bad idea is better
than none,” said Master
Li. “Error can point the
way to truth, while
empty-headedness can
only lead to more
empty-headedness or
to a career in politics.”

—Barry Hughart, Bridge
of Birds (1984)

Section 6.5 discusses
the documentation of
rationale.

P.6 Summary Checklist ■ 45

software can be most easily and most efficiently answered by
referring to the appropriate document. Documentation that is
somehow inadequate to answer the question needs to be fixed.
Updating it and then referring the questioner to it will deliver
a strong message that the documentation is the final, authori-
tative source for information.

During the design process, on the other hand, decisions are
made and reconsidered with great frequency. Revising docu-
mentation to reflect decisions that will not persist is an unnec-
essary expense.

Your development plan should specify particular points at
which the documentation is brought up to date or the process
for keeping the documentation current. For example, the end
of each iteration or sprint, or each incremental release, could
be associated with providing revised documentation. Every
design decision should not be recorded and distributed the
instant it is made; rather, the document should be subject to
version control and have a release strategy, just as every other
artifact does.

Rule 7: Review Documentation for Fitness of Purpose

Only the intended users of a document will be able to tell you
whether it contains the right information presented in the
right way. Enlist their aid. Before a document is released, have
it reviewed by representatives of the community or communi-
ties for which it was written.

P.6 Summary Checklist
• The goal of documenting an architecture is to write it down

so that others can successfully use it, maintain it, and build
a system from it.

• Documentation exists to further architecture’s uses as a
means of education, as a vehicle for communication among
stakeholders, and as the basis for analysis.

• Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

• Documentation should pay for itself by making develop-
ment activities less costly.

• Module styles help architects think about their software as a
set of implementation units. C&C views help architects
think about their software as a set of elements that have
runtime behavior and interactions. Allocation views help
architects think about how their software relates to the non-
software structures in its environment.

Even with the best
intentions, sometimes
budget and schedule
preclude conscientious
updating of an architec-
ture document as the
system undergoes
change. In that case, as
happens all too often,
the code becomes the
final source of authority.
Try to use the formula in
Section P.2.4 to justify
maintaining the docu-
ment by making a case
that doing so is worth
the investment. If that
fails, then at least mark
the sections of the doc-
ument that are out of
date so that readers can
still have confidence in
the remainder.

Chapter 11 covers
reviewing architecture
documents.

46 ■ Prologue: Software Architectures and Documentation

• An architecture style is a specialization of elements and rela-
tions, together with a set of constraints on how they can be
used. A style defines a family of architectures that satisfy the
constraints.

• Some styles are applicable in every software system. Other
styles occur only in systems in which they were explicitly cho-
sen and designed in by the architect.

• Follow the seven rules for sound documentation.

1. Write documentation from the point of view of the
reader, not the writer.

2. Avoid unnecessary repetition.

3. Avoid ambiguity. Always explain your notation.

4. Use a standard organization.

5. Record rationale.

6. Keep documentation current but not too current.

7. Review documentation for fitness of purpose.

P.7 Discussion Questions
1. Think of a technical document that you remember as being

exceptionally useful. What made it so?

2. Think of a technical document that you remember as being
dreadful. What made it so?

3. List several architectural aspects of a system you’re familiar
with, and state why they are. List several aspects that are not
architectural, and state why they are not. List several
aspects that are “on the cusp,” and make a compelling argu-
ment for putting each into “architectural” or “nonarchitec-
tural” categories.

4. If you visit Seoul, Korea, you might see the following sign
presiding over one of the busy downtown thoroughfares:

1

2

3

4

5

P.8 For Further Reading ■ 47

What does it mean? Is the information this sign conveys
structural, behavioral, or both? What are the elements in
this system? Are they more like modules or like compo-
nents? What qualities about the notation make this sign
understandable or not understandable? Does the sign con-
vey a dynamic architecture, or dynamic behavior within a
static architecture? Who are the stakeholders of this sign?
What quality attributes is it attempting to achieve? How
would you validate it, to assure yourself that it was satisfying
its requirements?

5. How much of a project’s budget would you devote to soft-
ware architecture documentation? Why? How would you
measure the cost and the benefit?

P.8 For Further Reading
The full treatment of software architecture—how to build one,
how to evaluate one to make sure it’s a good one, how to
recover one from a jumble of legacy code, and how to drive a
development effort once you have one—is beyond the scope of
this book. However, general books on software architecture are
plentiful. Several authors provide good coverage: Bass, Clem-
ents, and Kazman (2003); Hofmeister, Nord, and Soni (2000);
Shaw and Garlan (1996); Bosch (2000); and Gorton (2006).
Also, Jeff Garland and Richard Anthony’s Large-Scale Software
Architecture: A Practical Guide Using UML is a good resource
(Garland and Anthony 2003).

The Software Engineering Institute’s software architecture
Web page—at www.sei.cmu.edu/architecture—provides a wide
variety of software architecture resources and links, including
a broad collection of definitions of the term (SEI 2010).

One of the goals of documentation is to provide sufficient
information so that an architecture can be analyzed for fitness
of purpose. For more about analysis and evaluation of software
architectures, see the book by Clements, Kazman, and Klein
(2002).

The seven rules of sound documentation are adapted from
a paper by Parnas and Clements (1986), which also espouses a
philosophy directly relevant to this book. That paper holds
that although system design is almost always subject to errors,
false starts, and resource-constrained compromises, systems
should be documented as though they were the product of an
idealized, step-by-step, smoothly executed design process. That
is the documentation that will be the most helpful in the long
run. This book is consistent with that philosophy, in that it lays
out what the end state of your documentation should be.

www.sei.cmu.edu/architecture

48 ■ Prologue: Software Architectures and Documentation

If you want a deeper appreciation of the field of architecture
and its roots, then diving into some of the early papers will be
worth your time:

David Parnas (1974) first made the observation that software
can be described by many structures, not just one. This insight
led directly to the concept of views that we use today. Architec-
ture views in general, and “4+1 views” in particular, are a fun-
damental aspect of the Rational (now IBM Rational) Unified
Process for object-oriented software (Kruchten 1995).

An early paper on software architecture that tied us to build-
ing architecture and our “architecture styles” to the architec-
ture styles of buildings is by Perry and Wolf (1992).

A tour de force in style comparison is found in the paper by
Shaw (1995), in which the author examines 11 different previ-
ously published solutions to the automobile cruise-control
problem and compares each solution through the lens of
architecture style. Chapter 3 of the book by Shaw and Garlan
(1996) continues the theme. A number of example problems
are presented. For each one, several architecture solutions are
presented, each based on the choice of a different style. These
side-by-side comparisons not only reveal qualities of the styles
themselves, but also richly illustrate the overall concept.

For encyclopedic catalogs of architecture patterns, see the
Pattern-Oriented Software Architecture series of books by the fol-
lowing authors: Buschmann et al. (1996); Schmidt et al.
(2000); Kircher and Jain (2004); and Buschmann, Henney,
and Schmidt (2007a and 2007b). Also see Martin Fowler’s
book Patterns of Enterprise Application Architecture (2002).

Smith and Williams (2002) include three chapters of princi-
ples and guidance for architecting systems in which perfor-
mance is an overriding concern.

517

Index

Note: Italicized page locators indicate figures/
tables.

4+1 approach, 404, 406–408, 408, 429

A
A-7E avionics system, 71–73, 72, 96, 96, 122
Abstract component in AADL, 474
Abstract machines, 99

layered style, 90
Abstract module, 83, 84
Abstractions for connectors, 137–138, 138
Access dependencies in layered style, 95
Accuracy as documentation need, 323
Acme language, 153
Acronyms

in directories, 355
list of, 487–489
overuse, 37

ACSPP (architecture-centered software
project planning), 397

Active design reviews, 380–382
Active Reviews for Intermediate Designs

(ARID), 396
Activity diagrams, 450, 450

behavior documentation, 300–302, 301
SysML, 471, 471

Actors
element use by, 262–263
use case diagrams, 458

Ada packages, 30
Adventure Builder system

activity diagram, 301
C&C view, 230
decomposition style example, 69

interface documentation, 285
multi-tiered system, 184, 184
SOA view, 172, 173
state machine diagrams, 305
uses style example, 79

Advice for question sets, 384
Affected artifacts, 241
Aggregation relations in data model style,

111, 113
Agile Alliance, 429–430
Agile environment

overview, 414–415, 415
Views and Beyond approach in, 20, 415–

418, 418
Akerman, Art, 239, 246, 247, 260, 513
Alexander, Christopher, 34, 338, 355
All-view (AV) in DoDAF, 419–421, 420
Allen, R. J., 153, 287
Allocated-to relations

allocation style, 191
deployment style, 192, 196
install style, 199
SysML module view, 470
work assignment style, 203

Allocation styles, 29, 50
deployment. See Deployment style
elements and relations, 191
for end users, 322, 322
install, 198–202, 201
miscellaneous, 206–209
overview, 189–191, 190
work assignment, 202–205, 204

Allocation views, 29, 50
analysts, 322–324, 324
application builders, 320–321, 321

518 ■ Index

Allocation views (continued)
customers, 321–322, 321
designers of other systems, 319–320, 319
development teams, 317–318, 317
DoDAF, 426
future architects, 325–326, 325
infrastructure support personnel, 324–325,

324
maintainers, 320, 320
new stakeholders, 325, 325
project managers, 316–317, 317
SysML, 470–471, 470
testers and integrators, 318–319, 318
UML, 443–447, 443–447

Allowed-to-use relations
layered style, 87–90, 92–93, 92
module views, 57
UML module views, 434
uses style, 79

Alternative frames in sequence diagrams, 298
Alternatives in architectural decisions, 240, 242
Ambiguity

architectural documentation, 40–43
UML, 447–449, 448–449

Ambler, Scott W., 117
Analysis

architecture document reviews, 380, 395
module views for, 59–60

Analysis role, layered style for, 91
Analysts

architecture documentation for, 14
documentation needs, 322–324, 324
interface documentation for, 279

Andres, Cynthia, 414, 430
Angle brackets (<< >>), 433
Anonymous instances, 438
ANSI/IEEE Std 1471-2000. See ISO/IEC 42010
Anticrises in architectural decisions, 248
Application builders’ documentation needs,

320–321, 321
Application programming interfaces (APIs), 280
Application-specific types in C&C views, 130
Approved status for architectural decisions, 249
Araujo, I., 247
ArchE tool, 85

combined views, 255–256
generalization style example, 85, 86
publish-subscribe style, 177–178, 177

Architects
allocation styles for, 325–326, 325
architecture documentation for, 15

Architectural decisions documentation
alternatives, 242
choices, 242–244
ontology, 247–250, 248–249
payback, 245–246
purpose, 239
templates, 239–242

Architectural frameworks in ISO/IEC 42010,
404

Architectural knowledge field, 247
Architecture Analysis and Design Language

(AADL), 153, 197, 305, 312
behavior documentation, 482–484, 483
C&C view, 478–481, 479, 481
deployment view, 481–482, 482
interface documentation, 484
introduction, 473–474, 475
module style, 475–477, 476–478
summary, 484–485

Architecture cartoons, 339
Architecture-centered software project plan-

ning (ACSPP), 397
Architecture description languages (ADLs)

C&C views, 139
description, 11
notations, 53

Architecture document reviews, 375
active design reviews, 380–382
example construction and conducting,

393–395
question sets, 382–393, 384
steps, 376–380

Architecture documentation
for changing architectures, 20–21
as decision making, 246–247, 247
economics, 18–19
packages, 362–369
purpose, 9–10
and quality attributes, 17–18
seven rules, 36-44
SysML, 466
terms, 10–12
uses and audiences, 12–16
beyond views, 351, 351
Views and Beyond approach, 19–20

Architecture Expert (ArchE) tool
combined views, 255–256
generalization style example, 85, 86
publish-subscribe style, 177–178, 177

Architecture overview presentations, 364–365
Architecture patterns, 32–36

Index ■ 519

Architecture perspectives, 410–411
Architecture styles. See Styles
Architecture Tradeoff Analysis Method

(ATAM), 378, 394
Architecture views. See Views
Architectures, product-line, 234
Arguments in architectural decision tem-

plates, 240, 242
Army Training Information Architecture-

Migrated (ATIA-M)
decomposition style example, 69, 70
uses style example, 79, 80

Arnold, Ken, 187
Arrows

C&C diagrams, 440, 447–448
confusion from, 41–43
UML diagrams, 300–302, 301, 440

Artifacts
architectural decision templates, 241
documents as, 11
UML, 444, 444

Aspect-oriented programming (AOP), 104,
107–108, 108–109

Aspect-oriented software development
(AOSD) movement, 108

AspectJ language, 107, 122
Aspects style

elements, relations, and properties, 104–105
examples, 106, 107
notations, 105–106, 106
overview, 104
purpose, 105
relation to other styles, 106
UML module views, 434–435

Aspects views, combined, 255
Associations

UML, 448, 448
view-to-view, 251, 353–354, 354

Assumptions in architectural decision tem-
plates, 240–242

Asynchronous calls, 42
Asynchronous communication

behavior documentation, 292
SOA style, 171

ATAM (Architecture Tradeoff Analysis
Method), 378, 394

ATM banking system
AOP example, 107–108, 108–109
client-server example, 165–166, 165

Attachment relations
C&C views, 126–127, 131–132

client-server style, 163
peer-to-peer style, 167
pipe-and-filter style, 158
publish-subscribe style, 174
shared-data style, 179
SOA style, 171
UML connectors, 142–143, 143

Attack resistance in deployment style, 195
Attribute-Driven Design (ADD) method,

345–347
Audiences for architecture documentation,

12–16
Authors in architectural decisions, 248–249
Availability

deployment style, 195
documentation needs, 323

Available options for variation points, 237
Avritzer, A., 213, 214

B
Bach, Maurice, 98
Bachmann, Felix, 373, 509
Background threads, 478
Backgrounds for presentations, 369–370
Backup modes in AADL, 482
Balconies, 34
Ban decisions in architectural decisions, 248
Bandwidth in deployment style, 194
Barker, Richard, 116
Bass, Len, 5, 32, 47, 71, 122, 510
Batch sequential style, 157
Beck, Kent, 414, 430
Behavior Annex standard in AAL, 483
Behavior documentation, 289–290

AADL, 482–484, 483
communication types, 291–293, 292
DoDAF, 426
location, 306
notation, 293–306, 295–301, 304–305
purpose, 306–308
questions to answer, 290–291
SysML, 471, 471
UML, 449–459, 449–459
view documentation, 340

Behavior Hiding Module in A-7E avionics sys-
tem, 71, 72

Bell LaPadula framework, 482–483
Bianco, Phil, 187, 287
Big design up front (BDUF), 415
Binding time of options for variation points,

237

520 ■ Index

Black-box testers, documentation needs,
318–319, 319

Blank sections in documentation, 44
Bloch, Joshua, 286
Boehm, B., 428
Booch, Grady, 4, 122, 311
Boolean algebra, 280
Box-and-line diagrams, 40
Bridging, layer, 88
Bridging elements, 26, 259
Britton, Kathryn Heninger, 14
Brooks, Frederick P., Jr., 40, 81, 147
Build-versus-buy decisions, 66
Buschmann, Frank, 33–34, 48, 187, 356
Buses in AADL, 474
Business managers, architecture documenta-

tion for, 15
Business Process Execution Language

(BPEL) standard
notations, 302–303
obtaining, 311
orchestration server for, 170

Business Process Modeling Notation
(BPMN), 303

C
C&C styles. See Component-and-connector

(C&C) styles
C&C views. See Component-and-connector

(C&C) views
CAFCR model, 25
Cai, Y., 213, 214
Call-return connectors

peer-to-peer style, 167
SOA style, 170–171

Call-return styles, 156, 157, 161–162
client-server, 162–166
peer-to-peer, 166–169, 169
service-oriented architecture, 169–172, 172

Callbacks in layered architecture, 100
Calls procedure in C&C view, 150
Candidate view lists, 330–331
Carroll, Lewis, 352
Cataldo, M., 210
Categories

architectural decisions, 249
architecture styles, 29, 49–50

Challenged status for architectural decisions,
249

Chen, Peter, 116, 118, 122

Child modules in generalization style, 82
Child view packets in context diagrams, 349
Chinese Wall framework, 483
Class diagrams in UML, 436–438, 437, 447
Class inheritance in generalization style, 84
Clements, Paul, 5, 32, 47, 71, 122, 234, 320,

396, 509
Client-server connectors in C&C views, 124
Client-server style

elements, relations, and properties, 162–164
examples, 164–166, 165
overview, 162
purpose, 163–164
relation to other styles, 164

Cockburn, Alistair, 311, 414, 416, 430
Color in layered style, 95
Combining primary presentations and con-

text diagrams, 347–348, 348
Combining views, 250–251

associations between views, 251
considerations, 254–255, 328–329
examples, 255–257, 256–258
process, 252–254, 252–253, 331–332

Comment boxes, 225
Commercial off-the-shelf (COTS) compo-

nents, 330
Common Language Runtime (CLR), 99
Communicating processes, 182–183
Communication

architectural decision payback, 246
behavior documentation, 291–293, 292
layered style for, 91
module views for, 60
SOA style, 171

Communication capacity matrices (CCMs),
211–212

Communication diagrams
behavior documentation, 299–300, 300
UML, 453–454, 454

Competence-center style, 208
Complex connectors in C&C views, 135–136,

135
Complexity in module relations, 210–212
Component-and-connector (C&C) styles, 29, 50

communicating processes, 182–183
crosscutting issues, 182–185, 184
data flow. See Data flow styles
dynamic creation and destruction, 184
introduction, 155–157, 157
repository, 178–182, 181
tiers, 183–184, 184

Index ■ 521

Component-and-connector (C&C) views
AADL, 478–481, 479, 481
analysts, 323–324, 324
application builders, 321, 321
combined, 255
connectors, 135–138, 135
customers, 321, 321
data flow and control flow models, 146–148
designers of other systems, 319–320, 319
development teams, 318, 318
DoDAF, 425–426
elements, 126–129
end users, 322, 322
future architects, 325–326, 325
infrastructure support personnel, 324–325,

324
maintainers, 320, 320
new stakeholders, 325, 325
notations, 132, 133, 139–146, 140–145
overview, 123–126, 125
primary presentations, 347
properties, 126, 133–134, 134
purpose, 127, 136–137
relation to other kinds of views, 148–150,

149
relations, 126, 131–132, 133
style specialization, 221–222
SysML, 469, 469
testers and integrators, 318, 319
types and instances, 129–131
UML, 438–443, 439–442, 460

Components, 29-32
C&C views, 123, 127–128
in multiple views, 349
replicating, 233, 235–236
UML, 139–140
UML for C&C views, 438–443, 439–442

Composite state in state machine diagrams,
304, 457

Comprehensive models
behavior, 294
notations, 303–306, 304–305

Comprises relations in architectural deci-
sions, 250

Computational models, 155–157
client-server style, 163
peer-to-peer style, 167
pipe-and-filter style, 158
publish-subscribe style, 174
shared-data style, 179
SOA style, 172

Concept phase in architecture document
reviews, 376

Concepts of operations (CONOPS) in
DoDAF, 420

Conceptual data model, 110, 110
Concurrency

activity diagrams, 301–302
C&C views, 134

Concurrency views for viewpoint sets, 409,
412–413

Conditional branching in activity diagrams, 302
Conditions of applicability for variation

points, 237
Configuration management, 368
Configuration parameters for interfaces, 276
Conflicts With relations in architectural deci-

sions, 250
Conformance checkers, architecture docu-

mentation for, 15
Conformance points, 389
Connecting elements, 4–5
Connectors

abstractions, 137–138, 137
C&C views, 123, 128–129, 135–138, 135
publish-subscribe style, 174
shared-data style, 179
SOA style, 170–171
UML, 142–143, 438–443, 439–442

Consistency in presentations, 370
Constants in interfaces, 274
Constrains relations in architectural deci-

sions, 250
Constraints

allocation styles, 191
aspects style, 105
behavior documentation, 293
C&C views, 126
client-server style, 163
data model style, 111
decomposition style, 67
deployment style, 192
generalization style, 83
install style, 199
layered style, 89
model, 172
module views, 56
peer-to-peer style, 167
pipe-and-filter style, 158
publish-subscribe style, 175
sequence diagrams, 298
shared-data style, 179

522 ■ Index

Constraints (continued)
style guides, 51
uses style, 75
work assignment style, 203

Construction, module views for, 59
Containment relations in install style, 199
Context diagrams, 225–226

child view packets, 349
combining primary presentations with,

347–348, 348
content, 228–229
notations, 229–231, 230–231
supporting documentation, 229
view documentation, 340–343
vocabulary of view for, 226–228, 226–228

Context views, 341–343
Control flow models in C&C views, 146–148
Control information in documentation, 351–

356, 354–355
Conveying risk, architectural decisions for,

246
Conway, M. E., 209, 214
Coordination views, 209–213
Copy-migrates-to relations in deployment

style, 192–193
Costs

architectural decisions, 249
architecture documentation, 18–19
combined views, 255

CPU properties in deployment style, 193
Creates, reads, updates, or deletes data

(CRUD) matrices, 118
Cripps, P., 360
Criticality in question sets, 384
Crosscuts relations

aspects style, 104–105
module views, 57, 435, 435

Crow’s foot ERD notation, 116, 116
Crystal Clear approach, 414
CSP language, 304–305
Currency in architectural documentation,

44–45
Customers, 15, 321–322, 321

D
Dahl, Ole-Johan, 122
Dashofy, E. M., 5
Data accessor component in shared-data

style, 179
Data-centric approach in DoDAF, 427

Data communication in behavior documen-
tation, 292

Data elements, 4
Data entities in data model style, 111

relationships, 57, 62, 109, 110, 111, 116,
117, 118, 120

Data flow diagrams, 38–43
Data flow models in C&C views, 146–148
Data flow styles, 156–157, 157

call-return, 161–162
client-server, 162–166
event-based, 172–178, 173, 177
peer-to-peer, 166–169, 169
pipe-and-filter, 158–161, 161
service-oriented architecture, 169–172,

172
Data in AADL, 474
Data integrity, 115
Data model style

elements, relations, and properties, 111–
113, 113–114

entities, 118–119
examples, 118, 119
notations, 116–117, 116–117
overview, 109–111, 110–111
purpose, 111, 114–115
relationships, 57, 62, 109, 110, 111, 116,

117, 118, 120
relations to other styles, 117–118
UML module views, 435–436, 436

Data ports in AADL, 479–480
Data reading and writing connectors in

shared-data style, 179
Data stores style, 207
Data transfer objects (DTOs), 98
Data Types and Constants section in interface

documentation, 283
Data types in interfaces, 274, 283
Database access connectors in C&C views, 124
Database administrators, architecture docu-

mentation for, 15
Database management systems (DBMSs), 178
Date, C. J., 113, 122
de Boer, R. C., 260
de Mille, Agnes, 25
Debugging, uses style for, 82
Decided status in architectural decisions, 249
Decision making, architecting as, 246–247, 247
Decisions in architectural templates, 240
Decomposition refinement, 218–219, 218–219
Decomposition relation, 66

Index ■ 523

Decomposition style, 65
elements, relations, and properties, 66–67,

67
examples, 69–73, 70
notations, 67–68, 68
overview, 65–66
purpose, 67
relation to other styles, 68–69
UML module views, 433, 433

Decomposition views in combined views,
255–256, 256

Denial of service, 323
Department of Defense Architecture Frame-

work (DoDAF), 377, 404, 419
documentation strategies, 426
overview, 419–420, 420
and software architecture, 421
version 2.0, 427, 427
and Views and Beyond, 421–425

Dependability in client-server style, 164
Dependencies

in layered style, 95
UML module views, 433–434, 434
variation point options, 237

Dependency arrows in C&C diagrams, 447–448
Dependency structure matrices (DSMs)

layered style, 101–102, 102–103
module views, 62
uses style, 77, 78

Depends-on relations
module views, 57, 60, 61
modules, 49
SysML module view, 468
uses, 74–75, 81

Depends on the correctness of relation in
architecture views, 24

Deployers, architecture documentation for, 15
Deployment style

elements, relations, and properties, 192–
194

notation, 196–198, 196
overview, 191–192
purpose, 194–195
relation to other styles, 197
UML allocation view, 443–445, 443–445

Deployment views, 22
4+1 approach, 407
AADL, 481–482, 482
combined views, 255, 257, 257–258
Rozanski and Woods viewpoint sets, 409,

412–413

Deprecated methods, 273
DeRemer, F., 64
Descriptions, architecture, 11
Descriptive architecture documentation, 12
Descriptive completeness, 222–225, 223–225
Design approaches, documenting, 356
Design idioms, 33
Design issues for interfaces, 277
Design reviews, active, 380–382
Design Structure System, 101
Design vs. architecture, 6–9
Designers, architecture documentation for, 15
Designers of other systems, documentation

needs, 319–320, 319
Detailed design, 7–8
Details in architecture document reviews,

379, 394–395
Developers, interface documentation for,

278–279
Development activities in behavior documen-

tation, 306–307
Development phase in architecture docu-

ment reviews, 377
Development teams, documentation needs,

317–318, 318
Development views in viewpoint sets, 409,

412–413
Devices in AADL, 474
Diacrises in architectural decisions, 248
Diagrams

activity. See Activity diagrams
class, 436–438, 437, 447
communication, 299–300, 300, 453–454, 454
context. See Context diagrams
ERDs, 62, 116, 116
interaction overview, 455–456, 456
interfaces, 268–270, 269–270
limitations, 38–43
sequence. See Sequence diagrams
state machine, 303–304, 304, 457, 458
timing, 302, 454, 455
use case, 458, 459

Dickinson, Emily, 375
Dijkstra, Edsger W., 36–37, 121, 242
Directional flow in AADL, 480
Directional relationships, 41–43
Directories, 355–356
Disk capacity in deployment style, 194
Distributed computing applications, 168
Document control information, 351–356,

354–355

524 ■ Index

Documentation beyond views, 350–351
behavior documentation in rationale, 306
standard organization for, 351–356, 351,

354–355
variations, 356–357

Documentation capacity matrices (DCMs),
211–212

Documentation overview, 9–12
Documentation packages. See Packages
Documentation roadmap, 352
DoDAF. See Department of Defense Architec-

ture Framework (DoDAF)
Downstream filters in pipe-and-filter style, 159
Drawing tools in UML, 462
Dynamic architecture, 234–235
Dynamic creation and destruction in C&C

styles, 184
Dynamism and dynamic architectures, 234–

235

E
e-Business Reference Architecture Frame-

work, 260
E-mail communication in behavior docu-

mentation, 292
Ease of reference, organization for, 43
Eclipse UI event manager, 177
ECMA toaster model, 121, 121
Economics in architecture documentation,

18–19
Education, architecture as, 12
Eeles, Peter, 360–361, 361, 513
Element catalogs

behavior documentation, 306
view documentation, 340
whole architecture, 356–357

Element developers, interface documenta-
tion for, 278

Element-level behavior documentation in
DoDAF, 426

Element properties in styles, 52–53
Element substitution, 233, 235
Elements, 4–5

allocation styles, 191
aspects style, 104–105
bridging, 26, 259
C&C views, 126–129
client-server style, 162–163
data model style, 111–113
decomposition style, 66–67, 67

deployment style, 192
generalization style, 83
hierarchical, 8
install style, 199–200
interfaces, 262–263
layered style, 89
module views, 56–57
peer-to-peer style, 166–167
pipe-and-filter style, 158–159
publish-subscribe style, 174–175
shared-data style, 179
SOA style, 169–171
style guides, 50
tools for, 371
uses style, 75
in variability, 233
variation points, 236
work assignment style, 202–203

Ellipses (...), 224
Emery, David, 375, 400, 513
Emphasis in presentations, 369
Enables relations in architectural decisions,

250
Encapsulation in module views, 58
End users, documentation needs, 322, 322
Enterprise Architect tool, 472
Enterprise service bus (ESB), 170
Entities in data model style, 118–119
Entity-relationship diagrams (ERDs)

data model style, 116, 116
module views, 62

Entry actions in state machine diagrams, 457
Environmental elements

allocation styles, 190–191
allocation views, 443, 470
deployment style, 192, 196, 443
install style, 199–200, 445
work assignment style, 203, 446

EOSDIS Core System (ECS)
uses style example, 79, 80
view selection example, 329–332
work assignment views, 204, 204

Error handling
in interface documentation, 283–284
interfaces, 273–276, 276
terms, 277–278

Error Modeling Annex in AADL, 473, 483, 484
Error state machine in AADL, 483
Evaluators, architecture documentation for, 15
Event-based styles, 156, 157, 172–178, 173, 177
Event ports in AADL, 479

Index ■ 525

Execution-migrates-to relations in deploy-
ment style, 192–193

Executive decisions in architectural deci-
sions, 248

Existence decisions in architectural deci-
sions, 248

Exit actions in state machine diagrams, 457
Expected answers in question sets, 383
Exploratory robot, 73, 74
Extends relation

AADL module style, 475
use case diagrams, 459, 459

Extension, generalization style for, 84
External memory from architectural deci-

sions, 245
Extreme Programming, 414

F
Failover Request/Reply connectors, 144
Fairbanks, George, 289, 513–514
Farenhorst, Rik, 246, 260, 514
Fault tolerance

AADL, 482
deployment style, 194

Feature-Driven Development, 414
Feiler, Peter H., 312, 473–474, 476, 483, 514
Felsing, John, 414, 430
Filters in pipe-and-filter style, 158–159
Final state in state machine diagrams, 457
Finkelstein, Clive, 116
Fitness of purpose

architectural documentation, 44–45
document reviews for, 375

Flight Operations Segment (FOS) in ECS
module, 204

Flint, Emily, 375
Flow charts in activity diagrams, 450
Flurry, G., 260
Focus in behavior documentation, 291
Forbids relations in architectural decisions, 250
Fork nodes in activity diagrams, 301
Formal notations

architecture views, 53
C&C views, 139
deployment style, 197

Fowler, Martin, 48, 122, 311
Frames in UML, 451, 452
Frameworks in variability, 233, 237
Freeman, Eric, 187
FSP language, 304–305

Functional views in viewpoint sets, 408, 411–
413

Functionality in C&C views, 133
Future architects, documentation needs,

325–326, 325

G
Gamma, E., 23, 34, 178
Garlan, David, 4, 153, 187, 287, 510
Gelernter, D., 187
Generalization concept in AADL module

style, 475
Generalization/specialization relations in

data model style, 111, 113
Generalization style

elements, relations, and properties, 83–84
examples, 85–87, 86
notations, 84, 85
overview, 82–83
purpose, 83–84
relation to other styles, 84
UML module views, 434

Generalization views, combined, 255–256, 256
Generalization vs. inheritance, 120
Generators in variability, 233
Gives computational work to relation, 24
Global policies, 349–350
Glossary of terms

in documentation beyond views, 355
list, 491–496

Gluch, David P., 312
Gnutella peer-to-peer networks, 168–169, 169
Gorton, Ian, 220
Graphical user interfaces in publish-

subscribe style, 174
Groups in architectural decision templates, 240
Guard constraints on transitions, 457
Guillemets (<< >>), 433

H
Hansson, Jörgen, 483
Hardware components in AADL, 474
Hardware Hiding Module in A-7E avionics

system, 71, 72
Harel, David, 303, 311
Harvey, Miles, 350
Henderson, Steuart, 9
Henney, Kevlin, 48, 187
Herbsleb, James D., 209–213, 514
Hierarchical elements, 8

526 ■ Index

High Level Architecture (HLA), 187
Hilliard, Rich, 375, 400, 514
History in architectural decisions, 248–249
History state in state machine diagrams, 457
Hoare, C. A. R., 40
Hofmeister, Christine, 24, 64, 214, 336
Hohpe, Gregor, 187
Hudak, John, 312
Hughart, Barry, 44
Humphrey, Watts S., 379
Hupfer, Susanne, 187
Hybrid styles in combined views, 253
Hybrid threads, 478
Hyman, Isabelle, 399
Hypertext, 365–366
Hypertext Markup Language (HTML), 164–

165
Hypertext Transfer Protocol (HTTP), 165

I
Idea status in architectural decisions, 249
IDEF1X notation, 116
Identification and overview information in

ISO/IEC 42010, 405
Identifying relation in data model style, 113
Identity in interfaces, 271
Implementation constraints in module views,

59
Implementation information property, 58–59
Implementation refinement, 219, 220
Implementation style, 207

UML allocation view, 445–446, 446
Implementation views

4+1 approach, 406–407
combined views, 254
use by infrastructure support personnel, 324

Implementers, architecture documentation
for, 15

Implications in architectural decision tem-
plates, 240–241

Implicit invocation in publish-subscribe style,
175

Include relations in use case diagrams, 459, 459
Incremental development, uses style for, 81–82
Indexes in directories, 355
Informal notations

architecture views, 53
C&C views, 139
context diagrams, 229–230, 230
decomposition style, 67–68
deployment style, 196

install style, 200, 201
layered style, 92–95, 92–95
module views, 60, 61
uses style, 76
work assignment style, 203

Information Engineering approach, 116
Information systems, data model style for, 115
Information views in viewpoint sets, 409,

412–413
Infrastructure support personnel, documen-

tation needs, 324–325, 324
Inheritance

vs. generalization, 120
generalization style, 84
as a variation mechanism, 233

Initial state in state machine diagrams, 457
Install style

elements, relations, and properties, 199–200
notations, 200, 201
overview, 198–199
purpose, 200
relation to other styles, 202
UML allocation view, 445–446, 446

Install views in combined views, 255
Instances

AADL, 480, 481
of components and connectors, 129–131
UML, 448
UML C&C views, 438, 439

Integration testing, uses style for, 82
Integrators

architecture documentation for, 16
documentation needs, 318–319, 319
interface documentation for, 278–279

Interaction overview diagrams in UML, 455–
456, 456

Interactions of connectors, 129
Interface Definition Language (IDL), 279
Interface delegation in C&C views, 126, 132
Interface documentation, 261

AADL, 484
behavior documentation in, 306
data types and constants, 274
diagrams, 268–270, 269–270
error handling, 273–276, 276, 283–284
examples, 281–285
extended by generalization, 263
guidelines, 266–267
identity, 271, 281
multiple, 270
overview, 261–263, 265–268

Index ■ 527

provided vs. required, 264–265
quality attributes, 276–277, 284
resources, 271–274, 279
stakeholders, 278–279
standard organization, 271–277, 271, 276
syntactic information, 279–280
terms, 280–281
UML, 460–461, 460–461
variability, 276

Interface inheritance in generalization style, 84
Interface realization in generalization style,

83–84
Interfaces

layered style, 90–91
SysML, 472, 472
view documentation, 340

International Council on Systems Engineer-
ing (INCOSE), 465

Invokes-services roles in C&C views, 128
Is-a relations

generalization style, 82
module views, 57
modules, 49
SysML module view, 468
UML module views, 434

Is an Alternative To relations in architectural
decisions, 250

Is Bound To relations in architectural deci-
sions, 250

Is-part-of relations
A-7E avionics system, 71
architecture views, 24
decomposition style, 65–67
module views, 57, 60, 61
modules, 49
SysML module view, 468

Is Related To relations in architectural deci-
sions, 250

ISO/IEC 42010
overview, 400–404, 401, 403
question sets for, 391–393
Views and Beyond approach, 404, 405

Issues in architectural decision templates, 240
Iterations in Agile projects, 414
Ivers, James, 510

J
Jackson, Michael, 38, 260
Jacobson, Ivar, 4, 122, 187, 311
Jain, Prashant, 187

Jargon, 37
Java EE application, 98–99, 99
Java modules, ATIA server-side, 69, 70
Java Virtual Machine (JVM), 99
JavaScript Object Notation (JSON), 279
JavaServer Faces (JSF) action classes, 98–99
Jazayeri, Mehdi, 2
Jefferson, Thomas, 18
Johnson, Samuel, 36
Join nodes, activity diagrams, 301

K
Kazman, R., 5, 32, 47, 71, 122, 396
Kiczales, Gregor, 122
Kircher, Michael, 187
Klein, John, 333–335, 514
Klein, M., 47, 396
Knuth, Donald, 241
Koala language, 306
Komiya, S., 260
Kotermanski, Rick, 187
Kron, H. J., 64
Kruchten, Philippe, 24, 48, 221, 239, 515

4+1 approach, 360, 404, 406–408, 408, 429
architectural decisions, 247–249, 248–249,

260
Kylmäkoski, Roope, 336

L
Laddad, Ramnivas, 122
Lago, P., 247
Language of quality attributes, 17
Layer bridging, 88
Layer diagrams, 38–39
Layered process for combined views, 253
Layered style

calling higher layers, 100–101
Dependency Structure Matrix for, 101–

102, 102–103
elements, relations, and properties, 89–90
examples, 97–99, 97, 99
notations, 92–95, 92–95
overview, 87–89, 87–88
purpose, 89–91
relation to other styles, 96–97, 96
UML module views, 434, 435

Layered views, 404
combined views, 255
and portability, 22

Lewis, Grace, 287, 474

528 ■ Index

Life-cycle phases in architecture document
reviews, 376–377

Linda programming language, 187
Links in communication diagrams, 299–300,

300
Liskov, Barbara, 122
Little, Reed, 510
Local calls vs. remote calls, 42
Local change and variation, generalization

style for, 84
Local communication in behavior documen-

tation, 293
Logical data model, 110, 110
Logical views in 4+1 approach, 406
Lollipop/socket notation, 141, 141, 268, 269
Loop frames in sequence diagrams, 298

M
MagicDraw tool, 472
Mailing lists, publish-subscribe style for, 174
Maintainers

architecture documentation for, 16
documentation needs, 320, 320
interface documentation for, 278

Major design approaches, documenting, 356
Management information in module views, 59
Many-to-many associations in views, 251
Many-to-many relations in data model style,

111
Many-to-one associations, 251
Mapping

module and C&C views, 149
to requirements, 17, 357–362, 358, 361, 371
to source code units, 59
between views, 353–354, 354

Mars Climate Orbiter, 281
Mars exploratory robot, 73, 74
Martin, James, 116
McGregor, John D., 465, 515
Medvidovic, N., 5, 153
Memory for AADL, 474
Memory properties in deployment style, 193
Merge nodes in activity diagrams, 301–302
Merson, Paulo, 187, 287, 373, 511
Message sequence charts, 302
Messaging connectors in SOA style, 171
Meta-Model in AADL, 473
Microsoft .NET Pet Shop application, 118
Migrates-to relations in deployment style,

192–193
Migration triggers in deployment style, 194

Mode transitions in AADL, 482
Model-view-controller (MVC) pattern, 174
Modeling tools in UML, 462
Modifiability

documentation needs, 323
layered style, 98–99

Modula modules, 30
Modularization, 209–212
Module decomposition and layered style, 96,

96
Module interfaces in UML, 460
Module structure in architecture views, 24
Module styles, 29, 65

AADL, 475–477, 476–478
aspects, 104–108, 106–109
data model. See Data model style
decomposition. See Decomposition style
generalization. See Generalization style
layered. See Layered style
use. See Uses style

Module views
analysts, 323–324, 324
application builders, 321, 321
vs. C&C view, 148–149, 149
customers, 321, 321
designers of other systems, 319–320, 319
development teams, 318, 318
DoDAF, 426
elements, 56–57
end users, 322, 322
future architects, 325–326, 325
infrastructure support personnel, 324, 324
maintainers, 320, 320
new stakeholders, 325, 325
notations, 60–62, 61–62
overview, 55–56, 56
project managers, 317, 317
properties, 57–59, 58
purpose, 59–60
relation to other views, 63
relations, 57
subsystems, 73–74, 74
SysML, 468, 468
testers and integrators, 318, 319
UML, 433–436, 433–436

Modules, 29–32, 31
in multiple views, 349
styles, 49

Morale, uses relation for, 81
Multi-part primary presentations, 349
Multiple interfaces, 262–263, 270

Index ■ 529

N
Name property in module views, 57
Named frames in sequence diagrams, 297
Naming conventions in UML, 140
Natural language, 280
Navigable associations in UML, 440
Neighbors, J. M., 64
Nesting notation in decomposition style, 68
Nesting of states in state machine diagrams,

304
Network administrators, architecture docu-

mentation for, 16
New stakeholders, documentation needs,

325, 325
Nii, H. P., 187
Nonarchitectural design, 7
Nonexistence decisions in architectural deci-

sions, 248
Nonidentifying relations in data model style,

113
Nord, Robert, 24, 64, 214, 336, 511
Normalization in data model style, 113, 113–

114
Northrop, Linda, 234, 320
Notations

architecture views, 53
formal, 53
informal, 53
semiformal, 53

aspects style, 105–106, 106
behavior documentation, 293–306, 295–

301, 304–305
C&C views, 132, 133, 139–146, 140–145
comprehensive models, 303–306, 304–305
context diagrams, 229–231, 230–231
data model style, 116–117, 116–117
decomposition style, 67–68, 68
deployment style, 196–198, 196
explaining, 40–41
generalization style, 84, 85
install style, 200, 201
layered style, 92–95, 92–95
module views, 60–62, 61–62
style guides, 51
for traces, 295–303, 295–301
uses style, 76–77, 77–78
work assignment style, 203–204, 204

Notes in architectural decision templates,
241

Nygaard, Kristen, 122

O
Object Constraint Language (OCL), 460–461
Object Management Group (OMG), 465

AADL standards, 474
IDL standard, 279
OCL standard, 460
SysML standard, 465
UML specification, 122, 311, 433

Object-oriented designs, generalization style
for, 84

Object-relational impedance matching, 117
Object-relational mapping (ORM) tools, 117
Obsolesced status in architectural decisions,

250
Ockerbloom, J., 153, 287
O’Connell, Don, 419, 515
Ogilvy, David, 36
OMG. See Object Management Group

(OMG)
One-to-many associations in views, 251
One-to-many relations in data model style, 111
One-to-one relations, 111
Online documentation for packages, 365–366
Ontocrises in architectural decisions, 248
Ontology in architectural decisions, 247–250,

248–249
Open questions, 357
Open-source style, 208
Operational view (OV)

DoDAF, 419, 422
Rozanski and Woods viewpoint sets, 410, 413

Optional inclusion, 233, 236
Orchestration servers in SOA style, 170–171
Order Processing Center (OPC) component

in Adventure Builder, 173, 184, 230, 285
Ordering constraints in behavior documen-

tation, 293
OSATE tools, 485
OSGi framework, 121, 121
Overhead in layered style, 91
Overlays in combined views, 252–253
Overrides relations in architectural deci-

sions, 250
Overview presentations, 364–365

P
Packages

AADL module style, 475
architecture documentation, 349–350,

362–369

530 ■ Index

Packages (continued)
configuration management, 368
documentation beyond views, 350–357,

351, 354–355
mapping to requirements, 357–362, 358,

361
online documentation and hypertext, 365–

366
release strategy, 368–369
schemes, 362–364
tooling requirements, 370–372
UML, 61, 76, 77–78, 355, 433
wikis, 365–368

Pair programming, 414
Palmer, Stephen, 414, 430
Parameterization in variability, 233
Parent modules in generalization style, 82
Parnas, David L., 24, 30, 34, 47, 48, 104, 121,

122, 209, 286–287, 396
Partial results in error handling, 278
Pascal, Blaise, 37
Patterns, architectural

and styles, 32–36
and views, 343

Paulish, D., 213, 214, 397
Payback from architectural decisions, 245–246
Peer-to-peer style

elements, relations, and properties, 166–
167

examples, 168–169, 169
overview, 166
purpose, 167
relation to other styles, 168

Performance
C&C views, 133
client-server style, 164
deployment style, 194
documentation needs, 323

Pericrises in architectural decisions, 248
Perry, Dewayne, 4, 24, 33, 48
Perspectives, architecture, 410–411
Pet Shop application, 118, 119
PetStore application, 85–87, 86
Physical data model, 110, 111
Pipe-and-filter style

elements, relations, and properties, 158–159
example, 160–161, 161
overview, 158
purpose, 158–160
relation to other styles and models, 160
UML, 442–443, 442

Plain old Java objects (POJOs), 98
Platform style, 208
Plus One View, 360
Policies, global, 349–350
Politi, Michael, 311
Portability in layered style, 90, 98–99
Ports

AADL, 478–480, 479
C&C views, 127–128, 134
UML, 140, 141, 460

Prabhakar, T. V., 515
Prescriptive architecture documentation, 12
Presentations

C&C views, 347
combining with context diagrams, 347–348,

348
guidelines, 369–370
multi-part, 349
overview, 364–365
view documentation, 338–339
view packets, 344

Prieto-Diaz, R., 64
Primary presentations

C&C views, 347
combining with context diagrams, 347–348,

348
multi-part, 349
view documentation, 338–339
view packets, 344

Priorities in view selection, 329, 332
Process-steps style, 208–209
Process structure in architecture views, 24
Process views in 4+1 approach, 407
Processes in AADL, 474
Processing elements, 4
Processors in AADL, 474
Product-line architectures, 234
Product line implementation in decomposi-

tion style, 66
Product line managers, architecture docu-

mentation for, 16
Programming in the large, 30
Project managers

architecture documentation for, 16
documentation needs, 316–317, 317
interface documentation for, 279

Properties
AADL, 482–483, 483
in architectural decisions, 248
in architecture documentation, 17
aspects style, 104–105

Index ■ 531

C&C views, 126, 133–134, 134
client-server style, 162–164
data model style, 111–113
decomposition style, 66–67, 67
deployment style, 192–194
generalization style, 83
install style, 199–200
layered style, 89
module views, 57–59, 58
peer-to-peer style, 166–167
pipe-and-filter style, 158–159
publish-subscribe style, 174–176
SOA style, 169–170
style guides, 50–51
tools for, 371
uses style, 75
view documentation, 340
work assignment style, 202–203

Provided interfaces, 264–265
Provides-services roles in C&C views, 128
Pseudo-states in state machine diagrams, 457
Publish-subscribe connectors in C&C views, 124
Publish-subscribe style

elements, relations, and properties, 174–176
example, 177–178, 177
overview, 174
purpose, 175–176
relation to other styles, 176–177

Published styles and views, 343
Publisher roles in C&C views, 128

Q
Quality attributes

and architecture documentation, 17–18
decomposition style, 66
interface documentation, 284
interfaces, 276–277
and software architecture, 2–3

Questions and question sets
architecture document reviews, 379, 382–

394, 384
behavior documentation, 290–291
open, 357
for supporting development, 389–391
for supporting evaluation, 386–388

R
Ran, Alexander, 2
Rapid7 approach, 335–336

Rational Unified Process (RUP)
architecture views, 24
Views and Beyond, 406–408, 408

Rationale
in architectural decisions, 239
architecture documentation, 17, 44
behavior documentation, 306
documentation beyond views, 354–355
interface issues, 277
tools for, 371
view documentation, 340–341

Rationale and Design Issues section in inter-
face documentation, 284

Reader point of view in architectural docu-
mentation, 36–37

Reader roles in C&C views, 128
Realization concept in AADL module style,

475
Reallocating resources in variation points,

236
Redundant discussion, architectural deci-

sions for, 246
Reentrant calls in UML, 452, 453
Refactoring Agile projects, 414
Referenced material in directories, 356
References in sequence diagrams, 298
Refinement, 218

decomposition, 218–219, 218–219
implementation, 219, 220
spectrum of design, 220–221
style specialization, 221–222

Reid, Thomas, 54
Rejected status in architectural decisions, 250
Related decisions in architectural decision

templates, 241
Related requirements in architectural deci-

sion templates, 241
Relations, 5

allocation styles, 191
aspects style, 104–105
C&C views, 126, 131–132, 133
client-server style, 162–163
data model style, 111–113, 113–114
decomposition style, 66–69, 67
deployment style, 192–193
directional, 41–43
generalization style, 83
install style, 199–200
layered style, 89
module views, 57

532 ■ Index

Relations (continued)
peer-to-peer style, 166–167
pipe-and-filter style, 158–159
publish-subscribe style, 174–175
selecting, 52–53
shared-data style, 179
SOA style, 169–172
style guides, 50–51
uses style, 75
view documentation, 340
work assignment style, 202–203

Release-based style, 209
Release strategy in packages, 368–369
Relevant views, 22
Reliability

C&C views, 133
deployment style, 195

Remote calls vs. local calls, 42
Remote communication in behavior docu-

mentation, 293
Remote procedure call (RPC), 292
Repetition

architectural documentation, 37–38
across views and view packets, 349–350

Repository component in shared-data style,
179

Repository styles, 156, 157, 178–182, 181
Representation, defined, 11
Representatives of external systems, architec-

ture documentation for, 16
Request/reply connectors in client-server

style, 163
Required interfaces, 264–265
Requirements

mapping to, 17, 357–362, 358, 361
tooling, 370–372
viewpoints, 360–361

Resources, 262
C&C views, 133
deployment style, 194
in interface documentation, 281–283
interfaces, 271–274

Respondents in question sets, 383
Responsibilities in modules, 56
Responsibility property in module views, 57–

58
REST connectors in SOA style, 170–171
Retrying in error handling, 278
Reuse

generalization style for, 84
interface documentation for, 279

Rhapsody tool, 472
Rich C&C connectors, 143, 143
Rings notation in layered style, 93–94, 94
Risk in architectural decisions, 246, 249
Roles in C&C views, 128, 134
Rozanski, Nick, 13, 25 37, 341–343, 350, 408–

413, 409, 413, 430, 515
RSS feeds, 160, 161
Rugina, Ana-Elena, 483
Rumbaugh, James, 4, 122, 311

S
SaaS (software as a service) model, 287
Safety critical properties in deployment style,

194
Safety views, 404
Saini, Darpan, 516
SARA report, 397
Satellite system, 79, 80
Satisfy relationships in SysML, 466
Scaffidi, Christopher, 287
Schemes, packaging, 362–364
Schmerl, Bradley, 153
Schmidt, Douglas C., 187
Schwaber, Ken, 414, 430
Science Data Processing Segment (SDPS) in

ECS module, 204
SCM (software configuration management),

214
Scope

architectural decisions, 248
documentation roadmaps, 352

Scrum approach, 414
Security

AADL, 482–483
C&C views, 133–134
client-server style, 164
deployment style, 195
documentation needs, 323

Security views, 404
Segmented layers in layered style, 92–93, 93
Self calls in UML, 452, 453
Semantics for resource, 272–274
Semiformal notations

architecture views, 53
C&C views, 139–146, 140–145
uses style, 76, 77–78

Send-data-to relations in decomposition
refinement, 218

Separate documents in scheme packaging,
363–364

Index ■ 533

Sequence diagrams
Agile projects, 417, 418
behavior documentation, 297–298, 298–299
SysML, 471
UML, 450–453, 451–453

Servers in client-server style, 162
Service-level agreements (SLAs), 277
Service-oriented architecture (SOA) style

elements, 169, 171
example, 172, 173
module view, 266
overview, 169
properties, 169
purpose, 172
relations, 169, 171–172

Service-oriented views, 404
Service providers in SOA style, 171
Service registry in SOA style, 170
Services in call-return styles, 161
Servlets, 98
Shared-data stores, 179
Shared-data style, 178

elements, relations, and properties, 179
example, 181–182
overview, 178–179
purpose, 179–180
relation to other styles, 180–181

Shares-part-of-the-same-secret-as relations in
architecture views, 24

Sharing and Reusing Architectural Knowl-
edge (SHARK) workshops, 260

Shaw, Mary, 4, 33, 48, 153, 187, 286–287
Short iterations approach, 414
Sidecars, layers with, 94–95, 94
Siemens Four View model, 24, 214
Signatures, 280–281
Simplicity in presentations, 370
Size in layered style, 95
Slices, 73
Smalltalk classes, 30
Snyder, Alan, 122
SOA. See Service-oriented architecture

(SOA) style
SOAP connectors

C&C views, 129
SOA style, 170–172

SOAP Web service
interface documentation, 285
synchronous remote calls, 42

Social networks, publish-subscribe style for,
174

Socializing decisions, architectural decisions
for, 245

Society of Automotive Engineers (SAE), 312
Software architecture overview, 1–5

vs. design, 6–9
documentation overview. See Architecture

documentation overview
and quality attributes, 2–3

Software as a service (SaaS) model, 287
Software components in AADL, 474
Software configuration management (SCM),

214
Software Decision Hiding Module in A-7E

avionics system, 71–73, 72
Software elements

allocation styles, 191
deployment style, 192
install style, 199
work assignment style, 203

Software Engineering Institute, 47
Software interfaces. See Interfaces
Software product lines, 320
Soni, Dilip, 24, 64, 214, 336
Specializations

allocations, 208
C&C views, 130–131
styles, 221–222

Specification, defined, 10
Specification and Description Language

(SDL), 302, 306
Spectrum of design, 220–221
Spivey, J. M., 311
Spring framework, 222
Stack notation in layered style, 92, 92
Stafford, Judith A., 11, 511
Staging in view selection, 329
Stakeholder/view tables, 326–327
Stakeholders, 15–16

architecture documentation for, 13
documentation roadmaps, 352
interface documentation, 278–279
ISO/IEC 42010, 405
quality attributes for, 18
question sets, 383, 385–386
view selection for, 316–328, 317–322, 324–

326
Standard organization

architectural documentation, 43–44
for documentation beyond views, 351–356,

351, 354–355
variations, 356–357

534 ■ Index

Standard organization (continued)
for interface documentation, 271–277,

271, 276
for style guides, 50–51
for views, 337–341

variations, 344–349, 348
State machine diagrams, 303–304, 304, 457,

458
Status in architectural decision templates, 240
Status indicators in interfaces, 277
Stereotypes in UML, 62, 62, 433, 441
Steward, Donald, 101
Stimulation communication, 292
Storage unit capacity in deployment style, 194
Stream of consciousness writing, 37
Style guides, 26

outline, 50–51
presentations, 369

Style specialization, 221–222
Styles, 25

allocation. See Allocation styles
categories, 29, 49–50
C&C. See Component-and-connector

(C&C) styles
element and relation properties, 52–53
examples, 54
module. See Module styles
notations for architecture views, 53
overview, 25–28, 27–28
terms, 29–36

Subjects
architecture document reviews, 378–379,

394
use case diagrams, 459

Subprograms in AADL, 474
Subscriber role in C&C views, 128
Substates in state machine diagrams, 304
Subsumes relations in architectural deci-

sions, 250
Subsystems, 73–74, 74

decomposition style, 66
Support phase in architecture document

reviews, 377
Supporting documentation, 341

C&C views, 125
context diagrams, 229
view packets, 344

Swim lanes in UML sequence diagrams 300–
301, 450

Symbols in use case diagrams, 459, 459
Synchronous calls, 42

Synchronous communication, 292
Syntactic information, interface documenta-

tion for, 279–280
Syntax, resource, 272
SysML. See Systems Modeling Language

(SysML)
System analysis and construction, architec-

ture documentation for, 14
System context views, 341–343
System engineers, architecture documenta-

tion for, 16
System-level behavior documentation in

DoDAF, 426
System overview in documentation beyond

views, 353
Systems and services view (SV) in DoDAF,

419, 423–425
Systems in AADL, 474
Systems Modeling Language (SysML), 197,

465–466, 466
allocation view, 470–471, 470
architecture documentation, 466
behavior documentation, 471, 471
C&C view, 469, 469
interfaces, 472, 472
module view, 468, 468
requirements, 466, 467
summary, 472

Systems of interest in ISO/IEC 42010, 401
Szyperski, C., 30

T
Tables

DoDAF, 419
SysML, 197
uses style, 76, 80
work assignment style, 203, 204

Tagged values in UML, 441, 441
Taylor, R. N., 5, 153
TDDT (Training and Doctrine Development

Tool), 69
Team allocation in decomposition style, 66
Team morale, uses relation for, 81
Technical standards view (TV) in DoDAF,

419, 425
Telephone communication, 292
Templates. See also Standard organization.

architectural decisions, 239–242
architecture perspectives, 411
question sets, 384, 384
in variability, 233

Index ■ 535

Tentative status in architectural decisions, 249
Terms

in directories, 355
glossary, 491–496

Test-driven development in Agile projects,
414

Test information in module views, 59
Testers

architecture documentation for, 16
documentation needs, 318–319, 318
interface documentation for, 278

Textual representation of views
decomposition view for A-7E example, 72
module views, 61
visibility in module views, 68
work assignment view for ECS, 79–80

The Open Group Architecture Framework
(TOGAF), 377

Threads in AADL, 474, 478–480
Three-part rule in architecture patterns, 34
Tiered client-server views, 257, 257–258
Tiers

C&C styles, 183–184, 184
C&C views, 134
layered style, 96–97

Time-based stimulation in behavior docu-
mentation, 293

Time constraints in sequence diagrams, 298
Time stamps in architectural decisions, 248–

249
Timed threads, 478
Timely development, architectural decisions

for, 246
Timing diagrams in UML, 302, 454, 455
Tools

for combined views, 255
requirements, 370–372
UML, 461–463

Top-level context diagrams (TLCDs), 225–226
Topcased project, 472
Traceability of requirements viewpoints, 360
Traces

behavior documentation, 294–295
notations for, 295–303, 295–301
for semantic information, 280

Trachtenberg, Marvin, 399
Training and Doctrine Development Tool

(TDDT), 69
Transclusion process, 368
Transitions in state machine diagrams, 303–

304, 304, 457

Tuple spaces, 187
Types

of components and connectors, 129–131
UML, 448, 449

Tyree, Jeff, 239, 516, 246, 247, 260

U
UML. See Unified Modeling Language
Unified Modeling Language (UML), 431

activity diagrams, 300–302, 301, 450, 450
allocation view, 443–447, 443–447
ambiguity traps, 447–449, 448–449
aspects style, 105–106, 106
assembly connectors, 142, 146, 440, 440
associations, 57, 117, 117, 197, 251–255,

251–253, 436–437, 440, 448, 448, 459,
459

behavior documentation, 296–305, 296–
301, 449–459, 449–459

C&C views, 132, 133, 139–146, 140–145,
438–443, 439–442

class diagrams, 436–438, 437, 447
communication diagrams, 299–300, 300,

453–454, 454
components, 74, 133, 135, 137, 139–146,

140–145, 151, 197, 198, 219, 219, 268,
269, 286, 431, 432, 438–445, 439–444,
448, 449, 451, 451, 460, 461

context diagrams, 230–231, 231
data model style, 117, 117
decomposition refinement, 218–219, 219
decomposition style, 68, 68
delegation connectors, 132, 133, 219, 441,

442
deployment style, 197, 198
generalization style, 84, 85
interaction overview diagrams, 455–456, 456
interface documentation, 268, 269, 460–

461, 460–461
introduction, 431–433, 432
layered style, 95, 95
module views, 61–62, 61–62, 433–436, 433–

436
packages, 61, 61, 68, 68, 74–77, 77–78, 95,

231, 268, 269, 355, 431, 432, 433–435,
433, 435, 437, 446, 449

port, 127, 140–141, 141, 146, 149, 151, 169,
220, 286, 438, 439, 441, 460

provided interface, 61, 141–142, 264–265,
268, 269, 285, 437, 438, 439, 440–441,
440, 460, 460

536 ■ Index

Unified Modeling Language (UML) (continued)
required interface, 141–142, 264–265, 268,

269, 285, 437, 438, 439, 440–441, 440,
460, 460

sequence diagrams, 297–298, 298–299,
450–453, 451–453

state machine diagrams, 303–304, 304,
457, 458

SysML, 465–466, 466
timing diagrams, 302, 454, 455
tools, 461–463
use case diagrams, 458, 459
use cases, 296, 296–297
uses style, 76, 77–78

Uncertainty relations between modules
(UM), 210–212

Unit Training Management Configuration
(UTMC), 69

Universal styles, 26
UNIX System V operating system, 97–98, 97
Usability in documentation needs, 323
Usage Guide section in interface documenta-

tion, 277, 285
Use case diagrams, 458, 459
Use cases

4+1 approach, 407
behavior documentation, 296, 296–297
documenting, 356

User stories in Agile projects, 414
Users, architecture documentation for, 16
Uses of architecture documentation, 12–16
Uses relations, 81–82

layered style, 97
module views, 57
UML, 448

Uses structure in architecture views, 24
Uses style, 74–75

elements, relations, and properties, 75
examples, 79–80, 80
notations, 76–77, 77–78
purpose, 75–76, 76
relation to other styles, 79
UML module views, 433
uses relation, 81–82

Uses views in combined views, 255–256, 256
Utilization phase in architecture document

reviews, 377
UTMC (Unit Training Management Configu-

ration), 69

V
van der Linden, Frank, 2
van Gogh, Vincent, 215
van Vliet, H., 247
Variability, 231

interfaces, 276, 284
Variability guides, 232, 340
Variation points, 231, 232

documenting, 235–238, 238
dynamism and dynamic architectures,

234–235
variation mechanisms, 232–233

Versions, architecture documentation for, 21
Vertical slices, 73
Vicknair, W., 260
View packets, 344–347
View selection, 315–333

examples, 329–335
prioritizing and staging, 329, 332
stakeholder documentation needs, 316–

328, 317–322, 324–326
stakeholder/view tables, 326–327

View-to-view associations in documentation
beyond views, 353–354, 354

Viewpoints
ISO/IEC 42010, 402–403, 403, 405
requirements, 360–361, 361
Rozanski and Woods viewpoint sets, 408–

413, 409, 413
Views, 22–23

associations between, 251
combining. See Combining views
component-and-connector. See Compo-

nent-and-connector (C&C) views
coordination, 209–213
documentation beyond views, 350–356,

351, 354–356
in documentation packages, 337, 363–365

repetition across, 349–350
standard organization, 337–344, 338
standard organization variations, 344–

349, 348
documentation roadmaps, 352
history of, 23–25
ISO/IEC 42010, 401
mapping between, 353–354, 354
module. See Module views
notations, 53
and published styles and patterns, 343

Index ■ 537

Views and Beyond approach, 19–20, 339
in Agile development environment, 20,

415–418, 418
architecture decisions, 239
architecture documentation, 19–20
context diagrams, 341
compared to DoDAF, 421–425
compared to ISO/IEC 42010, 400–405
compared to Rozanski and Woods, 411–413
compared to RUP, 406–408

Virtual buses in AADL, 474
Virtual machines, 99

layered style, 90
Virtual processors in AADL, 474
Visibility of interface property in module

views, 58, 58
Visual styles in presentations, 369
Vitruvius, 399
Vocabulary of view for context diagrams,

226–228, 226–228
Voelter, Markus, 356
von Goethe, Johann Wolfgang, 289

W
Web-based documentation, 365–366. See

also Wikis.
Web modules, ATIA server-side, 69
Web Services Description Language (WSDL),

279
Weeks, Edward, 375
Weiss, David M., 121, 122, 380, 396, 516
Weiss, M., 247
Wikis, 365–368
Windowsapps, 69

Wolf, Alexander L., 4, 11, 24, 33, 48
Wolff, Bobby, 187
Woods, Eoin, 3, 13, 25, 37, 341–343, 350,

408–413, 409, 413, 430, 516
Work assignment style, 205–206

elements, relations, and properties, 202–
203

notations, 203–204, 204
overview, 202
purpose, 203
relation to other styles, 204–205
specializing, 208
UML, 446–447, 447

Work assignment views in combined views, 255
Work breakdown structure (WBS), 202
World Wide Web in client-server style, 164–

165
Wright, Frank Lloyd, 14, 55, 316
Writer roles in C&C views, 128
Wuerges, H., 286

X
XMI model in AADL, 473
XZip component, 281

Y
Yahoo! Pipes, 160–161, 161
Yang, Chen Ning, 315

Z
Z language, 304–305, 311
Zachman, J. A., 404
Zip component API, 281–285

	Contents
	Foreword to the Second Edition
	Foreword to the First Edition
	Preface
	Prologue: Software Architectures and Documentation
	P.1 A Short Overview of Software Architecture
	P.1.1 Overview
	P.1.2 Architecture and Quality Attributes
	Coming to Terms: What Is Software Architecture?
	Perspectives: What’s the Difference Between Architecture and Design?

	P.2 A Short Overview of Architecture Documentation
	P.2.1 Why Document Software Architecture?
	Coming to Terms: Specification, Representation, Description, Documentation
	P.2.2 Uses and Audiences for Architecture Documentation
	P.2.3 Architecture Documentation and Quality Attributes
	P.2.4 Economics of Architecture Documentation
	P.2.5 The Views and Beyond “Method”
	P.2.6 Views and Beyond in an Agile Environment
	P.2.7 Architectures That Change Faster Than You Can Document Them

	P.3 Architecture Views
	Coming to Terms: A Short History of Architecture Views

	P.4 Architecture Styles
	P.4.1 Three Categories of Styles
	Coming to Terms: Module, Component
	Coming to Terms: “Architecture Style” and “Architecture Pattern”

	P.5 Seven Rules for Sound Documentation
	Perspectives: Beware Notations Everyone “Just Knows”
	Perspectives: Quivering at Arrows

	P.6 Summary Checklist
	P.7 Discussion Questions
	P.8 For Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

