

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Shreiner, Dave.
 OpenGL programming guide : the official guide to learning OpenGL, versions 3.0 and 3.1
/ Dave Shreiner; the Khronos OpenGL ARB Working Group — 7th ed.
 p. cm.
 Includes index.
 ISBN 978-0-321-55262-4 (pbk. : alk. paper)
 1. Computer graphics. 2. OpenGL. I. Title.
 T385.O635 2009
 006.6'6—dc22
 2009018793

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN 13: 978-0-321-55262-4
ISBN 10: 0-321-55262-8
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, July 2009

31

Chapter 2

2.State Management and Drawing
Geometric Objects

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Clear the window to an arbitrary color

• Force any pending drawing to complete

• Draw with any geometric primitive—point, line, or polygon—in two or
three dimensions

• Turn states on and off and query state variables

• Control the display of geometric primitives—for example, draw dashed
lines or outlined polygons

• Specify normal vectors at appropriate points on the surfaces of solid
objects

• Use vertex arrays and buffer objects to store and access geometric data
with fewer function calls

• Save and restore several state variables at once

32 Chapter 2: State Management and Drawing Geometric Objects

Although you can draw complex and interesting pictures using OpenGL,
they’re all constructed from a small number of primitive graphical items.
This shouldn’t be too surprising—look at what Leonardo da Vinci
accomplished with just pencils and paintbrushes.

At the highest level of abstraction, there are three basic drawing operations:
clearing the window, drawing a geometric object, and drawing a raster
object. Raster objects, which include such things as two-dimensional
images, bitmaps, and character fonts, are covered in Chapter 8. In this
chapter, you learn how to clear the screen and draw geometric objects,
including points, straight lines, and flat polygons.

You might think to yourself, “Wait a minute. I’ve seen lots of computer
graphics in movies and on television, and there are plenty of beautifully
shaded curved lines and surfaces. How are those drawn if OpenGL can draw
only straight lines and flat polygons?” Even the image on the cover of this
book includes a round table and objects on the table that have curved
surfaces. It turns out that all the curved lines and surfaces you’ve seen are
approximated by large numbers of little flat polygons or straight lines, in
much the same way that the globe on the cover is constructed from a large
set of rectangular blocks. The globe doesn’t appear to have a smooth surface
because the blocks are relatively large compared with the globe. Later in this
chapter, we show you how to construct curved lines and surfaces from lots
of small geometric primitives.

This chapter has the following major sections:

• “A Drawing Survival Kit” explains how to clear the window and force
drawing to be completed. It also gives you basic information about
controlling the colors of geometric objects and describing a coordinate
system.

• “Describing Points, Lines, and Polygons” shows you the set of primi-
tive geometric objects and how to draw them.

• “Basic State Management” describes how to turn on and off some
states (modes) and query state variables.

• “Displaying Points, Lines, and Polygons” explains what control you
have over the details of how primitives are drawn—for example, what
diameters points have, whether lines are solid or dashed, and whether
polygons are outlined or filled.

• “Normal Vectors” discusses how to specify normal vectors for
geometric objects and (briefly) what these vectors are for.

33

• “Vertex Arrays” shows you how to put large amounts of geometric data
into just a few arrays and how, with only a few function calls, to render
the geometry it describes. Reducing function calls may increase the
efficiency and performance of rendering.

• “Buffer Objects” details how to use server-side memory buffers to store
vertex array data for more efficient geometric rendering.

• “Vertex-Array Objects” expands the discussions of vertex arrays and
buffer objects by describing how to efficiently change among sets of
vertex arrays.

• “Attribute Groups” reveals how to query the current value of state variables
and how to save and restore several related state values all at once.

• “Some Hints for Building Polygonal Models of Surfaces” explores the
issues and techniques involved in constructing polygonal approxima-
tions to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with
OpenGL, unless you specify otherwise, every time you issue a drawing com-
mand, the specified object is drawn. This might seem obvious, but in some
systems, you first make a list of things to draw. When your list is complete,
you tell the graphics hardware to draw the items in the list. The first style is
called immediate-mode graphics and is the default OpenGL style. In addition
to using immediate mode, you can choose to save some commands in a list
(called a display list) for later drawing. Immediate-mode graphics are typi-
cally easier to program, but display lists are often more efficient. Chapter 7
tells you how to use display lists and why you might want to use them.

Version 1.1 of OpenGL introduced vertex arrays.

In Version 1.2, scaling of surface normals (GL_RESCALE_NORMAL) was added
to OpenGL. Also, glDrawRangeElements() supplemented vertex arrays.

Version 1.3 marked the initial support for texture coordinates for multiple
texture units in the OpenGL core feature set. Previously, multitexturing had
been an optional OpenGL extension.

In Version 1.4, fog coordinates and secondary colors may be stored in vertex
arrays, and the commands glMultiDrawArrays() and glMultiDrawElements()
may be used to render primitives from vertex arrays.

In Version 1.5, vertex arrays may be stored in buffer objects that may be able
to use server memory for storing arrays and potentially accelerating their
rendering.

Chapter 2: State Management and Drawing Geometric Objects

34 Chapter 2: State Management and Drawing Geometric Objects

Version 3.0 added support for vertex array objects, allowing all of the state
related to vertex arrays to be bundled and activated with a single call. This,
in turn, makes switching between sets of vertex arrays simpler and faster.

Version 3.1 removed most of the immediate-mode routines and added the
primitive restart index, which allows you to render multiple primitives (of
the same type) with a single drawing call.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing,
set the colors of objects that are to be drawn, and force drawing to be
completed. None of these subjects has anything to do with geometric
objects in a direct way, but any program that draws geometric objects has to
deal with these issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that
the paper starts out white, and all you have to do is draw the picture. On a
computer, the memory holding the picture is usually filled with the last pic-
ture you drew, so you typically need to clear it to some background color
before you start to draw the new scene. The color you use for the back-
ground depends on the application. For a word processor, you might clear
to white (the color of the paper) before you begin to draw the text. If you’re
drawing a view from a spaceship, you clear to the black of space before
beginning to draw the stars, planets, and alien spaceships. Sometimes you
might not need to clear the screen at all; for example, if the image is the
inside of a room, the entire graphics window is covered as you draw all
the walls.

At this point, you might be wondering why we keep talking about clearing
the window—why not just draw a rectangle of the appropriate color that’s
large enough to cover the entire window? First, a special command to clear
a window can be much more efficient than a general-purpose drawing com-
mand. In addition, as you’ll see in Chapter 3, OpenGL allows you to set the
coordinate system, viewing position, and viewing direction arbitrarily, so
it might be difficult to figure out an appropriate size and location for a
window-clearing rectangle. Finally, on many machines, the graphics

A Drawing Survival Kit 35

hardware consists of multiple buffers in addition to the buffer containing
colors of the pixels that are displayed. These other buffers must be cleared
from time to time, and it’s convenient to have a single command that can
clear any combination of them. (See Chapter 10 for a discussion of all the
possible buffers.)

You must also know how the colors of pixels are stored in the graphics
hardware known as bitplanes. There are two methods of storage. Either the
red, green, blue, and alpha (RGBA) values of a pixel can be directly stored in
the bitplanes, or a single index value that references a color lookup table is
stored. RGBA color-display mode is more commonly used, so most of the
examples in this book use it. (See Chapter 4 for more information about
both display modes.) You can safely ignore all references to alpha values
until Chapter 6.

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);

The first line sets the clearing color to black, and the next command clears
the entire window to the current clearing color. The single parameter to
glClear() indicates which buffers are to be cleared. In this case, the program
clears only the color buffer, where the image displayed on the screen is kept.
Typically, you set the clearing color once, early in your application, and
then you clear the buffers as often as necessary. OpenGL keeps track of the
current clearing color as a state variable, rather than requiring you to specify
it each time a buffer is cleared.

Chapter 4 and Chapter 10 discuss how other buffers are used. For now, all
you need to know is that clearing them is simple. For example, to clear both
the color buffer and the depth buffer, you would use the following sequence
of commands:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

In this case, the call to glClearColor() is the same as before, the glClearDepth()
command specifies the value to which every pixel of the depth buffer is to be
set, and the parameter to the glClear() command now consists of the bitwise
logical OR of all the buffers to be cleared. The following summary of glClear()
includes a table that lists the buffers that can be cleared, their names, and the
chapter in which each type of buffer is discussed.

36 Chapter 2: State Management and Drawing Geometric Objects

Before issuing a command to clear multiple buffers, you have to set the
values to which each buffer is to be cleared if you want something other
than the default RGBA color, depth value, accumulation color, and stencil
index. In addition to the glClearColor() and glClearDepth() commands
that set the current values for clearing the color and depth buffers,
glClearIndex(), glClearAccum(), and glClearStencil() specify the color
index, accumulation color, and stencil index used to clear the corresponding
buffers. (See Chapter 4 and Chapter 10 for descriptions of these buffers and
their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally
a slow operation, as every pixel in the window (possibly millions) is
touched, and some graphics hardware allows sets of buffers to be cleared
simultaneously. Hardware that doesn’t support simultaneous clears
performs them sequentially. The difference between

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current clearing color for use in clearing color buffers in RGBA
mode. (See Chapter 4 for more information on RGBA mode.) The red,
green, blue, and alpha values are clamped if necessary to the range [0, 1].
The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask);

Clears the specified buffers to their current clearing values. The mask
argument is a bitwise logical OR combination of the values listed in
Table 2-1.

Buffer Name Reference

Color buffer GL_COLOR_BUFFER_BIT Chapter 4

Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10

Accumulation buffer GL_ACCUM_BUFFER_BIT Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT Chapter 10

Table 2-1 Clearing Buffers

Compatibility
Extension

GL_ACCUM_
BUFFER_BIT

A Drawing Survival Kit 37

and

glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);

is that although both have the same final effect, the first example might run
faster on many machines. It certainly won’t run more slowly.

Specifying a Color

With OpenGL, the description of the shape of an object being drawn is
independent of the description of its color. Whenever a particular geometric
object is drawn, it’s drawn using the currently specified coloring scheme.
The coloring scheme might be as simple as “draw everything in fire-engine
red” or as complicated as “assume the object is made out of blue plastic, that
there’s a yellow spotlight pointed in such and such a direction, and that
there’s a general low-level reddish-brown light everywhere else.” In general,
an OpenGL programmer first sets the color or coloring scheme and then
draws the objects. Until the color or coloring scheme is changed, all objects
are drawn in that color or using that coloring scheme. This method helps
OpenGL achieve higher drawing performance than would result if it didn’t
keep track of the current color.

For example, the pseudocode

set_current_color(red);
draw_object(A);
draw_object(B);
set_current_color(green);
set_current_color(blue);
draw_object(C);

draws objects A and B in red, and object C in blue. The command on the
fourth line that sets the current color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or
large sections devoted to them. To draw geometric primitives that can be
seen, however, you need some basic knowledge of how to set the current
color; this information is provided in the next few paragraphs. (See
Chapter 4 and Chapter 5 for details on these topics.)

To set a color, use the command glColor3f(). It takes three parameters, all
of which are floating-point numbers between 0.0 and 1.0. The parameters
are, in order, the red, green, and blue components of the color. You can think
of these three values as specifying a “mix” of colors: 0.0 means don’t use any

38 Chapter 2: State Management and Drawing Geometric Objects

of that component, and 1.0 means use all you can of that component. Thus,
the code

glColor3f(1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue compo-
nents. All zeros makes black; in contrast, all ones makes white. Setting all
three components to 0.5 yields gray (halfway between black and white).
Here are eight commands and the colors they would set:

glColor3f(0.0, 0.0, 0.0); /* black */
glColor3f(1.0, 0.0, 0.0); /* red */
glColor3f(0.0, 1.0, 0.0); /* green */
glColor3f(1.0, 1.0, 0.0); /* yellow */
glColor3f(0.0, 0.0, 1.0); /* blue */
glColor3f(1.0, 0.0, 1.0); /* magenta */
glColor3f(0.0, 1.0, 1.0); /* cyan */
glColor3f(1.0, 1.0, 1.0); /* white */

You might have noticed earlier that the routine for setting the clearing
color, glClearColor(), takes four parameters, the first three of which match
the parameters for glColor3f(). The fourth parameter is the alpha value; it’s
covered in detail in “Blending” in Chapter 6. For now, set the fourth param-
eter of glClearColor() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw in “OpenGL Rendering Pipeline” in Chapter 1, most modern
graphics systems can be thought of as an assembly line. The main central
processing unit (CPU) issues a drawing command. Perhaps other hardware
does geometric transformations. Clipping is performed, followed by shad-
ing and/or texturing. Finally, the values are written into the bitplanes for
display. In high-end architectures, each of these operations is performed by
a different piece of hardware that’s been designed to perform its particular
task quickly. In such an architecture, there’s no need for the CPU to wait for
each drawing command to complete before issuing the next one. While the
CPU is sending a vertex down the pipeline, the transformation hardware
is working on transforming the last one sent, the one before that is being
clipped, and so on. In such a system, if the CPU waited for each command
to complete before issuing the next, there could be a huge performance
penalty.

A Drawing Survival Kit 39

In addition, the application might be running on more than one machine.
For example, suppose that the main program is running elsewhere (on a
machine called the client) and that you’re viewing the results of the draw-
ing on your workstation or terminal (the server), which is connected by a
network to the client. In that case, it might be horribly inefficient to send
each command over the network one at a time, as considerable overhead is
often associated with each network transmission. Usually, the client gathers
a collection of commands into a single network packet before sending it.
Unfortunately, the network code on the client typically has no way of
knowing that the graphics program is finished drawing a frame or scene. In
the worst case, it waits forever for enough additional drawing commands to
fill a packet, and you never see the completed drawing.

For this reason, OpenGL provides the command glFlush(), which forces the
client to send the network packet even though it might not be full. Where
there is no network and all commands are truly executed immediately on
the server, glFlush() might have no effect. However, if you’re writing a pro-
gram that you want to work properly both with and without a network,
include a call to glFlush() at the end of each frame or scene. Note that
glFlush() doesn’t wait for the drawing to complete—it just forces the draw-
ing to begin execution, thereby guaranteeing that all previous commands
execute in finite time even if no further rendering commands are executed.

There are other situations in which glFlush() is useful:

• Software renderers that build images in system memory and don’t
want to constantly update the screen.

• Implementations that gather sets of rendering commands to amortize
start-up costs. The aforementioned network transmission example is
one instance of this.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus
guaranteeing that they complete in finite time.

A few commands—for example, commands that swap buffers in double-
buffer mode—automatically flush pending commands onto the network
before they can occur.

40 Chapter 2: State Management and Drawing Geometric Objects

Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window,
the window system will send an event to notify you. If you are using GLUT,
the notification is automated; whatever routine has been registered to
glutReshapeFunc() will be called. You must register a callback function
that will

• Reestablish the rectangular region that will be the new rendering
canvas

• Define the coordinate system to which objects will be drawn

In Chapter 3, you’ll see how to define three-dimensional coordinate
systems, but right now just create a simple, basic two-dimensional
coordinate system into which you can draw a few objects. Call
glutReshapeFunc(reshape), where reshape() is the following function
shown in Example 2-1.

If glFlush() isn’t sufficient for you, try glFinish(). This command flushes
the network as glFlush() does and then waits for notification from the
graphics hardware or network indicating that the drawing is complete in
the framebuffer. You might need to use glFinish() if you want to synchro-
nize tasks—for example, to make sure that your three-dimensional render-
ing is on the screen before you use Display PostScript to draw labels on top
of the rendering. Another example would be to ensure that the drawing is
complete before it begins to accept user input. After you issue a glFinish()
command, your graphics process is blocked until it receives notification
from the graphics hardware that the drawing is complete. Keep in mind
that excessive use of glFinish() can reduce the performance of your appli-
cation, especially if you’re running over a network, because it requires
round-trip communication. If glFlush() is sufficient for your needs, use it
instead of glFinish().

void glFinish(void);

Forces all previously issued OpenGL commands to complete. This com-
mand doesn’t return until all effects from previous commands are fully
realized.

A Drawing Survival Kit 41

Example 2-1 Reshape Callback Function

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

The kernel of GLUT will pass this function two arguments: the width and
height, in pixels, of the new, moved, or resized window. glViewport()
adjusts the pixel rectangle for drawing to be the entire new window. The
next three routines adjust the coordinate system for drawing so that the
lower left corner is (0, 0) and the upper right corner is (w, h) (see Figure 2-1).

To explain it another way, think about a piece of graphing paper. The w and
h values in reshape() represent how many columns and rows of squares are
on your graph paper. Then you have to put axes on the graph paper. The
gluOrtho2D() routine puts the origin, (0, 0), in the lowest, leftmost square,
and makes each square represent one unit. Now, when you render the
points, lines, and polygons in the rest of this chapter, they will appear on
this paper in easily predictable squares. (For now, keep all your objects two-
dimensional.)

(0, 0)

(50, 50)

Figure 2-1 Coordinate System Defined by w = 50, h = 50

42 Chapter 2: State Management and Drawing Geometric Objects

Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All
geometric primitives are eventually described in terms of their vertices—
coordinates that define the points themselves, the endpoints of line seg-
ments, or the corners of polygons. The next section discusses how these
primitives are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by the
terms point, line, and polygon. The OpenGL meanings are similar, but not
quite the same.

One difference comes from the limitations of computer-based calculations.
In any OpenGL implementation, floating-point calculations are of finite
precision, and they have round-off errors. Consequently, the coordinates of
OpenGL points, lines, and polygons suffer from the same problems.

A more important difference arises from the limitations of a raster graphics
display. On such a display, the smallest displayable unit is a pixel, and
although pixels might be less than 1/100 of an inch wide, they are still
much larger than the mathematician’s concepts of infinitely small (for
points) and infinitely thin (for lines). When OpenGL performs calculations,
it assumes that points are represented as vectors of floating-point numbers.
However, a point is typically (but not always) drawn as a single pixel, and
many different points with slightly different coordinates could be drawn by
OpenGL on the same pixel.

Points

A point is represented by a set of floating-point numbers called a vertex. All
internal calculations are done as if vertices are three-dimensional. Vertices
specified by the user as two-dimensional (that is, with only x- and y-
coordinates) are assigned a z-coordinate equal to zero by OpenGL.

Advanced

OpenGL works in the homogeneous coordinates of three-dimensional projec-
tive geometry, so for internal calculations, all vertices are represented with
four floating-point coordinates (x, y, z, w). If w is different from zero, these
coordinates correspond to the Euclidean, three-dimensional point (x/w, y/w,
z/w). You can specify the w-coordinate in OpenGL commands, but this is

Advanced

Describing Points, Lines, and Polygons 43

rarely done. If the w-coordinate isn’t specified, it is understood to be 1.0.
(See Appendix C for more information about homogeneous coordinate
systems.)

Lines

In OpenGL, the term line refers to a line segment, not the mathematician’s
version that extends to infinity in both directions. There are easy ways to
specify a connected series of line segments, or even a closed, connected
series of segments (see Figure 2-2). In all cases, though, the lines consti-
tuting the connected series are specified in terms of the vertices at their
endpoints.

Polygons

Polygons are the areas enclosed by single closed loops of line segments,
where the line segments are specified by the vertices at their endpoints.
Polygons are typically drawn with the pixels in the interior filled in, but you
can also draw them as outlines or a set of points. (See “Polygon Details” on
page 60.)

In general, polygons can be complicated, so OpenGL imposes some strong
restrictions on what constitutes a primitive polygon. First, the edges of
OpenGL polygons can’t intersect (a mathematician would call a polygon
satisfying this condition a simple polygon). Second, OpenGL polygons must
be convex, meaning that they cannot have indentations. Stated precisely, a
region is convex if, given any two points in the interior, the line segment
joining them is also in the interior. See Figure 2-3 for some examples of
valid and invalid polygons. OpenGL, however, doesn’t restrict the number
of line segments making up the boundary of a convex polygon. Note that
polygons with holes can’t be described. They are nonconvex, and they can’t
be drawn with a boundary made up of a single closed loop. Be aware that if

Figure 2-2 Two Connected Series of Line Segments

44 Chapter 2: State Management and Drawing Geometric Objects

you present OpenGL with a nonconvex filled polygon, it might not draw it
as you expect. For instance, on most systems, no more than the convex hull
of the polygon would be filled. On some systems, less than the convex hull
might be filled.

The reason for the OpenGL restrictions on valid polygon types is that it’s
simpler to provide fast polygon-rendering hardware for that restricted class
of polygons. Simple polygons can be rendered quickly. The difficult cases
are hard to detect quickly, so for maximum performance, OpenGL crosses
its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex poly-
gons, or polygons with holes. Since all such polygons can be formed from
unions of simple convex polygons, some routines to build more complex
objects are provided in the GLU library. These routines take complex
descriptions and tessellate them, or break them down into groups of the
simpler OpenGL polygons that can then be rendered. (See “Polygon Tessel-
lation” in Chapter 11 for more information about the tessellation routines.)

Since OpenGL vertices are always three-dimensional, the points forming the
boundary of a particular polygon don’t necessarily lie on the same plane in
space. (Of course, they do in many cases—if all the z-coordinates are zero, for
example, or if the polygon is a triangle.) If a polygon’s vertices don’t lie in the
same plane, then after various rotations in space, changes in the viewpoint,
and projection onto the display screen, the points might no longer form a
simple convex polygon. For example, imagine a four-point quadrilateral
where the points are slightly out of plane, and look at it almost edge-on.
You can get a nonsimple polygon that resembles a bow tie, as shown in
Figure 2-4, which isn’t guaranteed to be rendered correctly. This situation
isn’t all that unusual if you approximate curved surfaces by quadrilaterals
made of points lying on the true surface. You can always avoid the problem
by using triangles, as any three points always lie on a plane.

Valid Invalid

Figure 2-3 Valid and Invalid Polygons

Describing Points, Lines, and Polygons 45

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides
a filled-rectangle drawing primitive, glRect*(). You can draw a rectangle as
a polygon, as described in “OpenGL Geometric Drawing Primitives” on
page 47, but your particular implementation of OpenGL might have
optimized glRect*() for rectangles.

Note that although the rectangle begins with a particular orientation in
three-dimensional space (in the xy-plane and parallel to the axes), you can
change this by applying rotations or other transformations. (See Chapter 3
for information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated—to any arbitrary
degree of accuracy—by short line segments or small polygonal regions.
Thus, subdividing curved lines and surfaces sufficiently and then approxi-
mating them with straight line segments or flat polygons makes them
appear curved (see Figure 2-5). If you’re skeptical that this really works,
imagine subdividing until each line segment or polygon is so tiny that
it’s smaller than a pixel on the screen.

void glRect{sifd}(TYPE x1, TYPE y1, TYPE x2, TYPE y2);
void glRect{sifd}v(const TYPE *v1, const TYPE *v2);

Draws the rectangle defined by the corner points (x1, y1) and (x2, y2). The
rectangle lies in the plane z = 0 and has sides parallel to the x- and y-axes.
If the vector form of the function is used, the corners are given by two
pointers to arrays, each of which contains an (x, y) pair.

Figure 2-4 Nonplanar Polygon Transformed to Nonsimple Polygon

Compatibility
Extension

glRect

46 Chapter 2: State Management and Drawing Geometric Objects

Even though curves aren’t geometric primitives, OpenGL provides some
direct support for subdividing and drawing them. (See Chapter 12 for
information about how to draw curves and curved surfaces.)

Specifying Vertices

With OpenGL, every geometric object is ultimately described as an ordered
set of vertices. You use the glVertex*() command to specify a vertex.

Example 2-2 provides some examples of using glVertex*().

Example 2-2 Legal Uses of glVertex*()

glVertex2s(2, 3);
glVertex3d(0.0, 0.0, 3.1415926535898);
glVertex4f(2.3, 1.0, -2.2, 2.0);

GLdouble dvect[3] = {5.0, 9.0, 1992.0};
glVertex3dv(dvect);

The first example represents a vertex with three-dimensional coordi-
nates (2, 3, 0). (Remember that if it isn’t specified, the z-coordinate is
understood to be 0.) The coordinates in the second example are (0.0, 0.0,

void glVertex[234]{sifd}(TYPE coords);
void glVertex[234]{sifd}v(const TYPE* coords);

Specifies a vertex for use in describing a geometric object. You can supply
up to four coordinates (x, y, z, w) for a particular vertex or as few as two
(x, y) by selecting the appropriate version of the command. If you use a
version that doesn’t explicitly specify z or w, z is understood to be 0, and
w is understood to be 1. Calls to glVertex*() are effective only between a
glBegin() and glEnd() pair.

Figure 2-5 Approximating Curves

Compatibility
Extension

glVertex

Describing Points, Lines, and Polygons 47

3.1415926535898) (double-precision floating-point numbers). The third
example represents the vertex with three-dimensional coordinates (1.15,
0.5, 1.1) as a homogenous coordinate. (Remember that the x-, y-, and
z-coordinates are eventually divided by the w-coordinate.) In the final
example, dvect is a pointer to an array of three double-precision floating-
point numbers.

On some machines, the vector form of glVertex*() is more efficient, since
only a single parameter needs to be passed to the graphics subsystem. Spe-
cial hardware might be able to send a whole series of coordinates in a single
batch. If your machine is like this, it’s to your advantage to arrange your
data so that the vertex coordinates are packed sequentially in memory. In
this case, there may be some gain in performance by using the vertex array
operations of OpenGL. (See “Vertex Arrays” on page 70.)

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how
to tell OpenGL to create a set of points, a line, or a polygon from those ver-
tices. To do this, you bracket each set of vertices between a call to glBegin()
and a call to glEnd(). The argument passed to glBegin() determines what
sort of geometric primitive is constructed from the vertices. For instance,
Example 2-3 specifies the vertices for the polygon shown in Figure 2-6.

Example 2-3 Filled Polygon

glBegin(GL_POLYGON);
 glVertex2f(0.0, 0.0);
 glVertex2f(0.0, 3.0);
 glVertex2f(4.0, 3.0);
 glVertex2f(6.0, 1.5);
 glVertex2f(4.0, 0.0);
glEnd();

GL_POLYGON GL_POINTS

Figure 2-6 Drawing a Polygon or a Set of Points

48 Chapter 2: State Management and Drawing Geometric Objects

If you had used GL_POINTS instead of GL_POLYGON, the primitive would
have been simply the five points shown in Figure 2-6. Table 2-2 in the fol-
lowing function summary for glBegin() lists the 10 possible arguments and
the corresponding types of primitives.

void glBegin(GLenum mode);

Marks the beginning of a vertex-data list that describes a geometric prim-
itive. The type of primitive is indicated by mode, which can be any of the
values shown in Table 2-2.

Value Meaning

GL_POINTS Individual points

GL_LINES Pairs of vertices interpreted as individual line segments

GL_LINE_STRIP Series of connected line segments

GL_LINE_LOOP Same as above, with a segment added between last and
first vertices

GL_TRIANGLES Triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP Linked strip of triangles

GL_TRIANGLE_FAN Linked fan of triangles

GL_QUADS Quadruples of vertices interpreted as four-sided polygons

GL_QUAD_STRIP Linked strip of quadrilaterals

GL_POLYGON Boundary of a simple, convex polygon

Table 2-2 Geometric Primitive Names and Meanings

void glEnd(void);

Marks the end of a vertex-data list.

Compatibility
Extension

glBegin
GL_QUADS
GL_QUAD_STRIP
GL_POLYGON

Compatibility
Extension

glEnd

Describing Points, Lines, and Polygons 49

Figure 2-7 shows examples of all the geometric primitives listed in Table 2-2,
with descriptions of the pixels that are drawn for each of the objects. Note
that in addition to points, several types of lines and polygons are defined.
Obviously, you can find many ways to draw the same primitive. The
method you choose depends on your vertex data.

GL_POINTS

GL_LINES GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_QUADS GL_POLYGON

V0

V1

V2

V3

V4

V5

V0

V0

V1

V2

V2

V1

V3

V3

V4

V5

V5

V4

V0

V3 V2

V1 V4

V7

V6

V5

GL_QUAD_STRIP

V1

V0

V3

V2

V5

V4

V7

V6

V6

V7

V0

V1

V2

V3

V4

V0

V1

V2

V3

V4

V0

V4 V3

V2

V1

V0
V4

V3
V2

V1

V5

GL_LINE_LOOP

V0

V1 V2

V3

V4

V5

Figure 2-7 Geometric Primitive Types

50 Chapter 2: State Management and Drawing Geometric Objects

As you read the following descriptions, assume that n vertices (v0, v1, v2, ... ,
vn–1) are described between a glBegin() and glEnd() pair.

GL_POINTS Draws a point at each of the n vertices.

GL_LINES Draws a series of unconnected line segments.
Segments are drawn between v0 and v1,
between v2 and v3, and so on. If n is odd, the
last segment is drawn between vn–3 and vn–2,
and vn–1 is ignored.

GL_LINE_STRIP Draws a line segment from v0 to v1, then from
v1 to v2, and so on, finally drawing the segment
from vn–2 to vn–1. Thus, a total of n – 1 line
segments are drawn. Nothing is drawn unless n
is larger than 1. There are no restrictions on the
vertices describing a line strip (or a line loop);
the lines can intersect arbitrarily.

GL_LINE_LOOP Same as GL_LINE_STRIP, except that a final line
segment is drawn from vn–1 to v0, completing
a loop.

GL_TRIANGLES Draws a series of triangles (three-sided polygons)
using vertices v0, v1, v2, then v3, v4, v5, and so
on. If n isn’t a multiple of 3, the final one or two
vertices are ignored.

GL_TRIANGLE_STRIP Draws a series of triangles (three-sided
polygons) using vertices v0, v1, v2, then v2, v1,
v3 (note the order), then v2, v3, v4, and so on.
The ordering is to ensure that the triangles are
all drawn with the same orientation so that
the strip can correctly form part of a surface.
Preserving the orientation is important for some
operations, such as culling (see “Reversing and
Culling Polygon Faces” on page 61). n must be
at least 3 for anything to be drawn.

GL_TRIANGLE_FAN Same as GL_TRIANGLE_STRIP, except that the
vertices are v0, v1, v2, then v0, v2, v3, then v0,
v3, v4, and so on (see Figure 2-7).

Describing Points, Lines, and Polygons 51

Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which
are specified by the glVertex*() command. You can also supply additional
vertex-specific data for each vertex—a color, a normal vector, texture coor-
dinates, or any combination of these—using special commands. In addi-
tion, a few other commands are valid between a glBegin() and glEnd() pair.
Table 2-3 contains a complete list of such valid commands.

GL_QUADS Draws a series of quadrilaterals (four-sided
polygons) using vertices v0, v1, v2, v3, then v4,
v5, v6, v7, and so on. If n isn’t a multiple of 4,
the final one, two, or three vertices are ignored.

GL_QUAD_STRIP Draws a series of quadrilaterals (four-sided
polygons) beginning with v0, v1, v3, v2, then
v2, v3, v5, v4, then v4, v5, v7, v6, and so on (see
Figure 2-7). n must be at least 4 before anything
is drawn. If n is odd, the final vertex is ignored.

GL_POLYGON Draws a polygon using the points v0, ... , vn–1 as
vertices. n must be at least 3, or nothing is
drawn. In addition, the polygon specified must
not intersect itself and must be convex. If the
vertices don’t satisfy these conditions, the
results are unpredictable.

Command Purpose of Command Reference

glVertex*() set vertex coordinates Chapter 2

glColor*() set RGBA color Chapter 4

glIndex*() set color index Chapter 4

glSecondaryColor*() set secondary color for post-
texturing application

Chapter 9

glNormal*() set normal vector coordinates Chapter 2

glMaterial*() set material properties Chapter 5

glFogCoord*() set fog coordinates Chapter 6

Table 2-3 Valid Commands between glBegin() and glEnd()

52 Chapter 2: State Management and Drawing Geometric Objects

No other OpenGL commands are valid between a glBegin() and glEnd()
pair, and making most other OpenGL calls generates an error. Some vertex
array commands, such as glEnableClientState() and glVertexPointer(),
when called between glBegin() and glEnd(), have undefined behavior but
do not necessarily generate an error. (Also, routines related to OpenGL, such
as glX*() routines, have undefined behavior between glBegin() and glEnd().)
These cases should be avoided, and debugging them may be more difficult.

Note, however, that only OpenGL commands are restricted; you can
certainly include other programming-language constructs (except for calls,
such as the aforementioned glX*() routines). For instance, Example 2-4
draws an outlined circle.

Example 2-4 Other Constructs between glBegin() and glEnd()

#define PI 3.1415926535898
GLint circle_points = 100;
glBegin(GL_LINE_LOOP);
for (i = 0; i < circle_points; i++) {
 angle = 2*PI*i/circle_points;
 glVertex2f(cos(angle), sin(angle));
}
glEnd();

Note: This example isn’t the most efficient way to draw a circle, especially
if you intend to do it repeatedly. The graphics commands used are
typically very fast, but this code calculates an angle and calls the
sin() and cos() routines for each vertex; in addition, there’s the loop

glTexCoord*() set texture coordinates Chapter 9

glMultiTexCoord*() set texture coordinates for
multitexturing

Chapter 9

glVertexAttrib*() set generic vertex attribute Chapter 15

glEdgeFlag*() control drawing of edges Chapter 2

glArrayElement() extract vertex array data Chapter 2

glEvalCoord*(), glEvalPoint*() generate coordinates Chapter 12

glCallList(), glCallLists() execute display list(s) Chapter 7

Command Purpose of Command Reference

Table 2-3 (continued) Valid Commands between glBegin() and glEnd()

Basic State Management 53

overhead. (Another way to calculate the vertices of a circle is to use
a GLU routine; see “Quadrics: Rendering Spheres, Cylinders, and
Disks” in Chapter 11.) If you need to draw numerous circles, calculate
the coordinates of the vertices once and save them in an array and
create a display list (see Chapter 7), or use vertex arrays to render them.

Unless they are being compiled into a display list, all glVertex*() commands
should appear between a glBegin() and glEnd() combination. (If they
appear elsewhere, they don’t accomplish anything.) If they appear in a
display list, they are executed only if they appear between a glBegin() and
a glEnd(). (See Chapter 7 for more information about display lists.)

Although many commands are allowed between glBegin() and glEnd(),
vertices are generated only when a glVertex*() command is issued. At the
moment glVertex*() is called, OpenGL assigns the resulting vertex the
current color, texture coordinates, normal vector information, and so on. To
see this, look at the following code sequence. The first point is drawn in red,
and the second and third ones in blue, despite the extra color commands:

glBegin(GL_POINTS);
 glColor3f(0.0, 1.0, 0.0); /* green */
 glColor3f(1.0, 0.0, 0.0); /* red */
 glVertex(...);
 glColor3f(1.0, 1.0, 0.0); /* yellow */
 glColor3f(0.0, 0.0, 1.0); /* blue */
 glVertex(...);
 glVertex(...);
glEnd();

You can use any combination of the 24 versions of the glVertex*()
command between glBegin() and glEnd(), although in real applications all
the calls in any particular instance tend to be of the same form. If your
vertex-data specification is consistent and repetitive (for example, glColor*,
glVertex*, glColor*, glVertex*,...), you may enhance your program’s
performance by using vertex arrays. (See “Vertex Arrays” on page 70.)

Basic State Management

In the preceding section, you saw an example of a state variable, the current
RGBA color, and how it can be associated with a primitive. OpenGL
maintains many states and state variables. An object may be rendered with
lighting, texturing, hidden surface removal, fog, and other states affecting
its appearance.

54 Chapter 2: State Management and Drawing Geometric Objects

By default, most of these states are initially inactive. These states may be
costly to activate; for example, turning on texture mapping will almost
certainly slow down the process of rendering a primitive. However, the
image will improve in quality and will look more realistic, owing to the
enhanced graphics capabilities.

To turn many of these states on and off, use these two simple commands:

You can also check whether a state is currently enabled or disabled.

The states you have just seen have two settings: on and off. However, most
OpenGL routines set values for more complicated state variables. For
example, the routine glColor3f() sets three values, which are part of the
GL_CURRENT_COLOR state. There are five querying routines used to find
out what values are set for many states:

void glEnable(GLenum capability);
void glDisable(GLenum capability);

glEnable() turns on a capability, and glDisable() turns it off. More than 60
enumerated values can be passed as parameters to glEnable() or glDisable().
Some examples are GL_BLEND (which controls blending of RGBA values),
GL_DEPTH_TEST (which controls depth comparisons and updates to the
depth buffer), GL_FOG (which controls fog), GL_LINE_STIPPLE (patterned
lines), and GL_LIGHTING (you get the idea).

GLboolean glIsEnabled(GLenum capability)

Returns GL_TRUE or GL_FALSE, depending on whether or not the queried
capability is currently activated.

void glGetBooleanv(GLenum pname, GLboolean *params);
void glGetIntegerv(GLenum pname, GLint *params);
void glGetFloatv(GLenum pname, GLfloat *params);
void glGetDoublev(GLenum pname, GLdouble *params);
void glGetPointerv(GLenum pname, GLvoid **params);

Displaying Points, Lines, and Polygons 55

These querying routines handle most, but not all, requests for obtaining
state information. (See “The Query Commands” in Appendix B for a list of
all of the available OpenGL state querying routines.)

Displaying Points, Lines, and Polygons

By default, a point is drawn as a single pixel on the screen, a line is drawn
solid and 1 pixel wide, and polygons are drawn solidly filled in. The following
paragraphs discuss the details of how to change these default display modes.

Point Details

To control the size of a rendered point, use glPointSize() and supply the
desired size in pixels as the argument.

The actual collection of pixels on the screen that are drawn for various point
widths depends on whether antialiasing is enabled. (Antialiasing is a tech-
nique for smoothing points and lines as they’re rendered; see “Antialiasing”
and “Point Parameters” in Chapter 6 for more detail.) If antialiasing is dis-
abled (the default), fractional widths are rounded to integer widths, and a
screen-aligned square region of pixels is drawn. Thus, if the width is 1.0, the
square is 1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels by 2
pixels; and so on.

Obtains Boolean, integer, floating-point, double-precision, or pointer
state variables. The pname argument is a symbolic constant indicating the
state variable to return, and params is a pointer to an array of the indicated
type in which to place the returned data. See the tables in Appendix B for
the possible values for pname. For example, to get the current RGBA color,
a table in Appendix B suggests you use glGetIntegerv(GL_CURRENT_
COLOR, params) or glGetFloatv(GL_CURRENT_COLOR, params). A type
conversion is performed, if necessary, to return the desired variable as the
requested data type.

void glPointSize(GLfloat size);

Sets the width in pixels for rendered points; size must be greater than 0.0
and by default is 1.0.

56 Chapter 2: State Management and Drawing Geometric Objects

With antialiasing or multisampling enabled, a circular group of pixels is
drawn, and the pixels on the boundaries are typically drawn at less than full
intensity to give the edge a smoother appearance. In this mode, noninteger
widths aren’t rounded.

Most OpenGL implementations support very large point sizes. You can
query the minimum and maximum sized for aliased points by using
GL_ALIASED_POINT_SIZE_RANGE with glGetFloatv(). Likewise, you
can obtain the range of supported sizes for antialiased points by passing
GL_SMOOTH_POINT_SIZE_RANGE to glGetFloatv(). The sizes of sup-
ported antialiased points are evenly spaced between the minimum and
maximum sizes for the range. Calling glGetFloatv() with the parameter
GL_SMOOTH_POINT_SIZE_GRANULARITY will return how accurately
a given antialiased point size is supported. For example, if you request
glPointSize(2.37) and the granularity returned is 0.1, then the point size
is rounded to 2.4.

Line Details

With OpenGL, you can specify lines with different widths and lines that are
stippled in various ways—dotted, dashed, drawn with alternating dots and
dashes, and so on.

Wide Lines

The actual rendering of lines is affected if either antialiasing or multisam-
pling is enabled. (See “Antialiasing Points or Lines” on page 269 and “Anti-
aliasing Geometric Primitives with Multisampling” on page 275.) Without
antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixels wide. With
antialiasing enabled, noninteger line widths are possible, and pixels on the
boundaries are typically drawn at less than full intensity. As with point
sizes, a particular OpenGL implementation might limit the width of non-
antialiased lines to its maximum antialiased line width, rounded to the
nearest integer value. You can obtain the range of supported aliased line

void glLineWidth(GLfloat width);

Sets the width, in pixels, for rendered lines; width must be greater than 0.0
and by default is 1.0.

Version 3.1 does not support values greater than 1.0, and will generate a
GL_INVALID_VALUE error if a value greater than 1.0 is specified.

Displaying Points, Lines, and Polygons 57

widths by using GL_ALIASED_LINE_WIDTH_RANGE with glGetFloatv().
To determine the supported minimum and maximum sizes of antialiased
line widths, and what granularity your implementation supports, call
glGetFloatv(), with GL_SMOOTH_LINE_WIDTH_RANGE and GL_
SMOOTH_LINE_WIDTH_GRANULARITY.

Note: Keep in mind that, by default, lines are 1 pixel wide, so they appear
wider on lower-resolution screens. For computer displays, this isn’t
typically an issue, but if you’re using OpenGL to render to a high-
resolution plotter, 1-pixel lines might be nearly invisible. To obtain
resolution-independent line widths, you need to take into account
the physical dimensions of pixels.

Advanced

With non-antialiased wide lines, the line width isn’t measured perpendicu-
lar to the line. Instead, it’s measured in the y-direction if the absolute value
of the slope is less than 1.0; otherwise, it’s measured in the x-direction. The
rendering of an antialiased line is exactly equivalent to the rendering of a
filled rectangle of the given width, centered on the exact line.

Stippled Lines

To make stippled (dotted or dashed) lines, you use the command
glLineStipple() to define the stipple pattern, and then you enable line
stippling with glEnable().

glLineStipple(1, 0x3F07);
glEnable(GL_LINE_STIPPLE);

With the preceding example and the pattern 0x3F07 (which translates
to 0011111100000111 in binary), a line would be drawn with 3 pixels on,
then 5 off, 6 on, and 2 off. (If this seems backward, remember that the

void glLineStipple(GLint factor, GLushort pattern);

Sets the current stippling pattern for lines. The pattern argument is a 16-bit
series of 0s and 1s, and it’s repeated as necessary to stipple a given line. A
1 indicates that drawing occurs, and a 0 that it does not, on a pixel-by-
pixel basis, beginning with the low-order bit of the pattern. The pattern
can be stretched out by using factor, which multiplies each subseries of
consecutive 1s and 0s. Thus, if three consecutive 1s appear in the pattern,
they’re stretched to six if factor is 2. factor is clamped to lie between 1 and
256. Line stippling must be enabled by passing GL_LINE_STIPPLE to
glEnable(); it’s disabled by passing the same argument to glDisable().

Advanced

Compatibility
Extension

glLineStipple
GL_LINE_
STIPPLE

58 Chapter 2: State Management and Drawing Geometric Objects

low-order bit is used first.) If factor had been 2, the pattern would have been
elongated: 6 pixels on, 10 off, 12 on, and 4 off. Figure 2-8 shows lines drawn
with different patterns and repeat factors. If you don’t enable line stippling,
drawing proceeds as if pattern were 0xFFFF and factor were 1. (Use
glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that stippling
can be used in combination with wide lines to produce wide stippled lines.

One way to think of the stippling is that as the line is being drawn, the
pattern is shifted by 1 bit each time a pixel is drawn (or factor pixels are
drawn, if factor isn’t 1). When a series of connected line segments is drawn
between a single glBegin() and glEnd(), the pattern continues to shift as
one segment turns into the next. This way, a stippling pattern continues
across a series of connected line segments. When glEnd() is executed, the
pattern is reset, and if more lines are drawn before stippling is disabled the
stippling restarts at the beginning of the pattern. If you’re drawing lines
with GL_LINES, the pattern resets for each independent line.

Example 2-5 illustrates the results of drawing with a couple of different
stipple patterns and line widths. It also illustrates what happens if the lines
are drawn as a series of individual segments instead of a single connected
line strip. The results of running the program appear in Figure 2-9.

PATTERN
0x00FF
0x00FF
0x0C0F
0x0C0F
0xAAAA
0xAAAA
0xAAAA
0xAAAA

FACTOR
1
2
1
3
1
2
3
4

Figure 2-8 Stippled Lines

Figure 2-9 Wide Stippled Lines

Displaying Points, Lines, and Polygons 59

Example 2-5 Line Stipple Patterns: lines.c

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES); \
 glVertex2f((x1),(y1)); glVertex2f((x2),(y2)); glEnd();

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
}

void display(void)
{
 int i;

 glClear(GL_COLOR_BUFFER_BIT);
/* select white for all lines */
 glColor3f(1.0, 1.0, 1.0);

/* in 1st row, 3 lines, each with a different stipple */
 glEnable(GL_LINE_STIPPLE);

 glLineStipple(1, 0x0101); /* dotted */
 drawOneLine(50.0, 125.0, 150.0, 125.0);
 glLineStipple(1, 0x00FF); /* dashed */
 drawOneLine(150.0, 125.0, 250.0, 125.0);
 glLineStipple(1, 0x1C47); /* dash/dot/dash */
 drawOneLine(250.0, 125.0, 350.0, 125.0);

/* in 2nd row, 3 wide lines, each with different stipple */
 glLineWidth(5.0);
 glLineStipple(1, 0x0101); /* dotted */
 drawOneLine(50.0, 100.0, 150.0, 100.0);
 glLineStipple(1, 0x00FF); /* dashed */
 drawOneLine(150.0, 100.0, 250.0, 100.0);
 glLineStipple(1, 0x1C47); /* dash/dot/dash */
 drawOneLine(250.0, 100.0, 350.0, 100.0);
 glLineWidth(1.0);

/* in 3rd row, 6 lines, with dash/dot/dash stipple */
/* as part of a single connected line strip */
 glLineStipple(1, 0x1C47); /* dash/dot/dash */
 glBegin(GL_LINE_STRIP);
 for (i = 0; i < 7; i++)
 glVertex2f(50.0 + ((GLfloat) i * 50.0), 75.0);
 glEnd();

60 Chapter 2: State Management and Drawing Geometric Objects

/* in 4th row, 6 independent lines with same stipple */
 for (i = 0; i < 6; i++) {
 drawOneLine(50.0 + ((GLfloat) i * 50.0), 50.0,
 50.0 + ((GLfloat)(i+1) * 50.0), 50.0);
 }

/* in 5th row, 1 line, with dash/dot/dash stipple */
/* and a stipple repeat factor of 5 */
 glLineStipple(5, 0x1C47); /* dash/dot/dash */
 drawOneLine(50.0, 25.0, 350.0, 25.0);

 glDisable(GL_LINE_STIPPLE);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(400, 150);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the
boundary, but you can also draw them as outlined polygons or simply as
points at the vertices. A filled polygon might be solidly filled or stippled with
a certain pattern. Although the exact details are omitted here, filled polygons
are drawn in such a way that if adjacent polygons share an edge or vertex,
the pixels making up the edge or vertex are drawn exactly once—they’re

Displaying Points, Lines, and Polygons 61

included in only one of the polygons. This is done so that partially
transparent polygons don’t have their edges drawn twice, which would
make those edges appear darker (or brighter, depending on what color
you’re drawing with). Note that it might result in narrow polygons having
no filled pixels in one or more rows or columns of pixels.

To antialias filled polygons, multisampling is highly recommended. For details,
see “Antialiasing Geometric Primitives with Multisampling” in Chapter 6.

Polygons as Points, Outlines, or Solids

A polygon has two sides—front and back—and might be rendered differ-
ently depending on which side is facing the viewer. This allows you to have
cutaway views of solid objects in which there is an obvious distinction
between the parts that are inside and those that are outside. By default, both
front and back faces are drawn in the same way. To change this, or to draw
only outlines or vertices, use glPolygonMode().

For example, you can have the front faces filled and the back faces outlined
with two calls to this routine:

glPolygonMode(GL_FRONT, GL_FILL);
glPolygonMode(GL_BACK, GL_LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order
on the screen are called front-facing. You can construct the surface of any
“reasonable” solid—a mathematician would call such a surface an orient-
able manifold (spheres, donuts, and teapots are orientable; Klein bottles and
Möbius strips aren’t)—from polygons of consistent orientation. In other
words, you can use all clockwise polygons or all counterclockwise polygons.
(This is essentially the mathematical definition of orientable.)

void glPolygonMode(GLenum face, GLenum mode);

Controls the drawing mode for a polygon’s front and back faces. The
parameter face can be GL_FRONT_AND_BACK, GL_FRONT, or GL_BACK;
mode can be GL_POINT, GL_LINE, or GL_FILL to indicate whether the
polygon should be drawn as points, outlined, or filled. By default, both
the front and back faces are drawn filled.

Version 3.1 only accepts GL_FRONT_AND_BACK as a value for face, and
renders polygons the same way regardless of whether they’re front- or
back-facing.

Compatibility
Extension

GL_FRONT
GL_BACK

62 Chapter 2: State Management and Drawing Geometric Objects

Suppose you’ve consistently described a model of an orientable surface but
happen to have the clockwise orientation on the outside. You can swap
what OpenGL considers the back face by using the function glFrontFace(),
supplying the desired orientation for front-facing polygons.

Note: The orientation (clockwise or counterclockwise) of the vertices is also
known as its winding.

In a completely enclosed surface constructed from opaque polygons with
a consistent orientation, none of the back-facing polygons are ever visible—
they’re always obscured by the front-facing polygons. If you are outside
this surface, you might enable culling to discard polygons that OpenGL deter-
mines are back-facing. Similarly, if you are inside the object, only back-
facing polygons are visible. To instruct OpenGL to discard front- or
back-facing polygons, use the command glCullFace() and enable culling
with glEnable().

Advanced

In more technical terms, deciding whether a face of a polygon is front-
or back-facing depends on the sign of the polygon’s area computed in
window coordinates. One way to compute this area is

void glFrontFace(GLenum mode);

Controls how front-facing polygons are determined. By default, mode is
GL_CCW, which corresponds to a counterclockwise orientation of the
ordered vertices of a projected polygon in window coordinates. If mode is
GL_CW, faces with a clockwise orientation are considered front-facing.

void glCullFace(GLenum mode);

Indicates which polygons should be discarded (culled) before they’re
converted to screen coordinates. The mode is either GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK to indicate front-facing, back-
facing, or all polygons. To take effect, culling must be enabled using
glEnable() with GL_CULL_FACE; it can be disabled with glDisable() and
the same argument.

Advanced

Displaying Points, Lines, and Polygons 63

where xi and yi are the x and y window coordinates of the ith vertex of the
n-vertex polygon and

Assuming that GL_CCW has been specified, if a > 0, the polygon corre-
sponding to that vertex is considered to be front-facing; otherwise, it’s back-
facing. If GL_CW is specified and if a < 0, then the corresponding polygon
is front-facing; otherwise, it’s back-facing.

Try This

Modify Example 2-5 by adding some filled polygons. Experiment with differ-
ent colors. Try different polygon modes. Also, enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be
filled with a 32-bit by 32-bit window-aligned stipple pattern, which you
specify with glPolygonStipple().

In addition to defining the current polygon stippling pattern, you must
enable stippling:

glEnable(GL_POLYGON_STIPPLE);

Use glDisable() with the same argument to disable polygon stippling.

Figure 2-11 shows the results of polygons drawn unstippled and then with
two different stippling patterns. The program is shown in Example 2-6. The
reversal of white to black (from Figure 2-10 to Figure 2-11) occurs because
the program draws in white over a black background, using the pattern in
Figure 2-10 as a stencil.

void glPolygonStipple(const GLubyte *mask);

Defines the current stipple pattern for filled polygons. The argument mask
is a pointer to a 32 32 bitmap that’s interpreted as a mask of 0s and 1s.
Where a 1 appears, the corresponding pixel in the polygon is drawn, and
where a 0 appears, nothing is drawn. Figure 2-10 shows how a stipple
pattern is constructed from the characters in mask. Polygon stippling
is enabled and disabled by using glEnable() and glDisable() with GL_
POLYGON_STIPPLE as the argument. The interpretation of the mask data
is affected by the glPixelStore*() GL_UNPACK* modes. (See “Controlling
Pixel-Storage Modes” in Chapter 8.)

i+1 is (i+1) mod n.

Try This

Compatibility
Extension

glPolygonStipple
GL_POLYGON_
STIPPLE

64 Chapter 2: State Management and Drawing Geometric Objects

128 64 32 16 8 4 2 1

By default, for each byte the most significant bit is first.
Bit ordering can be changed by calling glPixelStore*().

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

Figure 2-10 Constructing a Polygon Stipple Pattern

Displaying Points, Lines, and Polygons 65

Example 2-6 Polygon Stipple Patterns: polys.c

void display(void)
{
 GLubyte fly[] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60,
 0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
 0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
 0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC,
 0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
 0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0,
 0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0,
 0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
 0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08,
 0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
 0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};

 GLubyte halftone[] = {
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,

Figure 2-11 Stippled Polygons

66 Chapter 2: State Management and Drawing Geometric Objects

 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
/* draw one solid, unstippled rectangle, */
/* then two stippled rectangles */
 glRectf(25.0, 25.0, 125.0, 125.0);
 glEnable(GL_POLYGON_STIPPLE);
 glPolygonStipple(fly);
 glRectf(125.0, 25.0, 225.0, 125.0);
 glPolygonStipple(halftone);
 glRectf(225.0, 25.0, 325.0, 125.0);
 glDisable(GL_POLYGON_STIPPLE);
 glFlush();
}

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(350, 150);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);

Displaying Points, Lines, and Polygons 67

 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

You might want to use display lists to store polygon stipple patterns to
maximize efficiency. (See “Display List Design Philosophy” in Chapter 7.)

Marking Polygon Boundary Edges

Advanced

OpenGL can render only convex polygons, but many nonconvex poly-
gons arise in practice. To draw these nonconvex polygons, you typically
subdivide them into convex polygons—usually triangles, as shown in
Figure 2-12—and then draw the triangles. Unfortunately, if you decompose
a general polygon into triangles and draw the triangles, you can’t really use
glPolygonMode() to draw the polygon’s outline, as you get all the triangle
outlines inside it. To solve this problem, you can tell OpenGL whether a par-
ticular vertex precedes a boundary edge; OpenGL keeps track of this infor-
mation by passing along with each vertex a bit indicating whether that
vertex is followed by a boundary edge. Then, when a polygon is drawn in
GL_LINE mode, the nonboundary edges aren’t drawn. In Figure 2-12, the
dashed lines represent added edges.

By default, all vertices are marked as preceding a boundary edge, but
you can manually control the setting of the edge flag with the command
glEdgeFlag*(). This command is used between glBegin() and glEnd() pairs,
and it affects all the vertices specified after it until the next glEdgeFlag() call
is made. It applies only to vertices specified for polygons, triangles, and
quads, not to those specified for strips of triangles or quads.

Advanced

Figure 2-12 Subdividing a Nonconvex Polygon

68 Chapter 2: State Management and Drawing Geometric Objects

For instance, Example 2-7 draws the outline shown in Figure 2-13.

Example 2-7 Marking Polygon Boundary Edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);
 glEdgeFlag(GL_TRUE);
 glVertex3fv(V0);
 glEdgeFlag(GL_FALSE);
 glVertex3fv(V1);
 glEdgeFlag(GL_TRUE);
 glVertex3fv(V2);
glEnd();

Normal Vectors

A normal vector (or normal, for short) is a vector that points in a direction
that’s perpendicular to a surface. For a flat surface, one perpendicular direc-
tion is the same for every point on the surface, but for a general curved sur-
face, the normal direction might be different at each point on the surface.
With OpenGL, you can specify a normal for each polygon or for each ver-
tex. Vertices of the same polygon might share the same normal (for a flat
surface) or have different normals (for a curved surface). You can’t assign
normals anywhere other than at the vertices.

void glEdgeFlag(GLboolean flag);
void glEdgeFlagv(const GLboolean *flag);

Indicates whether a vertex should be considered as initializing a boundary
edge of a polygon. If flag is GL_TRUE, the edge flag is set to TRUE (the
default), and any vertices created are considered to precede boundary
edges until this function is called again with flag being GL_FALSE.

Compatibility
Extension

glEdgeFlag

V0

V2

V1

Figure 2-13 Outlined Polygon Drawn Using Edge Flags

Normal Vectors 69

An object’s normal vectors define the orientation of its surface in space—in
particular, its orientation relative to light sources. These vectors are used by
OpenGL to determine how much light the object receives at its vertices.
Lighting—a large topic by itself—is the subject of Chapter 5, and you might
want to review the following information after you’ve read that chapter.
Normal vectors are discussed briefly here because you define normal vectors
for an object at the same time you define the object’s geometry.

You use glNormal*() to set the current normal to the value of the argument
passed in. Subsequent calls to glVertex*() cause the specified vertices to be
assigned the current normal. Often, each vertex has a different normal,
which necessitates a series of alternating calls, as in Example 2-8.

Example 2-8 Surface Normals at Vertices

glBegin (GL_POLYGON);
 glNormal3fv(n0);
 glVertex3fv(v0);
 glNormal3fv(n1);
 glVertex3fv(v1);
 glNormal3fv(n2);
 glVertex3fv(v2);
 glNormal3fv(n3);
 glVertex3fv(v3);
glEnd();

There’s no magic to finding the normals for an object—most likely, you
have to perform some calculations that might include taking derivatives—
but there are several techniques and tricks you can use to achieve certain
effects. Appendix H, “Calculating Normal Vectors,”1 explains how to find
normal vectors for surfaces. If you already know how to do this, if you can
count on always being supplied with normal vectors, or if you don’t want
to use the OpenGL lighting facilities, you don’t need to read this appendix.

void glNormal3{bsidf}(TYPE nx, TYPE ny, TYPE nz);
void glNormal3{bsidf}v(const TYPE *v);

Sets the current normal vector as specified by the arguments. The
nonvector version (without the v) takes three arguments, which specify
an (nx, ny, nz) vector that’s taken to be the normal. Alternatively, you can
use the vector version of this function (with the v) and supply a single
array of three elements to specify the desired normal. The b, s, and i
versions scale their parameter values linearly to the range [1.0, 1.0].

1 This appendix is available online at http://www.opengl-redbook.com/appendices/.

Compatibility
Extension

glNormal

http://www.opengl-redbook.com/appendices/

70 Chapter 2: State Management and Drawing Geometric Objects

Note that at a given point on a surface, two vectors are perpendicular to the
surface, and they point in opposite directions. By convention, the normal
is the one that points to the outside of the surface being modeled. (If you
get inside and outside reversed in your model, just change every normal
vector from (x, y, z) to (x, y, z)).

Also, keep in mind that since normal vectors indicate direction only, their
lengths are mostly irrelevant. You can specify normals of any length, but
eventually they have to be converted to a length of 1 before lighting calcu-
lations are performed. (A vector that has a length of 1 is said to be of unit
length, or normalized.) In general, you should supply normalized normal
vectors. To make a normal vector of unit length, divide each of its x-, y-,
z-components by the length of the normal:

Normal vectors remain normalized as long as your model transformations
include only rotations and translations. (See Chapter 3 for a discussion of
transformations.) If you perform irregular transformations (such as scaling
or multiplying by a shear matrix), or if you specify nonunit-length normals,
then you should have OpenGL automatically normalize your normal vec-
tors after the transformations. To do this, call glEnable(GL_NORMALIZE).

If you supply unit-length normals, and you perform only uniform scaling
(that is, the same scaling value for x, y, and z), you can use glEnable(GL_
RESCALE_NORMAL) to scale the normals by a constant factor, derived
from the modelview transformation matrix, to return them to unit length
after transformation.

Note that automatic normalization or rescaling typically requires additional
calculations that might reduce the performance of your application. Rescal-
ing normals uniformly with GL_RESCALE_NORMAL is usually less expen-
sive than performing full-fledged normalization with GL_NORMALIZE. By
default, both automatic normalizing and rescaling operations are disabled.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render
geometric primitives. Drawing a 20-sided polygon requires at least 22 func-
tion calls: one call to glBegin(), one call for each of the vertices, and a final
call to glEnd(). In the two previous code examples, additional information
(polygon boundary edge flags or surface normals) added function calls for

x2 + y2 + z2

Compatibility
Extension

GL_NORMALIZE
GL_RESCALE_
NORMAL

Vertex Arrays 71

each vertex. This can quickly double or triple the number of function calls
required for one geometric object. For some systems, function calls have a
great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are
shared between adjacent polygons. For example, the cube in Figure 2-14 has
six faces and eight shared vertices. Unfortunately, if the standard method of
describing this object is used, each vertex has to be specified three times:
once for every face that uses it. Therefore, 24 vertices are processed, even
though eight would be enough.

OpenGL has vertex array routines that allow you to specify a lot of vertex-
related data with just a few arrays and to access that data with equally few
function calls. Using vertex array routines, all 20 vertices in a 20-sided
polygon can be put into one array and called with one function. If each
vertex also has a surface normal, all 20 surface normals can be put into
another array and also called with one function.

Arranging data in vertex arrays may increase the performance of your
application. Using vertex arrays reduces the number of function calls,
which improves performance. Also, using vertex arrays may allow reuse of
already processed shared vertices.

Note: Vertex arrays became standard in Version 1.1 of OpenGL. Version 1.4
added support for storing fog coordinates and secondary colors in
vertex arrays.

There are three steps to using vertex arrays to render geometry:

1. Activate (enable) the appropriate arrays, with each storing a different
type of data: vertex coordinates, surface normals, RGBA colors,
secondary colors, color indices, fog coordinates, texture coordinates,
polygon edge flags, or vertex attributes for use in a vertex shader.

Figure 2-14 Six Sides, Eight Shared Vertices

72 Chapter 2: State Management and Drawing Geometric Objects

2. Put data into the array or arrays. The arrays are accessed by the
addresses of (that is, pointers to) their memory locations. In the
client-server model, this data is stored in the client’s address space,
unless you choose to use buffer objects (see “Buffer Objects” on
page 91), for which the arrays are stored in server memory.

3. Draw geometry with the data. OpenGL obtains the data from all
activated arrays by dereferencing the pointers. In the client-server
model, the data is transferred to the server’s address space. There are
three ways to do this:

• Accessing individual array elements (randomly hopping around)

• Creating a list of individual array elements (methodically hopping
around)

• Processing sequential array elements

The dereferencing method you choose may depend on the type of
problem you encounter. Version 1.4 added support for multiple array
access from a single function call.

Interleaved vertex array data is another common method of organization.
Instead of several different arrays, each maintaining a different type of data
(color, surface normal, coordinate, and so on), you may have the different
types of data mixed into a single array. (See “Interleaved Arrays” on page 88.)

Step 1: Enabling Arrays

The first step is to call glEnableClientState() with an enumerated parame-
ter, which activates the chosen array. In theory, you may need to call this
up to eight times to activate the eight available arrays. In practice, you’ll
probably activate up to six arrays. For example, it is unlikely that you would
activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, as your program’s
display mode supports either RGBA mode or color-index mode, but proba-
bly not both simultaneously.

void glEnableClientState(GLenum array)

Specifies the array to enable. The symbolic constants GL_VERTEX_ARRAY,
GL_COLOR_ARRAY, GL_SECONDARY_COLOR_ARRAY,
GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_FOG_COORD_ARRAY, GL_TEXTURE_COORD_ARRAY, and
GL_EDGE_FLAG_ARRAY are acceptable parameters.

Compatibility
Extension

glEnableClientState

Vertex Arrays 73

Note: Version 3.1 supports only vertex array data stored in buffer objects
(see “Buffer Objects” on page 91 for details).

If you use lighting, you may want to define a surface normal for every
vertex. (See “Normal Vectors” on page 68.) To use vertex arrays for that case,
you activate both the surface normal and vertex coordinate arrays:

glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Suppose that you want to turn off lighting at some point and just draw
the geometry using a single color. You want to call glDisable() to turn off
lighting states (see Chapter 5). Now that lighting has been deactivated, you
also want to stop changing the values of the surface normal state, which is
wasted effort. To do this, you call

glDisableClientState(GL_NORMAL_ARRAY);

You might be asking yourself why the architects of OpenGL created these
new (and long) command names, like gl*ClientState(), for example.
Why can’t you just call glEnable() and glDisable()? One reason is that
glEnable() and glDisable() can be stored in a display list, but the specifica-
tion of vertex arrays cannot, because the data remains on the client’s side.

If multitexturing is enabled, enabling and disabling client arrays affects
only the active texturing unit. See “Multitexturing” on page 467 for more
details.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single
array in the client space. There are eight different routines for specifying
arrays—one routine for each kind of array. There is also a command that can
specify several client-space arrays at once, all originating from a single
interleaved array.

void glDisableClientState(GLenum array);

Specifies the array to disable. It accepts the same symbolic constants as
glEnableClientState().

Compatibility
Extension

glDisableClientState

74 Chapter 2: State Management and Drawing Geometric Objects

To access the other seven arrays, there are seven similar routines:

Note: Additional vertex attributes, used by programmable shaders, can be
stored in vertex arrays. Because of their association with shaders,
they are discussed in Chapter 15, “The OpenGL Shading Language,”
on page 720. For Version 3.1, only generic vertex arrays are
supported for storing vertex data.

The main difference among the routines is whether size and type are unique
or must be specified. For example, a surface normal always has three com-
ponents, so it is redundant to specify its size. An edge flag is always a single
Boolean, so neither size nor type needs to be mentioned. Table 2-4 displays
legal values for size and data types.

For OpenGL implementations that support multitexturing, specifying a tex-
ture coordinate array with glTexCoordPointer() only affects the currently
active texture unit. See “Multitexturing” on page 467 for more information.

void glVertexPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

Specifies where spatial coordinate data can be accessed. pointer is the memory
address of the first coordinate of the first vertex in the array. type specifies
the data type (GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE) of each
coordinate in the array. size is the number of coordinates per vertex, which
must be 2, 3, or 4. stride is the byte offset between consecutive vertices. If
stride is 0, the vertices are understood to be tightly packed in the array.

void glColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

void glSecondaryColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

void glIndexPointer(GLenum type, GLsizei stride, const GLvoid *pointer);
void glNormalPointer(GLenum type, GLsizei stride,

const GLvoid *pointer);
void glFogCoordPointer(GLenum type, GLsizei stride,

const GLvoid *pointer);
void glTexCoordPointer(GLint size, GLenum type, GLsizei stride,

const GLvoid *pointer);
void glEdgeFlagPointer(GLsizei stride, const GLvoid *pointer);

Compatibility
Extension

glVertexPointer

Compatibility
Extension

glColorPointer
glSecondaryColor
Pointer
glIndexPointer
glNormalPointer
glFogCoordPointer
glTexCoordPointer
glEdgeFlagPointer

Vertex Arrays 75

Example 2-9 uses vertex arrays for both RGBA colors and vertex coordinates.
RGB floating-point values and their corresponding (x, y) integer coordi-
nates are loaded into the GL_COLOR_ARRAY and GL_VERTEX_ARRAY.

Example 2-9 Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
 100, 325,
 175, 25,
 175, 325,
 250, 25,
 325, 325};
static GLfloat colors[] = {1.0, 0.2, 0.2,
 0.2, 0.2, 1.0,
 0.8, 1.0, 0.2,
 0.75, 0.75, 0.75,
 0.35, 0.35, 0.35,
 0.5, 0.5, 0.5};

Command Sizes Values for type Argument

glVertexPointer 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glColorPointer 3, 4 GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT,
GL_DOUBLE

glSecondaryColorPointer 3 GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT,
GL_DOUBLE

glIndexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT,
GL_FLOAT, GL_DOUBLE

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glFogCoordPointer 1 GL_FLOAT, GL_DOUBLE

glTexCoordPointer 1, 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 no type argument (type of data must be
GLboolean)

Table 2-4 Vertex Array Sizes (Values per Vertex) and Data Types

76 Chapter 2: State Management and Drawing Geometric Objects

glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(3, GL_FLOAT, 0, colors);
glVertexPointer(2, GL_INT, 0, vertices);

Stride

The stride parameter for the gl*Pointer() routines tells OpenGL how to
access the data you provide in your pointer arrays. Its value should be the
number of bytes between the starts of two successive pointer elements, or
zero, which is a special case. For example, suppose you stored both your
vertex’s RGB and (x, y, z) coordinates in a single array, such as the following:

static GLfloat intertwined[] =
 {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
 1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
 1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
 0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
 0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
 0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

To reference only the color values in the intertwined array, the following
call starts from the beginning of the array (which could also be passed as
&intertwined[0]) and jumps ahead 6 * sizeof(GLfloat) bytes, which is the size
of both the color and vertex coordinate values. This jump is enough to get
to the beginning of the data for the next vertex:

glColorPointer(3, GL_FLOAT, 6*sizeof(GLfloat), &intertwined[0]);

For the vertex coordinate pointer, you need to start from further in the
array, at the fourth element of intertwined (remember that C programmers
start counting at zero):

glVertexPointer(3,GL_FLOAT, 6*sizeof(GLfloat), &intertwined[3]);

If your data is stored similar to the intertwined array above, you may find the
approach described in “Interleaved Arrays” on page 88 more convenient for
storing your data.

With a stride of zero, each type of vertex array (RGB color, color index,
vertex coordinate, and so on) must be tightly packed. The data in the array
must be homogeneous; that is, the data must be all RGB color values, all
vertex coordinates, or all some other data similar in some fashion.

Vertex Arrays 77

Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain
on the client side, and their contents are easily changed. In Step 3, contents
of the arrays are obtained, sent to the server, and then sent down the
graphics processing pipeline for rendering.

You can obtain data from a single array element (indexed location), from an
ordered list of array elements (which may be limited to a subset of the entire
vertex array data), or from a sequence of array elements.

Dereferencing a Single Array Element

glArrayElement() is usually called between glBegin() and glEnd(). (If
called outside, glArrayElement() sets the current state for all enabled
arrays, except for vertex, which has no current state.) In Example 2-10, a
triangle is drawn using the third, fourth, and sixth vertices from enabled
vertex arrays. (Again, remember that C programmers begin counting array
locations with zero.)

Example 2-10 Using glArrayElement() to Define Colors and Vertices

glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glColorPointer(3, GL_FLOAT, 0, colors);
glVertexPointer(2, GL_INT, 0, vertices);

glBegin(GL_TRIANGLES);
glArrayElement(2);
glArrayElement(3);
glArrayElement(5);
glEnd();

void glArrayElement(GLint ith)

Obtains the data of one (the ith) vertex for all currently enabled arrays.
For the vertex coordinate array, the corresponding command would be
glVertex[size][type]v(), where size is one of [2, 3, 4], and type is one of
[s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble, respectively. Both size
and type were defined by glVertexPointer(). For other enabled arrays,
glArrayElement() calls glEdgeFlagv(), glTexCoord[size][type]v(),
glColor[size][type]v(), glSecondaryColor3[type]v(), glIndex[type]v(),
glNormal3[type]v(), and glFogCoord[type]v(). If the vertex coordinate
array is enabled, the glVertex*v() routine is executed last, after the
execution (if enabled) of up to seven corresponding array values.

Compatibility
Extension

glArrayElement

78 Chapter 2: State Management and Drawing Geometric Objects

When executed, the latter five lines of code have the same effect as

glBegin(GL_TRIANGLES);
glColor3fv(colors + (2 * 3));
glVertex2iv(vertices + (2 * 2));
glColor3fv(colors + (3 * 3));
glVertex2iv(vertices + (3 * 2));
glColor3fv(colors + (5 * 3));
glVertex2iv(vertices + (5 * 2));
glEnd();

Since glArrayElement() is only a single function call per vertex, it may
reduce the number of function calls, which increases overall performance.

Be warned that if the contents of the array are changed between glBegin()
and glEnd(), there is no guarantee that you will receive original data or
changed data for your requested element. To be safe, don’t change the
contents of any array element that might be accessed until the primitive
is completed.

Dereferencing a List of Array Elements

glArrayElement() is good for randomly “hopping around” your data
arrays. Similar routines, glDrawElements(), glMultiDrawElements(), and
glDrawRangeElements(), are good for hopping around your data arrays in
a more orderly manner.

The effect of glDrawElements() is almost the same as this command
sequence:

glBegin(mode);
for (i = 0; i < count; i++)
 glArrayElement(indices[i]);
glEnd();

void glDrawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices);

Defines a sequence of geometric primitives using count number of ele-
ments, whose indices are stored in the array indices. type must be one of
GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT,
indicating the data type of the indices array. mode specifies what kind of
primitives are constructed and is one of the same values that is accepted
by glBegin(); for example, GL_POLYGON, GL_LINE_LOOP, GL_LINES,
GL_POINTS, and so on.

Vertex Arrays 79

glDrawElements() additionally checks to make sure mode, count, and type
are valid. Also, unlike the preceding sequence, executing glDrawElements()
leaves several states indeterminate. After execution of glDrawElements(),
current RGB color, secondary color, color index, normal coordinates, fog
coordinates, texture coordinates, and edge flag are indeterminate if the
corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in
an array of indices. Example 2-11 shows two ways to use glDrawElements()
to render the cube. Figure 2-15 shows the numbering of the vertices used in
Example 2-11.

Example 2-11 Using glDrawElements() to Dereference Several Array Elements

static GLubyte frontIndices[] = {4, 5, 6, 7};
static GLubyte rightIndices[] = {1, 2, 6, 5};
static GLubyte bottomIndices[] = {0, 1, 5, 4};
static GLubyte backIndices[] = {0, 3, 2, 1};
static GLubyte leftIndices[] = {0, 4, 7, 3};
static GLubyte topIndices[] = {2, 3, 7, 6};

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topIndices);

Note: It is an error to encapsulate glDrawElements() between a
glBegin()/glEnd() pair.

With several primitive types (such as GL_QUADS, GL_TRIANGLES, and GL_
LINES), you may be able to compact several lists of indices together into a
single array. Since the GL_QUADS primitive interprets each group of four

0

1

2

3

4

5

6

7Back

Front

Figure 2-15 Cube with Numbered Vertices

80 Chapter 2: State Management and Drawing Geometric Objects

vertices as a single polygon, you may compact all the indices used in
Example 2-11 into a single array, as shown in Example 2-12:

Example 2-12 Compacting Several glDrawElements() Calls into One

static GLubyte allIndices[] = {4, 5, 6, 7, 1, 2, 6, 5,
0, 1, 5, 4, 0, 3, 2, 1,
0, 4, 7, 3, 2, 3, 7, 6};

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allIndices);

For other primitive types, compacting indices from several arrays into
a single array renders a different result. In Example 2-13, two calls to
glDrawElements() with the primitive GL_LINE_STRIP render two line
strips. You cannot simply combine these two arrays and use a single call to
glDrawElements() without concatenating the lines into a single strip that
would connect vertices #6 and #7. (Note that vertex #1 is being used in both
line strips just to show that this is legal.)

Example 2-13 Two glDrawElements() Calls That Render Two Line Strips

static GLubyte oneIndices[] = {0, 1, 2, 3, 4, 5, 6};
static GLubyte twoIndices[] = {7, 1, 8, 9, 10, 11};

glDrawElements(GL_LINE_STRIP, 7, GL_UNSIGNED_BYTE, oneIndices);
glDrawElements(GL_LINE_STRIP, 6, GL_UNSIGNED_BYTE, twoIndices);

The routine glMultiDrawElements() was introduced in OpenGL Version
1.4 to enable combining the effects of several glDrawElements() calls into
a single call.

The effect of glMultiDrawElements() is the same as

for (i = 0; i < primcount; i++) {
 if (count[i] > 0)
 glDrawElements(mode, count[i], type, indices[i]);
}

void glMultiDrawElements(GLenum mode, GLsizei *count,
GLenum type, const GLvoid **indices,
GLsizei primcount);

Calls a sequence of primcount (a number of) glDrawElements() com-
mands. indices is an array of pointers to lists of array elements. count is
an array of how many vertices are found in each respective array element
list. mode (primitive type) and type (data type) are the same as they are in
glDrawElements().

Vertex Arrays 81

The calls to glDrawElements() in Example 2-13 can be combined into a
single call of glMultiDrawElements(), as shown in Example 2-14:

Example 2-14 Use of glMultiDrawElements(): mvarray.c

static GLubyte oneIndices[] = {0, 1, 2, 3, 4, 5, 6};
static GLubyte twoIndices[] = {7, 1, 8, 9, 10, 11};
static GLsizei count[] = {7, 6};
static GLvoid * indices[2] = {oneIndices, twoIndices};

glMultiDrawElements(GL_LINE_STRIP, count, GL_UNSIGNED_BYTE,
 indices, 2);

Like glDrawElements() or glMultiDrawElements(), glDrawRangeElements()
is also good for hopping around data arrays and rendering their contents.
glDrawRangeElements() also introduces the added restriction of a range
of legal values for its indices, which may increase program performance.
For optimal performance, some OpenGL implementations may be able to
prefetch (obtain prior to rendering) a limited amount of vertex array data.
glDrawRangeElements() allows you to specify the range of vertices to be
prefetched.

It is a mistake for vertices in the array indices to reference outside the range
[start, end]. However, OpenGL implementations are not required to find or
report this mistake. Therefore, illegal index values may or may not generate
an OpenGL error condition, and it is entirely up to the implementation to
decide what to do.

You can use glGetIntegerv() with GL_MAX_ELEMENTS_VERTICES and
GL_MAX_ELEMENTS_INDICES to find out, respectively, the recommended
maximum number of vertices to be prefetched and the maximum number

void glDrawRangeElements(GLenum mode, GLuint start,
GLuint end, GLsizei count,
GLenum type, const GLvoid *indices);

Creates a sequence of geometric primitives that is similar to, but more
restricted than, the sequence created by glDrawElements(). Several
parameters of glDrawRangeElements() are the same as counterparts in
glDrawElements(), including mode (kind of primitives), count (number
of elements), type (data type), and indices (array locations of vertex data).
glDrawRangeElements() introduces two new parameters: start and end,
which specify a range of acceptable values for indices. To be valid, values
in the array indices must lie between start and end, inclusive.

82 Chapter 2: State Management and Drawing Geometric Objects

of indices (indicating the number of vertices to be rendered) to be refer-
enced. If end – start + 1 is greater than the recommended maximum of
prefetched vertices, or if count is greater than the recommended maximum
of indices, glDrawRangeElements() should still render correctly, but per-
formance may be reduced.

Not all vertices in the range [start, end] have to be referenced. However,
on some implementations, if you specify a sparsely used range, you may
unnecessarily process many vertices that go unused.

With glArrayElement(), glDrawElements(), glMultiDrawElements(), and
glDrawRangeElements(), it is possible that your OpenGL implementation
caches recently processed (meaning transformed, lit) vertices, allowing your
application to “reuse” them by not sending them down the transformation
pipeline additional times. Take the aforementioned cube, for example,
which has six faces (polygons) but only eight vertices. Each vertex is used
by exactly three faces. Without gl*Elements(), rendering all six faces would
require processing 24 vertices, even though 16 vertices are redundant. Your
implementation of OpenGL may be able to minimize redundancy and
process as few as eight vertices. (Reuse of vertices may be limited to all
vertices within a single glDrawElements() or glDrawRangeElements() call,
a single index array for glMultiDrawElements(), or, for glArrayElement(),
within one glBegin()/glEnd() pair.)

Dereferencing a Sequence of Array Elements

While glArrayElement(), glDrawElements(), and glDrawRangeElements()
“hop around” your data arrays, glDrawArrays() plows straight through them.

The effect of glDrawArrays() is almost the same as this command sequence:

glBegin (mode);
for (i = 0; i < count; i++)
 glArrayElement(first + i);
glEnd();

void glDrawArrays(GLenum mode, GLint first, GLsizei count);

Constructs a sequence of geometric primitives using array elements
starting at first and ending at first + count – 1 of each enabled array. mode
specifies what kinds of primitives are constructed and is one of the same
values accepted by glBegin(); for example, GL_POLYGON, GL_LINE_
LOOP, GL_LINES, GL_POINTS, and so on.

Vertex Arrays 83

As is the case with glDrawElements(), glDrawArrays() also performs error
checking on its parameter values and leaves the current RGB color, secondary
color, color index, normal coordinates, fog coordinates, texture coordinates,
and edge flag with indeterminate values if the corresponding array has been
enabled.

Try This

Change the icosahedron drawing routine in Example 2-19 on page 115 to
use vertex arrays.

Similar to glMultiDrawElements(), the routine glMultiDrawArrays() was
introduced in OpenGL Version 1.4 to combine several glDrawArrays() calls
into a single call.

The effect of glMultiDrawArrays() is the same as

for (i = 0; i < primcount; i++) {
 if (count[i] > 0)
 glDrawArrays(mode, first[i], count[i]);
}

Restarting Primitives

As you start working with larger sets of vertex data, you are likely to find
that you need to make numerous calls to the OpenGL drawing routines,
usually rendering the same type of primitive (such as GL_TRIANGLE_STRIP,
for example) that you used in the previous drawing call. Of course, you can
use the glMultiDraw*() routines, but they require the overhead of
maintaining the arrays for the starting index and length of each primitive.

OpenGL Version 3.1 added the ability to restart primitives within the same
drawing call by specifying a special value, the primitive restart index, which

void glMultiDrawArrays(GLenum mode, GLint *first, GLsizei *count
GLsizei primcount);

Calls a sequence of primcount (a number of) glDrawArrays() commands.
mode specifies the primitive type with the same values as accepted by
glBegin(). first and count contain lists of array locations indicating where
to process each list of array elements. Therefore, for the ith list of array
elements, a geometric primitive is constructed starting at first[i] and
ending at first[i] + count[i] – 1.

Try This

84 Chapter 2: State Management and Drawing Geometric Objects

is specially processed by OpenGL. When the primitive restart index is
encountered in a draw call, a new rendering primitive of the same type is
started with the vertex following the index. The primitive restart index is
specified by the glPrimitiveRestartIndex() routine.

Primitive restarting is controlled by calling glEnable() or glDisable() and
specifying GL_PRIMITIVE_RESTART, as demonstrated in Example 2-15.

Example 2-15 Using glPrimitiveRestartIndex() to Render Multiple Triangle Strips:
primrestart.c.

#define BUFFER_OFFSET(offset) ((GLvoid *) NULL + offset)

#define XStart -0.8
#define XEnd 0.8
#define YStart -0.8
#define YEnd 0.8

#define NumXPoints 11
#define NumYPoints 11
#define NumPoints (NumXPoints * NumYPoints)
#define NumPointsPerStrip (2*NumXPoints)
#define NumStrips (NumYPoints-1)
#define RestartIndex 0xffff

void
init()
{
 GLuint vbo, ebo;
 GLfloat *vertices;
 GLushort *indices;

 /* Set up vertex data */
 glGenBuffers(1, &vbo);
 glBindBuffer(GL_ARRAY_BUFFER, vbo);
 glBufferData(GL_ARRAY_BUFFER, 2*NumPoints*sizeof(GLfloat),
 NULL, GL_STATIC_DRAW);

void glPrimitiveRestartIndex(GLuint index);

Specifies the vertex array element index used to indicate that a new
primitive should be started during rendering. When processing of vertex
array element indices encounters a value that matches index, no vertex
data is processed, the current graphics primitive is terminated, and a new
one of the identical type is started.

Vertex Arrays 85

 vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);

 if (vertices == NULL) {
 fprintf(stderr, "Unable to map vertex buffer\n");
 exit(EXIT_FAILURE);
 }
 else {
 int i, j;
 GLfloat dx = (XEnd - XStart) / (NumXPoints - 1);
 GLfloat dy = (YEnd - YStart) / (NumYPoints - 1);
 GLfloat *tmp = vertices;
 int n = 0;

 for (j = 0; j < NumYPoints; ++j) {
 GLfloat y = YStart + j*dy;

 for (i = 0; i < NumXPoints; ++i) {
 GLfloat x = XStart + i*dx;
 *tmp++ = x;
 *tmp++ = y;
 }
 }

 glUnmapBuffer(GL_ARRAY_BUFFER);
 glVertexPointer(2, GL_FLOAT, 0, BUFFER_OFFSET(0));
 glEnableClientState(GL_VERTEX_ARRAY);
 }

 /* Set up index data */
 glGenBuffers(1, &ebo);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);

 /* We allocate an extra restart index because it simplifies
 ** the element-array loop logic */
 glBufferData(GL_ELEMENT_ARRAY_BUFFER,
 NumStrips*(NumPointsPerStrip+1)*sizeof(GLushort),
 NULL, GL_STATIC_DRAW);
 indices = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER,
 GL_WRITE_ONLY);

 if (indices == NULL) {
 fprintf(stderr, "Unable to map index buffer\n");
 exit(EXIT_FAILURE);
 }
 else {
 int i, j;
 GLushort *index = indices;

86 Chapter 2: State Management and Drawing Geometric Objects

 for (j = 0; j < NumStrips; ++j) {
 GLushort bottomRow = j*NumYPoints;
 GLushort topRow = bottomRow + NumYPoints;

 for (i = 0; i < NumXPoints; ++i) {
 *index++ = topRow + i;
 *index++ = bottomRow + i;
 }
 *index++ = RestartIndex;
 }

 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
 }

 glPrimitiveRestartIndex(RestartIndex);
 glEnable(GL_PRIMITIVE_RESTART);
}

void
display()
{
 int i, start;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glColor3f(1, 1, 1);
 glDrawElements(GL_TRIANGLE_STRIP,
 NumStrips*(NumPointsPerStrip + 1),
 GL_UNSIGNED_SHORT, BUFFER_OFFSET(0));

 glutSwapBuffers();
}

Instanced Drawing

Advanced

OpenGL Version 3.1 (specifically, GLSL version 1.40) added support for
instanced drawing, which provides an additional value—gl_InstanceID,
called the instance ID, and accessible only in a vertex shader—that is
monotonically incremented for each group of primitives specified.

Advanced

Vertex Arrays 87

glDrawArraysInstanced() operates similarly to glMultiDrawArrays(),
except that the starting index and vertex count (as specified by first and
count, respectively) are the same for each call to glDrawArrays().

glDrawArraysInstanced() has the same effect as this call sequence (except
that your application cannot manually update gl_InstanceID):

for (i = 0; i < primcount; i++) {
gl_InstanceID = i;
glDrawArrays(mode, first, count);

}
gl_InstanceID = 0;

Likewise, glDrawElementsInstanced() performs the same operation, but
allows random-access to the data in the vertex array:

The implementation of glDrawElementsInstanced() is shown here:

for (i = 0; i < primcount; i++) {
gl_InstanceID = i;
glDrawElements(mode, count, type, indicies);

}
gl_InstanceID = 0;

void glDrawArraysInstanced(GLenum mode, GLint first, GLsizei count,
GLsizei primcount);

Effectively calls glDrawArrays() primcount times, setting the GLSL vertex
shader value gl_InstanceID before each call. mode specifies the primitive
type. first and count specify the range of array elements that are passed to
glDrawArrays().

void glDrawElementsInstanced(GLenum mode, GLsizei count,
GLenum type, const void *indicies,
GLsizei primcount);

Effectively calls glDrawElements() primcount times, setting the GLSL
vertex shader value gl_InstanceID before each call. mode specifies the
primitive type. type indicates the data type of the array indices and must
be one of the following: GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT,
or GL_UNSIGNED_INT. indicies and count specify the range of array
elements that are passed to glDrawElements().

88 Chapter 2: State Management and Drawing Geometric Objects

Interleaved Arrays

Advanced

Earlier in this chapter (see “Stride” on page 76), the special case of inter-
leaved arrays was examined. In that section, the array intertwined, which
interleaves RGB color and 3D vertex coordinates, was accessed by calls to
glColorPointer() and glVertexPointer(). Careful use of stride helped prop-
erly specify the arrays:

static GLfloat intertwined[] =
 {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
 1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
 1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
 0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
 0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
 0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

There is also a behemoth routine, glInterleavedArrays(), that can specify
several vertex arrays at once. glInterleavedArrays() also enables and dis-
ables the appropriate arrays (so it combines “Step 1: Enabling Arrays” on
page 72 and “Step 2: Specifying Data for the Arrays” on page 73). The array
intertwined exactly fits one of the 14 data-interleaving configurations sup-
ported by glInterleavedArrays(). Therefore, to specify the contents of the
array intertwined into the RGB color and vertex arrays and enable both
arrays, call

glInterleavedArrays(GL_C3F_V3F, 0, intertwined);

This call to glInterleavedArrays() enables GL_COLOR_ARRAY and
GL_VERTEX_ARRAY. It disables GL_SECONDARY_COLOR_ARRAY,
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_FOG_COORD_ARRAY,
GL_TEXTURE_COORD_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calling glColorPointer() and
glVertexPointer() to specify the values for six vertices in each array. Now
you are ready for Step 3: calling glArrayElement(), glDrawElements(),
glDrawRangeElements(), or glDrawArrays() to dereference array
elements.

Note that glInterleavedArrays() does not support edge flags.

The mechanics of glInterleavedArrays() are intricate and require reference
to Example 2-16 and Table 2-5. In that example and table, you’ll see et, ec,
and en, which are the Boolean values for the enabled or disabled texture
coordinate, color, and normal arrays; and you’ll see st, sc, and sv, which are
the sizes (numbers of components) for the texture coordinate, color, and

Advanced

Vertex Arrays 89

vertex arrays. tc is the data type for RGBA color, which is the only array that
can have nonfloating-point interleaved values. pc, pn, and pv are the calcu-
lated strides for jumping into individual color, normal, and vertex values;
and s is the stride (if one is not specified by the user) to jump from one array
element to the next.

The effect of glInterleavedArrays() is the same as calling the command
sequence in Example 2-16 with many values defined in Table 2-5. All
pointer arithmetic is performed in units of sizeof(GLubyte).

Example 2-16 Effect of glInterleavedArrays(format, stride, pointer)

int str;
/* set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s
 * as a function of Table 2-5 and the value of format
 */

str = stride;
if (str == 0)
 str = s;

glDisableClientState(GL_EDGE_FLAG_ARRAY);
glDisableClientState(GL_INDEX_ARRAY);
glDisableClientState(GL_SECONDARY_COLOR_ARRAY);
glDisableClientState(GL_FOG_COORD_ARRAY);

if (et) {
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glTexCoordPointer(st, GL_FLOAT, str, pointer);
}
else

void glInterleavedArrays(GLenum format,
GLsizei stride, const GLvoid *pointer)

Initializes all eight arrays, disabling arrays that are not specified in format,
and enabling the arrays that are specified. format is one of 14 symbolic
constants, which represent 14 data configurations; Table 2-5 displays
format values. stride specifies the byte offset between consecutive vertices.
If stride is 0, the vertices are understood to be tightly packed in the array.
pointer is the memory address of the first coordinate of the first vertex in
the array.

If multitexturing is enabled, glInterleavedArrays() affects only the active
texture unit. See “Multitexturing” on page 467 for details.

Compatibility
Extension

glInterleavedArrays

90 Chapter 2: State Management and Drawing Geometric Objects

 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (ec) {
 glEnableClientState(GL_COLOR_ARRAY);
 glColorPointer(sc, tc, str, pointer+pc);
}
else
 glDisableClientState(GL_COLOR_ARRAY);

if (en) {
 glEnableClientState(GL_NORMAL_ARRAY);
 glNormalPointer(GL_FLOAT, str, pointer+pn);
}
else
 glDisableClientState(GL_NORMAL_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(sv, GL_FLOAT, str, pointer+pv);

In Table 2-5, T and F are True and False. f is sizeof(GLfloat). c is 4 times
sizeof(GLubyte), rounded up to the nearest multiple of f.

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If
you use any of the formats with C4UB, you may have to use a struct data

Format et ec en st sc sv tc pc pn pv s

GL_V2F F F F 2 0 2f

GL_V3F F F F 3 0 3f

GL_C4UB_V2F F T F 4 2 GL_UNSIGNED_BYTE 0 c c+2f

GL_C4UB_V3F F T F 4 3 GL_UNSIGNED_BYTE 0 c c+3f

GL_C3F_V3F F T F 3 3 GL_FLOAT 0 3f 6f

GL_N3F_V3F F F T 3 0 3f 6f

GL_C4F_N3F_V3F F T T 4 3 GL_FLOAT 0 4f 7f 10f

GL_T2F_V3F T F F 2 3 2f 5f

GL_T4F_V4F T F F 4 4 4f 8f

GL_T2F_C4UB_V3F T T F 2 4 3 GL_UNSIGNED_BYTE 2f c+2f c+5f

GL_T2F_C3F_V3F T T F 2 3 3 GL_FLOAT 2f 5f 8f

GL_T2F_N3F_V3F T F T 2 3 2f 5f 8f

GL_T2F_C4F_N3F_V3F T T T 2 4 3 GL_FLOAT 2f 6f 9f 12f

GL_T4F_C4F_N3F_V4F T T T 4 4 4 GL_FLOAT 4f 8f 11f 15f

Table 2-5 Variables That Direct glInterleavedArrays()

Buffer Objects 91

type or do some delicate type casting and pointer math to pack four
unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase
application performance. With an interleaved array, the exact layout of
your data is known. You know your data is tightly packed and may be
accessed in one chunk. If interleaved arrays are not used, the stride and size
information has to be examined to detect whether data is tightly packed.

Note: glInterleavedArrays() only enables and disables vertex arrays
and specifies values for the vertex-array data. It does not render any-
thing. You must still complete “Step 3: Dereferencing and Render-
ing” on page 77 and call glArrayElement(), glDrawElements(),
glDrawRangeElements(), or glDrawArrays() to dereference
the pointers and render graphics.

Buffer Objects

Advanced

There are many operations in OpenGL where you send a large block of data
to OpenGL, such as passing vertex array data for processing. Transferring
that data may be as simple as copying from your system’s memory down
to your graphics card. However, because OpenGL was designed as a client-
server model, any time that OpenGL needs data, it will have to be transferred
from the client’s memory. If that data doesn’t change, or if the client and
server reside on different computers (distributed rendering), that data
transfer may be slow, or redundant.

Buffer objects were added to OpenGL Version 1.5 to allow an application to
explicitly specify which data it would like to be stored in the graphics server.

Many different types of buffer objects are used in the current versions of
OpenGL:

• Vertex data in arrays can be stored in server-side buffer objects starting
with OpenGL Version 1.5. They are described in “Using Buffer Objects
with Vertex-Array Data” on page 102 of this chapter.

• Support for storing pixel data, such as texture maps or blocks of pixels,
in buffer objects was added into OpenGL Version 2.1 It is described in
“Using Buffer Objects with Pixel Rectangle Data” in Chapter 8.

Advanced

92 Chapter 2: State Management and Drawing Geometric Objects

• Version 3.1 added uniform buffer objects for storing blocks of uniform-
variable data for use with shaders.

You will find many other features in OpenGL that use the term “objects,”
but not all apply to storing blocks of data. For example, texture objects
(introduced in OpenGL Version 1.1) merely encapsulate various state
settings associated with texture maps (See “Texture Objects” on page 437).
Likewise, vertex-array objects, added in Version 3.0, encapsulate the state
parameters associated with using vertex arrays. These types of objects allow
you to alter numerous state settings with many fewer function calls. For
maximum performance, you should try to use them whenever possible,
once you’re comfortable with their operation.

Note: An object is referred to by its name, which is an unsigned integer
identifier. Starting with Version 3.1, all names must be generated by
OpenGL using one of the glGen*() routines; user-defined names are
no longer accepted.

Creating Buffer Objects

In OpenGL Version 3.0, any nonzero unsigned integer may used as a buffer
object identifier. You may either arbitrarily select representative values or let
OpenGL allocate and manage those identifiers for you. Why the difference?
By having OpenGL allocate identifiers, you are guaranteed to avoid an
already used buffer object identifier. This helps to eliminate the risk of
modifying data unintentionally. In fact, OpenGL Version 3.1 requires that
all object identifiers be generated, disallowing user-defined names.

To have OpenGL allocate buffer objects identifiers, call glGenBuffers().

void glGenBuffers(GLsizei n, GLuint *buffers);

Returns n currently unused names for buffer objects in the array buffers.
The names returned in buffers do not have to be a contiguous set of
integers.

The names returned are marked as used for the purposes of allocating
additional buffer objects, but only acquire a valid state once they have
been bound.

Zero is a reserved buffer object name and is never returned as a buffer
object by glGenBuffers().

Buffer Objects 93

You can also determine whether an identifier is a currently used buffer
object identifier by calling glIsBuffer().

Making a Buffer Object Active

To make a buffer object active, it needs to be bound. Binding selects which
buffer object future operations will affect, either for initializing data or
using that buffer for rendering. That is, if you have more than one buffer
object in your application, you’ll likely call glBindBuffer() multiple times:
once to initialize the object and its data, and then subsequent times either
to select that object for use in rendering or to update its data.

To disable use of buffer objects, call glBindBuffer() with zero as the buffer
identifier. This switches OpenGL to the default mode of not using buffer
objects.

Allocating and Initializing Buffer Objects with Data

Once you’ve bound a buffer object, you need to reserve space for storing
your data. This is done by calling glBufferData().

GLboolean glIsBuffer(GLuint buffer);

Returns GL_TRUE if buffer is the name of a buffer object that has been
bound, but has not been subsequently deleted. Returns GL_FALSE if buffer
is zero or if buffer is a nonzero value that is not the name of a buffer object.

void glBindBuffer(GLenum target, GLuint buffer);

Specifies the current active buffer object. target must be set to one of
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_
BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_COPY_READ_BUFFER,
GL_COPY_WRITE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or
GL_UNIFORM_BUFFER. buffer specifies the buffer object to be bound to.

glBindBuffer() does three things: 1. When using buffer of an unsigned
integer other than zero for the first time, a new buffer object is created and
assigned that name. 2. When binding to a previously created buffer
object, that buffer object becomes the active buffer object. 3. When
binding to a buffer value of zero, OpenGL stops using buffer objects.

94 Chapter 2: State Management and Drawing Geometric Objects

glBufferData() first allocates memory in the OpenGL server for storing your
data. If you request too much memory, a GL_OUT_OF_MEMORY error will
be set. Once the storage has been reserved, and if the data parameter is not
NULL, size units of storage (usually bytes) are copied from the client’s
memory into the buffer object. However, if you need to dynamically load
the data at some point after the buffer is created, pass NULL in for the data
pointer. This will reserve the appropriate storage for your data, but leave it
uninitialized.

void glBufferData(GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage);

Allocates size storage units (usually bytes) of OpenGL server memory for
storing vertex array data or indices. Any previous data associated with the
currently bound object will be deleted.

target may be either GL_ARRAY_BUFFER for vertex data; GL_ELEMENT_
ARRAY_BUFFER for index data; GL_PIXEL_UNPACK_BUFFER for pixel
data being passed into OpenGL; GL_PIXEL_PACK_BUFFER for pixel data
being retrieved from OpenGL; GL_COPY_READ_BUFFER and GL_COPY_
WRITE_BUFFER for data copied between buffers; GL_TEXTURE_BUFFER
for texture data stored as a texture buffer; GL_TRANSFORM_FEEDBACK_
BUFFER for results from executing a transform feedback shader; or
GL_UNIFORM_BUFFER for uniform variable values.

size is the amount of storage required for storing the respective data. This
value is generally number of elements in the data multiplied by their
respective storage size.

data is either a pointer to a client memory that is used to initialize the
buffer object or NULL. If a valid pointer is passed, size units of storage are
copied from the client to the server. If NULL is passed, size units of storage
are reserved for use, but are left uninitialized.

usage provides a hint as to how the data will be read and written after
allocation. Valid values are GL_STREAM_DRAW, GL_STREAM_READ, GL_
STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ, GL_STATIC_COPY,
GL_DYNAMIC_DRAW, GL_DYNAMIC_READ, GL_DYNAMIC_COPY.

glBufferData() will generate a GL_OUT_OF_MEMORY error if the
requested size exceeds what the server is able to allocate. It will generate a
GL_INVALID_VALUE error if usage is not one of the permitted values.

Buffer Objects 95

The final parameter to glBufferData(), usage, is a performance hint to
OpenGL. Based upon the value you specify for usage, OpenGL may be able
to optimize the data for better performance, or it can choose to ignore the
hint. There are three operations that can be done to buffer object data:

1. Drawing—the client specifies data that is used for rendering.

2. Reading—data values are read from an OpenGL buffer (such as the
framebuffer) and used in the application in various computations not
immediately related to rendering.

3. Copying—data values are read from an OpenGL buffer and then used
as data for rendering.

Additionally, depending upon how often you intend to update the data,
there are various operational hints for describing how often the data will be
read or used in rendering:

• Stream mode—you specify the data once, and use it only a few times in
drawing or other operations.

• Static mode—you specify the data once, but use the values often.

• Dynamic mode—you may update the data often and use the data
values in the buffer object many times as well.

Possible values for usage are described in Table 2-6.

Parameter Meaning

GL_STREAM_DRAW Data is specified once and used at most a few times
as the source of drawing and image specification
commands.

GL_STREAM_READ Data is copied once from an OpenGL buffer and is
used at most a few times by the application as data
values.

GL_STREAM_COPY Data is copied once from an OpenGL buffer and is
used at most a few times as the source for drawing or
image specification commands.

GL_STATIC_DRAW Data is specified once and used many times as the
source of drawing or image specification commands.

GL_STATIC_READ Data is copied once from an OpenGL buffer and is
used many times by the application as data values.

Table 2-6 Values for usage Parameter of glBufferData()

96 Chapter 2: State Management and Drawing Geometric Objects

Updating Data Values in Buffer Objects

There are two methods for updating data stored in a buffer object. The first
method assumes that you have data of the same type prepared in a buffer
in your application. glBufferSubData() will replace some subset of the data
in the bound buffer object with the data you provide.

The second method allows you more control over which data values are
updated in the buffer. glMapBuffer() and glMapBufferRange() return a
pointer to the buffer object memory, into which you can write new values

GL_STATIC_COPY Data is copied once from an OpenGL buffer and is
used many times as the source for drawing or image
specification commands.

GL_DYNAMIC_DRAW Data is specified many times and used many times
as the source of drawing and image specification
commands.

GL_DYNAMIC_READ Data is copied many times from an OpenGL buffer and
is used many times by the application as data values.

GL_DYNAMIC_COPY Data is copied many times from an OpenGL buffer and
is used many times as the source for drawing or image
specification commands.

void glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size,
const GLvoid *data);

Update size bytes starting at offset (also measured in bytes) in the currently
bound buffer object associated with target using the data pointed to by
data. target must be one of GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_
BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_PIXEL_PACK_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_TRANSFORM_
FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

glBufferSubData() will generate a GL_INVALID_VALUE error if size is less
than zero or if size + offset is greater than the original size specified when
the buffer object was created.

Parameter Meaning

Table 2-6 (continued) Values for usage Parameter of glBufferData()

Buffer Objects 97

(or simply read the data, depending on your choice of memory access
permissions), just as if you were assigning values to an array. When you’ve
completed updating the values in the buffer, you call glUnmapBuffer() to
signify that you’ve completed updating the data.

glMapBuffer() provides access to the entire set of data contained in the
buffer object. This approach is useful if you need to modify much of the
data in buffer, but may be inefficient if you have a large buffer and need to
update only a small portion of the values.

When you’ve completed accessing the storage, you can unmap the buffer
by calling glUnmapBuffer().

 As a simple example of how you might selectively update elements of your
data, we’ll use glMapBuffer() to obtain a pointer to the data in a buffer
object containing three-dimensional positional coordinates, and then
update only the z-coordinates.

GLvoid *glMapBuffer(GLenum target, GLenum access);

Returns a pointer to the data storage for the currently bound buffer
object associated with target, which must be one of GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_
BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_
BUFFER. access must be either GL_READ_ONLY, GL_WRITE_ONLY, or
GL_READ_WRITE, indicating the operations that a client may do on the data.

glMapBuffer() will return NULL either if the buffer cannot be mapped
(setting the OpenGL error state to GL_OUT_OF_MEMORY) or if the buffer
was already mapped previously (where the OpenGL error state will be set
to GL_INVALID_OPERATION).

GLboolean glUnmapBuffer(GLenum target);

Indicates that updates to the currently bound buffer object are complete,
and the buffer may be released. target must be one of GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_
BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_
BUFFER.

98 Chapter 2: State Management and Drawing Geometric Objects

GLfloat* data;

data = (GLfloat*) glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);

if (data != (GLfloat*) NULL) {
 for(i = 0; i < 8; ++i)
 data[3*i+2] *= 2.0; /* Modify Z values */
 glUnmapBuffer(GL_ARRAY_BUFFER);
} else {
 /* Handle not being able to update data */
}

If you need to update only a relatively small number of values in the buffer
(as compared to its total size), or small contiguous ranges of values in a very
large buffer object, it may be more efficient to use glMapBufferRange(). It
allows you to map only the range of data values you need.

GLvoid *glMapBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length, GLbitfield access);

Returns a pointer into the data storage for the currently bound buffer object
associated with target, which must be one of GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER. offset
and length specify the range to be mapped. access is a bitmask composed of
GL_MAP_READ_BIT, GL_MAP_WRITE_BIT, which indicate the operations
that a client may do on the data, and optionally GL_MAP_INVALIDATE_
RANGE_BIT, GL_MAP_INVALIDATE_BUFFER_BIT, GL_MAP_FLUSH_
EXPLICIT_BIT, or GL_MAP_UNSYNCHRONIZED_BIT, which provide hints
on how OpenGL should manage the data in the buffer.

glMapBufferRange() will return NULL if an error occurs. GL_INVALID_
VALUE is generated if offset or length are negative, or offset+length is greater
than the buffer size. GL_OUT_OF_MEMORY error is generated if adequate
memory cannot be obtained to map the buffer. GL_INVALID_OPERATION
is generated if any of the following occur: The buffer is already mapped;
access does not have either GL_MAP_READ_BIT or GL_MAP_WRITE_BIT
set; access has GL_MAP_READ_BIT set and any of GL_MAP_INVALIDATE_
RANGE_BIT, GL_MAP_INVALIDATE_BUFFER_BIT, or GL_MAP_
UNSYNCHRONIZED_BIT is also set; or both GL_MAP_WRITE_BIT and
GL_MAP_FLUSH_EXPLICIT_BIT are set in access.

Buffer Objects 99

Using glMapBufferRange(), you can specify optional hints by setting
additional bits within access. These flags describe how the OpenGL server
needs to preserve data that was originally in the buffer before you mapped
it. The hints are meant to aid the OpenGL implementation in determining
which data values it needs to retain, or for how long, to keep any internal
copies of the data correct and consistent.

Parameter Meaning

GL_MAP_INVALIDATE_RANGE_BIT Specify that the previous values in the
mapped range may be discarded, but
preserve the other values within the
buffer. Data within this range are
undefined unless explicitly written. No
OpenGL error is generated if later OpenGL
calls access undefined data, and the results
of such calls are undefined (but may cause
application or system errors). This flag
may not be used in conjunction with the
GL_READ_BIT.

GL_MAP_INVALIDATE_BUFFER_BIT Specify that the previous values of the
entire buffer may be discarded, and all
values with the buffer are undefined
unless explicitly written. No OpenGL
error is generated if later OpenGL calls
access undefined data, and the results of
such calls are undefined (but may cause
application or system errors). This flag
may not be used in conjunction with the
GL_READ_BIT.

GL_MAP_FLUSH_EXPLICIT_BIT Indicate that discrete ranges of the
mapped region may be updated, that the
application will signal when
modifications to a range should be
considered completed by calling
glFlushMappedBufferRange(). No
OpenGL error is generated if a range of the
mapped buffer is updated but not flushed,
however, the values are undefined until
flushed.

Using this option will require any modified
ranges to be explicitly flushed to the
OpenGL server—glUnmapBuffer() will
not automatically flush the buffer’s data.

Table 2-7 Values for the access Parameter of glMapBufferRange()

100 Chapter 2: State Management and Drawing Geometric Objects

As described in Table 2-7, specifying GL_MAP_FLUSH_EXPLICIT_BIT in the
access flags when mapping a buffer region with glMapBufferRange()
requires ranges modified within the mapped buffer to be indicated to the
OpenGL by a call to glFlushMappedBufferRange().

GL_MAP_UNSYNCHRONIZED_BIT Specify that OpenGL should not attempt
to synchronize pending operations on a
buffer (e.g., updating data with a call to
glBufferData(), or the application is
trying to use the data in the buffer for
rendering) until the call to
glMapBufferRange() has completed.
No OpenGL errors are generated for the
pending operations that access or modify
the mapped region, but the results of
those operations is undefined.

GLvoid glFlushMappedBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length);

Signal that values within a mapped buffer range have been modified,
which may cause the OpenGL server to update cached copies of the buffer
object. target must be one of the following: GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_
BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_
BUFFER. offset and length specify the range of the mapped buffer region,
relative to the beginning of the mapped range of the buffer.

A GL_INVALID_VALUE error is generated if offset or length is negative or if
offset+length is greater than the size of the mapped region. A GL_INVALID_
OPERATION error is generated if there is no buffer bound to target (i.e.,
zero was specified as the buffer to be bound in a call to glBindBuffer() for
target), or if the buffer bound to target is not mapped, or if it is mapped
without having set the GL_MAP_FLUSH_EXPLICIT_BIT.

Parameter Meaning

Table 2-7 (continued) Values for the access Parameter of glMapBufferRange()

Buffer Objects 101

Copying Data Between Buffer Objects

On some occasions, you may need to copy data from one buffer object to
another. In versions of OpenGL prior to Version 3.1, this would be a two-
step process:

1. Copy the data from the buffer object into memory in your application.
You would do this either by mapping the buffer and copying it into a
local memory buffer, or by calling glGetBufferSubData() to copy the
data from the server.

2. Update the data in another buffer object by binding to the new object
and then sending the new data using glBufferData() (or
glBufferSubData() if you’re replacing only a subset). Alternatively, you
could map the buffer, and then copy the data from a local memory
buffer into the mapped buffer.

In OpenGL Version 3.1, the glCopyBufferSubData() command copies data
without forcing it to make a temporary stop in your application’s memory.

void glCopyBufferSubData(GLenum readbuffer, GLenum writebuffer,
GLintptr readoffset, GLintptr writeoffset,
GLsizeiptr size);

Copy data from the buffer object associated with readbuffer to the buffer
object bound to writebuffer. readbuffer and writebuffer must be one of GL_
ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_TEXTURE_BUFFER, GL_TRANSFORM_
FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

readoffset and size specify the amount of data copied into the destination
buffer object, replacing the same size of data starting at writeoffset.

Numerous situations will cause a GL_INVALID_VALUE error to be
generated: readoffset, writeoffset, or size being negative; readoffset + size
exceeding the extent of the buffer object bound to readbuffer; writeoffset +
size exceeding the extent of the buffer object bound to writebuffer; or if
readbuffer and writebuffer are bound to the same object, and the regions
specified by readoffset and size overlap the region defined by writeoffset
and size.

A GL_INVALID_OPERATION error is generated if either readbuffer or
writebuffer is bound to zero, or either buffer is currently mapped.

102 Chapter 2: State Management and Drawing Geometric Objects

Cleaning Up Buffer Objects

When you’re finished with a buffer object, you can release its resources and
make its identifier available by calling glDeleteBuffers(). Any bindings to
currently bound objects that are deleted are reset to zero.

Using Buffer Objects with Vertex-Array Data

To store your vertex-array data in buffer objects, you will need to add a few
steps to your application.

1. (Optional) Generate buffer object identifiers.

2. Bind a buffer object, specifying that it will be used for either storing
vertex data or indices.

3. Request storage for your data, and optionally initialize those data
elements.

4. Specify offsets relative to the start of the buffer object to initialize the
vertex-array functions, such as glVertexPointer().

5. Bind the appropriate buffer object to be utilized in rendering.

6. Render using an appropriate vertex-array rendering function, such as
glDrawArrays() or glDrawElements().

If you need to initialize multiple buffer objects, you will repeat steps 2
through 4 for each buffer object.

Both “formats” of vertex-array data are available for use in buffer objects. As
described in “Step 2: Specifying Data for the Arrays,” vertex, color, lighting
normal, or any other type of associated vertex data can be stored in a buffer

void glDeleteBuffers(GLsizei n, const GLuint *buffers);

Deletes n buffer objects, named by elements in the array buffers. The freed
buffer objects may now be reused (for example, by glGenBuffers()).

If a buffer object is deleted while bound, all bindings to that object are
reset to the default buffer object, as if glBindBuffer() had been called with
zero as the specified buffer object. Attempts to delete nonexistent buffer
objects or the buffer object named zero are ignored without generating
an error.

Buffer Objects 103

object. Additionally, interleaved vertex array data, as described in “Inter-
leaved Arrays,” can also be stored in a buffer object. In either case, you
would create a single buffer object to hold all of the data to be used as vertex
arrays.

As compared to specifying a memory address in the client’s memory where
OpenGL should access the vertex-array data, you specify the offset in
machine units (usually bytes) to the data in the buffer. To help illustrate
computing the offset, and to frustrate the purists in the audience, we’ll use
the following macro to simplify expressing the offset:

#define BUFFER_OFFSET(bytes) ((GLubyte*) NULL + (bytes))

For example, if you had floating-point color and position data for each
vertex, perhaps represented as the following array

GLfloat vertexData[][6] = {
 { R0, G0, B0, X0, Y0, Z0 },
 { R1, G1, B1, X1, Y1, Z1 },
 ...
 { Rn, Gn, Bn, Xn, Yn, Zn }
};

that were used to initialize the buffer object, you could specify the data as
two separate vertex array calls, one for colors and one for vertices:

glColorPointer(3, GL_FLOAT, 6*sizeof(GLfloat),BUFFER_OFFSET(0));
glVertexPointer(3, GL_FLOAT, 6*sizeof(GLfloat),
 BUFFER_OFFSET(3*sizeof(GLfloat));
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Conversely, since the data in vertexData matches a format for an interleaved
vertex array, you could use glInterleavedArrays() for specifying the vertex-
array data:

glInterleavedArrays(GL_C3F_V3F, 0, BUFFER_OFFSET(0));

Putting this all together, Example 2-17 demonstrates how buffer objects of
vertex data might be used. The example creates two buffer objects, one
containing vertex data and the other containing index data.

Example 2-17 Using Buffer Objects with Vertex Data

#define VERTICES 0
#define INDICES 1
#define NUM_BUFFERS 2

104 Chapter 2: State Management and Drawing Geometric Objects

GLuint buffers[NUM_BUFFERS];

GLfloat vertices[][3] = {
 { -1.0, -1.0, -1.0 },
 { 1.0, -1.0, -1.0 },
 { 1.0, 1.0, -1.0 },
 { -1.0, 1.0, -1.0 },
 { -1.0, -1.0, 1.0 },
 { 1.0, -1.0, 1.0 },
 { 1.0, 1.0, 1.0 },
 { -1.0, 1.0, 1.0 }
};

GLubyte indices[][4] = {
 { 0, 1, 2, 3 },
 { 4, 7, 6, 5 },
 { 0, 4, 5, 1 },
 { 3, 2, 6, 7 },
 { 0, 3, 7, 4 },
 { 1, 5, 6, 2 }
};

glGenBuffers(NUM_BUFFERS, buffers);

glBindBuffer(GL_ARRAY_BUFFER, buffers[VERTICES]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices,
 GL_STATIC_DRAW);
glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
glEnableClientState(GL_VERTEX_ARRAY);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[INDICES]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices
 GL_STATIC_DRAW);

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE,
 BUFFER_OFFSET(0));

Vertex-Array Objects

As your programs grow larger and use more models, you will probably
find that you switch between multiple sets of vertex arrays each frame.
Depending on how many vertex attributes you’re using for each vertex, the
number of calls—such as to glVertexPointer()—may start to become large.

Vertex-Array Objects 105

Vertex-array objects bundle collections of calls for setting the vertex array’s
state. After being initialized, you can quickly change between different sets
of vertex arrays with a single call.

To create a vertex-array object, first call glGenVertexArrays(), which will
create the requested number of uninitialized objects:

After creating your vertex-array objects, you’ll need to initialize the new
objects, and associate the set of vertex-array data that you want to enable
with the individual allocated objects. You do this with the
glBindVertexArray() routine. Once you initialize all of your vertex-array
objects, you can use glBindVertexArray() to switch between the different
sets of vertex arrays that you’ve set up.

Example 2-18 demonstrates switching between two sets of vertex arrays
using vertex-arrays objects.

void glGenVertexArrays(GLsizei n, GLuint *arrays);

Returns n currently unused names for use as vertex-array objects in the
array arrays. The names returned are marked as used for the purposes of
allocating additional buffer objects, and initialized with values
representing the default state of the collection of uninitialized vertex
arrays.

GLvoid gBindVertexArray(GLuint array);

glBindVertexArray() does three things. When using the value array that
is other than zero and was returned from glGenVertexArrays(), a new
vertex-array object is created and assigned that name. When binding to a
previously created vertex-array object, that vertex array object becomes
active, which additionally affects the vertex array state stored in the
object. When binding to an array value of zero, OpenGL stops using
vertex-array objects and returns to the default state for vertex arrays.

A GL_INVALID_OPERATION error is generated if array is not a value
previously returned from glGenVertexArrays(), or if it is a value that has
been released by glDeleteVertexArrays(), or if any of the gl*Pointer()
routines are called to specify a vertex array that is not associated with a
buffer object while a non-zero vertex-array object is bound (i.e., using a
client-side vertex array storage).

106 Chapter 2: State Management and Drawing Geometric Objects

Example 2-18 Using Vertex-Array Objects: vao.c

#define BUFFER_OFFSET(offset) ((GLvoid*) NULL + offset)
#define NumberOf(array) (sizeof(array)/sizeof(array[0]))

typedef struct {
 GLfloat x, y, z;
} vec3;

typedef struct {
 vec3 xlate; /* Translation */
 GLfloat angle;
 vec3 axis;
} XForm;

enum { Cube, Cone, NumVAOs };
GLuint VAO[NumVAOs];
GLenum PrimType[NumVAOs];
GLsizei NumElements[NumVAOs];
XForm Xform[NumVAOs] = {
 { { -2.0, 0.0, 0.0 }, 0.0, { 0.0, 1.0, 0.0 } },
 { { 0.0, 0.0, 2.0 }, 0.0, { 1.0, 0.0, 0.0 } }
};
GLfloat Angle = 0.0;

void
init()
{
 enum { Vertices, Colors, Elements, NumVBOs };
 GLuint buffers[NumVBOs];

 glGenVertexArrays(NumVAOs, VAO);

 {
 GLfloat cubeVerts[][3] = {
 { -1.0, -1.0, -1.0 },
 { -1.0, -1.0, 1.0 },
 { -1.0, 1.0, -1.0 },
 { -1.0, 1.0, 1.0 },
 { 1.0, -1.0, -1.0 },
 { 1.0, -1.0, 1.0 },
 { 1.0, 1.0, -1.0 },
 { 1.0, 1.0, 1.0 },
 };

Vertex-Array Objects 107

 GLfloat cubeColors[][3] = {
 { 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 1.0, 1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 0.0, 1.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 1.0, 1.0 },
 };

 GLubyte cubeIndices[] = {
 0, 1, 3, 2,
 4, 6, 7, 5,
 2, 3, 7, 6,
 0, 4, 5, 1,
 0, 2, 6, 4,
 1, 5, 7, 3
 };

 glBindVertexArray(VAO[Cube]);
 glGenBuffers(NumVBOs, buffers);
 glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices]);
 glBufferData(GL_ARRAY_BUFFER, sizeof(cubeVerts),
 cubeVerts, GL_STATIC_DRAW);
 glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
 glEnableClientState(GL_VERTEX_ARRAY);

 glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors]);
 glBufferData(GL_ARRAY_BUFFER, sizeof(cubeColors),
 cubeColors, GL_STATIC_DRAW);
 glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
 glEnableClientState(GL_COLOR_ARRAY);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,
 buffers[Elements]);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER,
 sizeof(cubeIndices), cubeIndices, GL_STATIC_DRAW);

 PrimType[Cube] = GL_QUADS;
 NumElements[Cube] = NumberOf(cubeIndices);
 }

 {
 int i, idx;
 float dTheta;

108 Chapter 2: State Management and Drawing Geometric Objects

#define NumConePoints 36
 /* We add one more vertex for the cone's apex */
 GLfloat coneVerts[NumConePoints+1][3] = {
 {0.0, 0.0, 1.0}
 };
 GLfloat coneColors[NumConePoints+1][3] = {
 {1.0, 1.0, 1.0}
 };
 GLubyte coneIndices[NumConePoints+1];

 dTheta = 2*M_PI / (NumConePoints - 1);
 idx = 1;
 for (i = 0; i < NumConePoints; ++i, ++idx) {
 float theta = i*dTheta;
 coneVerts[idx][0] = cos(theta);
 coneVerts[idx][1] = sin(theta);
 coneVerts[idx][2] = 0.0;

 coneColors[idx][0] = cos(theta);
 coneColors[idx][1] = sin(theta);
 coneColors[idx][2] = 0.0;

 coneIndices[idx] = idx;
 }

 glBindVertexArray(VAO[Cone]);
 glGenBuffers(NumVBOs, buffers);
 glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices]);
 glBufferData(GL_ARRAY_BUFFER, sizeof(coneVerts),
 coneVerts, GL_STATIC_DRAW);
 glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
 glEnableClientState(GL_VERTEX_ARRAY);

 glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors]);
 glBufferData(GL_ARRAY_BUFFER, sizeof(coneColors),
 coneColors, GL_STATIC_DRAW);
 glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
 glEnableClientState(GL_COLOR_ARRAY);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,
 buffers[Elements]);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER,
 sizeof(coneIndices), coneIndices, GL_STATIC_DRAW);

 PrimType[Cone] = GL_TRIANGLE_FAN;
 NumElements[Cone] = NumberOf(coneIndices);
 }

 glEnable(GL_DEPTH_TEST);
}

Vertex-Array Objects 109

void
display()
{
 int i;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glRotatef(Angle, 0.0, 1.0, 0.0);

 for (i = 0; i < NumVAOs; ++i) {
 glPushMatrix();
 glTranslatef(Xform[i].xlate.x, Xform[i].xlate.y,
 Xform[i].xlate.z);
 glRotatef(Xform[i].angle, Xform[i].axis.x,
 Xform[i].axis.y, Xform[i].axis.z);
 glBindVertexArray(VAO[i]);
 glDrawElements(PrimType[i], NumElements[i],
 GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
 glPopMatrix();
 }

 glPopMatrix();
 glutSwapBuffers();
}

To delete vertex-array objects and release their names for reuse, call
glDeleteVertexArrays(). If you’re using buffer objects for storing data, they
are not deleted when the vertex-array object referencing them is deleted.
They continue to exist (until you delete them). The only change that occurs
is if the buffer objects were currently bound when you deleted the vertex-
array object, they become unbound.

void glDeleteVertexArrays(GLsizei n, GLuint *arrays);

Deletes the n vertex-arrays objects specified in arrays, enabling the names
for reuse as vertex arrays later. If a bound vertex array is deleted, the
bindings for that vertex array become zero (as if you had called
glBindBuffer() with a value of zero), and the default vertex array becomes
the current one. Unused names in arrays are released, but no changes to
the current vertex array state are made.

110 Chapter 2: State Management and Drawing Geometric Objects

Finally, if you need to determine whether a particular value might represent
an allocated (but not necessarily initialized) vertex-array object, you can
check by calling glIsVertexArray().

Attribute Groups

In “Basic State Management” you saw how to set or query an individual
state or state variable. You can also save and restore the values of a
collection of related state variables with a single command.

OpenGL groups related state variables into an attribute group. For example,
the GL_LINE_BIT attribute consists of five state variables: the line width,
the GL_LINE_STIPPLE enable status, the line stipple pattern, the line
stipple repeat counter, and the GL_LINE_SMOOTH enable status. (See
“Antialiasing” in Chapter 6.) With the commands glPushAttrib() and
glPopAttrib(), you can save and restore all five state variables at once.

Some state variables are in more than one attribute group. For example,
the state variable GL_CULL_FACE is part of both the polygon and the
enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addi-
tion to the original attribute stack (which saves the values of server state
variables), there is also a client attribute stack, accessible by the commands
glPushClientAttrib() and glPopClientAttrib().

In general, it’s faster to use these commands than to get, save, and restore
the values yourself. Some values might be maintained in the hardware, and
getting them might be expensive. Also, if you’re operating on a remote
client, all the attribute data has to be transferred across the network connec-
tion and back as it is obtained, saved, and restored. However, your OpenGL
implementation keeps the attribute stack on the server, avoiding unneces-
sary network delays.

GLboolean glIsVertexArray(GLuint array);

Returns GL_TRUE if array is the name of a vertex-array object that was
previously generated with glGenVertexArrays(), but has not been
subsequently deleted. Returns GL_FALSE if array is zero or a nonzero value
that is not the name of a vertex-array object.

Attribute Groups 111

There are about 20 different attribute groups, which can be saved and
restored by glPushAttrib() and glPopAttrib(). There are two client attribute
groups, which can be saved and restored by glPushClientAttrib() and
glPopClientAttrib(). For both server and client, the attributes are stored on
a stack, which has a depth of at least 16 saved attribute groups. (The actual
stack depths for your implementation can be obtained using GL_MAX_
ATTRIB_STACK_DEPTH and GL_MAX_CLIENT_ATTRIB_STACK_DEPTH
with glGetIntegerv().) Pushing a full stack or popping an empty one gener-
ates an error.

(See the tables in Appendix B to find out exactly which attributes are saved
for particular mask values—that is, which attributes are in a particular
attribute group.)

The special mask GL_ALL_ATTRIB_BITS is used to save and restore all the
state variables in all the attribute groups.

void glPushAttrib(GLbitfield mask);
void glPopAttrib(void);

glPushAttrib() saves all the attributes indicated by bits in mask by
pushing them onto the attribute stack. glPopAttrib() restores the values
of those state variables that were saved with the last glPushAttrib().
Table 2-8 lists the possible mask bits that can be logically ORed together
to save any combination of attributes. Each bit corresponds to a collection
of individual state variables. For example, GL_LIGHTING_BIT refers to all
the state variables related to lighting, which include the current material
color; the ambient, diffuse, specular, and emitted light; a list of the lights
that are enabled; and the directions of the spotlights. When glPopAttrib()
is called, all these variables are restored.

Mask Bit Attribute Group

GL_ACCUM_BUFFER_BIT accum-buffer

GL_ALL_ATTRIB_BITS —

GL_COLOR_BUFFER_BIT color-buffer

GL_CURRENT_BIT current

GL_DEPTH_BUFFER_BIT depth-buffer

Table 2-8 Attribute Groups

Compatibility
Extension

glPushAttrib
glPopAttrib
GL_ACCUM_
BUFFER_BIT
GL_ALL_ATTRIB_
BITS
GL_COLOR_
BUFFER_BIT
GL_CURRENT_BIT
GL_DEPTH_
BUFFER_BIT
GL_ENABLE_BIT
GL_EVAL_BIT
GL_FOG_BIT
GL_HINT_BIT
GL_LIGHTING_BIT
GL_LINE_BIT
GL_LIST_BIT
GL_
MULTISAMPLE_BIT
GL_PIXEL_MODE_
BIT
GL_POINT_BIT
GL_POLYGON_BIT
GL_POLYGON_
STIPPLE_BIT
GL_SCISSOR_BIT
GL_STENCIL_
BUFFER_BIT
GL_TEXTURE_BIT
GL_TRANSFORM_
BIT
GL_VIEWPORT_BIT

112 Chapter 2: State Management and Drawing Geometric Objects

GL_ENABLE_BIT enable

GL_EVAL_BIT eval

GL_FOG_BIT fog

GL_HINT_BIT hint

GL_LIGHTING_BIT lighting

GL_LINE_BIT line

GL_LIST_BIT list

GL_MULTISAMPLE_BIT multisample

GL_PIXEL_MODE_BIT pixel

GL_POINT_BIT point

GL_POLYGON_BIT polygon

GL_POLYGON_STIPPLE_BIT polygon-stipple

GL_SCISSOR_BIT scissor

GL_STENCIL_BUFFER_BIT stencil-buffer

GL_TEXTURE_BIT texture

GL_TRANSFORM_BIT transform

GL_VIEWPORT_BIT viewport

void glPushClientAttrib(GLbitfield mask);
void glPopClientAttrib(void);

glPushClientAttrib() saves all the attributes indicated by bits in mask
by pushing them onto the client attribute stack. glPopClientAttrib()
restores the values of those state variables that were saved with the last
glPushClientAttrib(). Table 2-9 lists the possible mask bits that can be
logically ORed together to save any combination of client attributes.

Two client attribute groups, feedback and select, cannot be saved or
restored with the stack mechanism.

Mask Bit Attribute Group

Table 2-8 (continued) Attribute Groups

Compatibility
Extension

glPushClientAttrib
glPopClientAttrib
GL_CLIENT_
PIXEL_STORE_
BIT
GL_CLIENT_
VERTEX_ARRAY_
BIT
GL_CLIENT_ALL_
ATTRIB_BITS

Some Hints for Building Polygonal Models of Surfaces 113

Some Hints for Building Polygonal Models
of Surfaces

Following are some techniques that you can use as you build polygonal
approximations of surfaces. You might want to review this section after
you’ve read Chapter 5 on lighting and Chapter 7 on display lists. The light-
ing conditions affect how models look once they’re drawn, and some of the
following techniques are much more efficient when used in conjunction
with display lists. As you read these techniques, keep in mind that when
lighting calculations are enabled, normal vectors must be specified to get
proper results.

Constructing polygonal approximations to surfaces is an art, and there is no
substitute for experience. This section, however, lists a few pointers that
might make it a bit easier to get started.

• Keep polygon orientations (windings) consistent. Make sure that when
viewed from the outside, all the polygons on the surface are oriented in
the same direction (all clockwise or all counterclockwise). Consistent
orientation is important for polygon culling and two-sided lighting.
Try to get this right the first time, as it’s excruciatingly painful to fix
the problem later. (If you use glScale*() to reflect geometry around
some axis of symmetry, you might change the orientation with
glFrontFace() to keep the orientations consistent.)

• When you subdivide a surface, watch out for any nontriangular
polygons. The three vertices of a triangle are guaranteed to lie on a
plane; any polygon with four or more vertices might not. Nonplanar

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT pixel-store

GL_CLIENT_VERTEX_ARRAY_BIT vertex-array

GL_CLIENT_ALL_ATTRIB_BITS --

can’t be pushed or popped feedback

can’t be pushed or popped select

Table 2-9 Client Attribute Groups

114 Chapter 2: State Management and Drawing Geometric Objects

polygons can be viewed from some orientation such that the edges
cross each other, and OpenGL might not render such polygons
correctly.

• There’s always a trade-off between the display speed and the quality of
the image. If you subdivide a surface into a small number of polygons,
it renders quickly but might have a jagged appearance; if you subdivide
it into millions of tiny polygons, it probably looks good but might take
a long time to render. Ideally, you can provide a parameter to the sub-
division routines that indicates how fine a subdivision you want, and if
the object is farther from the eye, you can use a coarser subdivision.
Also, when you subdivide, use large polygons where the surface is rela-
tively flat, and small polygons in regions of high curvature.

• For high-quality images, it’s a good idea to subdivide more on the sil-
houette edges than in the interior. If the surface is to be rotated relative
to the eye, this is tougher to do, as the silhouette edges keep moving.
Silhouette edges occur where the normal vectors are perpendicular to
the vector from the surface to the viewpoint—that is, when their vec-
tor dot product is zero. Your subdivision algorithm might choose to
subdivide more if this dot product is near zero.

• Try to avoid T-intersections in your models (see Figure 2-16). As shown,
there’s no guarantee that the line segments AB and BC lie on exactly
the same pixels as the segment AC. Sometimes they do, and sometimes
they don’t, depending on the transformations and orientation. This
can cause cracks to appear intermittently in the surface.

A
B

C

Undesirable OK

Figure 2-16 Modifying an Undesirable T-Intersection

Some Hints for Building Polygonal Models of Surfaces 115

• If you’re constructing a closed surface, be sure to use exactly the same
numbers for coordinates at the beginning and end of a closed loop, or
you can get gaps and cracks due to numerical round-off. Here’s an
example of bad code for a two-dimensional circle:

/* don’t use this code */
#define PI 3.14159265
#define EDGES 30

/* draw a circle */
glBegin(GL_LINE_STRIP);
for (i = 0; i <= EDGES; i++)
 glVertex2f(cos((2*PI*i)/EDGES), sin((2*PI*i)/EDGES));
glEnd();

The edges meet exactly only if your machine manages to calculate
exactly the same values for the sine and cosine of 0 and of
(2*PI*EDGES/EDGES). If you trust the floating-point unit on your
machine to do this right, the authors have a bridge they’d like to sell
you To correct the code, make sure that when i == EDGES, you use 0
for the sine and cosine, not 2*PI*EDGES/EDGES. (Or simpler still, use
GL_LINE_LOOP instead of GL_LINE_STRIP, and change the loop
termination condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a sur-
face, let’s look at some example code sequences. This code concerns the
vertices of a regular icosahedron (which is a Platonic solid composed of
20 faces that span 12 vertices, the face of each being an equilateral triangle).
An icosahedron can be considered a rough approximation of a sphere.
Example 2-19 defines the vertices and triangles making up an icosahedron
and then draws the icosahedron.

Example 2-19 Drawing an Icosahedron

#define X .525731112119133606
#define Z .850650808352039932

static GLfloat vdata[12][3] = {
 {-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},
 {0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
 {Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0}
};

116 Chapter 2: State Management and Drawing Geometric Objects

static GLuint tindices[20][3] = {
 {1,4,0}, {4,9,0}, {4,5,9}, {8,5,4}, {1,8,4},
 {1,10,8}, {10,3,8}, {8,3,5}, {3,2,5}, {3,7,2},
 {3,10,7}, {10,6,7}, {6,11,7}, {6,0,11}, {6,1,0},
 {10,1,6}, {11,0,9}, {2,11,9}, {5,2,9}, {11,2,7}
};

int i;

glBegin(GL_TRIANGLES);
for (i = 0; i < 20; i++) {
 /* color information here */
 glVertex3fv(&vdata[tindices[i][0]][0]);
 glVertex3fv(&vdata[tindices[i][1]][0]);
 glVertex3fv(&vdata[tindices[i][2]][0]);
}
glEnd();

The strange numbers X and Z are chosen so that the distance from the
origin to any of the vertices of the icosahedron is 1.0. The coordinates of
the 12 vertices are given in the array vdata[][], where the zeroth vertex is

X, 0.0, Z}, the first is {X, 0.0, Z}, and so on. The array tindices[][] tells how
to link the vertices to make triangles. For example, the first triangle is made
from the zeroth, fourth, and first vertices. If you take the vertices for tri-
angles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a com-
mand that sets the color of the ith face. If no code appears here, all faces are
drawn in the same color, and it will be impossible to discern the three-
dimensional quality of the object. An alternative to explicitly specifying
colors is to define surface normals and use lighting, as described in the next
subsection.

Note: In all the examples described in this section, unless the surface is to
be drawn only once, you should probably save the calculated vertex
and normal coordinates so that the calculations don’t need to be
repeated each time the surface is drawn. This can be done using your
own data structures or by constructing display lists (see Chapter 7).

Calculating Normal Vectors for a Surface

If a surface is to be lit, you need to supply the vector normal to the surface.
Calculating the normalized cross product of two vectors on that surface
provides their normal vector. With the flat surfaces of an icosahedron, all

Some Hints for Building Polygonal Models of Surfaces 117

three vertices defining a surface have the same normal vector. In this case,
the normal needs to be specified only once for each set of three vertices. The
code in Example 2-20 can replace the “color information here” line in
Example 2-19 for drawing the icosahedron.

Example 2-20 Generating Normal Vectors for a Surface

GLfloat d1[3], d2[3], norm[3];
for (j = 0; j < 3; j++) {
 d1[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]][j];
 d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]][j];
}
normcrossprod(d1, d2, norm);
glNormal3fv(norm);

The function normcrossprod() produces the normalized cross product of
two vectors, as shown in Example 2-21.

Example 2-21 Calculating the Normalized Cross Product of Two Vectors

void normalize(float v[3])
{
 GLfloat d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
 if (d == 0.0) {
 error(“zero length vector”);
 return;
 }
 v[0] /= d;
 v[1] /= d;
 v[2] /= d;
}

void normcrossprod(float v1[3], float v2[3], float out[3])
{
 out[0] = v1[1]*v2[2] - v1[2]*v2[1];
 out[1] = v1[2]*v2[0] - v1[0]*v2[2];
 out[2] = v1[0]*v2[1] - v1[1]*v2[0];
 normalize(out);
}

If you’re using an icosahedron as an approximation for a shaded sphere,
you’ll want to use normal vectors that are perpendicular to the true surface
of the sphere, rather than perpendicular to the faces. For a sphere, the nor-
mal vectors are simple; each points in the same direction as the vector from

118 Chapter 2: State Management and Drawing Geometric Objects

the origin to the corresponding vertex. Since the icosahedron vertex data is
for an icosahedron of radius 1, the normal data and vertex data are identi-
cal. Here is the code that would draw an icosahedral approximation of a
smoothly shaded sphere (assuming that lighting is enabled, as described
in Chapter 5):

glBegin(GL_TRIANGLES);
for (i = 0; i < 20; i++) {
 glNormal3fv(&vdata[tindices[i][0]][0]);
 glVertex3fv(&vdata[tindices[i][0]][0]);
 glNormal3fv(&vdata[tindices[i][1]][0]);
 glVertex3fv(&vdata[tindices[i][1]][0]);
 glNormal3fv(&vdata[tindices[i][2]][0]);
 glVertex3fv(&vdata[tindices[i][2]][0]);
}
glEnd();

Improving the Model

A 20-sided approximation to a sphere doesn’t look good unless the image of
the sphere on the screen is quite small, but there’s an easy way to increase
the accuracy of the approximation. Imagine the icosahedron inscribed in
a sphere, and subdivide the triangles as shown in Figure 2-17. The newly
introduced vertices lie slightly inside the sphere, so push them to the sur-
face by normalizing them (dividing them by a factor to make them have
length 1). This subdivision process can be repeated for arbitrary accuracy.
The three objects shown in Figure 2-17 use 20, 80, and 320 approximating
triangles, respectively.

Figure 2-17 Subdividing to Improve a Polygonal Approximation to a Surface

Some Hints for Building Polygonal Models of Surfaces 119

Example 2-22 performs a single subdivision, creating an 80-sided spherical
approximation.

Example 2-22 Single Subdivision

void drawtriangle(float *v1, float *v2, float *v3)
{
 glBegin(GL_TRIANGLES);
 glNormal3fv(v1);
 glVertex3fv(v1);
 glNormal3fv(v2);
 glVertex3fv(v2);
 glNormal3fv(v3);
 glVertex3fv(v3);
 glEnd();
}

void subdivide(float *v1, float *v2, float *v3)
{
 GLfloat v12[3], v23[3], v31[3];
 GLint i;

 for (i = 0; i < 3; i++) {
 v12[i] = (v1[i]+v2[i])/2.0;
 v23[i] = (v2[i]+v3[i])/2.0;
 v31[i] = (v3[i]+v1[i])/2.0;
 }
 normalize(v12);
 normalize(v23);
 normalize(v31);
 drawtriangle(v1, v12, v31);
 drawtriangle(v2, v23, v12);
 drawtriangle(v3, v31, v23);
 drawtriangle(v12, v23, v31);
}

for (i = 0; i < 20; i++) {
 subdivide(&vdata[tindices[i][0]][0],
 &vdata[tindices[i][1]][0],
 &vdata[tindices[i][2]][0]);
}

Example 2-23 is a slight modification of Example 2-22 that recursively
subdivides the triangles to the proper depth. If the depth value is 0, no

120 Chapter 2: State Management and Drawing Geometric Objects

subdivisions are performed, and the triangle is drawn as is. If the depth is 1,
a single subdivision is performed, and so on.

Example 2-23 Recursive Subdivision

void subdivide(float *v1, float *v2, float *v3, long depth)
{
 GLfloat v12[3], v23[3], v31[3];
 GLint i;

 if (depth == 0) {
 drawtriangle(v1, v2, v3);
 return;
 }
 for (i = 0; i < 3; i++) {
 v12[i] = (v1[i]+v2[i])/2.0;
 v23[i] = (v2[i]+v3[i])/2.0;
 v31[i] = (v3[i]+v1[i])/2.0;
 }
 normalize(v12);
 normalize(v23);
 normalize(v31);
 subdivide(v1, v12, v31, depth-1);
 subdivide(v2, v23, v12, depth-1);
 subdivide(v3, v31, v23, depth-1);
 subdivide(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-23
can be used for other types of surfaces. Typically, the recursion ends
if either a certain depth is reached or some condition on the curvature
is satisfied (highly curved parts of surfaces look better with more
subdivision).

To look at a more general solution to the problem of subdivision, consider
an arbitrary surface parameterized by two variables, u[0] and u[1]. Suppose
that two routines are provided:

void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]);
float curv(GLfloat u[2]);

If u[] is passed to surf(), the corresponding three-dimensional vertex and
normal vectors (of length 1) are returned. If u[] is passed to curv(), the
curvature of the surface at that point is calculated and returned. (See an

Some Hints for Building Polygonal Models of Surfaces 121

introductory textbook on differential geometry for more information about
measuring surface curvature.)

Example 2-24 shows the recursive routine that subdivides a triangle until
either the maximum depth is reached or the maximum curvature at the
three vertices is less than some cutoff.

Example 2-24 Generalized Subdivision

void subdivide(float u1[2], float u2[2], float u3[2],
 float cutoff, long depth)
{
 GLfloat v1[3], v2[3], v3[3], n1[3], n2[3], n3[3];
 GLfloat u12[2], u23[2], u32[2];
 GLint i;

 if (depth == maxdepth || (curv(u1) < cutoff &&
 curv(u2) < cutoff && curv(u3) < cutoff)) {
 surf(u1, v1, n1);
 surf(u2, v2, n2);
 surf(u3, v3, n3);
 glBegin(GL_POLYGON);
 glNormal3fv(n1); glVertex3fv(v1);
 glNormal3fv(n2); glVertex3fv(v2);
 glNormal3fv(n3); glVertex3fv(v3);
 glEnd();
 return;
 }

 for (i = 0; i < 2; i++) {
 u12[i] = (u1[i] + u2[i])/2.0;
 u23[i] = (u2[i] + u3[i])/2.0;
 u31[i] = (u3[i] + u1[i])/2.0;
 }
 subdivide(u1, u12, u31, cutoff, depth+1);
 subdivide(u2, u23, u12, cutoff, depth+1);
 subdivide(u3, u31, u23, cutoff, depth+1);
 subdivide(u12, u23, u31, cutoff, depth+1);
}

857

Index

Numbers
3D Computer Graphics, 390

A
accumulation buffer, 492, 494, 519–525

clearing, 36, 495
depth-of-field effect, use for, 521–525
examples of use, 519
motion blur, use for, 520
sample program with depth-of-field effect,

522
AGL, 15

aglChoosePixelFormat(), 820, 822
aglConfigure(), 824
aglCopyContext(), 820, 823
aglCreateContext(), 820, 823
aglDescribePixelFormat(), 822
aglDescribeRenderer(), 823
aglDestroyContext(), 820, 823
aglDestroyPixelFormat(), 822
aglDestroyRendererInfo(), 823
aglDevicesOfPixelFormat(), 822
aglDisable(), 824
aglEnable(), 824
aglErrorString(), 824
aglGetCurrentContext(), 820, 823
aglGetDrawable(), 820, 823
aglGetError(), 824
aglGetInteger(), 824
aglGetVersion(), 820, 822
aglGetVirtualScreen(), 823
aglIsEnabled(), 824
aglNextPixelFormat(), 822
aglNextRendererInfo(), 823
aglQueryRendererInfo(), 823
aglResetLibrary(), 824

aglSetCurrentContext(), 820, 823
aglSetDrawable(), 820, 821, 823
aglSetFullScreen(), 821, 823
aglSetInteger(), 821, 824
aglSetOffScreen(), 821, 823
aglSetVirtualScreen(), 823
aglSwapBuffers(), 821, 824
aglUpdateContext(), 821, 823
aglUseFont(), 824

airbrushing, 666
Akeley, Kurt, 519
aliasing, see antialiasing
alpha, 251

destination alpha, 280
material properties, 233
multisampling coverage, 279
texture image data type, 445

alpha blending, see blending
alpha test, 503

querying current values, 503
rendering pipeline stage, 14

ambient
contribution to lighting equation, 243
global light, 228, 242
light, 207, 208, 216
material properties, 209, 233

animation, 22–25
antialiasing, 267–280

accumulation buffer used for, 520–??
characters (by masking), 650
characters (by texturing), 661
color-index mode, 272
coverage values, 267
enabling for points or lines, 269
enabling for polygons, 280
lines, 267, 269–275

858 Index

antialiasing, continued
lines (by texturing), 661
points, 269–275, 653
polygons, 280
RGBA mode, 270
sample program in color-index mode, 272
sample program in RGBA mode, 270

Apple Interface to OpenGL, see AGL
ARB imaging subset, 367–388
architectural applications

orthographic parallel projection, use of,
156

arcs, 559
array elements, see vertex arrays
aspect ratio

perspective projection, 155
viewport transformation, 159

atmospheric effects, see fog
attenuation of light, 217–218
attribute groups, 110–112

client, 110
list of, 743–800
multitexturing, with, 470
server, 110
stack depth, obtaining, 111
stacks, 110

auxiliary buffers, 493, 498

B
back-facing polygons, 61

culling, 62
material property, specifying, 232
two-sided lighting, 229

background, 34–37
color, 34
drawing a fixed, 500, 662

background processing, 736
backward compatibility

tessellation, 558

basis functions, 571, 572
Bernstein

basis, 571
polynomial, 575

Bézier
basis, 571, 572
curve, 575
sample program using mesh for surface,

582
sample program which draws curve, 573
sample program which draws surface, 580

BGR and BGRA pixel formats, 336
billboarding, 259, 504
bitmaps, 322–329

display lists cache bitmap data, 303
distorting, 648
drawing, 327
feedback mode, 629
fonts, used for, 324, 331
imaging pipeline operations, 344
ordering of data in, 325
origin of, 328
sample program, 324
sample program that creates a font, 331
size of, 325

bitplanes, 190, 490
displayable colors, number of, 192

blending, 251–264, 516
antialiasing polygons, 280
controlling blending on a per-buffer basis,

516
coverage calculations for antialiasing, 267
destination alpha, 280
differences among releases, 250
enabling, 255
enabling for antialiasing, 269
equation, 255
factors (source and destination), 252
images, 653
ordering polygons before drawing, 263

Index 859

rendering pipeline stage, 14
sample program for three-dimensional, 264
sample program with blended polygons,

261
texture function, 448
three dimensions, in, 263
uses of, 258

buffer object, 833
buffer objects

binding, 93
creating, 92
deleting, 102
flushing a mapped buffer range, 100
initializing with data, 94
mapping a buffer, 97, 98
partial copy, 101
replacing data, 96
unmapping a buffer, 97

buffer, see framebuffer

C
C programming language, 8
CAD/CAM, see computer-aided design
camera analogy, 126–127

environment mapping, 463
viewport transformations, 158

capping, see computational solid geometry
characters

antialiasing, 661
circles, 559
clearing buffers, 36
clearing the color buffer, 35
clearing the framebuffer, 34–37, 495–496

affected by scissoring, dithering, and
masking, 496

client-server, see networked operation
clip coordinates, 128, 170

feedback mode, 629

clip planes
user defined, 169

clipping, 158
interference regions found using clipping

planes, 657
overview, 125
primitives in rendering pipeline, 12
viewing volume, 153

clipping planes
additional clipping planes, 128, 168–172
far, 154–156, 162
near, 154–156, 162
querying number of additional, 170
sample program with additional clipping

planes, 170
color

alpha values, 251
background, 34
cube showing blended RGB values, 189
current raster color, 329
human perception, 187
RGBA values for, 38, 188
specifying, 37
specifying for tessellation, 548
specifying in color-index mode, 199
specifying in RGBA mode, 197

color buffer, 188, 190, 491, 492, 493
clearing, 36
masking, 499

color map, 188, 193
loading for antialiasing, 272
loading for smooth shading, 202
loading, using GLUT, 735
size of, 194

color matrix, 382–383
example, 382
post transform scale and bias, 383
sample program, 382

color sum mode, 478

860 Index

color tables, 369–371
proxies, 374
replacing part of, 373
sample program, 371
specifying, 369

color-index mode, 193–195
changing between RGBA mode

and, 196
choosing between RGBA mode and, 195
coverage calculations for

antialiasing, 267
dithering, 517
layering with writemasks, 500
lighting, 246–247
lighting calculations in, 247
texturing limitations, 396, 404
vertex arrays, specifying values with, 74

combiner functions, 472–478
command syntax, 7–9
compositing images, 259
compositing transformations, 172–179
computational solid geometry

capping, 509
difference of several contours, 553
interference regions, 656
intersection of two contours, 553
union of several contours, 553

Computer Graphics: Principles and Practice, xl,
187, 191, 803

computer-aided design
orthographic parallel projection, use of,

156
concave polygons

GLU tessellation, 542
stencil buffer, drawing with the, 655

cones, 559, 736
improving rendering of, 664

constant attenuation, 218
contours, 458
control points, 570, 574, 578, 587

convex polygons, 43
convolutions, 374–382

1d filters, 380
2d filters, 374
border modes, 381
post convolution scale and bias, 382
sample program, 376
separable filters, 378

Conway, John, 664
coordinate systems

grand, fixed, 139, 148, 172
local, 139, 148, 172, 176
simple 2D, 40–41

coordinates
see clip coordinates, depth coordinates, eye

coordinates, homogeneous
coordinates, normalized device
coordinates, object coordinates, q
texture coordinates, texture
coordinates, w coordinates, or window
coordinates

coverage, pixel, 267
Coxeter, H. S. M., 803
cross product, 151
CSG, see computational solid geometry
cube maps, 465
culling, 61–62

enabling, 62
rendering pipeline stage, 12
selection mode, 610

curves and curved surfaces, 45
also see evaluators or NURBS

Curves and Surfaces for Computer-Aided
Geometric Design, 571

cylinders, 559

D
data types

RGBA color conversion, 197
special OpenGL, 8
texture data, 403

Index 861

decals, 503, 654
polygon offset used for, 294
texture function, 447

deprecation mechanism, 27
depth buffer, 206, 492, 494

also see hidden-surface removal
background, using masking for a common,

500
blending, use for three-dimensional, 263
clearing, 36, 206, 495
decals, for, 654
Dirichlet domains, for, 663
drawing static backgrounds, 662
masking, 499
pixel data, 342, 353

depth coordinates, 129, 161
perspective division, 161
picking use, 621
polygon offset, 293–296
rendering pipeline stage for depth-range

operations, 12
sample program with picking, 621
selection hit records, 610

depth test, 510
also see depth buffer
rendering pipeline stage, 14

depth-cuing, see fog
depth-of-field effect, 521–525

sample program, 522
destination factor, see blending
determing object coordinates from window

coordinates, 180, 182
diffuse

contribution to lighting
equation, 243

light, 208, 216
material properties, 209, 233

directional light source, 217
Dirichlet domains, 663
disks, 559

display lists, 33, 299
changing mode settings, 319
compiling, 307
creating, 305
deleting, 311
disadvantages, 304, 310
error handling, 306
executing, 305, 310
executing multiple, 312
font creation, 313, 329
hierarchical, 310
immediate mode, mixing with, 310
indices for, obtaining, 306
naming, 306
nesting, 310
nesting limit, querying, 310
networked operation, 309
querying use of an index, 311
rendering pipeline stage, 11
sample program creating a font, 314
sample program for creating, 299, 305
sharing among rendering contexts, 814, 826
state variables saved and restored, 319
tessellation, use with, 557
uses for, 303, 319
vertex-array data, 309
what can be stored in, 308

distorted images, 647
texture images, 451

dithering, 192–193, 516
and clearing, 496
rendering pipeline stage, 14

dot product
lighting calculations, use in, 243
texture combiner function, 475

double-buffering, 23–25
automatic glFlush(), 39
changing between single-buffering and, 196
object selection using the back buffer, 646
querying its presence, 494

862 Index

drawing
clearing the window, 34
forcing completion of, 38
icosahedron, 115
points, 48
polygons, 48, 61
preparing for, 34
rectangles, 45
spheres, cylinders, and disks, 559–567

drawing pixel data, see pixel data
Duff, Tom, 259

E
edge flags, 67–68

tessellated polygons generate, 546
vertex arrays, specifying values with, 74

emission, 208, 234, 241
enabling

alpha test, 502
antialiasing of points or lines, 269
antialiasing polygons, 280
blending, 255
color material properties mode, 237
color sum mode, 478
culling, 62
depth test, 510
dithering, 193, 517
evaluators, 575, 579
fog, 281
lighting, 231
line stippling, 57
logical operations, 517
multisampling, 276
normal vectors for evaluated surfaces,

automatic generation of, 579, 587
polygon offset, 294
polygon stippling, 63
rescaling normals, 70, 212
stencil test, 504

texture coordinate generation, 462
texturing, 396, 399
unit length normal vectors ensured, 70,

212
endianness, 349
environment mapping, 463, 465
errata, xlii
error handling, 637–639

error string description, 639
evaluators, 572–586

basis functions, 571, 575
evenly spaced values, 577, 581
one-dimensional, 572
rendering pipeline stage, 11
sample program using mesh for 2D Bézier

surface, 582
sample program which draws 1D Bézier

curve, 573
sample program which draws 2D Bézier

surface, 580
sample program which generates texture

coordinates, 584
texture coordinates, generating, 584
two-dimensional, 580

event management, using GLUT, 21
extensions

Microsoft Windows and
wglGetProcAddress(), 643

vendor-specific, 641
eye coordinates, 128, 170

texture coordinate generation, 458, 462

F
fade effect, 645
Farin, Gerald E., 571
feedback, 627–634

array contents, 633
pass-through markers, 630
querying current rendering mode, 608
returned data, 629

Index 863

sample program, 631
steps to perform, 628
tessellation, obtaining vertex data after, 557

Feiner, Steven K., xl, 803
field of view, 132

calculate, using trigonometry to, 163
filtering, 434–436

mipmapped textures, 424–429, 436
texture border colors, 452

flat shading, 200
flight simulation

fog, use of, 281
flushing, 38
fog, 280–291

blending factors, 284
color-index mode, 285
density, 285
enabling, 281
equations, 284
fog coordinates, 288
hints, 281
RGBA mode, 285
sample program in color-index mode, 286
sample program in RGBA mode, 281
sample program with fog coordinates, 289

Foley, James D., xl, 187, 191, 803
fonts, 329–332

antialiased characters (by masking), 650
antialiased characters (by texturing), 661
bitmapped, 331
creating with display lists, 313
drawing, 328
drawing as bitmaps, 324
multi-byte, 330
same program, 331
sample program using multiple display

lists, 314
X fonts, using, 816

Foran, Jim, 482

foreshortening, perspective, 153
fragments, 14, 490

alpha test, 503
blending, 251
depth test, 510
rendering pipeline operations, 14
scissor test, 502
tests, 501–518
texture functions, 446

framebuffer, 190, 491
capacity per pixel, 492
clearing, 495–496
copying pixel data within, 333, 342, 344
enabling for reading, 497
enabling for writing, 497
minimum configuration with the X

Window System, 492
querying color resolution, 190
reading pixel data from, 333, 335
writing pixel data to, 333, 341

framebuffer objects, 13
freeglut, xli, 15
front-facing polygons, 61

specifying material property for, 232
two-sided lighting, 229

frustum, 153
ftp (file-transfer protocol) site

GLX specification, 813
Fundamentals of Computer Aided Geometric

Design, 571

G
Game of Life, 664
gamma correction, 191
Gardner, Martin, 664
geometric primitives, 42–53

rendering pipeline stage, 12
geosciences

use of texturing in applications, 458

864 Index

giraffe, 194
GL_VERTEX_PROGRAM_POINT_SIZE, 721
GL_VERTEX_PROGRAM_TWO_SIDE, 722
glAccum(), 519
glActiveTexture(), 469
glAlphaFunc(), 503
glAreTexturesResident(), 442
glArrayElement(), 77

legal between glBegin() and glEnd(), 52
Glassner, Andrew S., xl
glAttachShader(), 677
glBegin(), 47, 48, 546

restrictions, 51
glBeginConditionalRender(), 515
glBeginQuery(), 513
glBeginTransformFeedback(), 724
glBindAttribLocation(), 718
glBindBuffer(), 93
glBindBufferBase(), 696
glBindBufferRange(), 696
glBindFragDataLocation(), 730
glBindFramebuffer(), 528
glBindRenderbuffer(), 530
glBindTexture(), 399, 439

multitexturing, 469
glBindVertexArray()

vertex array objects, 105
glBitmap(), 324, 327, 816

feedback mode, 629
fonts, used for, 331
imaging pipeline operations, 344
pixel-storage modes effect, 347

glBlendColor*(), 254
glBlendEquation(), 255
glBlendEquationSeparate(), 255
glBlendFunc(), 253
glBlendFuncSeparate(), 253
glBlitFramebuffer(), 540
glBufferData(), 94

glBufferSubData(), 96
glCallList(), 302, 305, 310

legal between glBegin() and glEnd(), 52
glCallLists(), 312

fonts, use for, 329
legal between glBegin() and glEnd(), 52
sample program, 331

glCheckFramebufferStatus(), 538
glClampColor(), 198
glClear(), 35, 36, 496

depth buffer, clearing the, 206
glClearAccum(), 36, 495
glClearBuffer*(), 496
glClearBufferfi(), 497
glClearColor(), 35, 36, 495
glClearDepth(), 35, 495
glClearIndex(), 36, 199, 495

fog, use with, 286
glClearStencil(), 36, 495
glClientActiveTexture(), 472
glClipPlane(), 169
glColor*(), 38, 197

legal between glBegin() and glEnd(), 51
glColorMask(), 496, 499
glColorMaski(), 499
glColorMaterial(), 237
glColorPointer(), 74
glColorSubTable(), 373
glColorTable(), 369
glColorTableParameter(), 371
glCompileShader(), 676
glCompressedTexImage1D(), 421
glCompressedTexImage2D(), 421
glCompressedTexImage3D(), 421
glCompressedTexSubImage1D(), 422
glCompressedTexSubImage2D(), 422
glCompressedTexSubImage3D(), 422
glConvolutionFilter1D(), 380
glConvolutionFilter2D(), 375

Index 865

glConvolutionParameter*(), 381
glCopyBufferSubData(), 101
glCopyColorSubTable(), 373
glCopyColorTable(), 372
glCopyConvolutionFilter1D(), 380
glCopyConvolutionFilter2D(), 378
glCopyPixels(), 333, 342

alternative uses, 665
feedback mode, 629
glReadBuffer() effect, 499
imaging pipeline operations, 344
pixel-transfer modes effect, 352

glCopyTexImage1D(), 413
glReadBuffer() effect, 499
pixel-transfer modes effect, 352

glCopyTexImage2D(), 405
glReadBuffer() effect, 499
pixel-transfer modes effect, 352

glCopyTexSubImage1D(), 414
glReadBuffer() effect, 499
pixel-transfer modes effect, 352

glCopyTexSubImage2D(), 411
glReadBuffer() effect, 499
pixel-transfer modes effect, 352

glCopyTexSubImage3D(), 417
pixel-transfer modes effect, 352

glCreateProgram(), 676
glCreateShader(), 675
glCullFace(), 62
glDeleteBuffers(), 102
glDeleteFramebuffers(), 528
glDeleteLists(), 312, 330
glDeleteProgram(), 680
glDeleteQueries(), 514
glDeleteRenderbuffers(), 529
glDeleteShader(), 680
glDeleteTextures(), 442
glDeleteVertexArrays(), 109
glDepthFunc(), 510

glDepthMask(), 499
blending opaque and translucent objects,

264
glDepthRange(), 161

gluUnProject(), relationship to, 180
glWindowPos*() effect, 326

glDetachShader(), 677
glDisable(), 10, 54
glDisableClientState(), 73
glDisablei(), 516
glDisableVertexAttribArray(), 720
glDrawArrays(), 82
glDrawBuffer(), 341, 343, 498
glDrawBuffers(), 498
glDrawElements(), 78
glDrawPixels(), 333, 340, 506, 662

alternative uses, 665
feedback mode, 629
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glDrawRangeElements(), 81
version, 33

glEdgeFlag*(), 68
legal between glBegin() and glEnd(), 52

glEdgeFlagPointer(), 74
glEnable(), 10, 54, 213

also see enabling
glEnableClientState(), 52, 72
glEnablei(), 516
glEnableVertexAttribArray(), 720
glEnd(), 47, 48, 546

restrictions, 51
glEndConditionalRender(), 515
glEndList(), 301, 305, 307
glEndQuery(), 513
glEndTransformFeedback(), 724
glEvalCoord*(), 577

legal between glBegin() and glEnd(), 52
used instead of glVertex*(), 572, 575

866 Index

glEvalCoord2*(), 579
glEvalMesh1(), 578
glEvalMesh2(), 581
glEvalPoint*()

legal between glBegin() and glEnd(), 52
glext.h, 16
glFeedbackBuffer(), 628

glRenderMode(), use with, 608
glFinish(), 40
glFlush(), 39, 816
glFlushMappedBufferRange(), 100
glFog*(), 284
glFogCoord*(), 288
glFogCoordPointer(), 74
glFramebufferRenderbuffer(), 533
glFramebufferTexture1D(), 535
glFramebufferTexture2D(), 535
glFramebufferTexture3D(), 535
glFramebufferTextureLayer(), 538
glFrontFace(), 62
glFrustum(), 133, 153, 154
glGenBuffers(), 92
glGenerateMipmap(), 428
glGenFramebuffers(), 527
glGenLists(), 301, 306

fonts, use for, 330
glGenQueries(), 512
glGenRenderbuffers(), 529
glGenTextures(), 399, 438
glGenVertexArrays(), 105
glGetAttachedShaders(), 740
glGetAttribLocation(), 718
glGetBooleanv(), 10, 54, 743

double-buffering support, querying, 494
stereo support, querying, 494

glGetBufferParameteriv(), 740
glGetBufferPointerv(), 740
glGetBufferSubData(), 740
glGetClipPlane(), 740

glGetColorTable(), 740
pixel-storage modes effect, 347

glGetColorTableParameter*(), 741
glGetCompressedTexImage(), 741
glGetConvolutionFilter(), 741

pixel-storage modes effect, 347
glGetConvolutionParameter*(), 741
glGetDoublev(), 10, 54, 743
glGetError(), 10, 638, 741
glGetFloatv(), 10, 54, 743

line width attributes, obtaining, 57
glGetFragDataLocation(), 730
glGetHistogram(), 385, 741

pixel-storage modes effect, 347
glGetHistogramParameter*(), 741
glGetIntegerv(), 10, 54, 743

alpha test information, obtaining, 503
attribute stack depth, obtaining, 111
clipping planes, obtaining number of

additional, 170
color resolution, obtaining, 190
display list nesting limit, obtaining, 310
matrix stack depth, obtaining, 167
maximum texture size, obtaining, 406
name stack depth, obtaining, 609
pixel map information, obtaining, 355
rendering mode, obtaining current, 608
stencil-related values, obtaining, 505
vertex array range values, obtaining, 81

glGetLight*(), 10, 741
glGetMap*(), 741
glGetMaterial*(), 741
glGetMinmax(), 387, 741

pixel-storage modes effect, 347
glGetMinmaxParameter*(), 741
glGetPixelMap(), 741
glGetPointerv(), 10, 54, 743
glGetPolygonStipple(), 10, 741
glGetProgramInfoLog(), 678

Index 867

glGetProgramiv(), 741
glGetProgramLogInfo(), 741
glGetQueryiv(), 741
glGetQueryObject*(), 513
glGetQueryObjectiv(), 741
glGetQueryObjectuiv(), 741
glGetSeparableFilter(), 741

pixel-storage modes effect, 347
glGetShaderInfoLog(), 676, 742
glGetShaderiv(), 742
glGetShaderSource(), 742
glGetString(), 639, 742
glGetStringi(), 642
glGetTexEnv*(), 742
glGetTexGen*(), 742
glGetTexImage(), 742

pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glGetTexLevelParameter*(), 407, 742
glGetTexParameter*(), 742

texture residency, obtaining, 442
glGetUniform*(), 742
glGetUniformBlockIndex(), 695
glGetUniformIndices(), 697
glGetUniformLocation(), 691
glGetVertexAttrib*(), 742
glGetVertexAttribPointerv(), 742
glHint()

fog use, 281
texture use, 400

glHistogram(), 384
glIndex(), 199
glIndex*()

fog, use with, 286
legal between glBegin() and glEnd(), 51

glIndexMask(), 496, 499
glIndexPointer(), 74
glInitNames(), 607, 608, 609
glInterleavedArrays(), 89

glIsBuffer(), 93, 742
glIsEnabled(), 10, 54, 743
glIsFramebuffer(), 528
glIsList(), 312, 742
glIsProgram(), 680, 742
glIsQuery(), 512, 742
glIsRenderbuffer(), 530
glIsShader(), 680, 742
glIsTexture(), 438, 742
glIsVertexArray(), 110
glLight*(), 213, 214, 215, 220
glLightModel*(), 228
glLineStipple(), 57
glLineWidth(), 56
glLinkProgram(), 677
glListBase(), 312

fonts, use for, 330
sample program, 331

glLoadIdentity(), 133, 135, 145
viewing transformations, use

before, 131
glLoadMatrix*(), 134, 135
glLoadName(), 608, 610
glLoadTransposeMatrix*(), 134, 136
glLogicOp(), 256, 518
glMap*(), 574
glMap1*(), 576
glMap2*(), 579
glMapBuffer(), 97
glMapBufferRange(), 98
glMapGrid1*(), 577
glMapGrid2*(), 581
glMaterial*(), 214, 232

legal between glBegin() and glEnd(), 51
glMatrixMode(), 133, 135

use with matrix stacks, 166
glMinmax(), 387
glMultiDrawArrays(), 83

version, 33

868 Index

glMultiDrawElements(), 80
version, 33

glMultiTexCoord*(), 470
glMultMatrix*(), 134, 135
glMultTransposeMatrix*(), 134, 136
glNewList(), 301, 305, 307
glNormal*()

legal between glBegin() and glEnd(), 51
glNormal3*(), 69
glNormalPointer(), 74
glOrtho(), 157

picking matrix use, 615
glPassThrough(), 628, 630
glPixelMap*(), 354
glPixelStore*(), 347, 417

cannot be stored in display lists, 309
polygon stippling, 63
texture image data, effect on, 403, 405,

409, 411, 413, 416, 421, 422
glPixelTransfer*(), 352, 662

texture image data, effect on, 403, 405,
409, 411, 413, 416, 421, 422

glPixelZoom(), 356, 648
glPointParameter*(), 292
glPointSize(), 55, 721
glPolygonMode(), 61

antialiasing, effect on, 280
polygon offset, use with, 294

glPolygonOffset(), 294
glPolygonStipple(), 63

pixel-storage modes effect, 347
glPopAttrib(), 10, 111, 318, 470, 743
glPopClientAttrib(), 10, 112, 470, 743
glPopMatrix(), 166, 176, 223, 318

restore orientation of coordinate systems,
179

selection, use with, 607
glPopName(), 608, 609
glPrimitiveRestartIndex(), 84

glPrioritizeTextures(), 443
glPushAttrib(), 10, 111, 318, 470, 743
glPushClientAttrib(), 10, 112, 470, 743
glPushMatrix(), 166, 176, 223, 318

save orientation of coordinate systems, 179
selection, use with, 607

glPushName(), 607, 608, 609
glRasterPos*(), 324, 325

images, for positioning, 333
multitexturing, with, 471
selection hit, 610

glReadBuffer(), 342, 499
glReadPixels(), 333, 335

glReadBuffer() effect, 499
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glRect*(), 45
glRenderbufferStorage(), 530
glRenderbufferStorageMultisample(), 530
glRenderMode(), 607, 608, 610, 628
glResetHistogram(), 386
glResetMinmax(), 388
glRotate*(), 142, 172, 175
glSampleCoverage(), 279
glScale*(), 131, 142, 175
glScissor(), 502
glSecondaryColor*(), 479
glSecondaryColorPointer(), 74
glSelectBuffer(), 607, 608

display lists, cannot be stored in, 309
glSeparableFilter2D(), 379
glShadeModel(), 200
glShaderSource(), 675
glStencilFunc(), 504
glStencilFuncSeparate(), 504
glStencilMask(), 499
glStencilMaskSeparate(), 499
glStencilOp(), 505
glStencilOpSeparate(), 505

Index 869

glTexBuffer(), 711
glTexCoord*(), 400, 449

legal between glBegin() and glEnd(), 52
texture unit 0, for, 471

glTexCoordPointer(), 74
glTexEnv*(), 399, 444, 473

level of detail bias, 430
multitexturing, 468

glTexGen*(), 457
cube maps, 466
environment mapping, 464
multitexturing, 468, 471

glTexImage1D(), 412
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glTexImage2D(), 399, 400
cube map textures, 465
pixel-storage modes effect, 347
pixel-transfer modes effect, 352
specifying mipmaps, 425

glTexImage3D(), 415
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glTexParameter*(), 399, 455
automatic mipmap regeneration, 429
mipmap level of detail, controlling, 433
mipmap levels, controlling base and

maximum, 432
multitexturing, 468
specifying filtering methods, 435

glTexSubImage1D(), 413
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glTexSubImage2D(), 409
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glTexSubImage3D(), 416
pixel-storage modes effect, 347
pixel-transfer modes effect, 352

glTranslate*(), 141, 172, 175

GLU, 3, 15, 542
drawing spheres, cylinders, and disks,

559–567
error string description, 639
obsolete routines

gluBeginPolygon(), 558
gluEndPolygon(), 558
gluNextContour(), 558

quadrics, 559–567
tessellation, 44, 542–559
version numbers, obtaining, 641

gluBeginCurve(), 587, 597
gluBeginSurface(), 587, 595
gluBeginTrim(), 601
gluBuild1DMipmapLevels(), 430
gluBuild1DMipmaps(), 429
gluBuild2DMipmapLevels(), 430
gluBuild2DMipmaps(), 429
gluBuild3DMipmapLevels(), 430
gluBuild3DMipmaps(), 429
gluCheckExtension(), 642
gluCylinder(), 560, 563
gluDeleteNurbsRenderer(), 591
gluDeleteQuadric(), 560, 561
gluDeleteTess(), 557, 558
gluDisk(), 560, 564
gluEndCurve(), 587, 597
gluEndSurface(), 587, 595
gluEndTrim(), 601
gluErrorString(), 561, 595, 639

polygon tessellation, 546
gluGetNurbsProperty(), 594, 742
gluGetString(), 641, 742
gluGetTessProperty(), 553, 742
gluLoadSamplingMatrices(), 594
gluLookAt(), 129, 131, 149, 172
gluNewNurbsRenderer(), 587, 591
gluNewQuadric(), 560, 561
gluNewTess(), 544, 558
glUniform*(), 691

870 Index

glUniformBlockBinding(), 696
glUniformMatrix*(), 691
glUnmapBuffer(), 97
gluNurbsCallback(), 587, 595, 598
gluNurbsCallbackData(), 599
gluNurbsCurve(), 587, 597
gluNurbsProperty(), 587, 592

returning tessellated data, 597
gluNurbsSurface(), 587, 596
gluOrtho2D(), 158

resized windows, use with, 41
gluPartialDisk(), 560, 564
gluPerspective(), 133, 156, 172

picking matrix use, 615
gluPickMatrix(), 615
gluProject(), 183
gluPwlCurve(), 601
gluQuadricCallback(), 560, 561
gluQuadricDrawStyle(), 560, 561
gluQuadricNormals(), 560, 562
gluQuadricOrientation(), 560, 562
gluQuadricTexture(), 560, 562
gluScaleImage(), 405
glUseProgram(), 678
gluSphere(), 560, 563
GLUT, 15, 731–737

basic functions, 17–22
event management, 21
glutCreateWindow(), 19, 733
glutDisplayFunc(), 19, 733
glutIdleFunc(), 21, 736
glutInit(), 18, 732
glutInitContextFlags(), 19
glutInitContextVersion(), 18
glutInitDisplayMode(), 18, 732
glutInitWindowPosition(), 18, 733
glutInitWindowSize(), 18, 733
glutKeyboardFunc(), 21, 734
glutMainLoop(), 19, 737

glutMotionFunc(), 21, 734
glutMouseFunc(), 21, 734
glutPostRedisplay(), 19, 302, 734
glutReshapeFunc(), 21, 734

simple example, 40
glutSetColor(), 18, 199, 247, 735

smooth shading, use for, 202
glutSolidCone(), 736
glutSolidCube(), 21, 735
glutSolidDodecahedron(), 736
glutSolidIcosahedron(), 736
glutSolidOctahedron(), 736
glutSolidSphere(), 21, 735
glutSolidTeapot(), 736
glutSolidTetrahedron(), 736
glutSolidTorus(), 735
glutSwapBuffers(), 25
glutWireCone(), 736
glutWireCube(), 21, 735
glutWireDodecahedron(), 736
glutWireIcosahedron(), 736
glutWireOctahedron(), 736
glutWireSphere(), 21, 172, 735
glutWireTeapot(), 736
glutWireTetrahedron(), 736
glutWireTorus(), 735
multisampling, 276
window management, 40

gluTessBeginContour(), 555
gluTessBeginPolygon(), 554
gluTessCallback(), 545, 555, 558
gluTessEndContour(), 555
gluTessEndPolygon(), 554
gluTessNormal(), 553, 554, 557
gluTessProperty(), 550, 555
gluTessVertex(), 555, 558
gluUnProject(), 180, 183
gluUnProject4(), 182
glValidateProgram(), 681

Index 871

glVertex*(), 46
legal between glBegin() and glEnd(), 51
using glEvalCoord*() instead, 572

glVertexAttrib*(), 719
glVertexAttrib4N*(), 719
glVertexAttribI*(), 719
glVertexAttribPointer(), 720
glVertexPointer(), 52, 74
glViewport(), 134, 159

using with resized windows, 41
glWindowPos*(), 326

multitexturing, with, 471
selection hit, 610

GLX, 15, 813
ftp site for GLX specification, 813
glXChooseFBConfig(), 813, 817
glXChooseVisual(), 814, 819
glXCopyContext(), 815, 817
glXCreateContext(), 815, 819
glXCreateGLXPixmap(), 814, 819
glXCreateNewContext(), 814, 817
glXCreatePbuffer(), 814, 817
glXCreatePixmap(), 814, 817
glXCreateWindow(), 814, 817
glXDestroyContext(), 815, 818
glXDestroyGLXPixmap(), 816, 819
glXDestroyPbuffer(), 816, 818
glXDestroyPixmap(), 816, 818
glXDestroyWindow(), 816, 818
glXGetClientString(), 813, 816
glXGetConfig(), 493, 814, 819
glXGetCurrentContext(), 815, 818
glXGetCurrentDisplay(), 815, 818
glXGetCurrentDrawable(), 815, 818
glXGetCurrentReadDrawable(), 815, 818
glXGetFBConfigAttrib(), 813, 817
glXGetFBConfigs(), 817
glXGetProcAddress(), 814, 817
glXGetSelectedEvent(), 815, 818
glXGetVisualFromFBConfig(), 813, 817

glXIsDirect(), 814, 818
glXMakeContextCurrent(), 815, 817
glXMakeCurrent(), 815, 819
glXQueryContext(), 815, 818
glXQueryExtension(), 813, 816
glXQueryExtensionsString(), 813, 816
glXQueryServerString(), 813, 816
glXQueryVersion(), 813, 816
glXSelectEvent(), 815, 818
glXSwapBuffers(), 25, 816, 818
glXUseXFont(), 816, 818
glXWaitGL(), 815, 818
glXWaitX(), 816, 818

glXQueryExtensionString(), 641
Gouraud shading, see smooth shading

H
Haeberli, Paul, 482, 519
haze, see fog
header files, 15

Version 3.1, 17
hidden-line removal, 659

polygon offset used for, 294
hidden-surface removal, 205–207, 510
hierarchical models, 164, 310

picking, 619–621
highlights, see specular
hints, 268

fog, 281
perspective correction, 268, 400

histogram, 383–386
reseting, 384, 386
retrieving, 384
sample program, 385

hits (selection), see selection (hit records)
holes in polygons, 43, 656
homogeneous coordinates, 42, 804
Hoschek, Josef, 571
Hughes, John F., xl, 803

872 Index

I
icosahedron, drawing, 115
identity matrix, 131, 135, 145
illumination, see lighting
images, 322, 333–343

also see pixel data
blending, 653
compositing, 252
distorted, 647
imaging pipeline, 343–359
interpolating between, 653
magnifying or reducing, 356
nonrectangular, 259
projecting, 661
sample code which draws an image, 341
sample program which draws, copies, and

zooms an image, 357
scaling and rotating, 661
sources of, 333
superimposing, 654
transposing, 666
warping, 661

imaging pipeline, see images (imaging pipeline)
imaging subset, 367–388

texture images, effect on, 404, 412
immediate mode, 33, 298

display lists, mixing with, 310
infinite light source, 217
input events

handling, using GLUT, 21
intensity

texture image data type, 445
Interactive Inspection of Solids: Cross-sections

and Interferences, 656
interference regions, 656
interleaved arrays, 88
interpolating

color values and texture coordinates, 268,
449

texture combiner function, 477

J
jaggies, 267
jittering, 525

K
Kilgard, Mark, xli, 15, 731, 813
Korobkin, Carl, 482

L
Lasser, Dieter, 571
layers, drawing, 649
Life, Game of, 664
light sources, 214–227

ambient light, 208, 216
contribution to lighting equation, 242
diffuse light, 208, 216
directional, 217
display lists cache values, 303
infinite light source, 217
local light source, 217
maximum number of sources, 213
moving along with the viewpoint, 225
moving light sources, 221–226
multiple light sources, 220
performance tips, 213
positional, 217
rendering pipeline stage, 12
RGBA values, 209
sample program that moves the light

source, 224
specifying a light source, 213
specular light, 208
spotlights, 219–220
stationary, 222

lighting
also see light sources, material properties
ambient light, 207
approximation of the real world, 207
attenuation, 217–218

Index 873

calculations in color-index mode, 247
color-index mode, 246–247
default values, using, 214
display lists cache values, 303
enabling, 213, 214
enabling and disabling, 231
equation that calculates lighting, 241
global ambient light, 228, 242
lighting model, 227–230
lighting model, specifying a, 213
rendering pipeline stage, 12
sample program introducing lighting, 210
specular color separated, 230, 245, 479
steps to perform, 210
two-sided materials, 229
viewer, local or infinite, 229

line segment, 43
linear attenuation, 218
lines, 43

antialiasing, 269–275, 661
connected closed loop, specifying, 48, 50
connected strip, specifying, 48, 50
feedback mode, 629
querying line width, 57
sample program with wide, stippled lines,

59
specifying, 48, 50
stippling, 57
tessellated polygons decomposed

into, 546
width, 56

local light source, 217
logical operations

rendering pipeline stage, 14
transposing images, using for, 666

lookup table, see color map
luminance, 336, 362

pixel data formats for, 338, 346
texture image data type, 445

M
magnifying images, 356
masking, 499

antialiasing characters, 652
layers, drawing, 649
rendering pipeline stage, 14

material properties, 214, 231–240
ambient, 209, 233
changing a single parameter with

glColorMaterial(), 237
changing material properties, 235
diffuse, 209, 233
display lists cache values, 303
emission, 208, 234, 241
enabling color material properties mode,

237
rendering pipeline stage, 12
RGBA values, 210
sample program which changes material

properties, 235
sample program which uses

glColorMaterial(), 238
shininess, 234
specular, 209, 234
two-sided lighting, 229

matrix
choosing which matrix is current, 135
column-major ordering, 136
current, 131
display lists cache matrix operations, 303
identity, 131, 135, 145
loading, 135
loading transposed, 136
modelview, 128, 135
multiplying matrices, 135
multiplying transposed matrices, 136
NURBS, specifying for sampling, 593
orthographic parallel projection, 808
perspective projection, 807
projection, 133, 135

874 Index

matrix, continued
rotation, 806
row-major ordering, 136
scaling, 806
texture, 481
transformation pipeline, 126
transformations of homogeneous

coordinates, 804
translation, 806

matrix stack, 164–168
choosing which matrix stack is current,

166
modelview, 167
popping, 166
projection, 168
pushing, 166
querying stack depth, 167
texture, 481

Megahed, Abe, 656
Microsoft

callback functions on Windows, 547
Microsoft Win32, see Win32
Microsoft Windows 95/98/NT, 15, 824
Microsoft Windows to OpenGL interface,

see WGL
minmax, 387–388

reseting, 387, 388
retrieving results, 387
sample program, 388

mipmapping, 424–429
automated generation, 429
base and maximum levels, 432
level of detail control, 431
minification filters, 436
texture objects for mipmaps, 441

mirroring objects, see scaling
modeling transformations, 131, 137, 140–145

camera analogy, 126
connection to viewing transformations,

131

example, 143
rotation, 142
rotation matrix, 806
sample program, 145
scaling, 142
scaling matrix, 806
translation, 141
translation matrix, 806

models
rendering wireframe and solid, 21, 735

modelview matrix, 128, 135
arbitrary clipping planes, effect on, 169
stack, 167

mosaicing, 431
motion blur, 520

stippling, with, 646
motion, see animation
movie clips, 665
multiple layers

displaying with overlap, 649
multisampling, 275–279

fading point primitives, 292
sample program, 276

multitexturing, 467–472

N
name stack, 607–611

creating, 608
initializing, 608
loading, 608
multiple names, 619–621
popping, 608
pushing, 608
querying maximum depth, 609

networked operation, 39–40
attribute groups, saving and restoring, 110
display lists, 309
versions, 640

Index 875

Non-Uniform Rational B-Splines, see NURBS
nonplanar polygons, 44
normal vectors, 68–70, 212

calculating length, 70
cross product, calculating normalized, 117
enabling automatic unit length division,

70, 212
matrix transformations, 128
normalized, 70
NURBS, generating for, 596
quadrics, generated for, 562
rendering pipeline stage, 12
specifying, 69
tessellation, specifying for, 548
transformations, 805
uniform rescaling, 70
vertex arrays, specifying values with, 74

normal, see normal vectors
normalized device coordinates, 128
NURB Curves and Surfaces, 571
NURBS, 586–604

creating a NURBS curve or surface,
595–597

creating a NURBS object, 591
culling, 592
deleting a NURBS object, 591
display list use, 302
error handling, 594
method of display (lines or filled

polygons), 592
normal vectors, generating, 596
properties, controlling NURBS, 591
querying property value, 594
references, 571
sample program which draws a lit NURBS

surface, 588
sample program with a trimmed surface,

603
sampling precision, 592
source for matrices, 593

steps to use, 587
texture coordinate generation, 596
trimming, 601–604

NURBS Book, The, 571
NURBS for Curve and Surface Design, 571
NURBS tessellator

sample code, 599, 600

O
object coordinates, 128

texture coordinate generation, 458
objects, see models
occlusion queries

conditional rendering, 515
occlusion query, 511
opacity, 252
OpenGL contexts, 27
OpenGL Extension to the X Window System,

see GLX
OpenGL Programming for the X Window System,

xli, 813
OpenGL Reference Manual, xl, 813
OpenGL Utility Library, see GLU
OpenGL Utility Toolkit, see GLUT
orthographic parallel projection, 133,

156–157
matrix, 808

outer product, 378
outlined polygons, 61, 68

polygon offset solution, 293
overlapping objects, 656

P
packed pixel data, 338–339
painting, 252, 258, 666
partial disks, 559
pass-through markers, 630

876 Index

performance tips
clearing the window, 36
display lists, 302
flushing the pipeline, 38
fog, 281
hints, 268
light source attenuation, effect of, 218
light sources, effect of additional, 213
NURBS and display lists, 302
pixel data alignment, 350
pixel data, drawing, 366
polygon restrictions, 44
polygon subdivision, 114
removing hidden surfaces, 207
tessellation and display lists, 302
tessellation, use of, 557
texture images, internal format of, 403
texture objects, 437
two-sided lighting, 230

perspective projection, 153–156
correction hint, 268, 400
depth coordinates, effect on, 161
matrix, 807
perspective division, 128

picking, 614–624
back buffer for, using the, 646
depth coordinates, 621
hierarchical models, 619–621
projection matrix, special, 615
sample program, 616
sample program with depth coordinates,

621
strategies, 625
sweep selection, 626

Piegl, Les, 571
pipeline

imaging, 343–359
rendering, 10–14
vertex transformation, 126

pixel
coverage, 267

pixel data, 322, 333–343
also see images
BGR and BGRA formats, 336
byte alignment, 350
byte swapping, 348
copying within the framebuffer, 13, 333,

342, 344
depth buffer pixel data, 342, 353
drawing or reading a subrectangle of, 349
drawing process in detail, 359–361
endianness, 349
feedback mode, 629
formats for reading or drawing, 335
formats for storing in memory, 338, 346
mapping, 13, 354–355
packed, 338–339
packing into processor memory, 13,

346–348
performance tips, 366
pipeline operations, 13, 343–359
pixel zoom, 356
querying pixel mapping information, 355
reading from the framebuffer, 333, 335
reading process in detail, 361–362
sample code which draws an image, 341
sample program that uses a pixel buffer

object for storage, 364
sample program which draws, copies, and

zooms pixel data, 357
stencil buffer pixel data, 338, 354
storage modes, 347, 417–419
transfer modes, 13, 352, 445
unpacking from processor memory, 13,

346–348
writing to the framebuffer, 333, 341

point light source, see positional light source
point parameters, 291

sample program, 292

Index 877

points, 42
antialiasing, 269–275, 653
drawing, 48
feedback mode, 629
point parameters, 291
round, 269–275, 653
size, 55
specifying, 48, 50

polygon offset, 293–296
depth slope of a polygon, 295
enabling, 294
hidden-line removal, 659
sample program, 296
shadowing use, 484

polygonal approximations to surfaces, 113
polygons, 43

boundary edges, 67–68
concave, drawing filled, 542, 655
convex, 43
culling the faces, 61
drawing, 48
drawing as points, lines, or filled, 61
feedback mode, 629
front and back faces, 61
holes in, 43
non-convex, 44, 67
nonplanar, 44
polygon mode, 12, 61
reversing the faces, 61
self-intersecting, 549
simple, 43
specifying, 48, 51
stippling, 63
tessellation, specifying for, 554
Voronoi, 663

positional light source, 217
primitives

geometric, 42–53
raster, 322

priority of texture objects, 443
Procedural Elements for Computer Graphics, 560
programs

aaindex.c, 272
aargb.c, 270
alpha3D.c, 264
alpha.c, 261
bezcurve.c, 573
bezmesh.c, 582
bezsurf.c, 580
checker.c, 398
clip.c, 170
colormat.c, 238
colormatrix.c, 382
colortable.c, 371
combiner.c, 477
convolution.c, 376
cube.c, 130
cubemap.c, 466
dof.c, 522
drawf.c, 324
feedback.c, 631
fog.c, 281
fogcoord.c, 289
fogindex.c, 286
font.c, 331
histogram.c, 385
image.c, 357
light.c, 210
lines.c, 59
list.c, 305
material.c, 235
minmax.c, 388
mipmap.c, 426
model.c, 145
movelight.c, 224
multisamp.c, 276
multitex.c, 469
pboimage.c, 364

878 Index

programs, continued
pickdepth.c, 621
picksquare.c, 616
planet.c, 173
pointp.c, 292
polyoff.c, 296
quadric.c, 565
robot.c, 177
select.c, 611
shadowmap.c, 484–486
smooth.c, 200
sprite.c, 481
stencil.c, 507
stroke.c, 314
surface.c, 588
surfpoints.c, 599, 600
tess.c, 548, 556
texbind.c, 439
texgen.c, 459
texsub.c, 410
texture3d.c, 415
texturesurf.c, 584
torus.c, using a display list, 299
trim.c, 603
unproject.c, 180

projecting images, 661
projection matrix, 133, 135

matrix stack, 168
orthographic parallel projection matrix, 808
perspective projection matrix, 807
shadows created with, 658

projection transformation
centered along view vector, 156
off-axis perspective, 154
parallel projection, 157
perspective, 154, 156
three-dimensional orthographic, 157

projection transformations, 132, 152–158
camera lens analogy, 126
orthographic parallel, 133, 156–157

perspective, 153–156
picking, 615
texturing effects, 482
two-dimensional orthographic, 158

proxies
color table, see color table proxies, 374

proxy textures, 406
cube maps, 465

Q
q texture coordinates, 482
quadratic attenuation, 218
quadrics, 559–567

creating an object, 560
destroying an object, 560
drawing as points, lines, and filled

polygons, 561
error handling, 561
normal vectors, generating, 562
orientation, 562
quadratic equation, 559
sample program, 565
steps to use, 560
texture coordinates, generating, 562

quadrilateral
specifying, 48
strip, specifying, 48, 51

R
raster position, 325

after drawing a bitmap, 327
current, 325
current raster color, 329
current, obtaining the, 326
selection hit, 610
transformation of, 326

rasterization, 190, 490
rendering pipeline stage, 14

Index 879

readImage(), 372
reading pixel data, see pixel data
Real Projective Plane, The, 803
rectangles

specifying, 45
reducing images, 356
reflecting objects, see scaling
reflection, see material properties
reflective objects, see environment mapping
refresh, screen, 22
removing hidden surfaces, see hidden-surface

removal
rescaling normals, 70, 212
resident textures, 408, 442

management strategies, 443
querying residence status, 442

RGBA mode, 191
changing between color-index mode and,

196
choosing between color-index mode and,

195
coverage calculations for antialiasing, 267
data type conversion, 197
light source colors, 209
lighting calculations in, 241
material property values, 210
vertex arrays, specifying values with, 74

Robins, Nate, xlii, 145, 151, 158, 179, 227,
236, 437, 448, 450, 457, 482

robot arm example, 175–179
Rogers, David, 560
Rossignac, Jarek, 656
rotating images, 661
rotation, 142

matrix, 806

S
scaling, 142

matrix, 806
scaling images, 661

Schneider, Bengt-Olaf, 656
Scientific American, 664
scissor test, 502

and clearing, 496
rendering pipeline stage, 14

secondary color, 478–479
specular, 230, 245

Segal, Mark, 482
selection, 606–627

back buffer for, using the, 646
hit records, 610
programming tips, 625
querying current rendering mode, 608
sample program, 611
steps to perform, 607
sweep selection, 626

shading
flat, 200
sample program with smooth shading, 200
smooth, 200
specifying shading model, 200

shadows, 241, 525, 658
shininess, 234

also see environment mapping
silhouette edges, 114
smoke, see fog
smooth shading, 200
solar system example, 172–175
source factor, see blending
specifying the background color, 36
specifying the depth buffer clear value, 35
specular

contribution to lighting equation, 244
light, 208
material properties, 209, 234
secondary specular color, 230, 245, 479

sphere map, 463
spheres, 559, 735
split-screen

multiple viewports, 159

880 Index

spotlights, see light sources
state attributes

perserving, 111
preserving vertex arrays, 112
reverting, 111
reverting vertex arrays, 112

state machine, 9–10
state variables, 53

attribute groups, 110–112
display list execution, effect of, 318
enable and disable states, 54
list of, 743–800
querying, 54

stencil buffer, 492, 494
clearing, 36, 495
concave polygons, for drawing, 655
decals, for, 654
Dirichlet domains, for, 663
Game of Life, for the, 664
hidden-line removal, 660
masking, 499
pixel data, 338, 354

stencil test, 504–510
examples of using, 506
interference regions found using clipping

planes, 657
querying stencil parameters, 505
rendering pipeline stage, 14
sample program, 507

stereo, 494, 498
querying its presence, 494

stippling
display lists cache stipple patterns, 303
enabling line stippling, 57
enabling polygon stippling, 63
fade effect, use for, 645
line pattern reset, 58, 629, 633
lines, 57
polygons, 63

sample program with line stipple, 59
stencil test, use of, 510
translucency, use to simulate, 644

stitching, 294
stretching objects, see scaling
stride

vertex arrays, 76, 89
subdivision, 113–121

generalized, 120
icosahedron example, 118
recursive, 119

subimages, 408–411, 413, 416
superimposing images, 654
surface normals, see normal vectors
surfaces, see evaluators or NURBS
swapping buffers, see double-buffering
syntax, see command syntax

T
Terminator 2, 463
tessellation, 44, 542–559

backward compatibility with obsolete
routines, 558

begin and end callback routines, 546
callback routines, 544–549
combine callback routine, 546, 549
contours, specifying, 554
converting code to use the GLU 1.2

tessellator, 559
creating an object, 544
decomposition into geometric primitives,

546
deleting objects, 557
display list use, 302
edge flag generation, 546
error handling, 546
interior and exterior, determining,

550–553
intersecting contours combined, 546, 549

Index 881

performance tips, 557
polygons, specifying, 554
properties, 550–554
reuse of objects, 544, 557
reversing winding direction, 554
sample code, 548, 556
user-specified data, 549
vertices, specifying, 547, 555
winding rules, 550–553

texels, 14, 391
text, see characters
texture coordinates, 400, 448–464

assigning manually, 448
clamping, 452–455
computing manually, 450
cube maps, 466
enabling automatic generation of, 462
environment mapping, automatic

generation for, 464
evaluators, generated by, 584
generating automatically, 457–464
multitexturing, special situations with, 471
NURBS, generating for, 596
q coordinate, 482
quadrics, generated for, 562
reference planes, specifying, 458
rendering pipeline stage, 12
repeating, 452–455
sample program with texture coordinate

generation, 459
tessellation, specifying for, 548
vertex arrays, specifying values with, 74
wrapping modes, 452–455

texture functions, 444–448
add, 448
blend, 448
blending color, 448
decal, 399, 447
fragment operations, 446

level of detail bias, 444
modulate, 448
pixel-transfer modes effect, 445
replace, 447
texture internal format, interaction with,

446
texture images

alpha data, 445
borders, 423, 452
components, 401
data types, 403
distorting, 451
framebuffer as a source of, 405, 411, 413,

417
imaging pipeline operations, 345
intensity data, 445
internal format, 401
luminance data, 445
mipmaps, 424–429
multitexturing, 468
one-dimensional, 412–414
performance affected by internal format,

403
power of 2 size restriction, 404
proxy textures, 406
querying maximum size, 406
residence status, 442
resident textures, 408, 442
resident textures, management strategies

of, 443
sample program with mipmaps, 426
sample program with subimages, 410
specifying, 400–423
subimages, 408–411, 413, 416
three-dimensional, 414–419
working set of textures, 408, 437, 442

texture mapping
sample program using 3D textures, 415

texture mapping, see texturing
texture matrix, 481

882 Index

texture objects, 399, 437–442
binding, 438
creating, 438
data which can be stored in, 439
deleting, 441
fragmentation of texture memory, 444
least-recently used (LRU) strategy, 444
mipmaps, 441
naming, 438
performance tips, 437
priority, 443
rendering pipeline, 13
sample program, 398
sample program with multiple texture

objects, 439
sharing among rendering contexts, 814,

826
steps to perform, 437
using, 438

texturing
also see texture coordinates, texture

functions, texture images, texture
matrix, and texture objects

antialiasing characters, 661
antialiasing lines, 661
blending, 259
border colors, treatment of, 452
color-index mode limitations, 396, 404
combiner functions, 472–478
compressed textures, 420
creating contours, 458
cube maps, 465
decals with alpha testing, 503
differences among releases, 393
enabling, 396, 399
filtering, 434–436
image transformations, 661
mipmapping, 424–429, 436
mosaic texture, 431
multitexturing, 467–472

perspective correction hint, 400
popping visual artifact, 431
rendering pipeline stage, 13
sample code using point sprites, 481
sample code with a depth texture, 484–486
sample code with combiner functions, 477
sample code with multitexturing, 469
sample program, 398
sample program with cube maps, 466
sample program with evaluated, Bézier

surface, 584
sample program with mipmapping, 426
sample program with texture coordinate

generation, 459
sample uses for, 661
simulating shadows or spotlights, 482
specular color separated, 230, 245, 479
sphere map, 463
steps to perform, 396

3D Computer Graphics: A User’s Guide for
Artists and Designers, xl

3D models, rendering, 21, 735
Tiller, Wayne, 571
tips, programming

selection and picking, 625
transformations, 162

transformations
also see modeling transformations,

projection transformations, viewing
transformations, and viewport
transformations

combining multiple, 172–179
display lists cache transformations, 303
general-purpose commands, 134
matrices, 805–808
modeling, 137, 140–145
ordering correctly, 137–140
overview, 125
projection, 132, 152–158
reversing the geometric processing

pipeline, 180

Index 883

sample program, 130
sample program combining modeling

transformations, 173, 177
sample program for modeling

transformations, 145
sample program showing reversal of

transformation pipeline, 180
troubleshooting, 162–164
units, 156
viewing, 137, 146–151
viewport, 134, 158–160

translation, 141
matrix, 806

translucent objects, 252, 644
stencil test, creating with the, 510

transparent objects, 252
creating with the alpha test, 503

transposing images, 666
triangle

fan, specifying, 48
specifying, 48, 50
strip, specifying, 48, 50
tessellated polygons decomposed into, 546

trimming
curves and curved surfaces, 601–604
sample program, 603

tutorials
on-line, xlii

two-sided lighting, 229

U
up-vector, 131
Utility Library, OpenGL, see GLU
Utility Toolkit, OpenGL, see GLUT

V
van Dam, Andries, xl, 187, 191, 803
van Widenfelt, Rolf, 482

vendor-specific extensions, 641
versions, 639–641

GLU, 641
vertex, 42

also see vertex arrays
evaluators, generating with, 572
feedback mode, 629
per-vertex operations pipeline stage, 12
specifying, 46
tessellation, specifying for, 547, 555
transformation pipeline, 126

vertex arrays, 70–91
dereference a list of array elements, 78, 80,

81
dereference a sequence of array elements,

82, 83
dereference a single element, 77
differences among releases, 33
disabling, 73
display list use, 309
enabling, 72
interleaved arrays, 88
interleaved arrays, specifying, 89
multitexturing texture coordinates, 471
querying, 743
querying range values, 81
restarting primitives, 83–??, 84, ??–86
reuse of vertices, 79
specifying data, 73
steps to use, 71
stride between data, 76, 89
vertex-array objects, 104–??, 109, ??–110
vertex-arrays objects, 105

video
fake, 665
flipping an image with glPixelZoom(), 356
textured images, 408

viewing
camera analogy, 126–127

884 Index

viewing transformations, 130, 137, 146–151
connection to modeling transformations,

131
default position, 131
different methods, 151
pilot view, 152
polar view, 152
tripod analogy, 126
up-vector, 131

viewing volume, 153
clipping, 158, 168

viewpoint
lighting, for, 229

viewport transformations, 129, 134, 158–160
photograph analogy, 126
rendering pipeline stage, 12

visual simulation
fog, use of, 281

Voronoi polygons, 663

W
w coordinates, 42, 129, 134

lighting, use with, 217
perspective division, 161

warping images, 661
Watt, Alan, 390
web sites, xl

errata list, xlii
Microsoft Developer Network, 825

WGL, 15, 825
wglCopyContext(), 826, 828
wglCreateContext(), 825, 828
wglCreateLayerContext(), 826, 828
wglDeleteContext(), 828
wglDescribeLayerPlane(), 825, 827
wglDestroyContext(), 826
wglGetCurrentContext(), 826, 828
wglGetCurrentDC(), 826, 828

wglGetLayerPaletteEntries(), 827, 829
wglGetProcAddress(), 828
wglMakeCurrent(), 826, 828
wglRealizeLayerPalette(), 827, 829
wglSetLayerPaletteEntries(), 829
wglShareLists(), 826, 828
wglSwapLayerBuffers(), 826, 828
wglUseFontBitmaps(), 827, 829
wglUseFontOutlines(), 827, 829

wglGetProcAddress(), 644
Williams, Lance, 424
Win32

ChoosePixelFormat(), 825, 827
CreateDIBitmap(), 826, 828
CreateDIBSection(), 826, 828
DeleteObject(), 826, 828
DescribePixelFormat(), 825, 827
GetVersion(), 825, 827
GetVersionEx(), 825, 827
SetPixelFormat(), 825, 827
SwapBuffers(), 826, 828

winding, 62
winding rules, 550–553

computational solid geometry, used for,
551

reversing winding direction, 554
window coordinates, 129, 158

feedback mode, 629
polygon offset, 294
raster position, 326

window management
glViewport() called, when window resized,

159
using GLUT, 40

working set of textures, 408, 437, 442
fragmentation of texture memory, 444

writemask, see masking (buffers)
writing pixel data, see pixel data (drawing)
www.opengl.org, xl

www.opengl.org

Index 885

X
X Window System, 15, 813

client-server rendering, 5
minimum framebuffer configuration, 492
X Visual, 196, 813

Z
z buffer, see depth buffer
z coordinates, see depth coordinates
zooming images, 356

filtered, 666

	2. State Management and Drawing Geometric Objects
	A Drawing Survival Kit
	Clearing the Window
	Specifying a Color
	Forcing Completion of Drawing
	Coordinate System Survival Kit

	Describing Points, Lines, and Polygons
	What Are Points, Lines, and Polygons?
	Specifying Vertices
	OpenGL Geometric Drawing Primitives

	Basic State Management
	Displaying Points, Lines, and Polygons
	Point Details
	Line Details
	Polygon Details

	Normal Vectors
	Vertex Arrays
	Step 1: Enabling Arrays
	Step 2: Specifying Data for the Arrays
	Step 3: Dereferencing and Rendering
	Restarting Primitives
	Instanced Drawing
	Interleaved Arrays

	Buffer Objects
	Creating Buffer Objects
	Making a Buffer Object Active
	Allocating and Initializing Buffer Objects with Data
	Updating Data Values in Buffer Objects
	Copying Data Between Buffer Objects
	Cleaning Up Buffer Objects
	Using Buffer Objects with Vertex-Array Data

	Vertex-Array Objects
	Attribute Groups
	Some Hints for Building Polygonal Models of Surfaces
	An Example: Building an Icosahedron

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

