
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321545619
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321545619
https://plusone.google.com/share?url=http://www.informit.com/title/9780321545619
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321545619
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321545619/Free-Sample-Chapter

Praise for Framework Design Guidelines

“�Framework Design Guidelines is one of those rare books that can be read at differ-
ent reading levels and can be useful to different kinds of developers. Regardless
of whether you want to design an effective object model, improve your under-
standing of the .NET Framework, borrow from the experience of software
gurus, stay clear of the most common programming mistakes, or just get an
idea of the huge effort that led to the .NET initiative, this book is a must-read.”

—Francesco Balena, The VB Migration Partner Team (www.vbmigration.com),
Code Architect, Author, and Microsoft Regional Director, Italy

“�Frameworks are valuable but notoriously difficult to construct: your every
decision must be geared toward making them easy to be used correctly and
difficult to be used incorrectly. This book takes you through a progression of
recommendations that will eliminate many of those downstream ‘I wish I’d
known that earlier’ moments. I wish I’d read it earlier.”

—Paul Besly, Principal Technologist, QA

“�Not since Brooks’ The Mythical Man Month has the major software maker of
its time produced a book so full of relevant advice for the modern software
developer. This book has a permanent place on my bookshelf and I consult it
frequently.”

—George Byrkit, Senior Software Engineer, Genomic Solutions

“�Updated for the new language features of the .NET Framework 3.0 and 3.5,
this book continues to be the definitive resource for .NET developers and
architects who are designing class library frameworks. Some of the existing
guidelines have been expanded with new annotations and more detail, and
new guidance covering such features as extension methods and nullable
types has also been included. The guidance will help any developer write
clearer and more understandable code, while the annotations provide invalu-
able insight into some of the design decisions that made the .NET Framework
what it is today.”

—Scott Dorman, Microsoft MVP and President,
Tampa Bay International Association of Software Architects

www.vbmigration.com

“�Filled with information useful to developers and architects of all levels, this
book provides practical guidelines and expert background information to
get behind the rules. Framework Design Guidelines takes the already pub-
lished guidelines to a higher level, and it is needed to write applications
that integrate well in the .NET area.”

—Cristof Falk, Software Engineer

“�This book is an absolute must read for all .NET developers. It gives clear ‘do’
and ‘don’t’ guidance on how to design class libraries for .NET. It also offers
insight into the design and creation of .NET that really helps developers under-
stand the reasons why things are the way they are. This information will aid
developers designing their own class libraries and will also allow them to take
advantage of the .NET class library more effectively.”

—Jeffrey Richter, Author/Trainer/Consultant, Wintellect

“�The second edition of Framework Design Guidelines gives you new, important
insight into designing your own class libraries: Abrams and Cwalina frankly
discuss the challenges of adding new features to shipping versions of their prod-
ucts with minimal impact on existing code. You’ll find great examples of how to
create version N+1 of your software by learning how the .NET class library team
created versions 2.0, 3.0, and 3.5 of the .NET library. They were able to add gener-
ics, WCF, WPF, WF, and LINQ with minimal impact on the existing APIs, even
providing capabilities for customers wanting to use only some of the new fea-
tures, while still maintaining compatibility with the original library.”

—Bill Wagner, Founder and Consultant, SRT Solutions,
author of Effective C# and More Effective C#

“�This book is a must read for all architects and software developers thinking
about frameworks. The book offers insight into some driving factors behind
the design of the .NET Framework. It should be considered mandatory reading
for anybody tasked with creating application frameworks.”

—Peter Winkler, Sr. Software Engineer, Balance Technology Inc.

Framework Design Guidelines
Second Edition

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft® .NET Development Series

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Framework
Design
Guidelines
Conventions, Idioms, and Patterns
for Reusable .NET Libraries

Second Edition

 Krzysztof Cwalina
 Brad Abrams

Many of the designations used by manufacturers
and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in
this book, and the publisher was aware of a trade-
mark claim, the designations have been printed
with initial capital letters or in all capitals.

The .NET_logo is either a registered trademark or
trademark of Microsoft Corporation in the United
States and/or other countries and is used under
license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and
Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A.
and/or other countries/regions.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in
connection with or arising out of the use of the infor-
mation or programs contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions
and/or custom covers and content particular to your
business, training goals, marketing focus, and brand-
ing interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Cwalina, Krzysztof.
 Framework design guidelines : conventions,
idioms, and patterns for reusable .NET libraries /
Krzysztof Cwalina, Brad Abrams. — 2nd ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-54561-9 (hardcover : alk. paper)
 1. Microsoft .NET Framework. 2. Application
program interfaces (Computer software) I.
Abrams, Brad. II. Title.

 QA76.76.M52C87 2008
 006.7’882—dc22

 2008034905

Copyright © 2009 Microsoft Corporation

All rights reserved. Printed in the United States of
America. This publication is protected by copy-
right, and permission must be obtained from the
publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-54561-9
ISBN-10: 0-321-54561-3

Text printed in the United States on recycled paper
at Donnelley in Crawfordsville, Indiana.
Third printing, December 2009

To my wife, Ela,
for her support throughout the long process of writing this book,

and to my parents,
Jadwiga and Janusz, for their encouragement.

—Krzysztof Cwalina

To my wife, Tamara:
Your love and patience strengthen me.

—Brad Abrams

This page intentionally left blank

ix

Contents

Figures  xvii
Tables  xix
Foreword  xxi
Foreword to the First Edition  xxiii
Preface  xxv
Acknowledgments  xxxi
About the Authors  xxxiii
About the Annotators  xxxv

1	 Introduction  1
1.1  ​Qualities of a Well-Designed Framework  3

1.1.1  ​Well-Designed Frameworks Are Simple  3

1.1.2  ​Well-Designed Frameworks Are Expensive to Design  4

1.1.3  ​Well-Designed Frameworks Are Full of Trade-Offs  5

1.1.4  ​Well-Designed Frameworks Borrow from the Past  5

1.1.5  ​Well-Designed Frameworks Are Designed to Evolve  5

1.1.6  ​Well-Designed Frameworks Are Integrated  6

1.1.7  ​Well-Designed Frameworks Are Consistent  6

2	 Framework Design Fundamentals   9
2.1  ​Progressive Frameworks  11
2.2 ​ Fundamental Principles of Framework Design  14

2.2.1  ​The Principle of Scenario-Driven Design  15

2.2.2  ​The Principle of Low Barrier to Entry  21

Contentsx

2.2.3  ​The Principle of Self-Documenting Object Models  26

2.2.4  ​The Principle of Layered Architecture  33

3	 Naming Guidelines  37
3.1  ​Capitalization Conventions  38

3.1.1  ​Capitalization Rules for Identifiers  38

3.1.2  ​Capitalizing Acronyms  40

3.1.3  ​Capitalizing Compound Words and Common Terms  43

3.1.4  ​Case Sensitivity  45

3.2  ​General Naming Conventions  46
3.2.1  ​Word Choice  46

3.2.2  ​Using Abbreviations and Acronyms  48

3.2.3  ​Avoiding Language-Specific Names  49

3.2.4  ​Naming New Versions of Existing APIs  51

3.3  ​Names of Assemblies and DLLs  54
3.4  ​Names of Namespaces  56

3.4.1  ​Namespaces and Type Name Conflicts  58

3.5  ​Names of Classes, Structs, and Interfaces  60
3.5.1  ​Names of Generic Type Parameters  64

3.5.2  ​Names of Common Types  64

3.5.3  ​Naming Enumerations  66

3.6  ​Names of Type Members  68
3.6.1  ​Names of Methods   68

3.6.2  ​Names of Properties  68

3.6.3  ​Names of Events  70

3.6.4  ​Naming Fields  72

3.7  ​Naming Parameters  73
3.7.1  ​Naming Operator Overload Parameters   74

3.8  ​Naming Resources  74

4	 Type Design Guidelines  77
4.1  ​ Types and Namespaces  79

4.1.1  ​Standard Subnamespace Names  83

4.2  ​Choosing Between Class and Struct   84

Contents xi

4.3  ​Choosing Between Class and Interface  88
4.4  ​Abstract Class Design  95
4.5  ​Static Class Design  97
4.6  ​Interface Design  98
4.7  ​Struct Design  101
4.8  ​Enum Design  103

4.8.1  ​Designing Flag Enums   110

4.8.2  ​Adding Values to Enums  114

4.9  ​Nested Types  115
4.10  ​Types and Assembly Metadata  118

5	 Member Design  121
5.1  ​General Member Design Guidelines  121

5.1.1  ​Member Overloading  121

5.1.2  ​Implementing Interface Members Explicitly  128

5.1.3  ​Choosing Between Properties and Methods  132

5.2  ​Property Design  138
5.2.1  ​Indexed Property Design  140

5.2.2  ​Property Change Notification Events  142

5.3  ​Constructor Design  144
5.3.1  ​Type Constructor Guidelines  151

5.4  ​Event Design  153
5.4.1  ​Custom Event Handler Design  159

5.5  ​Field Design  159
5.6  ​Extension Methods  162
5.7  ​Operator Overloads   168

5.7.1  ​Overloading Operator ==  173

5.7.2  ​Conversion Operators  173

5.8  ​Parameter Design  175
5.8.1  ​Choosing Between Enum and Boolean Parameters   177

5.8.2  ​Validating Arguments  179

5.8.3  ​Parameter Passing  183

5.8.4  ​Members with Variable Number of Parameters  186

5.8.5  ​Pointer Parameters  190

Contentsxii

6	 Designing for Extensibility  193
6.1  ​Extensibility Mechanisms  193

6.1.1  ​Unsealed Classes  194

6.1.2  ​Protected Members  196

6.1.3  ​Events and Callbacks   197

6.1.4  ​Virtual Members  201

6.1.5  ​Abstractions (Abstract Types and Interfaces)  203

6.2  ​Base Classes  206
6.3  ​Sealing  207

7	 Exceptions  211
7.1  ​Exception Throwing  216
7.2  ​Choosing the Right Type of Exception to Throw  221

7.2.1  ​Error Message Design  225

7.2.2  ​Exception Handling  227

7.2.3  ​Wrapping Exceptions  232

7.3  ​Using Standard Exception Types  234
7.3.1  ​Exception and SystemException  234

7.3.2  ​ApplicationException  234

7.3.3  ​InvalidOperationException  235

7.3.4  �​ArgumentException, ArgumentNullException, and

ArgumentOutOfRangeException   235

7.3.5  �​NullReferenceException, IndexOutOfRangeException, and

AccessViolationException  237

7.3.6  ​StackOverflowException  237

7.3.7  ​OutOfMemoryException  238

7.3.8  ​�ComException, SEHException, and ExecutionEngine­

Exception  239

7.4  ​Designing Custom Exceptions  239
7.5  ​Exceptions and Performance  240

7.5.1  ​Tester-Doer Pattern  241

7.5.2  ​Try-Parse Pattern  242

Contents xiii

8	 Usage Guidelines  245
8.1  ​Arrays  245
8.2  ​Attributes  247
8.3  ​Collections  250

8.3.1  ​Collection Parameters  252

8.3.2  ​Collection Properties and Return Values  253

8.3.3  ​Choosing Between Arrays and Collections   258

8.3.4  ​Implementing Custom Collections  259

8.4  ​DateTime and DateTimeOffset  261
8.5  ​ICloneable   263
8.6  ​IComparable<T> and IEquatable<T>   264
8.7  ​IDisposable  266
8.8  ​Nullable<T>  266
8.9  ​Object  268

8.9.1  ​Object.Equals  268

8.9.2  ​Object.GetHashCode   270

8.9.3  ​Object.ToString   271

8.10  ​Serialization  274
8.10.1  Choosing the Right Serialization Technology to Support  275

8.10.2  ​Supporting Data Contract Serialization  276

8.10.3  ​Supporting XML Serialization   280

8.10.4  ​Supporting Runtime Serialization  281

8.11  ​Uri  283
8.11.1  ​System.Uri Implementation Guidelines  284

8.12  ​System.Xml Usage  284
8.13  ​Equality Operators  286

8.13.1  ​Equality Operators on Value Types   287

8.13.2  ​Equality Operators on Reference Types  287

9	 Common Design Patterns  289
9.1  ​Aggregate Components  289

9.1.1  ​Component-Oriented Design  291

9.1.2  ​Factored Types   294

9.1.3  ​Aggregate Component Guidelines  295

Contentsxiv

9.2  ​The Async Patterns  298
9.2.1  ​Choosing Between the Async Patterns  298

9.2.2  ​Classic Async Pattern  300

9.2.3  ​Classic Async Pattern Basic Implementation Example  304

9.2.4  ​Event-Based Async Pattern  305

9.2.5  ​Supporting Out and Ref Parameters  307

9.2.6  ​Supporting Cancellation   308

9.2.7  ​Supporting Progress Reporting  309

9.2.8  ​Supporting Incremental Results  311

9.3  ​Dependency Properties  312
9.3.1  ​Dependency Property Design  313

9.3.2  ​Attached Dependency Property Design  315

9.3.3  ​Dependency Property Validation  316

9.3.4  ​Dependency Property Change Notifications  317

9.3.5  ​Dependency Property Value Coercion  318

9.4  ​Dispose Pattern  319
9.4.1  ​Basic Dispose Pattern  322

9.4.2  ​Finalizable Types  328

9.5  ​Factories  332
9.6  ​LINQ Support  337

9.6.1  ​Overview of LINQ  337

9.6.2  ​Ways of Implementing LINQ Support  339

9.6.3  ​Supporting LINQ through IEnumerable<T>  339

9.6.4  ​Supporting LINQ through IQueryable<T>  340

9.6.5  ​Supporting LINQ through the Query Pattern  341

9.7  ​Optional Feature Pattern  344
9.8  ​Simulating Covariance  348
9.9  ​Template Method  354
9.10  ​Timeouts  356
9.11  ​XAML Readable Types  358
9.12  ​And in the End...  361

A	 C# Coding Style Conventions  363
A.1  ​General Style Conventions  364

A.1.1  ​Brace Usage  364

A.1.2  ​Space Usage  365

Contents xv

A.1.3  ​Indent Usage  367

A.1.4  ​Other  367

A.2  ​Naming Conventions  367
A.3  ​Comments  368
A.4  ​File Organization  369

B	 Using FxCop to Enforce the Framework Design Guidelines  371
B.1  ​What Is FxCop?  371
B.2  ​The Evolution of FxCop  372
B.3  ​How Does It Work?  373
B.4  ​FxCop Guideline Coverage  374

B.4.1  ​FxCop Rules for the Naming Guidelines  374

B.4.2  ​FxCop Rules for the Type Design Guidelines  384

B.4.3  ​FxCop Rules for Member Design  387

B.4.4  ​FxCop Rules for Designing for Extensibility  394

B.4.5  ​FxCop Rules for Exceptions  395

B.4.6  ​FxCop Rules for Usage Guidelines  397

B.4.7  ​FxCop Rules for Design Patterns  402

C	 Sample API Specification  405

Glossary  413
Suggested Reading List  419
Index  423

This page intentionally left blank

xvii

Figures

Figure 2-1:	 Learning curve of a multiframework platform  12

Figure 2-2:	 Learning curve of a progressive framework platform  13

Figure 4-1: 	The logical grouping of types  77

Figure 9-1:	 Query Pattern Method Signatures  341

This page intentionally left blank

Tables

Capitalization Rules for Different Types of Identifiers 40

 Capitalization and Spelling for Common Compound

Words and Common Terms 43

CLR Type Names for Language-Specific Type Names 50

 Name Rules for Types Derived from or Implementing

Certain Core Types 65

Operators and Corresponding Method Names 172

.NET Framework Serialization Technologies 274

Suffixes for Common Base Types and Interfaces 379

Symmetric Operators 392

Exceptions to Avoid Throwing 396

This page intentionally left blank

xxi

Foreword

When the .NET Framework was first published, I was fascinated by the
technology. The benefits of the CLR (Common Language Runtime), its
extensive APIs, and the C# language were immediately obvious. But
underneath all the technology were a common design for the APIs and a
set of conventions that were used everywhere. This was the .NET culture.
Once you had learned a part of it, it was easy to translate this knowledge
into other areas of the Framework.

For the past 16 years, I have been working on open source software.
Since contributors span not only multiple backgrounds but multiple years,
adhering to the same style and coding conventions has always been very
important. Maintainers routinely rewrite or adapt contributions to soft-
ware to ensure that code adheres to project coding standards and style. It
is always better when contributors and people who join a software project
follow conventions used in an existing project. The more information that
can be conveyed through practices and standards, the simpler it becomes
for future contributors to get up-to-speed on a project. This helps the proj-
ect converge code, both old and new.

As both the .NET Framework and its developer community have
grown, new practices, patterns, and conventions have been identified.
Brad and Krzysztof have become the curators who turned all of this new
knowledge into the present-day guidelines. They typically blog about a
new convention, solicit feedback from the community, and keep track of

Forewordxxii

these guidelines. In my opinion, their blogs are must-read documents
for everyone who is interested in getting the most out of the .NET
Framework.

The first edition of Framework Design Guidelines became an instant clas-
sic in the Mono community for two valuable reasons. First, it provided us
a means of understanding why and how the various .NET APIs had been
implemented. Second, we appreciated it for its invaluable guidelines that
we too strived to follow in our own programs and libraries. This new edi-
tion not only builds on the success of the first but has been updated with
new lessons that have since been learned. The annotations to the guide-
lines are provided by some of the lead .NET architects and great program-
mers who have helped shape these conventions.

In conclusion, this text goes beyond guidelines. It is a book that you
will cherish as the “classic” that helped you become a better programmer,
and there are only a select few of those in our industry.

Miguel de Icaza
Boston, MA

xxiii

Foreword to the First Edition

In the early days of development of the .NET Framework, before it was
even called that, I spent countless hours with members of the develop-
ment teams reviewing designs to ensure that the final result would be a
coherent platform. I have always felt that a key characteristic of a frame-
work must be consistency. Once you understand one piece of the frame-
work, the other pieces should be immediately familiar.

As you might expect from a large team of smart people, we had many
differences of opinion—there is nothing like coding conventions to spark
lively and heated debates. However, in the name of consistency, we grad-
ually worked out our differences and codified the result into a common
set of guidelines that allow programmers to understand and use the
Framework easily.

Brad Abrams, and later Krzysztof Cwalina, helped capture these
guidelines in a living document that has been continuously updated and
refined during the past six years. The book you are holding is the result of
their work.

The guidelines have served us well through three versions of the .NET
Framework and numerous smaller projects, and they are guiding the
development of the next generation of APIs for the Microsoft Windows
operating system.

Foreword to the First Editionxxiv

With this book, I hope and expect that you will also be successful in
making your frameworks, class libraries, and components easy to under-
stand and use.

Good luck and happy designing.

Anders Hejlsberg
Redmond, WA

June 2005

xxv

Preface

This book, Framework Design Guidelines, presents best practices for design-
ing frameworks, which are reusable object-oriented libraries. The guide-
lines are applicable to frameworks in various sizes and scales of reuse,
including the following:

Large system frameworks, such as the .NET Framework, usually •	

consisting of thousands of types and used by millions of developers.

Medium-size reusable layers of large distributed applications or •	

extensions to system frameworks, such as the Web Services
Enhancements.

Small components shared among several applications, such as a grid •	

control library.

It is worth noting that this book focuses on design issues that directly
affect the programmability of a framework (publicly accessible APIs1). As
a result, we generally do not cover much in terms of implementation
details. Just as a user interface design book doesn’t cover the details of
how to implement hit testing, this book does not describe how to imple-
ment a binary sort, for example. This scope allows us to provide a definitive
guide for framework designers instead of being yet another book about
programming.

1.	 This includes public types, and their public, protected, and explicitly implemented mem-
bers of these types.

Prefacexxvi

These guidelines were created in the early days of .NET Framework
development. They started as a small set of naming and design conven-
tions but have been enhanced, scrutinized, and refined to a point where
they are generally considered the canonical way to design frameworks at
Microsoft. They carry the experience and cumulative wisdom of thousands
of developer hours over three versions of the .NET Framework. We tried
to avoid basing the text purely on some idealistic design philosophies, and
we think its day-to-day use by development teams at Microsoft has made
it an intensely pragmatic book.

The book contains many annotations that explain trade-offs, explain
history, amplify, or provide critiquing views on the guidelines. These anno-
tations are written by experienced framework designers, industry experts,
and users. They are the stories from the trenches that add color and setting
for many of the guidelines presented.

To make them more easily distinguished in text, namespace names,
classes, interfaces, methods, properties, and types are set in monospace font.

The book assumes basic familiarity with .NET Framework program-
ming. A few guidelines assume familiarity with features introduced in
version 3.5 of the Framework. If you are looking for a good introduction to
Framework programming, there are some excellent suggestions in the
Suggested Reading List at the end of the book.

Guideline Presentation

The guidelines are organized as simple recommendations using Do,
Consider, Avoid, and Do not. Each guideline describes either a good or
bad practice, and all have a consistent presentation. Good practices have
a 3 in front of them, and bad practices have an 7 in front of them. The
wording of each guideline also indicates how strong the recommendation
is. For example, a Do guideline is one that should always2 be followed (all
examples are from this book):

2.	 Always might be a bit too strong a word. There are guidelines that should literally be always
followed, but they are extremely rare. On the other hand, you probably need to have a
really unusual case for breaking a Do guideline and still have it be beneficial to the users of
the framework.

Preface xxvii

3	DO name custom attribute classes with the suffix “Attribute.”

public class ObsoleteAttribute : Attribute { ... }

On the other hand, Consider guidelines should generally be followed,
but if you fully understand the reasoning behind a guideline and have a
good reason to not follow it anyway, you should not feel bad about break-
ing the rules:

3	CONSIDER defining a struct instead of a class if instances of the type are
small and commonly short-lived or are commonly embedded in other
objects.

Similarly, Do not guidelines indicate something you should almost
never do:

7	 DO NOT assign instances of mutable types to read-only fields.

Less strong, Avoid guidelines indicate that something is generally not a
good idea, but there are known cases where breaking the rule makes sense:

7	 AVOID using ICollection<T> or ICollection as a parameter just to
access the Count property.

Some more complex guidelines are followed by additional background
information, illustrative code samples, and rationale:

3	DO implement IEquatable<T> on value types.

The Object.Equals method on value types causes boxing and its default
implementation is not very efficient because it uses reflection.
IEquatable<T>.Equals can offer much better performance and can be
implemented so it does not cause boxing.

public struct Int32 : IEquatable<Int32> {
 public bool Equals(Int32 other){ ... }
}

Prefacexxviii

Language Choice and Code Examples

One of the goals of the Common Language Runtime (CLR) is to support a
variety of programming languages: those with implementations provided
by Microsoft, such as C++, VB, C#, F#, Python, and Ruby, as well as third-
party languages such as Eiffel, COBOL, Fortran, and others. Therefore, this
book was written to be applicable to a broad set of languages that can be
used to develop and consume modern frameworks.

To reinforce the message of multilanguage framework design, we con-
sidered writing code examples using several different programming lan-
guages. However, we decided against this. We felt that using different
languages would help to carry the philosophical message, but it could
force readers to learn several new languages, which is not the objective of
this book.

We decided to choose a single language that is most likely to be read-
able to the broadest range of developers. We picked C#, because it is a
simple language from the C family of languages (C, C++, Java, and C#), a
family with a rich history in framework development.

Choice of language is close to the hearts of many developers, and we
offer apologies to those who are uncomfortable with our choice.

About This Book

This book offers guidelines for framework design from the top down.
Chapter 1, “Introduction,” is a brief orientation to the book, describing

the general philosophy of framework design. This is the only chapter with-
out guidelines.

Chapter 2, “Framework Design Fundamentals,” offers principles and
guidelines that are fundamental to overall framework design.

Chapter 3, “Naming Guidelines,” contains common design idioms and
naming guidelines for various parts of a framework, such as namespaces,
types, and members.

Chapter 4, “Type Design Guidelines,” provides guidelines for the gen-
eral design of types.

Preface xxix

Chapter 5, “Member Design,” takes a further step and presents guide-
lines for the design of members of types.

Chapter 6, “Designing for Extensibility,” presents issues and guidelines
that are important to ensure appropriate extensibility in your framework.

Chapter 7, “Exceptions,” presents guidelines for working with excep-
tions, the preferred error reporting mechanisms.

Chapter 8, “Usage Guidelines,” contains guidelines for extending and
using types that commonly appear in frameworks.

Chapter 9, “Common Design Patterns,” offers guidelines and examples
of common framework design patterns.

Appendix A, “C# Coding Style Conventions,” contains a short descrip-
tion of coding conventions used in this book.

Appendix B, “Using FxCop to Enforce the Framework Design Guide-
lines,” describes a tool called FxCop. The tool can be used to analyze frame-
work binaries for compliance with the guidelines described in this book. A
link to the tool is included on the DVD that accompanies this book.

Appendix C, “Sample API Specification,” is a sample of an API speci-
fication that framework designers within Microsoft create when design-
ing APIs.

Included with the book is a DVD that contains several hours of video
presentations covering topics presented in this book by the authors, a sam-
ple API specification, and other useful resources.

This page intentionally left blank

xxxi

Acknowledgments

This book, by its nature, is the collected wisdom of many hundreds of
people, and we are deeply grateful to all of them.

Many people within Microsoft have worked long and hard, over a
period of years, proposing, debating, and finally, writing many of these
guidelines. Although it is impossible to name everyone who has been
involved, a few deserve special mention: Chris Anderson, Erik Christensen,
Jason Clark, Joe Duffy, Patrick Dussud, Anders Hejlsberg, Jim Miller,
Michael Murray, Lance Olson, Eric Gunnerson, Dare Obasanjo, Steve
Starck, Kit George, Mike Hillberg, Greg Schecter, Mark Boulter, Asad
Jawahar, Justin Van Patten, and Mircea Trofin.

We’d also like to thank the annotators: Mark Alcazar, Chris Anderson,
Christopher Brumme, Pablo Castro, Jason Clark, Steven Clarke, Joe Duffy,
Patrick Dussud, Mike Fanning, Kit George, Jan Gray, Brian Grunkemeyer,
Eric Gunnerson, Phil Haack, Anders Hejlsberg, David Kean, Rico Mariani,
Anthony Moore, Vance Morrison, Christophe Nasarre, Dare Obasanjo,
Brian Pepin, Jon Pincus, Jeff Prosise, Brent Rector, Jeffrey Richter, Greg
Schechter, Chris Sells, Steve Starck, Herb Sutter, Clemens Szyperski, Mircea
Trofin, and Paul Vick.

Their insights provide much needed commentary, color, humor, and
history that add tremendous value to this book.

Sheridan Harrison and David Kean actually wrote and edited
Appendix B on FxCop, which would not have been done without their
skill and passion for this tool.

Acknowledgmentsxxxii

For all of the help, reviews, and support, both technical and moral, we
thank Martin Heller. And for their insightful and helpful comments, we
appreciate Pierre Nallet, George Byrkit, Khristof Falk, Paul Besley, Bill
Wagner, and Peter Winkler.

We would also like to give special thanks to Susann Ragsdale, who
turned this book from a semi-random collection of disconnected thoughts
into seamlessly flowing prose. Her flawless writing, patience, and fabulous
sense of humor made the process of writing this book so much easier.

xxxiii

About the Authors

Brad Abrams was a founding member of the Common Language Run-
time and .NET Framework teams at Microsoft Corporation. He has been
designing parts of the .NET Framework since 1998 and is currently Group
Program Manager of the .NET Framework team. Brad started his frame-
work design career building the Base Class Library (BCL) that ships as a
core part of the .NET Framework. Brad was also the lead editor on the
Common Language Specification (CLS), the .NET Framework Design
Guidelines, and the libraries in the ECMA\ISO CLI Standard. Brad has
authored and coauthored multiple publications, including Programming
in the .NET Environment and .NET Framework Standard Library Annotated
Reference, Volumes 1 and 2. Brad graduated from North Carolina State
University with a B.S. in computer science. You can find his most recent
musings on his blog at http://blogs.msdn.com/BradA.

Krzysztof Cwalina is a program manager on the .NET Framework team
at Microsoft. He was a founding member of the .NET Framework team and
throughout his career has designed many .NET Framework APIs and
framework development tools, such as FxCop. He is currently leading a
companywide effort to develop, promote, and apply framework design
and architectural guidelines to the .NET Framework. He is also leading the
team responsible for delivering core .NET Framework APIs. Krzysztof
graduated with a B.S. and an M.S. in computer science from the University
of Iowa. You can find his blog at http://blogs.msdn.com/kcwalina.

http://blogs.msdn.com/BradA
http://blogs.msdn.com/kcwalina

This page intentionally left blank

xxxv

About the Annotators

Mark Alcazar wanted to be a famous sportsman. After discovering he had
no hand-eye coordination or athletic ability, however, he decided a better
career might be computers. Mark has been at Microsoft for the last nine
years, where he’s worked on the HTML rendering engine in Internet
Explorer and has been a member of the Windows Presentation Foundation
team since its inception. Mark is a big fan of consistent white space, peach-
nectarine Talking Rain, and spicy food. He has a B.Sc. from the University
of the West Indies and an M.Sc. from the University of Pennsylvania.

Chris Anderson is an architect at Microsoft in the Connected Systems
Division. Chris’s primary focus is on the design and architecture of .NET
technologies used to implement the next generation of applications and
services. From 2002 until recently he was the lead architect of the WPF
team. Chris has written numerous articles and white papers, and he has
presented and been a keynote speaker at numerous conferences (Microsoft
Professional Developers Conference, Microsoft TechEd, WinDev, DevCon,
etc.) worldwide. He has a very popular blog at www.simplegeek.com.

Christopher Brumme joined Microsoft in 1997, when the Common
Language Runtime (CLR) team was being formed. Since then, he has con-
tributed to the execution engine portions of the codebase and more broadly
to the design. He is currently focused on concurrency issues in managed
code. Prior to joining the CLR team, Chris was an architect at Borland and
Oracle.

www.simplegeek.com

About the Annotatorsxxxvi

Pablo Castro is a technical lead in the SQL Server team. He has contrib-
uted extensively to several areas of SQL Server and the .NET Framework,
including SQL-CLR integration, type-system extensibility, the TDS client-
server protocol, and the ADO.NET API. Pablo is currently involved with
the development of the ADO.NET Entity Framework and also leads the
ADO.NET Data Services project, which is looking at how to bring data and
Web technologies together. Before joining Microsoft, Pablo worked in vari-
ous companies on a broad set of topics that range from distributed infer-
ence systems for credit scoring/risk analysis to collaboration and groupware
applications.

Jason Clark works as a software architect for Microsoft. His Microsoft
software engineering credits include three versions of Windows, three
releases of the .NET Framework, and WCF. In 2000 he published his first
book on software development and continues to contribute to magazines
and other publications. He is currently responsible for the Visual Studio
Team System Database Edition. Jason’s only other passions are his wife
and kids, with whom he happily lives in the Seattle area.

Steven Clarke has been a user experience researcher in the Developer
Division at Microsoft since 1999. His main interests are observing, under-
standing, and modeling the experiences that developers have with APIs in
order to help design APIs that provide an optimal experience to their users.

Joe Duffy is the development lead for parallel extensions to .NET at
Microsoft. He codes heavily, manages a team of developers, and defines
the team’s long-term vision and strategy. Joe previously worked on con-
currency in the CLR team and was a software engineer at EMC. While not
geeking out, Joe spends his time playing guitar, studying music theory,
and blogging at www.bluebytesoftware.com.

Patrick Dussud is a Technical Fellow at Microsoft, where he serves as
the chief architect of both the CLR and the .NET Framework architecture
groups. He works on .NET Framework issues across the company, helping
development teams best utilize the CLR. He specifically focuses on taking
advantage of the abstractions the CLR provides to optimize program
execution.

Michael Fanning is the current development lead for Expression Web
at Microsoft. He was an early member of the team that produced FxCop

www.bluebytesoftware.com

About the Annotators xxxvii

for internal use and ultimately added it to Visual Studio 2005 for release to
the general public.

Kit George is a program manager on the .NET Framework team at
Microsoft. He graduated in 1995 with a B.A. in psychology, philosophy,
and mathematics from Victoria University of Wellington (New Zealand).
Prior to joining Microsoft, he worked as a technical trainer, primarily in
Visual Basic. He participated in the design and implementation of the first
two releases of the Framework for the last two years.

Jan Gray is a software architect at Microsoft who now works on con-
currency programming models and infrastructure. He was previously a
CLR performance architect, and in the 1990s he helped write the early
MS C++ compilers (e.g., semantics, runtime object model, precompiled
headers, PDBs, incremental compilation, and linking) and Microsoft
Transaction Server. Jan’s interests include building custom multiproces-
sors in FPGAs.

Brian Grunkemeyer has been a software design engineer on the .NET
Framework team at Microsoft since 1998. He implemented a large portion
of the Framework Class Libraries and contributed to the details of the
classes in the ECMA/ISO CLI standard. Brian is currently working on
future versions of the .NET Framework, including areas such as generics,
managed code reliability, versioning, contracts in code, and improving the
developer experience. He has a B.S. in computer science with a double
major in cognitive science from Carnegie Mellon University.

Eric Gunnerson found himself at Microsoft in 1994 after working in
the aerospace and going-out-of-business industries. He has worked on
the C++ compiler team, as a member of the C# language design team, and
as an early thought follower on the DevDiv community effort. He worked
on the Windows DVD Maker UI during Vista and joined the Microsoft
HealthVault team in early 2007. He spends his free time cycling, skiing,
cracking ribs, building decks, blogging, and writing about himself in the
third person.

Phil Haack is a program manager with the ASP.NET team working on
the ASP.NET MVC Framework, which is being developed in a community-
driven transparent manner. The Framework driving goal is to embody and
encourage certain principles of good software design: separation of

About the Annotatorsxxxviii

concerns, testability, and the single responsibility principle, among others.
Phil is also a code junkie and loves to both write software as well as write
about software development on his blog.

Anders Hejlsberg is a technical fellow in the Developer Division at
Microsoft. He is the chief designer of the C# programming language and
a key participant in the development of the .NET Framework. Before join-
ing Microsoft in 1996, Anders was a principal engineer at Borland Inter-
national. As one of the first employees of Borland, he was the original
author of Turbo Pascal and later worked as the chief architect of the Delphi
product line. Anders studied engineering at the Technical University of
Denmark.

David Kean is a developer on the .NET Framework team at Microsoft,
where he works on the Managed Extensibility Framework (MEF), a set of
building blocks for developing extensible and dynamic applications. He
worked earlier on the often well-loved but also greatly misunderstood tool
FxCop and its related sibling, Visual Studio Code Analysis. He graduated
with a B.CS. from Deakin University in Melbourne, Australia, and is now
based in Seattle with his wife, Lucy, and two children, Jack and Sarah.

Rico Mariani began his career at Microsoft in 1988, working on lan-
guage products, beginning with Microsoft C version 6.0, and he contrib-
uted there until the release of the Microsoft Visual C++ version 5.0
development system. In 1995, Rico became development manager for what
was to become the “Sidewalk” project, which started his seven years of
platform work on various MSN technologies. In the summer of 2002, Rico
returned to the Developer Division as a performance architect on the CLR
team. His performance work led to his most recent assignment as chief
architect of Visual Studio. Rico’s interests include compilers and language
theory, databases, 3D art, and good fiction.

Anthony Moore is a development lead for the Connected Systems
Division. He was the development lead for the Base Class Libraries of the
CLR from 2001 to 2007, spanning FX V1.0 to FX 3.5. Anthony joined
Microsoft in 1999 and initially worked on Visual Basic and ASP.NET. Before
that he worked as a corporate developer for eight years in his native Aus-
tralia, including a three-year period working in the snack food industry.

Vance Morrison is a performance architect for the .NET Runtime at
Microsoft. He involves himself with most aspects of runtime performance,

About the Annotators xxxix

with current attention devoted to improving startup time. He has been
involved in designs of components of the .NET runtime since its inception.
He previously drove the design of the .NET Intermediate Language (IL)
and has been the development lead for the JIT compiler for the runtime.

Christophe Nasarre is a software architect and development lead for
Business Objects, a multinational software company from SAP that is
focused on business intelligence solutions. During his spare time, Christophe
writes articles for MSDN Magazine, MSDN, and ASPToday. Since 1996, he
has also worked as a technical editor on numerous books on Win32, COM,
MFC, .NET, and WPF. In 2007, he wrote his first book, Windows via C/C++
from Microsoft Press.

Dare Obasanjo is a program manager on the MSN Communication
Services Platform team at Microsoft. He brings his love of solving prob-
lems with XML to building the server infrastructure utilized by the MSN
Messenger, MSN Hotmail, and MSN Spaces teams. He was previously a
program manager on the XML team responsible for the core XML applica-
tion programming interfaces and W3C XML Schema-related technologies
in the .NET Framework.

Brian Pepin is a software architect at Microsoft and is currently work-
ing on the WPF and Silverlight designers for Visual Studio. He’s been
involved in developer tools and frameworks for 14 years and has provided
input on the design of Visual Basic 5, Visual J++, the .NET Framework,
WPF, Silverlight, and more than one unfortunate experiment that luckily
never made it to market.

Jonathan Pincus was a senior researcher in the Systems and Network-
ing Group at Microsoft Research, where he focused on the security, pri-
vacy, and reliability of software and software-based systems. He was
previously founder and CTO of Intrinsa and worked in design automation
(placement and routing for ICs and CAD frameworks) at GE Calma and
EDA Systems.

Jeff Prosise is a cofounder of Wintellect (www.wintellect.com). His
most recent book, Programming Microsoft .NET, was published by Micro-
soft Press in 2002, and his writings appear regularly in MSDN Magazine
and other developer magazines. Jeff’s professional life revolves around
ASP.NET, ASP.NET AJAX, and Silverlight. A reformed engineer who dis-
covered after college that there’s more to life than computing loads on

www.wintellect.com

About the Annotatorsxl

mounting brackets, Jeff is known to go out of his way to get wet in some of
the world’s best dive spots and to spend way too much time building and
flying R/C aircraft.

Brent Rector is a program manager at Microsoft on a technical strategy
incubation effort. He has more than 30 years of experience in the software
development industry in the production of programming language com-
pilers, operating systems, ISV applications, and other products. Brent is
the author and coauthor of numerous Windows software development
books, including ATL Internals, Win32 Programming (both Addison-Wesley),
and Introducing WinFX (Microsoft Press). Prior to joining Microsoft, Brent
was the president and founder of Wise Owl Consulting, Inc. and chief
architect of its premier .NET obfuscator, Demeanor for .NET.

Jeffrey Richter is a cofounder of Wintellect (www.Wintellect.com), a
training, debugging, and consulting firm dedicated to helping companies
build better software faster. He is the author of several best-selling .NET
and Win32 programming books, including Applied Microsoft .NET Frame-
work Programming (Microsoft Press). Jeffrey is also a contributing editor at
MSDN Magazine, where he writes the “Concurrent Affairs” column. Jeff has
been consulting with Microsoft’s .NET Framework team since 1999 and
was also a consultant on Microsoft’s Web Services and Messaging Team.

Greg Schechter has been working on API implementation and API
design for over 20 years, primarily in the 2D and 3D graphics realm, but
also in media, imaging, general user interface systems, and asynchronous
programming. Greg is currently an architect on the Windows Presentation
Foundation and Silverlight teams at Microsoft. Prior to coming to Micro-
soft in 1994, Greg was at Sun Microsystems for six years. Beyond all of
that, Greg also loves to write about himself in the third person.

Chris Sells is a program manager for the Connected Systems Division
at Microsoft. He’s written several books, including Programming WPF,
Windows Forms 2.0 Programming, and ATL Internals. In his free time, Chris
hosts various conferences and makes a pest of himself on Microsoft inter-
nal product team discussion lists.

Steve Starck is a technical lead on the ADO.NET team at Microsoft,
where he has been developing and designing data access technologies,
including ODBC, OLE DB, and ADO.NET, for the past ten years.

www.Wintellect.com

About the Annotators xli

Herb Sutter is a leading authority on software development. During
his career, Herb has been the creator and principal designer of several
major commercial technologies, including the PeerDirect peer replication
system for heterogeneous distributed databases, the C++/CLI language
extensions to C++ for .NET programming, and most recently the Concur
concurrent programming model. Currently a software architect at Micro-
soft, he also serves as chair of the ISO C++ standards committee and is the
author of four acclaimed books and hundreds of technical papers and arti-
cles on software development topics.

Clemens Szyperski joined Microsoft Research as a software architect in
1999. He focuses on leveraging component software to effectively build
new kinds of software. Clemens is cofounder of Oberon Microsystems and
its spin-off, Esmertec, and he was an associate professor at the School of Com-
puter Science, Queensland University of Technology, Australia, where he
retains an adjunct professorship. He is the author of the Jolt award-winning
Component Software (Addison-Wesley) and the coauthor of Software Ecosystem
(MIT Press). He has a Ph.D. in computer science from the Swiss Federal Insti-
tute of Technology in Zurich and an M.S. in electrical engineering/computer
engineering from the Aachen University of Technology.

Mircea Trofin is a program manager with the .NET Application Frame-
work Core group at Microsoft. He is primarily responsible for driving the
effort for ensuring and improving the architecture of the .NET Framework.
He is also responsible for a number of upcoming features in .NET in the
area of component-based programming. He received his B.A.Sc. in com-
puter engineering from University of Waterloo, and his Ph.D. in computer
science from University College Dublin.

Paul Vick is the language architect for Visual Basic, leading the language
design team. Paul originally began his career working at Microsoft in 1992
on the Microsoft Access team, shipping versions 1.0 through 97 of Access.
In 1998, he moved to the Visual Basic team, participating in the design and
implementation of the Visual Basic compiler and driving the redesign of
the language for the .NET Framework. He is the author of the Visual Basic
.NET Language Specification and the Addison-Wesley book The Visual Basic
.NET Language. His weblog can be found at www.panopticoncentral.net.

www.panopticoncentral.net

This page intentionally left blank

9.6    LINQ Suppor t 337

3	CONSIDER naming factory types by concatenating the name of the type
being created and Factory. For example, consider naming a factory
type that creates Control objects ControlFactory.

The next section discusses when and how to design abstractions that
might or might not support some features.

9.6 ​ LINQ Support

Writing applications that interact with data sources, such as databases,
XML documents, or Web Services, was made easier in the .NET Frame-
work 3.5 with the addition of a set of features collectively referred to as
LINQ (Language-Integrated Query). The following sections provide a very
brief overview of LINQ and list guidelines for designing APIs related to
LINQ support, including the so-called Query Pattern.

9.6.1 ​ Overview of LINQ
Quite often, programming requires processing over sets of values. Exam-
ples include extracting the list of the most recently added books from a
database of products, finding the e-mail address of a person in a directory
service such as Active Directory, transforming parts of an XML document
to HTML to allow for Web publishing, or something as frequent as looking
up a value in a hashtable. LINQ allows for a uniform language-integrated
programming model for querying datasets, independent of the technology
used to store that data.

n
n  Rico Mariani  Like everything else, there are good and bad ways to

use these patterns. The Entity Framework and LINQ to SQL offer good
examples of how you can provide rich query semantics and still get very
good performance using strong typing and by offering query compilation.

The Pit of Success notion is very important in LINQ implementations.
I’ve seen some cases where the code that runs as a result of using a LINQ
pattern is simply terrible in comparison to what you would write the con-
ventional way. That’s really not good enough—EF and LINQ to SQL let you
write it nicely, and you get high-quality database interactions. That’s what
to aim for.

Common Design Patterns338

In terms of concrete language features and libraries, LINQ is embod-
ied as:

A specification of the notion of extension methods. These are •	

described in detail in section 5.6.

Lambda expressions, a language feature for defining anonymous •	

delegates.

New types representing generic delegates to functions and proce-•	

dures: Func<...> and Action<...>.

Representation of a delay-compiled delegate, the •	 Expression<...>
family of types.

A definition of a new interface, •	 System.Linq.IQueryable<T>.

The Query Pattern, a specification of a set of methods a type must •	

provide in order to be considered as a LINQ provider. A reference
implementation of the pattern can be found in System.Linq.Enumerable
class. Details of the pattern will be discussed later in this chapter.

Query Expressions, an extension to language syntax allowing for •	

queries to be expressed in an alternative, SQL-like format.

//using extension methods:
var names = set.Where(x => x.Age>20).Select(x=>x.Name);

//using SQL-like syntax:
var names = from x in set where x.Age>20 select x.Name;

n
n  Mircea Trofin  The interplay between these features is the follow-

ing: Any IEnumerable can be queried upon using the LINQ extension
methods, most of which require one or more lambda expressions as param-
eters; this leads to an in-memory generic evaluation of the queries. For cases
where the set of data is not in memory (e.g., in a database) and/or queries
may be optimized, the set of data is presented as an IQueryable. If lambda
expressions are given as parameters, they are transformed by the compiler
to Expression<...> objects. The implementation of IQueryable is respon-
sible for processing said expressions. For example, the implementation of
an IQueryable representing a database table would translate Expression
objects to SQL queries.

9.6    LINQ Suppor t 339

9.6.2 ​ Ways of Implementing LINQ Support
There are three ways by which a type can support LINQ queries:

The type can implement •	 IEnumerable<T> (or an interface derived
from it).

The type can implement •	 IQueryable<T>.

The type can implement the Query Pattern. •	

The following sections will help you choose the right method of sup-
porting LINQ.

9.6.3 ​ Supporting LINQ through IEnumerable<T>

3	DO implement IEnumerable<T> to enable basic LINQ support.

Such basic support should be sufficient for most in-memory data
sets. The basic LINQ support will use the extension methods on
IEnumerable<T> provided in the .NET Framework. For example,
simply define as follows:

public class RangeOfInt32s : IEnumerable<int> {
 public IEnumerator<int> GetEnumerator() {...}
 IEnumerator IEnumerable.GetEnumerator() {...}
}

Doing so allows for the following code, despite the fact that
RangeOfInt32s did not implement a Where method:

var a = new RangeOfInt32s();
var b = a.Where(x => x>10);

n
n  Rico Mariani  Keeping in mind that you’ll get your same enumera-

tion semantics, and putting a LINQ façade on them does not make them
execute any faster or use less memory.

3	CONSIDER implementing ICollection<T> to improve performance of
query operators.

Common Design Patterns340

For example, the System.Linq.Enumerable.Count method’s default
implementation simply iterates over the collection. Specific collection
types can optimize their implementation of this method, since they
often offer an O(1) - complexity mechanism for finding the size of the
collection.

3	CONSIDER supporting selected methods of System.Linq.Enumerable
or the Query Pattern (see section 9.6.5) directly on new types imple-
menting IEnumerable<T> if it is desirable to override the default
System.Linq.Enumerable implementation (e.g., for performance opti-
mization reasons).

9.6.4 ​ Supporting LINQ through IQueryable<T>

3	CONSIDER implementing IQueryable<T> when access to the query
expression, passed to members of IQueryable, is necessary.

When querying potentially large datasets generated by remote pro-
cesses or machines, it might be beneficial to execute the query remotely.
An example of such a dataset is a database, a directory service, or Web
service.

7	 DO NOT implement IQueryable<T> without understanding the perfor-
mance implications of doing so.

Building and interpreting expression trees is expensive, and many que-
ries can actually get slower when IQueryable<T> is implemented.

The trade-off is acceptable in the LINQ to SQL case, since the alterna-
tive overhead of performing queries in memory would have been far
greater than the transformation of the expression to an SQL statement
and the delegation of the query processing to the database server.

3	DO throw NotSupportedException from IQueryable<T> methods that
cannot be logically supported by your data source.

For example, imagine representing a media stream (e.g., an Internet
radio stream) as an IQueryable<byte>. The Count method is not logi-
cally supported—the stream can be considered as infinite, and so the
Count method should throw NotSupportedException.

9.6    LINQ Suppor t 341

9.6.5 ​ Supporting LINQ through the Query Pattern
The Query Pattern refers to defining the methods in Figure 9-1 without
implementing the IQueryable<T> (or any other LINQ interface).

Please note that the notation is not meant to be valid code in any par-
ticular language but to simply present the type signature pattern.

The notation uses S to indicate a collection type (e.g., IEnumerable<T>,
ICollection<T>), and T to indicate the type of elements in that collec-
tion. Additionally, we use O<T> to represent subtypes of S<T> that are
ordered. For example, S<T> is a notation that could be substituted with
IEnumerable<int>, ICollection<Foo>, or even MyCollection (as long as
the type is an enumerable type).

The first parameter of all the methods in the pattern (marked with this)
is the type of the object the method is applied to. The notation uses
extension-method-like syntax, but the methods can be implemented as
extension methods or as member methods; in the latter case the first param-
eter should be omitted, of course, and the this pointer should be used.

Also, anywhere Func<...> is being used, pattern implementations may
substitute Expression<Func<...>> for it. You can find guidelines later that
describe when that is preferable.

S<T> Where(this S<T>, Func<T,bool>)

S<T2> Select(this S<T1>, Func<T1,T2>)
S<T3> SelectMany(this S<T1>, Func<T1,S<T2>>, Func<T1,T2,T3>)
S<T2> SelectMany(this S<T1>, Func<T1,S<T2>>)

O<T> OrderBy(this S<T>, Func<T,K>), where K is IComparable
O<T> ThenBy(this O<T>, Func<T,K>), where K is IComparable

S<T> Union(this S<T>, S<T>)
S<T> Take(this S<T>, int)
S<T> Skip(this S<T>, int)
S<T> SkipWhile(this S<T>, Func<T,bool>)

S<T3> Join(this S<T1>, S<T2>, Func<T1,K1>, Func<T2,K2>,
Func<T1,T2,T3>)

T ElementAt(this S<T>,int)

Figure 9-1: Query Pattern Method Signatures

Common Design Patterns342

3	DO implement the Query Pattern as instance members on the new type,
if the members make sense on the type even outside of the context of
LINQ. Otherwise, implement them as extension methods.

For example, instead of the following:

public class MyDataSet<T>:IEnumerable<T>{...}
...
public static class MyDataSetExtensions{
 public static MyDataSet<T> Where(this MyDataSet<T> data, Func<T,bool>
query){...}
}

Prefer the following, because it’s completely natural for datasets to
support Where methods:

public class MyDataSet<T>:IEnumerable<T>{
 public MyDataSet<T> Where(Func<T,bool> query){...}
 ...
}

3	DO implement IEnumerable<T> on types implementing the Query
Pattern.

3	CONSIDER designing the LINQ operators to return domain-specific
enumerable types. Essentially, one is free to return anything from a
Select query method; however, the expectation is that the query result
type should be at least enumerable.

This allows the implementation to control which query methods get
executed when they are chained. Otherwise, consider a user-defined
type MyType, which implements IEnumerable<T>. MyType has an opti-
mized Count method defined, but the return type of the Where method
is IEnumerable<T>. In the example here, the optimization is lost after
the Where method is called; the method returns IEnumerable<T>, and so
the built-in Enumerable.Count method is called, instead of the opti-
mized one defined on MyType.

var result = myInstance.Where(query).Count();

9.6    LINQ Suppor t 343

7	 AVOID implementing just a part of the Query Pattern if fallback to the
basic IEnumerable<T> implementations is undesirable.

For example, consider a user-defined type MyType, which implements
IEnumerable<T>. MyType has an optimized Count method defined but
does not have Where. In the example here, the optimization is lost after
the Where method is called; the method returns IEnumerable<T>, and so
the built-in Enumerable.Count method is called, instead of the opti-
mized one defined on MyType.

var result = myInstance.Where(query).Count();

3	DO represent ordered sequences as a separate type, from its unordered
counterpart. Such types should define ThenBy method.

This follows the current pattern in the LINQ to Objects implementa-
tion and allows for early (compile-time) detection of errors such as
applying ThenBy to an unordered sequence.

For example, the Framework provides the IOrderedEnumerable<T>
type, which is returned by OrderBy. The ThenBy extension method is
defined for this type, and not for IEnumerable<T>.

3	DO defer execution of query operator implementations. The expected
behavior of most of the Query Pattern members is that they simply con-
struct a new object which, upon enumeration, produces the elements of
the set that match the query.

The following methods are exceptions to this rule: All, Any, Average,
Contains, Count, ElementAt, Empty, First, FirstOrDefault, Last,
LastOrDefault, Max, Min, Single, Sum.

In the example here, the expectation is that the time necessary for eval-
uating the second line will be independent from the size or nature (e.g.,
in-memory or remote server) of set1. The general expectation is that
this line simply prepares set2, delaying the determination of its com-
position to the time of its enumeration.

var set1 = ...
var set2 = set1.Select(x => x.SomeInt32Property);
foreach(int number in set2){...} // this is when actual work happens

 place query extensions methods in a “Linq” subnamespace of the
main namespace. For example, extension methods for System.Data fea-
tures reside in System.Data.Linq namespace.

 use Expression<Func<...>> as a parameter instead of Func<...>
when it is necessary to inspect the query.

As discussed earlier, interacting with an SQL database is already done
through IQueryable<T> (and therefore expressions) rather than
IEnumerable<T>, since this gives an opportunity to translate lambda
expressions to SQL expressions.

An alternative reason for using expressions is performing optimiza-
tions. For example, a sorted list can implement look-up (Where clauses)
with binary search, which can be much more efficient than the standard
IEnumerable<T> or IQueryable<T> implementations.

When designing an abstraction, you might want to allow cases in which
some implementations of the abstraction support a feature or a behav-
ior, whereas other implementations do not. For example, stream imple-
mentations can support reading, writing, seeking, or any combination
thereof.

One way to model these requirements is to provide a base class with
APIs for all nonoptional features and a set of interfaces for the optional
features. The interfaces are implemented only if the feature is actually sup-
ported by a concrete implementation. The following example shows one
of many ways to model the stream abstraction using such an approach.

// framework APIs
public abstract class Stream {
 public abstract void Close();
 public abstract int Position { get; }
}
public interface IInputStream {
 byte[] Read(int numberOfBytes);
}

9.7     Optional Feature Pattern 345

public interface IOutputStream {
 void Write(byte[] bytes);
}
public interface ISeekableStream {
 void Seek(int position);
}
public interface IFiniteStream {
 int Length { get; }
 bool EndOfStream { get; }
}

// concrete stream
public class FileStream : Stream, IOutputStream, IInputStream,
ISeekableStream, IFiniteStream {
 ...
}

// usage
void OverwriteAt(IOutputStream stream, int position, byte[] bytes){
 // do dynamic cast to see if the stream is seekable
 ISeekableStream seekable = stream as ISeekableStream;
 if(seekable==null){
 throw new NotSupportedException(...);
 }
 seekable.Seek(position);
 stream.Write(bytes);
}

You will notice the .NET Framework’s System.IO namespace does not
follow this model, and with good reason. Such factored design requires
adding many types to the framework, which increases general complexity.
Also, using optional features exposed through interfaces often requires
dynamic casts, and that in turn results in usability problems.

n
n  Krzysztof Cwalina  Sometimes framework designers provide inter-

faces for common combinations of optional interfaces. For example, the
OverwriteAt method would not have to use the dynamic cast if the frame-
work design provided ISeekableOutputStream. The problem with this
approach is that it results in an explosion of the number of different inter-
faces for all combinations.

Sometimes the benefits of factored design are worth the drawbacks, but
often they are not. It is easy to overestimate the benefits and underestimate

Common Design Patterns346

the drawbacks. For example, the factorization did not help the developer
who wrote the OverwriteAt method avoid runtime exceptions (the main
reason for factorization). It is our experience that many designs incorrectly
err on the side of too much factorization.

The Optional Feature Pattern provides an alternative to excessive fac-
torization. It has drawbacks of its own but should be considered as an
alternative to the factored design described previously. The pattern pro-
vides a mechanism for discovering whether the particular instance sup-
ports a feature through a query API and uses the features by accessing
optionally supported members directly through the base abstraction.

// framework APIs
public abstract class Stream {
 public abstract void Close();
 public abstract int Position { get; }

 public virtual bool CanWrite { get { return false; } }
 public virtual void Write(byte[] bytes){
 throw new NotSupportedException(...);
 }

 public virtual bool CanSeek { get { return false; } }
 public virtual void Seek(int position){
 throw new NotSupportedException(...);
 }
 ... // other options
}

// concrete stream
public class FileStream : Stream {
 public override bool CanSeek { get { return true; } }
 public override void Seek(int position) { ... }
 ...
}

// usage
void OverwriteAt(Stream stream, int position, byte[] bytes){
 if(!stream.CanSeek || !stream.CanWrite){
 throw new NotSupportedException(...);
 }
 stream.Seek(position);
 stream.Write(bytes);
}

9.7     Optional Feature Pattern 347

In fact, the System.IO.Stream class uses this design approach. Some
abstractions might choose to use a combination of factoring and the
Optional Feature Pattern. For example, the Framework collection inter-
faces are factored into indexable and nonindexable collections (IList<T>
and ICollection<T>), but they use the Optional Feature Pattern to differ-
entiate between read-only and read-write collections (ICollection<T>.
IsReadOnly property).

3	CONSIDER using the Optional Feature Pattern for optional features in
abstractions.

The pattern minimizes the complexity of the framework and improves
usability by making dynamic casts unnecessary.

n
n  Steve Starck  If your expectation is that only a very small percent-

age of classes deriving from the base class or interface would actually imple-
ment the optional feature or behavior, using interface-based design might
be better. There is no real need to add additional members to all derived
classes when only one of them provides the feature or behavior. Also, fac-
tored design is preferred in cases when the number of combinations of the
optional features is small and the compile-time safety afforded by factoriza-
tion is important.

3	DO provide a simple Boolean property that clients can use to determine
whether an optional feature is supported.

public abstract class Stream {
 public virtual bool CanSeek { get { return false; } }
 public virtual void Seek(int position){ ... }
}

Code that consumes the abstract base class can query this property at
runtime to determine whether it can use the optional feature.

if(stream.CanSeek){
 stream.Seek(position);
}

Common Design Patterns348

3	DO use virtual methods on the base class that throw NotSupported­
Exception to define optional features.

public abstract class Stream {
 public virtual bool CanSeek { get { return false; } }
 public virtual void Seek(int position){
 throw new NotSupportedException(...);
 }
}

The method can be overridden by subclasses to provide support for the
optional feature. The exception should clearly communicate to the user
that the feature is optional and which property the user should query
to determine if the feature is supported.

9.8 ​ Simulating Covariance

Different constructed types don’t have a common root type. For example,
there would not be a common representation of IEnumerable<string> and
IEnumerable<object> if not for a pattern implemented by IEnumerable<T>
called Simulated Covariance. This section describes the details of the
pattern.

Generics is a very powerful type system feature added to the .NET
Framework 2.0. It allows creation of so-called parameterized types. For
example, List<T> is such a type and it represents a list of objects of type T.
The T is specified at the time when the instance of the list is created.

var names = new List<string>();
names.Add("John Smith");
names.Add("Mary Johnson");

Such generic data structures have many benefits over their nonge-
neric counterparts. But they also have some—sometimes surprising—
limitations. For example, some users expect that a List<string> can be
cast to List<object>, just as a String can be cast to Object. But unfortu-
nately, the following code won’t even compile.

9.8    Simulating Covariance 349

List<string> names = new List<string>();
List<object> objects = names; // this won't compile

There is a very good reason for this limitation, and that is to allow for
full strong typing. For example, if you could cast List<string> to a
List<object> the following incorrect code would compile, but the pro-
gram would fail at runtime.

static void Main(){
 var names = new List<string>();

 // this of course does not compile, but if it did
 // the whole program would compile, but would be incorrect as it
 // attempts to add arbitrary objects to a list of strings.
 AddObjects((List<object>)names);

 string name = names[0]; // how could this work?
}

// this would (and does) compile just fine.
static void AddObjects(List<object> list){
 list.Add(new object()); // it's a list of strings, really. Should we throw?
 list.Add(new Button());
}

Unfortunately, this limitation can also be undesired in some scenarios.
For example, let’s consider the following type:

public class CountedReference<T> {
 public CountedReference(T value);
 public T Value { get; }
 public int Count { get; }
 public void AddReference();
 public void ReleaseReference();
}

There is nothing wrong with casting a CountedReference<string> to
CountedReference<object>, as in the following example.

var reference = new CountedReference<string>(...);
CountedReference<object> obj = reference; // this won't compile

Common Design Patterns350

In general, having a way to represent any instance of this generic type
is very useful.

// what type should ??? be?
// CountedReference<object> would be nice but it won't work
static void PrintValue(??? anyCountedReference){
 Console.WriteLine(anyCountedReference.Value);
}

n
n  KRZYSZTOF CWALINA  Of course, PrintValue could be a generic

method taking CountedReference<T> as the parameter.

static void PrintValue<T>(CountedReference<T> any){
 Console.WriteLine(any.Value);
}

This would be a fine solution in many cases. But it does not work as a
general solution and might have negative performance implications. For
example, the trick does not work for properties. If a property needed to be
typed as “any reference,” you could not use CountedReference<T> as the
type of the property. In addition, generic methods might have undesirable
performance implications. If such generic methods are called with many
differently sized type arguments, the runtime will generate a new method
for every argument size. This might introduce unacceptable memory con-
sumption overhead.

Unfortunately, unless CountedReference<T> implemented the Simu-
lated Covariance Pattern described next, the only common representation
of all CountedReference<T> instances would be System.Object. But
System.Object is too limiting and would not allow the PrintValue
method to access the Value property.

The reason that casting to CountedReference<object> is just fine, but
casting to List<object> can cause all sorts of problems, is that in case of
CountedReference<object>, the object appears only in the output position
(the return type of Value property). In the case of List<object>, the object
represents both output and input types. For example, object is the type of
the input to the Add method.

9.8    Simulating Covariance 351

// T does not appear as input to any members except the constructor
public class CountedReference<T> {
 public CountedReference(T value);
 public T Value { get; }
 public int Count { get; }
 public void AddReference();
 public void ReleaseReference();
}

// T does appear as input to members of List<T>
public class List<T> {
 public void Add(T item); // T is an input here
 public T this[int index]{
 get;
 set; // T is actually an input here
}
}

In other words, we say that in CountedReference<T>, the T is at covari-
ant positions (outputs). In List<T>, the T is at covariant and contravariant
(inputs) positions.

To solve the problem of not having a common type representing the
root of all constructions of a generic type, you can implement what’s called
the Simulated Covariance Pattern.

Consider a generic type (class or interface) and its dependencies
described in the code fragment that follows.

public class Foo<T> {
 public T Property1 { get; }
 public T Property2 { set; }
 public T Property3 { get; set; }
 public void Method1(T arg1);
 public T Method2();
 public T Method3(T arg);
 public Type1<T> GetMethod1();
 public Type2<T> GetMethod2();
}
public class Type1<T> {
 public T Property { get; }
}
public class Type2<T> {
 public T Property { get; set; }
}

Common Design Patterns352

Create a new interface (root type) with all members containing a T at
contravariant positions removed. In addition, feel free to remove all mem-
bers that might not make sense in the context of the trimmed-down type.

public interface IFoo<out T> {
 T Property1 { get; }
 T Property3 { get; } // setter removed
 T Method2();
 Type1<T> GetMethod1();
 IType2<T> GetMethod2(); // note that the return type changed
}
public interface IType2<T> {
 T Property { get; } // setter removed
}

The generic type should then implement the interface explicitly and
“add back” the strongly typed members (using T instead of object) to its
public API surface.

public class Foo<T> : IFoo<object> {
 public T Property1 { get; }
 public T Property2 { set; }
 public T Property3 { get; set;}
 public void Method1(T arg1);
 public T Method2();
 public T Method3(T arg);
 public Type1<T> GetMethod1();
 public Type2<T> GetMethod2();

 object IFoo<object>.Property1 { get; }
 object IFoo<object>.Property3 { get; }
 object IFoo<object>.Method2() { return null; }
 Type1<object> IFoo<object>.GetMethod1();
 IType2<object> IFoo<object>.GetMethod2();
}

public class Type2<T> : IType2<object> {
 public T Property { get; set; }
 object IType2<object>.Property { get; }
}

Now, all constructed instantiations of Foo<T> have a common root type
IFoo<object>.

var foos = new List<IFoo<object>>();
foos.Add(new Foo<int>());
foos.Add(new Foo<string>());

9.8    Simulating Covariance 353

...
foreach(IFoo<object> foo in foos){
 Console.WriteLine(foo.Property1);
 Console.WriteLine(foo.GetMethod2().Property);
}

In the case of the simple CountedReference<T>, the code would look
like the following:

public interface ICountedReference<out T> {
 T Value { get; }
 int Count { get; }
 void AddReference();
 void ReleaseReference();
}

public class CountedReference<T> : ICountedReference<object> {
 public CountedReference(T value) {...}
 public T Value { get { ... } }
 public int Count { get { ... } }
 public void AddReference(){...}
 public void ReleaseReference(){...}

 object ICountedReference<object>.Value { get { return Value; } }
}

3	CONSIDER using the Simulated Covariance Pattern if there is a need to
have a representation for all instantiations of a generic type.

The pattern should not be used frivolously, because it results in additional
types in the framework and can makes the existing types more complex.

3	DO ensure that the implementation of the root’s members is equivalent
to the implementation of the corresponding generic type members.

There should not be an observable difference between calling a mem-
ber on the root type and calling the corresponding member on the
generic type. In many cases, the members of the root are implemented
by calling members on the generic type.

public class Foo<T> : IFoo<object> {

 public T Property3 { get { ... } set { ... } }
 object IFoo<object>.Property3 { get { return Property3; } }
...
}

Common Design Patterns354

3	CONSIDER using an abstract class instead of an interface to represent
the root.

This might sometimes be a better option, because interfaces are more
difficult to evolve (see section 4.3). On the other hand, there are some
problems with using abstract classes for the root. Abstract class mem-
bers cannot be implemented explicitly and the subtypes need to use the
new modifier. This makes it tricky to implement the root’s members by
delegating to the generic type members.

3	CONSIDER using a nongeneric root type if such type is already
available.

For example, List<T> implements IEnumerable for the purpose of sim-
ulating covariance.

9.9 ​ Template Method

The Template Method Pattern is a very well-known pattern described in
much greater detail in many sources, such as the classic book Design Pat-
terns by Gamma et al. Its intent is to outline an algorithm in an operation.
The Template Method Pattern allows subclasses to retain the algorithm’s
structure while permitting redefinition of certain steps of the algorithm.
We are including a simple description of this pattern here, because it is one
of the most commonly used patterns in API frameworks.

The most common variation of the pattern consists of one or more non-
virtual (usually public) members that are implemented by calling one or
more protected virtual members.

public Control{
 public void SetBounds(int x, int y, int width, int height){
 ...
 SetBoundsCore (...);
 }

 public void SetBounds(int x, int y, int width, int
 height, BoundsSpecified specified){
 ...
 SetBoundsCore (...);
 }

9.9    Template Method 355

 protected virtual void SetBoundsCore(int x, int y, int width, int
 height, BoundsSpecified specified){
 // Do the real work here.
 }
}

The goal of the pattern is to control extensibility. In the preceding exam-
ple, the extensibility is centralized to a single method (a common mistake
is to make more than one overload virtual). This helps to ensure that the
semantics of the overloads stay consistent, because the overloads cannot
be overridden independently.

Also, public virtual members basically give up all control over what
happens when the member is called. This pattern is a way for the base
class designer to enforce some structure of the calls that happen in the
member. The nonvirtual public methods can ensure that certain code exe-
cutes before or after the calls to virtual members and that the virtual mem-
bers execute in a fixed order.

As a framework convention, the protected virtual methods participat-
ing in the Template Method Pattern should use the suffix “Core.”

7	 AVOID making public members virtual.

If a design requires virtual members, follow the template pattern and
create a protected virtual member that the public member calls. This
practice provides more controlled extensibility.

3	CONSIDER using the Template Method Pattern to provide more con-
trolled extensibility.

In this pattern, all extensibility points are provided through protected
virtual members that are called from nonvirtual members.

3	CONSIDER naming protected virtual members that provide extensibil-
ity points for nonvirtual members by suffixing the nonvirtual member
name with “Core.”

public void SetBounds(...){
 ...
 SetBoundsCore (...);
}
protected virtual void SetBoundsCore(...){ ... }

I like to take the template pattern one step further and
implement all argument checking in the nonvirtual public method. This
way I can stop garbage entering methods that were possibly overridden by
another developer, and it helps to enforce a little more of the API contract
across implementations.

Timeouts occur when an operation returns before its completion because
the maximum time allocated for the operation (timeout time) has elapsed.
The user often specifies the timeout time. For example, it might take a form
of a parameter to a method call.

server.PerformOperation(timeout);

An alternative approach is to use a property.

server.Timeout = timeout;
server.PerformOperation();

The following short list of guidelines describes best practices for the
design of APIs that need to support timeouts.

 prefer method parameters as the mechanism for users to provide
timeout time.

Method parameters are favored over properties because they make the
association between the operation and the timeout much more appar-
ent. The property-based approach might be better if the type is designed
to be a component used with visual designers.

 prefer using TimeSpan to represent timeout time.

Historically, timeouts have been represented by integers. Integer time-
outs can be hard to use for the following reasons:

It is not obvious what the unit of the timeout is.

It is difficult to translate units of time into the commonly used
millisecond. (How many milliseconds are in 15 minutes?)

Often, a better approach is to use TimeSpan as the timeout type. TimeSpan
solves the preceding problems.

class Server {
 void PerformOperation(TimeSpan timeout){
 ...
 }
}

var server = new Server();
server.PerformOperation(TimeSpan.FromMinutes(15));

Integer timeouts are acceptable if:

The parameter or property name can describe the unit of time used by
the operation, for example, if a parameter can be called milliseconds
without making an otherwise self-describing API cryptic.

The most commonly used value is small enough that users won’t
have to use calculators to determine the value, for example, if the
unit is milliseconds and the commonly used timeout is less than
1 second.

 throw System.TimeoutException when a timeout elapses.

Timeout equal to TimeSpan.Zero means that the operation should
throw if it cannot complete immediately. If the timeout equals TimeSpan.
MaxValue, the operation should wait forever without timing out.
Operations are not required to support either of these values, but they
should throw an InvalidArgumentException if an unsupported time-
out value is specified.

If a timeout expires and the System.TimeoutException is thrown, the
server class should cancel the underlying operation.

Common Design Patterns358

In the case of an asynchronous operation with a timeout, the callback
should be called and an exception thrown when the results of the oper-
ation are first accessed.

void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs
asyncResult){
 MessageQueue queue = (MessageQueue)source;
 // the following line will throw if BeginReceive has timed out
 Message message = queue.EndReceive(asyncResult.AsyncResult);
 Console.WriteLine("Message: " + (string)message.Body);
 queue.BeginReceive(new TimeSpan(1,0,0));
}

For more information on timeouts and asynchronous operation, see
section 9.2.

7	 DO NOT return error codes to indicate timeout expiration.

Expiration of a timeout means the operation could not complete suc-
cessfully and thus should be treated and handled as any other runtime
error (see Chapter 7).

9.11 ​ XAML Readable Types

XAML is an XML format used by WPF (and other technologies) to repre-
sent object graphs. The following guidelines describe design consider-
ations for ensuring that your types can be created using XAML readers.

3	CONSIDER providing the default constructor if you want a type to work
with XAML.

For example, consider the following XAML markup:

<Person Name="John" Age="22" />

It is equivalent to the following C# code:

new Person() { Name = "John", Age = 22 };

Consequently, for this code to work, the Person class needs to have a
default constructor. Markup extensions, discussed in the next guideline
in this section, are an alternative way of enabling XAML.

9.11     X AML Readable Type s 359

n
n  Chris Sells  In my opinion, this one should really be a DO, not a

CONSIDER. If you’re designing a new type to support XAML, it’s far pref-
erable to do it with a default constructor than with markup extensions or
type converters.

3	DO provide markup extension if you want an immutable type to work
with XAML readers.

Consider the following immutable type:

public class Person {
 public Person(string name, int age){
 this.name = name;
 this.age = age;
 }
 public string Name { get { return name; } }
 public int Age { get { return age; } }

 string name;
 int age;
}

Properties of such type cannot be set using XAML markup, because the
reader does not know how to initialize the properties using the param-
eterized constructor. Markup extensions address the problem.

[MarkupExtensionReturnType(typeof(Person))]
public class PersonExtension : MarkupExtension {
 public string Name { get; set; }
 public int Age { get; set; }

 public override object ProvideValue(IServiceProvider serviceProvider){
 return new Person(this.Name,this.Age);
 }
}

Keep in mind that immutable types cannot be written using XAML
writers.

7	 AVOID defining new type converters unless the conversion is natural
and intuitive. In general, limit type converter usage to the ones already
provided by the .NET Framework.

Type converters are used to convert a value from a string to the appro-
priate type. They’re used by XAML infrastructure and in other places,
such as graphical designers. For example, the string “#FFFF0000” in the
following markup gets converted to an instance of a red Brush thanks
to the type converter associated with the Rectangle.Fill property.

<Rectangle Fill="#FFFF0000"/>

But type converters can be defined too liberally. For example, the Brush
type converter should not support specifying gradient brushes, as
shown in the following hypothetical example.

<Rectangle Fill="HorizontalGradient White Red" />

Such converters define new “minilanguages,” which add complexity to
the system.

 applying the ContentPropertyAttribute to enable conve-
nient XAML syntax for the most commonly used property.

[ContentProperty("Image")]
public class Button {
 public object Image { get; set; }
}

The following XAML syntax would work without the attribute:

<Button>
 <Button.Image>
 <Image Source="foo.jpg">
 </Button.Image>
</Button>

The attribute makes the following much more readable syntax possible.

<Button>
 <Image Source="foo.jpg">
</Button>

9.12    And in the End. . . 361

9.12  ​And in the End...

The process of creating a great framework is demanding. It requires dedi-
cation, knowledge, practice, and a lot of hard work. But in the end, it can
be one of the most fulfilling jobs software engineers ever get to do. Large
system frameworks can enable millions to build software that was not pos-
sible before. Application extensibility frameworks can turn simple appli-
cations into powerful platforms and make them shine. Finally, reusable
component frameworks can inspire and enable developers to take their
applications beyond the ordinary. When you create a framework like that,
please let us know. We would like to congratulate you.

This page intentionally left blank

This page intentionally left blank

423

A
Abbreviations, 48, 377
Abstract classes

choosing between interfaces and,
88–94

constructor design for, 148
designing, 95–97
extensibility using, 78
FxCop rules for, 384
implementing abstractions as,

203–205
Optional Feature Pattern and,

344–348
Abstract types

abstract class design, 95
choosing between interfaces and, 93,

203–205, 384
defined, 417

Abstractions
implementing with base classes,

206–207
in low vs. high-level APIs, 33–36
providing extensibility with, 203–205
in scenario-driven design, 17
in self-documenting APIs, 31–32
using classes vs. interfaces, 86–95

AccessViolationException, 237
Acronyms

avoiding in framework identifiers, 49
capitalization rules for, 40–42, 375
correct spelling of, 377
naming conventions for, 48

Action<...> delegates, 198–200
Addition through subtraction, 24
Adjective phrases, naming interfaces,

60–61
Aggregate Components, 289–298

component-oriented design, 291–294
design guidelines, 295–298
factored types, 294–295
overview of, 289–291

Alias names, avoiding, 50
API specification, sample, 405–412

API specification, 407–408
functional specification, 409–412
overview of, 406
requirements, 406

APIs, naming new versions of, 51–54,
378

_AppDomain, 63
Application model

defined, 417
namespaces, 58–59

Argument exceptions
ArgumentException, 235–236
ArgumentNullException, 180,

235–236
ArgumentOutOfRangeException,

235–236
FxCop rules for, 396

Arguments
avoiding space between, 366
validating, 179–183

ArrayList, 251

Index

﻿Index424

Arrays
choosing between collections and,

245, 258–259
FxCop rules for, 387
of reference vs. value types, 84–85
usage guidelines, 245–247, 397–398
using params, 186–189
working with properties that return,

136–138
ASP.NET, layered architecture, 35–36
Assemblies

defined, 417
FxCop rules for naming, 378
naming conventions, 54–55
type design guidelines, 118–119

AssemblyCopyrightAttribute, 119
AssemblyFileVersionAttribute, 119
AssemblyVersionAttribute, 119
Assignments, 85
Async Patterns, 298–312

choosing between, 298–300
Classic Async Pattern, 300–304
Classic Async Pattern example,

304–305
Event-Based Async Pattern, 305–312
overview of, 298

Asynchronous methods, Event-Based
Async Pattern, 305–307

Attached dependency property, 315–316,
417

Attribute class, 247
Attributes

assembly, 119
defined, 417
usage guidelines, 247–250, 398
using properties vs. methods, 134–135

AttributeUsageAttribute, 248, 398

B
Base classes

designing for extensibility, 206–207,
394

naming conventions, 62–63
Basic Dispose Pattern

finalizable types and, 328–332
overview of, 322–328
when to implement, 321–322

beforefieldinit metadata, 389
Begin method, Classic Async Pattern,

301–303, 305
Binary operators, 366
Blogs, suggested, 415
Blue screens, Windows, 214
Books, suggested reading list, 413–415
Boolean properties

choosing for parameters, 177–179
implementing Optional Feature

Pattern, 347
selecting names for, 69–70

Boxing, 417
Brace usage, 364–367

C
C# coding style conventions, 363–370

brace usage, 364–365
comments, 368–369
file organization, 369–370
indent usage, 367
naming conventions, 367–368
space usage, 365–366
var keyword usage, 367

Callbacks
Data Contract Serialization, 277
defined, 417
mechanisms of, 153
providing extensibility with, 197–201

camelCasing convention
C# coding style, 368
capitalizing acronyms, 41
FxCop rules for, 375
parameter names using, 39–40, 73–74

Cancellation, Event-Based Async
Pattern, 308–309

Capitalization conventions, 38–46
acronyms, 40–42
case sensitivity, 45–46
common terms, 43–46
compound words, 43–46
defined, 38
FxCop rules for, 374–375, 383
identifiers, 38–40

Case sensitivity, 45–46, 376
Case statements, omitting braces in, 365
Change notifications, 142–144, 317–318

Class constructors. See Type constructors
Classes

base. See Base classes
choosing interfaces vs., 88–95
choosing structs vs., 84–88
FxCop rules for, 384–385
naming conventions, 60–67, 379–381
as reference types, 78
sealing, 207–210
unsealed, 194–195

Classic Async Pattern
choosing between async patterns,

298–300
example, 304–305
overview of, 300–304

CLI (Common Language Infrastructure),
414

Client-first programming test, 3
Clone method, ICloneable interface,

204, 264
Close() method, Basic Dispose Pattern,

327
CLR

allowing overloading, 122–123
avoiding language-specific type

names, 50–51
case sensitivity of, 45
releasing managed memory, 319
releasing unmanaged resources with

finalizers, 319–320
CLS (Common Language Specification),

414
CLSCompliant (true) attribute, 421
Coercion logic, dependency properties,

318–319
Collection parameters, 252–253
Collections, usage guidelines, 250–261

choosing between arrays and, 245,
258–259

collection parameters, 252
FxCop rules, 398–399
implementing custom collections,

259–260
naming custom collections, 260–261
overview of, 250–251
properties and return values, 253–257
property names, 69
snapshots vs. live collections, 257–258

Collection<T> base class
designing extensibility, 206–207
implementing custom collections,

259–260
properties and return values, 253–254,

256
ComException, 239
Comments, C# conventions, 368–369
Common Language Infrastructure (CLI),

414
Common Language Specification (CLS),

414
Common names

capitalization, 43–45
naming classes, structs and interfaces,

60–61
Common types, names of, 64–66
CompletedSynchronously property,

IAsyncResult, 302
Component class, 205
Component-oriented design, 291–294
Compound words

capitalization rules, 43–45, 375–376
FCC rules for naming resources, 383

ComVisible(false), assembly attribute,
119

Consistency
designing frameworks for, 6–7
exceptions promoting, 212
in self-documenting APIs, 31

Constant fields, 161
Constraints, 64
Constructed type, 414
Constructor design, 144–153
Constructors

abstract class design and, 95
attribute usage guidelines, 249
design guidelines, 144–150, 389
designing custom exceptions, 240
factories vs., 333–335
type constructor guidelines, 151–152

ContentPropertyAttribute, 360
Conversion operators, 173–175, 336
Core namespaces, 59
Create-Call-Get-Pattern, 293
Create-Set-Call-Pattern, 291–293
CriticalFinalizerObject, 332
Custom attributes, interfaces vs., 99–100

Data class, 25
Data Contract Serialization

choosing, 275
defined, 274
supporting, 276–280
XML Serialization vs., 280

DataContractAttribute, 276
DataMemberAttribute, 276
DateTime, 261–263
DateTimeKind, 263
DateTimeOffset, 261–263
Deadlock, 201
Debugging, 134, 213
Default arguments, member overloading

vs., 127–128
Default constructors

aggregate components using, 294, 297
avoiding defining on structs, 101, 149
constructor design using, 145,

147–149
defined, 144, 414
XAML readable types using, 358–359

Delegates, 153, 414
Dependency, designing extension

methods, 164
Dependency properties. See DPs

(dependency properties)
Descriptive names

designing extension methods, 167
designing generic type parameters, 64
designing resources, 74–75
designing self-documenting APIs

using, 28
Design patterns, 289–361

Aggregate Components. See Aggre-
gate Components

Async Patterns. See Async Patterns
dependency properties, 312–319
Dispose Pattern. See Dispose Pattern
factories, 332–337
FxCop rules for, 402–404
LINQ support, 337–344
Optional Feature Pattern, 344–348
Simulated Covariance Pattern,

348–354
Template Method Pattern, 354–356
timeouts, 356–358
XAML readable types, 358–360

Design Patterns (Gamma et al), 354
.Design subnamespace, 83
Directories, file organization, 369
Dispose method, 320–328, 402–403
Dispose Pattern, 319–332

Basic Dispose Pattern, 322–328
finalizable types, 328–332
FxCop rules for, 402–403
IDisposable interface, 266
overview of, 319–322

Distributed computing, 6
DLLs

naming conventions, 54–55, 378
type design guidelines, 118–119

Documentation
naming conventions for new APIs, 52
purpose of providing, 27
self-documenting object models vs..

See Self-documenting object
models

DPs (dependency properties), 312–319
attached, 315–316
change notifications, 317–318
defined, 414
designing, 313–315
overview of, 312–313
validation, 316–317
value coercion, 318–319

DWORD, 110

e parameter, 71
Edit & Continue feature, 22
EditorBrowsable attribute, 81
EF (Entity Framework), 337
80/20 rule, 10
Encapsulation, principle of, 159–160
End method, Classic Async Pattern,

301–303, 305
EnumIsDefined, 181–182
Enums (enumerations), designing,

103–115
adding values to, 114–115
choosing between Boolean param-

eters and, 177–179
defined, 105
flag enums, 109–114
FxCop rules for, 385–386

naming guidelines, 66–67, 380–381
simple enums, 103–109
validating arguments, 180–181
as value types, 78

Environment class, 98, 218
Equality operators, 286–287
Equals

overriding equality operators, 286
usage guidelines, 268–270, 400

Error conditions. See Exceptions
Error message design, 225–226, 232
Event-Based Async Pattern, 305–312

choosing between async patterns,
298–300

defining asynchronous methods,
305–307

supporting cancellation, 308–309
supporting incremental results,

311–312
supporting out and ref parameters,

307–308
supporting progress reporting,

309–311
Event design

custom event handler design, 159
overview of, 153–158

Event handlers
custom design for, 159
defined, 153, 414
event design guidelines, 153–158,

389–390
naming, 71–72

Event handling method, 156, 414
EventArgs suffix, 71–72, 156
EventHandler<T>, 155
Events

defined, 414
FxCop rules for design, 389–390
naming conventions, 70–72, 381
property change notification, 142–144
providing extensibility with, 197–201

“Ex” suffix, 45, 53
Exception, 234–235
Exception filters, 221
Exception handling, 227–232
Exceptions, 211–243

constructor design using, 146–147,
151

customizing, 239–240

framework design using, 22, 30
FxCop rules for, 395–397
overview of, 211–215
performance and, 240–243
standard types of, 234–239
throwing, 216–221
throwing from equality operators,

286
throwing from finalizers, 332

Exceptions, choosing type to throw,
221–234

error message design, 225–226, 232
exception handling, 227–232
overview of, 221–225
wrapping exceptions, 232–234

Execution failures, 218, 222
ExecutionEngineException, 239
EXEs (executables), 421
Expense, of framework design, 4
Explicit interface member implementa-

tion, 128–132
Expression<...> types, 198–200
Expression<Func<...>>, 343
Extensibility, designing for, 193–210

with abstractions, 203–205
base classes, 206–207
with events and callbacks, 197–201
FxCop rules for, 394
with protected members, 196
sealing, 207–210
with unsealed classes, 194–195
with virtual members, 201–203

Extension methods, 162–168, 414

Façades. See Aggregate Components
Factored types, aggregate components,

294–295
Factories

Optional Feature Pattern vs., 346
overview of, 332–337

Factory methods, 145, 332–336
Fail fasts, 218
Fields

designing, 159–162
FxCop rules for design, 390–391
naming conventions, 72–73, 383

File organization, C#, 369–370
Finalizable types, Dispose Pattern and,

328–332
Finalize method, 146–147
Finalizers

defined, 414
finalizable types, 328–332
FxCop rules for, 403–404
limitations of, 320
overview of, 319

Flag enums
defined, 104
designing, 109–114
naming, 67, 110

FlagsAttribute, 110–111, 386
Flow control statements, 366
Framework design

characteristics of, 3–6
history of, 1–3
overview of, 9–11
principle of layered architecture,

32–36
principle of low barrier to entry,

21–26
principle of scenario-driven, 15–21
principle of self-documenting object

models, 26–32
principles of, overview, 14–15
progressive frameworks, 11–14

Func<...> delegates, 198–200
FxCop, 371–404

defined, 371
design patterns, 402–404
designing for extensibility, 394
evolution of, 372–373
exceptions, 395–397
how it works, 373–374
member design. See Member design
naming conventions. See Naming

conventions, FxCop rules
overview of, 371–372
parameter design, 392–394
spelling rules, 377
type design guidelines, 384–386
usage guidelines. See Usage guide-

lines, FxCop rules
FxCopcmd.exe, 373
FxCop.exe, 373

GC (Garbage Collector), 319, 320
GC.SuppressFinalize method

constructor design, 147
FxCop rules for design patterns, 403
overview of, 320

Generic methods, 350, 414
Generic type parameters, names of, 64
Generics, 348–354, 419
“Get” methods, 69
GetHashCode, usage guidelines, 270–271,

400
GetObjectData, ISerializable, 282–283
Getter method, 419
Glossary, 417–421
Grid.Column, 316

Hashtable, 251
Hierarchy

designing custom exceptions, 239
namespace, 57–58
organizing directory, 369
organizing types into namespace,

79–80
High-level APIs, 33–36
High-level components, 419
Hungarian notation

C# coding style conventions, 368
positive and negative effects of, 46–47

“I” prefix, 62–63
IAsyncResult object, 301–303
ICloneable interface, 204, 263–264
ICollection interface, 252–253, 398–399
ICollection<T> interface

implementing custom collections,
259–260

supporting LINQ through
IEnumerable<T>, 339

usage guidelines, 252–254
IComparable<T> interface, 264–266
IComponent interface, 205
ID vs. id (identity or identifier), 44, 375
Identifiers, naming conventions

abbreviations or contractions, 48–49
acronyms, 49

﻿﻿Index 429

avoiding naming conflicts, 48
capitalization rules, 38–40
choosing names, 28–30

IDictionary<TKey,TValue>, 251, 260
IDisposable interface

as Dispose Pattern, 266
FxCop rules for design patterns,

402–403
implementing Basic Dispose Pattern,

322–324
releasing unmanaged resources with,

320–321
rules for finalizers, 403–404
usage guidelines, 266

IEnumerable interface, 252–255, 259–260
IEnumerable<T> interface

Query Pattern and, 342
supporting LINQ through, 339–340
usage guidelines for collections,

252–254
IEnumerator interface, 251–252
IEnumerator<T> interface, 251–252
IEquatable<T> interface, 103, 264–266
IExtensibleDataObject interface, 279
IList<T> interface, 259–260
Immutable types

defined, 86, 419
enabling XAML readers with, 359

“Impl” suffix, 404
Implementation, framework, 4
Incremental results, Event-Based Async

Pattern, 311–312
Indent usage, C#, 367
Indexed property design, 140–142, 388
IndexOutOfRangeException, 237
Infrastructure namespaces, 59
Inheritance hierarchy

base classes in, 206
naming classes, structs and interfaces,

61
Inlining, 419
Instance constructors, 144, 146
Instance method, 419
Instrumentation, exceptions promoting,

215
Int32 enum, 109
Integer timeouts, 357
Integration, framework, 6

Intellisense
naming conventions for new APIs, 52
naming conventions in self-docu-

menting APIs, 29
operator overloads not showing in,

169
overview of, 27
strong typing for, 31
support for enums, 105
type design guidelines, 81

Interfaces
choosing between classes and, 88–95,

384–385
defining nested types as members of,

117
designing, 98–101, 385
designing abstractions with, 88–95,

205
designing extension methods for,

163–164
implementing members explicitly,

128–132, 387
naming conventions, 60–67, 379–381
reference and value types implement-

ing, 78
.Interop subnamespace, 84
InvalidCastException, 175
InvalidOperationException, 235
IQueryable interface, 338
IQueryable<T> interface, 340–341
ISerializable interface, 281–283
Issue messages, FxCop, 373
It-Just-Works concept, 290
IXmlSerializable interface, 280–281
IXPathNavigable interface, 285

J
Jagged arrays, 246–247
JIT (Just-In-Time) compiler, 160, 419

K
Keyed collections, 256, 259–260
Keywords

avoiding naming identifiers that
conflict with common, 48

FxCop rules for naming, 377
KnownTypeAttribute, 278–279

﻿Index430

L
Lamba Expressions, 338, 419
Language Integrated Query. See LINQ

(Language Integrated Query)
Language-specific names

avoiding, 49–51
FxCop rules for avoiding, 378
resource names avoiding, 75

Layered architecture principle, frame-
works, 32–36

Libraries, reusable, 5, 122–123
LINQ (Language Integrated Query),

337–344
defined, 419
overview of, 337–338
supporting through IEnumerable<T>,

339–340
supporting through IQueryable<T>,

340
supporting through Query Pattern,

341–344
ways of implementing, 339

LINQ to SQL, 337
List<T>, 251
Live collections, snapshots vs., 257–258
Local variables, avoiding prefixing, 368
Low barrier to entry principle, frame-

work design, 21–26
Low-level APIs, 33–36
Low-level component, 419

M
Managed code, 420
Marker interfaces, avoiding, 99
Markup Extensions, enabling XAML

with, 358–359
MarshalByRefObject, 93
Member design, 121–191

constructor design. See Constructor
design

event design, 153–158
extension methods, 162–168
field design, 159–162
member overloading. See Member

overloading
operator overloads, 168–175
parameter design. See Parameter

design
property design, 138–144

Member design, FxCop rules for,
387–394

constructor design, 389
event design, 389–390
field design, 390–391
general guidelines, 387–388
operator overloads, 391–392
parameter design, 392–394
property design, 388

Member overloading, 121–138
avoiding inconsistent ordering, 124
avoiding ref or out modifiers,

125–126
choosing between properties and

methods, 132–138
default arguments vs., 127–128
implementing interface members

explicitly, 128–132
overview of, 121–123
passing optional arguments, 126–127
semantics for same parameters, 126
using descriptive parameter names

for, 123–124
Members

defined, 420
PascalCasing for naming, 39–40
providing extensibility with virtual,

201–203
renaming, 130–131
sealing, 207–210
with variable number of parameters,

186–189
Memory, reference vs. value types, 85
Metadata

capitalization guidelines, 44
defined, 420
PropertyMetadata, 318
types and assembly, 118–119

Methods
choosing between properties and,

132–138, 386–387
designing extension, 162–168
exception builder, 220–221
naming conventions for, 28–30, 68
naming for operator overloads,

171–173
supporting timeouts with parameters,

356
Microsoft Office, for FxCop spelling

rules, 377

﻿﻿Index 431

Microsoft Office Proofing Tools, for
FxCop spelling rules, 377

Microsoft Windows, blue screens, 214
Microsoft Word development, 10
Multidimensional arrays, jagged arrays

vs., 246–247
Multiline syntax (/*...*/), 369
Multiple inheritance, 98–101
Mutable types, 101–102, 162

N
Namespaces

defining extension methods in,
164–167

for experimentation, 22–24
exposing layers in same, 35–36
exposing layers in separate, 35
placing base classes in separate, 207
standard subnamespace names, 83–84
type design guidelines, 79–83

Namespaces, naming
FxCop rules, 378–379, 384
overview of, 56–59
PascalCasing for, 39–40
type name conflicts and, 58–60

Naming conventions, 37–75
abbreviations, 48
acronyms, 48
assemblies, 54–55
avoiding language-specific names,

49–51
C# coding style, 367–368
capitalization. See Capitalization

conventions
classes, 60–67
common types, 64–66
custom collections, 260–261
DLLs, 54–55
enumerations, 66–67
events, 70–72
fields, 72–73
generic type parameters, 64
interfaces, 60–67
methods, 68
namespaces, 56–60
new versions of APIs, 51–54
overview of, 37–38
parameters, 73–74
properties, 68–70

resources, 74–75
self-documenting APIs, 28–30
structs, 60–67
word choice, 46–48

Naming conventions, FxCop rules,
374–383

assemblies and DLLs, 378
classes, structs, and interfaces,

379–381
general, 376–378
namespaces, 378–379
overview of, 374–376
parameters, 383
resources, 383
type members, 381–383

NativeOverlapped*, 305
Nested types

defined, 420
designing, 115–117
FxCop rules for, 386
FxCop type design guidelines, 386

.NET Framework
designing self-documenting APIs,

31–32
main goals of, 14
as progressive framework, 13

.NET Remoting, 281
NotSupportedException, 340, 348
Nouns/noun phrases

naming classes, structs and interfaces
with, 60–61

property names, 68–69
Nullable<T> interface, 266–268
NullReferenceException, 237

O
Object models, 17. See also Self-docu-

menting object models
Object-oriented (OO) design, 2, 211–212
Object-oriented programming (OOP), 2,

79
Object, usage guidelines, 268–273

defining extension methods on, 165
Object.Equals, 268–270
Object.GetHashCode, 270–271
Object.ToString method, 271–273

Object.Equals
overriding equality operators, 286
usage guidelines, 268–270, 400

﻿Index432

Object.GetHashCode, 270–271, 400
Objects, defined, 420
Object.ToString method, 271–273
Ok, capitalizing, 44
OnDeserializedAttribute, 277–278
OO (object-oriented) design, 2, 211–212
OOP (object-oriented programming), 2,

79
Open sets, and enums, 105
Operator overloads

conversion operators, 173–175
defined, 123
descriptive parameter names for, 74,

123–124
extension methods similar to, 167
FxCop rules, 391–392
overloading operator ==, 173
overview of, 168–173

Operators, FxCop usage guidelines,
401–402

Optional Feature Pattern, 344–348
Organizational hierarchies, 57
out parameters

avoiding use of, 184–185
Classic Async Pattern, 302
Event-Based Async Pattern, 307–308
FxCop rules for parameter passing,

393
member overloading and, 125–126
parameter design, 176–177
passing arguments through, 184

OutOfMemoryException, 238
Overlapped class, 305
Overloading

avoiding for custom attribute
constructors, 249

defined, 420
designing APIs for experimentation

using, 24
equality operators, 286–287
member. See Member overloading

Overloading operator ==, 173, 175

P
Parameter design, 175–191

enum vs. boolean parameters,
177–179

FxCop rules for, 392–394

indexed properties, 141
members with variable number of

parameters, 186–189
overview of, 175–177
parameter passing, 183–185
pointer parameters, 190–191
providing good defaults, 25–26
space usage, 366
validating arguments, 179–183

Parameter names
camelCasing for, 39–40
conventions, 73–74
conventions for overloads, 123–124
event handlers and, 71
FxCop rules for, 383
operator overload and, 74

Parameter passing, 183–185
params keyword, 186–188
Parentheses, space usage and, 366
PascalCasing convention

C# coding style conventions, 368
field names, 72
FxCop rules for, 375
identifier names, 38–40
namespace names, 57
property names, 68–69
resource names, 74–75

Patterns, common design. See Design
patterns

Performance
exceptions and, 240–243
implications of throwing exceptions,

219
supporting LINQ through

IEnumerable<T>, 340
.Permission subnamespace, 83
Pit of Success notion, LINQ, 337
Plural namespace names, 57
Pointer parameters, 190–191
Post-events, 153–154, 420
PowerCollections project, 205
Pre-events

allowing end user to cancel events,
158

defined, 420
examples of, 153

Prefixes
Boolean properties, 69
class names, 61

﻿﻿Index 433

enum names, 67
field names avoiding, 72
interface names, 62–63
namespace names, 56

Program errors, 222–224
Programming languages

case sensitivity guideline for, 45–46
choice of programming model and, 12
designing framework to work well

with variety of, 11
exception handling syntax, 217
writing scenario code samples in

different, 16, 18
Progress reporting, 309–311
ProgressChanged event, 309–312
Progressive frameworks, 13–14, 420
Properties

accessing fields with, 160
choosing between methods and,

132–138, 386–387
collection, 399
defined, 420
designing, 388
naming, 68–70, 381
providing good defaults for, 25–26
setting with constructor parameters,

145–146
usage guidelines for collections,

253–254
using attribute, 247–248

Property change notification events,
142–144

Property design
indexed, 140–142
overview of, 138–140
property change notification events,

142–144
PropertyMetadata, 318–319
Protected members, 194, 196
Prototyping, implementation vs., 4
Public nested type guidelines, 117
Python, 18

Q
Query Expressions, 338
Query Pattern, 338, 341–344

R
Raising events, usage guidelines,

154–155
readonly fields, 161–162
“ReadOnly” prefix, custom collections,

261
ReadOnlyCollection<T>, 252–256,

259–260
Recursive acquires, 201
Reentrancy, 201
ref parameters

Classic Async Pattern and, 302
Event-Based Async Pattern and,

307–308
member overloading and, 125–126
parameter design and, 176
passing arguments through, 183–185

Reference types
defined, 420
equality operators and, 269–270, 287
overview of, 77
parameter passing guidelines, 185, 393
value types vs., 84–88

References, reading list for this book,
413–415

#region blocks, 370
Reserved parameters, 176
Resources, naming, 74–75, 383
Return-code error handling model,

212–213, 217
Return values

error reporting based on, 212–213
usage guidelines for collections,

253–254
Ruby, 18
Runtime, layered APIs at, 36
Runtime Serialization

choosing, 275
defined, 274
supporting, 281–283

S
SafeHandle resource wrapper, 329–330
Scenario-driven principle

example of. See API specification,
sample

overview of, 15–19
usability studies, 19–21

Sealing
of custom attribute classes, 250
defined, 420
FxCop rules for, 394
preventing extensibility with, 207–210

Security
avoiding explicit members, 131
designing custom exceptions, 240

SEHException, 239
Self-documenting object models, 26–32

consistency, 31–32
limiting abstractions, 32
overview of, 26–30
strong typing, 30–31

sender parameter, event handlers, 71
Sentinel values, and enums, 107–108
SerializableAttribute interface, 281
Serialization, usage guidelines, 274–283

choosing right technology, 275
overview of, 274–275
supporting Data Contract Serializa-

tion, 276–280
supporting Runtime Serialization,

281–283
supporting XML Serialization,

280–281
Setter method, 420
Simplicity, well-designed frameworks,

3–4
Simulated Covariance Pattern, 348–354
Single-statement blocks, brace usage,

364–365
Singleline syntax (//...), comments, 369
“64” suffix, 53–54
Snapshots, live collections vs., 257–258
SomeClass.GetReader, 334
Source files, organizing, 369
Space usage, C#, 365–366
Spelling rules, FxCop, 377
Sponsor class, 163
StackOverflowException, 237–238
State object, 301
Static classes, designing, 97–98, 384–385
Static constants, using enums, 105
Static constructors. See Type constructors
Static fields

defined, 421
initializing inline, 152, 389
naming conventions for, 47–48, 72

Static methods
defined, 421
extension methods invoking, 162, 166,

414
Stream class, 322, 347
Strong typing, 30–31, 105
Structs

defining default constructors in, 149
defining operator overloads in, 170
designing, 101–103, 385
naming conventions, 60–67, 379–381
type design guidelines, 84–88,

384–385
as value types, 78

Subnamespace names, 83–84
Suffixes

naming common types, 64–66
naming enums, 67
naming new APIs, 52–54

SuppressFinalize, Basic Dispose
Pattern, 324–325

Synchronization, event design, 157
System failure, 222, 225
System namespaces, 59
System._AppDomain, 63
System.Attribute class, 247
System.ComponentModel.Component

class, 205
System.ComponentModel.IComponent,

205
System.Data, 25
System.Enum, 110
System.Environment class, 98
System.Environment.FailFast, 218
System.EventHandler<T>, 155
SystemEvents, 200
SystemException, 234–235
System.FlagsAttribute, 110–111
System.InvalidCastException, 175
System.IO namespace, 20
System.IO.Stream class, 322, 347
System.Object, usage guidelines,

268–273
defining extension methods on, 165
Object.Equals, 268–270
Object.GetHashCode, 270–271
Object.ToString method, 271–273

System.ServiceProcess namespace, 291
System.TimeoutException, 357

System.Uri. See Uri, usage guidelines
System.ValueType, 103
System.Xml, usage guidelines, 284–286,

401

TDD (test-driven development)
defined, 15
framework design and, 6–7
scenario-driven design, 19
unsealed classes, 195

Technology namespace groups, 59–60
Template method, 404
Template Method Pattern, 203, 354–356
Tense, for event names, 70–71
Test-driven development. See TDD

(test-driven development)
Tester-Doer Pattern, 219, 241–242
ThenBy method, Query Pattern, 343
This, defined, 421
Throwing exceptions, 216–221. See also

Exceptions, choosing type to throw
TimeoutException, 357
Timeouts, in API design, 356–358
TimeSpan, 356
ToString method, 240, 271–273
Trade-offs, design, 5–6
Transparency, Aggregate Components,

290
Try-Parse Pattern, 219, 242–243
Type arguments

calling generic methods with, 350
in constructed types, 414
defined, 421

Type constructors
defined, 144
designing, 151–152, 389

Type converters, and XAML readers,
359–360

Type design guidelines
abstract classes, 95–97
adding values to enums, 114–115
assembly metadata and, 118–119
choosing class vs. struct, 84–88
choosing classes vs. interfaces, 88–95
flag enums, 109–114
FxCop rules for, 384–386
interfaces, 98–101
namespaces and, 79–84

nested types, 115–117
overview of, 77–79
simple enums, 103–109
static classes, 97–98
structs, 101–103

Type members, naming, 68–73
conflicts with namespace names,

58–60
designing self-documenting APIs,

28–30
events, 70–72, 382
fields, 72–73, 383
methods, 68
PascalCasing for, 39–40
properties, 68–70, 381

Type parameters, 64, 421

UEFs (unhandled exception filters), 215
Unary operators, 366
Unboxing, 421
Underscores (_), 73, 75
Unhandled exception handlers, 214–215
Unmanaged code, 421
Unmanaged resources, 319
Unsealed classes, 194–195
Uri, usage guidelines, 283–284, 400–401
UrtCop (Universal Runtime Cop), 373
Usability, consistency for, 31–32
Usability studies, API, 19–21, 25
Usage errors, 222–223
Usage guidelines, 245–287

arrays, 245–247
attributes, 247–250
collections. See Collections, usage

guidelines
DateTime and DateTimeOffset,

261–263
equality operators, 286–287
ICloneable, 263–264
IComparable<T> and IEquatable<T>,

264–266
IDisposable, 266
Nullable<T>, 266–268
Object, 268–273
serialization. See Serialization, usage

guidelines
System.Xml usage, 284–286
Uri, 283–284

﻿Index436

Usage guidelines, FxCop rules, 397–402
arrays, 397–398
attributes, 398
collections, 398–399
common operators, 401–402
Object, 400
Object.GetHashCode, 400
System.Xml, 401
System.Xml usage, 401
Uri, 400–401

User education experts, 29
using directives, file organization, 370

V
Validation

argument, 179–183
dependency property, 316–317

Value coercion, dependency property,
318–319

Value types
defined, 421
equality operators on, 269, 287
explicitly implementing members on,

129
finalizable, 330
implementing interface with, 94
mutable, 101–102
overview of, 77–78
reference types vs., 84–88

Values
adding to enums, 114–115
enum design and, 105–109
using properties vs. methods, 135

ValueType, 103
var keyword usage, 367
varargs methods, 189
Variance, 130
Verbs/verb phrases

event names, 70
method names, 68

Versions, naming new API, 51–54

Virtual members, 149–150, 201–203
Visual Basic developers

case insensitivity of VB, 45
designing frameworks for, 10
experimental approach of, 22
moving to .NET platform, 34
problems with VB.NET, 15

Visual Studio, 299
VisualOperations class, WPF, 22
<V>.<S>..<R> format, assemblies,

119

W
Wait handles, Classic Async Pattern, 300
Word choice

FxCop rules for, 376–377
naming conventions, 46–48

WPF (Windows Presentation Founda-
tion) project, 22–23, 168

Wrapping exceptions, 232–234

X
XAML, 358–360, 421
XML Serialization

choosing, 275
defined, 274
supporting, 280–281

XmlDataDocument, usage guidelines,
285–286

XmlNode, usage guidelines, 285
XmlReader, usage guidelines, 285
XNode, usage guidelines, 285
XPathDocument, usage guidelines, 285
XPathNavigator, usage guidelines, 286

Z
Zero values

enum design, 108–109
flag enums, 113

	Contents
	Figures
	Tables
	Foreword
	Foreword to the First Edition
	Preface
	Acknowledgments
	About the Authors
	About the Annotators
	9 Common Design Patterns
	9.6 LINQ Support
	9.6.1 Overview of LINQ
	9.6.2 Ways of Implementing LINQ Support
	9.6.3 Supporting LINQ through IEnumerable<T>
	9.6.4 Supporting LINQ through IQueryable<T>
	9.6.5 Supporting LINQ through the Query Pattern

	9.7 Optional Feature Pattern
	9.8 Simulating Covariance
	9.9 Template Method
	9.10 Timeouts
	9.11 XAML Readable Types
	9.12 And in the End...

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

