

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data
Wake, William C., 1960-

Refactoring in Ruby / William C. Wake, Kevin Rutherford.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-54504-6 (pbk. : alk. paper)
1. Software refactoring. 2. Ruby (Computer program language) I. Rutherford, Kevin. II. Title.
QA76.76.R42.W345 2009
005.1’17—dc22

2009032115

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-54504-6
ISBN-10: 0-321-54504-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2009

www.informit.com/aw

Foreword

I want to give you two reasons to work through this book. The fi rst reason is about right
now, and the second is about forevermore.

The reason you need to work through this book right now is, well, us: You and me
and all the other Ruby programmers out there. While Ruby’s a language that, as the
saying goes, makes simple things simple and hard things possible, and while we Ruby
programmers are intelligent, virtuous, good-looking, kind to animals, and great fun at
parties—we’re still human. As such, what we make is often awkward, even if it’s Ruby
code.

So there’s this vast and ever-growing sea of Ruby programmers out there, writing
awkward Ruby code. I bet you’re working on some of that code now, and I’m sure you’ll
be working on more of it soon. Do you want to be happy doing that? Or sad?

In the past ten years or so, we’ve learned that a wonderful way to be happy working
on code is to refactor it as you go. Refactoring means that you change the code to be
less awkward on the inside without changing what it does. It’s something you can do in
small, safe steps while adding features or fi xing bugs. As you do, the code keeps getting
more pleasant, so your life does too.

Before I give you the second reason to work through the book, I want to share my
deepest fear: that you’ll only read it, not work through it. That would be a horrible
mistake. When I think of you doing that, I imagine all the wonderful tricks in the book
entering your head through your eyes—and then far, far too many of them sliding
right out of your ears, never to be recalled again. What tricks you do remember will be
shuffl ed off to that part of the brain marked “For Rational Use Only,” to be taken out
rarely, on special occasions. Mere reading will not make you an expert.

You see, expert behavior is often a-rational. Experts typically act appropriately with-
out needing to think through a problem. Indeed, experts often have diffi culty explaining
why a particular action was appropriate. That’s because “thinking through a problem”
is expensive, so the brain prefers more effi cient routes to correct behavior. Those routes
are created through repetition—like by doing the exercises in this book. (Gary Klein’s
Sources of Power is a good book about expert behavior, and Read Montague’s Why Choose
This Book? explains why the brain avoids what we think of as problem-solving.)

xvii

xviii Foreword

When it comes to the awkwardness this book teaches you how to correct, effi cient
thinking and automatic behavior are important. To get good at this stuff, it’s not enough
to be able to search for awkwardness—it has to leap out at you as you travel the code. In-
deed, I’m happy that Kevin and Bill—like most who write about refactoring—describe
awkwardness as “code smells.” That’s because smell is probably the most powerful, prim-
itive, and least controllable of senses. When you open up a container and the smell of
rotting meat hits your brain, you move. You act. The smell of rotting code should do the
same, but it will only do so after practice blazes well-worn trails through your brain.

So: DO THE EXERCISES.

The reason this book will be valuable to you forevermore is that computers are strik-
ingly unsuited to most problems that need solving. They pigheadedly insist that we
squeeze every last drop of ambiguity out of a world that’s fl ooded with it. That’s a ridicu-
lous … impossible … inhuman demand that we put up with only because computers
are so fast. As a result of this fundamental mismatch—this requirement that we make up
precision—it takes us a long time to craft a program that works well in the world.

The humble and effective way to arrive at such a program is to put a fl edgling ver-
sion out into the world, watch what happens, and then reshape it (the program, not
the world—although people try that too) to make the mismatch less awkward. (And
then do it again, and again.) That’s an intellectual adventure, especially when you spot
concepts implicit in the code that no one’s ever quite recognized before, concepts that
suddenly open up vast new possibilities and require only a few … well, maybe more
than a few … minor … well, maybe not so minor … changes.

Without refactoring, and the style it promotes and supports, the changes the pro-
gram needs will be too daunting too often. With it, you need nevermore look at a pro-
gram with that familiar sense of hopeless dread.

And won’t that be nice?
—Brian Marick

July 4, 2009

Preface

I work mostly as an agile/XP/TDD coach, mostly working with teams developing C++
or C# or Java applications, mostly for Microsoft Windows platforms. Early in any en-
gagement I will inevitably recommend that everyone on the team work through William
Wake’s Refactoring Workbook [26], which I consider to be far and away the best book
for any developer who wants to learn to write great code. A short while later in every
engagement—and having a UNIX background myself—I urge everyone on the team
to improve their project automation skills by adopting a scripting language. I always
recommend Ruby because it’s easy to learn and object-oriented, and I generally recom-
mend new teams to read Brian Marick’s Everyday Scripting with Ruby [20] as a starter.

Finally, one day in the summer of 2007, it dawned on me that there was one great
book that I couldn’t recommend, one that would combine those two facets of all of my
projects, but one that hadn’t yet been written—a Refactoring Workbook for Ruby. So I
contacted Bill Wake and suggested we write one, and you’re now reading the result.

Compared with Bill’s original Java Refactoring Workbook, this Ruby edition has a
similar overall structure but is otherwise a substantial rewrite. We have retained the
core smells, added a few more, and reworked them to apply to Ruby’s more dynamic
environment. We have replaced all of the code samples, and replaced or revised all of
the exercises. We have also rewritten much of the introductory material, principally to
refl ect the rise in importance of test-driven development during the last fi ve years.

In short, we have tried to create a stand-alone Ruby refactoring workbook for the
modern developer, and not a Java book with Ruby code samples. I hope we’ve come
reasonably close to that goal.

—Kevin Rutherford
Summer 2009

What Is This Book About?
Refactoring is the art of improving the design of existing code and was introduced to the
world by Martin Fowler in Refactoring [14]. Fowler’s book provides dozens of detailed
mechanical recipes, each of which describes the steps needed to change one (usually small)
aspect of a program’s design without breaking anything or changing any behavior.

xix

xx Preface

But to be skilled in refactoring is to be skilled not only in safely and gradually chang-
ing code’s design, but also in fi rst recognizing where code needs improvement. The agile
community has adopted the term code smell to describe the anti-patterns in software
design, the places where refactoring is needed.

The aim of this book, then, is to help you practice recognizing the smells in exist-
ing Ruby code and apply the most important refactoring techniques to eliminate those
smells. It will also help you think about how to design code well and to experience the
joy of writing great code.

To a lesser extent this book is also a reference work, providing a checklist to help
you review for smells in any Ruby code. We have also described the code smells using a
standard format; for each smell we describe

What to Look For: cues that help you spot it•

Why This Is a Problem: the undesirable consequences of having code with this •
smell

When to Leave It: the trade-offs that may reduce the priority of fi xing it•

How It Got This Way: notes on how it happened•

What to Do: refactorings to remove the smell•

What to Look for Next: what you may see when the smell has been removed•

This should help keep the smell pages useful for reference even when you’ve fi n ished
the challenges.

This book does not attempt to catalog or describe the mechanics of refactorings in
Ruby. For a comprehensive step-by-step guide to Ruby refactoring recipes, we recom mend
Refactoring, Ruby Edition, by Jay Fields, Shane Harvie, and Martin Fowler [11], which is
a Ruby reworking of Fowler’s Refactoring. It is also not our intention to de scribe smells in
tests; these are already covered well by Gerard Meszaros in XUnit Test Patterns [22].

Who Is This Book For?
This book is intended for practicing programmers who write and maintain Ruby code
and who want to improve their code’s “habitability.” We have tried to focus primarily
on the universal principles of good design, rather than the details of advanced Ruby-fu.
Nevertheless, we do expect you to be familiar with most aspects of the Ruby language,
the core classes, and the standard libraries. For some exercises you will also need an ex-
isting body of Ruby code on hand; usually this will be from your own projects, but you
could also use open source code in gems or downloaded applications. Familiarity with

Preface xxi

refactoring tools or specifi c IDEs is not assumed (but the examples in this book will
provide great help if you wish to practice using such tools).

As mentioned above, it will be helpful to have Fields et al., Refactoring, Ruby Edition
[11], handy as you work through the exercises. In addition to the mechanics of refactor-
ings, we frequently refer to design patterns, particularly those cataloged by Gamma et al.
[16]; you may also fi nd it useful to have available a copy of Russ Olsen’s Design Patterns
in Ruby [24].

What’s in This Book?
This book is organized into three sections.

Part I, “The Art of Refactoring,” provides an overview of the art of refactoring. We
begin with an example; Chapter 1, “A Refactoring Example,” takes a small Ruby script
containing some common smells and refactors it toward a better design. Chapter 2,
“The Refactoring Cycle,” takes a brief look at the process of refactoring—when and how
to refactor with both legacy code and during test-driven development—while Chapter
3, “Refactoring Step by Step,” looks in detail at the tools used and steps taken in a single
refactoring. Finally, Chapter 4, “Refactoring Practice,” suggests some ex ercises that you
can apply in your own work and provides suggestions for further reading.

Part II, “Code Smells,” is the heart of the book, focusing on Ruby code smells. Each
chapter here consists of descriptions of a few major code smells, followed by a number of
exercises for you to work through. The challenges vary; some ask you to analyze code, oth-
ers to assess a situation, others to revise code. Not all challenges are equally easy. The harder
ones are marked “Challenging”; you’ll see that these often have room for variation in their
answers. Some exercises have solutions (or ideas to help you fi nd solutions) in Appendix
A, “Answers to Selected Questions.” Where an exercise relies on Ruby source code you can
download it from www.refactoringinruby.info.

Part III, “Programs to Refactor,” provides a few “large” programs to help you prac-
tice refactoring in a variety of domains.

Part IV, “Appendices,” provides selected answers to exercises and brief descriptions
of currently available Ruby refactoring tools.

How to Use This Book
This is a workbook: Its main purpose is to help you understand the art of refactoring by
practicing, with our guidance. There’s an easy way to do the exercises: Read the exercise,
look up our solution, and nod because it sounds plausible. This may lead you to many
insights. Then there’s a harder but far better way to do the exercises: Read the exercise,

www.refactoringinruby.info

xxii Preface

solve the problem, and only then look up our solution. This has a much better chance
of leading you to your own insights. Solving a problem is more challenging than merely
recognizing a solution and is ultimately much more rewarding.

As you work through the problems, you’ll probably fi nd that you disagree with us on
some answers. If so, please participate in the community and discuss your opinions with
others. That will be more fun for all of us than if you just look at our answers and nod.
See Chapter 4, “Refactoring Practice,” to learn how to join the discussion.

We think it’s more fun to work with others (either with a pair-partner or in a small
group), but we recognize this isn’t always possible.

Almost all of the code examples need to be done at a computer. Looking for prob-
lems, and fi guring out how to solve them, is different when you’re looking at a program
in your environment. Hands-on practice will help you learn more, particularly where
you’re asked to modify code. Refactoring is a skill that requires practice.

Good luck!

Acknowledgments
Brian Marick has been a huge supporter of the original Refactoring Workbook project,
and an inspiration with his writing and teaching.

We’d like to thank our core reviewers: Pat Eyler, Micah Martin, Russ Olsen, and
Dean Wampler. Their encouragement and suggestions really helped us along the way.

Our involvement in this writing project has placed demands and strains on our
families, and we both thank them deeply for their endless patience and support.

Kevin thanks the many people who read drafts of various chapters and provided re-
actions and feedback, notably Lindsay McEwan; and many thanks to Ashley Moran for
pushing the development of Reek, and for introducing lambdas into the Robot tests.

Bill thanks his friends Tom Kubit and Kevin Bradtke for being sounding boards on
agile software and other ideas. (Tom gets a double nod for his reviews and discussion of
the earlier book.)

Finally, thanks to Chris Guzikowski, Chris Zahn, Raina Chrobak, Kelli Brooks,
Julie Nahil, and the others at Pearson who have helped us pull this together.

Contact Us
Feel free to contact us:

Kevin: kevin@rutherford-software.com

 http://www.kevinrutherford.co.uk

Bill: william.wake@acm.org

 http://xp123.com

http://www.kevinrutherford.co.uk
http://xp123.com

3

CHAPTER 1

A Refactoring Example

Rather than start with a lot of explanation, we’ll begin with a quick example of refactoring
to show how you can identify problems in code and systematically clean them up. We’ll
work “at speed” so you can get the feel of a real session. In later chapters, we’ll touch on
theory, provide deeper dives into problems and how you fi x them, and explore moderately
large examples that you can practice on.

Sparkline Script
Let’s take a look at a little Ruby script Kevin wrote a while back. The script generates a
sparkline (a small graph used to display trends, without detail) and does it by generating
an SVG document to describe the graphic. (See Figure 1.1.)

The original script was written quickly to display a single sparkline to demonstrate
the trends that occur when tossing a coin. It was never intended to live beyond that
single use, but then someone asked Kevin to generalize it so that the code could be used
to create other sparklines and other SVG documents. The code needs to become more
reusable and maintainable, which means we’d better get it into shape.

-48

Figure 1.1 A sparkline

4 Chapter 1: A Refactoring Example

Here’s the original code:

NUMBER_OF_TOSSES = 1000

BORDER_WIDTH = 50

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

def spark(centre_x, centre_y, value)

 "<rect x=\"#{centre_x-2}\" y=\"#{centre_y-2}\"

 width=\"4\" height=\"4\"

 fill=\"red\" stroke=\"none\" stroke-width=\"0\" />

 <text x=\"#{centre_x+6}\" y=\"#{centre_y+4}\"

 font-family=\"Verdana\" font-size=\"9\"

 fill=\"red\" >#{value}</text>"

end

$tosses = values(NUMBER_OF_TOSSES)

points = []

$tosses.each_index { |i| points << "#{i},#{200-$tosses[i]}" }

data = "<svg xmlns=\"http://www.w3.org/2000/svg\"

 xmlns:xlink=\"http://www.w3.org/1999/xlink\" >

 <!-- x-axis -->

 <line x1=\"0\" y1=\"200\" x2=\"#{NUMBER_OF_TOSSES}\" y2=\"200\"

 stroke=\"#999\" stroke-width=\"1\" />

 <polyline fill=\"none\" stroke=\"#333\" stroke-width=\"1\"

 points = \"#{points.join(' ')}\" />

 #{spark(NUMBER_OF_TOSSES-1, 200-$tosses[-1], $tosses[-1])}

</svg>"

puts "Content-Type: image/svg+xml

Content-Length: #{data.length}

#{data}"

Forty lines of code, and what a mess! Before we dive in and change things, take a
moment to review the script. Which aspects of it strike you as convoluted, or unreadable,
or even unmaintainable? Part II, “Code Smells,” of this book lists over forty common
code problems: Each kind of problem is known as a code smell, and each has very specifi c

5

10

15

20

25

30

35

40

Spa rkline Script 5

characteristics, consequences, and remedies. For the purposes of this quick refactoring
demonstration, we’ll use the names of these smells (so that you can cross-reference with
Part II, “Code Smells,” if you wish), but otherwise we just want to get on with fi xing the
code. Here are the more obvious problems we noticed in the code:

Comments:• There’s a comment in the SVG document (line 29). As a comment in
the SVG output that’s not a bad thing, because the SVG is quite opaque. But it also
serves to comment the Ruby script, which suggests that the string is too complex.

Inconsistent Style:• Part of the SVG document is broken out into a separate method
(line 34), whereas most is built inline in the data string.

Long Parameter List:• Strictly speaking, the list of properties of the XML elements
aren’t Ruby parameters. But they are long lists, and we feel sure they will cause
problems later.

Uncommunicative Name:• The code uses data as the name of the SVG document,
i as an iterator index (line 25), a as the name of an array (line 9), and n as the num-
ber of array elements (line 8).

Dead Code:• The constant BORDER_WIDTH (line 2) is unused.

Greedy Method:• toss tosses a coin and also scales it to be –2 or +2.

Derived Value:• Most of the numbers representing SVG coordinates and shape sizes
could probably be derived from the number of tosses and the sparkline’s max and
min values.

Duplicated Code:• The text markers for the start and end tags of XML elements
are repeated throughout the code; the calculation 200-tosses[x] is repeated
(lines 25, 34).

Data Clump:• The SVG components’ parameters include several x-y pairs that rep-
resent points on the display canvas (lines 15, 18, 30). Some have further parameters
that go to make up a rectangle (lines 16, 30). Strictly, these are parameters to SVG
elements, and this is therefore a problem in the defi nition of SVG.

Global Variable:• Why is tosses a global variable at all?

Utility Function:• One might argue that all of the methods here (lines 4, 8, 14) are
Utility Functions.

Greedy Module:• The script isn’t a class, as such, but it does have multiple respon-
sibilities: Some of the script deals with tossing coins, some deals with drawing pic-
tures, and some wraps the SVG document in an HTTP message.

Divergent Change:• The data string (lines 27–35) is probably going to need to be
different for almost every imaginable variation on this script.

6 Chapter 1: A Refactoring Example

Reinvented Wheel:• There are already Ruby libraries for manipulating XML ele-
ments, and even for creating SVG documents.

Which should we address fi rst? When faced with a long to-do list of code smells it’s
easy to feel a little intimidated. It’s important to remember at this stage that we can’t fi x
everything in one sitting; we’ll have to proceed in small, safe steps. We also want to avoid
planning too far ahead—the code will change with every step, and right now it would
be a futile waste of energy to attempt to visualize what the code might be like even a few
minutes from now.

So in the next few sections we’re simply going to address the smells that strike us as
“next” on the to-do list, without regard to what “next” might mean, or to what will hap-
pen after that. It is entirely likely that you would address the smells in a different order,
and that’s just fi ne; experience suggests that we’re likely to fi nish up at approximately
the same place later.

First, let’s tidy up a little.

Consistency
We can easily remove the Dead Code and change the Global Variable; at the same
time we’ll create a simple method for each SVG element type we use, and convert those
quoted strings too:

NUMBER_OF_TOSSES = 1000

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

def rect(centre_x, centre_y)

 %Q{<rect x="#{centre_x-2}" y="#{centre_y-2}"

 width="4" height="4"

 fill="red" stroke="none" stroke-width="0" />"}

end

Consistency 7

def text(x, y, msg)

 %Q{<text x="#{x}" y="#{y}"

 font-family="Verdana" font-size="9"

 fill="red" >#{msg}</text>"}

end

def line(x1, y1, x2, y2)

 %Q{<line x1="#{x1}" y1="#{y1}" x2="#{x2}" y2="#{y2}"

 stroke="#999" stroke-width="1" />}

end

def polyline(points)

 %Q{<polyline fill="none" stroke="#333" stroke-width="1"

 points = "#{points.join(' ')}" />"}

end

def spark(centre_x, centre_y, value)

 "#{rect(centre_x, centre_y)}

 #{text(centre_x+6, centre_y+4, value)}"

end

tosses = values(NUMBER_OF_TOSSES)

points = []

tosses.each_index { |i| points << "#{i},#{200-tosses[i]}" }

data = %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <!-- x-axis -->

 #{line(0, 200, NUMBER_OF_TOSSES, 200)}

 #{polyline(points)}

 #{spark(NUMBER_OF_TOSSES-1, 200-tosses[-1], tosses[-1])}

</svg>}

puts "Content-Type: image/svg+xml

Content-Length: #{data.length}

#{data}"

The overall Greedy Module is now somewhat more apparent, as we have more
methods dealing with SVG elements now. However, note that each of the methods we
just added is also a Greedy Method, because each knows something about an SVG ele-
ment and something about how we want the sparkline to look. So we’ve traded some
problems for others, and that’s a very subjective process.

8 Chapter 1: A Refactoring Example

Tes tability
We changed quite a lot of code there, and each time we extracted a method we re-ran the
script to make sure we hadn’t broken the sparkline. But the HTTP wrapper (lines 52–54)
forces us into a particularly unfriendly test environment. So to improve testability, we’ll
delete that HTTP wrapper and simply replace it with:

 puts data

More on testing as we proceed, but for now that little change makes it easier to run
sparky.rb.

Greedy Methods
Each of the SVG drawing methods we extracted is greedy, because they know about
SVG and sparkline formatting. We want to address that next, because those two kinds
of knowledge are likely to cause change at different rates in the future.

We’ll begin with rect: we passed in two parameters from the caller, but to make this
method fully independent of the sparklines application we need to pass in 5 more:

def rect(centre_x, centre_y, width, height,

 fill, stroke, stroke_width)

 %Q{<rect x="#{centre_x}" y="#{centre_y}"

 width="#{width}" height="#{height}"

 fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}" />}

end

This is ugly, but right now it’s what the code seems to want. We’re trading one smell
for another again here, but little bits of fl exibility and maintainability are created as
by-products.

The caller changes to match:

SQUARE_SIDE = 4

def spark(centre_x, centre_y, value)

 "#{rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, 'red', 'none', 0)}

 #{text(centre_x+6, centre_y+4, value)}"

end

The changes to spark made some Derived Values apparent, so we also took the op-
portunity to fi x that by introducing a constant for the size of the little red square.

Greedy Module 9

We can now introduce extra parameters to text, line, and polyline in the same
way:

def text(x, y, msg, font_family, font_size, fill)

 %Q{<text x="#{x}" y="#{y}"

 font-family="#{font_family}" font-size="#{font_size}"

 fill="#{fill}" >#{msg}</text>}

end

def line(x1, y1, x2, y2, stroke, stroke_width)

 %Q{<line x1="#{x1}" y1="#{y1}" x2="#{x2}" y2="#{y2}"

 stroke="#{stroke}" stroke-width="#{stroke_width}" />}

end

def polyline(points, fill, stroke, stroke_width)

 %Q{<polyline fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}"

 points = "#{points.join(' ')}" />}

end

The calling code changes to match, for example:

SQUARE_SIDE = 4

SPARK_COLOR = 'red'

def spark(centre_x, centre_y, value)

 "#{rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 #{text(centre_x+6, centre_y+4, value,

 'Verdana', 9, SPARK_COLOR)}"

end

Note that we have again traded problems. The four drawing methods are no lon-
ger greedy, but now their callers know some SVG magic (color names, font names,
and drawing element dimensions). This kind of trading is a completely natural part of
refactoring, as we create areas of stability within the code. We’ll return to address this
Inappropriate Intimacy (General Form) later.

Greedy Module
That may not be the last we see of Greedy Methods, but code changes in the previous
section have highlighted another of the problems in the original code: There’s now an
even clearer distinction between code that knows how to write an SVG document and
code that knows what a sparkline should look like.

10 Chapter 1: A Refactoring Example

To fi x that, we’re going to extract a module for the SVG methods. We’ll put it in a
new source fi le called svg.rb:

module SVG

 def self.rect(centre_x, centre_y, width, height, fill,

 stroke, stroke_width)

 %Q{<rect x="#{centre_x}" y="#{centre_y}"

 width="#{width}" height="#{height}"

 fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}" />}

 end

 # etc...

end

A quick glance at this module shows that the Data Clumps and Long Parameter
Lists we predicted are now a reality. (And in fact, each of these SVG elements can take
more parameters than we have provided here, so the problem is much worse than it
seems.) Note also that we haven’t yet moved all of the XML into the SVG module, but
to do that we’ll have to decide how to deal with nested XML elements. We want to make
the calling script a little clearer before diving into the design of the SVG interface.

Comments
There’s a comment in the SVG document generated by the script:

 <!-- x-axis -->

The comment is there because it’s diffi cult to match the magic SVG words and sym-
bols to the format and structure of a sparkline. We don’t like commenting source code,
but we have no problem creating a self-documenting SVG document, so we’re happy
to keep the comment. The problem is that one comment isn’t enough; the output SVG
needs to have a few more! Worse, the script doesn’t communicate the sparkline’s struc-
ture to us, its readers, and so we could easily break it accidentally in the future. We’ll
fi x both of these issues by extracting a method for each component of the sparkline’s
structure:

def sparkline(points)

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

Whole Objects 11

def spark(centre_x, centre_y, value)

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, value,

 'Verdana', 9, SPARK_COLOR)}"

end

def x_axis(points)

 "<!-- x-axis -->

 #{SVG.line(0, 200, points.length, 200, '#999', 1)}"

end

While extracting x_axis we also removed its dependency on the constant NUMBER_
OF_TOSSES. In fact, we now see no reason for the constant to exist; we’ll inline it in the
call to values, and recalculate its value in the call to spark:

tosses = values(1000)

#...

data = %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(points)}

 #{sparkline(points)}

 #{spark(tosses.length-1, 200-tosses[-1], tosses[-1])}

</svg>}

Whole Objects
Leaving aside the horrors of that last string for a moment, look inside it at the call to spark:
We have a Long Parameter List in which every parameter is calculated from tosses.
Let’s use Preserve Whole Object by pushing those calculations into the spark method:

def spark(y_values)

 final_value = y_values[-1]

 centre_x = y_values.length-1

 centre_y = 200 - final_value

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, final_value,

 'Verdana', 9, SPARK_COLOR)}"

end

12 Chapter 1: A Refactoring Example

spark’s parameter could represent coin tosses, stock prices, or temperatures, so we
renamed it while we remembered.

Now take another look at x_axis—it only cares how many y-values there are, but it
isn’t interested in the points. We can pass in the y-values instead:

 def x_axis(y_values)

 "<!-- x-axis -->

 #{SVG.line(0, 200, y_values.length, 200, '#999', 1)}"

end

This means that the only code that cares about points is the sparkline method. We
can move the calculation of points into that method:

def sparkline(y_values)

 points = []

 y_values.each_index { |i| points << "#{i},#{200-y_values[i]}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

And so fi nally (and after a little tidying up), the creation of the SVG document looks
like this:

puts %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(tosses)}

 #{sparkline(tosses)}

 #{spark(tosses)}

 </svg>}

Feature Envy
Look again at that sequence of method calls taking tosses as the single parameter.
That chunk of code has more affi nity with the tosses array than it does with the rest
of the script. Same goes for the three methods spark, sparkline, and x_axis—they all
do more with the array of y_values than they do with anything else. There’s a missing
class here, one whose state is the array, and which has methods that know how to draw
the pieces of a sparkline. Instances of this missing class represent sparklines, so fi nding a
name for it is easy. First, we’ll create a simple stub to hold the array:

class Sparkline

 attr_reader :y_values

Feature Envy 13

 def initialize(y_values)

 @y_values = y_values

 end

end

Then we’ll update the fi nal puts call to use it:

sp = Sparkline.new(values(1000))

puts %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(sp.y_values)}

 #{sparkline(sp.y_values)}

 #{spark(sp.y_values)}

 </svg>}

Now we’re going to move the three methods (and that huge string) onto the new
class. In real life we would do them one by one, testing as we go; but for the sake of
brevity here let’s cut to the fi nal state of the new class:

class Sparkline

 def initialize(y_values)

 @y_values = y_values

 end

 def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis}

 #{sparkline}

 #{spark}

 </svg>}

 end

private

 def x_axis

 "<!-- x-axis -->

 #{SVG.line(0, 200, y_values.length, 200, '#999', 1)}"

 end

 def sparkline

 points = []

 y_values.each_index { |i| points << "#{i},#{200-y_values[i]}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

 end

 SQUARE_SIDE = 4

 SPARK_COLOR = 'red'

14 Chapter 1: A Refactoring Example

 def spark

 final_value = y_values[-1]

 centre_x = y_values.length-1

 centre_y = 200 - final_value

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, final_value,

 'Verdana', 9, SPARK_COLOR)}"

 end

end

Notice that the attr_reader for y_values is no longer necessary, so we deleted it.
The public accessor was needed in the early phases of that refactoring step so that we
could introduce the new class without breaking any other code. But after the methods
had all migrated into the new class, the array is used only internally, and thus can be
hidden.

For completeness, here’s what remains of the original script:

require 'sparkline'

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

puts Sparkline.new(values(1000)).to_svg

Uncommunicative Names
Now the script is so short, the Uncommunicative Names really stand out. Here’s an
alternative version with better names for anything we thought wasn’t communicating
clearly:

 require 'sparkline'

def zero_or_one() rand(2) end

Derived Values 15

def one_or_minus_one

 (zero_or_one * 2) - 1

end

def next_value(y_values)

 y_values[-1] + one_or_minus_one

end

def y_values

 result = [0]

 1000.times { result << next_value(result) }

 result

end

puts Sparkline.new(y_values).to_svg

While fi xing the names we discovered a 2 being used to scale the sparkline vertically;
we removed it in the interest of honest statistics. We fi nd defects often during the course
of refactoring. Usually this is because the process of refactoring has revealed something
that previously wasn’t obvious. It’s okay to fi x these defects, provided you consciously
switch hats for a few moments while doing so.

Derived Values
Now it’s time to tackle all those Derived Values we noticed right at the outset. They have
all migrated into Sparkline, which is nicely convenient. I’ll begin with the 200s: The
x-axis is drawn halfway down the canvas, at y-coordinate 200, and so every y_value is
scaled vertically by 200. (Y-coordinates increase down the page; so point (0, 0) is at the
top-left corner and point (0, 200) is 200 drawing units below that.) In fact, 200-y does
two things: It translates the line vertically downward by 200 units and it fl ips the line
over so that positive y-values appear above negative y-values. These are transforms of the
image: Refl ection followed by translation. SVG (currently) has no refl ection transform,
but it does offer translation, and we feel we’ll get simpler Ruby code if we use it. First,
then, we’ll invert the sparkline’s y-values in the constructor:

 def initialize(y_values)

 @height_above_x_axis = y_values.max

 @height_below_x_axis = y_values.min

 @final_value = y_values[-1]

 @y_values = reflect_top_and_bottom(y_values)

end

def reflect_top_and_bottom(y_values)

 y_values.map { |y| -y }

end

16 Chapter 1: A Refactoring Example

and change sparkline and spark correspondingly:

def sparkline

 points = []

 y_values.each_index { |i| points << "#{i},#{y_values[i] + 200}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

def spark

 centre_x = y_values.length-1

 centre_y = y_values[-1] + 200

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, @final_value,

 'Verdana', 9, SPARK_COLOR)}"

end

Next, we use an SVG transform to move the whole graphic down the screen by 200
units:

def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,200)">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

And now we can remove those magic 200s from the drawing methods. For example,
x_axis now becomes

def x_axis

 "<!-- x-axis -->

 #{SVG.line(0, 0, y_values.length, 0, '#999', 1)}"

end

We now have more SVG magic—the <g> element—in the code, but also there is less
duplication, and we consider that much more important.

We have now removed all but one of the magic 200s; before going any further, we
want to document its meaning:

Wabi-Sabi 17

def to_svg

 height_above_x_axis = 200

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,#{height_above_x_axis})">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

It is now clear that the 200 is simply a guess as to what a reasonable value might be. If
the sparkline’s y-values stray outside of the range –200..200 we’ll fi nd the line disappears
off the edge of the graphic. We spoke to our customer just now, and he agrees that we
should replace the 200 with the maximum y-value:

def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,#{height_above_x_axis})">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

def initialize(y_values)

 @height_above_x_axis = y_values.max

 @final_value = y_values[-1]

 @y_values = reflect_top_and_bottom(y_values)

end

Wabi-Sabi
We’ve made a number of refactoring changes to the code, and in the process its structure
has altered a great deal. Have we fi nished? No, and in a sense we never will. Software
can never be perfect, and there’s usually little point in chasing down that last scintilla of
design perfection. Any code will always be a “work in progress”—the important thing is
to have removed the major problems, and to know what slight odors remain.

The title of this section is also the name of the Japanese artistic style that celebrates the
incomplete, the unfi nished, and the transitory. Try to become used to thinking of your
code as a process and not simply an artifact; aim for better, not best. Read more in Leonard
Koren’s Wabi-Sabi: For Artists, Designers, Poets and Philosophers [19], for example.

18 Chapter 1: A Refactoring Example

Summing Up
Here ’s the current state of the main script after the refactorings:

require 'sparkline'

def zero_or_one() rand(2) end

def one_or_minus_one

 (zero_or_one * 2) - 1

end

def next_value(y_values)

 y_values[-1] + one_or_minus_one

end

def y_values

 result = [0]

 1000.times { result << next_value(result) }

 result

end

puts Sparkline.new(y_values).to_svg

(You can get complete copies of the “before” and “after” states of the code from
our download, which you can fi nd online at http://github.com/kevinrutherford/
rrwb-code.)

The code still has some smells: sparkline.rb still knows too much about SVG;
svg.rb still has long parameter lists; and the functionality of the SVG module du-
plicates that of a standard Ruby library. Notice also that the code has expanded from
40 lines to 100, and from one source fi le to three—all without increasing the script’s
functionality.

Overall, though, the code is much more readable and maintainable than it was be-
fore. We have traded size for fl exibility, and in the future it will be much easier to reuse
any of the various parts of this code. This is a reasonable place to stop for now.

What’s Next
No w that we’ve seen a quick example of how refactoring can improve code, we’ll look at
how refactoring fi ts into the development process, and then consider different problems
in code and examples of how to address them.

http://github.com/kevinrutherford/rrwb-code
http://github.com/kevinrutherford/rrwb-code

255

!, 54, 219, 221
&, 224
*(), 198, 200, 209
===, 101
?, 221
[] operator, 4, 54, 246
@ symbol, 59
%ALTCODE%, 89, 227
%CODE%, 88, 227
@delegate.f, 145
@state, 122, 237

A
accept(), 103
Accessor, 29
ActionController::Base, 162
ActiveRecord, 194, 249–250
ActiveRecord::Base, 116–117, 162, 194
ActiveRecord::Migration, 115
Adapter, 164–165, 190, 192–194, 232, 237,

240, 249
Add Parameter, 85, 140
Adjectives, 57
Agile Software Development (Martin), 70, 146
Aliases, 54, 218, 228
Alpha-beta pruning, 182
Alternative Modules with Different Interfaces,

85
Alternative Representations, 115, 233–234

and, 98
And, in method names, 70
Aptana, 252
Array, 72, 108
ArrayQueue, 133, 237
Assertions, 30, 42, 55, 220
Astels, Dave, 23
at:, 219
attr, 151
attr_accessor, 110, 151, 236
Attributes, 151, 241
attr_reader, 14, 151, 240
attr_writer, 151
autotest, 26

B
BDD (behavior-driven development),

22–23
Beck, Kent, 21, 23, 26, 142, 189
Behavior-preserving transformations, 27
Bell, Gordon, 222
Bentley, Jon, 93, 222
best_move_for, 175–177, 179
binary_op, 203, 210
button_frame, 207–209, 211

C
cab(), 204, 209–210
Caching, 181

Index

Footnote references are indicated with “n,” followed by the footnote number.

256 Index

Calculator program
button_frame, 207–209, 211
cab(), 204, 209–210
Calc_Controller class, 204
extend(), 201, 204, 209, 211
refactoring, 209–210
source code, 197 n1
stack, 197, 201–203, 209, 221
units, 198, 200–201
user interface, 205–206

Cart, 150–151, 240
Cascade, 143, 241
Case Statement, 104, 106, 231–232
case statement, 101, 232
Change-related code smells

Combinatorial Explosion, 159
Divergent Change, 5, 154–155, 161, 189
Parallel Inheritance Hierarchies, 158
Shotgun Surgery, 156–157, 162

Check (refactoring micro-process step), 30
Checkpoints, 122–123, 237
Chelimsky, David, 23
Class invariant, 237
class_eval, 74–75
Closed Classes, 168–169, 245
Cockburn, Alistair, 190, 232
Code coverage tool, 76
Code downloads, 18
Code reuse, 18, 133–134, 167
Code review checklist, 23
Code rewriting, 19
Code smells

change-related, 153–162
complexity, 65–78
conditional logic, 93–106
data, 107–123
duplication, 79–92
inheritance, 125–134
libraries, 163–169
measurable, 41–55
name-related, 57–63
as problem indicators, 20

responsibility, 135–152
software, 23, 251–252

Code test suite, 25
Coin-toss code, 4–7
Collapse hierachy, 33, 216
collect, 72
Combinatorial Explosion, 159
Comma-separated value (CSV). See CSV

Writer
Comments, 5, 10–11, 42–43, 49–50, 55, 217
Comparable module, 218
Compile step (of other languages), 25, 28
Complexity code smells

Dead Code, 5–6, 66–67, 76, 209
Dynamic Code Creation, 74–75
Greedy Method, 5, 7–9, 70–72, 78, 189, 223
Procedural Code, 72–73, 78, 223–224
Speculative Generality, 68–69, 76–77, 222

Complicated Boolean Expression, 98–99, 246
Compound words, 59
Conditional Expression, 103–104, 230
Conditional logic code smells

Complicated Boolean Expression, 98–99, 246
Control Coupling, 100, 105, 232
Nil Check, 94–95
Simulated Polymorphism, 101–102, 209
Special Case, 96–97

Confi guration management, 26
Consistency, 6–7
Consolidate Conditional Expression, 103
Constants, 11, 32, 81, 177, 232–233, 246
Control Coupling, 100, 105, 232
Controller, 204–205, 210–211
Copying code, 31
Counter-Argument, 118, 235
CRC (class, responsibilities, collaborators)

cards, 26, 135
CSV strings, 190
CSV Writer, 160–161, 241–243
CSV::Writer, 161
Cunningham, Ward, 26, 57
Currency, 115, 151, 233–235

Index 257

Cutoff values, 182
Cycle of refactoring, 19–23

D
Data Class, 110–111, 234, 236
Data Clump, 5, 10, 112–113
Data code smells

Data Class, 110–111, 234, 236
Data Clump, 5, 10, 112–113
Open Secret, 108–109, 115, 176, 190,

233–235
Temporary Field, 114, 146, 237

Data smells, 191, 248
Database, 186–187, 192–194, 249–250
Dead Code, 5–6, 66–67, 76, 209
Dead integers, 119, 235
Decorator design pattern, 159, 162
Defactoring practice exercise, 36–37
Default value, 81, 94, 209–210, 230
Defensive guard clause, 96, 104
Delegates and delegation

Hide Delegate, 26–29, 33, 143–144,
150–151, 216

Middle Man, 115, 145, 149–151, 209, 234,
240

Remove Middle Man, 145, 150, 216
Replace Delegation with Inheritance, 145,

237
Replace Inheritance with Delegation,

126–127
Delete (refactoring micro-process step), 32
DeMorgan’s law, 98, 103
Dependency Inversion, 167
Deprecating code, 32
Depth parameter, 181
Derived Value, 5, 15–16, 80, 227
Design patterns, 135, 145, 159, 162
Design Patterns (Gamma et al.), 232, 240
Design perfection, 17, 22
Design rules, 21–22
Design simplicity, 21, 23, 215
Development and refactoring, 22–23

Dictionaries, 57
Dimension class, 198, 209–211
Divergent Change, 5, 154–155, 161, 189
Document compression, 162
Documents, 162, 243
Domain class, 46, 89, 140, 227–228
Double Dispatch, 142
DriverFactory, 105–106, 232
DRY (Don’t Repeat Yourself) principle, 22,

117
DSL (domain-specifi c languages), 143, 241
Duplicate Observed Data, 46, 55, 89,

227–228
Duplicated Code, 5, 83–84, 91, 209–210,

215
Duplication and code smells, 22, 37
Dynamic Code Creation, 74–75

E
each, 72
each_move method, 179–180
Editor, 118–119, 235
Eiffel language, 61
Elements of Programming Style, The (Kernighan

and Plauger), 93
else, 103
Emergent design, 20
Encapsulate Collection, 110
Enumerable, 72, 181, 218, 228, 237
Environment variables, 87–88, 226–227
eval, 74–75
Explicit methods, 102, 216
Explicit refusal, 128–129
extend(), 201, 204, 209, 211
Extract Class, 46, 55, 188, 189, 216, 220, 229
Extract Method, 31, 33, 38, 49, 55, 216, 220
Extract Module, 46, 238
Extract Subclass, 46, 55, 216, 220
Extract Superclass, 85, 154
Extraction, 77, 222
Extreme Programming Explained, Second

Edition (Beck), 21

258 Index

F
Factory Method, 105–106, 232–233
Feathers, Michael, 26, 232, 241
Feature Envy, 12–14, 136–137, 148, 209, 239
Fields, Jay, 33, 35, 38, 158
Flag value, 176
fl ay (refactoring tool), 251
FlexMock, 152
fl og (refactoring tool), 251
Fluent Interface, 143
Flyweight, 109
For each (refactoring micro-process step), 31
for loops, 219
Form Template Method, 84
Formatting names, 77–78, 223
Formatting text, 218
Fowler, Martin, 19, 25, 108, 143, 194
freeze, 245
Fulton, Hal, 249
Fuse Loops, 176–177, 246

G
<g>, 16–17
Game program

code, 173–175
development episodes, 180–182
refactoring, 175–180, 246–247
source code, 173 n1

Gamma, Erich, 232, 240
Gems, 26, 76, 163, 167, 192
Generic refactoring micro-process, 30–32
Global Variable, 5–6, 140
Google group mailing list, 38
Gorts, Sven, 19
Greedy Method, 5, 7–9, 70–72, 78, 189, 223
Greedy Module, 5, 7, 9–10, 146–147, 209
Green bar, 22–23
Guard Clauses, 96, 104–105

H
Harmonizing practice exercise, 37
Hash, 72, 108–109, 225, 236–237

heckle (refactoring tool), 76, 251
Helper class, 44, 229
Helper methods, 117, 178, 224, 235
Hexagonal architecture, 190, 232, 248
Hidden State, 119–120, 236
Hide Delegate, 26–29, 33, 143–144, 150–151,

216
Hierarchies in Rails, 162, 243
Hooks, 66, 68, 131
HTTP wrapper, 7–8
Hungarian notation, 59
Hunt, Andrew, 143, 152

I
if, 103, 174–175, 246
if xxx == nil, 94
if xxx.nil?, 94
Implementation Inheritance, 126–127, 134,

237
Implicit refusal, 128–129
Inappropriate Intimacy (General Form),

141–142, 151, 209
Inappropriate Intimacy (Subclass Form), 130
Incomplete Library Module, 164–165
Inconsistent Names, 61, 229
Information hiding, 79
Inhale/exhale practice exercise, 36
Inheritance, 134, 229
Inheritance code smells

Implementation Inheritance, 126–127, 134,
237

Inappropriate Intimacy (Subclass Form),
130

Lazy Class, 131–132
Refused Bequest, 128–129, 134, 237–239

Inheritance Survey, 134
Inject method, 78, 223
Inline Class, 69
Inline refactoring, 69
Inline Temp, 33, 216
Instance method, 138
Instance variables, 46, 114, 119–120, 141, 152

Index 259

instance_of?, 101
instance_variables, 141
instance_variables_get, 141
int, 219
Integrated Development Environment (IDE),

26, 252
Integration tests, 194
Internationalization library, 18, 61, 76, 81
Introduce (refactoring micro-process step), 31
Introduce Assertion, 42, 55, 220
Introduce Explaining Variable, 98, 103, 216
Introduce Local Extension, 164, 169
Introduce Null Object, 94, 103
Introduce Parameter Object, 49, 55, 220
Inverse refactorings, 33, 216
IO, 161, 241
is_a?, 101
is_calculated, 201–205, 210
Iterate, 31
Iterations, 72, 78
Iterator, 179–180
Iterator index, 5

J
Jar fi le, 164
Java, 28, 54, 219
JetBrains, 252

K
Kata refactoring practice exercise, 37
Kernighan, Brian, 93
kind_of?, 101
Koren, Leonard, 17

L
Large Class, 46, 51–54, 218
Large Module, 46–47, 55, 77, 220
Law of Demeter, 143, 152, 236, 241
Layers, 168, 244
Lazy Class, 131–132
Legacy code, 26, 241
Libraries, 6, 76, 81, 86–87, 90, 225–226, 228

Library Classes, 119, 236
Library code smells

Incomplete Library Module, 164–165
Reinvented Wheel, 6, 166
Runaway Dependencies, 167

line, 9
Liskov Substitution Principle (LSP), 128–129,

239
Local extension, 164, 169
Logfi le Adapter and Variation Point, 249
LogFile.log, 86–87
Logger, 225–226
Long Method, 44–45, 50–51, 55, 77,

217–218, 222
Long Parameter List, 5, 10–11, 48–49, 55,

118, 220, 235
Loops, 72–73, 176–177, 246

M
Magic numbers, 81, 175, 177, 246
Mailing list for this book, 38
make_digit(), 207–208, 210
make_driver, 105–106
make_unit(), 207–208, 210
Malfactoring practice exercise, 36–37
Martin, Micah, 227
Martin, Robert, 70, 146
match(), 49, 240
Matcher, 49, 151, 217, 240
Math module, 169, 245
maxX, 229
maxY, 229
Measurable code smells

Comments, 42–43, 49–50, 55, 217
Large Module, 46–47, 55, 77
Long Method, 44–45, 50–51, 55, 77,

217–218, 222
Long Parameter List, 5, 10–11, 48–49, 55,

118, 220, 235
Member variable, 59
Memento, 110, 119, 235
Message Chain, 143–144, 152, 241

260 Index

Method aliases, 54, 218, 228
Method length, 44–45, 50–51, 55, 77,

217–218, 222
Method names, 59, 63, 221–222
Method object, 44
method_missing, 74, 94, 147
Meyer, Bertrand, 154
Middle Man, 115, 145, 149–151, 209, 216,

234, 240
Migrate (refactoring micro-process step),

31–32
Min-max algorithm, 182
Missing Function, 169, 245
Module inclusion, 134
Module size, 46–47, 77, 220
module_eval, 74–75
Money, 115, 151, 233–235
More Programming Pearls (Bentley), 93, 222
move, 175
Move Method, 85
MySQL, 187, 193, 249–250

N
Name formatting, 77–78, 223
Name-related code smells

Inconsistent Names, 61, 229
Type Embedded in Name, 59, 62,

220–221
Uncommunicative Name, 5, 14–15, 60, 62,

175–176, 209, 220–221
Naming conventions and standards, 57–61
Nested iterators, 247
NetBeans, 252
new, 167
Newlines, 229
nil, 94, 103
Nil Check, 94–95, 103
NodeFormatter, 229
not, 98
Nouns, 57
Null Object, 94–95, 103, 230
Numbered variables, 60

O
OAOO (once and only once), 22
Object-Oriented Software Construction (Meyer),

154
Open classes, 85, 168–169
Open Secret, 108–109, 115, 176, 190,

233–235
Open source practice projects, 37–38
or, 98, 100
Oracle, 249

P
Parallel Inheritance Hierarchies, 158
Parameter lists, 11, 48–49. See also Long

Parameter List
Parameter object, 49, 55, 220
Parameterize Method, 33, 85, 167, 216
Parnas, David, 79
Pattern matching, 218
Patterns of Enterprise Application Architecture

(Fowler), 194
Perfection, 17, 22, 32
Persistence mechanisms, 110, 189, 194
Plauger, P. J., 93
play method, 178
Points, 90–91, 229
points, 12
polyline, 9–10, 12–13
Polymorphism, 96, 101–102, 209
Position objects, 119
PostgreSQL, 249
Practice skills, 35–38
Pragmatic Programmer, The (Hunt and

Thomas), 143, 152
Preserve Whole Object, 11–12, 49, 55, 220
Primitive objects, 115, 219, 234
Primitive Obsession, 108
Probe points, 68, 241
Proc:, 224
Procedural Code, 72–73, 78, 223–224
Programming Pearls (Bentley), 93
Proper Names, 120–122, 236

Index 261

Pull Up Method, 84
Push Down Method, 129
Push Up Method, 229
puts, 13

R
Rails accounts, 115–118, 234–235
Rails hierarchies, 162, 243
Rails money plug-in, 235
Rake, 220
Rakefi le, 86, 225, 251
Rates of change, 189, 248
Rcov (code coverage tool), 76
rdoc API documentation, 42, 217
Re-refactoring practice exercise, 36
Read-Only Documents, 134, 237–239
rect, 8, 27
Red bar, 22–23
reduce method, 224
Reek software, 23, 247, 251
Refactoring, Ruby Edition, (Fields et al.), 33, 35,

38, 159
Refactoring (Fowler et al.), 19
Refl ection transform, 15–16
Refused Bequest, 128–129, 134, 237–239
Regression suite, 23
Reinvented Wheel, 6, 166
reject, 72
Relationships, 133–134, 237–239
Remove Middle Man, 145, 150, 216
Remove Parameter, 69
Remove Setting Methods, 69
Rename Method, 33, 55, 59–60, 85,

216, 220
Repeated Value, 81–82, 225
Replace Array with Object, 109
Replace Delegation with Inheritance, 145
Replace Hash with Object, 109
Replace Inheritance with Delegation, 126–127,

129, 159, 237
Replace Loop with Collection Closure

Method, 72–73

Replace Magic Number with Symbolic
Constant, 81

Replace Method with Method Object, 44
Replace Parameter with Explicit Methods, 102,

216
Replace Parameter with Method, 48, 55, 220
Replace Temp with Chain, 73
Replace Value with Expression, 80
ReportColumn, 91, 229
ReportNode, 229
Report.report, 51, 148, 151, 218
ReportRow, 91, 229
require statements, 167
Responsibility code smells

Feature Envy, 12–14
Global Variable, 5–6, 140
Greedy Module, 5, 7, 9–10, 146–147, 209
Inappropriate Intimacy (General Form),

141–142, 151, 209
Message Chain, 143–144, 152, 241
Middle Man, 115, 145, 149–150, 209, 234,

240
Utility Function, 5, 138–139, 151, 240–241

return statements, 176
reversed_copy, 219
ri18n internationalization library, 81
Roodi, 251
row, 178
rspec, 23, 26
RSpec Book (Chelimsky et al.) 23
Rspec examples, 51, 220
Ruby Application Archive, 228
Ruby Extensions, 224
Ruby Way, The (Fulton), 249
RubyForge, 76, 163, 251
RubyMine, 252
Run-time checks, 28
Runaway Dependencies, 167

S
Safe points, 28–29
Scavenger hunt practice exercise, 36

262 Index

Secret. See Open Secret
select, 72
self, 136, 152
self.class, 136
Short names, 60
Shotgun Surgery, 156–157, 162
Simian, 251
Simplicity in design, 21, 23, 215
Simulated Polymorphism, 101–102, 209
Single Responsibility Principle (SRP), 70, 146,

176
Small steps, 33, 36, 216
Smalltalk, 54, 143, 189, 219
Smalltalk Best Practice Patterns (Beck), 143,

189
Smell of the Week practice exercise, 36
Social Security number, 115, 234
Software, 23, 26, 251–252
Software metric, 41
Software perfection, 17
Sparkline script

code smells, 5–6
Comments, 10–11
consistency, 6–7
Derived Values, 15–17
Greedy Methods, 8–9
Greedy Module, 9–10
HTTP wrapper, 7–8
methods, 4, 7–8, 11–13
Preserve Whole Object, 11–12
puts, 4, 8, 13–15
sparky.rb, 8, 86, 225
testing, 8, 13
transforms, 15–16

Special Case, 96–97
Speculative Generality, 68–69, 76–77, 222
SQL, 190, 192–195, 249–250
SQLite, 249
Stack, 197, 201, 209, 221
Street address, 115, 234
String class API, 51–54, 218
String methods, 54, 227

Strings, 81, 178
Structs, 151, 241
sub, 227
Subjunctive programming, 179
Substitute Algorithm, 84, 191–194, 227,

229
Substring, 227, 246
Subversion (version control), 177
Superclasses, 63, 85, 154, 221
Sustainable process, 22–23
SVG, 8–10, 15–16
svg.rb, 10, 18
Synonyms, 228
System of Names, 136, 165

T
tagname, 229
TDD (test-driven development), 19, 22–23,

195
TDD/BDD microprocess, 22
Team/partner assistance, 25, 36, 37–38, 179
Tease Apart Inheritance, 159
Telephone number, 115, 234
Tell, Don’t Ask, 143
Template exercise, 88–89
Temporary Field, 114, 146, 237
Test coverage, 188, 248
Test (refactoring micro-process step), 32
Test suite, 25, 28
Testing, 26, 28–30
Test::Unit, 26, 28
text, 9
Text formatting, 218
Text processing, 218
Thomas, David, 143, 152
Time recording program

ActiveRecord, 194, 249–250
CSV strings, 190, 248
hexagonal architecture, 190, 248
persistence, 189, 194
rates of change, 189, 248
script, 183–187

Index 263

source code, 183 n1
substitute algorithm, 191–194,

248–249
test-driven development, 195
TimelogFile, 189–190, 192–193,

248–249
Tk, 205
to_f, 59
to_i, 59, 218
Tools for refactoring, 25–26, 229
to_proc, 224
to_s, 59, 199, 203, 205, 209, 218, 235
to_xml, 91, 229
Transforms (SVG), 15–16
Triggers, 55, 220
Type-checking, 211
Type Embedded in Name, 59, 62,

220–221

U
UI class, 211
UML model, 190
UML sketches, 26
Uncommunicative Name, 5, 14–15, 60, 62,

175–176, 209, 220–221
Underscores, 209
unless, 96
Up-front design, 20
URLs

calculator program code, 197 n1
code downloads, 18
game program code, 173 n1
mailing list for this book, 38
Rcov, 76
refactoring tools, 251–252

Ruby Application Archive, 228
time program code, 183 n1

Utility Function, 5, 138–139, 151, 240–241

V
variable = value || default, 94
Variables, 98–99, 103
Variation point, 154, 190, 192, 194, 249
Verbs, 57
Version control, 26, 177
Vocabulary, 57–58, 61

W
Wabi-Sabi, 17
Wabi-Sabi (Koren), 17
Walking a List, 148–149, 239
Whole objects, 11–12, 112
Winner method, 175, 178
Working Effectively with Legacy Code (Feathers),

26, 241
Wrapper, 164–166, 243
WrappingPoint class, 229

X
x_axis, 11–12, 16
XML, 6, 10
XML report, 91–92, 229

Y
y_values, 12, 15

Z
ZIP code, 115, 118, 234–235
Zipped documents, 162
Zumbacker Z function, 169, 245

	Foreword
	Preface
	Chapter 1 A Refactoring Example
	Sparkline Script
	Consistency
	Testability
	Greedy Methods
	Greedy Module
	Comments
	Whole Objects
	Feature Envy
	Uncommunicative Names
	Derived Values
	Wabi-Sabi
	Summing Up
	What’s Next

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

