
Patterns

is better written as:

class C
if APP_CONTAINER == ‘Mongrel’

def foo(bar)
do stuff specific to mongrel

end
else

def foo(bar)
do something specific to FCGI

end
end

end

The second version is better because the condition gets evaluated only once during the evaluation
of the class definition. Additionally, the abstract syntax tree is smaller and therefore saves some
CPU cycles during garbage collection.

Self-Modifying Code
Ruby makes it easy to optimize code on the fly by generating or redefining methods at runtime
(a.k.a. self-modifying code). In Rails core, for example, this happens when you access attributes of
ActiveRecord objects via their name.

Let’s take a look at the previous example: If we assume that the application server type can be
determined only dynamically, that is, when method foo is called the first time, we can still opti-
mize our code by redefining foo at runtime:

17 Writing Efficient Ruby Code by Dr. Stefan Kaes © 2008 Pearson Education, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Patterns

class C
def foo(bar)

if retrieve_app_container == ‘Mongrel’
class_eval <<-end_eval

def foo(bar)
do stuff specific to Mongrel

end
end_eval

else
class_eval <<-end_eval

def foo(bar)
do something specific to FCGI

end
end_eval

end
send :foo, bar

end
end

After Ruby has evaluated the class definition, the name foo will refer to a method which will alter
this association when the method is called. When the interpreter arrives at line 16, the evaluation
of one of the class_eval code pieces has already replaced the association to refer to the new defini-
tion of foo. Thus, we can invoke the new code by calling foo again.5

It should be obvious from the example that your code will get a bit more complicated to look at
and understand. Another downside is that it can confuse debuggers and profiling tools. Again, you
have to weigh the performance gains against the added complexity for each individual case.

18 Writing Efficient Ruby Code by Dr. Stefan Kaes © 2008 Pearson Education, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

5 Note that the old code has become garbage after the first call to foo and will be freed upon the next garbage collection.

Patterns

An alternative way to write self-modifying code, which is a bit more readable and less confusing to
analysis tools, uses access to singleton classes and Ruby’s alias_method and remove_method methods:

class C
def mongrel_foo(bar)

do stuff specific to Mongrel
end
def fcgi_foo(bar)

do something specific to FCGI
end
def foo(bar)

al, rm = :fcgi_foo,:mongrel_foo
al, rm = rm, al if retrieve_app_container == ‘Mongrel’
singleton = class << self; self; end
singleton.send :alias_method, :foo, aa
singleton.send :remove_method, rm
foo(bar)

end
end

Test Most Frequent Case First
When writing conditional code, using either if or case expressions, make sure to test in order of
expected case frequency. Sometimes this means you need to add additional code, as the following
example from Rails shows:

19 Writing Efficient Ruby Code by Dr. Stefan Kaes © 2008 Pearson Education, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

