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FOREWORD

By Mike Cohn

“Quality is baked in,” the programmers kept telling me. As part of a proposed
acquisition, my boss had asked me to perform some final due diligence on
the development team and its product. We’d already established that the
company’s recently launched product was doing well in the market, but I was
to make sure we were not about to buy more trouble than benefit. So I spent
my time with the development team. I was looking for problems that might
arise from having rushed the product into release. I wondered, “Was the code
clean? Were there modules that could only be worked on by one developer?
Were there hundreds or thousands of defects waiting to be discovered?” And
when I asked about the team’s approach to testing, “Quality is baked in” was
the answer I got.

Because this rather unusual colloquialism could have meant just about any-
thing, I pressed further. What I found was that this was the company
founder’s shorthand for expressing one of quality pioneer W. Edwards Dem-
ing’s famous fourteen points: Build quality into the product rather than try-
ing to test it in later.

The idea of building quality into their products is at the heart of how agile
teams work. Agile teams work in short iterations in part to ensure that the
application remains at a known state of quality. Agile teams are highly cross-
functional, with programmers, testers, and others working side by side
throughout each iteration so that quality can be baked into products through
techniques such as acceptance-test driven development, a heavy emphasis on
automated testing, and whole-team thinking. Good agile teams bake quality
in by building their products continuously, integrating new work within
minutes of its being completed. Agile teams utilize techniques such as refac-
toring and a preference for simplicity in order to prevent technical debt from
accumulating. 
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Learning how to do these things is difficult, and especially so for testers,
whose role has been given scant attention in previous books. Fortunately, the
book you now hold in your hands answers questions on the mind of every
tester who’s beginning to work on an agile project, such as:

� What are my roles and responsibilities?
� How do I work more closely with programmers?
� How much do we automate, and how do we start automating?

The experience of Lisa and Janet shines through on every page of the book.
However, this book is not just their story. Within this book, they incorporate
dozens of stories from real-world agile testers. These stories form the heart of
the book and are what makes it so unique. It’s one thing to shout from the
ivory tower, “Here’s how to do agile testing.” It’s another to tell the stories of
the teams that have struggled and then emerged agile and victorious over
challenges such as usability testing, legacy code that resists automation, tran-
sitioning testers used to traditional phase-gate development, testing that
“keeps up” with short iterations, and knowing when a feature is “done.”

Lisa and Janet were there at the beginning, learning how to do agile testing
back when the prevailing wisdom was that agile teams didn’t need testers and
that programmers could bake quality in by themselves. Over the years and
through articles, conference presentations, and working with their clients
and teams, Lisa and Janet have helped us see the rich role to be filled by
testers on agile projects. In this book, Lisa and Janet use a test automation
pyramid, the agile testing quadrants of Brian Marick (himself another world-
class agile tester), and other techniques to show how much was missing from
a mind-set that said testing is necessary but testers aren’t. 

If you want to learn how to bake quality into your products or are an aspiring
agile tester seeking to understand your role, I can think of no better guides
than Lisa and Janet.
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FOREWORD

By Brian Marick

Imagine yourself skimming over a landscape thousands of years ago, looking
at the people below. They’re barely scraping out a living in a hostile territory,
doing some hunting, some fishing, and a little planting. Off in the distance,
you see the glitter of a glacier. Moving closer, you see that it’s melting fast and
that it’s barely damming a huge lake. As you watch, the lake breaks through,
sweeping down a riverbed, carving it deeper, splashing up against cliffs on
the far side of the landscape—some of which collapse.

As you watch, the dazed inhabitants begin to explore the opening. On the
other side, there’s a lush landscape, teaming with bigger animals than they’ve
ever seen before, some grazing on grass with huge seed heads, some squab-
bling over mounds of fallen fruit. 

People move in. Almost immediately, they begin to live better. But as the
years fly past, you see them adapt. They begin to use nets to fish in the fast-
running streams. They learn the teamwork needed to bring down the larger
animals, though not without a few deaths along the way. They find ever-
better ways to cultivate this new grass they’ve come to call “wheat.”

As you watch, the mad burst of innovation gives way to a stable solution, a
good way to live in this new land, a way that’s taught to each new generation.
Although just over there, you spy someone inventing the wheel . . . 

� � �

In the early years of this century, the adoption of Agile methods sometimes
seemed like a vast dam breaking, opening up a way to a better—more pro-
ductive, more joyful—way of developing software. Many early adopters saw
benefits right away, even though they barely knew what they were doing. 
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Some had an easier time of it than others. Programmers were like the hunters
in the fable above. Yes, they had to learn new skills in order to hunt bison, but
they knew how to hunt rabbits, more or less, and there were plenty of rabbits
around. Testers were more like spear-fishers in a land where spear-fishing
wouldn’t work. Going from spear-fishing to net-fishing is a much bigger con-
ceptual jump than going from rabbit to bison. And, while some of the skills—
cleaning fish, for example—were the same in the new land, the testers had to
invent new skills of net-weaving before they could truly pull their weight.

So testing lagged behind. Fortunately, we had early adopters like Lisa and
Janet, people who dove right in alongside the programmers, testers who were
not jealous of their role or their independence, downright pleasant people
who could figure out the biggest change of all in Agile testing: the tester’s new
social role.

As a result, we have this book. It’s the stable solution, the good way for testers
to live in this new Agile land of ours. It’s not the final word—we could use the
wheel, and I myself am eager for someone to invent antibiotics—but what’s
taught here will serve you well until someone, perhaps Lisa and Janet, brings
the next big change. 
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PREFACE

We were early adopters of Extreme Programming (XP), testing on XP teams
that weren’t at all sure where testers or their brand of testing fit in. At the time,
there wasn’t much in the agile (which wasn’t called agile yet) literature about
acceptance testing, or how professional testers might contribute. We learned
not only from our own experiences but from others in the small agile com-
munity. In 2002, Lisa co-wrote Testing Extreme Programming with Tip House,
with lots of help from Janet. Since then, agile development has evolved, and
the agile testing community has flourished. With so many people contribut-
ing ideas, we’ve learned a whole lot more about agile testing.

Individually and together, we’ve helped teams transition to agile, helped
testers learn how to contribute on agile teams, and worked with others in the
agile community to explore ways that agile teams can be more successful at
testing. Our experiences differ. Lisa has spent most of her time as an agile
tester on stable teams working for years at a time on web applications in
the retail, telephony, and financial industries. Janet has worked with soft-
ware organizations developing enterprise systems in a variety of industries.
These agile projects have included developing a message-handling system,
an environmental-tracking system, a remote data management system (in-
cluding an embedded application, with a communication network as well as
the application), an oil and gas production accounting application, and ap-
plications in the airline transportation industry. She has played different
roles—sometimes tester, sometimes coach—but has always worked to better
integrate the testers with the rest of the team. She has been with teams from
as little as six months to as long as one-and-a-half years.

With these different points of view, we have learned to work together and
complement each other’s skill sets, and we have given many presentations
and tutorials together.
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WHY WE WROTE THIS BOOK

Several excellent books oriented toward agile development on testing and
test patterns have been published (see our bibliography). These books are
generally focused on helping the developer. We decided to write a book
aimed at helping agile teams be more successful at delivering business value
using tests that the business can understand. We want to help testers and
quality assurance (QA) professionals who have worked in more traditional
development methodologies make the transition to agile development. 

We’ve figured out how to apply—on a practical, day-to-day level—the fruits
of our own experience working with teams of all sizes and a variety of ideas
from other agile practitioners. We’ve put all this together in this book to
help testers, quality assurance managers, developers, development manag-
ers, product owners, and anyone else with a stake in effective testing on agile
projects to deliver the software their customers need. However, we’ve fo-
cused on the role of the tester, a role that may be adopted by a variety of
professionals.

Agile testing practices aren’t limited to members of agile teams. They can be
used to improve testing on projects using traditional development method-
ologies as well. This book is also intended to help testers working on projects
using any type of development methodology.

Agile development isn’t the only way to successfully deliver software. How-
ever, all of the successful teams we’ve been on, agile or waterfall, have had
several critical commonalities. The programmers write and automate unit
and integration tests that provide good code coverage. They are disciplined
in the use of source code control and code integration. Skilled testers are in-
volved from the start of the development cycle and are given time and re-
sources to do an adequate job of all necessary forms of testing. An automated
regression suite that covers the system functionality at a higher level is run
and checked regularly. The development team understands the customers’
jobs and their needs, and works closely together with the business experts.

People, not methodologies or tools, make projects successful. We enjoy agile
development because its values, principles, and core practices enable people
to do their best work, and testing and quality are central to agile develop-
ment. In this book, we explain how to apply agile values and principles to
your unique testing situation and enable your teams to succeed. We have
more about that in Chapter 1, “What Is Agile Testing, Anyway?” and in
Chapter 2, “Ten Principles for Agile Testers.”
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HOW WE WROTE THIS BOOK

Having experienced the benefits of agile development, we used agile practices
to produce this book. As we began work on the book, we talked to agile
testers and teams from around the globe to find out what problems they en-
countered and how they addressed them. We planned how we would cover
these areas in the book.

We made a release plan based on two-week iterations. Every two weeks, we
delivered two rough-draft chapters to our book website. Because we aren’t
co-located, we found tools to use to communicate, provide “source code con-
trol” for our chapters, deliver the product to our customers, and get their
feedback. We couldn’t “pair” much real-time, but we traded chapters back
and forth for review and revision, and had informal “stand-ups” daily via in-
stant message. 

Our “customers” were the generous people in the agile community who volun-
teered to review draft chapters. They provided feedback by email or (if we were
lucky) in person. We used the feedback to guide us as we continued writing
and revising. After all the rough drafts were done, we made a new plan to com-
plete the revisions, incorporating all the helpful ideas from our “customers.”

Our most important tool was mind maps. We started out by creating a mind
map of how we envisioned the whole book. We then created mind maps for
each section of the book. Before writing each chapter, we brainstormed with
a mind map. As we revised, we revisited the mind maps, which helped us
think of ideas we may have missed.

Because we think the mind maps added so much value, we’ve included the
mind map as part of the opening of each chapter. We hope they’ll help you
get an overview of all the information included in the chapter, and inspire
you to try using mind maps yourself.

OUR AUDIENCE

This book will help you if you’ve ever asked any of the following excellent
questions, which we’ve heard many times:

� If developers are writing tests, what do the testers do?
� I’m a QA manager, and our company is implementing agile develop-

ment (Scrum, XP, DSDM, name your flavor). What’s my role now?
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� I’ve worked as a tester on a traditional waterfall team, and I’m really 
excited by what I’ve read about agile. What do I need to know to work 
on an agile team?

� What’s an “agile tester”?
� I’m a developer on an agile team. We’re writing code test-first, but 

our customers still aren’t happy with what we deliver. What are we 
missing?

� I’m a developer on an agile team. We’re writing our code test-first. We 
make sure we have tests for all our code. Why do we need testers?

� I coach an agile development team. Our QA team can’t keep up with 
us, and testing always lags behind. Should we just plan to test an 
iteration behind development?

� I’m a software development manager. We recently transitioned to 
agile, but all our testers quit. Why?

� I’m a tester on a team that’s going agile. I don’t have any program-
ming or automation skills. Is there any place for me on an agile 
team?

� How can testing possibly keep up with two-week iterations?
� What about load testing, performance testing, usability testing, all 

the other “ilities”? Where do these fit in?
� We have audit requirements. How does agile development and testing 

address these?

If you have similar questions and you’re looking for practical advice about
how testers contribute to agile teams and how agile teams can do an effective
job of testing, you’ve picked up the right book. 

There are many “flavors” of agile development, but they all have much in
common. We support the Agile Manifesto, which we explain in Chapter 1,
“What Is Agile Testing, Anyway?” Whether you’re practicing Scrum, Extreme
Programming, Crystal, DSDM, or your own variation of agile development,
you’ll find information here to help with your testing efforts.

A User Story for an Agile Testing Book
When Robin Dymond, a managing consultant and trainer who has helped 
many teams adopt lean and agile, heard we were writing this book, he sent 
us the user story he’d like to have fulfilled. It encapsulates many of the re-
quirements we planned to deliver.
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Acceptance conditions:

• My concerns and fears about losing control of testing are 
addressed.

• My concerns and fears about having to write code (never done it) 
are addressed.

• As a tester I understand my new value to the team.

• As a tester new to Agile, I can easily read about things that are most 
important to my new role.

• As a tester new to Agile, I can easily ignore things that are less im-
portant to my new role.

• As a tester new to Agile, I can easily get further detail about agile 
testing that is important to MY context.

Were I to suggest a solution to this problem, I think of Scrum versus XP. 
With Scrum you get a simple view that enables people to quickly adopt 
Agile. However, Scrum is the tip of the iceberg for successful agile teams. 
For testers who are new, I would love to see agile testing ideas ex-
pressed in layers of detail. What do I need to know today, what should I 
know tomorrow, and what context-sensitive things should I consider for 
continuous improvement?

We’ve tried to provide these layers of detail in this book. We’ll approach agile 
testing from a few different perspectives: transitioning into agile develop-
ment, using an agile testing matrix to guide testing efforts, and explaining all 
the different testing activities that take place throughout the agile develop-
ment cycle. 

Book Story 1

As a QA professional, I can understand the main 

difference between traditional QA professionals and agile 

team members with a QA background, so that I can begin

internalizing my new responsibilities and deliver value to 

the customer sooner and with less difficulty.
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HOW TO USE THIS BOOK

If you aren’t sure where to start in this book, or you just want a quick over-
view, we suggest you read the last chapter, Chapter 22, “Key Success Factors,”
and follow wherever it leads you. 

Part I: Introduction

If you want quick answers to questions such as “Is agile testing different than
testing on waterfall projects?” or “What’s the difference between a tester on a
traditional team and an agile tester?,” start with Part I, which includes the
following chapters:

� Chapter 1: What Is Agile Testing, Anyway? 
� Chapter 2: Ten Principles for Agile Testers

These chapters are the “tip of the iceberg” that Robin requested in his user
story. They include an overview of how agile differs from a traditional phased
approach and explore the “whole team” approach to quality and testing.

In this part of the book we define the “agile testing mind-set” and what makes
testers successful on agile teams. We explain how testers apply agile values and
principles to contribute their particular expertise. 

Part II: Organizational Challenges

If you’re a tester or manager on a traditional QA team, or you’re coaching a
team that’s moving to agile, Part II will help you with the organizational chal-
lenges faced by teams in transition. The “whole team” attitude represents a lot
of cultural changes to team members, but it helps overcome the fear testers
have when they wonder how much control they’ll have or whether they’ll be
expected to write code.

Some of the questions answered in Part II are:

� How can we engage the QA team? 
� What about management’s expectations? 
� How should we structure our agile team, and where do the testers fit? 
� What do we look for when hiring an agile tester? 
� How do we cope with a team distributed across the globe? 
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Part II also introduces some topics we don’t always enjoy talking about. We
explore ideas about how to transition processes and models, such as audits or
SOX compliance, that are common in traditional environments.

Metrics and how they’re applied can be a controversial issue, but there are
positive ways to use them to benefit the team. Defect tracking easily becomes
a point of contention for teams, with questions such as “Do we use a defect-
tracking system?” or “When do we log bugs?”

Two common questions about agile testing from people with traditional test
team experience are “What about test plans?” and “Is it true there’s no docu-
mentation on agile projects?” Part II clears up these mysteries.

The chapters in Part II are as follows:

� Chapter 3: Cultural Challenges
� Chapter 4: Team Logistics
� Chapter 5: Transitioning Typical Processes

Part III: The Agile Testing Quadrants

Do you want more details on what types of testing are done on agile projects?
Are you wondering who does what testing? How do you know whether
you’ve done all the testing that’s needed? How do you decide what practices,
techniques, and tools fit your particular situation? If these are your concerns,
check out Part III. 

We use Brian Marick’s Agile Testing Quadrants to explain the purpose of
testing. The quadrants help you define all the different areas your testing
should address, from unit level tests to reliability and other “ilities,” and ev-
erything in between. This is where we get down into the nitty-gritty of how
to deliver a high-quality product. We explain techniques that can help you to
communicate well with your customers and better understand their require-
ments. This part of the book shows how tests drive development at multiple
levels. It also provides tools for your toolkit that can help you to effectively
define, design, and execute tests that support the team and critique the prod-
uct. The chapters include the following:

� Chapter 6: The Purpose of Testing
� Chapter 7: Technology-Facing Tests that Support the Team
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� Chapter 8: Business-Facing Tests that Support the Team
� Chapter 9: Toolkit for Business-Facing Tests that Support the Team
� Chapter 10: Business-Facing Tests that Critique the Product
� Chapter 11: Critiquing the Product Using Technology-Facing Tests
� Chapter 12: Summary of Testing Quadrants

Part IV: Automation

Test automation is a central focus of successful agile teams, and it’s a scary
topic for lots of people (we know, because it’s had us running scared before!).
How do you squeeze test automation into short iterations and still get all the
stories completed? 

Part IV gets into the details of when and why to automate, how to overcome
barriers to test automation, and how to develop and implement a test auto-
mation strategy that works for your team. Because test automation tools
change and evolve so rapidly, our aim is not to explain how to use specific
tools, but to help you select and use the right tools for your situation. Our
agile test automation tips will help you with difficult challenges such as test-
ing legacy code.

The chapters are as follows:

� Chapter 13: Why We Want to Automate Tests and What Holds Us Back
� Chapter 14: An Agile Test Automation Strategy

Part V: An Iteration in the Life of a Tester

If you just want to get a feel for what testers do throughout the agile develop-
ment cycle, or you need help putting together all the information in this book,
go to Part V. Here we chronicle an iteration, and more, in the life of an agile
tester. Testers contribute enormous value throughout the agile software devel-
opment cycles. In Part V, we explain the activities that testers do on a daily ba-
sis. We start with planning releases and iterations to get each iteration off to a
good start, and move through the iteration—collaborating with the customer
and development teams, testing, and writing code. We end the iteration by de-
livering new features and finding ways for the team to improve the process.

The chapters break down this way:

� Chapter 15: Tester Activities in Release or Theme Planning
� Chapter 16: Hit the Ground Running
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� Chapter 17: Iteration Kickoff
� Chapter 18: Coding and Testing
� Chapter 19: Wrap Up the Iteration
� Chapter 20: Successful Delivery

Part VI: Summary

In Chapter 21, “Key Success Factors,” we present seven key factors agile teams
can use for successful testing. If you’re having trouble deciding where to start
with agile testing, or how to work on improving what you’re doing now,
these success factors will give you some direction.

Other Elements

We’ve also included a glossary we hope you will find useful, as well as refer-
ences to books, articles, websites, and blogs in the bibliography.

JUST START DOING IT—TODAY!
Agile development is all about doing your best work. Every team has unique
challenges. We’ve tried to present all the information that we think may help
agile testers, their teams, managers, and customers. Apply the techniques that
you think are appropriate for your situation. Experiment constantly, evaluate
the results, and come back to this book to see what might help you improve.
Our goal is to help testers and agile teams enjoy delivering the best and most
valuable product they can.

When we asked Dierk König, founder and project manager of Canoo Web-
Test, what he thought was the number one success factor for agile testing, he
answered: “Start doing it—today!” You can take a baby step to improve your
team’s testing right now. Go get started!
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Chapter 1

WHAT IS AGILE
TESTING, ANYWAY?

Like a lot of terminology, “agile development” and “agile testing” mean different 
things to different people. In this chapter, we explain our view of agile, which 
reflects the Agile Manifesto and general principles and values shared by different 
agile methods. We want to share a common language with you, the reader, so 
we’ll go over some of our vocabulary. We compare and contrast agile develop-
ment and testing with the more traditional phased approach. The “whole team” 
approach promoted by agile development is central to our attitude toward qual-
ity and testing, so we also talk about that here. 

AGILE VALUES

“Agile” is a buzzword that will probably fall out of use someday and make
this book seem obsolete. It’s loaded with different meanings that apply in dif-
ferent circumstances. One way to define “agile development” is to look at the
Agile Manifesto (see Figure 1-1).  

Using the values from the Manifesto to guide us, we strive to deliver small
chunks of business value in extremely short release cycles.

Whole-Team
Approach

Agile Values

Working on Traditional Teams

Working on Agile Teams

Traditional vs. Agile teams

How Is Agile
Testing Different

A Little Context for
Roles and Activities

Customer Team

Interaction

Developer Team

What We Mean
by “Agile Testing”What Is Agile

Testing, Anyway?
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We use the word “agile” in this book in a broad sense. Whether your team is
practicing a particular agile method, such as Scrum, XP, Crystal, DSDM, or
FDD, to name a few, or just adopting whatever principles and practices make
sense for your situation, you should be able to apply the ideas in this book. If
you’re delivering value to the business in a timely manner with high-quality
software, and your team continually strives to improve, you’ll find useful in-
formation here. At the same time, there are particular agile practices we feel
are crucial to any team’s success. We’ll talk about these throughout the book. 

WHAT DO WE MEAN BY “AGILE TESTING”?
You might have noticed that we use the term “tester” to describe a person
whose main activities revolve around testing and quality assurance. You’ll
also see that we often use the word “programmer” to describe a person whose
main activities revolve around writing production code. We don’t intend that
these terms sound narrow or insignificant. Programmers do more than turn
a specification into a program. We don’t call them “developers,” because ev-

Chapter 21, “Key
Success Factors,”
lists key success 
factors for agile 
testing.

Manifesto for Agile 
Software Development

We are uncovering better ways 
of developing software by doing 

it and helping others do it.
Through this work we have 

come to value:

Individuals and interactions over
processes and tools

Working software over 
comprehensive documentation
Customer collaboration over 

contract negotiation
Responding to change over 

following a plan

That is, while there is value 
in the items on the right, 

we value the items on the left more.

Figure 1-1 Agile Manifesto
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eryone involved in delivering software is a developer. Testers do more than
perform “testing tasks.” Each agile team member is focused on delivering a
high-quality product that provides business value. Agile testers work to en-
sure that their team delivers the quality their customers need. We use the
terms “programmer” and “tester” for convenience.

Several core practices used by agile teams relate to testing. Agile program-
mers use test-driven development (TDD), also called test-driven design, to
write quality production code. With TDD, the programmer writes a test for a
tiny bit of functionality, sees it fail, writes the code that makes it pass, and
then moves on to the next tiny bit of functionality. Programmers also write
code integration tests to make sure the small units of code work together as
intended. This essential practice has been adopted by many teams, even those
that don’t call themselves “agile,” because it’s just a smart way to think
through your software design and prevent defects. Figure 1-2 shows a sample
unit test result that a programmer might see. 

This book isn’t about unit-level or component-level testing, but these types
of tests are critical to a successful project. Brian Marick [2003] describes
these types of tests as “supporting the team,” helping the programmers know
what code to write next. Brian also coined the term “technology-facing tests,”
tests that fall into the programmer’s domain and are described using pro-
grammer terms and jargon. In Part II, we introduce the Agile Testing Quad-
rants and examine the different categories of agile testing. If you want to
learn more about writing unit and component tests, and TDD, the bibliogra-
phy will steer you to some good resources.

Figure 1-2 Sample unit test output
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If you want to know how agile values, principles, and practices applied to test-
ing can help you, as a tester, do your best work, and help your team deliver
more business value, please keep reading. If you’ve bothered to pick up this
book, you’re probably the kind of professional who continually strives to grow
and learn. You’re likely to have the mind-set that a good agile team needs to
succeed. This book will show you ways to improve your organization’s prod-
uct, provide the most value possible to your team, and enjoy your job.

During a break from working on this chapter, I talked to a friend who works in 
quality assurance for a large company. It was a busy time of year, and management 
expected everyone to work extra hours. He said, “If I thought working 100 extra 
hours would solve our problems, I’d work ‘til 7 every night until that was done. But 
the truth was, it might take 4,000 extra hours to solve our problems, so working 
extra feels pointless.” Does this sound familiar?

—Lisa

If you’ve worked in the software industry long, you’ve probably had the op-
portunity to feel like Lisa’s friend. Working harder and longer doesn’t help
when your task is impossible to achieve. Agile development acknowledges
the reality that we only have so many good productive hours in a day or
week, and that we can’t plan away the inevitability of change. 

Agile development encourages us to solve our problems as a team. Business
people, programmers, testers, analysts—everyone involved in software devel-
opment—decides together how best to improve their product. Best of all, as
testers, we’re working together with a team of people who all feel responsible
for delivering the best possible quality, and who are all focused on testing. We
love doing this work, and you will too.

When we say “agile testing” in this book, we’re usually talking about business-
facing tests, tests that define the business experts’ desired features and func-
tionality. We consider “customer-facing” a synonym for “business-facing.”
“Testing” in this book also includes tests that critique the product and focus
on discovering what might be lacking in the finished product so that we can
improve it. It includes just about everything beyond unit and component
level testing: functional, system, load, performance, security, stress, usability,
exploratory, end-to-end, and user acceptance. All these types of tests might
be appropriate to any given project, whether it’s an agile project or one using
more traditional methodologies.

Lisa’s Story
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Agile testing doesn’t just mean testing on an agile project. Some testing ap-
proaches, such as exploratory testing, are inherently agile, whether it’s done
an agile project or not. Testing an application with a plan to learn about it as
you go, and letting that information guide your testing, is in line with valuing
working software and responding to change. Later chapters discuss agile
forms of testing as well as “agile testing” practices.

A LITTLE CONTEXT FOR ROLES AND ACTIVITIES
ON AN AGILE TEAM

We’ll talk a lot in this book about the “customer team” and the “developer
team.” The difference between them is the skills they bring to delivering a
product. 

Customer Team

The customer team includes business experts, product owners, domain ex-
perts, product managers, business analysts, subject matter experts—every-
one on the “business” side of a project. The customer team writes the stories
or feature sets that the developer team delivers. They provide the examples
that will drive coding in the form of business-facing tests. They communi-
cate and collaborate with the developer team throughout each iteration, an-
swering questions, drawing examples on the whiteboard, and reviewing
finished stories or parts of stories. 

Testers are integral members of the customer team, helping elicit require-
ments and examples and helping the customers express their requirements as
tests. 

Developer Team

Everyone involved with delivering code is a developer, and is part of the de-
veloper team. Agile principles encourage team members to take on multiple
activities; any team member can take on any type of task. Many agile practi-
tioners discourage specialized roles on teams and encourage all team mem-
bers to transfer their skills to others as much as possible. Nevertheless, each
team needs to decide what expertise their projects require. Programmers,
system administrators, architects, database administrators, technical writers,
security specialists, and people who wear more than one of these hats might
be part of the team, physically or virtually. 
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Testers are also on the developer team, because testing is a central compo-
nent of agile software development. Testers advocate for quality on behalf of
the customer and assist the development team in delivering the maximum
business value.

Interaction between Customer and Developer Teams 

The customer and developer teams work closely together at all times. Ideally,
they’re just one team with a common goal. That goal is to deliver value to the
organization. Agile projects progress in iterations, which are small develop-
ment cycles that typically last from one to four weeks. The customer team,
with input from the developers, will prioritize stories to be developed, and
the developer team will determine how much work they can take on. They’ll
work together to define requirements with tests and examples, and write the
code that makes the tests pass. Testers have a foot in each world, understand-
ing the customer viewpoint as well as the complexities of the technical imple-
mentation (see Figure 1-3). 

Some agile teams don’t have any members who define themselves as “testers.”
However, they all need someone to help the customer team write business-
facing tests for the iteration’s stories, make sure the tests pass, and make sure
that adequate regression tests are automated. Even if a team does have testers,
the entire agile team is responsible for these testing tasks. Our experience
with agile teams has shown that testing skills and experience are vital to
project success and that testers do add value to agile teams.

Domain
Expert

Tester

Programmer

Interaction of Roles

Figure 1-3 Interaction of roles
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HOW IS AGILE TESTING DIFFERENT?
We both started working on agile teams at the turn of the millennium. Like a
lot of testers who are new to agile, we didn’t know what to expect at first. To-
gether with our respective agile teams, we’ve worked on we’ve learned a lot
about testing on agile projects. We’ve also implemented ideas and practices
suggested by other agile testers and teams. Over the years, we’ve shared our
experiences with other agile testers as well. We’ve facilitated workshops and
led tutorials at agile and testing conferences, talked with local user groups,
and joined countless discussions on agile testing mailing lists. Through these
experiences, we’ve identified differences between testing on agile teams and
testing on traditional waterfall development projects. Agile development has
transformed the testing profession in many ways.

Working on Traditional Teams

Neither working closely with programmers nor getting involved with a
project from the earliest phases was new to us. However, we were used to
strictly enforced gated phases of a narrowly defined software development
life cycle, starting with release planning and requirements definition and
usually ending with a rushed testing phase and a delayed release. In fact, we
often were thrust into a gatekeeper role, telling business managers, “Sorry,
the requirements are frozen; we can add that feature in the next release.”

As leaders of quality assurance teams, we were also often expected to act as
gatekeepers of quality. We couldn’t control how the code was written, or even
if any programmers tested their code, other than by our personal efforts at
collaboration. Our post-development testing phases were expected to boost
quality after code was complete. We had the illusion of control. We usually
had the keys to production, and sometimes we had the power to postpone
releases or stop them from going forward. Lisa even had the title of “Quality
Boss,” when in fact she was merely the manager of the QA team. 

Our development cycles were generally long. Projects at a company that pro-
duced database software might last for a year. The six-month release cycles
Lisa experienced at an Internet start-up seemed short at the time, although it
was still a long time to have frozen requirements. In spite of much process
and discipline, diligently completing one phase before moving on to the
next, it was plenty of time for the competition to come out ahead, and the
applications were not always what the customers expected. 
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Traditional teams are focused on making sure all the specified requirements
are delivered in the final product. If everything isn’t ready by the original tar-
get release date, the release is usually postponed. The development teams
don’t usually have input about what features are in the release, or how they
should work. Individual programmers tend to specialize in a particular area
of the code. Testers study the requirements documents to write their test
plans, and then they wait for work to be delivered to them for testing.

Working on Agile Teams

Transitioning to the short iterations of an agile project might produce initial
shock and awe. How can we possibly define requirements and then test and
deliver production-ready code in one, two, three, or four weeks? This is par-
ticularly tough for larger organizations with separate teams for different func-
tions and even harder for teams that are geographically dispersed. Where do
all these various programmers, testers, analysts, project managers, and count-
less specialties fit in a new agile project? How can we possibly code and test so
quickly? Where would we find time for difficult efforts such as automating
tests? What control do we have over bad code getting delivered to production?

We’ll share our stories from our first agile experiences to show you that ev-
eryone has to start somewhere.

My first agile team embraced Extreme Programming (XP), not without some “learn-
ing experiences.” Serving as the only professional tester on a team of eight pro-
grammers who hadn’t learned how to automate unit tests was disheartening. The 
first two-week iteration felt like jumping off a cliff. 

Fortunately, we had a good coach, excellent training, a supportive community of 
agile practitioners with ideas to share, and time to learn. Together we figured out 
some ins and outs of how to integrate testing into an agile project—indeed, how 
to drive the project with tests. I learned how I could use my testing skills and 
experience to add real value to an agile team.

The toughest thing for me (the former Quality Boss) to learn was that the custom-
ers, not I, decided on quality criteria for the product. I was horrified after the first
iteration to find that the code crashed easily when two users logged in concur-
rently. My coach patiently explained, over my strident objections, that our cus-
tomer, a start-up company, wanted to be able to show features to potential 
customers. Reliability and robustness were not yet the issue. 

I learned that my job was to help the customers tell us what was valuable to them 
during each iteration, and to write tests to ensure that’s what they got.

—Lisa

Lisa’s Story
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My first foray into the agile world was also an Extreme Programming (XP) engage-
ment. I had just come from an organization that practiced waterfall with some 
extremely bad practices, including giving the test team a day or so to test six 
months of code. In my next job as QA manager, the development manager and I 
were both learning what XP really meant. We successfully created a team that 
worked well together and managed to automate most of the tests for the func-
tionality. When the organization downsized during the dot-com bust, I found 
myself in a new position at another organization as the lone tester with about 
ten developers on an XP project.

On my first day of the project, Jonathan Rasmusson, one of the developers, came 
up to me and asked me why I was there. The team was practicing XP, and the pro-
grammers were practicing test-first and automating all their own tests. Participating 
in that was a challenge I couldn’t resist. The team didn’t know what value I could 
add, but I knew I had unique abilities that could help the team. That experience 
changed my life forever, because I gained an understanding of the nuances of an 
agile project and determined then that my life’s work was to make the tester role 
a more fulfilling one.

—Janet

Read Jonathan’s Story
Jonathan Rasmusson, now an Agile Coach at Rasmusson Software Consulting, 
but Janet’s coworker on her second agile team, explains how he learned 
how agile testers add value. 

So there I was, a young hotshot J2EE developer excited and pumped to 
be developing software the way it should be developed—using XP. Until 
one day, in walks a new team member—a tester. It seems management 
thought it would be good to have a QA resource on the team.

That’s fine. Then it occurred to me that this poor tester would have noth-
ing to do. I mean, as a developer on an XP project, I was writing the 
tests. There was no role for QA here as far as I could see.

So of course I went up and introduced myself and asked quite pointedly 
what she was going to do on the project, because the developers were 
writing all the tests. While I can’t remember exactly how Janet 
responded, the next six months made it very clear what testers can do 
on agile projects.

With the automation of the tedious, low-level boundary condition test 
cases, Janet as a tester was now free to focus on much greater value-
add areas like exploratory testing, usability, and testing the app in ways 
developers hadn’t originally anticipated. She worked with the

Janet’s Story
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Agile teams work closely with the business and have a detailed understanding
of the requirements. They’re focused on the value they can deliver, and they
might have a great deal of input into prioritizing features. Testers don’t sit
and wait for work; they get up and look for ways to contribute throughout
the development cycle and beyond. 

If testing on an agile project felt just like testing on a traditional project, we
wouldn’t feel the need to write a book. Let’s compare and contrast these test-
ing methods.

Traditional vs. Agile Testing

It helps to start by looking at similarities between agile testing and testing in
traditional software development. Consider Figure 1-4. 

In the phased approach diagram, it is clear that testing happens at the end,
right before release. The diagram is idealistic, because it gives the impression
there is as much time for testing as there is for coding. In many projects, this
is not the case. The testing gets “squished” because coding takes longer than
expected, and because teams get into a code-and-fix cycle at the end. 

Agile is iterative and incremental. This means that the testers test each incre-
ment of coding as soon as it is finished. An iteration might be as short as one
week, or as long as a month. The team builds and tests a little bit of code,
making sure it works correctly, and then moves on to next piece that needs to
be built. Programmers never get ahead of the testers, because a story is not
“done” until it has been tested. We’ll talk much more about this throughout
the book.

There’s tremendous variety in the approaches to projects that agile teams take.
One team might be dedicated to a single project or might be part of another

customer to help write test cases that defined success for upcoming sto-
ries. She paired with developers looking for gaps in tests.

But perhaps most importantly, she helped reinforce an ethos of quality 
and culture, dispensing happy-face stickers to those developers who 
had done an exceptional job (these became much sought-after badges 
of honor displayed prominently on laptops).

Working with Janet taught me a great deal about the role testers play on 
agile projects, and their importance to the team.
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bigger project. No matter how big your project is, you still have to start some-
where. Your team might take on an epic or feature, a set of related stories at an
estimating meeting, or you might meet to plan the release. Regardless of how
a project or subset of a project gets started, you’ll need to get a high-level un-
derstanding of it. You might come up with a plan or strategy for testing as you
prepare for a release, but it will probably look quite different from any test
plan you’ve done before. 

Every project, every team, and sometimes every iteration is different. How
your team solves problems should depend on the problem, the people, and
the tools you have available. As an agile team member, you will need to be
adaptive to the team’s needs.

Rather than creating tests from a requirements document that was created by
business analysts before anyone ever thought of writing a line of code, some-
one will need to write tests that illustrate the requirements for each story days
or hours before coding begins. This is often a collaborative effort between a

Phased or gated—for example, Waterfall 
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business or domain expert and a tester, analyst, or some other development
team member. Detailed functional test cases, ideally based on examples pro-
vided by business experts, flesh out the requirements. Testers will conduct
manual exploratory testing to find important bugs that defined test cases
might miss. Testers might pair with other developers to automate and exe-
cute test cases as coding on each story proceeds. Automated functional tests
are added to the regression test suite. When tests demonstrating minimum
functionality are complete, the team can consider the story finished.

If you attended agile conferences and seminars in the early part of this de-
cade, you heard a lot about TDD and acceptance testing but not so much
about other critical types of testing, such as load, performance, security, us-
ability, and other “ility” testing. As testers, we thought that was a little weird,
because all these types of testing are just as vital on agile projects as they are
on projects using any other development methodology. The real difference is
that we like to do these tests as early in the development process as we can so
that they can also drive design and coding. 

If the team actually releases each iteration, as Lisa’s team does, the last day or
two of each iteration is the “end game,” the time when user acceptance test-
ing, training, bug fixing, and deployments to staging environments can oc-
cur. Other teams, such as Janet’s, release every few iterations, and might even
have an entire iteration’s worth of “end game” activities to verify release
readiness. The difference here is that all the testing is not left until the end.

As a tester on an agile team, you’re a key player in releasing code to produc-
tion, just as you might have been in a more traditional environment. You
might run scripts or do manual testing to verify all elements of a release, such
as database update scripts, are in place. All team members participate in ret-
rospectives or other process improvement activities that might occur for ev-
ery iteration or every release. The whole team brainstorms ways to solve
problems and improve processes and practices.

Agile projects have a variety of flavors. Is your team starting with a clean
slate, in a greenfield (new) development project? If so, you might have fewer
challenges than a team faced with rewriting or building on a legacy system
that has no automated regression suite. Working with a third party brings
additional testing challenges to any team. 

Whatever flavor of development you’re using, pretty much the same ele-
ments of a software development life cycle need to happen. The difference
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with agile is that time frames are greatly shortened, and activities happen
concurrently. Participants, tests, and tools need to be adaptive. 

The most critical difference for testers in an agile project is the quick feed-
back from testing. It drives the project forward, and there are no gatekeepers
ready to block project progress if certain milestones aren’t met. 

We’ve encountered testers who resist the transition to agile development,
fearing that “agile development” equates with chaos, lack of discipline, lack
of documentation, and an environment that is hostile to testers. While some
teams do seem to use the “agile” buzzword to justify simply doing whatever
they want, true agile teams are all about repeatable quality as well as effi-
ciency. In our experience, an agile team is a wonderful place to be a tester. 

WHOLE-TEAM APPROACH

One of the biggest differences in agile development versus traditional devel-
opment is the agile “whole-team” approach. With agile, it’s not only the testers
or a quality assurance team who feel responsible for quality. We don’t think
of “departments,” we just think of the skills and resources we need to deliver
the best possible product. The focus of agile development is producing high-
quality software in a time frame that maximizes its value to the business. This
is the job of the whole team, not just testers or designated quality assurance
professionals. Everyone on an agile team gets “test-infected.” Tests, from the
unit level on up, drive the coding, help the team learn how the application
should work, and let us know when we’re “done” with a task or story.

An agile team must possess all the skills needed to produce quality code that
delivers the features required by the organization. While this might mean in-
cluding specialists on the team, such as expert testers, it doesn’t limit particu-
lar tasks to particular team members. Any task might be completed by any
team member, or a pair of team members. This means that the team takes re-
sponsibility for all kinds of testing tasks, such as automating tests and man-
ual exploratory testing. It also means that the whole team thinks constantly
about designing code for testability. 

The whole-team approach involves constant collaboration. Testers collabo-
rate with programmers, the customer team, and other team specialists—and
not just for testing tasks, but other tasks related to testing, such as building
infrastructure and designing for testability. Figure 1-5 shows a developer re-
viewing reports with two customers and a tester (not pictured).  
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The whole-team approach means everyone takes responsibility for testing
tasks. It means team members have a range of skill sets and experience to em-
ploy in attacking challenges such as designing for testability by turning ex-
amples into tests and into code to make those tests pass. These diverse
viewpoints can only mean better tests and test coverage. 

Most importantly, on an agile team, anyone can ask for and receive help. The
team commits to providing the highest possible business value as a team, and
the team does whatever is needed to deliver it. Some folks who are new to ag-
ile perceive it as all about speed. The fact is, it’s all about quality—and if it’s
not, we question whether it’s really an “agile” team. 

Your situation is unique. That’s why you need to be aware of the potential
testing obstacles your team might face and how you can apply agile values
and principles to overcome them. 

Figure 1-5 A developer discusses an issue with customers



SUMMARY 17

SUMMARY

Understanding the activities that testers perform on agile teams helps you
show your own team the value that testers can add. Learning the core prac-
tices of agile testing will help your team deliver software that delights your
customers. 

In this chapter, we’ve explained what we mean when we use the term “agile
testing.

� We showed how the Agile Manifesto relates to testing, with its empha-
sis on individuals and interactions, working software, customer col-
laboration, and responding to change. 

� We provided some context for this book, including some other terms 
we use such as “tester,” “programmer,” “customer,” and related terms 
so that we can speak a common language.

� We explained how agile testing, with its focus on business value and 
delivering the quality customers require, is different from traditional 
testing, which focuses on conformance to requirements.

� We introduced the “whole-team” approach to agile testing, which 
means that everyone involved with delivering software is responsible 
for delivering high-quality software. 

� We advised taking a practical approach by applying agile values and 
principles to overcome agile testing obstacles that arise in your 
unique situation. 
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Chapter 2

TEN PRINCIPLES
FOR AGILE TESTERS

Everyone on an agile team is a tester. Anyone can pick up testing tasks. If that’s 
true, then what is special about an agile tester? If I define myself as a tester on an 
agile team, what does that really mean? Do agile testers need different skill sets 
than testers on traditional teams? What guides them in their daily activities?

In this chapter, we talk about the agile testing mind-set, show how agile val-
ues and principles guide testing, and give an overview of how testers add value 
on agile teams.

WHAT’S AN AGILE TESTER?
We define an agile tester this way: a professional tester who embraces change,
collaborates well with both technical and business people, and understands
the concept of using tests to document requirements and drive development.
Agile testers tend to have good technical skills, know how to collaborate with
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Agile Testers
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Applying Agile
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others to automate tests, and are also experienced exploratory testers.
They’re willing to learn what customers do so that they can better under-
stand the customers’ software requirements.

Who’s an agile tester? She’s a team member who drives agile testing. We know
many agile testers who started out in some other specialization. A developer
becomes test-infected and branches out beyond unit testing. An exploratory
tester, accustomed to working in an agile manner, is attracted to the idea of
an agile team. Professionals in other roles, such as business or functional an-
alysts, might share the same traits and do much of the same work.

Skills are important, but attitude counts more. Janet likes to say, “Without
the attitude, the skill is nothing.” Having had to hire numerous testers for our
agile teams, we've put a lot of thought into this and discussed it with others
in the agile community. Testers tend to see the big picture. They look at the
application more from a user or customer point of view, which means they’re
generally customer-focused. 

THE AGILE TESTING MIND-SET

What makes a team “agile”? To us, an agile team is one that continually fo-
cuses on doing its best work and delivering the best possible product. In our
experience, this involves a ton of discipline, learning, time, experimentation,
and working together. It’s not for everyone, but it’s ideal for those of us who
like the team dynamic and focus on continual improvement.

Successful projects are a result of good people allowed to do good work. The
characteristics that make someone succeed as a tester on an agile team are
probably the same characteristics that make a highly valued tester on any
team.

An agile tester doesn’t see herself as a quality police officer, protecting her cus-
tomers from inadequate code. She’s ready to gather and share information, to
work with the customer or product owner in order to help them express their
requirements adequately so that they can get the features they need, and to
provide feedback on project progress to everyone.

Agile testers, and maybe any tester with the right skills and mind-set, are
continually looking for ways the team can do a better job of producing high-
quality software. On a personal level, that might mean attending local user
group meetings or roundtables to find out what other teams are doing. It
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performance and load testing, 234
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Test spikes, 381
Test spreadsheets, 353
Test strategy
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