

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Crispin, Lisa.
Agile testing : a practical guide for testers and agile teams /

Lisa Crispin, Janet Gregory. — 1st ed.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-321-53446-0 (pbk. : alk. paper)
ISBN-10: 0-321-53446-8 (pbk. : alk. paper) 1. Computer software—

Testing. 2. Agile software development. I. Gregory, Janet. II. Title.

QA76.76.T48C75 2009
005.1—dc22

2008042444

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-53446-0
ISBN-10: 0-321-53446-8
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, December 2008

xxiii

FOREWORD

By Mike Cohn

“Quality is baked in,” the programmers kept telling me. As part of a proposed
acquisition, my boss had asked me to perform some final due diligence on
the development team and its product. We’d already established that the
company’s recently launched product was doing well in the market, but I was
to make sure we were not about to buy more trouble than benefit. So I spent
my time with the development team. I was looking for problems that might
arise from having rushed the product into release. I wondered, “Was the code
clean? Were there modules that could only be worked on by one developer?
Were there hundreds or thousands of defects waiting to be discovered?” And
when I asked about the team’s approach to testing, “Quality is baked in” was
the answer I got.

Because this rather unusual colloquialism could have meant just about any-
thing, I pressed further. What I found was that this was the company
founder’s shorthand for expressing one of quality pioneer W. Edwards Dem-
ing’s famous fourteen points: Build quality into the product rather than try-
ing to test it in later.

The idea of building quality into their products is at the heart of how agile
teams work. Agile teams work in short iterations in part to ensure that the
application remains at a known state of quality. Agile teams are highly cross-
functional, with programmers, testers, and others working side by side
throughout each iteration so that quality can be baked into products through
techniques such as acceptance-test driven development, a heavy emphasis on
automated testing, and whole-team thinking. Good agile teams bake quality
in by building their products continuously, integrating new work within
minutes of its being completed. Agile teams utilize techniques such as refac-
toring and a preference for simplicity in order to prevent technical debt from
accumulating.

xxiv FOREWORD

Learning how to do these things is difficult, and especially so for testers,
whose role has been given scant attention in previous books. Fortunately, the
book you now hold in your hands answers questions on the mind of every
tester who’s beginning to work on an agile project, such as:

� What are my roles and responsibilities?
� How do I work more closely with programmers?
� How much do we automate, and how do we start automating?

The experience of Lisa and Janet shines through on every page of the book.
However, this book is not just their story. Within this book, they incorporate
dozens of stories from real-world agile testers. These stories form the heart of
the book and are what makes it so unique. It’s one thing to shout from the
ivory tower, “Here’s how to do agile testing.” It’s another to tell the stories of
the teams that have struggled and then emerged agile and victorious over
challenges such as usability testing, legacy code that resists automation, tran-
sitioning testers used to traditional phase-gate development, testing that
“keeps up” with short iterations, and knowing when a feature is “done.”

Lisa and Janet were there at the beginning, learning how to do agile testing
back when the prevailing wisdom was that agile teams didn’t need testers and
that programmers could bake quality in by themselves. Over the years and
through articles, conference presentations, and working with their clients
and teams, Lisa and Janet have helped us see the rich role to be filled by
testers on agile projects. In this book, Lisa and Janet use a test automation
pyramid, the agile testing quadrants of Brian Marick (himself another world-
class agile tester), and other techniques to show how much was missing from
a mind-set that said testing is necessary but testers aren’t.

If you want to learn how to bake quality into your products or are an aspiring
agile tester seeking to understand your role, I can think of no better guides
than Lisa and Janet.

xxv

FOREWORD

By Brian Marick

Imagine yourself skimming over a landscape thousands of years ago, looking
at the people below. They’re barely scraping out a living in a hostile territory,
doing some hunting, some fishing, and a little planting. Off in the distance,
you see the glitter of a glacier. Moving closer, you see that it’s melting fast and
that it’s barely damming a huge lake. As you watch, the lake breaks through,
sweeping down a riverbed, carving it deeper, splashing up against cliffs on
the far side of the landscape—some of which collapse.

As you watch, the dazed inhabitants begin to explore the opening. On the
other side, there’s a lush landscape, teaming with bigger animals than they’ve
ever seen before, some grazing on grass with huge seed heads, some squab-
bling over mounds of fallen fruit.

People move in. Almost immediately, they begin to live better. But as the
years fly past, you see them adapt. They begin to use nets to fish in the fast-
running streams. They learn the teamwork needed to bring down the larger
animals, though not without a few deaths along the way. They find ever-
better ways to cultivate this new grass they’ve come to call “wheat.”

As you watch, the mad burst of innovation gives way to a stable solution, a
good way to live in this new land, a way that’s taught to each new generation.
Although just over there, you spy someone inventing the wheel . . .

� � �

In the early years of this century, the adoption of Agile methods sometimes
seemed like a vast dam breaking, opening up a way to a better—more pro-
ductive, more joyful—way of developing software. Many early adopters saw
benefits right away, even though they barely knew what they were doing.

xxvi FOREWORD

Some had an easier time of it than others. Programmers were like the hunters
in the fable above. Yes, they had to learn new skills in order to hunt bison, but
they knew how to hunt rabbits, more or less, and there were plenty of rabbits
around. Testers were more like spear-fishers in a land where spear-fishing
wouldn’t work. Going from spear-fishing to net-fishing is a much bigger con-
ceptual jump than going from rabbit to bison. And, while some of the skills—
cleaning fish, for example—were the same in the new land, the testers had to
invent new skills of net-weaving before they could truly pull their weight.

So testing lagged behind. Fortunately, we had early adopters like Lisa and
Janet, people who dove right in alongside the programmers, testers who were
not jealous of their role or their independence, downright pleasant people
who could figure out the biggest change of all in Agile testing: the tester’s new
social role.

As a result, we have this book. It’s the stable solution, the good way for testers
to live in this new Agile land of ours. It’s not the final word—we could use the
wheel, and I myself am eager for someone to invent antibiotics—but what’s
taught here will serve you well until someone, perhaps Lisa and Janet, brings
the next big change.

xxvii

PREFACE

We were early adopters of Extreme Programming (XP), testing on XP teams
that weren’t at all sure where testers or their brand of testing fit in. At the time,
there wasn’t much in the agile (which wasn’t called agile yet) literature about
acceptance testing, or how professional testers might contribute. We learned
not only from our own experiences but from others in the small agile com-
munity. In 2002, Lisa co-wrote Testing Extreme Programming with Tip House,
with lots of help from Janet. Since then, agile development has evolved, and
the agile testing community has flourished. With so many people contribut-
ing ideas, we’ve learned a whole lot more about agile testing.

Individually and together, we’ve helped teams transition to agile, helped
testers learn how to contribute on agile teams, and worked with others in the
agile community to explore ways that agile teams can be more successful at
testing. Our experiences differ. Lisa has spent most of her time as an agile
tester on stable teams working for years at a time on web applications in
the retail, telephony, and financial industries. Janet has worked with soft-
ware organizations developing enterprise systems in a variety of industries.
These agile projects have included developing a message-handling system,
an environmental-tracking system, a remote data management system (in-
cluding an embedded application, with a communication network as well as
the application), an oil and gas production accounting application, and ap-
plications in the airline transportation industry. She has played different
roles—sometimes tester, sometimes coach—but has always worked to better
integrate the testers with the rest of the team. She has been with teams from
as little as six months to as long as one-and-a-half years.

With these different points of view, we have learned to work together and
complement each other’s skill sets, and we have given many presentations
and tutorials together.

xxviii PREFACE

WHY WE WROTE THIS BOOK

Several excellent books oriented toward agile development on testing and
test patterns have been published (see our bibliography). These books are
generally focused on helping the developer. We decided to write a book
aimed at helping agile teams be more successful at delivering business value
using tests that the business can understand. We want to help testers and
quality assurance (QA) professionals who have worked in more traditional
development methodologies make the transition to agile development.

We’ve figured out how to apply—on a practical, day-to-day level—the fruits
of our own experience working with teams of all sizes and a variety of ideas
from other agile practitioners. We’ve put all this together in this book to
help testers, quality assurance managers, developers, development manag-
ers, product owners, and anyone else with a stake in effective testing on agile
projects to deliver the software their customers need. However, we’ve fo-
cused on the role of the tester, a role that may be adopted by a variety of
professionals.

Agile testing practices aren’t limited to members of agile teams. They can be
used to improve testing on projects using traditional development method-
ologies as well. This book is also intended to help testers working on projects
using any type of development methodology.

Agile development isn’t the only way to successfully deliver software. How-
ever, all of the successful teams we’ve been on, agile or waterfall, have had
several critical commonalities. The programmers write and automate unit
and integration tests that provide good code coverage. They are disciplined
in the use of source code control and code integration. Skilled testers are in-
volved from the start of the development cycle and are given time and re-
sources to do an adequate job of all necessary forms of testing. An automated
regression suite that covers the system functionality at a higher level is run
and checked regularly. The development team understands the customers’
jobs and their needs, and works closely together with the business experts.

People, not methodologies or tools, make projects successful. We enjoy agile
development because its values, principles, and core practices enable people
to do their best work, and testing and quality are central to agile develop-
ment. In this book, we explain how to apply agile values and principles to
your unique testing situation and enable your teams to succeed. We have
more about that in Chapter 1, “What Is Agile Testing, Anyway?” and in
Chapter 2, “Ten Principles for Agile Testers.”

PREFACE xxix

HOW WE WROTE THIS BOOK

Having experienced the benefits of agile development, we used agile practices
to produce this book. As we began work on the book, we talked to agile
testers and teams from around the globe to find out what problems they en-
countered and how they addressed them. We planned how we would cover
these areas in the book.

We made a release plan based on two-week iterations. Every two weeks, we
delivered two rough-draft chapters to our book website. Because we aren’t
co-located, we found tools to use to communicate, provide “source code con-
trol” for our chapters, deliver the product to our customers, and get their
feedback. We couldn’t “pair” much real-time, but we traded chapters back
and forth for review and revision, and had informal “stand-ups” daily via in-
stant message.

Our “customers” were the generous people in the agile community who volun-
teered to review draft chapters. They provided feedback by email or (if we were
lucky) in person. We used the feedback to guide us as we continued writing
and revising. After all the rough drafts were done, we made a new plan to com-
plete the revisions, incorporating all the helpful ideas from our “customers.”

Our most important tool was mind maps. We started out by creating a mind
map of how we envisioned the whole book. We then created mind maps for
each section of the book. Before writing each chapter, we brainstormed with
a mind map. As we revised, we revisited the mind maps, which helped us
think of ideas we may have missed.

Because we think the mind maps added so much value, we’ve included the
mind map as part of the opening of each chapter. We hope they’ll help you
get an overview of all the information included in the chapter, and inspire
you to try using mind maps yourself.

OUR AUDIENCE

This book will help you if you’ve ever asked any of the following excellent
questions, which we’ve heard many times:

� If developers are writing tests, what do the testers do?
� I’m a QA manager, and our company is implementing agile develop-

ment (Scrum, XP, DSDM, name your flavor). What’s my role now?

xxx PREFACE

� I’ve worked as a tester on a traditional waterfall team, and I’m really
excited by what I’ve read about agile. What do I need to know to work
on an agile team?

� What’s an “agile tester”?
� I’m a developer on an agile team. We’re writing code test-first, but

our customers still aren’t happy with what we deliver. What are we
missing?

� I’m a developer on an agile team. We’re writing our code test-first. We
make sure we have tests for all our code. Why do we need testers?

� I coach an agile development team. Our QA team can’t keep up with
us, and testing always lags behind. Should we just plan to test an
iteration behind development?

� I’m a software development manager. We recently transitioned to
agile, but all our testers quit. Why?

� I’m a tester on a team that’s going agile. I don’t have any program-
ming or automation skills. Is there any place for me on an agile
team?

� How can testing possibly keep up with two-week iterations?
� What about load testing, performance testing, usability testing, all

the other “ilities”? Where do these fit in?
� We have audit requirements. How does agile development and testing

address these?

If you have similar questions and you’re looking for practical advice about
how testers contribute to agile teams and how agile teams can do an effective
job of testing, you’ve picked up the right book.

There are many “flavors” of agile development, but they all have much in
common. We support the Agile Manifesto, which we explain in Chapter 1,
“What Is Agile Testing, Anyway?” Whether you’re practicing Scrum, Extreme
Programming, Crystal, DSDM, or your own variation of agile development,
you’ll find information here to help with your testing efforts.

A User Story for an Agile Testing Book
When Robin Dymond, a managing consultant and trainer who has helped
many teams adopt lean and agile, heard we were writing this book, he sent
us the user story he’d like to have fulfilled. It encapsulates many of the re-
quirements we planned to deliver.

PREFACE xxxi

Acceptance conditions:

• My concerns and fears about losing control of testing are
addressed.

• My concerns and fears about having to write code (never done it)
are addressed.

• As a tester I understand my new value to the team.

• As a tester new to Agile, I can easily read about things that are most
important to my new role.

• As a tester new to Agile, I can easily ignore things that are less im-
portant to my new role.

• As a tester new to Agile, I can easily get further detail about agile
testing that is important to MY context.

Were I to suggest a solution to this problem, I think of Scrum versus XP.
With Scrum you get a simple view that enables people to quickly adopt
Agile. However, Scrum is the tip of the iceberg for successful agile teams.
For testers who are new, I would love to see agile testing ideas ex-
pressed in layers of detail. What do I need to know today, what should I
know tomorrow, and what context-sensitive things should I consider for
continuous improvement?

We’ve tried to provide these layers of detail in this book. We’ll approach agile
testing from a few different perspectives: transitioning into agile develop-
ment, using an agile testing matrix to guide testing efforts, and explaining all
the different testing activities that take place throughout the agile develop-
ment cycle.

Book Story 1

As a QA professional, I can understand the main

difference between traditional QA professionals and agile

team members with a QA background, so that I can begin

internalizing my new responsibilities and deliver value to

the customer sooner and with less difficulty.

xxxii PREFACE

HOW TO USE THIS BOOK

If you aren’t sure where to start in this book, or you just want a quick over-
view, we suggest you read the last chapter, Chapter 22, “Key Success Factors,”
and follow wherever it leads you.

Part I: Introduction

If you want quick answers to questions such as “Is agile testing different than
testing on waterfall projects?” or “What’s the difference between a tester on a
traditional team and an agile tester?,” start with Part I, which includes the
following chapters:

� Chapter 1: What Is Agile Testing, Anyway?
� Chapter 2: Ten Principles for Agile Testers

These chapters are the “tip of the iceberg” that Robin requested in his user
story. They include an overview of how agile differs from a traditional phased
approach and explore the “whole team” approach to quality and testing.

In this part of the book we define the “agile testing mind-set” and what makes
testers successful on agile teams. We explain how testers apply agile values and
principles to contribute their particular expertise.

Part II: Organizational Challenges

If you’re a tester or manager on a traditional QA team, or you’re coaching a
team that’s moving to agile, Part II will help you with the organizational chal-
lenges faced by teams in transition. The “whole team” attitude represents a lot
of cultural changes to team members, but it helps overcome the fear testers
have when they wonder how much control they’ll have or whether they’ll be
expected to write code.

Some of the questions answered in Part II are:

� How can we engage the QA team?
� What about management’s expectations?
� How should we structure our agile team, and where do the testers fit?
� What do we look for when hiring an agile tester?
� How do we cope with a team distributed across the globe?

PREFACE xxxiii

Part II also introduces some topics we don’t always enjoy talking about. We
explore ideas about how to transition processes and models, such as audits or
SOX compliance, that are common in traditional environments.

Metrics and how they’re applied can be a controversial issue, but there are
positive ways to use them to benefit the team. Defect tracking easily becomes
a point of contention for teams, with questions such as “Do we use a defect-
tracking system?” or “When do we log bugs?”

Two common questions about agile testing from people with traditional test
team experience are “What about test plans?” and “Is it true there’s no docu-
mentation on agile projects?” Part II clears up these mysteries.

The chapters in Part II are as follows:

� Chapter 3: Cultural Challenges
� Chapter 4: Team Logistics
� Chapter 5: Transitioning Typical Processes

Part III: The Agile Testing Quadrants

Do you want more details on what types of testing are done on agile projects?
Are you wondering who does what testing? How do you know whether
you’ve done all the testing that’s needed? How do you decide what practices,
techniques, and tools fit your particular situation? If these are your concerns,
check out Part III.

We use Brian Marick’s Agile Testing Quadrants to explain the purpose of
testing. The quadrants help you define all the different areas your testing
should address, from unit level tests to reliability and other “ilities,” and ev-
erything in between. This is where we get down into the nitty-gritty of how
to deliver a high-quality product. We explain techniques that can help you to
communicate well with your customers and better understand their require-
ments. This part of the book shows how tests drive development at multiple
levels. It also provides tools for your toolkit that can help you to effectively
define, design, and execute tests that support the team and critique the prod-
uct. The chapters include the following:

� Chapter 6: The Purpose of Testing
� Chapter 7: Technology-Facing Tests that Support the Team

xxxiv PREFACE

� Chapter 8: Business-Facing Tests that Support the Team
� Chapter 9: Toolkit for Business-Facing Tests that Support the Team
� Chapter 10: Business-Facing Tests that Critique the Product
� Chapter 11: Critiquing the Product Using Technology-Facing Tests
� Chapter 12: Summary of Testing Quadrants

Part IV: Automation

Test automation is a central focus of successful agile teams, and it’s a scary
topic for lots of people (we know, because it’s had us running scared before!).
How do you squeeze test automation into short iterations and still get all the
stories completed?

Part IV gets into the details of when and why to automate, how to overcome
barriers to test automation, and how to develop and implement a test auto-
mation strategy that works for your team. Because test automation tools
change and evolve so rapidly, our aim is not to explain how to use specific
tools, but to help you select and use the right tools for your situation. Our
agile test automation tips will help you with difficult challenges such as test-
ing legacy code.

The chapters are as follows:

� Chapter 13: Why We Want to Automate Tests and What Holds Us Back
� Chapter 14: An Agile Test Automation Strategy

Part V: An Iteration in the Life of a Tester

If you just want to get a feel for what testers do throughout the agile develop-
ment cycle, or you need help putting together all the information in this book,
go to Part V. Here we chronicle an iteration, and more, in the life of an agile
tester. Testers contribute enormous value throughout the agile software devel-
opment cycles. In Part V, we explain the activities that testers do on a daily ba-
sis. We start with planning releases and iterations to get each iteration off to a
good start, and move through the iteration—collaborating with the customer
and development teams, testing, and writing code. We end the iteration by de-
livering new features and finding ways for the team to improve the process.

The chapters break down this way:

� Chapter 15: Tester Activities in Release or Theme Planning
� Chapter 16: Hit the Ground Running

PREFACE xxxv

� Chapter 17: Iteration Kickoff
� Chapter 18: Coding and Testing
� Chapter 19: Wrap Up the Iteration
� Chapter 20: Successful Delivery

Part VI: Summary

In Chapter 21, “Key Success Factors,” we present seven key factors agile teams
can use for successful testing. If you’re having trouble deciding where to start
with agile testing, or how to work on improving what you’re doing now,
these success factors will give you some direction.

Other Elements

We’ve also included a glossary we hope you will find useful, as well as refer-
ences to books, articles, websites, and blogs in the bibliography.

JUST START DOING IT—TODAY!
Agile development is all about doing your best work. Every team has unique
challenges. We’ve tried to present all the information that we think may help
agile testers, their teams, managers, and customers. Apply the techniques that
you think are appropriate for your situation. Experiment constantly, evaluate
the results, and come back to this book to see what might help you improve.
Our goal is to help testers and agile teams enjoy delivering the best and most
valuable product they can.

When we asked Dierk König, founder and project manager of Canoo Web-
Test, what he thought was the number one success factor for agile testing, he
answered: “Start doing it—today!” You can take a baby step to improve your
team’s testing right now. Go get started!

3

Chapter 1

WHAT IS AGILE
TESTING, ANYWAY?

Like a lot of terminology, “agile development” and “agile testing” mean different
things to different people. In this chapter, we explain our view of agile, which
reflects the Agile Manifesto and general principles and values shared by different
agile methods. We want to share a common language with you, the reader, so
we’ll go over some of our vocabulary. We compare and contrast agile develop-
ment and testing with the more traditional phased approach. The “whole team”
approach promoted by agile development is central to our attitude toward qual-
ity and testing, so we also talk about that here.

AGILE VALUES

“Agile” is a buzzword that will probably fall out of use someday and make
this book seem obsolete. It’s loaded with different meanings that apply in dif-
ferent circumstances. One way to define “agile development” is to look at the
Agile Manifesto (see Figure 1-1).

Using the values from the Manifesto to guide us, we strive to deliver small
chunks of business value in extremely short release cycles.

Whole-Team
Approach

Agile Values

Working on Traditional Teams

Working on Agile Teams

Traditional vs. Agile teams

How Is Agile
Testing Different

A Little Context for
Roles and Activities

Customer Team

Interaction

Developer Team

What We Mean
by “Agile Testing”What Is Agile

Testing, Anyway?

4 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

We use the word “agile” in this book in a broad sense. Whether your team is
practicing a particular agile method, such as Scrum, XP, Crystal, DSDM, or
FDD, to name a few, or just adopting whatever principles and practices make
sense for your situation, you should be able to apply the ideas in this book. If
you’re delivering value to the business in a timely manner with high-quality
software, and your team continually strives to improve, you’ll find useful in-
formation here. At the same time, there are particular agile practices we feel
are crucial to any team’s success. We’ll talk about these throughout the book.

WHAT DO WE MEAN BY “AGILE TESTING”?
You might have noticed that we use the term “tester” to describe a person
whose main activities revolve around testing and quality assurance. You’ll
also see that we often use the word “programmer” to describe a person whose
main activities revolve around writing production code. We don’t intend that
these terms sound narrow or insignificant. Programmers do more than turn
a specification into a program. We don’t call them “developers,” because ev-

Chapter 21, “Key
Success Factors,”
lists key success
factors for agile
testing.

Manifesto for Agile
Software Development

We are uncovering better ways
of developing software by doing

it and helping others do it.
Through this work we have

come to value:

Individuals and interactions over
processes and tools

Working software over
comprehensive documentation
Customer collaboration over

contract negotiation
Responding to change over

following a plan

That is, while there is value
in the items on the right,

we value the items on the left more.

Figure 1-1 Agile Manifesto

WHAT DO WE MEAN BY “AGILE TESTING”? 5

eryone involved in delivering software is a developer. Testers do more than
perform “testing tasks.” Each agile team member is focused on delivering a
high-quality product that provides business value. Agile testers work to en-
sure that their team delivers the quality their customers need. We use the
terms “programmer” and “tester” for convenience.

Several core practices used by agile teams relate to testing. Agile program-
mers use test-driven development (TDD), also called test-driven design, to
write quality production code. With TDD, the programmer writes a test for a
tiny bit of functionality, sees it fail, writes the code that makes it pass, and
then moves on to the next tiny bit of functionality. Programmers also write
code integration tests to make sure the small units of code work together as
intended. This essential practice has been adopted by many teams, even those
that don’t call themselves “agile,” because it’s just a smart way to think
through your software design and prevent defects. Figure 1-2 shows a sample
unit test result that a programmer might see.

This book isn’t about unit-level or component-level testing, but these types
of tests are critical to a successful project. Brian Marick [2003] describes
these types of tests as “supporting the team,” helping the programmers know
what code to write next. Brian also coined the term “technology-facing tests,”
tests that fall into the programmer’s domain and are described using pro-
grammer terms and jargon. In Part II, we introduce the Agile Testing Quad-
rants and examine the different categories of agile testing. If you want to
learn more about writing unit and component tests, and TDD, the bibliogra-
phy will steer you to some good resources.

Figure 1-2 Sample unit test output

6 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

If you want to know how agile values, principles, and practices applied to test-
ing can help you, as a tester, do your best work, and help your team deliver
more business value, please keep reading. If you’ve bothered to pick up this
book, you’re probably the kind of professional who continually strives to grow
and learn. You’re likely to have the mind-set that a good agile team needs to
succeed. This book will show you ways to improve your organization’s prod-
uct, provide the most value possible to your team, and enjoy your job.

During a break from working on this chapter, I talked to a friend who works in
quality assurance for a large company. It was a busy time of year, and management
expected everyone to work extra hours. He said, “If I thought working 100 extra
hours would solve our problems, I’d work ‘til 7 every night until that was done. But
the truth was, it might take 4,000 extra hours to solve our problems, so working
extra feels pointless.” Does this sound familiar?

—Lisa

If you’ve worked in the software industry long, you’ve probably had the op-
portunity to feel like Lisa’s friend. Working harder and longer doesn’t help
when your task is impossible to achieve. Agile development acknowledges
the reality that we only have so many good productive hours in a day or
week, and that we can’t plan away the inevitability of change.

Agile development encourages us to solve our problems as a team. Business
people, programmers, testers, analysts—everyone involved in software devel-
opment—decides together how best to improve their product. Best of all, as
testers, we’re working together with a team of people who all feel responsible
for delivering the best possible quality, and who are all focused on testing. We
love doing this work, and you will too.

When we say “agile testing” in this book, we’re usually talking about business-
facing tests, tests that define the business experts’ desired features and func-
tionality. We consider “customer-facing” a synonym for “business-facing.”
“Testing” in this book also includes tests that critique the product and focus
on discovering what might be lacking in the finished product so that we can
improve it. It includes just about everything beyond unit and component
level testing: functional, system, load, performance, security, stress, usability,
exploratory, end-to-end, and user acceptance. All these types of tests might
be appropriate to any given project, whether it’s an agile project or one using
more traditional methodologies.

Lisa’s Story

A LITTLE CONTEXT FOR ROLES AND ACTIVITIES ON AN AGILE TEAM 7

Agile testing doesn’t just mean testing on an agile project. Some testing ap-
proaches, such as exploratory testing, are inherently agile, whether it’s done
an agile project or not. Testing an application with a plan to learn about it as
you go, and letting that information guide your testing, is in line with valuing
working software and responding to change. Later chapters discuss agile
forms of testing as well as “agile testing” practices.

A LITTLE CONTEXT FOR ROLES AND ACTIVITIES
ON AN AGILE TEAM

We’ll talk a lot in this book about the “customer team” and the “developer
team.” The difference between them is the skills they bring to delivering a
product.

Customer Team

The customer team includes business experts, product owners, domain ex-
perts, product managers, business analysts, subject matter experts—every-
one on the “business” side of a project. The customer team writes the stories
or feature sets that the developer team delivers. They provide the examples
that will drive coding in the form of business-facing tests. They communi-
cate and collaborate with the developer team throughout each iteration, an-
swering questions, drawing examples on the whiteboard, and reviewing
finished stories or parts of stories.

Testers are integral members of the customer team, helping elicit require-
ments and examples and helping the customers express their requirements as
tests.

Developer Team

Everyone involved with delivering code is a developer, and is part of the de-
veloper team. Agile principles encourage team members to take on multiple
activities; any team member can take on any type of task. Many agile practi-
tioners discourage specialized roles on teams and encourage all team mem-
bers to transfer their skills to others as much as possible. Nevertheless, each
team needs to decide what expertise their projects require. Programmers,
system administrators, architects, database administrators, technical writers,
security specialists, and people who wear more than one of these hats might
be part of the team, physically or virtually.

8 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

Testers are also on the developer team, because testing is a central compo-
nent of agile software development. Testers advocate for quality on behalf of
the customer and assist the development team in delivering the maximum
business value.

Interaction between Customer and Developer Teams

The customer and developer teams work closely together at all times. Ideally,
they’re just one team with a common goal. That goal is to deliver value to the
organization. Agile projects progress in iterations, which are small develop-
ment cycles that typically last from one to four weeks. The customer team,
with input from the developers, will prioritize stories to be developed, and
the developer team will determine how much work they can take on. They’ll
work together to define requirements with tests and examples, and write the
code that makes the tests pass. Testers have a foot in each world, understand-
ing the customer viewpoint as well as the complexities of the technical imple-
mentation (see Figure 1-3).

Some agile teams don’t have any members who define themselves as “testers.”
However, they all need someone to help the customer team write business-
facing tests for the iteration’s stories, make sure the tests pass, and make sure
that adequate regression tests are automated. Even if a team does have testers,
the entire agile team is responsible for these testing tasks. Our experience
with agile teams has shown that testing skills and experience are vital to
project success and that testers do add value to agile teams.

Domain
Expert

Tester

Programmer

Interaction of Roles

Figure 1-3 Interaction of roles

HOW IS AGILE TESTING DIFFERENT? 9

HOW IS AGILE TESTING DIFFERENT?
We both started working on agile teams at the turn of the millennium. Like a
lot of testers who are new to agile, we didn’t know what to expect at first. To-
gether with our respective agile teams, we’ve worked on we’ve learned a lot
about testing on agile projects. We’ve also implemented ideas and practices
suggested by other agile testers and teams. Over the years, we’ve shared our
experiences with other agile testers as well. We’ve facilitated workshops and
led tutorials at agile and testing conferences, talked with local user groups,
and joined countless discussions on agile testing mailing lists. Through these
experiences, we’ve identified differences between testing on agile teams and
testing on traditional waterfall development projects. Agile development has
transformed the testing profession in many ways.

Working on Traditional Teams

Neither working closely with programmers nor getting involved with a
project from the earliest phases was new to us. However, we were used to
strictly enforced gated phases of a narrowly defined software development
life cycle, starting with release planning and requirements definition and
usually ending with a rushed testing phase and a delayed release. In fact, we
often were thrust into a gatekeeper role, telling business managers, “Sorry,
the requirements are frozen; we can add that feature in the next release.”

As leaders of quality assurance teams, we were also often expected to act as
gatekeepers of quality. We couldn’t control how the code was written, or even
if any programmers tested their code, other than by our personal efforts at
collaboration. Our post-development testing phases were expected to boost
quality after code was complete. We had the illusion of control. We usually
had the keys to production, and sometimes we had the power to postpone
releases or stop them from going forward. Lisa even had the title of “Quality
Boss,” when in fact she was merely the manager of the QA team.

Our development cycles were generally long. Projects at a company that pro-
duced database software might last for a year. The six-month release cycles
Lisa experienced at an Internet start-up seemed short at the time, although it
was still a long time to have frozen requirements. In spite of much process
and discipline, diligently completing one phase before moving on to the
next, it was plenty of time for the competition to come out ahead, and the
applications were not always what the customers expected.

10 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

Traditional teams are focused on making sure all the specified requirements
are delivered in the final product. If everything isn’t ready by the original tar-
get release date, the release is usually postponed. The development teams
don’t usually have input about what features are in the release, or how they
should work. Individual programmers tend to specialize in a particular area
of the code. Testers study the requirements documents to write their test
plans, and then they wait for work to be delivered to them for testing.

Working on Agile Teams

Transitioning to the short iterations of an agile project might produce initial
shock and awe. How can we possibly define requirements and then test and
deliver production-ready code in one, two, three, or four weeks? This is par-
ticularly tough for larger organizations with separate teams for different func-
tions and even harder for teams that are geographically dispersed. Where do
all these various programmers, testers, analysts, project managers, and count-
less specialties fit in a new agile project? How can we possibly code and test so
quickly? Where would we find time for difficult efforts such as automating
tests? What control do we have over bad code getting delivered to production?

We’ll share our stories from our first agile experiences to show you that ev-
eryone has to start somewhere.

My first agile team embraced Extreme Programming (XP), not without some “learn-
ing experiences.” Serving as the only professional tester on a team of eight pro-
grammers who hadn’t learned how to automate unit tests was disheartening. The
first two-week iteration felt like jumping off a cliff.

Fortunately, we had a good coach, excellent training, a supportive community of
agile practitioners with ideas to share, and time to learn. Together we figured out
some ins and outs of how to integrate testing into an agile project—indeed, how
to drive the project with tests. I learned how I could use my testing skills and
experience to add real value to an agile team.

The toughest thing for me (the former Quality Boss) to learn was that the custom-
ers, not I, decided on quality criteria for the product. I was horrified after the first
iteration to find that the code crashed easily when two users logged in concur-
rently. My coach patiently explained, over my strident objections, that our cus-
tomer, a start-up company, wanted to be able to show features to potential
customers. Reliability and robustness were not yet the issue.

I learned that my job was to help the customers tell us what was valuable to them
during each iteration, and to write tests to ensure that’s what they got.

—Lisa

Lisa’s Story

HOW IS AGILE TESTING DIFFERENT? 11

My first foray into the agile world was also an Extreme Programming (XP) engage-
ment. I had just come from an organization that practiced waterfall with some
extremely bad practices, including giving the test team a day or so to test six
months of code. In my next job as QA manager, the development manager and I
were both learning what XP really meant. We successfully created a team that
worked well together and managed to automate most of the tests for the func-
tionality. When the organization downsized during the dot-com bust, I found
myself in a new position at another organization as the lone tester with about
ten developers on an XP project.

On my first day of the project, Jonathan Rasmusson, one of the developers, came
up to me and asked me why I was there. The team was practicing XP, and the pro-
grammers were practicing test-first and automating all their own tests. Participating
in that was a challenge I couldn’t resist. The team didn’t know what value I could
add, but I knew I had unique abilities that could help the team. That experience
changed my life forever, because I gained an understanding of the nuances of an
agile project and determined then that my life’s work was to make the tester role
a more fulfilling one.

—Janet

Read Jonathan’s Story
Jonathan Rasmusson, now an Agile Coach at Rasmusson Software Consulting,
but Janet’s coworker on her second agile team, explains how he learned
how agile testers add value.

So there I was, a young hotshot J2EE developer excited and pumped to
be developing software the way it should be developed—using XP. Until
one day, in walks a new team member—a tester. It seems management
thought it would be good to have a QA resource on the team.

That’s fine. Then it occurred to me that this poor tester would have noth-
ing to do. I mean, as a developer on an XP project, I was writing the
tests. There was no role for QA here as far as I could see.

So of course I went up and introduced myself and asked quite pointedly
what she was going to do on the project, because the developers were
writing all the tests. While I can’t remember exactly how Janet
responded, the next six months made it very clear what testers can do
on agile projects.

With the automation of the tedious, low-level boundary condition test
cases, Janet as a tester was now free to focus on much greater value-
add areas like exploratory testing, usability, and testing the app in ways
developers hadn’t originally anticipated. She worked with the

Janet’s Story

12 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

Agile teams work closely with the business and have a detailed understanding
of the requirements. They’re focused on the value they can deliver, and they
might have a great deal of input into prioritizing features. Testers don’t sit
and wait for work; they get up and look for ways to contribute throughout
the development cycle and beyond.

If testing on an agile project felt just like testing on a traditional project, we
wouldn’t feel the need to write a book. Let’s compare and contrast these test-
ing methods.

Traditional vs. Agile Testing

It helps to start by looking at similarities between agile testing and testing in
traditional software development. Consider Figure 1-4.

In the phased approach diagram, it is clear that testing happens at the end,
right before release. The diagram is idealistic, because it gives the impression
there is as much time for testing as there is for coding. In many projects, this
is not the case. The testing gets “squished” because coding takes longer than
expected, and because teams get into a code-and-fix cycle at the end.

Agile is iterative and incremental. This means that the testers test each incre-
ment of coding as soon as it is finished. An iteration might be as short as one
week, or as long as a month. The team builds and tests a little bit of code,
making sure it works correctly, and then moves on to next piece that needs to
be built. Programmers never get ahead of the testers, because a story is not
“done” until it has been tested. We’ll talk much more about this throughout
the book.

There’s tremendous variety in the approaches to projects that agile teams take.
One team might be dedicated to a single project or might be part of another

customer to help write test cases that defined success for upcoming sto-
ries. She paired with developers looking for gaps in tests.

But perhaps most importantly, she helped reinforce an ethos of quality
and culture, dispensing happy-face stickers to those developers who
had done an exceptional job (these became much sought-after badges
of honor displayed prominently on laptops).

Working with Janet taught me a great deal about the role testers play on
agile projects, and their importance to the team.

HOW IS AGILE TESTING DIFFERENT? 13

bigger project. No matter how big your project is, you still have to start some-
where. Your team might take on an epic or feature, a set of related stories at an
estimating meeting, or you might meet to plan the release. Regardless of how
a project or subset of a project gets started, you’ll need to get a high-level un-
derstanding of it. You might come up with a plan or strategy for testing as you
prepare for a release, but it will probably look quite different from any test
plan you’ve done before.

Every project, every team, and sometimes every iteration is different. How
your team solves problems should depend on the problem, the people, and
the tools you have available. As an agile team member, you will need to be
adaptive to the team’s needs.

Rather than creating tests from a requirements document that was created by
business analysts before anyone ever thought of writing a line of code, some-
one will need to write tests that illustrate the requirements for each story days
or hours before coding begins. This is often a collaborative effort between a

Phased or gated—for example, Waterfall

Requirements

Specifications

Code

Testing

Release

E

A

C

D

B

F

A

C

D

BA

C

BA B

Time

It 0 It 1 It 2 It 3 It 4

Agile:
Iterative & incremental

• Each story is expanded, coded, and tested
• Possible release after each iteration

Figure 1-4 Traditional testing vs. agile testing

14 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

business or domain expert and a tester, analyst, or some other development
team member. Detailed functional test cases, ideally based on examples pro-
vided by business experts, flesh out the requirements. Testers will conduct
manual exploratory testing to find important bugs that defined test cases
might miss. Testers might pair with other developers to automate and exe-
cute test cases as coding on each story proceeds. Automated functional tests
are added to the regression test suite. When tests demonstrating minimum
functionality are complete, the team can consider the story finished.

If you attended agile conferences and seminars in the early part of this de-
cade, you heard a lot about TDD and acceptance testing but not so much
about other critical types of testing, such as load, performance, security, us-
ability, and other “ility” testing. As testers, we thought that was a little weird,
because all these types of testing are just as vital on agile projects as they are
on projects using any other development methodology. The real difference is
that we like to do these tests as early in the development process as we can so
that they can also drive design and coding.

If the team actually releases each iteration, as Lisa’s team does, the last day or
two of each iteration is the “end game,” the time when user acceptance test-
ing, training, bug fixing, and deployments to staging environments can oc-
cur. Other teams, such as Janet’s, release every few iterations, and might even
have an entire iteration’s worth of “end game” activities to verify release
readiness. The difference here is that all the testing is not left until the end.

As a tester on an agile team, you’re a key player in releasing code to produc-
tion, just as you might have been in a more traditional environment. You
might run scripts or do manual testing to verify all elements of a release, such
as database update scripts, are in place. All team members participate in ret-
rospectives or other process improvement activities that might occur for ev-
ery iteration or every release. The whole team brainstorms ways to solve
problems and improve processes and practices.

Agile projects have a variety of flavors. Is your team starting with a clean
slate, in a greenfield (new) development project? If so, you might have fewer
challenges than a team faced with rewriting or building on a legacy system
that has no automated regression suite. Working with a third party brings
additional testing challenges to any team.

Whatever flavor of development you’re using, pretty much the same ele-
ments of a software development life cycle need to happen. The difference

WHOLE-TEAM APPROACH 15

with agile is that time frames are greatly shortened, and activities happen
concurrently. Participants, tests, and tools need to be adaptive.

The most critical difference for testers in an agile project is the quick feed-
back from testing. It drives the project forward, and there are no gatekeepers
ready to block project progress if certain milestones aren’t met.

We’ve encountered testers who resist the transition to agile development,
fearing that “agile development” equates with chaos, lack of discipline, lack
of documentation, and an environment that is hostile to testers. While some
teams do seem to use the “agile” buzzword to justify simply doing whatever
they want, true agile teams are all about repeatable quality as well as effi-
ciency. In our experience, an agile team is a wonderful place to be a tester.

WHOLE-TEAM APPROACH

One of the biggest differences in agile development versus traditional devel-
opment is the agile “whole-team” approach. With agile, it’s not only the testers
or a quality assurance team who feel responsible for quality. We don’t think
of “departments,” we just think of the skills and resources we need to deliver
the best possible product. The focus of agile development is producing high-
quality software in a time frame that maximizes its value to the business. This
is the job of the whole team, not just testers or designated quality assurance
professionals. Everyone on an agile team gets “test-infected.” Tests, from the
unit level on up, drive the coding, help the team learn how the application
should work, and let us know when we’re “done” with a task or story.

An agile team must possess all the skills needed to produce quality code that
delivers the features required by the organization. While this might mean in-
cluding specialists on the team, such as expert testers, it doesn’t limit particu-
lar tasks to particular team members. Any task might be completed by any
team member, or a pair of team members. This means that the team takes re-
sponsibility for all kinds of testing tasks, such as automating tests and man-
ual exploratory testing. It also means that the whole team thinks constantly
about designing code for testability.

The whole-team approach involves constant collaboration. Testers collabo-
rate with programmers, the customer team, and other team specialists—and
not just for testing tasks, but other tasks related to testing, such as building
infrastructure and designing for testability. Figure 1-5 shows a developer re-
viewing reports with two customers and a tester (not pictured).

16 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

The whole-team approach means everyone takes responsibility for testing
tasks. It means team members have a range of skill sets and experience to em-
ploy in attacking challenges such as designing for testability by turning ex-
amples into tests and into code to make those tests pass. These diverse
viewpoints can only mean better tests and test coverage.

Most importantly, on an agile team, anyone can ask for and receive help. The
team commits to providing the highest possible business value as a team, and
the team does whatever is needed to deliver it. Some folks who are new to ag-
ile perceive it as all about speed. The fact is, it’s all about quality—and if it’s
not, we question whether it’s really an “agile” team.

Your situation is unique. That’s why you need to be aware of the potential
testing obstacles your team might face and how you can apply agile values
and principles to overcome them.

Figure 1-5 A developer discusses an issue with customers

SUMMARY 17

SUMMARY

Understanding the activities that testers perform on agile teams helps you
show your own team the value that testers can add. Learning the core prac-
tices of agile testing will help your team deliver software that delights your
customers.

In this chapter, we’ve explained what we mean when we use the term “agile
testing.

� We showed how the Agile Manifesto relates to testing, with its empha-
sis on individuals and interactions, working software, customer col-
laboration, and responding to change.

� We provided some context for this book, including some other terms
we use such as “tester,” “programmer,” “customer,” and related terms
so that we can speak a common language.

� We explained how agile testing, with its focus on business value and
delivering the quality customers require, is different from traditional
testing, which focuses on conformance to requirements.

� We introduced the “whole-team” approach to agile testing, which
means that everyone involved with delivering software is responsible
for delivering high-quality software.

� We advised taking a practical approach by applying agile values and
principles to overcome agile testing obstacles that arise in your
unique situation.

This page intentionally left blank

19

Chapter 2

TEN PRINCIPLES
FOR AGILE TESTERS

Everyone on an agile team is a tester. Anyone can pick up testing tasks. If that’s
true, then what is special about an agile tester? If I define myself as a tester on an
agile team, what does that really mean? Do agile testers need different skill sets
than testers on traditional teams? What guides them in their daily activities?

In this chapter, we talk about the agile testing mind-set, show how agile val-
ues and principles guide testing, and give an overview of how testers add value
on agile teams.

WHAT’S AN AGILE TESTER?
We define an agile tester this way: a professional tester who embraces change,
collaborates well with both technical and business people, and understands
the concept of using tests to document requirements and drive development.
Agile testers tend to have good technical skills, know how to collaborate with

Ten Principles
for

Agile Testers

Adding Value

Applying Agile
Principles and Values

The Agile
Tesing Mind-Set

What Is an
Agile Tester?

Provide Continuous Feedback

Deliver Value to the Customer

Enable Face-to-Face Communication

Have Courage

Keep It Simple

Practice Continuous Improvement

Respond to Change

Self-Organize

Focus on People

Enjoy

20 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

others to automate tests, and are also experienced exploratory testers.
They’re willing to learn what customers do so that they can better under-
stand the customers’ software requirements.

Who’s an agile tester? She’s a team member who drives agile testing. We know
many agile testers who started out in some other specialization. A developer
becomes test-infected and branches out beyond unit testing. An exploratory
tester, accustomed to working in an agile manner, is attracted to the idea of
an agile team. Professionals in other roles, such as business or functional an-
alysts, might share the same traits and do much of the same work.

Skills are important, but attitude counts more. Janet likes to say, “Without
the attitude, the skill is nothing.” Having had to hire numerous testers for our
agile teams, we've put a lot of thought into this and discussed it with others
in the agile community. Testers tend to see the big picture. They look at the
application more from a user or customer point of view, which means they’re
generally customer-focused.

THE AGILE TESTING MIND-SET

What makes a team “agile”? To us, an agile team is one that continually fo-
cuses on doing its best work and delivering the best possible product. In our
experience, this involves a ton of discipline, learning, time, experimentation,
and working together. It’s not for everyone, but it’s ideal for those of us who
like the team dynamic and focus on continual improvement.

Successful projects are a result of good people allowed to do good work. The
characteristics that make someone succeed as a tester on an agile team are
probably the same characteristics that make a highly valued tester on any
team.

An agile tester doesn’t see herself as a quality police officer, protecting her cus-
tomers from inadequate code. She’s ready to gather and share information, to
work with the customer or product owner in order to help them express their
requirements adequately so that they can get the features they need, and to
provide feedback on project progress to everyone.

Agile testers, and maybe any tester with the right skills and mind-set, are
continually looking for ways the team can do a better job of producing high-
quality software. On a personal level, that might mean attending local user
group meetings or roundtables to find out what other teams are doing. It

509

INDEX

A
Abbot GUI test tool, 127
Acceptance tests. See also Business-facing tests

definition, 501
Remote Data Monitoring system example,

245
UAT (user acceptance testing) compared

with, 130
Ad hoc testing, 198
Adaptability, skills and, 39–40
ADEPT (AS400 Displays for External

Prototyping and Testing), 117–118
Advance clarity

customers speaking with one voice,
373–374

determining story size, 375–376
gathering all viewpoints regarding

requirements, 374–375
overview of, 140–142, 373

Advance preparation
downside of, 373
how much needed, 372–373

Agile development
Agile manifesto and, 3–4
barriers to. See Barriers to adopting agile

development
team orientation of, 6

Agile Estimating and Planning (Cohn), 331, 332
Agile manifesto

people focus, 30
statement of, 4
value statements in, 21

Agile principles. See Principles, for agile
testers

Agile testers. See also Testers
agile testing mind-set, 482–483
definition, 4
giving all team members equal weight, 31
hiring, 67–69
what they are, 19–20

Agile testing
definition, 6
as mind-set, 20–21
what we mean, 4–7

Agile values, 3–4
Alcea’s FIT IssueTrack, 84
Alpha tests, 466–467
ant, 284

as build tool, 126
continual builds and, 175, 291

AnthillPro, 126
ANTS Profiler Pro, 234
Apache JMeter. See JMeter
API-layer functional test tools, 168–170

Fit and FitNesse, 168–170
overview of, 168
testing web Services, 170

API testing
automating, 282
overview of, 205–206

APIs (application programming interfaces),
501

Appleton, Brad, 124
Application under test (AUT), 246

510 INDEX

Applications
integration testing with external applications,

459
Remote Data Monitoring system example,

242–243
Architecture

incremental approach to testing, 114
layered, 116
Quadrant 1 tests and, 99
scalability and, 104, 221
testable, 30, 115, 182, 184, 267

AS400 Displays for External Prototyping and
Testing (ADEPT), 117–118

Assumptions, hidden
agile testers response to, 25
failure to detect, 32
questions that uncover, 136
worst-case scenarios and, 334

Attitude
agile testing mind-set, 482–483
barriers to adopting agile development, 48
vs. skills, 20

Audits, compliance with audit requirements,
89–90

AUT (application under test), 143, 225, 246,
317

Authorization, security testing and, 224
Automated regression testing

key success factors, 484
release candidates and, 458
as a safety net, 261–262

Automated test lists, test plan alternatives,
353–354

Automation
code flux and, 269
of deployment, 232
driving development with, 262–263
of exploratory testing, 201
fear of, 269–270
feedback from, 262
freeing people for other work, 259–261
of functional test structure, 245–247
home-brewed test, 175
investment required, 267–268

learning curve, 266–267
legacy code and, 269
maintainability and, 227–228
manual testing vs., 258–259
obstacles to, 264–265
old habits and, 270
overview of, 255
programmers’ attitude regarding,

265–266
reasons for, 257–258
responding to change and, 29
ROI and, 264
task cards and, 394–395
testability and, 149–150
tests as documentation, 263–264

Automation strategy
agile coding practices and, 303–304
applying one tool at a time, 312–313
data generation tools, 304–305
database access and, 306–310
design and maintenance and, 292–294
developing, 288–289
identifying tool requirements, 311–312
implementing, 316–319
iterative approach, 299–300
keep it simple, 298–299
learning by doing, 303
managing automated tests, 319
multi-layered approach to, 290–292
organizing test results, 322–324
organizing tests, 319–322
overview of, 273
principles, 298
record/playback tools and, 294, 296–297
starting with area of greatest pain,

289–290
taking time to do it right, 301–303
test automation pyramid, 276–279
test categories, 274–276
tool selection, 294–298, 313–316
understanding purpose of tests and, 310–311
what can be automated, 279–285
what might be difficult to automate,

287–288

INDEX 511

what should not be automated, 285–287
whole team approach, 300–301

Automation tools, 164–177
API-layer functional test tools, 168–170
builds and, 126
GUI test tools, 170–176
overview of, 164–165
unit-level test tools, 165–168
web services test tool, 170

B
Bach, James, 195, 200, 212
Bach, Jonathan, 201
Back-end testing

behind the GUI, 282
non-UI testing, 204–205

Bamboo, 126
Barriers to adopting agile development, 44–49

conflicting or multiple roles, 45
cultural differences among roles, 48–49
lack of training, 45
lack of understanding of agile concepts,

45–48
loss of identity, 44–45
overview of, 44
past experience and attitudes, 48

Baselines
break-test baseline technique, 363
performance, 235–237

Batch
files, 251
processing, 345
scheduling process, 182

BDD (Behavior-driven development)
easyb tool, 166–168
tools for Quadrant 1 tests, 127

Beck, Kent, 26, 99
Benander, Mark, 51
Benchmarking, 237
Berczuk, Stephen, 124
Beta testing, 466–467
Big picture

agile testers focus on, 23
high-level tests and examples, 397–402

key success factors, 490–491
peril of forgetting, 148
regression tests and, 434

Bolton, Michael, 195
Bos, Erik, 114
Boundary conditions

API testing and, 205
automation and, 11
data generation tools and, 304
identifying test variations, 410
writing test cases for, 137

Boyer, Erika, 140, 163, 372, 432
Brainstorming

automation giving testers better work,
260

prior to iteration, 370, 381
quadrants as framework for, 253
taking time for, 301
testers, 121

Break-test baseline technique, 363
Browsers, compatibility testing and, 230
Budget limits, 55
Bug tracking. See Defect tracking
Bugs. See Defects
Build

automating, 280–282
challenging release candidate builds, 473
definition, 501
incremental, 178–179
speeding up, 118–119

Build automation tools, 126, 282
Build/Operate/Check pattern, 180
Build tools, 126
BuildBeat, 126
Business analysts, 374
Business expert role

agreement regarding requirements, 428,
430

common language and, 134, 291, 414
on customer team, 6–7
iteration demo and, 443
language of, 291
Power of Three and, 482
tools geared to, 134

512 INDEX

Business-facing tests
agile testing as, 6
Quadrants 2 & 3, 97–98
technology-facing tests compared with, 120

Business-facing tests, critiquing the product
(Quadrant 3), 189–215

acceptance tests, 245
API testing, 205–206
demonstrations, 191–192
emulator tools, 213–214
end-to-end tests, 249–250
exploratory testing, 195–202, 248–249
generating test data, 212
GUI testing, 204
monitoring tools, 212–213
overview of, 189–191
reports, 208–210
scenario testing, 192–195
session-based testing, 200–201
setting up tests, 211–212
simulator tools, 213
tools for exploratory testing, 210–211
usability testing, 202–204
user acceptance testing, 250
user documentation, 207–208
web services testing, 207

Business-facing tests, supporting team
(Quadrant 2), 129–151

advance clarity, 140–142
automating functional tests, 245–247
common language and, 134–135
conditions of satisfaction and, 142–143
doneness, 146–147
driving development with, 129–132
eliciting requirements, 135–140
embedded testing, 248
incremental approach, 144–146
requirements quandary and, 132–134
ripple effects, 143–144
risk mitigation and, 147–149
testability and automation, 149–150
toolkit for. See Toolkit (Quadrant 2)
web services testing, 247–248

Business impact, 475–476

Business value
adding value, 31–33
as goal of agile development, 5–8, 69, 454
metrics and, 75
release cycles and, 3
role, function, business value pattern, 155
team approach and, 16

Busse, Mike, 106, 235, 284, 313
Buwalda, Hans, 193

C
Canonical data, automating databases and,

308–309
Canoo WebTest

automating GUI tests, 184, 186
GUI regression test suite, 291
GUI smoke tests, 300
GUI test tools, 174–175
organizing tests and, 320
scripts and, 320
XML Editor for, 125

Capability Maturity Model Integration
(CMMI), 90–91

Capture-playback tool, 267
Celebrating successes

change implementation and, 50–52
iteration wrap up and, 449–451

Chandra, Apurva, 377
Chang, Tae, 53–54
Change

celebrating successes, 50–52
giving team ownership, 50
introducing, 49
not coming easy, 56–57
responsiveness to, 28–29
talking about fears, 49–50

Checklists
release readiness, 474
tools for eliciting examples and requirements,

156
CI. See Continuous integration (CI)
CI Factory, 126
CMMI (Capability Maturity Model

Integration), 90–91

INDEX 513

Co-location, team logistics and, 65–66
Coaches

adjusting to agile culture and, 40
learning curve and, 266
providing encouragement, 69
skill development and, 122
training and, 45–46

Cockburn, Alistair, 115
Code

automation and code flux, 269
automation and legacy code, 269
automation strategy and, 303–304
documentation of, 251
standards, 227
writing testable, 115

Code coverage, release metrics, 360–364
Coding and testing, 405–441

adding complexity, 407
alternatives for dealing with bugs, 424–428
choosing when to fix bugs, 421–423
collaborating with programmers, 413–414
dealing with bugs, 416–419
deciding which bugs to log, 420–421
driving development and, 406
facilitating communication, 429–432
focusing on one story, 411–412
identifying variations, 410
iteration metrics, 435–440
media for logging bugs, 423–424
overview of, 405
Power of Three for resolving differences in

viewpoint, 411
regression testing and, 432–434
resources, 434–435
risk assessment, 407–409
as simultaneous process, 409–410,

488–489
starting simple, 406, 428–429
talking to customers, 414–415
tests that critique the product, 412–413

Cohn, Mike, 50, 155, 276, 296, 331, 332
Collaboration

with customers, 396–397
key success factors, 489–490

with programmers, 413–414
whole team approach, 15–16

Collino, Alessandro, 103, 363
Communication

common language and, 134–135
with customer, 140, 396–397
DTS (Defect Tracking System) and, 83
facilitating, 23–25, 429–432
product delivery and, 462–463
size as challenge to, 42–43
between teams, 69–70
test results, 357–358

Comparisons, automating, 283
Compatibility testing, 229–230
Component tests

automating, 282
definition, 501
supporting function of, 5

Conditions of satisfaction
business-facing tests and, 142–143
definition, 501–502

Context-driven testing
definition, 502
quadrants and, 106–107

Continuous build process
failure notification and, 112
feedback and, 119
FitNesse tests and, 357
implementing, 114
integrating tools with, 175, 311
source code control and, 124
what testers can do, 121

Continuous feedback principle, 22
Continuous improvement principle, 27–28
Continuous integration (CI)

automating, 280–282
as core practice, 486–487
installability and, 231–232
Remote Data Monitoring system example, 244
running tests and, 111–112

Conversion, data migration and, 460–461
Core practices

coding and testing as one process, 488–489
continuous integration, 486–487

514 INDEX

Core practices, continued
incremental approach, 488
overview of, 486
synergy between practices, 489
technical debt management, 487–488
test environments, 487

Courage, principles, 25–26, 71
Credibility, building, 57
Critiquing the product

business facing tests. See Business-facing tests,
critiquing the product (Quadrant 3)

technology-facing tests. See
Technology-facing tests, critiquing the
product (Quadrant 4)

CrossCheck, testing Web Services, 170
CruiseControl, 126, 244, 291
Cultural change, 37. See also Organizations
Cunningham, Ward, 106, 168, 506
Customer expectations

business impact and, 475–476
production support, 475

Customer-facing test. See Business-facing tests
Customer support, DTS (Defect Tracking

System) and, 82
Customer team

definition, 502
interaction between customer and developer

teams, 8
overview of, 7

Customer testing
Alpha/Beta testing, 466–467
definition, 502
overview of, 464
UAT (user acceptance testing), 464–466

Customers
collaborating with, 396–397, 489–490
considering all viewpoints during iteration

planning, 388–389
delivering value to, 22–23
importance of communicating with, 140,

414–415, 444
iteration demo, 191–192, 443–444
participation in iteration planning,384–385

relationship with, 41–42
reviewing high-level tests with, 400
speaking with one voice, 373–374

CVS, source code control and, 124

D
Data

automating creation or setup, 284–285
cleanup, 461
conversion, 459–461
release planning and, 348
writing task cards and, 392

Data-driven tests, 182–183
Data feeds, testing, 249
Data generation tools, 304–305
Data migration, automating, 310, 460
Databases

avoiding access when running tests, 306–310
canonical data and automation, 308–309
maintainability and, 228
product delivery and updates, 459–461
production-like data and automation,

309–310
setting up/tearing down data for each

automated test, 307–308
testing data migration, 310

De Souza, Ken, 223
Deadlines, scope and, 340–341
Defect metrics

overview of, 437–440
release metrics, 364–366

Defect tracking, 79–86
DTS (Defect Tracking System), 79–83
keeping focus and, 85–86
overview of, 79
reasons for, 79
tools for, 83–85

Defect Tracking System. See DTS (Defect
Tracking System)

Defects
alternatives for dealing with bugs,

424–428
choosing when to fix bugs, 421–423

INDEX 515

dealing with bugs, 416–419
deciding which bugs to log, 420–421
media for logging bugs, 423–424
metrics and, 79
TDD (test-driven development) and, 490
writing task cards and, 391–392
zero bug tolerance, 79, 418–419

Deliverables
“fit and finish” deliverables, 454
nonsoftware, 470
overview of, 468–470

Delivering product
Alpha/Beta testing, 466–467
business impact and, 475–476
communication and, 462–463
customer expectations, 475
customer testing, 464
data conversion and database updates, 459–461
deliverables, 468–470
end game, 456–457
installation testing, 461–462
integration with external applications, 459
nonfunctional testing and, 458–459
overview of, 453
packaging, 474–475
planning time for testing, 455–456
post-development testing cycles, 467–468
production support, 475
release acceptance criteria, 470–473
release management, 470, 474
releasing product, 470
staging environment and, 458
testing release candidates, 458
UAT (user acceptance testing), 464–466
what if it is not ready, 463–464
what makes a product, 453–455

Demos/demonstrations
of an iteration, 443–444
value to customers, 191–192

Deployment, automating, 280–282
Design

automation strategy and, 292–294
designing with testing in mind, 115–118

Detailed test cases
art and science of writing, 178
big picture approach and, 148–149
designing with, 401

Developer team
interaction between customer and

developer teams, 8
overview of, 7–8

Development
agile development, 3–4, 6
automated tests driving, 262–263
business-facing tests driving,

129–132
coding driving, 406
post-development testing cycles,

467–468
Development spikes, 381
Development team, 502
diff tool, 283
Distributed teams, 431–432

defect tracing systems, and, 82
physical logistics, 66
online high level tests for, 399
online story board for, 357
responding to change, 29
software-based tools to elicit examples and

requirements, and, 163–164
Documentation

automated tests as source of, 263–264
problems and fixes, 417
reports, 208–210
of test code, 251
tests as, 402
user documentation, 207–208

Doneness
knowing when a story is done, 104–105
multitiered, 471–472

Driving development with tests. See TDD
(test-driven development)

DTS (Defect Tracking System), 80–83
benefits of, 80–82
choosing media for logging bugs, 424
documenting problems and fixes, 417

516 INDEX

DTS (Defect Tracking System), continued
logging bugs and, 420
reason for not using, 82–83

Dymond, Robin, xxx
Dynamic analysis, security testing tools, 225

E
easyb behavior-driven development tool, 165–168
EasyMock, 127
Eclipse, 125, 316
Edge cases

identifying variations, 410
not having time for, 112
starting simple and then adding complexity,

406–407
test cases for, 137

Embedded system, Remote Data Monitoring
example, 248

Empowerment, of teams, 44
Emulator tools, 213–214
End game

Agile testing, 91
iteration, 14
product delivery and, 456–457
release and, 327

End-to-end tests, 249–250
Enjoyment, principle of, 31
Environment, test environment, 347–348
Epic. See also Themes

definition, 502
features becoming, 502
iterations in, 76, 329
planning, 252

ePlan Services, Inc., xli, 267
Errors, manual testing and, 259
Estimating story size, 332–338
eValid, 234
Event-based patterns, test design patterns, 181
Everyday Scripting with Ruby for Teams, Testers,

and You (Marick), 297, 303
Example-driven development, 378–380
Examples

for eliciting requirements, 136–137
tools for eliciting examples and requirements,

155–156

Executable tests, 406
Exploratory testing (ET)

activities, characteristics, and skills (Hagar),
198–200

attributes of exploratory tester,
201–202

automation of, 201
definition, 502–503
end game and, 457
explained (Bolton), 195–198
manual testing and, 280
monitoring tools, 212
overview of, 26, 195
Remote Data Monitoring system example,

248–249
session-based testing and, 200–201
setup, 211–212
simulators and emulators, 212–213
tests that critique the product, 412–413
tools for, 210–212
tools for generating test data, 212
what should not be automated, 286

External quality, business facing tests defining,
99, 131

External teams, 43, 457
Extreme Programming. See XP (Extreme

Programming)
Extreme Programming Explained (Beck),

26

F
Face-to-face communication, 23–25
Failover tests, 232
Failure, courage to learn from, 25
Fake objects, 115, 118, 306, 502–503
Fault tolerance, product delivery and, 459
Fear

barriers to automation, 269–270
change and, 49–50

Fearless Change (Manns and Rising), 121
Feathers, Michael, 117, 288
Features

defects vs., 417–418
definition, 502–503
focusing on value, 341

INDEX 517

Feedback
automated tests providing, 262
continuous feedback principle, 22
iterative approach and, 299–300
key success factors, 484–486
managing tests for, 323–324
Quadrant 1 tests and, 118–119

“Fit and finish” deliverables, 454
Fit (Framework for Integrated Test),

134–135
API-layer functional test tools, 168–169
automation test pyramid and, 278

FIT IssueTrack, Alcea, 83–84
FitNesse

advantages of, 163
API-layer functional test tools, 169–170
automating functional tests with, 30,

145
business-facing tests with, 154, 178
collaboration and, 164
continual builds and, 119, 357
data verification with, 287
doneness and, 472
encouraging use of, 122
examples and, 136, 169
feedback and, 323–324
file parsing rules illustrated with, 205
functional testing behind the GUI, 291,

300
home-grown scripts and, 305
JUnit compared with, 299
keywords or actions words for automating

tests, 182–183
manual vs. automated testing, 210
memory demands of, 306
organizing tests and, 319–320
overview of, 168–170
remote testing and, 432
“start, stop, continue” list, 446
support for source code control tools,

320
test automation pyramid and, 278
test cards and, 389–390
test cases as documentation, 402
test design and maintenance, 292

testing database layer with, 284
testing stories, 395
traceability requirements and, 88
user acceptance testing, 295
wikis and, 186

Fleisch, Patrick, 377, 440
Flow diagrams

scenario testing and, 194–195
tools for eliciting examples and requirements,

160–163
Fowler, Martin, 117
Framework for Integrated Test. See Fit

(Framework for Integrated Test)
Frameworks, 90–93
ftptt, 234
Functional analysts, 386
Functional testing

compatibility issues and, 230
definition, 502–503
end-to-end tests, 249–250
layers, 246
nonfunctional tests compared with, 225
Remote Data Monitoring system example,

245–247

G
Galen, Bob, 455–456, 471
Gärtner, Markus, 395, 476
Geographically dispersed teams

coping with, 376–378
facilitating communication and,

431–432
Gheorghiu, Grig, 225–226, 234
Glover, Andrew, 166
Greenfield projects

code testing and, 116
definition, 502–503

GUI (graphical user interface)
automation strategy and, 293
code flux and, 269
standards, 227

GUI smoke tests
Canoo WebTest and, 300
continual builds and, 119
defect metrics, 437

518 INDEX

GUI test tools, 170–176
Canoo Web Test, 174–175
“home-brewed” test automation tools,

175
open source test tools, 172
overview of, 170–171
record/playback tools, 171–172
Ruby with Watir, 172–174
Selenium, 174

GUI testing
API testing, 205–206
automating, 282–283, 295–296
automation test pyramid and, 278
GUI smoke tests, 119, 300, 437
overview of, 204
Web service testing, 207

H
Hagar, Jon, 198
Hardware

compatibility and, 229
cost of test environments, 487
functional testing and, 230
investing in automation and, 267
production environment and, 310
scalability and, 233
test infrastructure, 319
testing product installation, 462

Hendrickson, Elisabeth, 203, 315–316
High-level test cases, 397–402

mockups, 398–399
overview of, 397–398
reviewing with customers, 400
reviewing with programmers,

400–401
test cases as documentation, 402

Hiring a tester, 67–69
Holzer, Jason, 220, 448
Home-grown test tool

automation tools, 314
GUI test tools, 175
test results, 323

httperf, 234
Hudson, 126

I
IBM Rational ClearCase, 124
IDEs (Integrated Development Environments)

definition, 502–503
log analysis tools, 212
tools for Quadrant 1 tests, 124–126

“ility” testing
compatibility testing, 229–230
installability testing, 231–232
interoperability testing, 228–229
maintainability testing, 227–228
reliability testing, 230–231, 250–251
security testing, 223–227

Impact, system-wide, 342
Implementing Lean Software Development: From

Concept to Cash (Poppendieck), 74, 416
Improvement

approach to process improvement, 448–449
continuous improvement principle, 27–28
ideas for improvement from retrospectives,

447–449
Incremental development

building tests incrementally, 178–179
as core practice, 488
“ilities” tests and, 232
thin slices, small chunks, 144–146
traditional vs. agile testing, 12–13

Index cards, logging bugs on, 423
Infrastructure

Quadrant 1 tests, 111–112
test infrastructure, 319
test plans and, 346–347

Installability testing, 231–232
Installation testing, 461–462
Integrated Development Environments. See

IDEs (Integrated Development
Environments)

Integration testing
interoperability and, 229
product and external applications, 459

IntelliJ IDEA, 125
Internal quality

measuring internal quality of code, 99
meeting team standards, 366

INDEX 519

Quadrant 1 tests and, 111
speed and, 112

Interoperability testing, 228–229
Investment, automation requiring,

267–268
Iteration

automation strategy and, 299–300
definition, 502–503
demo, 443–444
life of a tester and, 327
pre-iteration activities. See Pre-iteration

activities
prioritizing stories and, 338
review, 415, 435–437
traditional vs. agile testing, 12–13

Iteration kickoff, 383–403
collaboration with customers, 396–397
considering all viewpoints, 385–389
controlling workload, 393
high-level tests and examples, 397–402
iteration planning, 383–384
learning project details, 384–385
overview of, 383
testable stories, 393–396
writing task cards, 389–392

Iteration metrics, 435–440
defect metrics, 437–440
measuring progress with, 435–437
overview of, 435
usefulness of, 439–440

Iteration planning
considering all viewpoints, 385–389
controlling workload, 393
learning project details, 384–385
overview of, 383–384
writing task cards, 389–392

Iteration review meeting, 415
Iteration wrap up, 443–451

celebrating successes, 449–451
demo of iteration, 443–444
ideas for improvement, 447–449
retrospectives, 444–445
“start, stop, continue” exercise for

retrospectives, 445–447

ITIL (Information Technology Infrastructure
Library), 90–91

J
JBehave, 165
JConsole, 234
JMeter

performance baseline tests, 235
performance testing, 223, 234, 313

JMS (Java Messaging Service)
definition, 502–503
integration with external applications and,

243
testing data feeds and, 249

JProfiler, 234
JUnit

FitNesse as alternative for TDD, 299
functional testing, 176
load testing tools, 234–235
unit test tools, 126, 165, 291

JUnitPerf, 234
Just in time development, 369. See also

Pre-iteration activities

K
Key success factors

agile testing mind-set, 482–483
automating regression testing, 484
big picture approach, 490–491
coding and testing as one process, 488–489
collaboration with customers, 489–490
continuous integration (CI), 486–487
feedback, 484–486
foundation of core practices, 486
incremental approach (thin slices, small

chunks), 488
overview of, 481
synergy between practices, 489
technical debt management, 487–488
test environments, 487
whole team approach, 482

Keyword-driven tests, 182–183
King, Joseph, 176
Knowledge base, DTS, 80–81

520 INDEX

Kohl, Jonathan, 201, 204, 211
König, Dierk, 320

L
Language, need for common, 134–135
Layered architecture, 116
Lean measurements, metrics, 74–75
Learning

automation strategy and, 303
continuous improvement principle, 27

Learning curve, automation and, 266–267, 303
Legacy code, 269
Legacy code rescue (Feathers), 117
Legacy systems

ccde, 269
definition, 502–503
logging bugs and, 421
testing, 117

Lessons Learned in Software Testing (Pettichord),
485

Lessons learned sessions, 383. See also
Retrospectives

Lightweight processes, 73–74
Lightweight test plans, 350
Load testing. See Performance and load testing
LoadRunner, 234
LoadTest, 234
Logistics, physical, 65–66
LogWatch tool, 212
Loss of identity, QA teams fearing, 44–45
Louvion, Christophe, 63

M
Maintainability testing, 227–228
Management, 52–55

advance clarity and, 373–374
cultural change and, 52–54
overview of, 52
providing metrics to, 440

Managers
cultural changes for, 52–54
how to influence testing, 122–123
speaking managerís language, 55

Manns, Mary Lynn, 121–122

Manual testing
automation vs., 258–259
peril of, 289

Marcano, Antony, 83, 426
Marick, Brian, 5, 24, 97, 134, 170, 203, 303
Martin, Micah, 169
Martin, Robert C., 169
Matrices

high-level tests and, 398–399
text matrices, 350–353

Maven, 126
McMahon, Chris, 260
Mean time between failure, reliability testing,

230
Mean time to failure, reliability testing, 230
Media, for logging bugs, 423–424
Meetings

demonstrations, 71, 192
geographically dispersed, 376
iteration kickoff, 372
iteration planning, 23–24, 244, 331, 384, 389
iteration review, 71, 415
pre-planning, 370–372
release planning, 338, 345
retrospective, 447
scheduling, 70
sizing process and, 336–337
standup, 177, 429, 462
team participation and, 32
test planning, 263

Memory leaks, 237–238
Memory management testing, 237–238
Meszaros, Gerald, 99, 111, 113, 138, 146, 182,

204, 291, 296, 430
Metrics, 74–79

code coverage, 360–364
communication of, 77–78
defect metrics, 364–366, 437–440
iteration metrics, 435–440
justifying investment in automation, 268
lean measurements, 74–75
overview of, 74
passing tests, 358–360
reasons for tracking defects, 52, 75–77, 82

INDEX 521

release metrics, 358
ROI and, 78–79
what not to do with, 77
XP radar charts, 47–48

Milestones, celebrating successes, 449–450
MIME (Multipurpose Internet Mail

Extensions)
definition, 504
testing data feeds and, 249

Mind maps, 156–158
Mind-set

agile testing as, 20–21
key success factors, 482–483
pro-active, 369–370

“Mini-waterfall” phenomenon, 46–47
Mock objects

definition, 504
risk alleviation and, 459
tools for implementing, 127
unit tests and, 114

Mock-ups
facilitating communication and, 430
high-level tests and, 398–399
stories and, 380
tools for eliciting examples and requirements,

160
Model-driven development, 398
Models

quality models, 90–93
UI modeling example, 399

Monitoring tools, 212–213, 235
Multi-layered approach, automation strategy,

290–292
Multipurpose Internet Mail Extensions

(MIME)
definition, 504
testing data feeds and, 249

N
Naming conventions, 227
Nant, 126
Navigation, usability testing and, 204
NBehave, 165
NeoLoad, 234

Nessus, vulnerability scanner, 226
.NET Memory Profiler, 234
NetBeans, 125
NetScout, 235
Non-functional testing. See also

Technology-facing tests, critiquing the
product (Quadrant 4)

delivering product and, 458–459
functional testing compared with, 225
requirements, 218–219
when to perform, 222

North, Dan, 165
NSpec, 165
NUnit, 126, 165

O
Oleszkiewicz, Jakub, 418
One-off tests, 286–287
Open source tools

agile open source test tools, 172–175
automation and, 314–315
GUI test tools, 172
IDEs, 124–125

OpenWebLoad, 234
Operating systems (OSs), compatibility testing

and, 230
Organizations, 37–44

challenges of agile development, 35
conflicting cultures, 43
customer relationships and, 41–42
overview of, 37–38
quality philosophy, 38–40
size and, 42–43
sustainable pace of testing and, 40–41
team empowerment, 44

OSs (operating systems), compatibility testing
and, 230

Ownership, giving team ownership, 50

P
Packaging, product delivery and, 474–475
Pair programming

code review and, 227
developers trained in, 61

522 INDEX

Pair programming, continued
IDEs and, 125
team approach and, 244

Pair testing, 413
Passing tests, release metrics, 358–360
PerfMon, 235
Perforce, 124
Performance and load testing

automating, 283
baselines, 235–237
memory management testing, 237–238
overview of, 234
product delivery and, 458
scalability testing, 233–234
test environment, 237
tools for, 234–235
when to perform, 223
who performs the test, 220–221

Performance, rewards and, 70–71
Perils

forgetting the big picture, 148
quality police mentality, 39
the testing crunch, 416
waiting for Tuesdayís build, 280
youíre not really part of the team, 32

Perkins, Steve, 156, 159, 373
PerlClip

data generation tools, 305
tools for generating test data, 212

Persona testing, 202–204
Pettichord, Bret, 175, 264, 485
Phased and gated development, 73–74, 129
Physical logistics, 65–66
Planning

advance, 43
iteration. See Iteration planning
release/theme planning. See Release planning
testing. See Test planning

PMO (Project Management Office), 440
Pols, Andy, 134
Ports and Adapters pattern (Cockburn), 115
Post-development testing, 467–468
Post-iteration bugs, 421
Pounder, 234

Power of Three
business expert and, 482
finding a common language, 430
good communication and, 33, 490
problem solving and, 24
resolving differences in viewpoint, 401, 411
whole team approach and, 482

Pragmatic Project Automation, 260
Pre-iteration activities, 369–382

advance clarity, 373
benefits of working on stories in advance,

370–372
customers speaking with one voice, 373–374
determining story size, 375–376
evaluating amount of advance preparation

needed, 372–373
examples, 378–380
gathering all viewpoints regarding

requirements, 374–375
geographically dispersed team and,

376–378
overview of, 369
prioritizing defects, 381
pro-active mindset, 369–370
resources, 381
test strategies and, 380–381

Pre-planning meeting, 370–372
Principles, automation

agile coding practices, 303–304
iterative approach, 299–300
keep it simple, 298–299
learning by doing, 303
overview of, 298
taking time to do it right, 301–303
whole team approach, 300–301

Principles, for agile testers
continuous feedback, 22
continuous improvement, 27–28
courage, 25–26
delivering value to customer, 22–23
enjoyment, 31
face-to-face communication, 23–25
keeping it simple, 26–27
overview of, 21–22

INDEX 523

people focus, 30
responsive to change, 28–29
self-organizing, 29–30

Prioritizing defects, 381
Prioritizing stories, 338–340
Pro-active mindset, 369–370
Product

business value, 31–33
delivery. See Delivering product
tests that critique (Q3 & Q4), 101–104
what makes a product, 453–455

Product owner
considering all viewpoints during iteration

planning, 386–389
definition, 504
iteration planning and, 384
Scrum roles, 141, 373
tools geared to, 134

Production
logging bugs and, 421
support, 475

Production code
automation test pyramid and, 277–278
definition, 504
delivering value to, 70
programmers writing, 48
source code control and, 434
synchronization with testing, 322
test-first development and, 113
tests supporting, 303–304

Production-like data, automating databases
and, 309–310

Professional development, 57
Profiling tools, 234
Programmers

attitude regarding automation, 265–266
big picture tests, 397
collaboration with, 413–414
considering all viewpoints during iteration

planning, 387–389
facilitating communication and, 429–430
reviewing high-level tests with, 400–401
tester-developer ratio, 66–67
testers compared with, 4, 5

training, 61
writing task cards and, 391

Project Management Office (PMO), 440
Projects, PAS example, 176–177
Prototypes

accessible as common language, 134
mock-ups and, 160
paper, 22, 138–139, 380, 400, 414
paper vs. Wizard of Oz type, 275
UI (user interface), 107

Pulse, 126
PyUnit unit test tool for Python, 126

Q
QA (quality assurance)

definition, 504
in job titles, 31
independent QA team, 60
interchangeable with “test,” 59
whole team approach, 39
working on traditional teams, 9

Quadrant 1. See Technology-facing tests,
supporting team (Quadrant 1)

Quadrant 2. See Business-facing tests,
supporting team (Quadrant 2)

Quadrant 3. See Business-facing tests, critiquing
the product (Quadrant 3)

Quadrant 4. See Technology-facing tests,
critiquing the product (Quadrant 4)

Quadrants
automation test categories, 274–276
business facing (Q2 & Q3), 97–98
context-driven testing and, 106–108
critiquing the product (Q3 & Q4), 104
managing technical debt, 106
overview of, 97–98
as planning guide, 490
purpose of testing and, 97
Quadrant 1 summary, 99
Quadrant 2 summary, 99–100
Quadrant 3 summary, 101–102
Quadrant 4 summary, 102–104
shared responsibility and, 105–106
story completion and, 104–105

524 INDEX

Quadrants, continued
supporting the team (Q1 & Q2), 100–101
technology facing (Q1 & Q4), 97–98

Quality
customer role in setting quality standards, 26
models, 90–93
organizational philosophy regarding,

38–40
Quality assurance. See QA (quality assurance)
Quality police mentality, 57
Questions, for eliciting requirements,

135–136

R
Radar charts, XP, 47–48
Rasmusson, Jonathan, 11
Record/playback tools

automation strategy and, 294, 296–297
GUI test tools, 171–172

Recovery testing, 459
Redundancy tests, 232
Reed, David, 171, 377
Refactoring

definition, 504
IDEs supporting, 124–126

Regression suite, 434
Regression tests, 432–434

automated regression tests as a safety net,
261–262

automating as success factor, 484
checking big picture, 434
definition, 504
exploratory testing and, 212
keeping the build “green,” 433
keeping the build quick, 433–434
logging bugs and, 420
regression suite and, 434
release candidates and, 458

Release
acceptance criteria, 470–473
end game, 327, 456–457
management, 474
product delivery, 470
what if it is not ready, 463–464

Release candidates
challenging release candidate builds,

473
definition, 505
testing, 458

Release metrics
code coverage, 360–364
defect metrics, 364–366
overview of, 358
passing tests, 358–360

Release notes, 474
Release planning, 329–367

overview of, 329
prioritizing and, 338–340
purpose of, 330–331
scope, 340–344
sizing and, 332–337
test plan alternatives, 350–354
test planning, 345–350
visibility and, 354–366

Reliability testing
overview of, 230–231
Remote Data Monitoring system example,

250–251
Remote Data Monitoring system example

acceptance tests, 245
application, 242–243
applying test quadrants, 252–253
automated functional test structure,

245–247
documenting test code, 251
embedded testing, 248
end-to-end tests, 249–250
exploratory testing, 248–249
overview of, 242
reliability testing, 250–251
reporting test results, 251
team and process, 243–244
testing data feeds, 249
unit tests, 244–245
user acceptance testing, 250
web services, 247–248

Remote team member. See Geographically
dispersed teams

INDEX 525

Repetitive tasks, automating, 284
Reports

documentation and, 208–210
Remote Data Monitoring system example,

251
Repository, 124
Requirements

business-facing tests addressing, 130
documentation of, 402
gathering all viewpoints regarding

requirements, 374–375
how to elicit, 135–140
nonfunctional, 218–219
quandary, 132–134
tools for eliciting examples and requirements,

155–156
Resources

completing stories and, 381
hiring agile tester, 67–69
overview of, 66
tester-developer ratio, 66–67
testing and, 434–435

Response time
API, 411
load testing and, 234–235
measurable goals and, 76
web services and, 207

Retrospectives
continuous improvement and, 28
ideas for improvement, 447–449
iteration planning and, 383
overview of, 444–445
process improvement and, 90
“start, stop, and continue” exercise,

445–447
Return on investment. See ROI (return on

investment)
Rewards, performance and, 70–71
Rich-client unit testing tools, 127
Rising, Linda, 121–122
Risk

risk analysis, 198, 286, 290, 345–346
risk assessment, 407–409
test mitigating, 147–149

Rogers, Paul, 242, 310, 388, 398
ROI (return on investment)

automation and, 264
definition, 505
lean measurement and, 75
metrics and, 78–79
speaking managerís language, 55

Role, function, business value pattern, 155
Roles

conflicting or multiple roles, 45
cultural differences among, 48–49
customer team, 7
developer team, 7–8
interaction of, 8

RPGUnit, 118
RSpec, 165, 318
Ruby Test::Unit, 170
Ruby with Watir

functional testing, 247
GUI testing, 285
identifying defects with, 212
keywords or actions words for automating

tests, 182
overview of, 172–174
test automation with, 186

RubyMock, 127
Rules, managing bugs and, 425

S
Safety tests, 232
Santos, Rafael, 448
Satisfaction conditions. See Conditions of

satisfaction
Scalability testing, 233–234
Scenario testing, 192–193

flow diagrams and, 194–195
overview of, 192–195
soap opera tests, 193

Scope, 340–344
business-facing tests defining, 134
deadlines and timelines and, 340–341
focusing on value, 341–342
overview of, 340
system-wide impact, 342

526 INDEX

Scope, continued
test plans and, 345
third-party involvement and, 342–344

Scope creep, 385, 412
Scripts

automating comparisons, 283
as automation tools, 297
conversion scripts, 461
data generation tools, 305
exploratory testing and, 211–212

Scrum
product owner role, 141, 373
Remote Data Monitoring system example,

244
sprint reviews, 444

ScrumMaster
approach to process improvement, 448–449
sizing stories and, 336–337
writing task cards and, 391

SDD (story test-driven development)
identifying variations, 410
overview of, 262–263
test-first development and, 263
testing web services and, 170

Security testing
outside-in approach of attackers, 225
overview of, 223–227
specialized knowledge required for, 220

Selenium
GUI test tools, 174–175
implementing automation, 316–318
open source tools, 163
test automation with, 186, 316

Self-organization
principles, 29–30
self-organizing teams, 69

Session-based testing, 200–201
Setup

automating, 284–285
exploratory testing, 211–212

Shared resources
access to, 43
specialists as, 301
writing tasks and, 390

Shared responsibility, 105–106
Shout-Out Shoebox, 450
“Show me,” collaboration with programmers,

413–414
Simplicity

automation and, 298–299
coding, 406
logging bugs and, 428–429
principle of “keeping it simple,” 26–27

Simulator tools
embedded testing and, 248
overview of, 213

Size, organizational, 42–43
Sizing stories, 332–337

example of, 334–337
how to, 332–333
overview of, 332
tester’s role in, 333–334

Skills
adaptability and, 39–40
vs. attitude, 20
continuous improvement principle,

27
who performs tests and, 220–221

Small chunks, incremental development,
144–146

SOAP
definition, 505
performance tests and, 223, 234

Soap opera tests, 193
soapUI

definition, 505
performance tests and, 223, 234
testing Web Services, 170–171

SOATest, 234
Software-based tools, 163
Software Configuration Management Patterns:

Effective Teamwork, Practical Integrations
(Berczuk and Appleton), 124

Software Endgames (Galen), 471
Source code control

benefits of, 255
overview of, 123–124
tools for, 124, 320

INDEX 527

SOX compliance, 469
Speak with one voice, customers, 373–374
Specialization, 220–221
Speed as a goal, 112
Spikes, development and test, 381
Spreadsheets

test spreadsheets, 353
tools for eliciting examples and requirements,

159
Sprint reviews, 444. See also Demos/

demonstrations
SQL*Loader, 460
Stability testing, 28
Staging environment, 458
Stand-up meetings, 177, 429, 462
Standards

maintainability and, 227
quality models and, 90–93

“Start, stop, continue” exercise, retrospectives,
445–447

Static analysis, security testing tools, 225
Steel thread, incremental development, 144,

338, 345
Stories. See also Business-facing tests

benefits of working on in advance of
iterations, 370–372

briefness of, 129–130
business-facing tests as, 130
determining story size, 375–376
focusing on one story when coding,

411–412
identifying variations, 410
knowing when a story is done,

104–105
logging bugs and, 420–421
mock-ups and, 380
prioritizing, 338–340
resources and, 381
scope and, 340
sizing. See Sizing stories
starting simple, 133, 406
story tests defined, 505
system-wide impact of, 342
test plans and, 345

test strategies and, 380–381
testable, 393–396
treating bugs as, 425

Story boards
burndown charts, 429
definition, 505–506
examples, 356–357
online, 357, 384
physical, 356
stickers and, 355
tasks, 222, 355, 436
virtual, 357, 384, 393
work in progress, 390

Story cards
audits and, 89
dealing with bugs and, 424–425
iteration planning and, 244
story narrative on, 409

Story test-driven development. See SDD
(story test-driven development)

Strangler application (Fowler), 116–117
Strategy

automation. See Automation strategy
test planning vs. test strategy, 86–87
test strategies, 380–381

Strategy, for writing tests
building tests incrementally, 178–179
iteration planning and, 372
keep the tests passing, 179
overview of, 177–178
test design patterns, 179–183
testability and, 183–185

Stress testing. See Load testing
Subversion (SVN), 124, 320
Success factors. See Key success factors
Successes, celebrating

change implementation and, 50–52
iteration wrap up and, 449–451

Sumrell, Megan, 365, 450
Sustainable pace, of testing, 40–41, 303
SVN (Subversion), 124, 320
SWTBot GUI test tool, 127
Synergy, between practices, 489
System, system-wide impact of story, 342

528 INDEX

T
tail-f, 212
Tartaglia, Coni, 439, 454, 470, 473
Task boards. See Story boards
Task cards

automating testing and, 394–395
iteration planning and, 389–392
product delivery and, 462–463

Tasks
completing testing tasks, 415–416
definition, 505–506

TDD (test-driven development)
automated tests driving, 262–263
defects and, 490
definition, 506
overview of, 5
Test-First Development compared with,

113–114
unit tests and, 111, 244–245

Team City, 126
Team structure, 59–65

agile project teams, 64–65
independent QA team, 60
integration of testers into agile project, 61–63
overview of, 59
traditional functional structure vs agile

structure, 64
Teams

automation as team effort, 484
building, 69–71
celebrating success, 50–52
co-located, 65–66
controlling workload and, 393
customer, 7
developer, 7–8
empowerment of, 44
facilitating communication and, 429–432
geographically dispersed, 376–378, 431–432
giving all team members equal weight, 31
giving ownership to, 50
hiring agile tester for, 67–69
interaction between customer and developer

teams, 8
iteration planning and, 384–385

logistics, 59
problem solving and, 123
Remote Data Monitoring system example,

243–244
shared responsibility and, 105–106
traditional, 9–10
using tests to support Quadrants 1 and 2,

100–101
whole team approach. See Whole team

approach
working on agile teams, 10–12

Teardown, for tests, 307–308
Technical debt

defects as, 418
definition, 506
managing, 106, 487–488

Technology-facing tests
overview of, 5
Quadrants 1 & 4, 97–98

Technology-facing tests, critiquing the product
(Quadrant 4), 217–239

baselines, 235–237
coding and testing and, 412–413
compatibility testing, 229–230
installability testing, 231–232
interoperability testing, 228–229
maintainability testing, 227–228
memory management testing, 237–238
overview of, 217–219
performance and load testing, 234
performance and load testing tools, 234–235
reliability testing, 230–231, 250–251
scalability testing, 233–234
security testing, 223–227
test environment and, 237
when to use, 222–223
who performs the test, 220–222

Technology-facing tests, supporting team
(Quadrant 1)

build tools, 126
designing with testing in mind, 115–118
ease of accomplishing tasks, 114–115
IDEs for, 124–126
infrastructure supporting, 111–112

INDEX 529

overview of, 109–110
purpose of, 110–111
source code control, 123–124
speed as benefit of, 112–114
timely feedback, 118–119
toolkit for, 123
unit test tools, 126–127
unit tests, 244–245
what to do if team doesn’t perform these

tests, 121–123
where/when to stop, 119–121

Test automation pyramid
multi-layered approach to automation and,

290–291
overview of, 276–279
three little pigs metaphor, 278

Test behind UI, 282
Test cases

adding complexity, 407
as documentation, 402
example-driven development, 379
identifying variations, 410
starting simple, 406

Test coverage (and/or code coverage),
360–364

Test design patterns, 179–183
Build/Operate/Check pattern, 180
data-driven and keyword-driven tests,

182–183
overview of, 179
test genesis patterns (Veragen), 179
time-based, activity, and event patterns, 181

Test doubles
definition, 506
layered architectures and, 116

Test-driven development. See TDD (test-driven
development)

Test environments, 237, 487
Test-First Development

definition, 506
TDD (test-driven development) compared

with, 113–114
Test management, 186
Test management toolkit (Quadrant 2), 186

Test plan alternatives, 350-354
Test planning, 345–350

automated test lists, test plan alternatives,
353–354

infrastructure and, 346–347
overview of, 86, 345
reasons for writing, 345–346
test environment and, 347–348
test plan alternatives, 350–354
test plans, lightweight 350
test plan sample, 351
test strategy vs., 86–88
traceability and, 88
types of tests and, 346
where to start, 345

Test results
communicating, 357–358
organizing, 322–324
release planning and, 349–350

Test skills. See Skills
Test spikes, 381
Test spreadsheets, 353
Test strategy

iterations, pre-iteration activities and,
380–381

test plan vs., 86–88
Test stubs

definition, 506
integration with external applications and,

459
unit tests and, 127

Test teams, 506–507. See also Teams
Test tools. See also Toolkits

API-layer functional, 168–170
exploratory testing, 210–211
generating test data with, 212
GUI tests, 170–176
home-brewed, 175
home-grown, 314
IDEs, 124–126
performance testing, 234–235
security testing, 225
unit-level tests, 126–127, 165–168
web service tests, 170

530 INDEX

Test types
alpha/beta, 466–467
exploratory. See Exploratory testing (ET)
functional. See Functional testing
GUI. See GUI testing
integration, 229, 459
load. See Load testing
performance. See Performance and load

testing
reliability, 230–231, 250–251
security, 220, 223–227
stress. See Load testing
unit. See Unit testing
usability. See Usability testing
user acceptance testing. See UAT (user

acceptance testing)
Test writing strategy. See Strategy, for writing

tests
Testability, 183–185

automated vs. manual Quadrant 2 tests, 185
automation and, 149–150
code design and test design and, 184–185
overview of, 183
of stories, 393–396

Testers
adding value, 12
agile testers, 4, 19–20
agile testing mindset, 20–21
automation allowing focus on more

important work, 260
collaboration with customers, 396–397
considering all viewpoints during iteration

planning, 386–389
controlling workload and, 393
definition, 507
facilitating communication, 429–430
feedback and, 486
hiring agile tester, 67–69
how to influence testing, 121–122
integration of testers into agile project,

61–63
iterations and, 327
making job easier, 114–115
sizing stories, 333–334

tester-developer ratio, 66–67
writing task cards and, 391

Tester's bill of rights, 49–50
Testing

coding and testing simultaneously, 409–410
completing testing tasks, 415–416
identifying variations, 410
managing, 320–322
organizing test results, 322–324
organizing tests, 319–322
planning time for, 455–456
post-development cycles, 467–468
quadrants. See Quadrants
release candidates, 458
risk assessment and, 407–409
sustainable pace of, 40–41
traditional vs. agile, 12–15
transparency of tests, 321–322

Testing in context
context-driven testing and, 106–108
definition, 502

TestNG GUI test tool, 127
Tests that never fail, 286
Text matrices, 350–353
The Grinder, 234
Themes. See also Release planning

definition, 507
prioritizing stories and, 339
writing task cards and, 392

Thin slices, incremental development and, 338
Third parties

compatibility testing and, 230
release planning and, 342–344
software, 163

Tholfsen, Mike, 203
Thomas, Mike, 116, 194
Three little pigs metaphor, 278
Timelines, scope and, 340–341
Toolkit (Quadrant 1)

build tools, 126
IDEs, 124–126
overview of, 123
source code control, 123–124
unit test tools, 126–127

INDEX 531

Toolkit (Quadrant 2)
API-layer functional test tools, 168–170
automation tools, 164–165
building tests incrementally, 178–179
checklists, 156
flow diagrams, 160–163
GUI test tools, 170–176
keep the tests passing, 179
mind maps, 156–158
mock-ups, 160
software-based tools, 163
spreadsheets, 159
strategies for writing tests, 177–178
test design patterns, 179–183
test management, 186
testability and, 183–185
tool strategy, 153–155
tools for eliciting examples and requirements,

155–156
unit-level test tools, 165–168
Web service test tool, 170

Toolkit (Quadrant 3)
emulator tools, 213–214
monitoring tools, 212–213
simulator tools, 213
user acceptance testing, 250

Toolkit (Quadrant 4)
baselines, 235–237
performance and load testing tools, 234–235

Tools
API-layer functional test tools, 168–170
automation, 164–165
data generation, 304–305
defect tracking, 83–85
eliciting examples and requirements,

155–156, 159–163
emulator tools, 213–214
exploratory testing, 210–211
generating test data, 212
GUI test tools, 170–176
home-brewed, 175
home-grown, 314
IDEs, 124–126
load testing, 234–235

monitoring, 212–213
open source, 172, 314–315
performance testing, 234–235
for product owners and business experts, 134
security testing, 225
simulators, 213
software-based, 163
unit-level tests, 126–127, 165–168
vendor/commercial, 315–316
web service test tool, 170

Tools, automation
agile-friendly, 316
applying one tool at a time, 312–313
home-brewed, 175
home-grown, 314
identifying tool requirements, 311–312
open source, 314–315
selecting, 294–298
vendors, 315–316

Traceability
DTS and, 82
matrices, 86
test planning and, 88

Tracking, test tasks and status, 354–357
Traditional processes, transitioning. See

Transitioning traditional processes to agile
Traditional teams, 9–10
Traditional vs. agile testing, 12–15
Training

as deliverable, 469
lack of, 45

Transitioning traditional processes to agile, 73–93
defect tracking. See Defect tracking
existing process and, 88–92
lean measurements, 74–75
lightweight processes and, 73–74
metrics and, 74–79
overview of, 73
test planning. See Test planning

U
UAT (user acceptance testing)

post-development testing cycles, 467–468
product delivery and, 464–466

532 INDEX

UAT (user acceptance testing), continued
in Quadrant 3, 102
release planning for, 331, 346
Remote Data Monitoring system example,

250
in test plan, 351
tryng out new features and, 102
writing at iteration kickoff meeting, 372

UI (user interface). See also GUI (graphical user
interface)

automation strategy and, 293
modeling and, 399

Unit test tools, 165–168. See also by individual
unit tools

behavior-driven development tools, 166–168
list of, 126–127
overview of, 165

Unit testing
automating, 282
BDD (Behavior-driven development), 165–168
definition, 507
metrics and, 76
supporting function of, 5
TDD (test-driven development) and, 111
technology-facing tests, 120
tools for Quadrant 1 tests, 126–127

Usability testing, 202–204
checking out applications of competitors, 204
navigation and, 204
overview of, 202
users needs and persona testing, 202–204
what should not be automated, 285–286

Use cases, 398
User acceptance testing. See UAT (user

acceptance testing)
User documentation, 207–208
User interface (UI). See also GUI (graphical user

interface)
automation strategy and, 293
modeling and, 399
User story. See Story
User story card. See Story card

User Stories Applied for Agile Software
Development (Cohn), 155

V
Vaage, Carol, 330
Value

adding, 31–33
delivering to customer, 22–23
focusing on, 341–342
testers adding, 12

Values, agile, 3–4. See also Principles, for agile
testers

Variations, coding and testing and, 410
Velocity

automation and, 255, 484
burnout rate and, 79
database impact on, 228
defects and, 487
definition, 507
maximizing, 370
sustainable pace of testing and, 41
taking time to do it right, 301
technical debt and, 106, 313, 418, 506

Vendors
automation tools, 315–316
capture-playback tool, 267
IDEs, 125
planning and, 342–344
source code control tools, 124
working with, 142, 349

Veragen, Pierre, 76, 163, 179, 295, 363, 372,
444

Version control, 123–124, 186. See also
Source Code Control

Viewpoints. See also Big picture
considering all viewpoints during iteration

planning, 385–389
gathering all viewpoints regarding

requirements, 374–375
Power of Three and, 411
using multiple viewpoints in eliciting

requirement, 137–138
Visibility, 354–366

code coverage, 360–364
communicating test results, 357–358
defect metrics, 364–366
number of passing tests, 358–360

INDEX 533

overview of, 354
release metrics, 358
tracking test tasks and status, 354–357

Visual Studio, 125
Voris, John, 117

W
Waterfall approach, to development

agile development compared with, 12–13
ìmini-waterfallî phenomenon, 46–47
successes of, 112
test plans and, 346

Watir (Web Application Testing in Ruby), 163,
172–174, 320. See also Ruby with Watir

Web Services Description Language (WSDL),
507

Web service testing
automating, 282
overview of, 207
Remote Data Monitoring system example,

247–248
tools for, 170–171

WebLoad, 234
Whelan, Declan, 321
Whiteboards

example-driven development, 379
facilitating communication, 430
modeling, 399
planning diagram, 371
reviewing high-level tests with programmers,

400–401
test plan alternatives, 353–354

Whole team approach, 325
advantages of, 26
agile vs. traditional development, 15–16
automation strategy and, 300–301
budget limits and, 55
finding enjoyment in work and, 31
key success factors, 482, 491
pairing testers with programmers, 279

shared responsibility and, 105–106
team building and, 69
team structure and, 59–62
to test automation, 270
test management and, 322
traditional cross-functional team compared

with, 64
value of team members and, 70

Wiki
as communication tool, 164
graphical documentation of examples,

398–399
mockups, 160, 380
requirements, 402
story checklists and, 156
test cases, 372
traceability and, 88

Wilson-Welsh, Patrick, 278
Wizard of Oz Testing, 138–139
Workflow diagrams, 398
Working Effectively With Legacy Code (Feathers),

117, 288
Workload, 393
Worst-case scenarios, 136, 334
Writing tests, strategy for. See Strategy, for

writing tests
WSDL (Web Services Description Language),

507

X
XP (Extreme Programming)

agile team embracing, 10–11
courage as core value in, 25

xUnit, 126–127

Y
Yakich, Joe, 316

Z
Zero bug tolerance, 79, 418–419

	Foreword
	Foreword
	Preface
	Chapter 1 What Is Agile Testing, Anyway?
	Agile Values
	What Do We Mean by “Agile Testing”?
	A Little Context for Roles and Activities on an Agile Team
	How Is Agile Testing Different?
	Whole-Team Approach
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

