


Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, 
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied 
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs 
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special 
sales, which may include electronic versions and/or custom covers and content particular to your business, 
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Ballad, Tricia.
Securing PHP web applications / Tricia Ballad, William Ballad.

p. cm.
Includes index.
ISBN 978-0-321-53434-7 (pbk. : alk. paper)

1.  PHP (Computer program language) 2.  Web services—Security
measures. 3.  Internet—Computer programs—Security measures. 4.
Application software—Development.  I. Ballad, Bill. II. Title. 

QA76.73.P224B35 2009
005.8—dc22

2008042783

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and 
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or 
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-53434-7
ISBN-10: 0-321-53434-4
Text printed in the United States on recycled paper at Donnelley in Crawfordsville, Indiana
First printing, December 2008



121

Encryption

This chapter covers the need for encryption, its importance in data security, and what can 
happen if it fails or if encryption of vital data isn’t implemented. We will revisit the code 
from Chapter 7, “Authentication,” and show you how to better secure the application. 

WHAT IS ENCRYPTION?

Encryption is the process of transforming information into something that is 
unreadable to anyone not possessing special knowledge. This transformation requires 
two crucial pieces of data: the cipher and the key. In the world of programming, the 
cipher is an algorithm. The special knowledge you must have to read the encrypted 
data is called the key. There are several ciphers, or encryption algorithms, that are 
available for you to use in your own application.

There are two major types of encryption: symmetric key and asymmetric or public 
key. Each type has multiple variations, each with its own strengths and weaknesses. 
We will try to help you understand when to use either type. As of PHP 6.0, PHP sup-
ports symmetric and asymmetric key encryption natively.

In a public key encryption scheme, there are two keys. One is kept private by the 
receiver; this is used to decrypt the message. The other key is supplied by the receiver 
to the sender; this is the public key and is used to encrypt the message. Only someone 
with the matching private key can then decrypt what is sent. The sender and the 
receiver have different keys. That is what makes this form of encryption asymmetric. 
This method is very good when you have lots of senders, such as with e-mail or for 



CHAPTER 8 ENCRYPTION

122

digital signatures and SSL. These methods of encryption are not natively implemented 
in PHP until PHP 6.0, but you can add extensions to add SSL or call some public key 
ciphers as external functions. Figure 8.1 shows how public key encryption works.

In symmetric key encryption both the sender and the receiver share a key. This 
key is then used by the algorithm to encrypt or decrypt the information. The major 
drawback of this method is key management. Everyone who needs to decrypt the 
message must have the key, and all must remember which key is for which message. 
This method is very useful for encrypting data that another application will read or 
in situations where the sender and receiver are static. If you are in a situation where 
there will be multiple users of the key, this method is not ideal. Figure 8.2 shows how 
symmetric encryption works.    

Figure 8.1 Diagram of asymmetric encryption.

Figure 8.2 Diagram of symmetric encryption.

Asymmetric Encryption

Sender Receiver

Symmetric Encryption

Sender Receiver



CHOOSING AN ENCRYPTION TYPE

123

There is also a useful variant of symmetric encryption called one-way encryption, 
where you encrypt the message with no intention of ever decrypting it. Figure 8.3 
shows this type of one-way encryption.

One-way encryption can be used in password situations where two pieces of 
information match when encrypted. We will look at one form of symmetric encryption 
that involves using large hash tables. This is very useful for data integrity checking 
because any minor change in an object will cause a large change in the resulting hash. 

CHOOSING AN ENCRYPTION TYPE

When you are trying to decide how to secure your data, there are a few main points to 
consider:

• Algorithm strength

• Application speed versus data security

• Use of the encrypted data

In the following sections, we’ll look at each in a bit of detail.

ALGORITHM STRENGTH

There are many algorithms to choose from. The PHP built-in mcrypt() function has 
over 20 different encryption options, and there are third-party libraries that add even 

Figure 8.3 Diagram of one-way encryption.

One-Way Encryption

Sender Receiver



CHAPTER 8 ENCRYPTION

124

more. This can be rather bewildering, so it’s important to remember that key length 
and predictability of the algorithm determine its strength. That simply means the 
longer the key (the more bits it uses), the longer it will take someone to break it. But 
there is a stipulation. If the algorithm is predictable, the number of guesses needed to 
break the encryption can be greatly reduced. No one expects you to keep up with all 
of the cryptology news as to which method is easier to crack. Unless you’re one of 
those people who does calculus for fun, you probably have more interesting things to 
do. As long as you stick with the newest algorithms, you should be OK. Currently, 
3DES, AES, and Blowfish are our recommendations. 

For hashing, the PHP implementations of MD5 and SHA1 will work, but be 
aware that MD5 can be compromised. If you need a strong hash you may need to 
look at a third-party implementation.

On occasion, especially in older easy security guides, XOR or ROTX will be men-
tioned. These are bit manipulations that can make the data look encrypted, but they 
are very basic and easily guessed. If you are trying to secure your data, do not use 
these. They are both examples of data obfuscation as opposed to true encryption.

SPEED VERSUS SECURITY

The question to ask yourself concerning this issue is “How secure does my data need 
to be?” The bigger the key, the longer it will take to encrypt and decrypt the data. This 
can cause a noticeable slowdown in the time it takes your application to load and 
process data. If you are looking at data that needs to be very secure, you may want to 
use multiple methods of encryption. 

A big part of addressing this issue comes down to what data is being encrypted 
and why. Do you just want to keep the casual user from viewing the text, or are you 
trying to secure the information from determined attackers? If it’s a question of 
casual observation, you may be able to get away with obfuscation instead of encryp-
tion. Another aspect of this is simply the likelihood of viewers. If it’s a closed system, 
data security may be handled by physical security. For example, if the data is being 
stored on a server with no connection whatsoever with the outside world, it may be 
enough to simply lock the server room and monitor who has physical access to the 
server. You may not even need encryption in this scenario.

USE OF THE DATA

Ask yourself this question: “How is the data going to be used?” Something like a pass-
word that needs to be secret and verified works well with hashing. Are you looking to 
send or receive the information from a third party? If so, asymmetric encryption may 



PATCHING THE APPLICATION TO ENCRYPT PASSWORDS

125

be the way to go. If your application will be encrypting and decrypting the informa-
tion, then symmetric encryption would be best.

PASSWORD SECURITY

In Chapter 7, “Authentication,” we discussed the importance of choosing a strong 
password. Although this is important, it is not the only thing that needs to be done to 
secure your users’ logins. If either your database or flat file is compromised, plain-text 
passwords will be exposed to the attacker. To truly secure passwords we need to 
encrypt them. 

Let’s look again at our three criteria for choosing an encryption type, but this 
time in the context of our example application. This is a publicly accessible system so 
we need a strong algorithm, but it is just a guestbook so we don’t need to go nuts. 
Nothing like a credit card or Social Security number is getting stored. The conse-
quences of a data breach are fairly minor—a user could get locked out of his or her 
account, or someone could post a comment to the guestbook under another user’s 
name. All told, the worst-case scenario really isn’t a crisis situation, just a hassle. 

We need the algorithm to work very quickly, as this is a Web application. No one 
is willing to wait to get to our page. The data is going to be a password, not something 
we will ever need to decrypt. If the user forgets his or her password, we will just ini-
tiate the process of creating a new one. 

Knowing these things, we will choose the MD5 hash to encrypt our passwords. 
MD5 can be compromised, but that still takes a significant amount of time. MD5 is 
quick, easy to implement, and secure enough for our purposes. If your situation calls 
for more security, SHA1 will work as well, or implement SHA2 with a third-party 
library. No matter what you implement, if you need a strongly secured password, you 
need to have a password retention policy. A six-month or shorter mandatory pass-
word life will greatly reduce the chances that someone can brute-force the password.

PATCHING THE APPLICATION TO ENCRYPT PASSWORDS

Adding encryption to user authentication in the guestbook application will happen 
in three steps:

1. Modify the user table in the database.

2. Create the encryption and salting functions.

3. Modify the password validation.



CHAPTER 8 ENCRYPTION

126

Breaking the task into discrete steps helps ensure that we can consider each part 
of the problem carefully and avoid introducing security holes into our application. 
The salting function is used to introduce an element of randomness into the encryp-
tion. Without it, anyone who knows the username and password could generate the 
same encrypted string as our encryption function. Adding salt to the algorithm is an 
easy way to make the system more secure.

MODIFYING THE USER TABLE

We need to add a column to the user table. The new column will hold a random number 
used to encrypt the password. Table 8.1 outlines the characteristics of this new field.

Once we’re finished with the database, we’ll tackle the application code.

CREATE THE ENCRYPTION AND SALTING FUNCTIONS

Next, we’ll create a very simple function that encrypts the password. We’re making 
the assumption that the password has already been through data validation by the 
time it gets to the encryption function, so we’re not going to worry about that. This 
function is very simple, yet powerful enough for our purposes. First, we concatenate 
the username, salt, and password into a simple plain-text string. Then we pass that 
string through the built-in md5() function and return the results. It’s really that simple.

      function encryptPassword($plaintext_password, $username, $salt) {
            // At this point we can assume that the plaintext_password has already 

            // been through validation, so there's no need to worry about tainting

            $str = $username.$salt.$password;

  return md5($str);

      }

To generate the salt for our encryption algorithm, we simply return a random 
number between 0 and 1,028.

Table 8.1 Characteristics of the Random Number Field

Column Name Type NULL? Default Value

salt Varchar(30) No &nbsp;



PATCHING THE APPLICATION TO ENCRYPT PASSWORDS

127

      function createSalt() {
  return rand(1028);

      }

MODIFY THE PASSWORD VALIDATION SYSTEM

The final step in encrypting the passwords in our guestbook application is to 
make a few minor modifications to the existing password and login system. First, we 
rewrote the password function to pass the plain-text password through our new 
encryptPassword() function. 

function password($plaintext_password = NULL) { 
 if($plaintext_password) {

                 $this->_password = encryptPassword($this->_username, $this->_salt,

    $plaintext_password);

            }

 return $this->_password; 

      }

Then we used the createSalt() and encryptPassword() functions in our login 
function as well.

function login($username, $plaintext_password) {
$dbh = getDatabaseHandle();

            $selected_db = mysql_select_db("guestbook", $dbh);
            $sql = "select username, password from Users where username = 

   $username";
$result = mysql_query($sql, $dbh);

            $userinfo = mysql_fetch_array($dbh);
$salt = createSalt();

$password = encryptPassword($userinfo['password'], $salt, 

  $plaintext_password);

            if($userinfo['password'] == $password) {  // User is authenticated
   $user = new User($username);
    $user->_sessionID = _generateSessionID(); // Also stores

     // sessionID in DB
      return $user;

            } else {
      return FALSE;

            }
      }



CHAPTER 8 ENCRYPTION

128

WRAPPING IT UP

In this chapter, we covered the need for encryption. We discussed how to decide on 
the right type of encryption for your application by understanding your data, and we 
covered a very common encryption scenario. This is a good start and should be 
enough to get you up and running with your own applications, but it is just a quick 
overview. Encryption and cryptography are huge topics that would require their own 
book to cover in depth. If you plan to store sensitive data, such as credit card numbers 
or Social Security numbers, we highly recommend that you familiarize yourself with 
encryption more thoroughly by reading one (or more) of the books listed in the 
Appendix, “Additional Resources.”



129

Session Security

In this chapter, we cover session security. We look at what a session variable is and why it 
is used, then show you how to defend against the three major types of session attacks: 
hijacking, fixation, and injection.

WHAT IS A SESSION VARIABLE?

HTTP is stateless by design. This has some advantages but leaves us with a major 
problem when dealing with dynamic Web pages. How do we maintain a user’s iden-
tity across multiple pages? How do we pass data from page to page? This is where ses-
sion variables come in; they enable you to track session information about the user 
through various pages on your site. PHP sessions are like server-side cookie files. 
Each one stores variables that are unique to the user request that created it and ideally 
can be accessed only on subsequent requests from that user. Of course, hackers try to 
turn this functionality into a vulnerability to gain access to resources. Therefore, 
there are session attacks that you must attempt to counter.

MAJOR TYPES OF SESSION ATTACKS

There are three types of attacks that you need to be wary about when using session 
variables:



CHAPTER 9 SESSION SECURITY

130

• Session fixation

• Session hijacking

• Session poisoning (injection)

Luckily, there are some clear ways to defend against these attacks. It all comes 
down to session management.

It is also important to note that in a shared server environment anyone with 
access to the server can access the PHP session files. These people will not be able to 
identify what Web site each session belongs to, but they can get sensitive information 
out of the variables. It is very important not to store critical information in session 
variables because they simply aren’t secure enough to safeguard it. If you have sensi-
tive data that must be passed around your site, store it in the database. This method is 
slower than storing data in the session, but it is significantly more secure. 

SESSION FIXATION

Session fixation is simply a method of obtaining a valid session identifier without the 
need to predict or capture one. It enables a malicious user to easily impersonate a 
legitimate user by forcing the session ID. It is the simplest and most effective method 
for a malicious user to obtain a valid session ID.

The attack itself is very basic. The hacker forms a link or redirect that sends the 
user to your site with the session ID preset:

<a href=http://YOUR_HOST/index.php?PHPSESSID=1234> Click here </a> 

When users click on that link or are redirected there, they connect to your site 
with a session ID that has been set by the attacker. The attacker can now wait for the 
users to log in and access your site using their credentials, as shown in Figure 9.1.

PHP has a very good defense for this type of attack in the built-in 
session_regenerate_id() function. This function generates a new session file for 
the user, gets rid of the old one, and issues a new session cookie if your site utilizes 
them. Anytime your users get their credentials challenged, say at login or when they 
are changing their password, it’s a good idea to run session_regenerate_id. This 
will greatly mitigate fixation attacks.

Another good tool for dealing with session fixation is to make sure you set a ses-
sion time-out in the php.ini file. For more information on this, see Chapter 13, 
“Securing PHP on the Server.”



MAJOR TYPES OF SESSION ATTACKS

131

These methods are not a 100 percent guarantee that an attacker can’t get your 
users’ session IDs. Hackers could get very lucky and guess a valid ID, or they could 
snoop it off the network. Guessing isn’t very likely because of the way PHP assigns 
session IDs. To defend against network snooping, you could use SSL/TSL. This does 
add a lot of overhead to your site, so you need to determine how secure your site 
needs to be. You may also want to make sure that you challenge users when they 
access very sensitive material, or that you do not fully display sensitive data such as 
credit card numbers.

SESSION HIJACKING

After a successful session fixation attack, a malicious user has your user’s session. 
What does the attacker do with it? This is where session hijacking comes in. In a 
hijacking attack, the malicious user tries to access your site utilizing a valid session 
ID, as shown in Figure 9.2. 

Obviously the steps we took to defend against fixation will give us some protec-
tion, especially regenerating the session ID on a regular basis, but you will still be vul-
nerable to a sophisticated attack. There are a number of steps we can take to defend 
against a session hijacking. Some are easily circumvented, and others don’t always 
allow legitimate users to access your site. You need to weigh security and usability 

Figure 9.1 Diagram of a session fixation attack.

Legitimate
User

Hacker

Application

1

2

User logs into site
with hacker’s session ID

Hacker logs in
with session ID

Session
ID



CHAPTER 9 SESSION SECURITY

132

heavily when defending your site. The key is making it very difficult to hijack a user 
session. There are three common methods for session defense:

• User agent verification

• IP address verification

• Secondary token

User agent verification is a very basic way of verifying the user’s identity. When 
you create the session ID, you could grab the HTTP_USER_AGENT variable. Then you 
could verify it on each new page view. Unfortunately, if the session has been hijacked, 
the malicious agent could have grabbed the user agent info and spoofed it. A better 
method would be to store the hash of the user agent string. Better yet would be to 
store the hash plus a seed and verify that. See Chapter 8, “Encryption,” for more 
information on hashing data. There is another problem with user agent verification; 
in some specific circumstances the user agent data may not be consistent. Depending 
on how the user is connected, some proxy servers manipulate the user agent informa-
tion. For this reason, you may just want to force users to reenter their password if the 
verification fails as opposed to kicking them out of their session.

Figure 9.2 Diagram of a session hijacking attack.

Legitimate
User

Hacker

Application

1

2

Stolen
Session ID

Session ID



PATCHING THE APPLICATION TO SECURE THE SESSION

133

IP address verification is very similar to user agent verification. In fact, in some 
cases it is more secure, as the attacker may know the user agent and be able to spoof 
the header. You store the users’ IP when you first generate their session, and then on 
every page load you verify that IP address. There are two major drawbacks to this 
method. A lot of locations are behind a NAT proxy, so it is possible that the attacker 
and the user both have the same IP address. The other issue comes from large ISPs 
like AOL. A number of them, and AOL specifically, have massive proxy setups that 
send the user out via a different IP address with every page request. If you know 
where your users are coming from or are willing to set up a different site for AOL 
users, this method can be very effective. In fact, if your users will be coming from 
only a small number of IP addresses, this method is great. But generally the draw-
backs to IP verification make it unusable.

In token verification, you set up two points of verification. You create a token for 
the users utilizing a different method from the session ID. When they first log in, cre-
ate a hash of that token and store it in their session. You can then verify it on every 
page load. You can also regenerate this token frequently, allowing only a very short 
window for the attacker to guess it.

None of these methods are foolproof, but all add to your overall security. Having 
more than one method of verifying your users’ session is always a good idea. 

SESSION POISONING

This should actually be called session injection, as it is just one more variable injec-
tion type of attack. If you allow user input into session variables, make sure you vali-
date the data. Turn register globals off, and see Part III of this book for an in-depth 
look at dealing with injection attacks.

PATCHING THE APPLICATION TO SECURE THE SESSION

Securing the session capabilities in the application requires two steps:

1. To defeat session hijacking, we implement the secondary token method.

2. To defeat session fixation, we regenerate both the session and the token at 
crucial points.

Most of the work occurs within the user object, so we’ll start there. First, we 
rename the $_sessionID private variable to $_tokenID. We will not be storing the 



CHAPTER 9 SESSION SECURITY

134

actual session ID in the user object but rather the token ID. We also update the 
_generateSessionID() function to use the token, rather than the session variable. 
We also rename it to _generateTokenID():

function _generateTokenID() {
 $tokenID = rand(10000, 9999999);

  $dbh = getDatabaseHandle();
                $selected_db = mysql_select_db("guestbook", $dbh);

  $sql = "update Users set tokenID = $tokenID where Username = 
     $username";

$result = mysql_query($sql, $dbh);
$success = mysql_affected_rows($dbh);

    if($success == 1) {
   $cookieName = "guestbook_cookie";

$value = $tokenID;

         $expire = 0;

$secure = TRUE;

$httponly = TRUE;

                        if(setcookie($cookieName, $value, $expire, "", "", $secure,

         $httponly)) {

  return $tokenID;

          } else {

   return NULL;

           }

                }
        }

The code we added is shown in bold. Basically what we’re doing here is creating a 
token ID and storing it as a cookie in the user’s browser. 

Next, we create two token functions, checkToken() and _deleteToken(), as 
shown here:

        function _deleteToken() {
                if(setcookie("guestbook_cookie", "", time - 3600)) {

       $this->_tokenID = NULL;
         return TRUE;

                }
     return FALSE;

        }

        function checkToken() {
                if($_COOKIE['guestbook_cookie'] && $_COOKIE['guestbook_cookie'] ==

    $this->_tokenID) {



PATCHING THE APPLICATION TO SECURE THE SESSION

135

                        $this->_generateToken(); // Keep the window of opportunity 
     // as small as possible

         return TRUE;
                }

    return FALSE;
        }

Finally, we retrofit the login() and logout() functions to create or destroy both 
the session and the token.

        function login($username, $plaintext_password) {
  $dbh = getDatabaseHandle();

                $selected_db = mysql_select_db("guestbook", $dbh);
 $sql = "select username, password from Users where username = 

     $username";
$result = mysql_query($sql, $dbh);
$userinfo = mysql_fetch_array($dbh);

   $salt = createSeed();
   $password = encryptPassword($userinfo['password'], $salt, 
    $plaintext_password);

 if($userinfo['password'] == $password) {        //User is 
    // authenticated

     $user = new User($username);
   $user->_tokenID = _generateTokenID();  // Also stores 

       // tokenID in DB

       session_regenerate_id();

         return $user;
                } else {

         return FALSE;
                }
        }

function logout() {
  // Invalidate both the session and the token

    session_destroy();

  $dbh = getDatabaseHandle();

                $selected_db = mysql_select_db("guestbook", $dbh);

   if(!_deleteToken()) {

        logError($dbh, "could not delete token cookie", 5);

                }

  $username = $this->_username;
                $sql = "update Users set TokenID = NULL where Username = $username";



CHAPTER 9 SESSION SECURITY

136

$result = mysql_query($sql, $dbh);
$success = mysql_affected_rows($dbh);

    return $success;
        }

In the application code, we’ve added code to create the token cookie and start the 
session before any HTML is sent to the browser. At the end, we invalidate the token 
cookie and destroy the session. As a final housekeeping task, we’ve changed the 
sessionID column name to tokenID in the database.

WRAPPING IT UP

In this chapter, we talked about the three types of session attacks: fixation, hijacking, 
and poisoning or injection. Session poisoning is just another form of injection attack, 
which we have covered in quite a bit of depth elsewhere. 



137

Cross-Site Scripting

In this chapter, we cover a special type of injection attack called cross-site scripting, or 
XSS. This is a special type of code injection attack (remember those from Chapter 5, 
“Input Validation”?) that doesn’t affect your system as much as it affects your users. Our 
example guestbook is exactly the type of site that is vulnerable to these attacks.

WHAT IS XSS?

XSS is just a special case of code injection. In this type of attack, the malicious user 
embeds HTML or other client-side script into your Web site. The attack looks like it 
is coming from your Web site, which the user trusts. This enables the attacker to 
bypass a lot of the client’s security, gain sensitive information from the user, or deliver 
a malicious application. There are two types of XSS attacks:

• Reflected or nonpersistent

• Stored or persistent

REFLECTED XSS

This is the most common type of XSS and the easiest for a malicious attacker to pull 
off. The attacker uses social engineering techniques to get a user to click on a link to 
your site. The link has malicious code embedded in it. Your site then redisplays the 



CHAPTER 10 CROSS-SITE SCRIPTING

138

attack, and the user’s browser parses it as if it were from a trusted site. This method 
can be used to deliver a virus or malformed cookie (used to hijack sessions later) or 
grab data from the user’s system. One famous example of this was found in Google’s 
search results. The malicious code would be tacked onto the end of a search link. 
When the user clicked on the link, the code would get displayed as part of the search 
string. The user’s browser would parse this and compromise his or her system.

Defend against this as you would any variable injection attack. Before you display 
any user-generated data, validate the input. Do not trust anything that the user’s 
browser sends you.

STORED XSS

This is a less common but far more devastating type of attack. One instance of a stored 
XSS attack can affect any number of users. This type of attack happens when users are 
allowed to input data that will get redisplayed, such as a message board, guestbook, 
etc. Malicious users put HTML or client-side code inside their post. This code is then 
stored in your application like any other post. Every time that data is accessed, a user 
has the potential to be compromised. Most of the time this is a link that still requires 
social engineering to compromise your users, but more sophisticated attackers will 
launch attacks without the user doing any more than loading your page.

This is all scary stuff, but the defense is the same: If you allow user input, validate 
it before you store it in your application.

PATCHING THE APPLICATION TO PREVENT XSS ATTACKS

There are two ways we can handle patching our application. One is far easier and 
more secure but gives the user less flexibility. The other method allows a much wider 
range of user input but is much harder to implement securely. Once again, we have to 
weigh the usability of our application against security concerns. 

We have decided that we don’t really need fancy posts in our guestbook so we will 
go the easier, more secure route. We will simply disallow HTML and all scripting in 
any user input (name, message, etc.) field. Any input that contains scripting code will 
be discarded with an error message. Just to be on the safe side, we will also escape all 
special characters such as ( and < to their HTML entities. Luckily for us, our sanita-
tion API already does this, and we are already passing our variables through the sani-
tizer. In patching the application to sanitize all user input variables, we actually closed 
two potential security holes—general variable injection and XSS.



WRAPPING IT UP

139

The fix gets a lot trickier if you want to allow scripts and HTML to be embedded 
in user inputs. There are two ways to do this, both of which are a little beyond the 
scope of this book and our application. You could discard any user-inputted code and 
allow HTML only via buttons on your page, giving the user a very limited set of code 
elements to use. You still have to validate the user input, because even limiting the 
user to a predefined subset of HTML isn’t foolproof. A sophisticated attacker can get 
around this precaution by nesting malicious code within the allowed HTML. If you 
allow users to include links in their posts, there is no way to defend against XSS—
unless you personally have the time to manually check each and every link a user posts.

There is one more option: You can create filters that try to validate user input and 
filter out the malicious code while keeping the good input. This involves a rather 
tricky set of regular expressions that are well beyond the scope of this book. Luckily, 
there are some open-source projects already taking on this task. None of them are 
completely foolproof, because by the time a filter is created to identify one type of 
malicious code, several others have been created. Filters do have their place, as long as 
you realize that they aren’t a guarantee of security. If you decide to try to filter out 
malicious code from user input, we suggest looking into the following projects:

• OWASP’s PHP filters: www.owasp.org/index.php/OWASP_PHP_Filters. This 
project includes filters for all types of attacks.

• PHP IDS: http://php-ids.org. This is an intrusion detection system with the capa-
bility to report the types of attacks to you, but you need to configure how the sys-
tem will respond to various circumstances.

• htmLawed: www.bioinformatics.org/phplabware/internal_utilities/htmLawed/
index.php. This is an open-source PHP HTML filter.

• HTML Purifier: http://htmlpurifier.org/. This filter implements a whitelist 
approach to PHP filtering.

WRAPPING IT UP

Cross-site scripting is a hot buzzword in PHP security circles, but don’t let it intimi-
date you. It’s really just a new and interesting way of exploiting a variable injection 
attack. As long as you’re vigilant about sanitizing your variables, you should have no 
problems with XSS.

www.owasp.org/index.php/OWASP_PHP_Filters
http://php-ids.org
www.bioinformatics.org/phplabware/internal_utilities/htmLawed/index.php
www.bioinformatics.org/phplabware/internal_utilities/htmLawed/index.php
http://htmlpurifier.org/


293

Index

Symbols
$ (dollar sign), 59
* (star), 63
{ } (curly brackets), 59, 63
+ (plus sgn), 63, 64

A
a-zA-Z, regular expressions, 59
Access Control List (ACL), securing Web 

root, 179
Actors diagram

designing security with, 260, 262
identifying points of failure in, 272

Acunetix Web Vulnerability Scanner test-
ing interface, 247–254

Administrative Tools folder, 102–103, 
108–109

Administrative Tools Services MMC, 
177–178

Administrative users
changing username/password on 

MySQL, 163–164

granting privileges to, 100–101, 115
viewing and deleting user accounts/

comments, 14
workflow diagrams for, 260–262, 272

Advanced button, Windows properties, 
80–82

AES encryption, 124
Alerts

automated testing, 235
intrusion detection system, 73
keeping up with security, 144
for latest stable version of Web server, 147
ModSecurity, 215
paying attention to latest security, 44–46
reviewing during scanning, 252–253
system test, 223

Algorithm strength, 123–124
Allow permission, 77–79
allow_url_fopen directive, php.ini file, 

72–73, 90–91
Anonymous users

allowing access to Web site, 180



INDEX

294

Anonymous users (continued)
allowing comments from, 13–15
authentication systems vs., 269
no need to authenticate, 100–101
removing from SQL Server, 202–204
workflow diagram for, 260–262, 272

Apache server, 147–159
disabling unneeded options, 153–154
enabling ModSecurity, 154–159
giving own user and group to, 149–151
hiding version number/other informa-

tion, 151
restricting to own directory structure, 

152–153
upgrading or installing latest version, 

147–149
using SuExec for shared hosting, 214–215

API (Application Programming Interface)
for authentication, 119–120
customizing for system calls, 31–32
customizing for user input validation, 

32
defined, 289
sanitizing data to prevent buffer over-

flows, 49
for user-uploaded image files, 88–90

Application pools, 181–184
Application Programming Interface. See

API (Application Programming 
Interface)

Applications
data sources for, 48
gaining access to server through insecure, 

5–6, 10
hackers targeting minor, 9
hardening your, 6–7
making life difficult for spammers, 22–23

Applications, designing securely from the 
beginning, 257–271

concept summary, 257–260
data design, 260–267
file upload, 270
filesystem access, 271
identifying points of failure, 269
infrastructure functions, 267–268
login and logout, 269–270
user input, 270–271
workflow and actors diagram, 260

Applications, securing existing, 273–278
hardening checklist, 276–277
having code peer-reviewed, 278
using three-stage deployment, 273–275
using version control, 275–276
variable sanitation, 277

Arbitrary code attacks, from buffer over-
flows, 42

Asymmetric (public) key encryption, 
121–122

Authentication
adding encryption to. See encryption
directory-based, 101–114
goals of creating, 95
identifying login/logout points of fail-

ure, 269–270
image recognition, 99–100
patching application for, 117–120
privileges, 100–101
SQL Server, 192
storing information in user database 

table, 114–115
storing usernames and passwords, 

115–117
types of, 95–97
usernames and passwords, 97–99



INDEX

295

using Web Vulnerability Scanner, 
250–251

writing with Zend, 208
AutoAttack tool, CAL9000 toolkit, 245
Automated testing. See Testing, automated

B
Backup

length constraints on database, 56
storing information in user database, 

118–119
Basic Multilingual Plane, 43, 289
Biometric analysis, 96
Black-box testing, 277, 289
Blank input

brainstorming boundary conditions, 
18–19

overview of, 15–18
Blowfish encryption, 124
Books, as resources, 286–288
Boundary conditions

automated testing of, 219–220, 223–224
as buffer overflow, 45
building error-handling mechanism for, 

23–26
determining, 18–19

Breach Security Labs, 155–159
Buffer, 40–41, 289
Buffer overflows, 37–52

computer science of, 39–41
consequences of, 42
with excessively long input, 55
fuzz testing for, 227
identifying points of failure, 270–271
memory allocation and PHP, 42–44
overview of, 37–39
patching application, 49–52

paying attention to latest security alerts, 
44–46

sanitizing variables to prevent, 46–49

C
C libraries, underlying PHP, 39
CAL9000 toolkit

AutoAttack tool, 245
Cheat Sheets tool, 242–243
Checklist tool, 244–245
Encode/Decode tool, 237–239
HTTP Requests tool, 239
HTTP Responses tool, 240–241
Misc Tools, 243–244
obtaining, 234–235
Scratch Pad tool, 242
using, 235
XSS Attacks tool, 236–237

CAPTCHA (Completely Automated Pub-
lic Turing Test to tell Computers and 
Humans Apart), 99–100, 289

CERT (Computer Emergency Response 
Team), 9, 46–47

CGIs, and SuExec, 215
changeFilePrivs( ) function, 88–89
Character class (within regular expres-

sion), 59–61, 289
Cheat Sheets tool, CAL9000 toolkit, 

242–243
Checklist tool, CAL9000 toolkit, 244–245
checkToken() function, 134
chmod( ) function, 87
Classes, security alert, 45
Commas, and spammers, 22–23
Comments, 56–57
Completely Automated Public Turing 

Test to tell Computers and Humans 
Apart (CAPTCHA), 99–100, 289



INDEX

296

Computer Browser Properties dialog, IIS, 
178

Computer Emergency Response Team 
(CERT), 9, 46–47

Computer Management, Administrative 
Tools folder, 102–103

Consistency
in building error-handling mechanism, 

19–23
in naming, 281
when writing self-documenting code, 

280–281
Constraints, database and logical, 56–57
Cookie button, PowerFuzzer, 231
Cracker, 4–5, 289
createSalt( ) function, 127
Creative Commons license, 207, 289
Cross-site scripting. See XSS (cross-site 

scripting)
Cryptography. See Encryption
Curly brackets ({ }), 59, 63
CVS, 275–276

D
Data

basing encryption type on, 124–125
checking length of, 48–49
choosing for testing, 223–224
designing security for, 260–267
making assumptions about user, 55
sanitizing to prevent buffer overflows, 

48–49
sources of, 48
tainted, 57–58

Data dictionary
database constraints and, 56
identifying points of failure, 269
setting up, 264–266

Databases
deleting sample MySQL, 165
deleting sample SQL Server, 204–205
placing constraints on length of stored 

data, 56
running latest stable version of server, 

49–50
securing SQL Server. See SQL Server
storing authentication information in, 

114–115
Databases Security Uses folder, SSMSE, 

202–203
Decoding plain text, with CAL9000 tool-

kit, 238
deleteToken() function, 134
Deny permission

changing in Windows, 77
directory-based authentication, 107
overriding Allow permission, 78–79

Deployment, of existing applications, 
273–275

Design phase. See Applications, designing 
security at beginning

Development box, 273–274
Development releases, PHP, 212
Directory-based authentication, 101–114
Directory structure

hackers navigating, 7–8
opening local files, 70–71
restricting Apache to its own, 152–153
securing Web root, 179
storing needed files in separate directory 

within, 70–71
Directory traversal attack, 153
display_errors, hardening php.ini, 

217–218
DMZ, 200, 290



INDEX

297

Documentation
of length constraints on database, 56
writing self-documenting code, 280–281

Dollar sign ($), 59
DoS (denial-of-service) attacks

from buffer overflows, 42
defined, 289–290
fuzz testing for, 227
using system resources for, 29

Download mirror
MySQL, 161–162
PowerFuzzer, 229

E
Editing, object in Windows file permis-

sions, 86–87
Encapsulation

allowing file uploads using, 89
data design using, 263
error handling with, 32
in filesystem access, 70
of system calls, 32, 278

Encode/Decode tab, CAL9000 toolkit, 
237–239

Encryption, 121–128
choosing type of, 123–125
defining, 121–123
password security, 125
patching application to encrypt pass-

words, 125–127
username and password, 115

encryptPassword( ) function, 127
Error handling, 13–26

brainstorming boundary conditions, 
18–19

building mechanism for, 19–23
encountering erroneous data, 23–24
guestbook application, 13–15

making system easy to use, 24–26
SQL injection attack, 16–18

Error-logging, SQL Server, 194
Error messages, writing, 23–24
Escape, defined, 21, 290
escapeshellarg( ) command, 30–31
escapeshellcmd( ) command, 30
Execute permissions, 76
Exploit testing. See Testing, exploit
expose_php, hardening php.ini, 217
Extensibility, with custom API, 31

F
Features

disabling unnecessary SQL Server, 197
keeping tight rein on new, 279–280

file_get_contents( ) function, 71
Filenames

checking variable sanitation, 51–52
escapeshellcmd( ) and escapeshellarg( ) 

securing, 30–31
malicious users of system calls and, 28
opening local files, 71
security myth of changing, 7–9
validating user input, 32–34

$_FILES Superglobal array, 74
Filesystem access, 69–91

allowing user-uploaded image files, 
88–90

creating and storing files, 73–75
designing security from beginning, 271
opening local files, 69–71
opening remote files, 71
permissions in PHP, 87
permissions in UNIX, Linux and MAC 

OS X, 76
permissions in Windows. See Windows 

file permissions, changing



INDEX

298

Filesystem access (continued)
preventing remote attacks, 72–73
summary review, 90–91

Filters
for malicious code in user input, 139
testing effectiveness of. See testing, 

exploit
Firefox, for CAL9000 toolkit, 234
Firewalls, 5–6
Fixation sessions. See Session fixation
Footprint

defined, 290
reducing IIS server, 177–178
reducing SQL Server, 195, 200

Forms
for user-uploaded image files, 90
for users to upload files, 74–75

Fuzz testing
installing and configuring PowerFuzzer, 

227–230
overview of, 226–227
using PowerFuzzer, 231–233

G
Generally Available Release, 160, 290
_generateSessionID() function, 134
_generateTokenID() function, 134–135
Gibson Research Corporation (GRC), 

password generator, 164
Glossary, 289–292
Granularity, of Windows file permissions, 

77–79, 85–87
GRC (Gibson Research Corporation), 

password generator, 164
Greedy modifiers, regular expressions, 63
Groups

authentication, 102–106
for each application in Apache, 149–151

Web file authentication, 111–114
Windows file authentication, 104–110
Windows permission, 78, 84

Guestbook application
adding buffer overflow prevention, 

49–52
adding encryption, 125–127
adding session security, 133–136
adding system calls API, 32–33
adding user authentication, 117–119
allowing user-uploaded files, 88–90
concept summary for, 258–259
defined, 13
designing data dictionary, 264–266
designing infrastructure functions, 267
designing long-term data storage, 

263–267
designing workflow, 260–262
preventing XSS attacks, 138
primary code listing, 14–15
program summary, 13–14

GUI, setting permissions using, 83–85

H
Hackers

defined, 290
targeting minor applications, 9
targeting sessions, 9
use of term in this book, 4–5
using insecure applications, 5–7
using obfuscation against, 7–9

Hard drive, Web root on nonsystem, 179
Harden an application

checklist, 276–277
defined, 290
tools for programmers, 6

Hardened-PHP Group, 4
Hardened-PHP Project, 42–43, 46



INDEX

299

Hardware, Optional updates, 187–188
Heap, 40, 290
High priority Windows updates, 187
Hijacking, session

defending against, 131–133
identifying login/logout points of fail-

ure, 270
patching application for, 133–136

Home Directory tab, 186–187
.htaccess files, 101
HTML

accepting from users safely, 21
preventing XSS attacks, 138–139
stripping from user input, 20–21

HTML Purifier filter, 139
htmlentities( ) function, 21, 42–44
htmlspecialchars( ) function, 21, 42–44
HTTP Requests tool, CAL9000 toolkit, 

239, 244
HTTP Responses tool, CAL9000 toolkit, 

240–241
HTTP, stateless, 129
httpd.conf file, Apache

copying old version of, 149
creating users and groups, 149–151
disabling unneeded options, 153–154
hiding version number/other informa-

tion, 151
restricting to own directory structure, 

152–153

I
IDE (integrated development environment)

defined, 290
resources for, 288
writing code using, 281–282

Identity dialog box, 181–182

IDS (intrusion detection system)
defined, 290
for malicious code, 139
for self-created files, 73
using ModSecurity as, 215–216

if( ) statement, 51–52
IIS (Internet Information Server)

reducing footprint on Web, 177–178
securing Web root, 179–187
securing Windows server environment, 

167
updating operating system, 168–177

IIS Manager
creating Web sites in, 179–180
enabling only needed Web services, 

185–187
setting permissions on existing sites, 109
setting up sandboxes for each Web site, 

181–184
Image files

creating upload form for, 90
patching application to allow user-

uploaded, 88–89
testing that file is correct type, 74–75

Image recognition, for authentication, 
99–100

Infrastructure functions, designing, 
267–268

Inheritance, Windows, 79–82
Initialization, variable, 33
Injection attack

from buffer overflows, 42
checking length of inputs to detect, 55
cross-site scripting as, 137–139
defined, 290
identifying points of failure, 270–271
session poisoning as, 133



INDEX

300

Input validation, 53–67
assumptions about expected user data, 55
common patterns of, 65–67
database constraints, 56
logical constraints, 56–57
patching guestbook application, 32
regular expressions and, 58–65
tainted data, 57–58
testing effectiveness of. See testing, exploit
users signing guestbook comments, 

53–54
users who give you more than you asked 

for, 54–55
Install Updates button, Windows, 174–175
Integrated development environment. See

IDE (integrated development 
environment)

Internet Information Server. See IIS 
(Internet Information Server)

Intrusion detection system. See IDS 
(intrusion detection system)

IP address verification, 132–133
IP Encoder tool, CAL9000 toolkit, 244
isAdmin column, user database, 114–115, 

118
ISPs, and IP address verification, 133
is_uploaded_file( ) function, 74–75

K
Kernel, 145–146

L
Lazy modifiers, regular expressions, 64
Library functions, writing code using, 281
Licenses

SQL Server, 188
Windows Updates, 176

Linux
changing file permissions in, 76–87
securing server environment, 144–146
username and password system in, 101

Local filesystem, accessing, 69–71
Local vulnerability, and security alerts, 45
Logical constraints, 56–57
login() function, 119, 134
Login, identifying points of failure, 

269–270
logout() function, 134
Logout, identifying points of failure, 

269–270
Lost passwords, 98–99

M
MAC OS X

file permissions, 76–87
securing server, 144–146
username and password system, 101

Maintenance, of self-created files, 73
MAX_FILE_SIZE directive, upload 

forms, 90
mcrypt() function, 123–124
MD5 algorithm, 124, 125
Memory allocation, 40–44
Metacharacters, and regular expressions, 60
Misc Tools tab, CAL9000 toolkit, 243–244
ModSecurity

as IDS for self-created files, 73
installing/enabling for Apache, 154–159
securing PHP with, 215–216

move_uploaded_file( ) function, 75
movieFile( ) function, 32–33, 88–90
Multilayered security approach, 4
mv command, movieFile( ) function, 32–33



INDEX

301

My Computer, securing Web root, 179
MySQL

changing admin username and pass-
word, 163–164

creating new accounts for each applica-
tion, 164–165

deleting default database users, 164
deleting sample databases, 165
disabling remote access, 163
upgrading or installing latest version, 

159–163

N
Name field

assumptions about expected data, 55
placing logical constraints on, 56–57
signing guestbook comments, 53–54
testing for excessively long input, 54–55

Naming conventions
separating tainted from validated data, 

57–58
writing self-documenting code using 

consistency, 281
NetBIOS, disabling for IIS server, 177
Network security, 5–7, 10
New Scan button, Web Vulnerability 

Scanner, 248
NTFS permissions, Web file authentica-

tion, 112

O
Obfuscation

security myth of, 7–9
using encryption vs., 124
writing self-documenting code vs., 

280–281
OCR (optical character reader), 100, 290
One-way encryption, 123

open_basedir, hardening php.ini, 217
Opening

local filesystem, 69–71
remote filesystem, 71

Operating systems
inherent insecurity of, 143–144
installing latest version of MySQL, 

160–162
updating, 168–177
updating UNIX, Linux or MAC OS X, 

145–146
verifying running of latest stable ver-

sion, 49–50
Optical character reader (OCR), 100, 290
OptionCart, 9
OWASP PHP filters, 139

P
Packets, 154, 290
Passphrases, 116, 290
Passwords. See also Usernames and 

passwords
identifying login/logout points of fail-

ure, 269
password retention policy, 125, 290
securing SQL Server SA account, 

200–202
Patches, 144, 167
Patterns, input validation, 65
PCRE (Perl Compatible Regular Expres-

sions) library, 66–67, 290
PEAR (PHP Extension and Application 

Repository)
CAPTCHA libraries, 100
defined, 290
overview of, 285–286

Peer reviewers, 278, 283–284



INDEX

302

Penetration testing, 225–226
Performance, ModSecurity and, 216
Perl Compatible Regular Expressions 

(PCRE) library, 66–67, 290
Permissions

changing safely, 76
denying to users, 107–108
IIS server, 184, 186
PHP, 87
restrictive, 75
selecting for groups, 109–110
UNIX, Linux and MAC OS X, 76
user-uploaded image files, 88–89
Windows. See Windows file permis-

sions, changing
PHP

buffer overflow vulnerabilities in, 37–39
changing file permissions in, 87
as inherently insecure language, 3–4
memory allocation and, 42–44
verifying running of latest stable ver-

sion, 49–51
PHP Extension and Application Reposi-

tory. See PEAR (PHP Extension and 
Application Repository)

PHP IDS Web site, 139
PHP, securing on server, 207–218

hardening php.ini, 216–218
with ModSecurity, 215–216
using latest version, 207–208, 212–213
using safe_mode, 213–214
using SuExec, 214–215
using Suhosin patch and extension, 213
using Zend Framework and Optimizer, 

208–211
php.ini file

disabling PHP access to remote files, 71
hardening, 216–218

preventing remote filesystem attacks, 
72–73, 90–91

session fixation defense in, 130–131
storing uploaded files in, 74
using ModSecurity to secure, 216
using safe_mode in, 213–214

ping, 29, 291
ping flood attacks, 291
Plus sign (+), 63, 64
Points of failure, designing security, 269
Poisoning, session, 133
POSIX, 66, 291
PowerFuzzer, 227–233
preg_match( ) function, 65–66
Primary code listing, guestbook applica-

tion, 14–15
Privileges, 100–101
Programmer, becoming better, 279–284

avoid feature creep, 279–280
finding good peer reviewer, 283–284
using right tools, 282–283
write self-documenting code, 280–281

Programming languages, inherent insecu-
rity of, 143–144

Properties. See also Permissions
configuring Web file authentication, 

111–114
configuring Windows file authentica-

tion, 102–110
securing SQL Server, 200–201

Proprietary test suites
benefits and features of, 246
overview of, 246
scanning application with, 247–254

Public (asymmetric) key encryption, 
121–122

Published alerts, 46



INDEX

303

R
Read permissions, 76
Really Bad Idea (term), 71
reflected XSS attacks, 137–138
Registered (authenticated) users, grant-

ing privileges to, 100–101
register_globals, hardening php.ini, 216, 

217
Regular expressions (regex)

character classes, 60–61
defined, 291
greedy modifiers, 63
input validation patterns, 65–67
lazy modifiers, 64
metacharacters, 60–62
overview of, 58–59
preventing spammers with, 22–23
testing with CAL9000 toolkit, 236

Releases
MySQL, 159
PHP development, 212
UNIX, Linux or MAC OS X, 145

Remote access, disabling MySQL, 163
Remote exploits, from buffer overflows, 42
Remote filesystem

accessing, 71
preventing attacks on, 72–73

Remote vulnerability, security alerts, 45
Report button, Web Vulnerability Scan-

ner, 252–254
Reporting style, Web Vulnerability Scan-

ner Reporter, 252–253
Resetting passwords, 99
Resources

Apache, current release of, 147–148
Apache, disabling unneeded options, 154
CAL9000 toolkit, 234

CAPTCHA libraries, 100
CVS, 276
filters for malicious code, 139
Gibson Research Corporation password 

generator, 164
ModSecurity, 155, 159, 215–216
MySQL, current release of, 159–160
PEAR, 285–286
PowerFuzzer, 227, 229
SQL Server Management Studio 

Express, 198
Suhosin patch and extension, 213
Visual SourceSafe, 275
Zend Core Website, 209–211

Review Other Updates button, Windows, 
170

Rootkit
defined, 291
remote filesystem access, 71
as uploading vulnerability, 270

ROTX bit manipulation, avoiding, 124

S
safe_mode, securing PHP, 213–214, 217
Salt, 126–127, 291
Sandboxes

defined, 291
securing existing applications, 273–274
setting up for each Web site, 181–184

Sanitation, data
creating custom API for system call, 

31–32
preventing remote filesystem attacks, 

72–73
Sanitation, variable. See Variable sanitation
Scan button, PowerFuzzer test, 232
Scan wizard, Web Vulnerability Scanner, 

248–252



INDEX

304

Scratch Pad tab, CAL9000 toolkit, 242
Script kiddie, 69, 291
Scripts

defeating spammers with CAPTCHA, 100
methodically traversing directory struc-

tures with, 7–9
preventing XSS attacks, 138–139

Scroogle Search tool, CAL9000 toolkit, 
244

Security advisory sources, 45–47
Security alerts, 44–46, 144
Security badges, 96
Security, common misconceptions, 3–10

about minor applications, 9
about native session management, 9
about obscurity, 7–9
about single points of failure, 10
reality check, 3–5
as server issue, 5–7

Security Logins folder, SSMSE, 200–201
Security tab, Windows GUI, 83–84
Security tab, Windows properties, 80–82
Security updates, 187–188
SecurityFocus, 45–46
Self-created files, preventing attacks on, 73
Self-documenting code, writing, 280–281
Semicolons, and spammers, 22–23
Servers, 143–166

Apache. See Apache server
application hardening checklist, 276
MySQL, 159–165
programming languages, OS and, 

143–144
securing UNIX, Linux or MAC OS X, 

144–146
security myth, 5–6
verifying latest stable version, 49–50

ServerSignature to Off, Apache, 151
ServerTokens to Prod, Apache, 151
Service packs, updating operating system, 

168–177
Services

disabling unneeded IIS server, 177–178
disabling unneeded SQL Server, 196
installing updates for necessary Win-

dows, 172–173
Session fixation, 130–131, 133–136
Session hijacking

defending against, 131–133
identifying login/logout points of fail-

ure, 270
patching application for, 133–136

Session IDs, in session fixation, 130–131
Session poisoning, 133
Session security, 129–136

defining session variables, 129
patching application for, 133–136
session fixation, 130
session hijacking, 131–133
session poisoning, 133
types of session attacks, 129–130

Session variables, 129
session.cookie_lifetime, hardening 

php.ini, 217
SessionID column, user database, 

114–115, 118
session_regenerate_id function, 130–131
Set User ID (SUID) bit, 28, 29
SHA algorithm, 125
SimpleTest framework, 221
SMP, disabling for IIS server, 177
Software, Optional updates, 187–188
Spaghetti code, 284, 291



INDEX

305

Spammers
checking length of inputs to detect, 55
making life difficult for, 22–23
using image recognition to defeat auto-

mated scripts of, 99–100
Speed, encryption based on, 124–125
SQL injection

defined, 291
fuzz testing for, 227
how it works, 16–18
identifying points of failure, 270
on stored usernames and passwords, 117

SQL Server
defined, 187
installing SQL Server Management Stu-

dio Express, 198–200
installing/upgrading to latest version, 

187–200
securing Windows server environment, 167
setting up DMZ, 200
steps in hardening, 200–205
updating operating system, 168–177

SQL Server Enterprise Edition, 188–198
SQL Server Express Edition, 188–198
SQL Server Management Studio Express 

(SSMSE), 198–200
Square brackets ([ ]), 59
SSL/TSL, 131
SSMSE (SQL Server Management Studio 

Express), 198–200
Stack, 40–41, 291
Star (*), 63
Stateless, defined, 291
Stateless HTTP, 129
Storage

designing long-term, 263–267
safe file, 75

of self-created files in separate filesys-
tem, 73

storing data securely, 278
Stored XSS attacks, 138
striptags( ) function, 20–21
strlen( ) function, 48–49
Subdirectories, setting permissions on, 110
Sudo command, 28, 29
SuExec, securing PHP with, 214–215
Suhosin patch and extension, to PHP, 213
SUID (Set User ID) bit, 28, 29
Superglobals, 74, 291–292
Surface Area Configuration tool, SQL 

Server, 195–198
Swipe cards, 96
Symmetric key encryption, 122–123
System calls, 27–34

defined, 27
encapsulating, 278
overview of, 27–28
patching guestbook application, 32–34
securing with escapeshellarg( ), 30–31
securing with escapeshellcmd( ), 30
using system binaries with SUID bit or 

sudo, 28–29
using system resources, 29–30

System calls API, 31–32, 51–52
System functions, validating data from, 48
System resources, system calls using, 

29–30
System tests, 222–223

T
Tainted data, 57–58, 65
Tainted_prefix, 58
Test suites. See Proprietary test suites



INDEX

306

Testing
penetration, 225–226
securing existing applications with, 

274–275
for unexpected input, 20–21

Testing, automated, 219–224
choosing solid data, 223–224
framework for, 220–221
performing system tests, 223
performing unit tests, 222–223
resources for, 288
security implications of, 219–220

Testing, exploit, 225–254
defining, 225–226
fuzzing, overview of, 226–227
installing and configuring PowerFuzzer, 

227–230
resources for, 288
testing toolkits, 233–234
using CAL9000 toolkit. See CAL9000 

toolkit
using PowerFuzzer, 231–233
using proprietary test suites, 246–254
warnings about tools of, 226

Testing toolkits, 233–234. See also
CAL9000 toolkit

Third-party libraries, encryption, 123–124
3DES Encryption, 124
/tmp Directory, 74–75
tmp_name variable, 74
Token verification, 132–136
Trust, Internet security and, 4

U
Unicode, 43, 292
Unit tests, 222–223, 268
UNIX

changing file permissions in, 76–87

securing server environment in, 144–146
username and password system in, 101

Update, Windows, 168–177, 187
Updated alerts, 46, 144
Upgrades, 144, 213
Uploads

creating form for, 90
identifying points of failure, 270
opening local files, 70–71
patching application to allow image 

files, 88–90
securing application against file, 73–74

User accounts
creating in Zend, 210–211
securing MySQL by deleting default, 

164–165
User agent verification, 132
User database table

adding encryption to, 126
adding to guestbook application, 118–119
storing authentication information in, 

114–115
User input

identifying points of failure, 270–271
preventing XSS attacks, 138–139
sanitizing variables, 46
as source of data, 48
validating, 32

User instances, enabling in SQL Server, 194
Usernames and passwords

accessing vulnerability of, 117
configuring Web file authentication, 

111–114
configuring Windows file authentica-

tion, 114–115
encrypting, 115
overview of, 97–99
password encryption, 125



INDEX

307

password strength, 116–117
placing .htaccess text file, 101
securing MySQL, 163–164
setting up sandboxes for Web sites, 182
storing information in user database, 

114–115, 118–119
as "what you know" authentication, 95–96

Users. See also Administrative users; 
Anonymous users

building error-handling mechanism, 
19–23

configuring Web file authentication, 
111–114

configuring Windows file authentica-
tion, 104–110

creating for each application in Apache, 
149–151

designing security for data, 260–267
UTF-8 encoding, 42–44, 292

V
validateUsernamePassword( ) function, 

119–120
Validation

creating authentication API, 119–120
input. See Input validation
preventing XSS attacks, 138–139

Variable sanitation
checking, 51–52
creating authentication API, 119–120
to prevent buffer overflows, 46–49
preventing XSS attacks, 138–139
securing existing applications, 277
using regular expressions for, 65–67

Variables
initializing, 33
session, 129

Verification
file upload, 74–75

IP address, 133
preventing remote filesystem attacks 

with, 72–73
token, 133
user agent, 132
of Windows Updates, 175

Version control system, 275–276
Versions

Apache, hiding information on, 151
Apache, using latest, 147–149
MySQL, using latest, 159–163
PHP, finding latest stable, 212–213
PHP, using latest, 207–208
SQL Server, using latest, 187–200
UNIX/Linux/MAC OS X, using latest, 

145–146
verifying latest stable, 49–50
Windows, finding latest, 185
Windows, using latest, 167

Virtual directories, setting permissions 
on, 110

Visitors. See Anonymous users
Visual impairment, accessibility issues, 100
Visual SourceSafe, 275
VPN tokens, 96
Vulnerabilities

alerts notifying of, 46
application hardening checklist, 276–277
automated scanning of, 247–254
PowerFuzzer report on, 233

W
Web Authors group, 179
Web file access, 111–114
Web hosts, secure, 144
Web root

creating Web sites in IIS Manager, 
179–180



INDEX

308

Web root (continued)
enabling only needed Web services, 

185–187
setting up on nonsystem drive, 179
setting up sandboxes for each site, 

181–184
Web servers, inherent insecurity of, 

143–144
Web Service Extensions folder, 185–187
Web Site Creation Wizard, 180
"What you are" authentication, 96
"What you have" authentication, 96
"What you know" authentication, 96
White-box testing, 277, 292
Windows Explorer, securing Web root, 179
Windows file permissions, changing, 

77–87
configuring authentication, 102–110
explicitly selecting, 85–87
granularity of, 77–79
setting using GUI, 83–85
use of inheritance, 79–82

Windows Update, 168–177, 187
Windows Web server, 167, 168–177
Workflow diagram, 260–261, 272
Write permissions, 76

X
XOR bit manipulation, 124
XSS Attacks tab, CAL9000 toolkit, 

236–237
XSS (cross-site scripting)

defined, 137
fuzz testing for, 227
patching application to prevent, 138–139
reflected, 137–138
stored, 138

Z
Zend, 208–211

extending PHP, 207–208
Framework and Optimizer, 208–211


	Chapter 8 Encryption
	What is Encryption?
	Choosing an Encryption Type
	Password Security
	Patching the Application to Encrypt Passwords
	Wrapping It Up

	Chapter 9 Session Security
	What is a Session Variable?
	Major Types of Session Attacks
	Patching the Application to Secure the Session
	Wrapping It Up

	Chapter 10 Cross-Site Scripting
	What Is XSS?
	Reflected XSS
	Stored XSS
	Patching the Application to Prevent XSS Attacks
	Wrapping It Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z




