
The following is an excerpt from a Short Cut published by one of the Pearson Education imprints.

Short Cuts are short, concise, PDF documents designed specifically for busy technical
professionals like you.

We’ve provided this excerpt to help you review the product before you purchase.
Please note, the hyperlinks contained within this excerpt have been deactivated.

Tap into learning—NOW!

Visit www.informit.com/shortcuts for a complete list of Short Cuts.

Your Short Cut to Knowledge

shortcut

SECTION #1

Workflow Scheduling

Workflow Scheduling

Principles of Workflow Scheduling
At this point you should have a good idea of how to build simple workflows. We still have not yet
discussed features such as error handling or compensation which are critical to building any real
workflow. In order to do so, however, we need to explain how the workflow runtime schedules
activities. Otherwise, you will have a mistaken notion of how the more complicated scenarios
operate.

Each workflow instance runs on one thread.1 The workflow runtime maintains a FIFO queue of
activities that are ready to execute in a given workflow instance. In addition, activity scheduling is
non-preemptive. Until an executing activity either yields because it is waiting for a notification of
some event, or enters the closed state, no other activity in the scheduler’s queue can run. For
example, a CodeActivity that enters an infinite loop will cause the entire workflow to hang.2

If an activity yields because it is waiting for some external event to occur, the next activity in the
scheduler’s queue can execute. When the event that activity is waiting for arrives, the waiting
activity is scheduled to run by placing it behind whatever activities are already in the scheduled to
run queue. It has no priority over what is already in the scheduling queue.

Understanding this is important so that you understand how your workflow will operate. It is criti-
cal for understanding how fault handling, compensation, and other such activities are scheduled
when we discuss them.

3 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

1 Because of passivation,
however, you should not
assume that all activities
execute on the same
thread. For example, do not
store anything in the current
thread context.

2 For those of you old
enough to remember, this is
how scheduling worked in
early versions of Windows.

SECTION #1

Workflow Scheduling

As noted earlier, the workflow itself is an activity. The first thing that the workflow scheduler does
when a workflow instance is started (with the Start method of the WorkflowInstance class) is to
place the parent activity of the workflow (the one passed to the CreateWorkflow method) on the
scheduler queue to be executed.

SequenceActivity Scheduling
As you have seen in previous examples, a SequenceActivity contains one or more child activities
that are executed in order. When the SequenceActivity executes, it sets up a notification request
for the close event of its first child, and then schedules the first child activity. It then yields. When
the first child closes, the SequenceActivity receives a notification. At that point, it sets up a notifi-
cation request for the close of the second child, and then schedules the second child activity. It
then yields. It continues with this pattern for all its children. At the close of the last child, the
SequenceActivity itself goes into the Closed state.

ParallelActivity Example
The ParallelActivity is more complicated. The ParallelActivity can have several branches, all of
which must complete before the next activity is executed. This activity is illustrated with the
ParallelActivity example (see Figure 27).

The Start code activity writes a message to the console when the workflow begins. The Finish code
activity writes a message to the console at the end of the workflow. The ParallelActivity can have
several branches, all of which must complete before the next activity is executed. Hence, the
Finish activity will not write its message out until all branches of the Parallel activity have

4 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #4

Activities That Define Workflow Scope

Compensation
Long running workflows (as well as other service oriented systems) need transaction semantics
under circumstances other than the ones databases can provide. Long running workflows often
take a long time to execute because they may be waiting for a human interaction before they can
commit. They would lock records for durations that would impede scalability. In addition, they
often use multiple databases, and classic ACID transactions would time out under these circum-
stances. Workflows (and other service oriented systems) often use databases from other companies.
Since this access often crosses a trust boundary, a company is usually reluctant to let another
company lock records in its database even if the circumstances for classic ACID transactions
would apply.

35 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 53
TransactionScope
Activity rolled back
the initial
withdrawal

SECTION #4

Activities That Define Workflow Scope

Under these conditions, one uses another transaction to compensate, or reverse the effects of an
already committed transaction. This is called a compensating transaction. Often ACID transactions
are referred to just as transactions, and compensating transactions are called just compensation.10

36 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

10 Compensating trans-
actions also are used
with ACID transactions
when one has to
reverse a previously
committed transaction
because of an error
in business logic.
Suppose you decided
that the withdrawal was
a mistake. You deposit
the cash back in the
account. This type of
compensation is analo-
gous to the compensa-
tion of long running
workflows. Of course
compensating transac-
tions are not always
possible. If the action
was to launch a cruise
missile there may or
may not be an abort
sequence.
11 The Compensatable
SequenceActivity
implements the
ICompensatableActivity
interface. Any activity
that implements this
interface can have a
compensation handler.

FIGURE 54
Compensation
Example
Workflow

Since this scenario is the more common one with long running workflows, WF
comes with activities that support compensation.

The CompensatableSequenceActivity allows one to associate a compensation
handler with a sequence of activities. This compensation handler can contain
activities that you need to invoke in order to reverse the action taken in the
CompensatableSequenceActivity.11

The Compensation example has a simple illustration of how to use this activity.
It uses the exact same example of a transfer from checking account to a savings
account that was used by the Transaction example. Here the withdrawal and the
deposit are in two separate CompensatableSequenceActivities to illustrate how
this would work if these actions used two separate databases.

The workflow example is shown in Figure 54.

The code within the activities is identical to the code in the previous Transaction
example except it is split into two compensatable sequences. As before there is a
disabled ThrowActivity between them. Running the workflow yields the follow-
ing result in Figure 55.

SECTION #4

Activities That Define Workflow Scope

Since this code uses the same database tables as the previous example, the exact numbers you see
will depend on how many times that the previous example is executed before this one. The output
in Figure 55 has the original values in the accounts as $200 each.

To view the compensation handler, select “View Compensation Handler” from each sequence’s
context menu as shown in Figure 56.

37 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 55
Compensation
Example Output

SECTION #4

Activities That Define Workflow Scope

38 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 57
Compensation
Handlers

FIGURE 56
Viewing the
Compensation
Handler

You can then drag and drop whatever activities you need into the compensation handler (see
Figure 57). In this case we just have code activities that reverse the withdrawal and deposit transac-
tions. Each CodeActivity also writes out a diagnostic message to indicate that it was invoked and
writes out the restored balance.

SECTION #4

Activities That Define Workflow Scope

Enable the ThrowActivity and then run the application:

39 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 58
Compensation
Example with Fault
After Checking
Withdrawal

The withdrawal occurs and the balance is reduced from $100 to 0. After the exception is thrown,
the compensation handler is invoked and the balance is restored to $100. Note that the
WorkflowTerminated notification occurs because the exception is not handled by the workflow.

This compensation is handled entirely through the workflow mechanisms and unlike the
TransactionScopeActivity the compensation handlers do not use any classes from the
System.Transaction namespace. In addition, you do not have to have to use a persistence service
because it is the responsibility of the compensation handler to restore the workflow to the appro-
priate state.

If you need both ACID transactions and compensation you can use the
CompensatableTransactionScopeActivity. If you need to explicitly invoke the compensation
handler of an already completed compensatable activity, you can use the CompensateActivity.

