
The following is an excerpt from a Short Cut published by one of the Pearson Education imprints.

Short Cuts are short, concise, PDF documents designed specifically for busy technical
professionals like you.

We’ve provided this excerpt to help you review the product before you purchase.
Please note, the hyperlinks contained within this excerpt have been deactivated.

Tap into learning—NOW!

Visit www.informit.com/shortcuts for a complete list of Short Cuts.

Your Short Cut to Knowledge

shortcut

SECTION #2

Rules-Driven Workflow

instanceId = instance.InstanceId;

instance.Start();

DisableButtons();

btnGather.Enabled = true;

}

The other buttons will raise the appropriate events to transition to the states of the workflow.

Now try running the workflow and experiment with the various state transitions.

Rules-Driven Workflow
The third workflow pattern that ships with Workflow Foundation is modeled by the PolicyActivity
class. The policy activity uses the WF rules engine to incorporate rule based decision making into
your workflows. A state or sequential workflow is based on a sequence of operations that evolve
over time. Rules allow you to model relationships that are independent of time. You can also view
these rules as constraints on the data consumed by your workflow.

The FinancialRecommendations example uses the PolicyActivity to execute a simple set of
rules that allocates financial assets based on age, portfolio size, and expressed risk preference
(see Figure 22).

16 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Rules-Driven Workflow

Figure 23 illustrates the simple sequential workflow that consists of a PolicyActivity named
ClassificationEngine that uses rules to assign a risk profile to an investor. The CodeActivity
MakeRecommendations uses that risk profile to make a suggested asset allocation.

The workflow communicates with its console host through four properties. Age, InvestableAssets,
and ExpressedRiskTolerance are input parameters. The InvestableAssets is also an output property
since in cases of very low risk tolerance some assets are removed from the investment portfolio. The
Recommendation property allows the host to find out what recommendation the workflow made.

17 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 22
Output from
Financial
Recommendations
Application

SECTION #2

Rules-Driven Workflow

The ClassificationEngine activity assigns a value to the
private member variable riskTolerance. The
MakeRecommendations CodeActivity uses it to make the
actual allocations:

private void ExecuteMakeRecommendations (object sender,

EventArgs e)

{

switch (riskTolerance)

{

case RiskToleranceLevel.None:

recommendation.percentCash = 100;

break;

case RiskToleranceLevel.Low:

recommendation.percentCash = 50;

recommendation.percentShortTermBonds = 50;

break;

case RiskToleranceLevel.Medium:

recommendation.percentCash = 10;

recommendation.percentShortTermBonds = 20;

recommendation.percentMiddleTermBonds = 20;

recommendation.percentLowCapStocks = 10;

recommendation.percentMidCapStocks = 20;

recommendation.percentLargeCapStocks = 20;

break;

18 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 23
Financial
Recommendation
Engine Workflow

SECTION #2

Rules-Driven Workflow

case RiskToleranceLevel.High:

recommendation.percentCash = 10;

recommendation.percentMiddleTermBonds = 10;

recommendation.percentLongTermBonds = 10;

recommendation.percentLowCapStocks = 30;

recommendation.percentMidCapStocks = 30;

recommendation.percentLargeCapStocks = 10;

break;

case RiskToleranceLevel.Gambler:

recommendation.percentCash = 5;

recommendation.percentLongTermBonds = 10;

recommendation.percentJunkBonds = 20;

recommendation.percentLowCapStocks = 25;

recommendation.percentMidCapStocks = 20;

recommendation.percentLargeCapStocks = 10;

recommendation.percentBankruptStocks = 10;

break;

default:

throw new Exception (“Invalid Risk Tolerance Level”);

}

Let us now examine how the rules determine the value of riskTolerance.

A rule is analogous to an if / then / else statement in program logic. Depending on the evaluation
of a Boolean condition, one or another action might be taken. Rules are combined into a rule set
which represents a set of rules that are used together to evaluate a given situation. In our case, you
need several rules in order to evaluate the risk tolerance of a particular individual.

19 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Rules-Driven Workflow

The PolicyActivity has a property called RuleSetReference (Figure 24). This is the name of the
particular rule set that this activity is using. In the FinancialRecommendations example, the
ClassificationEngine is using the rule set ClassificationRules.

20 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 24
Property Window
for PolicyActivity

Although a particular PolicyActivity can only use one rule set at a time, a workflow can have
several rule sets associated with it. Pressing the button on property brings up a dialog that
manages the rule sets that are associated with the workflow. As Figure 25 illustrates, in our par-
ticular case there is only one. It is called ClassificationRules.

SECTION #2

Rules-Driven Workflow

Clicking on “New…” brings up an empty Rule Set Editor that you can use to populate this new
rule set with new rules. Clicking on “Edit…” brings up the Rule Set Editor for the selected rule set.
The Rule Set Editor is populated with the existing rules for that set (Figure 26). You can now add,
edit, or delete rules within that rule set. Within the Rule Set Manager dialog you can also delete or
rename rule sets.

21 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 25
Rule Set Manager
Dialog

SECTION #2

Rules-Driven Workflow

If you have multiple rule sets, you can choose which one a particular PolicyActivity is going to use.

Within the Rule Set Editor you can not only add, edit, or delete rules, but you can also change
how the rules interact with each other.

Let us take a look at the Young Age Risk rule which is the first one listed in Figure 26. Each rule
has a condition. In this rule the condition is “if the variable age in the workflow is greater than 0
and less than 35”. If this condition is true the risk tolerance level is set to high. There is no “else”
condition in this particular rule if the condition is false.

To add a new rule, simple select “Add Rule” in the Rule Set Editor and fill in the condition and the
relevant “then” and “else” actions. To delete a rule, just select it and click “Delete” in the Rule Set
Editor. Note that Intellisense is available to you in the Rule Set Editor.

Associated with each rule is a priority. Higher numbers are run before lower numbers (a rule with a
priority of 2 runs before a rule with a priority of 1). Rules with identical priority are run in alpha-
betic order of their names. In our case, the age risk rules run before the asset adjustment rules. Any
rule can be enabled or disabled by checking the Active checkbox associated with it.

The rules in the ClassificationRules rules set fall into several categories. The first group (with
Priority of 500) all use the individual’s age to set the riskTolerance variable. The younger, the
person, the more risk they can tolerate. The second group (with Priority of 400) adjusts the risk
tolerance based on the amount of investable assets an individual has. The less money they have,
the less risk they should assume. Individuals with more money can take on greater risks. The third
set of rules (with Priority 300), adjusts the risk tolerance based on what the individual says their
risk is. If the calculated risk from the evaluation is riskier than their expressed reference, the risk
tolerance is adjusted downwards. If their expressed preference is riskier than the calculated risk,

22 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Rules-Driven Workflow

the risk tolerance is adjusted upwards. The final set of rules (with Priority 200) removes some
assets from the investment pool for people with low risk tolerances. This money should be put in
some savings vehicle instead of being invested. Note that the Cash recommendation here is poten-
tially available for investment. It is not considered as part of an individual’s savings for expenses or
other emergencies.

23 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 26
Rule Set Editor
for the
ClassificationRules
Used to Define
Risk Tolerance

SECTION #2

Rules-Driven Workflow

If you will examine these rules you will see that they are interrelated. If the final set of rules
adjusts the amount of investment assets, this affects the results of the second group of rules that
adjusted the risk tolerance based on the amount of assets. Should the second group of rules be run
again? If the second group of rules is run again, should the resulting change in risk tolerance cause
the third set of rules be run again? Depending on the nature of the rules, the results could
converge or diverge!

The Chaining and Reevaluation drop down boxes allow you to control how these rules relate to
each other. The Chaining drop down applies to the entire rule set. The Reevaluation drop down
applies to each rule individually.

The default value for the Chaining drop down is “Full Chaining”. If the Rules Engine detects a
change in a value that was used in a rule condition because of the execution of another rule, it
will rerun those rules. You can prevent this from happening by setting the reevaluation value for
that rule to “Never”. The default is “Always”. Note that the set of age rules has its reevaluation
value set to “Never”.

If you set the Chaining value to “Sequence” each rule condition is evaluated only once even if the
value used in its evaluation has changed.

The Rules Engine can detect dependencies for variables that are explicitly mentioned in the rules.
Notice, however, that some of the rules (such as the rules that modify the risk tolerance) use
methods that modify some of the variables used in rule conditions. You use the RuleWrite and
RuleRead attributes to indicate to the engine that there are dependencies in the code that the
Rules Engine needs to be aware of. There also is a RulesInvoke attribute that tells the engine that
the method invokes another method that it needs to inspect the attributes of.

24 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Rules-Driven Workflow

[RuleWrite (“riskTolerance”)]

private void ModifyRiskTolerance (int increment)

{

riskTolerance = riskTolerance + increment;

if (riskTolerance > RiskToleranceLevel.Gambler)

riskTolerance = RiskToleranceLevel.Gambler;

if (riskTolerance < RiskToleranceLevel.None)

riskTolerance = RiskToleranceLevel.None;

}

[RuleRead (“riskTolerance”)]

private int RiskToleranceDifferential ()

{

int diff = expressedRiskTolerance - riskTolerance;

return diff;

}

[RuleWrite (“investableAssets”)]

private void ModifyInvestableAssets (int percent)

{

investableAssets = (int)((1 - percent * .01) *

investableAssets);

return;

}

25 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Rules-Driven Workflow

This approach works for code that you write. Suppose you make a call into third party code in an
assembly that you have no control over. In that case, in the rule’s action you use the “Update”
statement in the rule to indicate a dependency:

MakeThirdPartyCall ()

Update(“this/riskTolerance/”)

You can also use the Update statement to explicitly control the chaining behavior. Use the
“Explicit Update Only” value for the Chaining parameter if this is the behavior that you want.

Another statement you can use inside of an action is “Halt”. This will cause the Rules Engine to
stop processing any further rules.

Associated with the project is a file called “FinancialRecommendations.rules”. Within this XML file
is stored the ClassificationRules rule set. Part of this files looks as follows:

<Rule Name=”Young Age Risk Rule” ReevaluationBehavior=”Never”

Priority=”500” Description=”{p3:Null}” Active=”True”>

<Rule.ThenActions>

<RuleStatementAction>

<RuleStatementAction.CodeDomStatement>

<ns0:CodeAssignStatement LinePragma=”{p3:Null}”

xmlns:ns0=”clr-namespace:System.CodeDom;Assembly=System,

Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089”>

<ns0:CodeAssignStatement.Left>

<ns0:CodeFieldReferenceExpression

FieldName=”riskTolerance”>

...

26 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Rules-Driven Workflow

The conditions and actions of the rules are defined in terms of System.CodeDom expressions.
Anything that can be expressed using System.CodeDom can be expressed as a rule. In fact, using
the Rules Editor you can express only a subset (albeit a useful subset) of the potential rules that
can be passed to the Rules Engine.

If you want to see how the Rules Engine processes the rules, you can add a trace statement in the
application configuration file:

<add name =”System.Workflow.Activities.Rules” value =”Information” />.

Tracing was discussed in an earlier section of this article.

At this point you should try to play with various inputs, and see if you can understand how the
recommendations were generated based on the rules. If necessary use the trace statements. You can
also modify the chaining and reevaluation rules to see how those changes modify the way the
Rules Engine operates.

The Rules Engine works with declarative conditions that do not require you to write any code.
Therefore, it is much easier to modify the rules than changing a sequence or state machine
workflow.

You can incorporate the rules engine in one of your own custom activities. In addition, it is possi-
ble to host the rules engine, and the rules editor outside of a workflow. You can also write your
own rules editor as well.

27 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

