
The following is an excerpt from a Short Cut published by one of the Pearson Education imprints.

Short Cuts are short, concise, PDF documents designed specifically for busy technical
professionals like you.

We’ve provided this excerpt to help you review the product before you purchase.
Please note, the hyperlinks contained within this excerpt have been deactivated.

Tap into learning—NOW!

Visit www.informit.com/shortcuts for a complete list of Short Cuts.

Your Short Cut to Knowledge

shortcut

SECTION #2

Requirements for Workflow Infrastructure

Requirements for Workflow Infrastructure
Given the structure of modern business applications, what kinds of problems does a workflow
foundation have to solve?

First, business processes often take days, weeks or months to complete. Since human actions and
decisions are part of the process, much of this time is spent waiting for something to occur rather
than in constant calculation.

This has several significant implications:

. Workflows often have to wait days, weeks, or months for events to occur, or for other
activities to finish.

. Workflows should not consume processor cycles while waiting.

. Workflows must allow for scalability with many multiple instances.

. Workflows and their associated state must survive machine resets.

. Workflows often require asynchronous control flow because they must wait for human
decisions, or the results of other business processes

. Workflows often require the use of a compensation model, instead of traditional database
transactions.

Second, business analysts need to design their business processes using concepts they understand.
In other words they must use domain specific knowledge. The workflow design tool they use
might be visual, but it does not have to be. In any case, the design tool must allow the business

5 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Requirements for Workflow Infrastructure

analyst to change the workflow in response to rapid changes in the business environment. To use
the current jargon du jour, the business must be agile.

The implication here is that this designer must be capable of turning the analyst’s design into
executable code. You can see the attempt to do this in the application integration space with the
BizTalk designer generating BPEL orchestrations.

These requirements for workflow translate into the following requirements for the Windows
Workflow infrastructure:

. Workflow programs are reactive; they must be capable of responding to actions and data that
are generated by humans or machines. These actions and data may or may not be generated
within the workflow.

. To avoid consuming processor cycles while waiting,4 and to survive the inevitable machine
resets that will occur over the long time workflows take, the state of the workflow must be
capable of being saved to a storage medium, and then brought back into memory, and
resumed, possibly even on a different machine. This means that the workflow itself must be
call stack, thread, process, and machine agnostic. You have to treat a workflow as pure data.

. While a workflow can be created independently of a design tool, any design tool must be
capable of creating a workflow that can be translated into an executable.

6 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

4 Imagine many threads
waiting for input and
being either blocked or
busy waiting. This is
not the way to build a
scalable system.

SECTION #3

Windows Workflow Foundation

Windows Workflow Foundation

How Does Workflow Foundation Relate to the Requirements
for the Workflow Infrastructure?
Windows Workflow Foundation (WF) is the workflow infrastructure that satisfies the requirements
just outlined. WF supplies a runtime engine and a framework that you use to implement a work-
flow. You focus on the business logic, rules, and policies of the business process rather than build-
ing workflow infrastructure plumbing. Of course, you can customize parts of this infrastructure if
you need to.

We will use five examples to illustrate how Windows Workflow Foundation satisfies the require-
ments we just listed. These examples only use the command line C# compiler. While most of our
other examples will use Visual Studio.NET, it is important to understand the fundamental princi-
ples independent of the programming tools and design tools used. By doing this you will under-
stand the principles underlying more sophisticated applications instead of just feeling like you are
following a recipe.

None of these five examples use the activities that ship with Windows Workflow Foundation.
There is nothing special or privileged about these included activities. They use the same tech-
nology that you would use to build your own activities.

The first two examples introduce the fundamental concepts of WF. The last three show how these
concepts are the foundation for building modern business applications.

7 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #3

Windows Workflow Foundation

Don’t feel overwhelmed if you don’t understand everything all at once. We will revisit in more
detail later, the principles and classes we introduce here. You could skip over these examples and
go directly to the section entitled “Using Visual Studio.NET” and come back here later. I hope you
don’t do that because a little patience here will translate into real understanding.

Information on setting up all the examples is found in the installation instructions that accom-
pany the sample programs.

Host, Runtime, and Activity
The three must fundamental concepts in WF are host, runtime, and activity. These are illustrated
in the first example which is just about the simplest workflow you can write. Run compile.bat to
build the “Workflow and Host” example. Run the program HelloWorkflow.exe. Enter a carriage
return to terminate the program. Following tradition, the sample just prints out “Hello world.”

Let us examine the two files that make up this simple workflow.

The HelloActivity.cs file contains the simplest activity you can create. An activity is the means by
which a workflow accomplishes some task or action. Later we will examine more complicated
activities, but every activity has an Execute method. At the minimum, an activity goes from the
Executing state to the Closed state. As we see in the code below, in the Executing state this activity
just writes a simple string to the console before entering the Closed state.

using System;

using System.Workflow.ComponentModel;

namespace HelloWorld

8 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #3

Windows Workflow Foundation

{

public class HelloWorld : Activity

{

protected override ActivityExecutionStatus

Execute(ActivityExecutionContext context)

{

Console.WriteLine(“Hello, world.”);

return ActivityExecutionStatus.Closed;

}

}

}

But who schedules and runs the activity? The workflow runtime is responsible for scheduling activities
and executing them by invoking their Execute method. But the workflow runtime has to be created
within an application. This could be a console application, a Windows Form application, a web service,
or sharepoint to name a few possibilities. The application that creates and runs the workflow is known as
the workflow host. In these first five examples we shall use a console application as the host. The host.cs
file contains the simplest host that one can write. Here is the code:

using System;

using System.Workflow.Runtime;

class Program

{

static void Main(string[] args)

{

WorkflowRuntime workflowRuntime = new WorkflowRuntime();

9 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #3

Windows Workflow Foundation

workflowRuntime.StartRuntime();

Type type = typeof(HelloWorld.HelloWorld);

WorkflowInstance instance =

workflowRuntime.CreateWorkflow(type);

instance.Start();

Console.ReadLine();

workflowRuntime.StopRuntime();

}

}

The host starts the workflow runtime by creating an instance of the WorkflowRuntime class and
then invoking the StartRuntime method. After that it creates and starts the workflow instance. The
workflow is represented as the type that implements the activity. Note that this type is identical to
the type of the activity defined in the HelloActivity.cs file.

We use a Console.ReadLine to keep the console application alive while the workflow runs. After you
enter a carriage return, the host stops the workflow runtime.

Activities and Workflow
While, in theory, you can write an entire workflow in one activity this would not be very practical.
First, the activity would be enormously complex. Second, you would lose the ability to have
reusable activities. In other words, if parts of different business processes shared similar functional-
ity you would not be able to reuse that functionality.

10 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

