

The SEI Series in Software Engineering

The Addison-Wesley Software Security Series

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordi-
nation Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolu-
tionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim
Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for
Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead
Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie
Mellon University.

Special permission to reproduce portions of Build Security In, © 2005–2007 by Carnegie Mellon University, in this
book is granted by the Software Engineering Institute.

Special permission to reproduce portions of Build Security In, © 2005–2007 by Cigital, Inc., in this book is granted by
Cigital, Inc.

Special permission to reprint excerpts from the article “Software Quality at Top Speed,” © 1996 Steve McConnell, in
this book is granted by Steve McConnell.

The authors and publisher have taken care in the preparation of this book, but make no express or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales,
(800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States, please contact: International Sales, international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Software security engineering : a guide for project managers / Julia H. Allen ... [et al.].
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-50917-8 (pbk. : alk. paper) 1. Computer security. 2. Software engineering. 3. Computer
networks—Security measures. I. Allen, Julia H.

 QA76.9.A25S654 2008
 005.8—dc22

2008007000

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to: Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite
900, Boston, MA 02116, Fax: (617) 671-3447.

ISBN-13: 978-0-321-50917-8
ISBN-10: 0-321-50917-X
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, April 2008

xi

Foreword

Everybody knows that software is riddled with security flaws. At first
blush, this is surprising. We know how to write software in a way that
provides a moderately high level of security and robustness. So why
don’t software developers practice these techniques?

This book deals with two of the myriad answers to this question. The
first is the meaning of secure software. In fact, the term “secure soft-
ware” is a misnomer. Security is a product of software plus environ-
ment. How a program is used, under what conditions it is used, and
what security requirements it must meet determine whether the soft-
ware is secure. A term like “security-enabled software” captures the
idea that the software was designed and written to meet specific secu-
rity requirements, but in other environments where the assumptions
underlying the software—and any implied requirements—do not
hold, the software may not be secure. In a way that is easy to under-
stand, this book presents the need for accurate and meaningful secu-
rity requirements, as well as approaches for developing them. Unlike
many books on the subject of secure software, this book does not
assume the requirements are given a priori, but instead discusses
requirements derivation and analysis. Equally important, it describes
their validation.

The second answer lies in the roles of the executives, managers, and
technical leaders of projects. They must support the introduction of
security enhancements in software, as well as robust coding practices
(which is really a type of security enhancement). Moreover, they must
understand the processes and make allowances for it in their schedul-
ing, budgeting, and staffing plans. This book does an excellent job of
laying out the process for the people in these roles, so they can realisti-
cally assess its impact. Additionally, the book points out where the
state of the art is too new or lacks enough experience to have
approaches that are proven to work, or are not generally accepted to
work. In those cases, the authors suggest ways to think about the
issues in order to develop effective approaches. Thus, executives, man-
agers, and technical leaders can figure out what should work best in
their environment.

Forewordxii

An additional, and in fact crucial, benefit of designing and implement-
ing security in software from the very beginning of the project is the
increase in assurance that the software will meet its requirements. This
will greatly reduce the need to patch the software to fix security
holes—a process that is itself fraught with security problems, under-
cuts the reputation of the vendor, and adversely impacts the vendor
financially. Loss of credibility, while intangible, has tangible repercus-
sions. Paying the extra cost of developing software correctly from the
start reduces the cost of fixing it after it is deployed—and produces a
better, more robust, and more secure product.

This book discusses several ways to develop software in such a way
that security considerations play a key role in its development. It
speaks to executives, to managers at all levels, and to technical leaders,
and in that way, it is unique. It also speaks to students and developers,
so they can understand the process of developing software with secu-
rity in mind and find resources to help them do so.

The underlying theme of this book is that the software we all use could
be made much better. The information in this book provides a founda-
tion for executives, project managers, and technical leaders to improve
the software they create and to improve the quality and security of the
software we all use.

Matt Bishop
Davis, California
March 2008

xiii

Preface

The Problem Addressed by This Book

Software is ubiquitous. Many of the products, services, and processes
that organizations use and offer are highly dependent on software to
handle the sensitive and high-value data on which people’s privacy,
livelihoods, and very lives depend. For instance, national security—
and by extension citizens’ personal safety—relies on increasingly com-
plex, interconnected, software-intensive information systems that, in
many cases, use the Internet or Internet-exposed private networks as
their means for communication and transporting data.

This ubiquitous dependence on information technology makes soft-
ware security a key element of business continuity, disaster recovery,
incident response, and national security. Software vulnerabilities can
jeopardize intellectual property, consumer trust, business operations
and services, and a broad spectrum of critical applications and infra-
structures, including everything from process control systems to com-
mercial application products.

The integrity of critical digital assets (systems, networks, applications,
and information) depends on the reliability and security of the software
that enables and controls those assets. However, business leaders and
informed consumers have growing concerns about the scarcity of practi-
tioners with requisite competencies to address software security [Carey
2006]. Specifically, they have doubts about suppliers’ capabilities to build
and deliver secure software that they can use with confidence and with-
out fear of compromise. Application software is the primary gateway to
sensitive information. According to a Deloitte survey of 169 major global
financial institutions, titled 2007 Global Security Survey: The Shifting Secu-
rity Paradigm [Deloitte 2007], current application software countermea-
sures are no longer adequate. In the survey, Gartner identifies application
security as the number one issue for chief information officers (CIOs).

Selected content in this preface is summarized and excerpted from Security in the Software Lifecycle:
Making Software Development Processes—and Software Produced by Them—More Secure [Goertzel 2006].

Prefacexiv

The absence of security discipline in today’s software development prac-
tices often produces software with exploitable weaknesses. Security-
enhanced processes and practices—and the skilled people to manage
them and perform them—are required to build software that can be
trusted to operate more securely than software being used today.

That said, there is an economic counter-argument, or at least the per-
ception of one: Some business leaders and project managers believe
that developing secure software slows the software development
process and adds to the cost while not offering any apparent advan-
tage. In many cases, when the decision reduces to “ship now” or “be
secure and ship later,” “ship now” is almost always the choice made
by those who control the money but have no idea of the risks. The
opposite side of this argument, including how software security can
potentially reduce cost and schedule, is discussed in Chapter 1
(Section 1.6, “The Benefits of Detecting Software Security Defects
Early”) and Chapter 7 (Section 7.5.3, in the “Knowledge and Exper-
tise” subsection discussing Microsoft’s experience with its Security
Development Lifecycle) in this book.

Software’s Vulnerability to Attack

The number of threats specifically targeting software is increasing, and
the majority of network- and system-level attacks now exploit vulner-
abilities in application-level software. According to CERT analysts at
Carnegie Mellon University,1 most successful attacks result from tar-
geting and exploiting known, unpatched software vulnerabilities and
insecure software configurations, a significant number of which are
introduced during software design and development.

These conditions contribute to the increased risks associated with
software-enabled capabilities and exacerbate the threat of attack.
Given this atmosphere of uncertainty, a broad range of stakeholders
need justifiable confidence that the software that enables their core
business operations can be trusted to perform as intended.

Why We Wrote This Book: Its Purpose, Goals, and Scope

The Challenge of Software Security Engineering

Software security engineering entails using practices, processes, tools,
and techniques to address security issues in every phase of the software

1. CERT (www.cert.org) is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

www.cert.org

Preface xv

development life cycle (SDLC). Software that is developed with security
in mind is typically more resistant to both intentional attack and unin-
tentional failures. One view of secure software is software that is engi-
neered “so that it continues to function correctly under malicious
attack” [McGraw 2006] and is able to recognize, resist, tolerate, and
recover from events that intentionally threaten its dependability.
Broader views that can overlap with software security (for example,
software safety, reliability, and fault tolerance) include the notion of
proper functioning in the face of unintentional failures or accidents
and inadvertent misuse and abuse, as well as reducing software
defects and weaknesses to the greatest extent possible regardless of
their cause. This book addresses the narrower view.

The goal of software security engineering is to build better, defect-free
software. Software-intensive systems that are constructed using more
securely developed software are better able to do the following:

• Continue operating correctly in the presence of most attacks by
either resisting the exploitation of weaknesses in the software by
attackers or tolerating the failures that result from such exploits

• Limit the damage resulting from any failures caused by attack-
triggered faults that the software was unable to resist or tolerate
and recover as quickly as possible from those failures

No single practice offers a universal “silver bullet” for software secu-
rity. With this caveat in mind, Software Security Engineering: A Guide for
Project Managers provides software project managers with sound prac-
tices that they can evaluate and selectively adopt to help reshape their
own development practices. The objective is to increase the security
and dependability of the software produced by these practices, both
during its development and during its operation.

What Readers Can Expect

Readers will increase their awareness and understanding of the secu-
rity issues in the design and development of software. The book’s con-
tent will help readers recognize how software development practices
can either contribute to or detract from the security of software.

The book (and material referenced on the Build Security In Web site
described later in this preface) will enable readers to identify and com-
pare potential new practices that can be adapted to augment a

Prefacexvi

project’s current software development practices, thereby greatly
increasing the likelihood of producing more secure software and
meeting specified security requirements. As one example, assurance
cases can be used to assert and specify desired security properties,
including the extent to which security practices have been successful
in satisfying security requirements. Assurance cases are discussed in
Chapter 2 (Section 2.4, “How to Assert and Specify Desired Security
Properties”).

Software developed and assembled using the practices described in
this book should contain significantly fewer exploitable weaknesses.
Such software can then be relied on to more capably resist or tolerate
and recover from attacks and, therefore, to function more securely in
an operational environment. Project managers responsible for ensur-
ing that software and systems adequately address their security
requirements throughout the SDLC should review, select, and tailor
guidance from this book, the Build Security In Web site, and the
sources cited throughout this book as part of their normal project man-
agement activities.

The five key take-away messages for readers of this book are as follows:

1. Software security is about more than eliminating vulnerabilities
and conducting penetration tests. Project managers need to take a
systematic approach to incorporate the sound practices discussed
in this book into their development processes (all chapters).

2. Network security mechanisms and IT infrastructure security ser-
vices do not sufficiently protect application software from security
risks (Chapters 1 and 2).

3. Software security initiatives should follow a risk management
approach to identify priorities and determine what is “good
enough,” while understanding that software security risks will
inevitably change throughout the SDLC (Chapters 1, 4, and 7).

4. Developing secure software depends on understanding the opera-
tional context in which it will be used (Chapter 6).

5. Project managers and software engineers need to learn to think
like an attacker to address the range of things that software should
not do and identify how software can better resist, tolerate, and
recover when under attack (Chapters 2, 3, 4, and 5).

Preface xvii

Who Should Read This Book

Software Security Engineering: A Guide for Project Managers is primarily
intended for project managers who are responsible for software devel-
opment and the development of software-intensive systems. Lead
requirements analysts, experienced software and security architects
and designers, system integrators, and their managers should also
find this book useful. It provides guidance for those involved in the
management of secure, software-intensive systems, either developed
from scratch or through the assembly, integration, and evolution of
acquired or reused software.

This book will help readers understand the security issues associated
with the engineering of software and should help them identify prac-
tices that can be used to manage and develop software that is better able
to withstand the threats to which it is increasingly subjected. It pre-
sumes that readers are familiar with good general systems and software
engineering management methods, practices, and technologies.

How This Book Is Organized

This book is organized into two introductory chapters, four technical
chapters, a chapter that describes governance and management con-
siderations, and a concluding chapter on how to get started.

Chapter 1, Why Is Security a Software Issue?, identifies threats that
target most software and the shortcomings of the software develop-
ment process that can render software vulnerable to those threats. It
describes the benefits of detecting software security defects early in
the SDLC, including the current state of the practice for making the
business case for software security. It closes by introducing some prag-
matic solutions that are further elaborated in the chapters that follow.

Chapter 2, What Makes Software Secure?, examines the core and influ-
ential properties of software that make it secure and the defensive and
attacker perspectives in addressing those properties, and discusses how
desirable traits of software can contribute to its security. The chapter
introduces and defines the key resources of attack patterns and assur-
ance cases and explains how to use them throughout the SDLC.

Chapter 3, Requirements Engineering for Secure Software, describes
practices for security requirements engineering, including processes

Prefacexviii

that are specific to eliciting, specifying, analyzing, and validating secu-
rity requirements. This chapter also explores the key practice of mis-
use/abuse cases.

Chapter 4, Secure Software Architecture and Design, presents the
practice of architectural and risk analysis for reviewing, assessing, and
validating the specification, architecture, and design of a software sys-
tem with respect to software security, and reliability.

Chapter 5, Considerations for Secure Coding and Testing, summa-
rizes key practices for performing code analysis to uncover errors in
and improve the quality of source code, as well as practices for secu-
rity testing, white-box testing, black-box testing, and penetration test-
ing. Along the way, this chapter references recently published works
on secure coding and testing for further details.

Chapter 6, Security and Complexity: System Assembly Challenges,
describes the challenges and practices inherent in the design, assem-
bly, integration, and evolution of trustworthy systems and systems of
systems. It provides guidelines for project managers to consider, rec-
ognizing that most new or updated software components are typically
integrated into an existing operational environment.

Chapter 7, Governance, and Managing for More Secure Software,
describes how to motivate business leaders to treat software security
as a governance and management concern. It includes actionable prac-
tices for risk management and project management and for establish-
ing an enterprise security framework.

Chapter 8, Getting Started, summarizes all of the recommended prac-
tices discussed in the book and provides several aids for determining
which practices are most relevant and for whom, and where to start.

The book closes with a comprehensive bibliography and glossary.

Notes to the Reader

Navigating the Book’s Content

As an aid to the reader, we have added descriptive icons that mark the
book’s sections and key practices in two practical ways:

• Identifying the content’s relative “maturity of practice”:

The content provides guidance for how to think about a topic
for which there is no proven or widely accepted approach. The

L1

Preface xix

intent of the description is to raise awareness and aid the
reader in thinking about the problem and candidate solutions.
The content may also describe promising research results that
may have been demonstrated in a constrained setting.
The content describes practices that are in early (pilot) use and
are demonstrating some successful results.
The content describes practices that are in limited use in indus-
try or government organizations, perhaps for a particular mar-
ket sector.
The content describes practices that have been successfully
deployed and are in widespread use. Readers can start using
these practices today with confidence. Experience reports and
case studies are typically available.

• Identifying the designated audiences for which each chapter sec-
tion or practice is most relevant:

Executive and senior managers
Project and mid-level managers
Technical leaders, engineering managers, first-line managers,
and supervisors

As the audience icons in the chapters show, we urge executive and
senior managers to read all of Chapters 1 and 8, plus the following sec-
tions in other chapters: 2.1, 2.2, 2.5, 3.1, 3.7, 4.1, 5.1, 5.6, 6.1, 6.6, 7.1, 7.3,
7.4, 7.6, and 7.7.

Project and mid-level managers should be sure to read all of Chapters
1, 2, 4, 5, 6, 7, and 8, plus these sections in Chapter 3: 3.1, 3.3, and 3.7.

Technical leaders, engineering managers, first-line managers, and
supervisors will find useful information and guidance throughout the
entire book.

Build Security In: A Key Resource

Since 2004, the U.S. Department of Homeland Security Software Assur-
ance Program has sponsored development of the Build Security In (BSI)
Web site (https://buildsecurityin.us-cert.gov/), which was one of the
significant resources used in writing this book. BSI content is based on
the principle that software security is fundamentally a software engi-
neering problem and must be managed in a systematic way throughout
the SDLC.

L2

L3

L4

E

M

L

https://buildsecurityin.us-cert.gov/

Prefacexx

BSI contains and links to a broad range of information about sound
practices, tools, guidelines, rules, principles, and other knowledge to
help project managers deploy software security practices and build
secure and reliable software. Contributing authors to this book and the
articles appearing on the BSI Web site include senior staff from the
Carnegie Mellon Software Engineering Institute (SEI) and Cigital, Inc.,
as well as other experienced software and security professionals.

Several sections in the book were originally published as articles in
IEEE Security & Privacy magazine and are reprinted here with the per-
mission of IEEE Computer Society Press. Where an article occurs in
the book, a statement such as the following appears in a footnote:

This section was originally published as an article in IEEE
Security & Privacy [citation]. It is reprinted here with permis-
sion from the publisher.

These articles are also available on the BSI Web site.

Articles on BSI are referenced throughout this book. Readers can consult
BSI for additional details, book errata, and ongoing research results.

Start the Journey

A number of excellent books address secure systems and software
engineering. Software Security Engineering: A Guide for Project Managers
offers an engineering perspective that has been sorely needed in the
software security community. It puts the entire SDLC in the context of
an integrated set of sound software security engineering practices.

As part of its comprehensive coverage, this book captures both stan-
dard and emerging software security practices and explains why they
are needed to develop more security-responsive and robust systems.
The book is packed with reasons for taking action early and revisiting
these actions frequently throughout the SDLC.

This is not a book for the faint of heart or the neophyte software
project manager who is confronting software security for the first time.
Readers need to understand the SDLC and the processes in use within
their organizations to comprehend the implications of the various
techniques presented and to choose among the recommended prac-
tices to determine the best fit for any given project.

Preface xxi

Other books are available that discuss each phase of secure software
engineering. Few, however, cover all of the SDLC phases in as concise
and usable a format as we have attempted to do here. Enjoy the journey!

Acknowledgments

We are pleased to acknowledge the support of many people who helped
us through the book development process. Our organizations, the CERT
Program at the Software Engineering Institute (SEI) and Cigital, Inc.,
encouraged our authorship of the book and provided release time as
well as other support to make it possible. Pamela Curtis, our SEI techni-
cal editor, diligently read and reread each word of the entire manuscript
and provided many valuable suggestions for improvement, as well as
helping with packaging questions and supervising development of fig-
ures for the book. Jan Vargas provided SEI management support,
tracked schedules and action items, and helped with meeting agendas
and management. In the early stages of the process, Petra Dilone pro-
vided SEI administrative support as well as configuration management
for the various chapters and iterations of the manuscript.

We also appreciate the encouragement of Joe Jarzombek, the sponsor of
the Department of Homeland Security Build Security In (BSI) Web site.
The Build Security In Web site content is a key resource for this book.

Much of the material in this book is based on articles published with
other authors on the BSI Web site and elsewhere. We greatly appreci-
ated the opportunity to collaborate with these authors, and their
names are listed in the individual sections that they contributed to,
directly or indirectly.

We had many reviewers, whose input was extremely valuable and led
to many improvements in the book. Internal reviewers included Carol
Woody and Robert Ferguson of the SEI. We also appreciate the inputs
and thoughtful comments of the Addison-Wesley reviewers: Chris
Cleeland, Jeremy Epstein, Ronda R. Henning, Jeffrey A. Ingalsbe, Ron
Lichty, Gabor Liptak, Donald Reifer, and David Strom. We would like to
give special recognition to Steve Riley, one of the Addison-Wesley
reviewers who reviewed our initial proposal and all iterations of the
manuscript.

We would like to recognize the encouragement and support of our
contacts at Addison-Wesley. These include Peter Gordon, publishing

Prefacexxii

partner; Kim Boedigheimer, editorial assistant; Julie Nahil, full-service
production manager; and Jill Hobbs, freelance copyeditor. We also
appreciate the efforts of the Addison-Wesley and SEI artists and
designers who assisted with the cover design, layout, and figures.

1

Chapter 1

Why Is Security a
Software Issue?

1.1 Introduction

Software is everywhere. It runs your car. It controls your cell phone.
It’s how you access your bank’s financial services; how you receive
electricity, water, and natural gas; and how you fly from coast to
coast [McGraw 2006]. Whether we recognize it or not, we all rely on
complex, interconnected, software-intensive information systems
that use the Internet as their means for communicating and trans-
porting information.

Building, deploying, operating, and using software that has not been
developed with security in mind can be high risk—like walking a high
wire without a net (Figure 1–1). The degree of risk can be compared to
the distance you can fall and the potential impact (no pun intended).

This chapter discusses why security is increasingly a software problem.
It defines the dimensions of software assurance and software security. It
identifies threats that target most software and the shortcomings of the

Selected content in this chapter is summarized and excerpted from Security in the Software Lifecy-
cle: Making Software Development Processes—and Software Produced by Them—More Secure [Goertzel
2006]. An earlier version of this material appeared in [Allen 2007].

Chapter 1 Why Is Security a Software Issue?2

software development process that can render software vulnerable to
those threats. It closes by introducing some pragmatic solutions that are
expanded in the chapters to follow. This entire chapter is relevant for
executives (E), project managers (M), and technical leaders (L).

1.2 The Problem

Organizations increasingly store, process, and transmit their most
sensitive information using software-intensive systems that are
directly connected to the Internet. Private citizens’ financial transac-
tions are exposed via the Internet by software used to shop, bank,
pay taxes, buy insurance, invest, register children for school, and join
various organizations and social networks. The increased exposure
that comes with global connectivity has made sensitive information
and the software systems that handle it more vulnerable to uninten-
tional and unauthorized use. In short, software-intensive systems

Figure 1–1: Developing software without security in mind is like walking a
high wire without a net

1.2 The Problem 3

and other software-enabled capabilities have provided more open,
widespread access to sensitive information—including personal
identities—than ever before.

Concurrently, the era of information warfare [Denning 1998], cyberter-
rorism, and computer crime is well under way. Terrorists, organized
crime, and other criminals are targeting the entire gamut of software-
intensive systems and, through human ingenuity gone awry, are being
successful at gaining entry to these systems. Most such systems are not
attack resistant or attack resilient enough to withstand them.

In a report to the U.S. president titled Cyber Security: A Crisis of Prioriti-
zation [PITAC 2005], the President’s Information Technology Advisory
Committee summed up the problem of nonsecure software as follows:

Software development is not yet a science or a rigorous disci-
pline, and the development process by and large is not con-
trolled to minimize the vulnerabilities that attackers exploit.
Today, as with cancer, vulnerable software can be invaded
and modified to cause damage to previously healthy soft-
ware, and infected software can replicate itself and be carried
across networks to cause damage in other systems. Like can-
cer, these damaging processes may be invisible to the lay per-
son even though experts recognize that their threat is
growing.

Software defects with security ramifications—including coding bugs
such as buffer overflows and design flaws such as inconsistent error
handling—are ubiquitous. Malicious intruders, and the malicious
code and botnets1 they use to obtain unauthorized access and launch
attacks, can compromise systems by taking advantage of software
defects. Internet-enabled software applications are a commonly
exploited target, with software’s increasing complexity and extensibil-
ity making software security even more challenging [Hoglund 2004].

The security of computer systems and networks has become increas-
ingly limited by the quality and security of their software. Security
defects and vulnerabilities in software are commonplace and can
pose serious risks when exploited by malicious attacks. Over the past
six years, this problem has grown significantly. Figure 1–2 shows the
number of vulnerabilities reported to CERT from 1997 through 2006.
Given this trend, “[T]here is a clear and pressing need to change the

1. http://en.wikipedia.org/wiki/Botnet

http://en.wikipedia.org/wiki/Botnet

Chapter 1 Why Is Security a Software Issue?4

way we (project managers and software engineers) approach com-
puter security and to develop a disciplined approach to software
security” [McGraw 2006].

In Deloitte’s 2007 Global Security Survey, 87 percent of survey respon-
dents cited poor software development quality as a top threat in the
next 12 months. “Application security means ensuring that there is
secure code, integrated at the development stage, to prevent potential
vulnerabilities and that steps such as vulnerability testing, application
scanning, and penetration testing are part of an organization’s soft-
ware development life cycle [SDLC]” [Deloitte 2007].

The growing Internet connectivity of computers and networks and the
corresponding user dependence on network-enabled services (such as
email and Web-based transactions) have increased the number and
sophistication of attack methods, as well as the ease with which an
attack can be launched. This trend puts software at greater risk.
Another risk area affecting software security is the degree to which
systems accept updates and extensions for evolving capabilities.
Extensible systems are attractive because they provide for the addi-
tion of new features and services, but each new extension adds new

Figure 1–2: Vulnerabilities reported to CERT

Total vulnerabilities reported
(1997–2006): 30,264

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

311 262 417

1090

2437

4129
3784 3780

5990

8064

1.2 The Problem 5

capabilities, new interfaces, and thus new risks. A final software
security risk area is the unbridled growth in the size and complexity of
software systems (such as the Microsoft Windows operating system).
The unfortunate reality is that in general more lines of code produce
more bugs and vulnerabilities [McGraw 2006].

1.2.1 System Complexity: The Context within Which
Software Lives

Building a trustworthy software system can no longer be predicated
on constructing and assembling discrete, isolated pieces that address
static requirements within planned cost and schedule. Each new or
updated software component joins an existing operational environ-
ment and must merge with that legacy to form an operational whole.
Bolting new systems onto old systems and Web-enabling old systems
creates systems of systems that are fraught with vulnerabilities. With
the expanding scope and scale of systems, project managers need to
reconsider a number of development assumptions that are generally
applied to software security:

• Instead of centralized control, which was the norm for large
stand-alone systems, project managers have to consider multiple
and often independent control points for systems and systems of
systems.

• Increased integration among systems has reduced the capability to
make wide-scale changes quickly. In addition, for independently
managed systems, upgrades are not necessarily synchronized.
Project managers need to maintain operational capabilities with
appropriate security as services are upgraded and new services are
added.

• With the integration among independently developed and oper-
ated systems, project managers have to contend with a heteroge-
neous collection of components, multiple implementations of
common interfaces, and inconsistencies among security policies.

• With the mismatches and errors introduced by independently
developed and managed systems, failure in some form is more
likely to be the norm than the exception and so further complicates
meeting security requirements.

There are no known solutions for ensuring a specified level or degree
of software security for complex systems and systems of systems,

Chapter 1 Why Is Security a Software Issue?6

assuming these could even be defined. This said, Chapter 6, Security
and Complexity: System Assembly Challenges, elaborates on these
points and provides useful guidelines for project managers to consider
in addressing the implications.

1.3 Software Assurance and Software Security

The increasing dependence on software to get critical jobs done means
that software’s value no longer lies solely in its ability to enhance or
sustain productivity and efficiency. Instead, its value also derives from
its ability to continue operating dependably even in the face of events
that threaten it. The ability to trust that software will remain depend-
able under all circumstances, with a justified level of confidence, is the
objective of software assurance.

Software assurance has become critical because dramatic increases in
business and mission risks are now known to be attributable to
exploitable software [DHS 2003]. The growing extent of the resulting
risk exposure is rarely understood, as evidenced by these facts:

• Software is the weakest link in the successful execution of interde-
pendent systems and software applications.

• Software size and complexity obscure intent and preclude exhaus-
tive testing.

• Outsourcing and the use of unvetted software supply-chain com-
ponents increase risk exposure.

• The sophistication and increasingly more stealthy nature of attacks
facilitates exploitation.

• Reuse of legacy software with other applications introduces unin-
tended consequences, increasing the number of vulnerable targets.

• Business leaders are unwilling to make risk-appropriate invest-
ments in software security.

According to the U.S. Committee on National Security Systems’
“National Information Assurance (IA) Glossary” [CNSS 2006], soft-
ware assurance is

the level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or accidentally

1.3 Software Assurance and Software Security 7

inserted at any time during its life cycle, and that the software
functions in the intended manner.

Software assurance includes the disciplines of software reliability2 (also
known as software fault tolerance), software safety,3 and software secu-
rity. The focus of Software Security Engineering: A Guide for Project Manag-
ers is on the third of these, software security, which is the ability of
software to resist, tolerate, and recover from events that intentionally
threaten its dependability. The main objective of software security is to
build more-robust, higher-quality, defect-free software that continues to
function correctly under malicious attack [McGraw 2006].

Software security matters because so many critical functions are com-
pletely dependent on software. This makes software a very high-value
target for attackers, whose motives may be malicious, criminal, adver-
sarial, competitive, or terrorist in nature. What makes it so easy for
attackers to target software is the virtually guaranteed presence of
known vulnerabilities with known attack methods, which can be
exploited to violate one or more of the software’s security properties
or to force the software into an insecure state. Secure software remains
dependable (i.e., correct and predictable) despite intentional efforts to
compromise that dependability.

The objective of software security is to field software-based systems
that satisfy the following criteria:

• The system is as vulnerability and defect free as possible.
• The system limits the damage resulting from any failures caused

by attack-triggered faults, ensuring that the effects of any attack
are not propagated, and it recovers as quickly as possible from
those failures.

• The system continues operating correctly in the presence of most
attacks by either resisting the exploitation of weaknesses in the
software by the attacker or tolerating the failures that result from
such exploits.

2. Software reliability means the probability of failure-free (or otherwise satisfactory) software
operation for a specified/expected period/interval of time, or for a specified/expected number
of operations, in a specified/expected environment under specified/expected operating condi-
tions. Sources for this definition can be found in [Goertzel 2006], appendix A.1.

3. Software safety means the persistence of dependability in the face of accidents or mishaps—
that is, unplanned events that result in death, injury, illness, damage to or loss of property, or
environmental harm. Sources for this definition can be found in [Goertzel 2006], appendix A.1.

Chapter 1 Why Is Security a Software Issue?8

Software that has been developed with security in mind generally
reflects the following properties throughout its development life cycle:

• Predictable execution. There is justifiable confidence that the soft-
ware, when executed, functions as intended. The ability of mali-
cious input to alter the execution or outcome in a way favorable to
the attacker is significantly reduced or eliminated.

• Trustworthiness. The number of exploitable vulnerabilities is inten-
tionally minimized to the greatest extent possible. The goal is no
exploitable vulnerabilities.

• Conformance. Planned, systematic, and multidisciplinary activities
ensure that software components, products, and systems conform
to requirements and applicable standards and procedures for spec-
ified uses.

These objectives and properties must be interpreted and constrained
based on the practical realities that you face, such as what constitutes
an adequate level of security, what is most critical to address, and
which actions fit within the project’s cost and schedule. These are risk
management decisions.

In addition to predictable execution, trustworthiness, and conform-
ance, secure software and systems should be as attack resistant, attack
tolerant, and attack resilient as possible. To ensure that these criteria
are satisfied, software engineers should design software components
and systems to recognize both legitimate inputs and known attack pat-
terns in the data or signals they receive from external entities (humans
or processes) and reflect this recognition in the developed software to
the extent possible and practical.

To achieve attack resilience, a software system should be able to
recover from failures that result from successful attacks by resuming
operation at or above some predefined minimum acceptable level of
service in a timely manner. The system must eventually recover full
service at the specified level of performance. These qualities and prop-
erties, as well as attack patterns, are described in more detail in
Chapter 2, What Makes Software Secure?

1.3.1 The Role of Processes and Practices in Software Security

A number of factors influence how likely software is to be secure.
For instance, software vulnerabilities can originate in the processes

1.4 Threats to Software Security 9

and practices used in its creation. These sources include the deci-
sions made by software engineers, the flaws they introduce in spec-
ification and design, and the faults and other defects they include in
developed code, inadvertently or intentionally. Other factors may
include the choice of programming languages and development
tools used to develop the software, and the configuration and
behavior of software components in their development and opera-
tional environments. It is increasingly observed, however, that the
most critical difference between secure software and insecure software lies
in the nature of the processes and practices used to specify, design, and
develop the software [Goertzel 2006].

The return on investment when security analysis and secure engineer-
ing practices are introduced early in the development cycle ranges
from 12 percent to 21 percent, with the highest rate of return occurring
when the analysis is performed during application design [Berinato
2002; Soo Hoo 2001]. This return on investment occurs because there
are fewer security defects in the released product and hence reduced
labor costs for fixing defects that are discovered later.

A project that adopts a security-enhanced software development process
is adopting a set of practices (such as those described in this book’s chap-
ters) that initially should reduce the number of exploitable faults and
weaknesses. Over time, as these practices become more codified, they
should decrease the likelihood that such vulnerabilities are introduced
into the software in the first place. More and more, research results and
real-world experiences indicate that correcting potential vulnerabilities as
early as possible in the software development life cycle, mainly through the adop-
tion of security-enhanced processes and practices, is far more cost-effective than
the currently pervasive approach of developing and releasing frequent
patches to operational software [Goertzel 2006].

1.4 Threats to Software Security

In information security, the threat—the source of danger—is often a
person intending to do harm, using one or more malicious software
agents. Software is subject to two general categories of threats:

• Threats during development (mainly insider threats). A software
engineer can sabotage the software at any point in its development

Chapter 1 Why Is Security a Software Issue?10

life cycle through intentional exclusions from, inclusions in, or
modifications of the requirements specification, the threat models,
the design documents, the source code, the assembly and integra-
tion framework, the test cases and test results, or the installation
and configuration instructions and tools. The secure development
practices described in this book are, in part, designed to help
reduce the exposure of software to insider threats during its devel-
opment process. For more information on this aspect, see “Insider
Threats in the SDLC” [Cappelli 2006].

• Threats during operation (both insider and external threats). Any
software system that runs on a network-connected platform is
likely to have its vulnerabilities exposed to attackers during its
operation. Attacks may take advantage of publicly known but
unpatched vulnerabilities, leading to memory corruption, execu-
tion of arbitrary exploit scripts, remote code execution, and buffer
overflows. Software flaws can be exploited to install spyware,
adware, and other malware on users’ systems that can lie dormant
until it is triggered to execute.4

Weaknesses that are most likely to be targeted are those found in the
software components’ external interfaces, because those interfaces
provide the attacker with a direct communication path to the soft-
ware’s vulnerabilities. A number of well-known attacks target soft-
ware that incorporates interfaces, protocols, design features, or
development faults that are well understood and widely publicized as
harboring inherent weaknesses. That software includes Web applica-
tions (including browser and server components), Web services, data-
base management systems, and operating systems. Misuse (or abuse)
cases can help project managers and software engineers see their soft-
ware from the perspective of an attacker by anticipating and defining
unexpected or abnormal behavior through which a software feature
could be unintentionally misused or intentionally abused [Hope 2004].
(See Section 3.2.)

Today, most project and IT managers responsible for system operation
respond to the increasing number of Internet-based attacks by relying
on operational controls at the operating system, network, and data-
base or Web server levels while failing to directly address the insecurity

4. See the Common Weakness Enumeration [CWE 2007], for additional examples.

1.5 Sources of Software Insecurity 11

of the application-level software that is being compromised. This
approach has two critical shortcomings:

1. The security of the application depends completely on the robust-
ness of operational protections that surround it.

2. Many of the software-based protection mechanisms (controls) can
easily be misconfigured or misapplied. Also, they are as likely to
contain exploitable vulnerabilities as the application software they
are (supposedly) protecting.

The wide publicity about the literally thousands of successful attacks
on software accessible from the Internet has merely made the
attacker’s job easier. Attackers can study numerous reports of security
vulnerabilities in a wide range of commercial and open-source soft-
ware programs and access publicly available exploit scripts. More
experienced attackers often develop (and share) sophisticated, tar-
geted attacks that exploit specific vulnerabilities. In addition, the
nature of the risks is changing more rapidly than the software can be
adapted to counteract those risks, regardless of the software develop-
ment process and practices used. To be 100 percent effective, defenders
must anticipate all possible vulnerabilities, while attackers need find
only one to carry out their attack.

1.5 Sources of Software Insecurity

Most commercial and open-source applications, middleware systems,
and operating systems are extremely large and complex. In normal
execution, these systems can transition through a vast number of dif-
ferent states. These characteristics make it particularly difficult to
develop and operate software that is consistently correct, let alone con-
sistently secure. The unavoidable presence of security threats and risks
means that project managers and software engineers need to pay
attention to software security even if explicit requirements for it have
not been captured in the software’s specification.

A large percentage of security weaknesses in software could be
avoided if project managers and software engineers were routinely
trained in how to address those weaknesses systematically and consis-
tently. Unfortunately, these personnel are seldom taught how to
design and develop secure applications and conduct quality assurance

Chapter 1 Why Is Security a Software Issue?12

to test for insecure coding errors and the use of poor development
techniques. They do not generally understand which practices are
effective in recognizing and removing faults and defects or in han-
dling vulnerabilities when software is exploited by attackers. They are
often unfamiliar with the security implications of certain software
requirements (or their absence). Likewise, they rarely learn about the
security implications of how software is architected, designed, devel-
oped, deployed, and operated. The absence of this knowledge means
that security requirements are likely to be inadequate and that the
resulting software is likely to deviate from specified (and unspecified)
security requirements. In addition, this lack of knowledge prevents the
manager and engineer from recognizing and understanding how mis-
takes can manifest as exploitable weaknesses and vulnerabilities in the
software when it becomes operational.

Software—especially networked, application-level software—is most
often compromised by exploiting weaknesses that result from the fol-
lowing sources:

• Complexities, inadequacies, and/or changes in the software’s pro-
cessing model (e.g., a Web- or service-oriented architecture model).

• Incorrect assumptions by the engineer, including assumptions
about the capabilities, outputs, and behavioral states of the soft-
ware’s execution environment or about expected inputs from
external entities (users, software processes).

• Flawed specification or design, or defective implementation of

– The software’s interfaces with external entities. Development
mistakes of this type include inadequate (or nonexistent) input
validation, error handling, and exception handling.

– The components of the software’s execution environment
(from middleware-level and operating-system-level to firm-
ware- and hardware-level components).

• Unintended interactions between software components, including
those provided by a third party.

Mistakes are unavoidable. Even if they are avoided during require-
ments engineering and design (e.g., through the use of formal meth-
ods) and development (e.g., through comprehensive code reviews and
extensive testing), vulnerabilities may still be introduced into software
during its assembly, integration, deployment, and operation. No mat-
ter how faithfully a security-enhanced life cycle is followed, as long as

1.6 The Benefits of Detecting Software Security Defects Early 13

software continues to grow in size and complexity, some number of
exploitable faults and other weaknesses are sure to exist.

In addition to the issues identified here, Chapter 2, What Makes Soft-
ware Secure?, discusses a range of principles and practices, the
absence of which contribute to software insecurity.

1.6 The Benefits of Detecting Software Security
Defects Early5

Limited data is available that discusses the return on investment (ROI)
of reducing security flaws in source code (refer to Section 1.6.1 for
more on this subject). Nevertheless, a number of studies have shown
that significant cost benefits are realized through improvements to
reduce software defects (including security flaws) throughout the
SDLC [Goldenson 2003]. The general software quality case is made in
this section, including reasonable arguments for extending this case to
include software security defects.

Proactively tackling software security is often under-budgeted and
dismissed as a luxury. In an attempt to shorten development schedules
or decrease costs, software project managers often reduce the time
spent on secure software practices during requirements analysis and
design. In addition, they often try to compress the testing schedule or
reduce the level of effort. Skimping on software quality6 is one of the
worst decisions an organization that wants to maximize development
speed can make; higher quality (in the form of lower defect rates) and
reduced development time go hand in hand. Figure 1–3 illustrates the
relationship between defect rate and development time.

Projects that achieve lower defect rates typically have shorter sched-
ules. But many organizations currently develop software with defect
levels that result in longer schedules than necessary. In the 1970s,

5. This material is extracted and adapted from a more extensive article by Steven Lavenhar of
Cigital, Inc. [BSI 18]. That article should be consulted for more details and examples. In addition,
this article has been adapted with permission from “Software Quality at Top Speed” by Steve
McConnell. For the original article, see [McConnell 1996]. While some of the sources cited in this
section may seem dated, the problems and trends described persist today.

6. A similar argument could be made for skimping on software security if the schedule and
resources under consideration include software production and operations, when security
patches are typically applied.

Chapter 1 Why Is Security a Software Issue?14

studies performed by IBM demonstrated that software products with
lower defect counts also had shorter development schedules [Jones
1991]. After surveying more than 4000 software projects, Capers
Jones [1994] reported that poor quality was one of the most common
reasons for schedule overruns. He also reported that poor quality
was a significant factor in approximately 50 percent of all canceled
projects. A Software Engineering Institute survey found that more
than 60 percent of organizations assessed suffered from inadequate
quality assurance [Kitson 1993]. On the curve in Figure 1–3, the orga-
nizations that experienced higher numbers of defects are to the left of
the “95 percent defect removal” line.

The “95 percent defect removal” line is significant because that level of
prerelease defect removal appears to be the point at which projects
achieve the shortest schedules for the least effort and with the highest
levels of user satisfaction [Jones 1991]. If more than 5 percent of defects
are found after a product has been released, then the product is vul-
nerable to the problems associated with low quality, and the organiza-
tion takes longer to develop its software than necessary. Projects that
are completed with undue haste are particularly vulnerable to short-
changing quality assurance at the individual developer level. Any
developer who has been pushed to satisfy a specific deadline or ship a
product quickly knows how much pressure there can be to cut corners
because “we’re only three weeks from the deadline.” As many as four
times the average number of defects are reported for released software

Figure 1–3: Relationship between defect rate and development time
Percentage of Defects Removed Before Release

Most organizations
are somewhere
around this point

Development
Time Fastest schedule

(“best” schedule)

95% 100%~~

1.6 The Benefits of Detecting Software Security Defects Early 15

products that were developed under excessive schedule pressure.
Developers participating in projects that are in schedule trouble often
become obsessed with working harder rather than working smarter,
which gets them into even deeper schedule trouble.

One aspect of quality assurance that is particularly relevant during
rapid development is the presence of error-prone modules—that is,
modules that are responsible for a disproportionate number of defects.
Barry Boehm reported that 20 percent of the modules in a program are
typically responsible for 80 percent of the errors [Boehm 1987]. On its
IMS project, IBM found that 57 percent of the errors occurred in 7 per-
cent of the modules [Jones 1991]. Modules with such high defect rates
are more expensive and time-consuming to deliver than less error-
prone modules. Normal modules cost about $500 to $1000 per function
point to develop, whereas error-prone modules cost about $2000 to
$4000 per function point to develop [Jones 1994]. Error-prone modules
tend to be more complex, less structured, and significantly larger than
other modules. They often are developed under excessive schedule
pressure and are not fully tested. If development speed is important,
then identification and redesign of error-prone modules should be a
high priority.

If an organization can prevent defects or detect and remove them
early, it can realize significant cost and schedule benefits. Studies have
found that reworking defective requirements, design, and code typi-
cally accounts for 40 to 50 percent of the total cost of software develop-
ment [Jones 1986b]. As a rule of thumb, every hour an organization
spends on defect prevention reduces repair time for a system in pro-
duction by three to ten hours. In the worst case, reworking a software
requirements problem once the software is in operation typically costs
50 to 200 times what it would take to rework the same problem during
the requirements phase [Boehm 1988]. It is easy to understand why
this phenomenon occurs. For example, a one-sentence requirement
could expand into 5 pages of design diagrams, then into 500 lines of
code, then into 15 pages of user documentation and a few dozen test
cases. It is cheaper to correct an error in that one-sentence requirement
at the time requirements are specified (assuming the error can be iden-
tified and corrected) than it is after design, code, user documentation,
and test cases have been written. Figure 1–4 illustrates that the longer
defects persist, the more expensive they are to correct.

The savings potential from early defect detection is significant:
Approximately 60 percent of all defects usually exist by design time

Chapter 1 Why Is Security a Software Issue?16

[Gilb 1988]. A decision early in a project to exclude defect detection
amounts to a decision to postpone defect detection and correction until
later in the project, when defects become much more expensive and
time-consuming to address. That is not a rational decision when time
and development dollars are at a premium. According to software qual-
ity assurance empirical research, $1 required to resolve an issue during
the design phase grows into $60 to $100 required to resolve the same
issue after the application has shipped [Soo Hoo 2001].

When a software product has too many defects, including security
flaws, vulnerabilities, and bugs, software engineers can end up
spending more time correcting these problems than they spent on
developing the software in the first place. Project managers can
achieve the shortest possible schedules with a higher-quality product
by addressing security throughout the SDLC, especially during the
early phases, to increase the likelihood that software is more secure
the first time.

Figure 1–4: Cost of correcting defects by life-cycle phase

Requirements Architecture Design Implementation Deployment
Engineering and Testing and Operations

Phase in Which a Defect Is Corrected

Requirements
 Engineering

Architecture

Design

Implementation
and Testing

Phase in Which a
Defect Is Created

Cost to
Correct

1.6 The Benefits of Detecting Software Security Defects Early 17

1.6.1 Making the Business Case for Software Security:
Current State7

As software project managers and developers, we know that when we
want to introduce new approaches in our development processes,
we have to make a cost–benefit argument to executive management to
convince them that this move offers a business or strategic return on
investment. Executives are not interested in investing in new technical
approaches simply because they are innovative or exciting. For profit-
making organizations, we need to make a case that demonstrates we
will improve market share, profit, or other business elements. For
other types of organizations, we need to show that we will improve
our software in a way that is important—in a way that adds to the
organization’s prestige, that ensures the safety of troops in the battle-
field, and so on.

In the area of software security, we have started to see some evidence
of successful ROI or economic arguments for security administrative
operations, such as maintaining current levels of patches, establishing
organizational entities such as computer security incident response
teams (CSIRTs) to support security investment, and so on [Blum 2006,
Gordon 2006, Huang 2006, Nagaratnam 2005]. In their article “Tangi-
ble ROI through Secure Software Engineering,” Kevin Soo Hoo and
his colleagues at @stake state the following:

Findings indicate that significant cost savings and other
advantages are achieved when security analysis and secure
engineering practices are introduced early in the develop-
ment cycle. The return on investment ranges from 12 percent
to 21 percent, with the highest rate of return occurring when
analysis is performed during application design.
Since nearly three-quarters of security-related defects are
design issues that could be resolved inexpensively during the
early stages, a significant opportunity for cost savings exists
when secure software engineering principles are applied
during design.

However, except for a few studies [Berinato 2002; Soo Hoo 2001], we
have seen little evidence presented to support the idea that investment
during software development in software security will result in com-
mensurate benefits across the entire life cycle.

7. Updated from [BSI 45].

Chapter 1 Why Is Security a Software Issue?18

Results of the Hoover project [Jaquith 2002] provide some case study
data that supports the ROI argument for investment in software secu-
rity early in software development. In his article “The Security of
Applications: Not All Are Created Equal,” Jaquith says that “the best-
designed e-business applications have one-quarter as many security
defects as the worst. By making the right investments in application
security, companies can out-perform their peers—and reduce risk by
80 percent.”

In their article “Impact of Software Vulnerability Announcements on
the Market Value of Software Vendors: An Empirical Investigation,”
the authors state that “On average, a vendor loses around 0.6 percent
value in stock price when a vulnerability is reported. This is equiva-
lent to a loss in market capitalization values of $0.86 billion per vulner-
ability announcement.” The purpose of the study described in this
article is “to measure vendors’ incentive to develop secure software”
[Telang 2004].

We believe that in the future Microsoft may well publish data reflect-
ing the results of using its Security Development Lifecycle [Howard
2006, 2007]. We would also refer readers to the business context dis-
cussion in chapter 2 and the business climate discussion in chapter 10
of McGraw’s recent book [McGraw 2006] for ideas.

1.7 Managing Secure Software Development

The previous section put forth useful arguments and identified emerg-
ing evidence for the value of detecting software security defects as
early in the SDLC as possible. We now turn our attention to some of
the key project management and software engineering practices to aid
in accomplishing this goal. These are introduced here and covered in
greater detail in subsequent chapters of this book.

1.7.1 Which Security Strategy Questions Should I Ask?

Achieving an adequate level of software security means more than
complying with regulations or implementing commonly accepted best
practices. You and your organization must determine your own defini-
tion of “adequate.” The range of actions you must take to reduce soft-
ware security risk to an acceptable level depends on what the product,

1.7 Managing Secure Software Development 19

service, or system you are building needs to protect and what it needs
to prevent and manage.

Consider the following questions from an enterprise perspective.
Answers to these questions aid in understanding security risks to
achieving project goals and objectives.

• What is the value we must protect?
• To sustain this value, which assets must be protected? Why must

they be protected? What happens if they’re not protected?
• What potential adverse conditions and consequences must be pre-

vented and managed? At what cost? How much disruption can we
stand before we take action?

• How do we determine and effectively manage residual risk (the
risk remaining after mitigation actions are taken)?

• How do we integrate our answers to these questions into an effec-
tive, implementable, enforceable security strategy and plan?

Clearly, an organization cannot protect and prevent everything. Inter-
action with key stakeholders is essential to determine the project’s risk
tolerance and its resilience if the risk is realized. In effect, security in
the context of risk management involves determining what could go
wrong, how likely such events are to occur, what impact they will
have if they do occur, and which actions might mitigate or minimize
both the likelihood and the impact of each event to an acceptable level.

The answers to these questions can help you determine how much to
invest, where to invest, and how fast to invest in an effort to mitigate
software security risk. In the absence of answers to these questions
(and a process for periodically reviewing and updating them), you
(and your business leaders) will find it difficult to define and deploy
an effective security strategy and, therefore, may be unable to effec-
tively govern and manage enterprise, information, and software
security.8

The next section presents a practical way to incorporate a reasoned
security strategy into your development process. The framework

8. Refer to Managing Information Security Risks: The OCTAVE Approach [Alberts 2003] for more
information on managing information security risk; “An Introduction to Factor Analysis of Infor-
mation Risk (FAIR)” [Jones 2005] for more information on managing information risk; and “Risk
Management Approaches to Protection” [NIAC 2005] for a description of risk management
approaches for national critical infrastructures.

Chapter 1 Why Is Security a Software Issue?20

described is a condensed version of the Cigital Risk Management
Framework, a mature process that has been applied in the field for
almost ten years. It is designed to manage software-induced business
risks. Through the application of five simple activities (further detailed
in Section 7.4.2), analysts can use their own technical expertise, rele-
vant tools, and technologies to carry out a reasonable risk manage-
ment approach.

1.7.2 A Risk Management Framework for Software Security9

A necessary part of any approach to ensuring adequate software secu-
rity is the definition and use of a continuous risk management process.
Software security risk includes risks found in the outputs and results
produced by each life-cycle phase during assurance activities, risks
introduced by insufficient processes, and personnel-related risks. The
risk management framework (RMF) introduced here and expanded in
Chapter 7 can be used to implement a high-level, consistent, iterative
risk analysis that is deeply integrated throughout the SDLC.

Figure 1–5 shows the RMF as a closed-loop process with five activity
stages. Throughout the application of the RMF, measurement and
reporting activities occur. These activities focus on tracking, display-
ing, and understanding progress regarding software risk.

1.7.3 Software Security Practices in the Development
Life Cycle

Managers and software engineers should treat all software faults and
weaknesses as potentially exploitable. Reducing exploitable weak-
nesses begins with the specification of software security requirements,
along with considering requirements that may have been overlooked
(see Chapter 3, Requirements Engineering for Secure Software). Soft-
ware that includes security requirements (such as security constraints
on process behaviors and the handling of inputs, and resistance to and
tolerance of intentional failures) is more likely to be engineered to
remain dependable and secure in the face of an attack. In addition,
exercising misuse/abuse cases that anticipate abnormal and unex-
pected behavior can aid in gaining a better understanding of how to
create secure and reliable software (see Section 3.2).

9. This material is extracted and adapted from a more extensive article by Gary McGraw, Cigital,
Inc. [BSI 33].

1.7 Managing Secure Software Development 21

Developing software from the beginning with security in mind is more
effective by orders of magnitude than trying to validate, through test-
ing and verification, that the software is secure. For example, attempt-
ing to demonstrate that an implemented system will never accept an
unsafe input (that is, proving a negative) is impossible. You can prove,
however, using approaches such as formal methods and function
abstraction, that the software you are designing will never accept an
unsafe input. In addition, it is easier to design and implement the sys-
tem so that input validation routines check every input that the soft-
ware receives against a set of predefined constraints. Testing the input
validation function to demonstrate that it is consistently invoked and
correctly performed every time input enters the system is then
included in the system’s functional testing.

Analysis and modeling can serve to better protect your software
against the more subtle, complex attack patterns involving externally
forced sequences of interactions among components or processes that
were never intended to interact during normal software execution.
Analysis and modeling can help you determine how to strengthen the
security of the software’s interfaces with external entities and increase
its tolerance of all faults. Methods in support of analysis and modeling

Figure 1–5: A software security risk management framework

Identify and
Link the

Business and
Technical

Risks

Measurement and Reporting

Understand
the Business

Context

Synthesize
and Rank
the Risks

Define the Risk
Mitigation
Strategy

1 2 3 4

Artifact
Analysis

Business Context

Carry Out
Fixes and
Validate

5

Chapter 1 Why Is Security a Software Issue?22

during each life-cycle phase such as attack patterns, misuse and abuse
cases, and architectural risk analysis are described in subsequent chap-
ters of this book.

If your development organization’s time and resource constraints pre-
vent secure development practices from being applied to the entire
software system, you can use the results of a business-driven risk
assessment (as introduced earlier in this chapter and further detailed
in Section 7.4.2) to determine which software components should be
given highest priority.

A security-enhanced life-cycle process should (at least to some extent)
compensate for security inadequacies in the software’s requirements
by adding risk-driven practices and checks for the adequacy of those
practices during all software life-cycle phases. Figure 1–6 depicts one
example of how to incorporate security into the SDLC using the con-
cept of touchpoints [McGraw 2006; Taylor 2005]. Software security
best practices (touchpoints shown as arrows) are applied to a set of
software artifacts (the boxes) that are created during the software
development process. The intent of this particular approach is that it is

Figure 1–6: Software development life cycle with defined security
touchpoints [McGraw 2006]

Requirements
and

Use Cases

Architecture
and Design

Test Plans Code Tests and
Test Results

Feedback
from the

Field

Security
Requirements

Abuse
Cases

Risk
Analysis

External
Review

Risk-Based
Security Tests

Code Review
(Tools)

Security
Operations

Penetration
Testing

Risk
Analysis

1.8 Summary 23

process neutral and, therefore, can be used with a wide range of soft-
ware development processes (e.g., waterfall, agile, spiral, Capability
Maturity Model Integration [CMMI]).

Security controls in the software’s life cycle should not be limited to
the requirements, design, code, and test phases. It is important to con-
tinue performing code reviews, security tests, strict configuration con-
trol, and quality assurance during deployment and operations to
ensure that updates and patches do not add security weaknesses or
malicious logic to production software.10 Additional considerations for
project managers, including the effect of software security require-
ments on project scope, project plans, estimating resources, and prod-
uct and process measures, are detailed in Chapter 7.

1.8 Summary

It is a fact of life that software faults, defects, and other weaknesses
affect the ability of software to function securely. These vulnerabilities
can be exploited to violate software’s security properties and force the
software into an insecure, exploitable state. Dealing with this possibility
is a particularly daunting challenge given the ubiquitous connectivity
and explosive growth and complexity of software-based systems.

Adopting a security-enhanced software development process that
includes secure development practices will reduce the number of
exploitable faults and weaknesses in the deployed software. Correct-
ing potential vulnerabilities as early as possible in the SDLC, mainly
through the adoption of security-enhanced processes and practices, is
far more cost-effective than attempting to diagnose and correct such
problems after the system goes into production. It just makes good
sense.

Thus, the goals of using secure software practices are as follows:

• Exploitable faults and other weaknesses are eliminated to the
greatest extent possible by well-intentioned engineers.

• The likelihood is greatly reduced or eliminated that malicious
engineers can intentionally implant exploitable faults and weak-
nesses, malicious logic, or backdoors into the software.

10. See the Build Security In Deployment & Operations content area for more information [BSI 01].

Chapter 1 Why Is Security a Software Issue?24

• The software is attack resistant, attack tolerant, and attack resilient
to the extent possible and practical in support of fulfilling the orga-
nization’s mission.

To ensure that software and systems meet their security requirements
throughout the development life cycle, review, select, and tailor guid-
ance from this book, the BSI Web site, and the sources cited through-
out this book as part of normal project management activities.

317

Index

Index terms should be read within the context of software security engineering. For
example, “requirements engineering” refers to security requirements engineering.

Numbers
90 percent right, 167
“95 percent defect removal,” 14
100-point method, 108

A
Absolute code metrics, 159–160
Abstraction, 102
Abuse cases. See Misuse/abuse cases
Accelerated Requirements Method

(ARM), 103
Access control, identity management, 197
Accountability, 27, 283
Active responses, 245
Ad hoc testing, 170
Adequate security, defining, 236–238, 278
Age verification case study, 199
AHP, 110
Ambiguity analysis, 128–129, 283
Analyzing

failures. See Failure analysis
risks. See Architectural risk analysis;

RMF (risk management
framework)

source code. See Source code analysis;
Testing security

Application defense techniques, 39–41
Application security, 11, 12, 39
Architectural risk analysis

architectural vulnerability assessment
ambiguity, 128–129
attack resistance, 127–128
dependency, 129–130
known bad practices, 127–128
mapping threats and

vulnerabilities, 130

overview, 126–127
vulnerability classification, 130

attack patterns, 147–148
complete mediation principle, 142
defense in depth principle, 140
definition, 283
economy of mechanism principle, 141
failing security principle, 139–140
“forest-level” view, 120–123
least common mechanism principle,

141
least privilege principle, 139
never assuming... [safety] principle,

141–142
one-page diagram, 122
overview, 119–120
project management, 247–249
promoting privacy principle, 142
psychological acceptability principle,

142
reluctance to trust principle, 141
risk exposure statement, 133–134
risk impact determination, 132–134
risk likelihood determination, 130–132
risk mitigation plans

contents of, 134–136
costs, 135
definition, 123
detection/correction strategies, 135
risk impact, reducing, 135
risk likelihood, reducing, 135

securing the weakest link principle, 140
security guidelines, 143–147, 273
security principles, 137–143, 273
separation of privilege principle, 140
software characterization, 120–123
summary of, 273

Index318

Architectural risk analysis (Continued)
threats

actors, 126
analyzing, 123–126
business impact, identifying,

132–133
capability for, 131
“hactivists,” 126
from individuals, 126
mapping, 130
motivation, 131
organized nonstate entities, 126
script kiddies, 123
state-sponsored, 126
structured external, 126
summary of sources, 123–125
transnational, 126
unstructured external, 126
virtual hacker organizations, 126
vulnerable assets, identifying, 132

useful artifacts, 121
zones of trust, 123

Architectural vulnerability assessment
ambiguity, 128–129
attack resistance, 127–128
dependency, 129–130
known bad practices, 127–128
mapping threats and vulnerabilities,

130
overview, 126–127
vulnerability classification, 130

Architecture
definition, 288
integration mechanism errors, 187

Architecture and design phases
attack patterns, 55–56
issues and challenges, 117–118
management concerns, 118
objectives, 116
risk assessment. See Architectural risk

analysis
role in developing secure software,

115–117
source of vulnerabilities, 117
summary of, 273

Arguments, assurance cases
developing, 66
vs. other quality arguments, 70

overview, 62
reusing, 69
soundness of, 63

ARM (Accelerated Requirements
Method), 103

Artifacts
architectural risk analysis, 121
description, 78
developing, 88–89, 93–94
example, 93–94
for measuring security, 256–257

Assets
critical, 236
definition, 236
threats, identifying, 132

Assurance
quality, 13–15
role in security, 6–7
security. See Measuring security;

Testing security
software, 7, 289
source code quality. See Source code

analysis
Assurance cases

arguments
developing, 66
vs. other quality arguments, 70
overview, 62
reusing, 69
soundness of, 63

benefits of, 69–70
building, 62–63
CC (Common Criteria), 69
claims, 62–63
definition, 61, 283
diamond symbol, 66
EAL (Evaluation Assurance Level), 69
evidence, 62–63, 66
example, 63–67
flowchart of, 64–65
GSN (Goal Structuring Notation), 65
maintaining, 69–70
mitigating complexity, 214–215
notation for, 65
parallelogram symbol, 66
protection profiles, 69
reasonable degree of certainty,

69–70

Index 319

recording defects, 63
responding to detected errors, 63
reusing elements of, 69
rounded box symbol, 65
in the SDLC, 67–68
security evaluation standard, 69
security-privacy, laws and

regulations, 68
subclaims, 62
summary of, 270
symbols used in, 65–67

AT&T network outage, 188
Attack patterns

architectural risk analysis, 147–148
benefits of, 46
components, 47–49, 52–53
definition, 45, 283
MITRE security initiatives, 47
recent advances, 46
resistance to using, 46
in the SDLC

architecture phase, 55–56
automated analysis tools, 57–58
black-box testing, 59–60
code reviews, 57–58
coding phase, 57–58
design phase, 55–56
environmental testing, 59–60
implementation phase, 57–58
integration testing, 58
operations phase, 59
requirements phase, 53–54
system testing, 58–59
testing phase, 58–61
unit testing, 58
white-box testing, 59–60

specificity level, 51
summary of, 270, 273
testing security, 173

Attack resilience, 8, 283
Attack resistance

architectural vulnerability
assessment, 127–128

defensive perspective, 43
definition, 8, 283

Attack resistance analysis, 283
Attack surface, 35, 284
Attack tolerance, 8, 43, 284

Attack trees, 284
Attacker’s perspective. See also

Defensive perspective; Functional
perspective

attacker’s advantage, 44–45
definition, 189
identity management, 198–201
misuse/abuse cases, 80–81
representing. See Attack patterns
requirements engineering, 76–77
Web services, 192–196

Attackers
behavior, modeling, 188–189. See also

Attack patterns; Attacker’s
perspective

motivation, 131
script kiddies, 123
unsophisticated, 123
vs. users, 165
virtual hacker organizations, 126

Attacks. See also Threats; specific attacks
botnets, 284
cache poisoning, 285
denial-of-service, 285
DNS cache poisoning, 153, 286
elevation (escalation) of privilege, 286
illegal pointer values, 287
integer overflow, 287
known, identifying. See Attack

patterns
malware, 287
phishing, 287
recovering from. See Attack resilience
replay, 288
resistance to. See Attack resistance
sources of. See Sources of problems
spoofing, 289
SQL injection, 155, 289
stack-smashing, 33, 289
tampering, 289
tolerating. See Attack tolerance
usurpation, 196

Attributes. See Properties of secure
software

Audits, 197, 260–261
Authentication, 284
Availability, 27, 284
Availability threats, 200

Index320

B
Bank of America, security management,

226
Benefits of security. See Costs/benefits of

security; ROI (return on investment)
Best practices, 36–37, 284
Bishop, Matt, 138, 202
Black hats. See Attackers
Black-box testing

definition, 284
in the SDLC, 177–178
uses for, 59–60

Blacklist technique, 168–169
Booch, Grady, 215
Botnets, 3, 284
Boundary value analysis, 170
Brainstorming, 81
BSI (Build Security In) Web site,

xix–xx, 46
BST (Binary Search Tree), 107
Buffer overflow, 154–155, 284–285
Bugs in code. See also Flaws in code

buffer overflow, 154–155
deadlocks, 156
defect rate, 152–153
definition, 152, 285
exception handling, 154
infinite loops, 156
input validation, 153–154
introduced by fixes, 169
known, solutions for, 153–156
race conditions, 156
resource collisions, 156
SQL injection, 155

Building security in
vs. adding on, 21
misuse/abuse cases, 80
processes and practices for, 41–42
requirements engineering, 79–80

Build Security In (BSI) Web site,
xix–xx, 46

Business stresses, 206

C
Cache poisoning, 285
CAPEC (Common Attack Pattern

Enumeration and Classification),
46

Case studies
age verification, 199
AT&T network outage, 188
Bank of America, security

management, 226
complexity, 184, 188, 199, 206
exposure of customer data, 133
governance and management, 226
identity management, 199
managing secure development, 226
Microsoft, security management, 252
Network Solutions data loss, 188
power grid failure, 184, 206
Skype phone failure, 184
TJX security breach, 133
voting machine failure, 184

Categorizing requirements, 272
Causes of problems. See Sources of

problems
CC (Common Criteria), 69
CDA (critical discourse analysis), 103
CERT

reported vulnerabilities (1997–2006),
3–4

Secure Coding Initiative, 161
sources of vulnerabilities, 161

Characteristics of secure software. See
Properties of secure software

Claims, assurance cases, 62–63
CLASP (Comprehensive Lightweight

Application Security Process),
77, 248

Code. See Source code analysis
Code-based testing, 171. See also

White-box testing
Coding phase, attack patterns, 57–58
Coding practices

books about, 162–163
overview, 160–161
resources about, 161–163
summary of, 274–275

Common Attack Pattern Enumeration
and Classification (CAPEC), 46

Common Weakness Enumeration
(CWE), 127–128

Complete mediation principle, 142
Complexity

business stresses, 206

Index 321

case studies
age verification, 199
AT&T network outage, 188
identity management, 199
Network Solutions data loss, 188
power grid failure, 184, 206–207
Skype phone failure, 184
voting machine failure, 184

component interactions, 206
conflicting/changing goals,

205, 213–214
deep technical problems, 215–216
discrepancies, 206–208
evolutionary development,

205, 212–213
expanded scope of security, 204–205
global work process perspective, 208
incremental development, 205, 212–213
integrating multiple systems

delegating responsibilities, 209–210
failure analysis, consolidating with

mitigation, 211
generalizing the problem, 211–212
interoperability, 209
mitigation, consolidating with

failure analysis, 211
mitigations, 209–212
“Not my job” attitude, 210
operational monitoring,

210–211, 215
partitioning security analysis, 208
recommended practices, 210–212

interaction stresses, 206
less development freedom, 205
mitigating

CbyC (Correctness by
Construction) method, 216

change support, 215
changing/conflicting goals, 214–215
continuous risk assessment, 215
coordinating security efforts,

219, 277
deep technical problems, 216–217
end-to-end analysis, 216, 218, 276
failure analysis, 218–219, 276–277
failure analysis, consolidating with

mitigation, 211
flexibility, 215

integrating multiple systems,
209–213

mitigation, consolidating with
failure analysis, 211

operational monitoring, 215
recommended practices, 218–219
summary of, 275
tackling hard problems first,

216, 218, 276
unavoidable risks, 218–219, 276

overview, 203–205
partitioning security analysis, 208
people stresses, 206–207
recommended practices, 218–219
reduced visibility, 204
service provider perspective, 208
as source of problems, 5–6
stress-related failures, 206
unanticipated risks, 204, 207
user actions, 207
wider spectrum of failures, 204

Component interaction errors, 188
Component interactions, 206
Component-specific integration errors,

187
Comprehensive Lightweight

Application Security Process
(CLASP), 77, 248

Concurrency management, 144–147
Confidentiality, 26, 285
Conformance, 8, 285
Consolidation, identity management,

190
Control-flow testing, 170
Controlled Requirements Expression

(CORE), 101–102
Convergence, 261–262
Coordinating security efforts, 277
CORE (Controlled Requirements

Expression), 101–102
Core security properties, 26–28. See also

Influential security properties;
Properties of secure software

Correctness
definition, 30, 285
influence on security, 30–34
specifications, 30–34
under unanticipated conditions, 30

Index322

Costs/benefits of security. See also ROI
(return on investment)

budget overruns, 74
business case, 17–18
business impacts, 133
defect rate, effect on development

time, 14
lower stock prices, 18
preventing defects

“95 percent defect removal,” 14
early detection, 13–18
error-prone modules, 15
inadequate quality assurance, 14
vs. repairing, 15

repairing defects
costs of late detection, 15–16
by life-cycle phase, 16
over development time, 14–15
vs. preventing, 15

requirements defects, 74
risk mitigation plans, 135
schedule problems

canceled projects, 14
defect prevention vs. repair, 15
poor quality, effect on, 14–16
requirements defects, 74
time overruns, 14

skimping on quality, 13–14
Coverage analysis, 175–176
Crackers. See Attackers
Critical assets, definition, 236
Critical discourse analysis (CDA), 103
Cross-site scripting, 285
Culture of security, 221–225, 227
CWE (Common Weakness

Enumeration), 127–128

D
Data-flow testing, 170
Deadlocks, 156
Deception threats, 195
Decision table testing, 170
Defect density, 257
Defect rates

bugs in code, 152–153
and development time, 14
error-prone modules, 15

flaws in code, 152–153
and repair time/cost, 15

Defects
definition, 3, 285
preventing. See Preventing defects
repairing. See Repairing defects

Defense in depth, 140, 285
Defensive perspective. See also

Attacker’s perspective; Functional
perspective

application defense techniques, 39–41
application security, 39
architectural implications, 37–43
attack resistance, 43
attack tolerance, 43
expected issues, 37–39
software development steps, 37
unexpected issues, 39–43

Delegating responsibilities, 209–210
Denial-of-service attack, 285
Dependability, 29–30, 286
Dependency, 129–130
Dependency analysis, 286
Design phase. See Architecture and

design phases
Developing software. See SDLC

(software development life cycle)
Diamond symbol, assurance cases, 66
Discrepancies caused by complexity,

206–208
Disruption threats, 195
DNS cache poisoning, 286
Domain analysis, 102
Domain provisioning, 197–198

E
EAL (Evaluation Assurance Level), 69
Early detection, cost benefits, 13–18
Economy of mechanism principle, 141
Elevation (escalation) of privilege, 286
Elicitation techniques

comparison chart, 105
evaluating, 103–104
selecting, 89, 97

Eliciting requirements
misuse/abuse cases, 100–101
overview, 100

Index 323

SQUARE, 89, 97–98
summary of, 272
tools and techniques, 100–106

Endpoint attacks, 201
End-to-end analysis, 276
Enterprise software security framework

(ESSF). See ESSF (enterprise
software security framework)

Environmental testing, 59–60
Equivalence partitioning, 170
Error-prone modules, 15
Errors

architecture integration mechanisms,
187

categories of, 187–188
component interaction, 188
component-specific integration, 187
definition, 186, 286
operations, 188
specific interfaces, 187
system behavior, 188
usage, 188

ESSF (enterprise software security
framework)

assurance competency, 234
best practices, lack of, 228–229
creating a new group, 228
decision making, 229
definition, 230
focus, guidelines, 233
goals, lack of, 227–228
governance competency, 235
knowledge management, 234
pitfalls, 227–229
required competencies, 233–235
roadmaps for, 235
security touchpoints, 234
summary of, 280
tools for, 229
training, 234
“who, what, when” structure, 230–233

Evaluation Assurance Level (EAL), 69
Evidence, assurance cases, 62–63, 66
Evolutionary development, 205, 212–213
Examples of security problems. See Case

studies
Exception handling, 154
Executables, testing, 175–176

Exploits, 286
Exposure of information, 194

F
Fagan inspection, 90, 98, 286
Failing security principle, 139–140
Failure, definition, 186, 286
Failure analysis

attacker behavior, 188–189
consolidating with mitigation,

211
hardware vs. software, 205–208
recommended practices, 218–219
summary of, 276–277

Fault-based testing, 171
Faults, 186, 286
Fault-tolerance testing, 170
Flaws in code, 152–153, 286. See also Bugs

in code
FODA (feature-oriented domain

analysis), 102
“Forest-level” view, 120–123
Formal specifications, 78
Functional perspective. See also

Attacker’s perspective; Defensive
perspective

definition, 189
identity management

access control, 197
auditing, 197
challenges, 197–198
consolidation, 190
domain provisioning, 197–198
identity mapping, 197
interoperability, 190
legislation and regulation, 198
objectives, 190
privacy concerns, 198
reporting, 197
technical issues, 197–198
trends, 197–198

Web services, 190–192
Functional security testing

ad hoc testing, 170
boundary value analysis, 170
code-based testing, 171
control-flow testing, 170
data-flow testing, 170

Index324

Functional security testing (Continued)
decision table testing, 170
equivalence partitioning, 170
fault-based testing, 171
fault-tolerance testing, 170
known code internals. See White-box

testing
limitations, 168–169
load testing, 171
logic-based testing, 170
model-based testing, 170
overview, 167–168
performance testing, 171
protocol performance testing, 171
robustness testing, 170
specification-based testing, 170
state-based testing, 170
test cases, 170, 173, 274–275
tools and techniques, 170–171
unknown code internals.

See Black-box testing
usage-based testing, 171
use-case-based testing, 171

G
Generalizing the problem, 211–212
Global work process perspective, 208
Goal Structuring Notation (GSN), 65
Governance and management. See also

Project management
adequate security, defining,

236–238, 278
adopting a security framework. See

ESSF (enterprise software
security framework)

analysis, 21–22
assets, definition, 236
at Bank of America, 226
building in vs. adding on, 21
case study, 226
critical assets, definition, 236
definition, 223–224, 288
effective, characteristics of, 224–225,

279
maturity of practice

audits, 260–261
convergence, 261–262
exemplars, 265
legal perspective, 263

operational resilience, 261–262
overview, 259
protecting information, 259–260
software engineering perspective,

263–264
modeling, 21–22
overview, 221–222
process, definition, 237
protection strategies, 236
risks

impact, 237–238
likelihood, 237–238
measuring, 242–243
reporting, 242–243
tolerance for, 237–238

RMF (risk management framework)
business context, understanding,

239–240
business risks, identifying, 240–241
fixing problems, 242
identifying risks, 240–241
mitigation strategy, defining,

241–242
multi-level loop nature of, 243–244
overview, 238–239
prioritizing risks, 241
synthesizing risks, 241
technical risks, identifying, 240–241
validating fixes, 242

security, as cultural norm, 221–222, 279
security strategy, relevant questions,

18–20
security-enhanced SDLC, 20–23
summary of, 278–280
touchpoints, 22–23

Greenspan, Alan, 134
GSN (Goal Structuring Notation), 65

H
Hackers. See Attackers
“Hactivists,” 126. See also Attackers
Hardened services and servers, 200–201
Hardening, 286
Howard, Michael, 138, 264

I
IBIS (issue-based information systems),

102
Icons used in this book, xix, 268

Index 325

Identity management
availability threats, 200
case study, 199
endpoint attacks, 201
functional perspective

access control, 197
auditing, 197
challenges, 197–198
consolidation, 190
domain provisioning, 197–198
identity mapping, 197
interoperability, 190
legislation and regulation, 198
objectives, 190
privacy concerns, 198
reporting, 197
technical issues, 197–198
trends, 197–198

hardened services and servers, 200–201
incident response, 201
information leakage, 199–200
risk mitigation, 200–201
security vs. privacy, 199
software development, 201–203
usability attacks, 201

Identity mapping, 197
Identity spoofing, 286
Illegal pointer values, 287
Implementation phase, attack patterns,

57–58
Incident response, 201
Incremental development, 205, 212–213
Infinite loops, 156
Information warfare, 3
Influential security properties. See also

Core security properties; Properties
of secure software

complexity, 35–36
correctness, 30–34
definition, 28
dependability, 29–30
predictability, 34
reliability, 34–35
safety, 34–35
size, 35–36
traceability, 35–36

Information leakage, 199–200
Input validation, 153–154
Inspections

code. See Source code analysis

Fagan, 90, 98, 286
measuring security, 258
requirements, 90, 98–99, 272
SQUARE (Security Quality

Requirements Engineering),
90, 98–99, 272

Integer overflow, 287
Integrating multiple systems

delegating responsibilities, 209–210
failure analysis, consolidating with

mitigation, 211
generalizing the problem, 211–212
interoperability, 209
mitigation, consolidating with failure

analysis, 211
mitigations, 209–212
“Not my job” attitude, 210
operational monitoring, 210–211,

215
partitioning security analysis, 208
recommended practices, 210–212

Integration testing, 58, 176
Integrity, 27, 287
Interaction stresses, 206
Interoperability

identity management, 190
integrating multiple systems, 209
Web services, 190–191

Issue-based information systems (IBIS),
102

J
JAD (Joint Application Development),

102

K
Known

attacks, identifying. See Attack
patterns

bad practices, 127–128
bugs, solutions for, 153–156
code internals, testing. See White-box

testing
vulnerabilities, 187

L
Least common mechanism principle,

141
Least privilege principle, 139

Index326

LeBlanc, David, 138
Legal perspective, 263
Libraries, testing, 175–176
Lipner, Steve, 264
Load testing, 171
Logic-based testing, 170

M
MacLean, Rhonda, 226
Make the Client Invisible pattern,

49–51, 56
Malware, 287
Managing security. See Governance and

management; Project management
Manual code inspection, 157
Mapping

identities, 197
threats and vulnerabilities, 130

Maturity of practice, governance and
management

audits, 260–261
convergence, 261–262
exemplars, 265
legal perspective, 263
operational resilience, 261–262
overview, 259
protecting information, 259–260
software engineering perspective,

263–264
McGraw, Gary, 138
Measuring security. See also Source code

analysis; Testing security
defect density, 257
inspections, 258
Making Security Measurable

program, 47
objectives, 255–256
overview, 254–255
phase containment of defects, 257
process artifacts, 256–257
process measures, 256–257
product measures, 257–259
summary of, 280

Messages, Web services, 191–192, 194
Methods. See Tools and techniques
Metric code analysis, 159–160
Microsoft, security management, 252
Minimizing threats. See Mitigation

Misuse/abuse cases
attacker’s perspective, 80–81
brainstorming, 81
classification, example, 96–97
creating, 81–82
definition, 31, 287
eliciting requirements, 100–101
example, 82–84
security, built in vs. added on, 79–80
system assumptions, 80–81
templates for, 83

Mitigation. See also Risk mitigation plans
causing new risks, 254
complexity. See Complexity,

mitigating
consolidating with failure analysis, 211
definition, 287
identity management risks, 200–201
integrating multiple systems, 209–212
threats, 194–196

MITRE security initiatives, 47
Model-based testing, 170
Modeling, 90, 102

N
Negative requirements, 77, 172–173
Network Solutions data loss, 188
Neumann, Peter, 184
Never assuming... [safety] principle,

141–142
Nonfunctional requirements, 75–76
Non-repudiation, 27, 287
“Not my job” attitude, 210
Notation for assurance cases, 65
Numeral assignment, 107

O
Operational monitoring, 210–211, 215
Operational resilience, 261–262
Operations errors, 188
Operations phase, attack patterns, 59
Organized nonstate threats, 126
Origins of problems. See Sources of

problems

P
Parallelogram symbol, assurance cases, 66
Partitioning security analysis, 208

Index 327

Passive responses, 245
Penetration testing, 178–179
People stresses, 206–207
Performance testing, 171
Perspectives on security

attacker’s point of view. See
Attacker’s perspective

complexity, 208
defender’s point of view. See

Defensive perspective
functional point of view. See

Functional perspective
global work process, 208
legal, 263
service provider, 208
software engineering, 263–264

Phase containment of defects, 257
Phishing, 287
Planning game, 107–108
Positive requirements, 167–168
Power grid failure, 184, 206
Predictability, 34
Predictable execution, 8, 287
Preventing defects. See also

Mitigation
“95 percent defect removal,” 14
costs of

“95 percent defect removal,” 14
early detection, 13–18
error-prone modules, 15
inadequate quality assurance, 14
vs. repair, 15

Prioritizing
requirements

overview, 106
requirements prioritization

framework, 109
SQUARE, 90, 98
summary of, 272
tools and techniques, 106–111

risks, 241
Privacy, 198–199. See also Identity

management
Problems, causes. See Sources of

problems
Process, definition, 237
Processes and practices

role in security, 8–9
in the SDLC, 20–23

Project management. See also
Governance and management

active responses, 245
architectural risk analysis, 247–249
continuous risk management,

247–249, 278
knowledge and expertise, 250–251
measuring security

defect density, 257
inspections, 258
objectives, 255–256
overview, 254–255
phase containment of defects, 257
process artifacts, 256–257
process measures, 256–257
product measures, 257–259
summary of, 280

at Microsoft, 252
miscommunications, 246–247
passive responses, 245
planning, 246–250
recommended practices, 266
required activities, 249–250
resource estimation, 251–253
resources, 250–251
risks, 253–254
scope, 245–246
security practices, 247–249
tools, 250

Promoting privacy principle, 142
Properties of secure software

accountability, 27
asserting. See Assurance cases
attack resilience, 8
attack resistance, 8
attack tolerance, 8
availability, 27
confidentiality, 26
conformance, 8
core properties, 26–28
influencing, 36–37
influential properties

complexity, 35–36
correctness, 30–34
definition, 28
dependability, 29–30
predictability, 34
reliability, 34–35
safety, 34–35

Index328

Properties of secure software (Continued)
size, 35–36
traceability, 35–36

integrity, 27
non-repudiation, 27
perspectives on. See Attacker’s

perspective; Defensive
perspective

predictable execution, 8
specifying. See Assurance cases
summary of, 270
trustworthiness, 8

Protection profiles, 69, 287
Protection strategies, 236
Protocol performance testing, 171
Prototyping, 90
Psychological acceptability principle, 142

Q
QFD (Quality Function Deployment),

101
Qualities. See Properties of secure

software
Quality assurance, 13–15. See also

Measuring security; Source code
analysis; Testing security

Quality requirements. See Requirements
engineering

R
Race conditions, 156
Reasonable degree of certainty, 69–70, 288
Recognize, 288
Recover, 288
Red teaming, 288
Reduced visibility, 204
Reducing threats. See Mitigation
Refinement, 102
Relative code metrics, 159–160
Reliability, 7, 34–35, 289
Reluctance to trust principle, 141
Repairing defects, 14–16
Replay attack, 288
Reporting, identity management, 197
Repudiation, 288
Requirements engineering. See also

SQUARE (Security Quality
Requirements Engineering)

artifacts
description, 78
developing, 88–89, 93–94
example, 93–94

attacker’s perspective, 76–77
common problems, 74–75
elicitation techniques

comparison chart, 105
evaluating, 103–104
selecting, 89, 97

eliciting requirements
misuse/abuse cases, 100–101
overview, 100
summary of, 272
tools and techniques, 100–106

formal specifications, 78
importance of, 74–75
negative requirements, 77
nonfunctional requirements, 75–76
prioritizing requirements

overview, 106
recommendations for managers,

111–112
requirements prioritization

framework, 109
SQUARE, 90, 98
summary of, 272
tools and techniques, 106–111

quality requirements, 75–76
recommendations for managers,

111–112
security, built in vs. added on, 79–80
security requirements, 76–78
summary of, 271–272
tools and techniques, 77–78. See also

Attack patterns; Misuse/abuse
cases

Requirements phase
attack patterns, 53–54
positive vs. negative requirements,

53–54
security testing, 173–174
vague specifications, 53–54

Requirements prioritization framework,
109

Requirements triage, 108–109
Resilience

attack, 8, 283
operational, 261–262

Index 329

Resist, 288
Resource collisions, 156
Resources for project management,

250–253
Return on investment (ROI), 9, 13, 18. See

also Costs/benefits of security
Reusing assurance cases arguments, 69
Reviewing source code. See Source code

analysis
Risk assessment

in architecture and design. See
Architectural risk analysis

preliminary, 173
SQUARE

description, 89
sample output, 94–97
techniques, ranking, 94–96

summary of, 271
tools and techniques, 94–97

Risk-based testing, 169–172, 275
Risk exposure statement, 133–134
Risk management framework (RMF). See

RMF (risk management framework)
Risk mitigation plans. See also Mitigation

contents of, 134–136
costs, 135
definition, 123
detection/correction strategies, 135
risk impact, reducing, 135
risk likelihood, reducing, 135

Risks
exposure, lack of awareness, 6
impact, 132–134, 237–238
likelihood, 130–132, 237–238
managing. See RMF (risk

management framework)
measuring, 242–243
project management, 253–254
protective measures. See Mitigation;

Risk mitigation plans
reporting, 242–243
tolerance for, 237–238
unavoidable, 276
Web services, 193–194

Rittel, Horst, 102
RMF (risk management framework)

business context, understanding,
239–240

business risks, identifying, 240–241

continuous management, 247–249,
278

fixing problems, 242
identifying risks, 240–241
mitigation strategy, defining, 241–242
multi-level loop nature of, 243–244
overview, 238–239
prioritizing risks, 241
synthesizing risks, 241
technical risks, identifying, 240–241
validating fixes, 242

Robustness testing, 170
ROI (return on investment), 13, 17–18.

See also Costs/benefits of security
Rounded box symbol, assurance cases,

65
Rubin, Avi, 184

S
Safety, 7, 34–35, 289
Saltzer, Jerome, 138
Schedules

canceled projects, 14
costs of security problems, 14–16
poor quality, effect on, 14–16
prevention vs. repair, 15
time overruns, 14

Schneier, Bruce, 138
Schroeder, Michael, 138
SCR (Software Cost Reduction), 78
Script kiddies, 123. See also Attackers
SDLC (software development life cycle).

See also specific activities
architecture and design phases

attack patterns, 55–56
issues and challenges, 117–118
management concerns, 118
objectives, 116
risk assessment. See Architectural

risk analysis
role in developing secure software,

115–117
source of vulnerabilities, 117

assurance cases, 67–68
attack patterns

architecture phase, 55–56
automated analysis tools, 57–58
black-box testing, 59–60
code reviews, 57–58

Index330

SDLC (Continued)
coding phase, 57–58
design phase, 55–56
environmental testing, 59–60
implementation phase, 57–58
integration testing, 58
operations phase, 59
requirements phase, 53–54
system testing, 58–59
testing phase, 58–61
unit testing, 58
white-box testing, 59–60

black-box testing, 177–178
coding phase, attack patterns, 57–58
design phase. See Architecture and

design phases
implementation phase, attack

patterns, 57–58
managing secure development, 20–23
operations phase, attack patterns, 59
phase containment of defects, 257
practices by life cycle phase,

summary of, 270–280
processes and practices, 20–23
requirements phase, 53–54, 173–174.

See also Requirements
engineering

reviewing source code. See Source
code analysis

testing for security. See Testing
security

touchpoints, 22–23
white-box testing, 175
writing code. See Coding practices

Secure Coding Initiative, 161
 goal, xv
Securing the weakest link principle, 140
Security

application, 11, 12, 39
vs. assurance, 6–7
as cultural norm, 221–222, 279
definition, 289
development assumptions, 5
goals, 7
guidelines, 143–147, 273
principles, 137–143, 273
vs. privacy, 199
nonsecure software, 3
objective, 7

practices, summary of, 270–280
problem overview

complexity of systems, 5–6
report to the U.S. President, 3
survey of financial services

industry, 4
vulnerabilities reported to CERT

(1997-2006), 3–4
strategy, 18–19
system criteria, 7

Security architecture. See Architectural;
Architecture and design

Security profiles, 288
Security Quality Requirements

Engineering (SQUARE). See
SQUARE (Security Quality
Requirements Engineering)

Security touchpoints
definition, 36–37, 290
ESSF (enterprise software security

framework), 234
in the SDLC, 22–23

Separation of privilege principle, 140
Service provider perspective, 208
Shirey’s threat categories, 192, 194–196
Simple Script Injection pattern, 58
Size, influence on security, 35–36. See also

Complexity
Skype phone failure, 184
SOA (service-oriented architecture), 191
SOAP (Simple Object Access Protocol),

192–193
SOAR report, 78
Social engineering, 189, 288
Soft Systems Methodology (SSM), 101
Software

assurance, 6–7, 289
characterization, 120–123
development. See SDLC
reliability, 7, 34–35, 289
safety, 7, 34–35, 289
security. See Security
trustworthy, 5

Software Cost Reduction (SCR), 78
Software development life cycle (SDLC).

See SDLC (software development
life cycle)

Software engineering perspective,
263–264

Index 331

“Software Penetration Testing,” 179
“Software Security Testing,” 179
Sound practice, 289
Source code analysis

bugs
buffer overflow, 154–155
deadlocks, 156
defect rate, 152–153
definition, 152
exception handling, 154
infinite loops, 156
input validation, 153–154
known, solutions for, 153–156
race conditions, 156
resource collisions, 156
SQL injection, 155

flaws, 152–153
process diagrams, 160
source code review

absolute metrics, 159–160
automatic analysis, 57–58
manual inspection, 157
metric analysis, 159–160
overview, 156–157
relative metrics, 159–160
static code analysis tools, 157–159
summary of, 274

vulnerabilities, 152–156. See also Bugs
in code; Flaws in code

Sources of problems. See also Attacks;
Complexity; Threats

architecture and design, 117
bugs in code, 152–153
CERT analysis, 161
complexity of systems, 5–6
flaws in code, 152–153
implementation defects, 12
incorrect assumptions, 12
mistakes, 12–13
requirements defects, 74
specification defects, 12
summary of, 12
threats, 123–125
unintended interactions, 12

Specific interface errors, 187
Specification-based testing, 170
Specifications

properties of secure software. See
Assurance cases

security requirements. See
Requirements engineering

Spoofing, 289
SQL injection, 155, 289
SQUARE (Security Quality

Requirements Engineering). See also
Requirements engineering

artifacts, developing, 88–89, 93–94
categorizing requirements,

89, 97–98, 272
defining terms, 88, 92
definition, 84
elicitation techniques, selecting, 89, 97
eliciting requirements, 89, 97–98
goals, identifying, 88, 92
history of, 84
inspecting requirements,

90, 98–99, 272
prioritizing requirements, 90, 98
process overview, 85–87
process steps, 88–90
prototyping, 90
results, expected, 90–91
results, final, 99
risk assessment

description, 89
sample output, 94–97
techniques, ranking, 94–96

sample outputs, 92–99
summary of, 271

SSM (Soft Systems Methodology), 101
Stack-smashing attack, 33, 289
Standards

CC (Common Criteria), 69
credit card industry, 260
security evaluation, 69
software engineering terminology, 34

State-based testing, 170
State-sponsored threats, 126
“Static Analysis for Security,” 179
Static code analysis tools, 157–159
Steven, John, 224–225, 281
Stock prices, effects of security problems,

18
Strategies for security, 18–20
Stress testing, 177
Stress-related failures, 206
Structured external threats, 126
Subclaims, 62

Index332

System behavior errors, 188
System testing, 58–59, 176–179

T
Tackling hard problems first, 276
Tampering, 289
Techniques. See Tools and techniques
Telephone outages, 184, 188
Templates

misuse/abuse cases, 83
testing security, 172

Test cases, functional testing,
170, 173, 274–275

Testing security. See also Measuring
security; Source code analysis

90 percent right, 167
attack patterns, 58–61, 173
black-box testing, 177–178
blacklist technique, 168–169
books and publications, 164,

179–180
bugs, introduced by fixes, 169
coverage analysis, 175–176
executables, testing, 175–176
functional

ad hoc testing, 170
boundary value analysis, 170
code-based testing, 171. See also

White-box testing
control-flow testing, 170
data-flow testing, 170
decision table testing, 170
equivalence partitioning, 170
fault-based testing, 171
fault-tolerance testing, 170
limitations, 168–169
load testing, 171
logic-based testing, 170
model-based testing, 170
overview, 167–168
performance testing, 171
protocol performance testing, 171
robustness testing, 170
specification-based testing, 170
state-based testing, 170
tools and techniques, 170–171
usage-based testing, 171
use-case-based testing, 171
white-box testing, 171

goals of, 164
integration testing, 176
known internals. See White-box

testing
libraries, testing, 175–176
limitations, 168–169
methods for, 167
negative requirements, 172–173
penetration testing, 178–179
positive requirements, 167–168
preliminary risk assessment, 173
required scenarios, 33
requirements phase, 173–174
resources about, 179–180
risk-based, 169–172, 275
scenarios, from past experiences,

172–173
vs. software testing, 165–167
stress testing, 177
summary of, 274–275
system testing, 176–179
templates for, 172
threat modeling, 173
throughout the SDLC

black-box testing, 177–178
coverage analysis, 175–176
executables, testing, 175–176
integration testing, 176
libraries, testing, 175–176
penetration testing, 178–179
preliminary risk assessment, 173
requirements phase, 173–174
stress testing, 177
system testing, 176–179
unit testing, 174–175
white-box testing, 175

unique aspects, summary of, 274
unit testing, 174–175
unknown internals. See Black-box

testing
users vs. attackers, 165
white-box testing, 175

Theory-W, 108
Threats. See also Attacks; Sources of

problems
actors, 126
analyzing, 123–126, 289
business impact, identifying, 132–133
capability for, 131

Index 333

categories of, 9–10, 194–196
deception, 195
definition, 289
development stage, 9–10
disruption, 195
exposure of information, 194
“hactivists,” 126
from individuals, 126
mapping, 130
modeling, 173, 290
motivation, 131
operations stage, 10
organized nonstate entities, 126
protective measures. See Mitigation
script kiddies, 123
Shirey’s categories, 192, 194–196
state-sponsored, 126
structured external, 126
summary of sources, 123–125
transnational, 126
unstructured external, 126
usurpation, 196
virtual hacker organizations, 126
vulnerable assets, identifying, 132
weaknesses. See Vulnerabilities

TJX security breach, 133
Tolerance

attacks, 8, 43, 284
definition, 290
faults, 170
risks, 237–238

Tools and techniques. See also specific
tools and techniques

100-point method, 108
AHP, 110
ARM (Accelerated Requirements

Method), 103
automated analysis, 57–58
bad practices reference, 127–128
BST (binary search tree), 107
CDA (critical discourse analysis), 103
CLASP (Comprehensive Lightweight

Application Security Process),
77, 248

CORE (Controlled Requirements
Expression), 101–102

CWE (Common Weakness
Enumeration), 127–128

domain analysis, 102
eliciting requirements, 100–106
ESSF (enterprise software security

framework), 229
FODA (feature-oriented domain

analysis), 102
functional security testing, 170–171
IBIS (issue-based information

systems), 102
JAD (Joint Application

Development), 102
numeral assignment, 107
planning game, 107–108
prioritizing requirements, 106–111
project management, 250
prototyping, 90
QFD (Quality Function Deployment),

101
requirements engineering, 77–78. See

also SQUARE
requirements prioritization

framework, 109
requirements triage, 108–109
risk assessment, 94–97
SSM (Soft Systems Methodology), 101
static code analysis, 157–159
Theory-W, 108
Wiegers’ method, 109
win-win, 108

Touchpoints
definition, 36–37, 290
ESSF (enterprise software security

framework), 234
in the SDLC, 22–23

Traceability, 35–36
Transnational threats, 126
Trust boundaries, 290
Trustworthiness, 8, 290

U
Unanticipated risks, 204, 207
Unintended interactions, 12
Unit testing, 58, 174–175
Unstructured external threats, 126
Usability attacks, 201
Usage errors, 188
Usage-based testing, 171
Use cases, 290. See also Misuse/abuse cases

Index334

Use-case diagrams. See Misuse/abuse
cases

Use-case-based testing, 171
User actions, effects of complexity, 207
Users vs. attackers, 165
Usurpation threats, 196

V
Viega, John, 138
Voting machine failure, 184
Vulnerabilities. See also Architectural

vulnerability assessment
architectural vulnerability

assessment, 130
classifying, 130
in code, 152. See also Bugs in code;

Flaws in code
definition, 290
known, list of, 187
perceived size, 33
reported to CERT (1997-2006), 3–4
tolerating, based on size, 32–34

Vulnerable assets, identifying, 132

W
Weaknesses. See Vulnerabilities
Web services

attacker’s perspective, 192–196

distributed systems risks, 193–194
functional perspective, 190–192
goal of, 191
interoperability, 190–191
message risks, 194
messages, 191–192
risk factors, 193–194
Shirey’s threat categories, 192,

194–196
SOA (service-oriented architecture),

191
SOAP (Simple Object Access

Protocol), 192–193
White-box testing. See also Code-based

testing
attack patterns, 59–60
definition, 290
functional security testing, 171
in the SDLC, 175

Whitelist, 290
“Who, what, when” structure,

230–233
Wicked problems, 102
Wiegers’ method, 109
Win-win technique, 108

Z
Zones of trust, 123, 290

	Foreword
	Preface
	Chapter 1: Why Is Security a Software Issue?
	1.1 Introduction
	1.2 The Problem
	1.2.1 System Complexity: The Context within Which Software Lives

	1.3 Software Assurance and Software Security
	1.3.1 The Role of Processes and Practices in Software Security

	1.4 Threats to Software Security
	1.5 Sources of Software Insecurity
	1.6 The Benefits of Detecting Software Security Defects Early
	1.6.1 Making the Business Case for Software Security: Current State

	1.7 Managing Secure Software Development
	1.7.1 Which Security Strategy Questions Should I Ask?
	1.7.2 A Risk Management Framework for Software Security
	1.7.3 Software Security Practices in the Development Life Cycle

	1.8 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

