Index

A

Access control requirements, 52–53
Access control services, 53
Access technology, 45–46
Agile SOA development, 131–134
risk management, 141–142
TAS (Total Architecture Synthesis), 134–140
Agility, 58–59, 113
Application design, 76–78
Architect, business process absence of, 108–109
feedback omissions, 165
multisilo projects, 80–81, 87
process design, 170–176
and project charter, 90–91, 191
responsibilities, xxv, 11, 71, 101–102
split team, 97
total architecture management, 125
virtual team, 109
Architect, project-level, 124
Architect, systems
and business process design, 170–178
multisilo projects, 80–82, 87
process design, 170–176
and project charter, 90–91, 191
responsibilities, xxv, 11, 71,
102–103, 177–178
split team, 97
total architecture management, 125
virtual team, 109
Architectural dependencies, 113
Architectural design patterns, 123
Asynchronous request-reply, 44–45, 162
Authentication, 39, 52–53, 55
Authorization, 39, 52–53, 55
Automatic breakdown detection, 69

B

Boehm, Barry, 140
Breakdowns, 124
automatic breakdown detection, 69
dialogue for action, 149–151
detecting, 154–160
recovery, 22, 24
undetected, 20–21, 160, 162, 166,
176, 206
Budgets, 65–67, 218
Business agility, 58
Business analyst, 101
Business executive sponsor, 82–85
enterprise architecture, 115
multisilo projects, 87–91
relationship with IT executive
sponsor, 84
and risk, 178–179
total architecture management, 127
Business process architect
absence of, 108–109
feedback omissions, 165
multisilo projects, 80–81, 87
process design, 170–176
and project charter, 90–91, 191
responsibilities, xxv, 11, 71, 101–102
split team, 97
Business process architect (continued)
total architecture management, 125
virtual team, 109

Business process synthesis, TAS
(Total Architecture Synthesis), 135, 138–139

Business processes, xxiii
case studies, 20–25
and dependency, 113
enterprise architecture
dependencies, 111–112
nonfunctional requirements, 172
risks, 147
Business services, 39–40, 44
and dependency, 112–113
Business systems, 29
nonfunctional requirements, 32–34
tangible benefits, 30–32

C

Case studies
expediting orders, 25–27
fraud investigation, 33–34
purchasing process, 20–21
service-level agreements, 23–24
unified customer interface, 30–32

Charter (project), 10–11, 65–67, 91, 186–194

Client-server development, silo-based, 10–13

Code libraries, 56

Constraints, 188–189

Conversation for action, 149–151
activity diagram, 155
dialog shortcuts, 160–161
project as dialog, 184–186

Cosmic chicken, 196–197

Cost
benefit issues, 58–60, 67, 72, 93
constraints, 188–189
management, 8–9, 163
reduction, 58–59
CRUD cycle, 217

D

Data loss, 113, 204–205
Data replication, 113, 205
Death march projects, 72
Delays, 210–211
Delegation, 153–154
Deliver Orders, 173–177
Delivery Service Workgroup, 173–177

Departmental systems, 76–78

Dependency
architectural, 113
business processes, 113
business services, 112–113
enterprise architecture, 111–114
location, 47–50

Deployment approval, 193

Design patterns, 123

Destination names, 48–50

Development methodology, 70–72

Dialog shortcuts, 160–170

Direct access to services, 48

Distributed ESB, routing, 49–52

Distributed system design, 78–79

Documentation, 118, 123

service design, 223–224

Domain model, 138

Dotted-line reporting, 77, 126–127

IT executive sponsor, 84–85

multisilo projects, 82
to project team, 106
total architecture management, 126–127
virtual leadership, 109

E

Education (governance), 219

Emerging technologies, 116–118

Encryption, 52–53, 55

Enforcement (governance), 219

Enterprise agility, 59

Enterprise architecture, 111–115
data replication, 113
definition, 115–119
dependencies, 111–114
design patterns, 123
governance, 119–122
operational responsibility, 123–124
site disaster recovery, 113–114
standards and best practices, 115, 122–123
total architecture management, 124–128
training and mentoring, 123
Enterprise architecture roadmap, 230–232
Enterprise projects organization, 89–90
Enterprise resource planning (ERP), 8–9, 12–13, 82
Errors, and risk reduction, 208–210
ESB (enterprise service bus), 48–52
Event notifications, 44–45
Event support, services, 44–45
Evolutionary changes, services, 43
Exception handling, 39, 161, 166
Exceptions, process design, 171
Exit strategy, 194
Expediting orders, 25–27
External services, 46

defailover, 113–114
data, 204–205
logic, 205–207
risk reduction, 200–208
systems, 202–204
Feasibility
assessments, 66–67, 72, 120
negative reports, 193
oversight team, 90–91, 120
project, 105
total architecture synthesis, 135–142
Feedback, 71–72
breakdowns, 159
dialog shortcuts, 162–167
negative, 72, 92, 159, 163, 193
omissions, 162, 165
pattern, 165
task assignment, 175
task performance, 155, 159
Fire-and-forget communications, 168
Flores, Fernando, 148, 149
Fraud investigation (case study), 33–34
Functional requirements, 32
Functional stability, of services, 42–44
Future-state architecture, 116–119

G
Geographic distribution, 233–234
Governance
education and enforcement, 219
enterprise architecture, 119–122
and feasibility, 66–67, 72
minimum project, 120, 192
processes, 217
project charter, 191–194
project portfolio planning, 218–219
for service design, 219–224
for service operation, 225–226
for service utilization, 224–225
See also Risk management

H
HTTP (Hypertext Transport Protocol), 45–46

I
Incentives, 85–86, 93
Independent access control, 52–53
Indexes (service documentation), 216, 224
Indirect access to services, 48
Indirection, 47–52
Industry standards, 53–55
Infeasibility, 67, 132, 192–193
Infrastructure services, 39–40, 44
ESB, 48–49
Interdependence, 63
 business processes and systems, 71
 enterprise architecture elements, 111–113
 total architecture, 5
Internal services, 46
Investment, risk mitigation, 202–205
IT executive sponsor, 12
 and business executive sponsor, 84–85
 dotted-line reporting, 81–85
 incentives, 85–87
 process monitoring, 178
 and project charter, 91, 190
 total architecture management, 126–127
IT-centric project, 96, 108–109
Iterative approach, 134, 139–142

J
JMS (Java Messaging Service), 45–46
Justification and specification, 220–221

L
Late delivery, 210–211
Legacy code, and service wrappers, 47
Location dependencies, 47–49
Location transparency, 47–52
Logic errors, 205–207

M
Mentorship, 123, 125
Minimum project governance, 120, 192
Mobile computing, 233
Monitor, 167–169
Multiple failure modes, 207–208
Multiple phases, 194–197
Multisilo projects, 80–88

N
Negative feedback
 absence of, 159, 163
 on project feasibility, 72, 92, 193
Nonfunctional requirements, 32–34, 172
Notification services, 44–45

O
Order Entry System, 176–178
Order Entry Workgroup, 174–178
Order Management process,
 169–172, 177
Organization, and project success, 75
 application design, 76–78
 distributed system design, 78–79
 multisilo projects, 80–88
 project oversight, 88–97
Outages, 22, 202–204, 226
Oversight, 88–90
 fostering cooperation, 93
 project charter, 91, 120, 190–191
 project feasibility, 92–93
 split team, 97
 success measurement, 93–94

P
Partitioned projects, 195–196
Peak order rate, 172, 201–203
Performance constraints, 172
Performance monitoring, 225–226
Performer (conversation for action),
 150–159, 161–168, 170, 173
Phased projects, 194–195
Plan Order Shipment, 172
Power generator case study, 25–27
Present-state architecture, 117–119
Process
 breakdowns, 20–21
 design, 69–70, 170–178
 failures, 19–27
 flow, 171–172
 management, 68–70, 176–178
Process architect, business
 absence of, 108–109
 feedback omissions, 165
 multisilo projects, 80–81, 87
 process design, 170–176
 and project charter, 90–91, 191
 responsibilities, xxv, 11, 71,
 101–102
 split team, 97
 total architecture management, 125
virtual team, 109
Progress reports, 72
Project as a dialog, 184–186
Project charter, 10, 91
 budgets, 65
 exit strategy, 194
 key participants, 91, 190–191
 project governance, 191–194
 request, 186–190
Project exit strategy, 194
Project feasibility
 leadership team responsibilities, 105–106
 oversight team responsibilities, 92–93
Project governance, 191–194
 enterprise architecture, 119–122
 and feasibility, 66–67, 72
 minimum steps for, 120–121
Project leadership team, 99
 business process architect, 101–102
 IT-centric project, 108–109
 project manager, 87–91, 99–101
 responsibilities, 103–107
 systems architect, 102–103
 virtual team, 109
Project manager, 87–91, 99–101
Project oversight, 88–95
Project portfolio planning, 218–219
Project prime objective, 66–67
Project risks and rewards, 189–190
Project scoping, TAS (Total
 Architecture Synthesis), 136–137
Project teams, 96, 108
Project-level architect, 124
Promise (conversation for action),
 150, 156–158, 161–162
Q
 Quality, 10–11
 Quality measurements, 163–166
 Quantifying benefits, 64
 Quantifying costs, 65
R
 Real-time monitoring, 206
 Recovery process, 22–24
 Registries (service documentation),
 224
 Releases, phased, 194–197
 Replication, data, 113, 205
 Repositories (service
 documentation), 224
 Request, project charter, 186–190
 Request (conversation for action), 150
 Request routing, 49–52
 Request-only communications,
 168–169
 Requestor (conversation for action),
 150–153, 155–156, 166–170, 173
 Request-reply, 44–45, 57, 162
 Responsibilities
 business process architect, xxv, 11,
 71, 101–102
 oversight, 88, 92–93
process design, 170–178
of project leadership team, 103–107
for risk assessment, 148
systems architect, xxv, 11, 71, 102–103, 177–178
Reusable services, 8, 13, 39
Revenue losses, 202–207
Risk, business process, 147–149
breakdowns, 154–160
business executive sponsor, 178–179
conversation for action, 149–152
delegation and trust, 153–154
dialog shortcuts, 160–170
responsibility assignments, 170–178
Risk management, 215
exit strategy, 194
governance, 218–226
partitioned projects, 195–196
phased projects, 194–195
processes and governance, 217–226
project as a dialog, 184–186
project charter, 186–194
project portfolio planning, 218–219
project risk, 183–184
risk reduction, 199–210
service design, 219–224
service operation, 225–226
service utilization, 224–225
service-related risks, 215–217
TAS (Total Architecture Synthesis), 132–140
Risk reduction, 199
delays, 210–211
errors, 208–210
failures, 200–208
investment, 202–204
ROI, 8, 215, 218
Routing, distributed ESB, 49–52
Runtime overhead, 55–58

S
Scalability, 222
Schedule, 100–101, 103, 105, 188–189
Scoping, TAS, 136–137
Security certificate, 52
Separate projects, 195–197
Server failures, 202–204
Service abstract, 223–224
Service advertising, 216, 224
Service communications,
standardization, 54–55
Service design governance, 219
architecture, implementation, and
deployment, 221–223
documentation, 223–224
justification and specification,
220–221
Service operation governance,
225–226
Service orchestration, 5, 11–12
Service utilization governance,
224–225
Service wrappers, 40–42, 47
Service-level agreements (SLAs),
21–24
Service-level specifications, 22
Service-related risks, 215–217
Service(s), 37–41
access control, 52–53
business, 39–40
cost-benefit issues, 58–60
criteria for creating, 55–58
direct access, 48
ESB (enterprise service bus),
48–52
event support, 44–45
evolutionary changes, 43
external, 46
functional stability, 42–44
indirect access, 48
infrastructure, 39–40
internal, 46
location transparency, 47–52
service wrappers, 40–42, 47
specifying, 220–221
standardized message content, 53–55
universal accessibility, 45–46
Ship Order, 170, 172–177
Shipped Goods, 173
Silo-based client-server
development, 10–13
Silo-based focus, 75–76
Silo-based projects, 9–13
Silos, 6–9
multisilo projects, 80–88
partitioned projects, 195
Site disaster, 113, 205
Six Sigma, 164
SOAP, 54–55, 224
Solid-line reporting, 77n
Split oversight teams, 97
Stability of services, 41–44
Standardization, service
communications, 54–55
Standardized message content, 53–55
Standards, 54–55, 115, 122–123
Steering committees, 88–90
Streaming audio/video, 46
Success, 63
development methodology, 70–72
measuring, 63–68
process management, 68–69
system design and process
design, 69–70
Synchronous request-reply, 44–45, 162
System design, and process design, 69–70
Systems architect
and business process design, 170–178
multisilo projects, 80–82, 87
process design, 170–176
and project charter, 90–91, 191
responsibilities, xxv, 11, 71, 102–103, 177–178
split team, 97
total architecture management, 125
virtual team, 109
Systems architecture leadership,
multisilo projects, 86–88
Systems architecture synthesis, 135, 139
Systems failures, 202–204

T
TAS (Total Architecture Synthesis), 134
and agile development, 132
business process synthesis, 138–139
evaluation, 139
implementation caution, 140
overview, 135
project scoping, 136–137
requirements gathering, 137–138
systems architecture synthesis, 139
Task assignment, 175
Task execution assignments, 173–176
Task performance breakdowns,
154–160
Task performance constraints, 172–173
Telecommunications service, SLAs,
23–24
Testing, in production environment,
20–21
Third party, delivering to, 166–168
Total architecture, 4–6, 13–16
Total architecture management
group, 124–128
Training, enterprise architecture, 123
Transports, 45–46
Trust, 153–154

U
UDDI, 224
UML, 131–134
activity diagram notation, 154–156
TAS, 141
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undetected breakdowns, 20–21, 160, 162, 166, 174, 206</td>
</tr>
<tr>
<td>Unified customer interface, 30–32</td>
</tr>
<tr>
<td>Universal accessibility, 45–46</td>
</tr>
<tr>
<td>Upgrade planning, 225–228</td>
</tr>
<tr>
<td>Use cases, 135–139</td>
</tr>
<tr>
<td>User ID/password, 52</td>
</tr>
<tr>
<td>Warehouse Workgroup, 173–177</td>
</tr>
<tr>
<td>Waterfall-style development, 131–134</td>
</tr>
<tr>
<td>W3C SOAP, 54–55</td>
</tr>
<tr>
<td>Williams, Monci J., 163–164</td>
</tr>
<tr>
<td>Winograd, Terry, 148, 149</td>
</tr>
<tr>
<td>WS-* standards, 54–55</td>
</tr>
<tr>
<td>WSDL, 224</td>
</tr>
<tr>
<td>WS-Policy, 54–55</td>
</tr>
<tr>
<td>WS-Security, 54–55</td>
</tr>
<tr>
<td>WS-SecurityPolicy, 54–55</td>
</tr>
<tr>
<td>Validating results, process design, 178</td>
</tr>
<tr>
<td>Version upgrades, 226</td>
</tr>
<tr>
<td>Virtual hostnames, 47, 49</td>
</tr>
<tr>
<td>Virtual IP addresses, 47, 49</td>
</tr>
<tr>
<td>Virtual leadership team, 109</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>XML, 54</td>
</tr>
<tr>
<td>XML (eXtensible Markup Language), 45–46</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Yourdon, Edward, 72</td>
</tr>
</tbody>
</table>