

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, contact:

U.S. Corporate and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales, international@pearson.com

Visit us on the Web: informit.com/aw

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the
book is available through Safari Bookshelf. When you buy this book, you get free
access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical
books, find code samples, download chapters, and access technical information whenever and
wherever you need it.

To gain 45-day Safari Enabled access to this book:

 • Go to informit.com/onlineedition
 • Complete the brief registration form
 • Enter the coupon code F1GR-7SFI-LPRP-Q2ID-HBCC

If you have difficulty registering on Safari Bookshelf or accessing the online edition,
please e-mail customer-service@safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Munshi, Aaftab.
 The OpenGL ES 2.0 programming guide / Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
 p. cm.
 Includes index.
 ISBN-13: 978-0-321-50279-7 (pbk. : alk. paper)
 ISBN-10: 0-321-50279-5 (pbk. : alk. paper) 1. OpenGL. 2. Computer graphics—Specifications. 3.
Application program interfaces (Computer software) 4. Computer programming. I. Ginsburg, Dan.
II. Shreiner, Dave. III. Title.

 T385.M863 2009
 006.6'6—dc22 2008016669

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc., Rights and Contracts Department
501 Boylston Street, Suite 900, Boston, MA 02116, Fax: (617) 671-3447

ISBN-13: 978-0-321-50279-7
ISBN-10: 0-321-50279-5
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, July 2008

xxi

0.Foreword

Over the years, the “Red Book” has become the authoritative reference for
each new version of the OpenGL API. Now we have the “Gold Book” for
OpenGL ES 2.0—a cross-platform open standard ushering in a new era of
shader programmability and visual sophistication for a wide variety of
embedded and mobile devices, from game consoles to automobiles, from
set top boxes to mobile phones.

Mobile phones, in particular, are impacting our everyday lives, as the
devices we carry with us are evolving into full mobile computers. Soon we
will be living in a world where most of us get our pixels delivered on these
personal, portable devices—and OpenGL ES will be at the center of this
handheld revolution. Devices such as the Apple iPhone already use OpenGL
ES to drive their user interface, demonstrating how advanced graphics
acceleration can play an important role in making a mobile phone fun,
intuitive, and productive to use. But we have only just started the journey
to make our handheld computers even more visually engaging. The shader
programmability of the new generation of mobile graphics, combined with
the portability and location awareness of mobile devices, will forever
change how we interact with our phones, the Internet, and each other.

OpenGL ES 2.0 is a critical step forward in this mobile computing revolu-
tion. By bringing the power of the OpenGL ES Shading Language to diverse
embedded and mobile platforms, OpenGL ES 2.0 unleashes enormous
visual computing power, but in a way that is engineered to run on a small
battery. Soon after this graphics capability is used to deliver extraordinary
user interfaces, it will be leveraged for a wide diversity of visually engaging
applications—compelling games, intuitive navigation applications, and
more—all in the palm of your hand.

xxii Foreword

However, these applications will only be successful if enabled by a complete
ecosystem of graphics APIs and authoring standards. This is the continuing
mission of the Khronos Group—to bring together industry-leading compa-
nies and individuals to create open, royalty-free standards that enable the
software community to effectively access the power of graphics and media
acceleration silicon. OpenGL ES is at the center of this ecosystem, being
developed alongside OpenGL and COLLADA. Together, they bring a tre-
mendous cross-standard and multi-platform synergy to advanced 3D on a
wide variety of platforms. Indeed, community collaboration has become
essential for realizing the potential of OpenGL ES 2.0. The sophistication of
a state-of-the-art programmable 3D API, complete with shading language,
an effects framework, and authoring pipeline, has required hundreds of
man years of design and investment—beyond any single company’s ability
to create and evangelize throughout the industry.

As a result of the strong industry collaboration within Khronos, now is the
perfect time to learn about this new programmable 3D API as OpenGL ES
2.0–capable devices will soon be appearing in increasing volumes. In fact, it
is very possible that, due to the extraordinary volume of the mobile market,
OpenGL ES 2.0 will soon be shipping on more devices than any previous 3D
API to create an unprecedented opportunity for content developers.

This level of successful collaboration only happens as the result of hard
work and dedication of many individuals, but in particular I extend a sin-
cere thanks to Tom Olson, the working group chair that brought OpenGL
ES 2.0 to market. And finally, a big thank you to the authors of this book:
You have been central to the creation of OpenGL ES 2.0 within Khronos and
you have created a great reference for OpenGL ES 2.0—truly worthy of the
title “Gold Book.”

Neil Trevett
Vice President Mobile Content, NVIDIA
President, Khronos Group
April 2008

xxiii

0.Preface

OpenGL ES 2.0 is a software interface for rendering sophisticated 3D graph-
ics on handheld and embedded devices. OpenGL ES 2.0 is the primary
graphics library for handheld and embedded devices with programmable
3D hardware including cell phones, PDAs, consoles, appliances, vehicles,
and avionics. With OpenGL ES 2.0, the full programmability of shaders has
made its way onto small and portable devices. This book details the entire
OpenGL ES 2.0 API and pipeline with detailed examples in order to provide
a guide for developing a wide range of high-performance 3D applications
for handheld devices.

Intended Audience

This book is intended for programmers interested in learning OpenGL ES
2.0. We expect the reader to have a solid grounding in computer graphics.
We will explain many of the relevant graphics concepts as they relate to var-
ious parts of OpenGL ES 2.0, but we do expect the reader to understand
basic 3D concepts. The code examples in the book are all written in C. We
assume that the reader is familiar with C or C++ and will only be covering
language topics where they are relevant to OpenGL ES 2.0.

This book covers the entire OpenGL ES 2.0 API along with all Khronos-
ratified extensions. The reader will learn about setting up and programming
every aspect of the graphics pipeline. The book details how to write vertex
and fragment shaders and how to implement advanced rendering tech-
niques such as per-pixel lighting and particle systems. In addition, the book
provides performance tips and tricks for efficient use of the API and hard-
ware. After finishing the book, the reader will be ready to write OpenGL ES
2.0 applications that fully harness the programmable power of embedded
graphics hardware.

xxiv

Organization of the Book

This book is organized to cover the API in a sequential fashion, building up
your knowledge of OpenGL ES 2.0 as we go.

Chapter 1—Introduction to OpenGL ES 2.0

This chapter gives an introduction to OpenGL ES, followed by an overview
of the OpenGL ES 2.0 graphics pipeline. We discuss the philosophies and
constraints that went into the design of OpenGL ES 2.0. Finally, the chapter
covers some general conventions and types used in OpenGL ES 2.0.

0.

Chapter 2—Hello Triangle: An OpenGL ES 2.0 Example

This chapter walks through a simple OpenGL ES 2.0 example program that
draws a triangle. Our purpose here is to show what an OpenGL ES 2.0 pro-
gram looks like, introduce the reader to some API concepts, and describe
how to build and run an example OpenGL ES 2.0 program.

0.

Chapter 3—An Introduction to EGL

This chapter presents EGL, the API for creating surfaces and rendering con-
texts for OpenGL ES 2.0. We describe how to communicate with the native
windowing system, choose a configuration, and create EGL rendering con-
texts and surfaces. We teach you enough EGL so that you can do everything
you will need to do to get up and rendering with OpenGL ES 2.0.

0.

Chapter 4—Shaders and Programs

Shader objects and program objects form the most fundamental objects in
OpenGL ES 2.0. In this chapter, we describe how to create a shader object,
compile a shader, and check for compile errors. The chapter also covers how
to create a program object, attach shader objects to it, and link a final pro-
gram object. We discuss how to query the program object for information
and how to load uniforms. In addition, you will learn about the difference
between source and binary shaders and how to use each.

Preface

xxv

Chapter 5—OpenGL ES Shading Language

This chapter covers the shading language basics needed for writing shaders.
The shading language basics described are variables and types, constructors,
structures, arrays, attributes, uniforms, and varyings. This chapter also
describes some more nuanced parts of the language such as precision qual-
ifiers and invariance.

Chapter 6—Vertex Attributes, Vertex Arrays,
and Buffer Objects

Starting with Chapter 6 (and ending with Chapter 11), we begin our walk
through the pipeline to teach you how to set up and program each part of
the graphics pipeline. This journey begins by covering how geometry is
input into the graphics pipeline by discussing vertex attributes, vertex
arrays, and buffer objects.

Chapter 7—Primitive Assembly and Rasterization

After discussing how geometry is input into the pipeline in the previous
chapter, we then cover how that geometry is assembled into primitives. All
of the primitive types available in OpenGL ES 2.0, including point sprites,
lines, triangles, triangle strips, and triangle fans, are covered. In addition,
we describe how coordinate transformations are performed on vertices and
introduce the rasterization stage of the OpenGL ES 2.0 pipeline.

Chapter 8—Vertex Shaders

The next portion of the pipeline that is covered is the vertex shader. This
chapter gives an overview of how vertex shaders fit into the pipeline and
the special variables available to vertex shaders in the OpenGL ES Shading
Language. Several examples of vertex shaders, including computation of
per-vertex lighting and skinning, are covered. We also give examples of how
the OpenGL ES 1.0 (and 1.1) fixed-function pipeline can be implemented
using vertex shaders.

Chapter 9—Texturing

This chapter begins the introduction to the fragment shader by describing
all of the texturing functionality available in OpenGL ES 2.0. This chapter
covers all the details of how to create textures, how to load them with data,

Preface

xxvi

and how to render with them. The chapter details texture wrap modes, tex-
ture filtering, and mipmapping. In addition, you will learn about the vari-
ous functions for compressed texture images as well as how to copy texture
data from the color buffer. This chapter also covers the optional texture
extensions that add support for 3D textures and depth textures.

Chapter 10—Fragment Shaders

Chapter 9 focused on how to use textures in a fragment shader. This chapter
covers the rest of what you need to know to write fragment shaders. We give
an overview of fragment shaders and all of the special built-in variables
available to them. We show how to implement all of the fixed-function
techniques that were available in OpenGL ES 1.1 using fragment shaders.
Examples of multitexturing, fog, alpha test, and user clip planes are all
implemented in fragment shaders.

Chapter 11—Fragment Operations

This chapter discusses the operations that can be applied either to the entire
framebuffer, or to individual fragments after the execution of the fragment
shader in the OpenGL ES 2.0 fragment pipeline. These operations include
scissor test, stencil test, depth test, multi-sampling, blending, and dithering.
This is the final phase in the OpenGL ES 2.0 graphics pipeline.

Chapter 12—Framebuffer Objects

This chapter discusses the use of framebuffer objects for rendering to off-
screen surfaces. There are several uses of framebuffer objects, the most
common of which is for rendering to a texture. This chapter provides a com-
plete overview of the framebuffer object portion of the API. Understanding
framebuffer objects is critical for implementing many advanced effects such
as reflections, shadow maps, and post-processing.

Chapter 13—Advanced Programming with OpenGL ES 2.0

This is the capstone chapter, tying together many of the topics presented
throughout the book. We have selected a sampling of advanced rendering
techniques and show examples that demonstrate how to implement these
features. This chapter includes rendering techniques such as per-pixel light-
ing using normal maps, environment mapping, particle systems, image

Preface

xxvii

post-processing, and projective texturing. This chapter attempts to show
the reader how to tackle a variety of advanced rendering techniques.

Chapter 14—State Queries

There are a large number of state queries available in OpenGL ES 2.0. For
just about everything you set, there is a corresponding way to get what the
current value is. This chapter is provided as a reference for the various state
queries available in OpenGL ES 2.0.

Chapter 15—OpenGL ES and EGL on Handheld Platforms

In the final chapter, we divert ourselves a bit from the details of the API to
talk about programming with OpenGL ES 2.0 and EGL in the real world.
There are a diverse set of handheld platforms in the market that pose some
interesting issues and challenges when developing applications for OpenGL
ES 2.0. We cover topics including an overview of handheld platforms, C++
portability issues, OpenKODE, and platform-specific shader binaries.

Appendix A—GL_HALF_FLOAT_OES

This appendix details the half-float format and provides a reference for how
to convert from IEEE floating-point values into half-float (and back).

Appendix B—Built-In Functions

This appendix provides a reference for all of the built-in functions available
in the OpenGL ES Shading Language.

Appendix C—Shading Language Grammar

This appendix provides a reference for OpenGL ES Shading Language
grammar.

Appendix D—ES Framework API

This appendix provides a reference for the utility framework we developed
for the book and describes what each function does.

Preface

xxviii

Examples Code and Shaders

This book is filled with example programs and shaders. You can download
the examples from the book Web site at www.opengles-book.com.

The examples are all targeted to run on Microsoft Windows XP or Vista with
a desktop GPU supporting OpenGL 2.0. The example programs are provided
in source code form with Microsoft Visual Studio 2005 project solutions. The
examples build and run on the AMD OpenGL ES 2.0 Emulator. Several of the
advanced shader examples in the book are implemented in RenderMonkey, a
shader development tool from AMD. The book Web site provides links on
where to download any of the required tools. The OpenGL ES 2.0 Emulator
and RenderMonkey are both freely available tools. For readers who do not
own Visual Studio, you can use the free Microsoft Visual Studio 2008 Express
Edition available for download at www.microsoft.com/express/.

Errata

If you find something in the book which you believe is in error, please send
us a note at errors@opengles-book.com. The list of errata for the book can
be found on the book Web site at www.opengles-book.com.

0.
0.

Preface

www.opengles-book.com
www.microsoft.com/express/
www.opengles-book.com

19

Chapter 2

2.Hello Triangle: An OpenGL ES 2.0 Example

To introduce the basic concepts of OpenGL ES 2.0, we begin with a simple
example. In this chapter, we show what is required to create an OpenGL ES
2.0 program that draws a single triangle. The program we will write is just
about the most basic example of an OpenGL ES 2.0 application that draws
geometry. There are number of concepts that we cover in this chapter:

• Creating an on-screen render surface with EGL.

• Loading vertex and fragment shaders.

• Creating a program object, attaching vertex and fragment shaders, and
linking a program object.

• Setting the viewport.

• Clearing the color buffer.

• Rendering a simple primitive.

• Making the contents of the color buffer visible in the EGL window
surface.

As it turns out, there are quite a significant number of steps required before
we can start drawing a triangle with OpenGL ES 2.0. This chapter goes over
the basics of each of these steps. Later in the book, we fill in the details on
each of these steps and further document the API. Our purpose here is to get
you running your first simple example so that you get an idea of what goes
into creating an application with OpenGL ES 2.0.

20 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

Code Framework

Throughout the book, we will be building up a library of utility functions
that form a framework of useful functions for writing OpenGL ES 2.0 pro-
grams. In developing example programs for the book, we had several goals
for this code framework:

1. It should be simple, small, and easy to understand. We wanted to focus
our examples on the relevant OpenGL ES 2.0 calls and not on a large code
framework that we invented. Rather, we focused our framework on sim-
plicity and making the example programs easy to read and understand.
The goal of the framework was to allow you to focus your attention on the
important OpenGL ES 2.0 API concepts in each example.

2. It should be portable. Although we develop our example programs on
Microsoft Windows, we wanted the sample programs to be easily portable
to other operating systems and environments. In addition, we chose to
use C as the language rather than C++ due to the differing limitations of
C++ on many handheld platforms. We also avoid using global data, some-
thing that is also not allowed on many handheld platforms.

As we go through the examples in the book, we introduce any new code
framework functions that we use. In addition, you can find full documen-
tation for the code framework in Appendix D. Any functions you see in the
example code that are called that begin with es (e.g., esInitialize()) are
part of the code framework we wrote for the sample programs in this book.

Where to Download the Examples

You can download the examples from the book Web site at
www.opengles-book.com.

The examples are all targeted to run on Microsoft Windows XP or Microsoft
Windows Vista with a desktop graphics processing unit (GPU) supporting
OpenGL 2.0. The example programs are provided in source code form with
Microsoft Visual Studio 2005 project solutions. The examples build and run
on the AMD OpenGL ES 2.0 emulator. Several of the advanced shader exam-
ples in the book are implemented in RenderMonkey, a shader development
tool from AMD. The book Web site provides links on where to download
any of the required tools. The OpenGL ES 2.0 emulator and RenderMonkey
are both freely available tools. Readers who do not own Visual Studio can
use the free Microsoft Visual Studio 2008 Express Edition available for
download at www.microsoft.com/express/.

www.opengles-book.com
www.microsoft.com/express/

Hello Triangle Example 21

Hello Triangle Example

Let’s take a look at the full source code for our Hello Triangle example pro-
gram, which is listed in Example 2-1. For those readers familiar with fixed
function desktop OpenGL, you will probably think this is a lot of code just
to draw a simple triangle. For those of you not familiar with desktop
OpenGL, you will also probably think this is a lot of code just to draw a
triangle! Remember though, OpenGL ES 2.0 is fully shader based, which
means you can’t draw any geometry without having the appropriate shad-
ers loaded and bound. This means there is more setup code required to ren-
der than there was in desktop OpenGL using fixed function processing.

Example 2-1 Hello Triangle Example

#include "esUtil.h"

typedef struct
{
 // Handle to a program object
 GLuint programObject;

} UserData;

///
// Create a shader object, load the shader source, and
// compile the shader.
//
GLuint LoadShader(const char *shaderSrc, GLenum type)
{
 GLuint shader;
 GLint compiled;

 // Create the shader object
 shader = glCreateShader(type);

 if(shader == 0)
 return 0;

 // Load the shader source
 glShaderSource(shader, 1, &shaderSrc, NULL);

 // Compile the shader
 glCompileShader(shader);

 // Check the compile status
 glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);

22 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

 if(!compiled)
 {
 GLint infoLen = 0;

 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);

 if(infoLen > 1)
 {
 char* infoLog = malloc(sizeof(char) * infoLen);

 glGetShaderInfoLog(shader, infoLen, NULL, infoLog);
 esLogMessage("Error compiling shader:\n%s\n", infoLog);
 free(infoLog);
 }

 glDeleteShader(shader);
 return 0;
 }

 return shader;

}

///
// Initialize the shader and program object
//
int Init(ESContext *esContext)
{
 UserData *userData = esContext->userData;
 GLbyte vShaderStr[] =
 "attribute vec4 vPosition; \n"
 "void main() \n"
 "{ \n"
 " gl_Position = vPosition; \n"
 "} \n";

 GLbyte fShaderStr[] =
 "precision mediump float; \n"
 "void main() \n"
 "{ \n"
 " gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); \n"
 "} \n";

 GLuint vertexShader;
 GLuint fragmentShader;
 GLuint programObject;
 GLint linked;

Hello Triangle Example 23

 // Load the vertex/fragment shaders
 vertexShader = LoadShader(GL_VERTEX_SHADER, vShaderStr);
 fragmentShader = LoadShader(GL_FRAGMENT_SHADER, fShaderStr);

 // Create the program object
 programObject = glCreateProgram();

 if(programObject == 0)
 return 0;

 glAttachShader(programObject, vertexShader);
 glAttachShader(programObject, fragmentShader);

 // Bind vPosition to attribute 0
 glBindAttribLocation(programObject, 0, "vPosition");

 // Link the program
 glLinkProgram(programObject);

 // Check the link status
 glGetProgramiv(programObject, GL_LINK_STATUS, &linked);

 if(!linked)
 {
 GLint infoLen = 0;

 glGetProgramiv(programObject, GL_INFO_LOG_LENGTH, &infoLen);

 if(infoLen > 1)
 {
 char* infoLog = malloc(sizeof(char) * infoLen);

 glGetProgramInfoLog(programObject, infoLen, NULL, infoLog);
 esLogMessage("Error linking program:\n%s\n", infoLog);

 free(infoLog);
 }

 glDeleteProgram(programObject);
 return FALSE;
 }

 // Store the program object
 userData->programObject = programObject;

 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 return TRUE;
}

24 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

///
// Draw a triangle using the shader pair created in Init()
//
void Draw(ESContext *esContext)
{
 UserData *userData = esContext->userData;
 GLfloat vVertices[] = {0.0f, 0.5f, 0.0f,
 -0.5f, -0.5f, 0.0f,
 0.5f, -0.5f, 0.0f};

 // Set the viewport
 glViewport(0, 0, esContext->width, esContext->height);

 // Clear the color buffer
 glClear(GL_COLOR_BUFFER_BIT);

 // Use the program object
 glUseProgram(userData->programObject);

 // Load the vertex data
 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vVertices);
 glEnableVertexAttribArray(0);

 glDrawArrays(GL_TRIANGLES, 0, 3);

 eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface);
}

int main(int argc, char *argv[])
{
 ESContext esContext;
 UserData userData;

 esInitialize(&esContext);
 esContext.userData = &userData;

 esCreateWindow(&esContext, "Hello Triangle", 320, 240,
 ES_WINDOW_RGB);

 if(!Init(&esContext))
 return 0;

 esRegisterDrawFunc(&esContext, Draw);

 esMainLoop(&esContext);
}

Building and Running the Examples 25

Building and Running the Examples

The example programs developed in this book all run on top of AMD’s
OpenGL ES 2.0 emulator. This emulator provides a Windows implementa-
tion of the EGL 1.3 and OpenGL ES 2.0 APIs. The standard GL2 and EGL
header files provided by Khronos are used as an interface to the emulator.
The emulator is a full implementation of OpenGL ES 2.0, which means that
graphics code written on the emulator should port seamlessly to real
devices. Note that the emulator requires that you have a desktop GPU with
support for the desktop OpenGL 2.0 API.

We have designed the code framework to be portable to a variety of plat-
forms. However, for the purposes of this book all of the examples are built
using Microsoft Visual Studio 2005 with an implementation for Win32 on
AMD’s OpenGL ES 2.0 emulator. The OpenGL ES 2.0 examples are orga-
nized in the following directories:

Common/—Contains the OpenGL ES 2.0 Framework project, code, and the
emulator.

Chapter_X/—Contains the example programs for each chapter. A Visual
Studio 2005 solution file is provided for each project.

To build and run the Hello Triangle program used in this example, open
Chapter_2/Hello_Triangle/Hello_Triangle.sln in Visual Studio 2005.
The application can be built and run directly from the Visual Studio 2005
project. On running, you should see the image shown in Figure 2-1.

Figure 2-1 Hello Triangle Example

26 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

Note that in addition to providing sample programs, later in the book we
provide several examples with a free shader development tool from AMD
called RenderMonkey v1.80. RenderMonkey workspaces are used where we
want to focus on just the shader code in an example. RenderMonkey pro-
vides a very flexible integrated development environment (IDE) for devel-
oping shader effects. The examples that have an .rfx extension can be
viewed using RenderMonkey v1.80. A screenshot of the RenderMonkey IDE
with an OpenGL ES 2.0 effect is shown in Color Plate 2.

Using the OpenGL ES 2.0 Framework

In the main function in Hello Triangle, you will see calls into several ES
utility functions. The first thing the main function does is declare an
ESContext and initialize it:

ESContext esContext;
UserData userData;

esInitialize(&esContext);
esContext.userData = &userData;

Every example program in this book does the same thing. The ESContext
is passed into all of the ES framework utility functions and contains all of
the necessary information about the program that the ES framework needs.
The reason for passing around a context is that the sample programs and
the ES code framework do not need to use any global data.

Many handheld platforms do not allow applications to declare global static
data in their applications. Examples of platforms that do not allow this
include BREW and Symbian. As such, we avoid declaring global data in
either the sample programs or the code framework by passing a context
between functions.

The ESContext has a member variable named userData that is a void*.
Each of the sample programs will store any of the data that are needed for
the application in userData. The esInitialize function is called by the
sample program to initialize the context and the ES code framework. The
other elements in the ESContext structure are described in the header file
and are intended only to be read by the user application. Other data in the
ESContext structure include information such as the window width and
height, EGL context, and callback function pointers.

Creating a Simple Vertex and Fragment Shader 27

The rest of the main function is responsible for creating the window, initial-
izing the draw callback function, and entering the main loop:

esCreateWindow(&esContext, "Hello Triangle", 320, 240,
 ES_WINDOW_RGB);

if(!Init(&esContext))
 return 0;

esRegisterDrawFunc(&esContext, Draw);

esMainLoop(&esContext);

The call to esCreateWindow creates a window of the specified width
and height (in this case, 320 × 240). The last parameter is a bit field that
specifies options for the window creation. In this case, we request an RGB
framebuffer. In Chapter 3, “An Introduction to EGL,” we discuss what
esCreateWindow does in more detail. This function uses EGL to create an
on-screen render surface that is attached to a window. EGL is a platform-
independent API for creating rendering surfaces and contexts. For now, we
will simply say that this function creates a rendering surface and leave the
details on how it works for the next chapter.

After calling esCreateWindow, the next thing the main function does is to
call Init to initialize everything needed to run the program. Finally, it reg-
isters a callback function, Draw, that will be called to render the frame. The
final call, esMainLoop, enters into the main message processing loop until
the window is closed.

Creating a Simple Vertex
and Fragment Shader

In OpenGL ES 2.0, nothing can be drawn unless a valid vertex and fragment
shader have been loaded. In Chapter 1, “Introduction to OpenGL ES 2.0,”
we covered the basics of the OpenGL ES 2.0 programmable pipeline. There
you learned about the concepts of a vertex and fragment shader. These two
shader programs describe the transformation of vertices and drawing of
fragments. To do any rendering at all, an OpenGL ES 2.0 program must have
both a vertex and fragment shader.

The biggest task that the Init function in Hello Triangle accomplishes is
the loading of a vertex and fragment shader. The vertex shader that is given
in the program is very simple:

28 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

GLbyte vShaderStr[] =
 "attribute vec4 vPosition; \n"
 "void main() \n"
 "{ \n"
 " gl_Position = vPosition; \n"
 "}; \n";

This shader declares one input attribute that is a four-component vector
named vPosition. Later on, the Draw function in Hello Triangle will send
in positions for each vertex that will be placed in this variable. The shader
declares a main function that marks the beginning of execution of the
shader. The body of the shader is very simple; it copies the vPosition input
attribute into a special output variable named gl_Position. Every vertex
shader must output a position into the gl_Position variable. This variable
defines the position that is passed through to the next stage in the pipeline.
The topic of writing shaders is a large part of what we cover in this book,
but for now we just want to give you a flavor of what a vertex shader looks
like. In Chapter 5, “OpenGL ES Shading Language,” we cover the OpenGL
ES shading language and in Chapter 8, “Vertex Shaders,” we specifically
cover how to write vertex shaders.

The fragment shader in the example is also very simple:

GLbyte fShaderStr[] =
 "precision mediump float; \n"
 "void main() \n"
 "{ \n"
 " gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); \n"
 "} \n";

The first statement in the fragment shader declares the default precision
for float variables in the shader. For more details on this, please see the sec-
tion on precision qualifiers in Chapter 5. For now, simply pay attention to
the main function, which outputs a value of (1.0, 0.0, 0.0, 1.0) into the
gl_FragColor. The gl_FragColor is a special built-in variable that con-
tains the final output color for the fragment shader. In this case, the shader
is outputting a color of red for all fragments. The details of developing
fragment shaders are covered in Chapter 9, “Texturing,” and Chapter 10,
“Fragment Shaders.” Again, here we are just showing you what a fragment
shader looks like.

Typically, a game or application would not inline shader source strings in the
way we have done in this example. In most real applications, the shader would
be loaded from some sort of text or data file and then loaded to the API. How-
ever, for simplicity and having the example program be self-contained, we pro-
vide the shader source strings directly in the program code.

Compiling and Loading the Shaders 29

Compiling and Loading the Shaders

Now that we have the shader source code defined, we can go about loading
the shaders to OpenGL ES. The LoadShader function in the Hello Triangle
example is responsible for loading the shader source code, compiling it, and
checking to make sure that there were no errors. It returns a shader object,
which is an OpenGL ES 2.0 object that can later be used for attachment to
a program object (these two objects are detailed in Chapter 4, “Shaders and
Programs”).

Let’s take a look at how the LoadShader function works. The shader object
is first created using glCreateShader, which creates a new shader object of
the type specified.

GLuint LoadShader(GLenum type, const char *shaderSrc)
{
 GLuint shader;
 GLint compiled;

 // Create the shader object
 shader = glCreateShader(type);

 if(shader == 0)
 return 0;

The shader source code itself is loaded to the shader object using
glShaderSource. The shader is then compiled using the glCompileShader
function.

 // Load the shader source
 glShaderSource(shader, 1, &shaderSrc, NULL);

 // Compile the shader
 glCompileShader(shader);

After compiling the shader, the status of the compile is determined and any
errors that were generated are printed out.

 // Check the compile status
 glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);

 if(!compiled)
 {
 GLint infoLen = 0;

 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);

 if(infoLen > 1)

30 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

 {
 char* infoLog = malloc(sizeof(char) * infoLen);

 glGetShaderInfoLog(shader, infoLen, NULL, infoLog);
 esLogMessage("Error compiling shader:\n%s\n", infoLog);

 free(infoLog);
 }

 glDeleteShader(shader);
 return 0;
 }

 return shader;

}

If the shader compiles successfully, a new shader object is returned that will
be attached to the program later. The details of these shader object func-
tions are covered in the first sections of Chapter 4.

Creating a Program Object
and Linking the Shaders

Once the application has created a shader object for the vertex and frag-
ment shader, it needs to create a program object. Conceptually, the program
object can be thought of as the final linked program. Once each shader is
compiled into a shader object, they must be attached to a program object
and linked together before drawing.

The process of creating program objects and linking is fully described in
Chapter 4. For now, we provide a brief overview of the process. The first step
is to create the program object and attach the vertex shader and fragment
shader to it.

// Create the program object
programObject = glCreateProgram();

if(programObject == 0)
 return 0;

glAttachShader(programObject, vertexShader);
glAttachShader(programObject, fragmentShader);

Creating a Program Object and Linking the Shaders 31

Once the two shaders have been attached, the next step the sample appli-
cation does is to set the location for the vertex shader attribute vPosition:

// Bind vPosition to attribute 0
glBindAttribLocation(programObject, 0, "vPosition");

In Chapter 6, “Vertex Attributes, Vertex Arrays, and Buffer Objects,” we
go into more detail on binding attributes. For now, note that the call to
glBindAttribLocation binds the vPosition attribute declared in the
vertex shader to location 0. Later, when we specify the vertex data, this loca-
tion is used to specify the position.

Finally, we are ready to link the program and check for errors:

// Link the program
glLinkProgram(programObject);

// Check the link status
glGetProgramiv(programObject, GL_LINK_STATUS, &linked);

if(!linked)
{
 GLint infoLen = 0;

 glGetProgramiv(programObject, GL_INFO_LOG_LENGTH, &infoLen);

 if(infoLen > 1)
 {
 char* infoLog = malloc(sizeof(char) * infoLen);

 glGetProgramInfoLog(programObject, infoLen, NULL, infoLog);
 esLogMessage("Error linking program:\n%s\n", infoLog);

 free(infoLog);
 }

 glDeleteProgram(programObject);
 return FALSE;
}

// Store the program object
userData->programObject = programObject;

After all of these steps, we have finally compiled the shaders, checked for
compile errors, created the program object, attached the shaders, linked the
program, and checked for link errors. After successful linking of the pro-
gram object, we can now finally use the program object for rendering! To
use the program object for rendering, we bind it using glUseProgram.

32 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

// Use the program object
glUseProgram(userData->programObject);

After calling glUseProgram with the program object handle, all subsequent
rendering will occur using the vertex and fragment shaders attached to the
program object.

Setting the Viewport and
Clearing the Color Buffer

Now that we have created a rendering surface with EGL and initialized and
loaded shaders, we are ready to actually draw something. The Draw callback
function draws the frame. The first command that we execute in Draw is
glViewport, which informs OpenGL ES of the origin, width, and height of
the 2D rendering surface that will be drawn to. In OpenGL ES, the viewport
defines the 2D rectangle in which all OpenGL ES rendering operations will
ultimately be displayed.

// Set the viewport
glViewport(0, 0, esContext->width, esContext->height);

The viewport is defined by an origin (x, y) and a width and height. We cover
glViewport in more detail in Chapter 7, “Primitive Assembly and Raster-
ization,” when we discuss coordinate systems and clipping.

After setting the viewport, the next step is to clear the screen. In OpenGL
ES, there are multiple types of buffers that are involved in drawing: color,
depth, and stencil. We cover these buffers in more detail in Chapter 11,
“Fragment Operations.” In the Hello Triangle example, only the color buffer
is drawn to. At the beginning of each frame, we clear the color buffer using
the glClear function.

// Clear the color buffer
glClear(GL_COLOR_BUFFER_BIT);

The buffer will be cleared to the color specified with glClearColor. In the
example program at the end of Init, the clear color was set to (0.0, 0.0, 0.0,
1.0) so the screen is cleared to black. The clear color should be set by the
application prior to calling glClear on the color buffer.

Loading the Geometry and Drawing a Primitive 33

Loading the Geometry and Drawing a Primitive

Now that we have the color buffer cleared, viewport set, and program object
loaded, we need to specify the geometry for the triangle. The vertices for the
triangle are specified with three (x, y, z) coordinates in the vVertices array.

GLfloat vVertices[] = {0.0f, 0.5f, 0.0f,
 -0.5f, -0.5f, 0.0f,
 0.5f, -0.5f, 0.0f};
…
// Load the vertex data
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vVertices);
glEnableVertexAttribArray(0);

glDrawArrays(GL_TRIANGLES, 0, 3);

The vertex positions need to be loaded to the GL and connected to the
vPosition attribute declared in the vertex shader. As you will remember,
earlier we bound the vPosition variable to attribute location 0. Each
attribute in the vertex shader has a location that is uniquely identified by
an unsigned integer value. To load the data into vertex attribute 0, we call
the glVertexAttribPointer function. In Chapter 6, we cover how to load
vertex attributes and use vertex arrays in full.

The final step to drawing the triangle is to actually tell OpenGL ES to draw
the primitive. That is done in this example using the function glDrawArrays.
This function draws a primitive such as a triangle, line, or strip. We get into
primitives in much more detail in Chapter 7.

Displaying the Back Buffer

We have finally gotten to the point where our triangle has been drawn into
the framebuffer. There is one final detail we must address: how to actually
display the framebuffer on the screen. Before we get into that, let’s back up
a little bit and discuss the concept of double buffering.

The framebuffer that is visible on the screen is represented by a two-dimen-
sional array of pixel data. One possible way one could think about display-
ing images on the screen is to simply update the pixel data in the visible
framebuffer as we draw. However, there is a significant issue with updating
pixels directly on the displayable buffer. That is, in a typical display system,
the physical screen is updated from framebuffer memory at a fixed rate. If

Displaying the Back Buffer

34 Chapter 2: Hello Triangle: An OpenGL ES 2.0 Example

one were to draw directly into the framebuffer, the user could see artifacts
as partial updates to the framebuffer where displayed.

To address this problem, a system known as double buffering is used. In this
scheme, there are two buffers: a front buffer and back buffer. All rendering
occurs to the back buffer, which is located in an area of memory that is
not visible to the screen. When all rendering is complete, this buffer is
“swapped” with the front buffer (or visible buffer). The front buffer then
becomes the back buffer for the next frame.

Using this technique, we do not display a visible surface until all rendering
is complete for a frame. The way this is all controlled in an OpenGL ES
application is through EGL. This is done using an EGL function called
eglSwapBuffers:

eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface);

This function informs EGL to swap the front buffer and back buffer. The
parameters sent to eglSwapBuffers are the EGL display and surface. These
two parameters represent the physical display and the rendering surface,
respectively. In the next chapter, we explain eglSwapBuffers in more
detail and further clarify the concepts of surface, context, and buffer man-
agement. For now, suffice to say that after swapping buffers we now finally
have our triangle on screen!

395

0.Index

Symbols and Numbers
“.” operator, 81
“[]” operator, 81, 82
2D images, 255
2D rectangle, 32
2D slice, 312–313
2D textures, 182 –183, 196, 264–265
3D noise, 308, 311–312
3D texture(s)

attaching to a framebuffer, 266
command to load, 207
described, 207, 307
generating noise, 308
noise using, 307–315
support for, 207–213
updating subregions of, 210–211

3D texture extension, 209, 314
3D vector, 183–184
16-bit floating-point number, 354–355
16-bit floating-point vertex data

attributes, 353

A
absolute error, 354
abstraction layers, 343
active attributes, 72
active program, 66
active uniforms, 67–69
active vertex attributes, 112
ADD RGB combine function, 217

ADD_SIGNED RGB combine function, 217
Advanced RenderMan: Creating CGI for

Motion Pictures, 319
aliasing, 249, 319
aliasing artifacts

of procedural textures, 316
reducing, 190
resolving, 189

alpha test
implementing, 227–229
no longer needed, 10

alpha value, 250
ambient color, 162, 285
AMD OpenGL ES 2.0 emulator, 20
angle and trigonometry functions,

358–359
antialiasing

multisampled, 249–250
of procedural textures, 319–322

applications
modifying parameters, 327–330
uses of EGL, 12

ARM processor family, 340
array(s), 83–84
array buffer objects, 116
array indexing, of uniforms, 156–157
array of structures, 104, 105–106

as most efficient for OpenGL ES 2.0,
107

storing vertex attributes, 122

396 Index

array subscripting, 81
artifacts

avoiding, 143, 144
multisampling prone to, 250
produced by nearest sampling, 189

attachment points, 262
attachments

to a framebuffer, 338
minimum of one valid, 268

attenuation, 163
attribute(s)

associated with an EGLConfig, 39
binding, 31
getting and setting, 72
in the OpenGL ES Shading

Language, 89–90
for a vertex shader, 4, 5, 148, 149

attribute index, 113
attribute qualifier, 110
attribute variable name, 115
attribute variables, 89
automatic mipmap generation,

193–194

B
b argument data type, 15
back buffer, 34, 234
back-facing triangles, 142
backward compatibility, of OpenGL ES

2.0 and OpenGL ES 1.x, 11–12
backward differencing, 372
bias matrix, 303, 304
bias parameter, 369
bilinear filtering, 193
binary compilation tools, 351
binary fragment shader, 75
binary operators, 84
binary shader format, 74, 351
binary shaders

loading, 74–75
supporting, 73

binary vertex shader, 75
BinaryShader.lib, 351
binding, 115
bit test, stencil test as, 240
bitmask, specifying, 54
bits, in color buffer, 43

blending
enabling, 333
in per-fragment operations, 10
pixel colors, 246–248

blending coefficients, 247–248
blending equation, 246, 248
Bloom effect, 298
blur fragment shader, 297–298
Boolean-based vector types, 79
bottom clip plane, 138
bound texture objects, 193
box filtering technique, 189
BREW operating system, 339
buffer(s), 234–235

clearing, 235–236
involved in drawing, 32
requesting additional, 235
size of, 234
swapping of, 234
types of, 234
unmapping previously mapped, 125

buffer object data store, 119
buffer object names, 117
buffer objects

deleting, 124
for each vertex attribute, 122–123
mapping, 124–126
state associated with, 118
types supported, 116
usage of, 118

buffer write mask, 236
built-in constants, 150, 220–221
built-in functions, 357–373

in applications, 358
categories of, 357
in the OpenGL ES Shading

Language, 86–87
overloading, 358

built-in special variables, 149–150,
219–220

built-in uniform state, 150
built-in variables, of a vertex shader,

149

C
C code, syntax compared to shaders, 78
C compiler, generating object code, 57–58

Index 397

C language, compared to C++, 20
C linker, 58
C++

exceptions, 341
features to avoid, 342–343
portability, 341–343
preprocessor, 92

Carbide, 340
centroid sampling, 250
CheckerAA.rfx RenderMonkey

workspace, 319
checkerboard pattern, rendering,

316
checkerboard texture

fragment shader implementing,
317–319

vertex shader implementing,
316–317

Checker.rfx RenderMonkey workspace,
316

cleanup stack, 342
clear color, setting, 32
clear value, specifying, 236
client, delaying execution of, 55
client data store, 119
client space, 103
client-server model, 16–17
client-side vertex arrays, 295
clip coordinate, 138
clip coordinate space, 137, 138
clip planes, 229
clip space, 173
clip volume, 138
clipping, 7, 149
clipping operations, 139
clipping planes, 138
clipping stage, 138–139
clockwise (CW) orientation, 142
code, as inputs to the fragment shader,

218, 219
code framework, 20
code paths, for both source and binary

shaders, 75
color(s)

attenuating the final, 307
combining diffuse and specular, 163
mapping texture formats, 197–198

color attachment point, 262
color attachments, as valid, 267
color buffer

clearing, 32
copying texture data from, 204–207
depth of, 234
double buffered, 234
updating, 237

color depth, 249
color value, 8
color-renderable buffer, 261
color-rendererable formats, 267
command flavors, examples of, 14
commands

buffering on the client side, 17
multiple flavors of, 15
in OpenGL ES, 14
taking arguments in different

flavors, 14
common functions, built-in, 361–364
communications channel, opening,

36
comparison operators, 84, 85
compatibility, maintaining with Open

GL, 2
compile errors, 60
compiling, shaders, 59–60
compressed 2D texture image, 203
compressed 3D texture data, 209
compressed image datatypes, 201
compressed textures, 201–202
The Compressonator, 213
computeLinearFogFactor function,

227
condition expression, 154
conditional checks, 318
conditional statements, 155–156
conditional tests, performing, 92
conditionals, expressing, 87
configurations

nonconformant, 42
number of available, 38
slow rendering, 42
sorting, 42–43

conformance tests, 2
const qualifier, 82
const variables, 157

398 Index

constant(s)
built-in, 150, 220–221
implementation-specific, 157
in the OpenGL ES Shading

Language, 82
constant color

in a fixed function pipeline, 217
setting, 248

constant integral expressions, 156, 221
constant store, 89, 94
constant variables, 82
constant vertex attribute, 102–103,

109–110
constructors, 79–80
context

creating, 50, 51
passing between functions, 26

control flow statements, 87–88
coordinate systems, 137
coordinates, 2D pair of, 182, 183
coplanar polygons, 144
core functions, in ES framework API,

385–390
counterclockwise (CCW) orientation,

142
coverage mask, 249, 250
coverage value, 250
CPUs, for handheld device, 340
cube(s)

drawing, 132–134
geometry for, 389

cubemap(s), 167, 183
drawing a sphere with a simple,

198–199
environment mapping using,

286–289
specifying faces of, 183–184
using glGenerateMipmap, 193

cubemap textures, 183–184, 198–201
culling operation

discarding primitives, 7
enabling, 142–143

cycles, for procedural texture, 316

D
data elements, in vertex attributes

arrays, 335–336

data types, 78–79
debug output, 390
debugging, 66
default precision, 96, 221
default precision qualifier, 96, 152
degenerate triangles, 134, 135
depth attachment, as valid, 267
depth attachment point, 262
depth buffer(s)

allocating, 54
bit depth of, 234
disabling writing, 237
including, 235
testing, 245–246
writing to, 237

depth comparison operator, 246
depth offset, computing, 145
depth range values, 140–141
depth renderable buffer, 261
depth renderbuffers, sharing, 278
depth test, enabling, 245, 333
depth-renderable formats, 267
depthRenderbuffer object, binding,

274
derivative computation, 371
derivative functions, built-in, 371–373
derivatives, 371
desktop GPU, 25
desktop OpenGL, 21
destination alpha buffer, 54
diffuse color, 162, 285
directional light, 161, 162–163
directives, 92–93
directories, for examples, 25
DirectX, 1
disable extension behavior, 93
discard keyword, 227, 229
displays, querying and initializing, 12
distance to the eye, 225–226
dithering, 10, 249, 333
divergent flow control, 172
dot built-in function, 86
DOT3_RGB combine function, 217
double buffering, 33–34
double-buffered applications, 234
double-buffered color buffer, 234
double-buffered surfaces, 257

Index 399

do-while loops, 155
draw buffers, 220
Draw callback function, 27, 32, 387
draw distances, reducing, 224
Draw function, for particle system

sample, 294–296
draw surface, 12
drawing

cubes, 132–134
primitives, 131–136

drawing commands, 6
drawing surfaces, 35, 253, 254
dynamic indexing, on a vector, 81

E
EGL, 12

API, 13
attributes, 42
choosing EGLConfig, 39, 42–43
commands, 14
context, 51
creating an on-screen render surface,

27
creating pixel buffers, 48–50
data types, 14
defined, 27
display server, 36
header file, 13
initializing, 36, 37
introduction to, 35–55
library, 13
mechanisms provided by, 35
pixel buffer attributes, 47
prefix, 14
processing and reporting errors, 37
specification, 13
specifying multisample buffers, 257
surface configurations, 38, 42
window, 43–46, 52–54

EGL_ALPHA_MASK_SIZE attribute, 40,
43

EGL_ALPHA_SIZE attribute, 40
EGL_BACK_BUFFER, 44
EGL_BAD_ALLOC error, 45, 48
EGL_BAD_ATTRIBUTE error, 48
EGL_BAD_CONFIG error, 45, 48, 51
EGL_BAD_CURRENT_SURFACE error, 55

EGL_BAD_MATCH error, 45, 48
EGL_BAD_NATIVE_WINDOW error code,

45
EGL_BAD_PARAMETER error, 48
EGL_BIND_TO_TEXTURE_RGB attribute,

40
EGL_BIND_TO_TEXTURE_RGBA attribute,

40
EGL_BLUE_SIZE attribute, 40
EGL_BUFFER_SIZE attribute, 40, 43
EGL_COLOR_BUFFER_TYPE attribute, 40,

43
EGL_CONFIG_CAVEAT attribute, 40, 42
EGL_CONFIG_ID attribute, 40, 43
EGL_CONFORMANT attribute, 40
EGL_CONTEXT_CLIENT_VERSION

attribute, 50–51
EGL_CORE_NATIVE_ENGINE, 55
EGL_DEFAULT_DISPLAY token, 36
EGL_DEPTH_SIZE attribute, 40, 43, 235
EGL_FRONT_BUFFER, 44
EGL_GREEN_SIZE attribute, 40
EGL_HEIGHT attribute, 47
EGL_LARGEST_PBUFFER attribute, 47
EGL_LEVEL attribute, 40
EGL_LUMINANCE_BUFFER, 43
EGL_LUMINANCE_SIZE attribute, 40
EGL_MAX_PBUFFER_HEIGHT attribute,

40
EGL_MAX_PBUFFER_PIXELS attribute,

41
EGL_MAX_PBUFFER_WIDTH attribute, 40
EGL_MAX_SWAP_INTERVAL attribute, 41
EGL_MIN_SWAP_INTERVAL attribute, 41
EGL_MIPMAP_TEXTURE attribute, 47
EGL_NATIVE_RENDERABLE attribute, 41
EGL_NATIVE_VISUAL_ID attribute, 41
EGL_NATIVE_VISUAL_TYPE attribute,

41, 43
EGL_NO_CONTEXT, 51
EGL_NO_SURFACE, 44
EGL_RED_SIZE attribute, 40
EGL_RENDER_BUFFER attribute, 44
EGL_RENDERABLE_TYPE attribute, 41
EGL_RGB_BUFFER, 43
EGL_SAMPLE_BUFFERS attribute, 41, 43
EGL_SAMPLES attribute, 41, 43

400 Index

EGL_STENCIL_SIZE attribute, 41, 43,
235

EGL_SURFACE_TYPE attribute, 41
EGL_TEXTURE_FORMAT attribute, 47
EGL_TEXTURE_TARGET attribute, 47
EGL_TRANSPARENT_BLUE_VALUE

attribute, 41
EGL_TRANSPARENT_GREEN_VALUE

attribute, 41
EGL_TRANSPARENT_RED_VALUE

attribute, 41
EGL_TRANSPARENT_TYPE attribute, 41
EGL_WIDTH attribute, 47
EGLBoolean data type, 14
eglChooseConfig, 39, 42–43
EGLClientBuffer data type, 14
EGLConfig

attributes, 39, 40–41
data type, 14
errors, 51
returning, 38
values, 38, 39

EGLContext data type, 14
EGLContexts, 50, 52
eglCreateContext function, 50–51
eglCreatePbufferSurface function,

47–48
eglCreateWindowSurface function

calling, 43–44
EGLNativeWindowType win

argument, 141
possible errors, 45

EGLDisplay data type, 14, 36
EGLenum data type, 14
eglGetConfigAttribute function, 38,

39
eglGetConfigs, 38
eglGetDisplay, 36–37
eglGetError, 37, 44–45, 47–48
egl.h file, 13
eglInitialize, 37
EGLint data type, 14
eglmakeCurrent function, 52
EGLNativeDisplayType, 36
EGLSurface data type, 14
eglSwapBuffers function

controlling rendering, 34

swapping the display buffer, 277
eglWaitClient function, 55
eglWaitNative function, 55
element array buffer objects, 116
element array, sorting, 295–296
element indices, 134
#elif directive, 92
#else directive, 92
Embedded Linux, 340, 341
emulator, OpenGL ES 2.0, 25
enable extension behavior, 93
enable tokens, 239
end position, of a particle, 293
engines, for rendering, 55
entities, name queries, 331
environment mapping, 183

basics of, 289
example, 286
fragment shader, 288–289
using a cubemap, 286–289

EnvironmentMapping.rfx, 286
equations

combining fixed function pipeline
inputs, 217

lighting in the fragment shader, 285
specifying planes, 229

Ericsson Texture Compression (ETC),
201, 213

error code recovery, 37
error codes, 16
#error directive, 92
error handling, 15–16
errors, checking for in EGL, 37
ES 1.1 specification, 2
ES code framework, 26
ES framework API functions, 385–394
ES framework context, 385
es prefix, 20
ESContext structure, 26
esCreateWindow function, 27, 54, 386
esFrustum function, 390–391
esGenCube function, 389
esGenSphere function, 388
esInitContext function, 385
esInitialize function, 26
esLoadProgram function, 388
esLoadShader function, 387

Index 401

esLoadTGA function, 388
esLogMessage function, 390
esMainLoop function, 386
ESMatrix type, 390–391
esMatrixLoadIdentity function, 394
esMatrixMultiply function, 394
esOrtho function, 392
esPerspective function, 391
esRegisterDrawFunc function, 387
esRegisterKeyFunc function, 387
esRegisterUpdateFunc function, 387
esRotate function, 393
esScale function, 392
esTranslate function, 393
esUtil convenience library, 235
ESutil Library, 54
ETC format, 213
even-numbered triangle, 134
example programs, building and

running, 25–26
examples, downloading, 20
exceptions, avoiding in C++, 342
executable programs, generating, 64
exponential fog, 227
exponential functions, built-in, 360
extension(s)

available, 323, 324
behavior of, 93
optional, 207–214
specific to a single vendor, 352
targeting, 352

#extension directive, 93
#extension GL_OES_standard_

derivatives directive, 371
#extension GL_OES_texture_3d

directive, 371
#extension mechanism, 209, 314, 352
extension strings, 352
external memory, going to, 277
eye space, transforming to, 173

F
f argument data type, 15
facedness, of a primitive, 238
faces, of cubemaps, 183
fallback paths, 352
far clip plane, 138

FBO texture, binding, 297
FBOs. See framebuffer objects
features, usage of, 332
fence, representing, 227
filter width, 373
filtering

algorithm, 193–194
modes, 188, 190–191

fixed function fragment pipeline,
216–218

fixed function pipeline, 2
configuring to perform a modulate,

218
implemented by OpenGL ES 1.1,

102
not mixed with programmable, 11

fixed function techniques, 216–218,
222–231

fixed function texture combine units,
11

fixed function vertex pipeline, 173
fixed function vertex units, 11
fixed resolution, 315
float, precision, 152
float variables, precision for, 28
float variant, 103
floating-point based matrices, 79
floating-point numbers, converting,

355–356
floating-point textures, 213
floating-point variable, precision for,

96
floating-point-based vector types, 78
flow control

divergent, 172
in the vertex shader, 153–155

flushing, pending commands, 17
fog

implementing using shaders,
224–227

noise-distorted, 313–315
fog factor, computing, 173
for loops

examples of valid constructs,
154–155

supporting in a vertex shader, 153
writing simple, 87

402 Index

format conversions, for texture copy,
206–207

forward-backward differencing,
371–372

fragment(s)
applying tests to, 238–246
with combined stencil and depth

tests, 241
generating for a primitive, 141
operating on, 7–9

fragment shader(s)
for alpha test using discard, 228–229
antialiased checker, 319–321
attaching to a program object, 30
in the blurring example, 297–298
built-in constants for, 220–221
built-in special variables, 219–220
computing noise in, 308
creating, 27–28, 58
declaring a uniform variable, 196
default float precision, 97
for the environment mapping

sample, 288–289
example of, 8–9
fixed function techniques, 216–218
in Hello Triangle, 28
implementing checkerboard texture,

317–319
inputs to, 7–8
limitations on, 221
multistructure example, 222–223
for noise distorted fog, 313–315
in OpenGL ES 2.0, 7–9
output of, 219
overview, 218–221
for the particle system, 293–294
performing fixed function

operations, 218
per-fragment lighting, 283–285
for projective texturing, 306–307
rendering linear fog, 226–227
textures in, 196–198
user clip plane, 230–231

fragment shader object, 58
framebuffer(s)

copying to the texture buffer, 254
depths, 234

displaying the screen, 33
as incomplete, 267–268
masks controlling writing to,

236–238
reading and writing pixels to,

250–252
reading back pixels from, 10
state queries, 337–338
window system provided, 253

framebuffer attachment(s)
attaching a 2D texture as, 264–265
attaching a renderbuffer, 263–264
attaching an image of a 3D texture

as, 266–267
deleting renderbuffer objects used

as, 270
depth texture used as, 274
renderbuffer objects versus texture

objects, 256–257
framebuffer completeness

checking for, 267–269
status, 262

framebuffer names, allocating, 258
Framebuffer objects API, 255
framebuffer objects (FBOs), 255

binding, 263, 274
creating, 258
defining as complete, 267
deleting, 270
versus EGL surfaces, 257
examples, 271–277
performance tips, 277–278
for reading and writing pixels, 269
relationship with renderbuffer

objects and textures, 256
rendering into an off-screen, 297
rendering to a texture, 46, 194,

271–273
rendering with, 254
setting current, 262, 263
sharing stencil and depth buffers,

257
states associated with, 262
supporting only single-buffered

attachments, 257
using, 262–263
verifying as complete, 268–269

Index 403

frames, drawing, 32
fresnel term, 289
front buffer, 34, 234
front-facing triangles, 142
full-screen quad, 297
functions. See also specific functions

built-in, 357–373
in the OpenGL ES Shading

Language, 85–86
performed during per-fragment

operations, 10
fwidth function, 321

G
g1 prefix, 14
GenMipMap2D function, 189
geometric functions, built-in, 264–366
geometric primitive, rendering, 249
geometry

binding and loading, 186–188
for a cube, 389
for a primitive, 6
removing "popping" of, 224
for a sphere, 388
for a triangle, 33

get functions, 327
GL prefix, 14
GL_ACTIVE_ATTRIBS, 64
GL_ACTIVE_ATTRIBUTES query, 72
GL_ACTIVE_UNIFORM_MAX_LENGTH,

64–65
GL_ACTIVE_UNIFORMS, 64–65
GL_ALPHA format, 182, 198
GL_ARRAY_BUFFER, 116, 120
GL_ATTACHED_SHADERS, 65
GL_BLEND token, 239
GL_BUFFER_SIZE, 118
GL_BUFFER_USAGE, 118
GL_CLAMP_TO_EDGE mode, 194, 195
GL_COMPRESSED_TEXTURE_FORMATS, 202
GL_CULL_FACE state, 143
GL_DECR stencil function, 241
GL_DECR_WRAP stencil function, 241
GL_DELETE_STATUS, 65
GL_DEPTH_TEST token, 239
gl_DepthRange uniform state, 150
GL_DITHER token, 239

GL_DYNAMIC_DRAW value, 118
GL_ELEMENT_ARRAY_BUFFER token, 116
GL_EXTENSIONS string, 352
gl_FragColor, 8, 28, 219
gl_FragCoord, 219–220
GL_FRAGMENT_PRECISION_HIGH

preprocessor macro, 97, 221
gl_FrontFacing special variable, 150,

220
GL_FUNC_ADD operator, 248
GL_FUNC_REVERSE_SUBTRACT, 248
GL_FUNC_SUBTRACT operator, 248
GL_HALF_FLOAT_OES vertex data type,

107, 353–356
GL_INCR stencil function, 241
GL_INCR_WRAP stencil function, 241
GL_INFO_LOG_LENGTH, 61, 65
GL_INVALID_ENUM error, 16, 17, 18, 202
GL_INVALID_FRAMEBUFFER_OPERATION

error, 269
GL_INVALID_OPERATION error, 16
GL_INVALID_VALUE error, 16
GL_INVERT stencil function, 241
GL_KEEP stencil function, 241
GL_LINE_LOOP, 129
GL_LINE_STRIP, 129
GL_LINEAR magnification filtering, 191
GL_LINEAR texture minification mode,

192
GL_LINEAR_MIPMAP_LINEAR texture

minification mode, 192
GL_LINEAR_MIPMAP_NEAREST texture

minification mode, 192
GL_LINES, 129
GL_LINK_STATUS, 64
GL_LUMINANCE format, 182, 198
GL_LUMINANCE_ALPHA format, 182, 198
GL_MAX_TEXTURE_IMAGE_UNITS

parameter, 197
GL_MAX_VERTEX_ATTRIBS vec4 vertex

attributes, 111
gl_MaxCombinedTextureImageUnits

built-in constant, 151
gl_MaxDrawBuffers constant,

220–221
gl_MaxFragmentUniformVectors

constant, 220

404 Index

gl_MaxVaryingVectors built-in
constant, 151

gl_MaxVertexAttribs built-in
constant, 150

gl_MaxVertexTextureImageUnits
built-in constant, 151

gl_MaxVertexUniformVectors, 151,
157, 169

GL_MIRRORED_REPEAT mode, 194, 195
GL_NEAREST, 191, 192
GL_NEAREST_MIPMAP_LINEAR textured

minification mode, 192
GL_NEAREST_MIPMAP_NEAREST textured

minification mode, 192
GL_NO_ERROR error code, 15, 16
GL_NUM_COMPRESSED_TEXTURE_

FORMATS, 202
GL_OES_compressed_ETC1_RGB8_

texture, 213
GL_OES_depth_texture optional

extension, 256
GL_OES_packed_depth_stencil

optional extension, 256
GL_OES_standard_derivatives

extension, 319, 321
GL_OES_texture_3D extension, 207,

256, 314
GL_OES_texture_float extension,

213
GL_OES_texture_float_linear

extension, 213
GL_OES_texture_half_float

extension, 213
GL_OES_texture_half_float_linear

extension, 213
GL_OES_texture_npot extension, 214
GL_OES_vertex_half_float

extension string, 353
GL_OUT_OF_MEMORY error, 15, 16
GL_PACK_ALIGNMENT argument, 188
gl_PointCoord variable, 130–131, 220
GL_POINTS, 130
gl_PointSize variable, 130, 150, 293
gl_Position variable, 28, 149
GL_REFLECTION_MAP mode, 167
GL_REPEAT mode, 194, 195
GL_REPLACE stencil function, 241

GL_RGB format, 182, 198
GL_RGBA format, 182, 198
GL_SAMPLE_ALPHA_TO_COVERAGE

token, 239
GL_SAMPLE_COVERAGE token, 239, 250
GL_SHADER_COMPILER, 73
GL_SHORT, 353, 354
GL_SPHERE_MAP mode, 167
GL_SRC_ALHPA_SATURATE, 247, 248
GL_STATIC_DRAW value, 118
GL_STENCIL_TEST token, 239
GL_STREAM_DRAW value, 118
GL_TEXTURE_WRAP_R_OES, 209
GL_TEXTURE_WRAP_S mode, 194
GL_TEXTURE_WRAP_T mode, 194
gl_TextureImageUnits constant, 220
GL_TRIANGLE_FAN, 128
GL_TRIANGLE_STRIP, 128
GL_TRIANGLES, 128
GL_UNSIGNED_BYTE, 107
GL_UNSIGNED_SHORT, 353
GL_VALIDATE_STATUS, 65, 66
GL_ZERO stencil function, 241
gl2ext.h file, 13
gl2.h file, 13
glActiveTexture function, 196–197
glAttachShader function, 63
glBindAttribLocation command, 31,

113, 115
glBindBuffer command, 117–118
glBindFramebuffer command, 262,

274
glBindRenderbuffer command, 259,

260
glBindTexture function, 185, 188
GLbitfield type, 15
glBlendColor, 248
glBlendEquation, 248
glBlendEquationSeparate, 248
glBlendFunc, 246
glBlendFuncSeparate, 246
GLboolean type, 15
glBufferData command, 119, 126
glBufferSubData command, 119
GLbyte type, 15
glCheckFramebufferStatus

command, 268–269

Index 405

GLclampf type, 15
glClear function, 32, 235–236
glClearColor function, 32, 236
glClearDepthf function, 236
glClearStencil function, 236
glColorMask routine, 237
glCompileShader function, 29,

59–60
glCompressedTexImage2D function,

201–202, 213
glCompressedTexImage3DOES

function, 209–210
glCompressedTexSubImage2D

function, 203–204
glCompressedTexSubImage3DOES

function, 211–212
glCopyTexImage2D function, 205, 206,

254
glCopyTexSubImage2D function,

206–207, 213, 254
glCopyTexSubImage3DOES function,

212–213
glCreateProgram function, 62
glCreateShader function, 29, 58
glCullFace, 143
glDeleteBuffers command, 124
glDeleteFramebuffers API, 270
glDeleteProgram function, 31, 62–63
glDeleteRenderbuffers, 269, 270
glDeleteShader function, 58–59
glDeleteTextures function, 185
glDepthFunc, 246
glDepthMask, 237
glDepthRange, 140–141
glDetachShader function, 63
glDisable function, 17, 143, 145,

332–333
glDisableVertexAttribArray

command, 109
glDrawArrays function, 33, 131–133,

134
glDrawElements function, 132,

133–136
glEnable function, 17, 143, 145,

238–239, 332–333
glEnableVertexAttribArray

command, 109

GLenum
argument, 16
type, 15
values, 202

glFinish command, 17, 55
GLfixed type, 15
GLfloat type, 15
glFlush command, 17
glFramebufferRenderbuffer

command, 263–264
glFramebufferTexture2D command,

264–265
glFramebufferTexture3DOES

command, 266
glFrontFace, 142–143
glGenBuffers command, 117, 118
glGenerateMipmap, 193
glGenFramebuffers, 258, 262
glGenRenderbuffers, 258, 259
glGenTextures function, 184, 188
glGetActiveAttrib command, 72,

112–113
glGetActiveUniform function, 68–69
glGetAttachedShaders function, 333
glGetAttribLocation command, 115
glGetBooleanv function, 73, 324–325
glGetBufferParameteriv function,

337
glGetBufferPointervOES function,

337
glGetError command, 15, 16
glGetFloatv function, 324–325
glGetFramebufferAttachment-

Parameteriv function, 338
glGetIntegeriv, 197
glGetIntegerv function, 202,

324–325, 331
glGetProgramInfoLog function, 31,

65
glGetProgramiv function, 31, 64, 67,

68, 112
glGetRenderbufferParameteriv

function, 338
glGetShaderInfoLog function, 61
glGetShaderiv function, 60
glGetShaderSource function, 334
glGetString function, 323–324, 353

406 Index

glGetTexParameterfv function, 336
glGetUniformfv function, 334
glGetUniformiv function, 334
glGetUniformLocation function, 69
glGetVertexAttribfv function,

335–336
glGetVertexAttribiv function,

335–336
glGetVertexAttribPointerv

function, 335
glHint function, 331
GLint type, 15
glIS* functions, 331
glIsEnable function, 332–333
glIsEnabled command, 18
glLineWidth API call, 129–130
glLinkProgram function, 31, 63–64
glMapBufferOES command, 124–125
global data, avoiding in C++, 342
global static data, handheld platforms

not allowing, 26
glPixelStorei function, 187, 203
glPolygonOffset, 145
glReadPixels command, 250–251,

270–271
glReleaseShaderCompiler function,

73–74
glRenderbufferStorage command,

260–261, 274
glSampleCoverage function, 250
glScissor function, 239
glShaderBinary, 74–75
glShaderSource function, 29, 59
GLshort type, 15
glStencilFunc function, 240
glStencilFuncSeparate function,

240
glStencilMask, 237–238
glStencilMaskSeparate, 238
glStencilOp function, 241–245
glStencilOpSeparate function,

241–245
glTexImage2D function

calling, 185–186, 187, 188
calling each cubemap face, 199
compared to glRenderbuffer-

Storage, 260

loading a mipmap chain, 189
glTexImage3DOES command, 207–209
glTexParameter, 190–191, 194
glTexParameteri, 188
glTexSubImage2D function, 202–203,

211
glTexSubImage3D function, 211
glTexSubImage3DOES function,

210–211
GLubyte type, 15
GLuint type, 15
glUniform* calls, 69–71
glUnmapBufferOES command, 125
glUseProgram function, 31–32, 66
GLushort type, 15
glValidateProgram function, 65–66
glVertexAttrib*commands,

102–103
glVertexAttribPointer function, 33,

103–107, 108
glViewport command, 32, 140, 141
GLvoid type, 15
gouraud shaded triangle, 8–9
GPUs

desktop, 25
flow control and looping difficult

for, 88
waiting for rendering commands,

125–126
gradient noise, 2D slice of, 312–313
gradient vectors

calculating, 321
generated, 309–311

grammar, of the shading language,
375–383

graphics hardware operation, 357
graphics pipeline, 3–11
ground-based fog, 227
guard-band region, 139

H
half-float numbers

converting to float-point, 355–356
representations of, 354–355

handheld and embedded devices, 1, 2
handheld devices, diversity of

platforms, 339

Index 407

handheld platforms, 339–341
hardware functionality, built-in

functions exposing, 357
header files, 13
Hello Triangle

building and running, 25
fragment shader in, 28
full source code for, 21–24
LoadShader function in, 29
main function in, 26–27
using OpenKODE, 343–350
vertex shader in, 27–28

Hello_Triangle_KD, 343
hidden-surface removal, 245
high precision, in the fragment shader,

221
highp keyword, 96, 152
hints, 330–331, 372

I
i argument data type, 15
identity matrix, 394
if conditional statements, 156
#if directive, 92
if-else conditional statements, 156
if-then-else logical tests, 87
image(s), updating subregions of, 202
image data

copying out of the color buffer, 204
loading, 185, 188
two-dimensional array of, 182

image postprocessing, 296–300
image processing, 296
image quality, 2
Imagination Technologies, 341
implementation string queries,

323–324
implementation-dependent limits,

querying, 324–327
implementation-dependent

parameters, 325–327
implementation-specific constants, 157
implementation-specific values, 251–252
in qualifier, 85
include files, 13
individual primitives, rendering, 136,

137

info log
format of, 61
for program objects, 65
retrieving, 61
written by the compiler, 60

InIt function, 27
inout qualifier, 85
input attribute, in a shader, 28
inputs, to the vertex shader, 4, 5, 148
insufficient memory, 16
int, precision for, 152
integer-based variables, precision for, 96
integer-based vector types, 79
internal memory, 277
INTERPOLATE RGB combine function,

217
interpolation, 5
interpolators, 94
invariance, 97–100
invariant keyword, 97, 98
inversion flag, 250

K
kdMain function, 350
keyboard input processing callback

function, 387
Khronos Group, 1

built-in functions copyrighted by,
357

shading language grammar
copyrighted by, 375

Khronos rendering APIs, 12
Khronos Web site, 18

L
language extension specification, 93
latitude longitude map, 167
lattice-based gradient noise, 309
left clip plane, 138
lexical analysis, 375
libEGL.lib, 13
libGLESv2.lib, 13
libraries, linking with, 13
lifetime, of a particle, 293
light

intensity of emitted, 164
projective view space of, 302

408 Index

light bloom effect
implementing, 298–300
stages of, 299, 300

light colors, multiplying, 163
light projection matrix, 303
light rays, parallel, 161
light source, 306
light view matrix, 303
lighting

with a normal map, 280–281
per-fragment, 279–285
in a vertex shader, 160–166

lighting equation model, 160
lighting equations

for a directional light, 161
in the fragment shader, 285

lighting shaders, 281–285
lighting vectors, 281
limitations

on fragment shaders, 221
on recursive functions, 86
on vertex shaders, 152–159

limits, implementation-dependent,
324–327

line primitives, 129
line rasterization, 7, 141
line segments, drawing, 129
linear approximations, 372
linear fog, 224, 226–227
linear fog factor, 314
linear interpolation, 285
lines, 129–130, 139
link status, checking, 64
linking, program objects, 63–64
literal values, 157, 158–159
LoadShader function, in Hello

Triangle, 29
location value, for a uniform, 69
LogicOp, removed as a feature, 10–11
loop index, in a for loop, 154
loops, 87–88
lowp keyword, 96, 152

M
macros, 92
magnification, 190
magnification filtering mode, 188

main function
of the fragment shader, 9
in Hello Triangle, 26–27
in a shader, 6, 28

main loop, starting, 386
main message processing loop, 27
make current process, 52
MakeBinaryShader.exe, 351
mandatory extensions, 12
map command, 124
mapping, buffer objects, 124–126
masking parameter, for the stencil test,

240
masks, 236–238
material_properties struct,

161–162
matrices, 78

accessing, 81–82
constructing, 80–81
floating-point based, 79
multiplying, 394
number used to skin a vertex, 168
for projective texturing, 303–304
in transformations, 390

matrix functions, built-in, 366–367
matrix palette, 169
maximum renderbuffer size, 273
mediump keyword, 96, 130, 152
memory footprint, minimizing, 12
memory manager, writing on Symbian,

342
mesh

authoring, 182
number of indices in, 134

Microsoft
Visual Studio 2005, 25
Visual Studio 2008 Express Edition,

20
Windows Mobile operating system,

340
Windows Vista, 20
Windows XP, 20

minification, 190
minification filter, 191, 192
minification filtering mode, 188
mip levels, 189
mipmap chain, 189–190, 193

Index 409

mipmap filtering mode, 193
mipmap generation, automatic,

193–194
MipMap2D example, 189, 192, 193
mipmapping, 189, 190
MODULATE RGB combine function, 217
multiple inheritance, avoiding in C++,

342
multiple-render targets (MRTs), 220–221
multiplication, performing

component-wise, 367
multisample buffer, allocating, 54
multisample rasterization, 372
multisampled antialiasing, 249–250
multisampling, 234, 249, 257
MultiTexture example, 222–223
multitexturing, implementing,

222–224

N
name queries, of entities, 331
native window, creating, 44
near clip plane, 138
nearest sampling, 189
noise

computing in the fragment shader,
308

generating, 308–313
using, 313–315
using a 3D texture, 307–315

noise distorted fog, 313–315
Noise3D sample, 307
Nokia devices, 339, 340
non-floating-point data types, 108
non-power-of-2 textures, 214
nonprogrammable operations,

332–333
normal, as a texture coordinate, 200
normal map, 222, 280–281
normal vector, 280, 289
normalization, of vectors, 285
normalized device coordinates, 139,

140
normalized flag, 108
npot textures, 214
nput dimensions, 214
numeric argument, out of range, 16

O
object name, for an attachment point,

263
object or local coordinate space, 137
object types

for an attachment point, 262
creating to render with shaders, 57

odd-numbered triangle, 134
OES_depth_texture extension, 274
OES_map_buffer extension, 124
offline tool, compiling shader source

code, 73
off-screen rendering area, 46–50
off-screen surfaces, 12
off-screen-buffer, rendering, 262
online linking, 75
online resources, for handheld

platforms, 340–341
online shader compilation, 73
on-screen rendering area, 43–46
on-screen surfaces, 12
on-screen window, 43
opaque objects, rendering, 237
OpenGL, 1, 16–17
OpenGL 2.0 example, 25
OpenGL ES, 1

buffer usage enums not supported,
118

device constraints addressed by, 1
specifications, 2

OpenGL ES 1.0, 2
OpenGL ES 1.1, 2, 102, 173
OpenGL ES 1.x, 2, 11–12
OpenGL ES 2.0, 2

API specification, 3
downloading, 357, 375
emulator, 25
example drawing a triangle, 19–34
framework, 26–27
graphics pipeline, 3–11
header file, 13
introduction to, 3–11
library, 13
not backward compatible, 11–12
obtaining values from, 323–338
programming with, 13–18
shading language, 78–100, 375–383

410 Index

OpenGL ES shading language
basics of, 78–100
built-in functions, 357–373
data types, 78–79
functions for computing noise, 308
grammar for, 376–383

OpenGL ES Shading Language
Specification (OpenGL ES SL), 3

OpenGL ES state, 12, 327–330
OpenKODE 1.0 specification, 343–350
operators, 84–85
opposite vertex order, 135
optional extensions, 207–214
orientation, of a triangle, 142
orthographic projection matrix, 392
orthonormal matrices, 169
OS APIs, for handheld devices, 343
OS-specific calls, removing, 350
out qualifier, 85
out-of-memory event, 125

P
packing rules, 94, 157
parameters, implementation-

dependent, 325–327
particle effects, 130
particle explosion, 290–291
particle system

additive blend effect for, 294
fragment shader, 293–294
with point sprites, 290–296
sample, 290
setup, 290–291
vertex shader, 291–293

particles, drawing, 294
ParticleSystem sample program, 290
pbuffers, 253

attributes list, 47
compared to Windows, 50
creating, 46, 48
implementing render to texture,

254
rendering into, 46

performance
hints biasing toward, 330–331
implications for texture filtering

mode, 193

performance tips, for framebuffer
objects, 277–278

per-fragment lighting, 279–285
example, 280
fragment shader, 283–285
variations possible on, 285
vertex shader, 281–283

per-fragment operations, 9–11
PerFragmentLighting.rfx, 280
Perlin, Ken, 309
perspective division, 139–140
perspective projection matrix, 390–391
per-vertex data, 101
physical address space, 94
physical screen, updating, 33
physical storage, 94
piecewise linear approximations, 372
ping-ponging, 299
pixel buffers. See pbuffers
pixel colors, blending, 246
pixel ownership test, 10, 257
pixels

reading, 252, 270–271
reading and writing, 250–252
two-dimensional fragments

representing, 7
plane equation, for a clip plane, 230
planes, equation specifying, 229
point coordinate origin, for point

sprites, 130
point light, 163
point sampling. See nearest sampling
point size, 130
point sprite rasterization, 7, 141
point sprites, 130–131

clipping, 139
no connectivity for, 295
particle system with, 290–296
rendering, 220
writing the size of, 150

point sprites primitive, 130
pointer address, retrieving, 337
pointSizeRange command, 130
polygon offset, 144, 145
polygons, smoothing joins between,

168
portability, of the code framework, 20

Index 411

position, of a point sprite, 130
PostProcess sample, 296, 298
postshader fragment pipeline, 233
post-transform vertex cache, 136
pow built-in function, 86
#pragma directive, 92, 99–100
precision, of shader language types,

334–335
precision qualifiers

for built-in functions, 358
for fragment shaders, 221
introduction to shading language,

96–97
review of, 152
setting default, 9

precompiled binary format, 350
precomputed lighting, 222
preprocessing path, 351
preprocessor, 92
primitive assembly, 6–7
primitive assembly stage, 136–137
primitive types, operations in, 139
primitives, 6, 127–136

converting two-dimensional
fragments, 7

drawing, 33, 119–124, 131–136, 227
types of, 127

procedural textures
antialiasing of, 319–322
benefits of, 315
disadvantages of, 315–316
example, 316–319
generation of, 315–322

profiles, none in OpenGL ES 2.0, 12
program info log, 65
program objects, 57, 58

attachment to, 29
creating, 62, 388
creating, attaching shaders to, and

linking, 66–67
creating and linking, 30–31
deleting, 62–63
linking, 63–64
querying for uniform information, 71
sets of uniforms for, 67
setting up vertex attributes, 72
validating, 65–66

programmable graphics pipeline, 3
programmable pipeline, 11, 147, 216
programmable vertex pipeline, 147
programming, 13–18
programs, state queries, 333–335
projection matrix, of the light source,

303
projective light space position, 302
projective spotlight, 301
projective spotlight shaders, 304–307
projective texture coordinate, 306, 307
projective texturing, 300–307

basics, 301–302
described, 301
fragment shader, 306–307
matrices for, 303–304
vertex shader for, 304–306

ProjectiveSpotlight, 300
PVRUniSCo, 351
PVRUniSCo Editor, 351

Q
quads, drawing, 194–195
Qualcomm

BREW operating system, 339
BREW SDK, 341

qualifiers, 85–86
quality, hints biasing toward, 330–331

R
radius, of a point sprite, 130
range, of shader language types,

334–335
rasterization, 127, 141–146

controlled by turning on and off
features, 332

multisample, 372
single-sample, 372

rasterization phase, 7
rasterization pipeline, 141
r-coordinate, 209
read-only variables, 111
recursive functions, limitation on, 86
redundancy, removing, 2
reflection vector

computing, 285, 366
in world space, 289

412 Index

render targets, blurring, 299
render to depth texture example,

274–277
render to texture setup, 297
renderbuffer(s)

attaching to a framebuffer
attachment, 263–264

state queries, 337–338
width and height of off-screen, 277

renderbuffer objects, 255
allocating, 258
binding to existing, 260
creating, 258
deleting, 269–270
setting, 259, 260
state and default values associated

with, 259
versus texture objects, 256–257
using, 259–261

rendering
advanced techniques, 279
completing for a frame, 34
reducing visual artifacts of, 249
synchronizing, 54–55

rendering context, 253
creating, 13, 50–52
required in OpenGL ES commands,

12
rendering surfaces

creating, 12
types and configuration of, 38

Renderman shading language, 309
RenderMonkey, 20, 26

computing a tangent space
automatically, 281

demonstrating fog computation,
224–225

repeatability, 316
REPLACE RGB combine function, 217
require extension behavior, 93
.rfx extension, 26
RGB-based color buffer, 54
right clip plane, 138
RM_ClipPlane workspace, 229–230
rotation matrix, 393
runtime type information, avoiding in

C++, 342

S
s argument data type, 15
same vertex border, 135–136
sample coverage mask, 249
Sample_TextureCubemap example, 198
sampler uniform variable, 196
samplers

code for setting up, 223–224
input to the fragment shader, 8
in a vertex shader, 4, 5

samples, resolving, 249
scalar-based data types, 78
scaled color, 248
scaling factors, 246
scaling matrix, 392
scissor box, 239, 333
scissor test, 10, 239
scissoring operation, 139
s-coordinate, 194
screen, two-dimensional images on, 33
screen resolution, 125
Series 60 on Symbian operating system,

339
shader(s)

attached to a program, 333
attaching to a program object, 63
code paths for loading, 75
compiling, 59–60
compiling and loading, 29–30
creating and compiling, 58–62
detaching, 63
implementing fixed function

techniques, 222–231
loading, 61–62
loading and checking, 388
state queries, 333–335

shader binaries, 75, 350–351
shader code, rendering a cubemap,

199–200
shader compiler, 73–74
shader development tool, 26
shader effects, 26
shader objects, 57

creating, 58
deleting, 58–59
linking in program objects, 75
returning, 29

Index 413

shader program, 4, 8, 148
shader source code

providing, 59
returning, 334
returning the length of, 60

shading language. See OpenGL ES
shading language

shadow map aliasing, 220
shareContext parameter, 50
sheeter binaries, 350–351
shiny objects, reflected image on, 167
SIMD array elements, 373
Simple Bloom effect, 296
Simple_Texture2D example, 197
single-sample rasterization, 372
slice, 212
Sony Ericsson, 340
source shader object, 75
special variables, 149, 219–220
specular color, computing, 285
specular exponent, 162
specular lighting, 285
sphere, geometry for, 388
sphere map, 167
spotlight

example, 164–166
lighting equation for, 163–164
rendering a quad using, 300

Standard Template Library (STL),
341–342

start position, of a particle, 293
state

of a buffer object, 118
management, 17–18
values, 18

state enables, 17, 18
state queries

application-modifiable, 327–330
implementation-dependent,

325–327
renderbuffers and framebuffers,

337–338
shaders and programs, 333–335
texture objects, 336
vertex attribute arrays, 335–336
vertex buffer objects, 337

static lighting, 222

stencil and depth tests, 10
stencil attachment, as valid, 267–268
stencil attachment point, 262
stencil buffer

allocating, 54
disabling writing to, 237–238
initializing, 240
obtaining, 235
testing, 240–245

stencil mask, setting, 238
stencil renderbuffers, 278
stencil test, 240–245, 333
stencil-renderable buffer, 261
stencil-rendererable formats, 268
stored texture image, 315
structure of arrays, 104, 106–107, 122
structures, 82–83
SUBTRACT RGB combine function, 217
surface configurations, 38
swizzles, 81
Symbian

C++ support, 341–342
on Sony Ericsson devices using UIQ,

340
Symbian operating system, 339, 340
synchronizing, rendering, 54–55

T
tangent matrix, 283
tangent space, 281, 283
t-coordinate, 194
temporary variables, 153
texels, 182, 183–184
texture(s). See also texturing

applying to surfaces, 181
avoiding modifying, 277
compressed, 201–202
floating-point, 213
forms of, 181
as inputs to the fragment shader, 218
making the currently bound texture

object, 274
non-power-of-2, 214
rendering to, 254, 262, 271–273
using the fragment shader, 196–198

texture color, in a fixed function
pipeline, 216–217

414 Index

texture compression formats, 202
texture coordinates, 182

for 2D textures, 182, 183
generating in a vertex shader,

167–168
specifying, 105
transforming, 157–158, 173
wrapping, 194–195

texture copy, format conversions for,
206–207

texture data, 182, 204–207
texture filter settings, 336
texture filtering, mipmapping and,

188–193
texture filtering mode, 193
texture formats, mapping to color,

197–198
texture image units, 220
texture level, specifying, 263
texture lookup functions, built-in,

369–371
texture maps, 46, 222
texture mip-level, 274
texture object code, 186
texture objects

binding, 185
creating, 184
deleting, 185
generating, binding, and loading,

186–188
modifying state and image of, 265
state queries about, 336
as texture input and a framebuffer

attachment, 267
texture pixels, 182
texture subimage specification,

202–204
texture target, binding texture objects

to, 185
texture units

binding sampler and texture to, 197
binding textures to, 196–197
code for setting up, 223–224
maximum number of, 151
setting the current, 197

texture wrap modes, 194, 195
texture wrapping mode, 182

texture Z offset, 263
texture2D function, 197
texture2DProj built-in function,

301–302
texture3D built-in function, 209
textureCube built-in function,

200–201
textured cubemap face, specifying, 263
texturing

basics of, 181–184
procedural, 315–322
projective, 300–307

TGA image, loading, 388
title-based rendering architecture, 277
tool suites, generating binary shaders,

351
top clip plane, 138
transformation functions, 390–394
translation matrix, 393
translucent objects, 237
transpose argument, 70
triangle primitives, 128
triangle rasterization, 7, 141, 143–144
triangle strips, connecting, 134, 135
triangles, 128

clipping, 139
culling, 142–143
degenerate, 134, 135
drawing, 128, 132
facing of, 143
geometry for, 33

trigonometry functions, 358–359
trivial operation, as a built-in function,

357
type conversions, 79
type rules, between operators, 84

U
ub argument data type, 15
ui argument data type, 15
UIQ Symbian operating systems, 340
uniform declarations, packing, 94–95
uniform matrices, 283
uniform storage, 157
uniform values, 71
uniform variables. See uniforms
uniformed variable, 334

Index 415

uniforms, 67
functions for loading, 69–71
getting and setting, 67–72
input to the fragment shader, 8, 218
as inputs to the fragment shader,

219
number used in a vertex shader,

157–159
in the OpenGL ES Shading

Language, 88–89
querying for active, 71–72
storing, 94
in a vertex shader, 4, 5

unmap command, 124
unpack alignment, 187–188
unrolled shader, 153
update callback function, 387
update function, for particle system

sample, 292–293
us argument data type, 15
user clip planes

computing, 173
implementing using shaders,

229–231
userData member variable, 26
utility functions

building up a library of, 20
performing transformations,

390–394

V
v_eyeDist varying variable, 226
valid attachment, 268
validation, of program objects, 65–66
variable constructors, 79–81
variables, precision of, 96
varying declarations, 91
varying variables, 5, 90, 148

input to the fragment shader, 8
interpolating across a primitive, 285

varying vectors, 151
varyings

as inputs to the fragment shader,
218, 219

in the OpenGL ES Shading
Language, 90–92

storing, 94

vboIds, 117
vec4 attributes, 111
vec4 uniform entries, 151, 220
vector constructors, 80
vector input, 357
vector relational functions, built-in,

367–369
vectors, 78, 81
#version directive, 92
versions, of OpenGL ES, 323, 324
vertex, storing attributes of, 107
vertex array attribute, 109–110
vertex arrays, 101, 103–107
vertex attribute arrays, 109, 335–336
vertex attribute data, 102–110
vertex attribute index, 113
vertex attribute variables, 110–115
vertex attributes

binding to attribute variables,
113–115

data format, 107
finding the number of active,

111–112
maximum number of, 150
minimum supported, 102
in primitive assembly stage, 6
setting up, 72
specifying and binding for drawing

primitives, 114
specifying with glVertexAttrib-

Pointer, 104
storing, 104, 107, 111
user-defined, 102

vertex buffer objects, 116
creating and binding, 116–117
drawing with and without, 120–122
mapping data storage, 124–125
state queries, 337
using, 295

vertex cache, 136
vertex color, in a fixed function

pipeline, 216
vertex coordinates, 138
vertex data, 115–116. See also vertex

attributes
vertex lighting equation, 173
vertex normal, 105

416 Index

vertex pipeline, 173–179
vertex position attribute, 104–105
vertex position, converting, 149
vertex shader(s)

attaching to a program object, 30
attributes as per-vertex inputs to, 90
binding vertex attributes, 113–115
built-in variables, 149–152
computing distance to eye, 225–226
counting number of uniforms used,

157–159
creating, 27–28, 58
declaring vertex attributes variables,

110–115
default precision, 97
described, 147
for the environment mapping

example, 286–288
example using OpenGL ES shading

language, 5–6
examples, 159–166
in Hello Triangle, 27–28
implementing checkerboard texture,

316–317
inputs and outputs of, 5, 148
lighting in a, 160–166
limitations on, 152–159
maximum number of instructions

supported, 153
in OpenGL ES 2.0, 4–6
overview of, 148–159
for a particle system, 291–293
performing vertex skinning, 156
for per-fragment lighting, 281–283
for projective texturing, 304–306
specifying and binding to attribute

names, 113, 114
in a two-component texture

coordinate, 196
user clip plane, 230–231
vertices transformed by, 136
writing a simple, 160

vertex shader code, 169–171
vertex shader object, 58
vertex shader stage, 147
vertex skinning, 168–172

vertices
operating on, 4
for a triangle, 33

view frustum, 7
view matrix, 303, 305–306
viewing volume. See clip volume
viewpoint transformation, 140–141
viewport

rendering in, 242–245
setting, 32
state, 141

visible buffer. See front buffer
visual artifacts, 189
Visual Studio 2005, 341
vPosition attribute, 28, 31, 33
vVertices array, 33

W
warn extension behavior, 93
Web site, for this book, 20
while loops, 155
Win32 API, 340
winding order, preserving, 136
window(s)

code for creating, 45–46
compared to pbuffers, 50
creating specific width and height,

27
creating with specified parameters,

386
window coordinates, 140, 150
window origin (0, 0), 130
window relative coordinates, of a

fragment, 219–220
window system, drawable surface, 257
windowing system

communicating with, 36–37
guaranteeing rendering completion,

55
Windows Mobile 6 SDK, downloading,

341
Windows Mobile Developer Center,

341
Windows Mobile operating system, 340
Windows/Linux developers,

development environment for,
340

Index 417

wispy fog effect, 313, 315
world space, 287–288
world-space normal vector, 281
world-space reflection vector, 288
wrap modes, 194, 307
writable static global variables, 340
write masks, 10

X
x argument data type, 15

Z
Z fighting, 98, 143

	Foreword
	Preface
	Intended Audience
	Organization of the Book
	Example Code and Shaders
	Errata

	2. Hello Triangle: An OpenGL ES 2.0 Example
	Code Framework
	Where to Download the Examples
	Hello Triangle Example
	Building and Running the Examples
	Using the OpenGL ES 2.0 Framework
	Creating a Simple Vertex and Fragment Shader
	Compiling and Loading the Shaders
	Creating a Program Object and Linking the Shaders
	Setting the Viewport and Clearing the Color Buffer
	Loading the Geometry and Drawing a Primitive
	Displaying the Back Buffer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

