The Practice of System and Network Administration

Second Edition
This page intentionally left blank
Contents at a Glance

Part I Getting Started
1
Chapter 1 What to Do When . . .
Chapter 2 Climb Out of the Hole

Part II Foundation Elements
39
Chapter 3 Workstations
Chapter 4 Servers
Chapter 5 Services
Chapter 6 Data Centers
Chapter 7 Networks
Chapter 8 Namespaces
Chapter 9 Documentation
Chapter 10 Disaster Recovery and Data Integrity
Chapter 11 Security Policy
Chapter 12 Ethics
Chapter 13 Helpdesks
Chapter 14 Customer Care

Part III Change Processes
389
Chapter 15 Debugging
Chapter 16 Fixing Things Once
Chapter 17 Change Management
Chapter 18 Server Upgrades
Chapter 19 Service Conversions
Chapter 20 Maintenance Windows
Chapter 21 Centralization and Decentralization
Contents at a Glance

Part IV Providing Services 521
- Chapter 22 Service Monitoring 523
- Chapter 23 Email Service 543
- Chapter 24 Print Service 565
- Chapter 25 Data Storage 583
- Chapter 26 Backup and Restore 619
- Chapter 27 Remote Access Service 653
- Chapter 28 Software Depot Service 667
- Chapter 29 Web Services 689

Part V Management Practices 725
- Chapter 30 Organizational Structures 727
- Chapter 31 Perception and Visibility 751
- Chapter 32 Being Happy 777
- Chapter 33 A Guide for Technical Managers 819
- Chapter 34 A Guide for Nontechnical Managers 853
- Chapter 35 Hiring System Administrators 871
- Chapter 36 Firing System Administrators 899
- Epilogue 909

Appendixes 911
- Appendix A The Many Roles of a System Administrator 913
- Appendix B Acronyms 939
- Bibliography 945
- Index 955
1.20 Keeping Management Happy 15
1.21 Keeping SAs Happy 16
1.22 Keeping Systems from Being Too Slow 16
1.23 Coping with a Big Influx of Computers 16
1.24 Coping with a Big Influx of New Users 17
1.25 Coping with a Big Influx of New SAs 17
1.26 Handling a High SA Team Attrition Rate 18
1.27 Handling a High User-Base Attrition Rate 18
1.28 Being New to a Group 18
1.29 Being the New Manager of a Group 19
1.30 Looking for a New Job 19
1.31 Hiring Many New SAs Quickly 20
1.32 Increasing Total System Reliability 20
1.33 Decreasing Costs 21
1.34 Adding Features 21
1.35 Stopping the Hurt When Doing “This” 22
1.36 Building Customer Confidence 22
1.37 Building the Team’s Self-Confidence 22
1.38 Improving the Team’s Follow-Through 22
1.39 Handling Ethics Issues 23
1.40 My Dishwasher Leaves Spots on My Glasses 23
1.41 Protecting Your Job 23
1.42 Getting More Training 24
1.43 Setting Your Priorities 24
1.44 Getting All the Work Done 25
1.45 Avoiding Stress 25
1.46 What Should SAs Expect from Their Managers? 26
1.47 What Should SA Managers Expect from Their SAs? 26
1.48 What Should SA Managers Provide to Their Boss? 26

2 Climb Out of the Hole 27

2.1 Tips for Improving System Administration 28
 2.1.1 Use a Trouble-Ticket System 28
 2.1.2 Manage Quick Requests Right 29
 2.1.3 Adopt Three Time-Saving Policies 30
 2.1.4 Start Every New Host in a Known State 32
 2.1.5 Follow Our Other Tips 33
2.2 Conclusion 36
Part II Foundation Elements

3 Workstations

3.1 The Basics
 3.1.1 Loading the OS
 3.1.2 Updating the System Software and Applications
 3.1.3 Network Configuration
 3.1.4 Avoid Using Dynamic DNS with DHCP

3.2 The Icing
 3.2.1 High Confidence in Completion
 3.2.2 Involve Customers in the Standardization Process
 3.2.3 A Variety of Standard Configurations

3.3 Conclusion

4 Servers

4.1 The Basics
 4.1.1 Buy Server Hardware for Servers
 4.1.2 Choose Vendors Known for Reliable Products
 4.1.3 Understand the Cost of Server Hardware
 4.1.4 Consider Maintenance Contracts and Spare Parts
 4.1.5 Maintaining Data Integrity
 4.1.6 Put Servers in the Data Center
 4.1.7 Client Server OS Configuration
 4.1.8 Provide Remote Console Access
 4.1.9 Mirror Boot Disks

4.2 The Icing
 4.2.1 Enhancing Reliability and Service Ability
 4.2.2 An Alternative: Many Inexpensive Servers

4.3 Conclusion

5 Services

5.1 The Basics
 5.1.1 Customer Requirements
 5.1.2 Operational Requirements
 5.1.3 Open Architecture
 5.1.4 Simplicity
 5.1.5 Vendor Relations
6 Data Centers

6.1 The Basics
 6.1.1 Location
 6.1.2 Access
 6.1.3 Security
 6.1.4 Power and Cooling
 6.1.5 Fire Suppression
 6.1.6 Racks
 6.1.7 Wiring
 6.1.8 Labeling
 6.1.9 Communication
 6.1.10 Console Access
 6.1.11 Workbench
 6.1.12 Tools and Supplies
 6.1.13 Parking Spaces

6.2 The Icing
 6.2.1 Greater Redundancy
 6.2.2 More Space

6.3 Ideal Data Centers
 6.3.1 Tom’s Dream Data Center
 6.3.2 Christine’s Dream Data Center

6.4 Conclusion
7 Networks 187

7.1 The Basics 188
 7.1.1 The OSI Model 188
 7.1.2 Clean Architecture 190
 7.1.3 Network Topologies 191
 7.1.4 Intermediate Distribution Frame 197
 7.1.5 Main Distribution Frame 203
 7.1.6 Demarcation Points 205
 7.1.7 Documentation 205
 7.1.8 Simple Host Routing 207
 7.1.9 Network Devices 209
 7.1.10 Overlay Networks 212
 7.1.11 Number of Vendors 213
 7.1.12 Standards-Based Protocols 214
 7.1.13 Monitoring 214
 7.1.14 Single Administrative Domain 216

7.2 The Icing 217
 7.2.1 Leading Edge versus Reliability 217
 7.2.2 Multiple Administrative Domains 219

7.3 Conclusion 219
 7.3.1 Constants in Networking 219
 7.3.2 Things That Change in Network Design 220

8 Namespaces 223

8.1 The Basics 224
 8.1.1 Namespace Policies 224
 8.1.2 Namespace Change Procedures 236
 8.1.3 Centralizing Namespace Management 236

8.2 The Icing 237
 8.2.1 One Huge Database 238
 8.2.2 Further Automation 238
 8.2.3 Customer-Based Updating 239
 8.2.4 Leveraging Namespaces 239

8.3 Conclusion 239

9 Documentation 241

9.1 The Basics 242
 9.1.1 What to Document 242
9.1.2 A Simple Template for Getting Started 243
9.1.3 Easy Sources for Documentation 244
9.1.4 The Power of Checklists 246
9.1.5 Storage Documentation 247
9.1.6 Wiki Systems 249
9.1.7 A Search Facility 250
9.1.8 Rollout Issues 251
9.1.9 Self-Management versus Explicit Management 251

9.2 The Icing 252
9.2.1 A Dynamic Documentation Repository 252
9.2.2 A Content-Management System 253
9.2.3 A Culture of Respect 253
9.2.4 Taxonomy and Structure 254
9.2.5 Additional Documentation Uses 255
9.2.6 Off-Site Links 258

9.3 Conclusion 258

10 Disaster Recovery and Data Integrity 261
10.1 The Basics 261
10.1.1 Definition of a Disaster 262
10.1.2 Risk Analysis 262
10.1.3 Legal Obligations 263
10.1.4 Damage Limitation 264
10.1.5 Preparation 265
10.1.6 Data Integrity 267

10.2 The Icing 268
10.2.1 Redundant Site 268
10.2.2 Security Disasters 268
10.2.3 Media Relations 269

10.3 Conclusion 269

11 Security Policy 271
11.1 The Basics 272
11.1.1 Ask the Right Questions 273
11.1.2 Document the Company’s Security Policies 276
11.1.3 Basics for the Technical Staff 283
11.1.4 Management and Organizational Issues 300
11.2 The Icing
 11.2.1 Make Security Pervasive 315
 11.2.2 Stay Current: Contacts and Technologies 316
 11.2.3 Produce Metrics 317
11.3 Organization Profiles 317
 11.3.1 Small Company 318
 11.3.2 Medium-Size Company 318
 11.3.3 Large Company 319
 11.3.4 E-Commerce Site 319
 11.3.5 University 320
11.4 Conclusion 321

12 Ethics 323
 12.1 The Basics 323
 12.1.1 Informed Consent 324
 12.1.2 Professional Code of Conduct 324
 12.1.3 Customer Usage Guidelines 326
 12.1.4 Privileged-Access Code of Conduct 327
 12.1.5 Copyright Adherence 330
 12.1.6 Working with Law Enforcement 332
 12.2 The Icing 336
 12.2.1 Setting Expectations on Privacy and Monitoring 336
 12.2.2 Being Told to Do Something Illegal/Unethical 338
 12.3 Conclusion 340

13 Helpdesks 343
 13.1 The Basics 343
 13.1.1 Have a Helpdesk 344
 13.1.2 Offer a Friendly Face 346
 13.1.3 Reflect Corporate Culture 346
 13.1.4 Have Enough Staff 347
 13.1.5 Define Scope of Support 348
 13.1.6 Specify How to Get Help 351
 13.1.7 Define Processes for Staff 352
 13.1.8 Establish an Escalation Process 352
 13.1.9 Define “Emergency” in Writing 353
 13.1.10 Supply Request-Tracking Software 354
13.2 The Icing

13.2.1 Statistical Improvements

13.2.2 Out-of-Hours and 24/7 Coverage

13.2.3 Better Advertising for the Helpdesk

13.2.4 Different Helpdesks for Service Provision and Problem Resolution

13.3 Conclusion

14 Customer Care

14.1 The Basics

14.1.1 Phase A/Step 1: The Greeting

14.1.2 Phase B: Problem Identification

14.1.3 Phase C: Planning and Execution

14.1.4 Phase D: Verification

14.1.5 Perils of Skipping a Step

14.1.6 Team of One

14.2 The Icing

14.2.1 Based Model-Training

14.2.2 Holistic Improvement

14.2.3 Increased Customer Familiarity

14.2.4 Special Announcements for Major Outages

14.2.5 Trend Analysis

14.2.6 Customers Who Know the Process

14.2.7 Architectural Decisions That Match the Process

14.3 Conclusion

Part III Change Processes

15 Debugging

15.1 The Basics

15.1.1 Learn the Customer’s Problem

15.1.2 Fix the Cause, Not the Symptom

15.1.3 Be Systematic

15.1.4 Have the Right Tools

15.2 The Icing

15.2.1 Better Tools

15.2.2 Formal Training on the Tools

15.2.3 End-to-End Understanding of the System

15.3 Conclusion
16 Fixing Things Once

16.1 The Basics
 16.1.1 Don’t Waste Time
 16.1.2 Avoid Temporary Fixes
 16.1.3 Learn from Carpenters

16.2 The Icing

16.3 Conclusion

17 Change Management

17.1 The Basics
 17.1.1 Risk Management
 17.1.2 Communications Structure
 17.1.3 Scheduling
 17.1.4 Process and Documentation
 17.1.5 Technical Aspects

17.2 The Icing
 17.2.1 Automated Front Ends
 17.2.2 Change-Management Meetings
 17.2.3 Streamline the Process

17.3 Conclusion

18 Server Upgrades

18.1 The Basics
 18.1.1 Step 1: Develop a Service Checklist
 18.1.2 Step 2: Verify Software Compatibility
 18.1.3 Step 3: Verification Tests
 18.1.4 Step 4: Write a Back-Out Plan
 18.1.5 Step 5: Select a Maintenance Window
 18.1.6 Step 6: Announce the Upgrade as Appropriate
 18.1.7 Step 7: Execute the Tests
 18.1.8 Step 8: Lock out Customers
 18.1.9 Step 9: Do the Upgrade with Someone Watching
 18.1.10 Step 10: Test Your Work
 18.1.11 Step 11: If All Else Fails, Rely on the Back-Out Plan
 18.1.12 Step 12: Restore Access to Customers
 18.1.13 Step 13: Communicate Completion/Back-Out
Contents

18.2 The Icing
 18.2.1 Add and Remove Services at the Same Time
 18.2.2 Fresh Installs
 18.2.3 Reuse of Tests
 18.2.4 Logging System Changes
 18.2.5 A Dress Rehearsal
 18.2.6 Installation of Old and New Versions on the Same Machine
 18.2.7 Minimal Changes from the Base
18.3 Conclusion

19 Service Conversions
 19.1 The Basics
 19.1.1 Minimize Intrusiveness
 19.1.2 Layers versus Pillars
 19.1.3 Communication
 19.1.4 Training
 19.1.5 Small Groups First
 19.1.6 Flash-Cuts: Doing It All at Once
 19.1.7 Back-Out Plan
 19.2 The Icing
 19.2.1 Instant Rollback
 19.2.2 Avoiding Conversions
 19.2.3 Web Service Conversions
 19.2.4 Vendor Support
 19.3 Conclusion

20 Maintenance Windows
 20.1 The Basics
 20.1.1 Scheduling
 20.1.2 Planning
 20.1.3 Directing
 20.1.4 Managing Change Proposals
 20.1.5 Developing the Master Plan
 20.1.6 Disabling Access
 20.1.7 Ensuring Mechanics and Coordination
 20.1.8 Deadlines for Change Completion
 20.1.9 Comprehensive System Testing
23 Email Service 543

23.1 The Basics 543
 23.1.1 Privacy Policy 544
 23.1.2 Namespaces 544
 23.1.3 Reliability 546
 23.1.4 Simplicity 547
 23.1.5 Spam and Virus Blocking 549
 23.1.6 Generality 550
 23.1.7 Automation 552
 23.1.8 Basic Monitoring 552
 23.1.9 Redundancy 553
 23.1.10 Scaling 554
 23.1.11 Security Issues 556
 23.1.12 Communication 557

23.2 The Icing 558
 23.2.1 Encryption 559
 23.2.2 Email Retention Policy 559
 23.2.3 Advanced Monitoring 560
 23.2.4 High-Volume List Processing 561

23.3 Conclusion 562

24 Print Service 565

24.1 The Basics 566
 24.1.1 Level of Centralization 566
 24.1.2 Print Architecture Policy 568
 24.1.3 System Design 572
 24.1.4 Documentation 573
 24.1.5 Monitoring 574
 24.1.6 Environmental Issues 575

24.2 The Icing 576
 24.2.1 Automatic Failover and Load Balancing 577
 24.2.2 Dedicated Clerical Support 578
 24.2.3 Shredding 578
 24.2.4 Dealing with Printer Abuse 579

24.3 Conclusion 580

25 Data Storage 583

25.1 The Basics 584
 25.1.1 Terminology 584
25.1.2 Managing Storage 588
25.1.3 Storage as a Service 596
25.1.4 Performance 604
25.1.5 Evaluating New Storage Solutions 608
25.1.6 Common Problems 609

25.2 The Icing 611
25.2.1 Optimizing RAID Usage by Applications 611
25.2.2 Storage Limits: Disk Access Density Gap 613
25.2.3 Continuous Data Protection 614

25.3 Conclusion 615

26 Backup and Restore 619
26.1 The Basics 620
26.1.1 Reasons for Restores 621
26.1.2 Types of Restores 624
26.1.3 Corporate Guidelines 625
26.1.4 A Data-Recovery SLA and Policy 626
26.1.5 The Backup Schedule 627
26.1.6 Time and Capacity Planning 633
26.1.7 Consumables Planning 635
26.1.8 Restore-Process Issues 637
26.1.9 Backup Automation 639
26.1.10 Centralization 641
26.1.11 Tape Inventory 642

26.2 The Icing 643
26.2.1 Fire Drills 643
26.2.2 Backup Media and Off-Site Storage 644
26.2.3 High-Availability Databases 647
26.2.4 Technology Changes 648

26.3 Conclusion 649

27 Remote Access Service 653
27.1 The Basics 654
27.1.1 Requirements for Remote Access 654
27.1.2 Policy for Remote Access 656
27.1.3 Definition of Service Levels 656
27.1.4 Centralization 658
27.1.5 Outsourcing 658
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1.6</td>
<td>Authentication</td>
<td>661</td>
</tr>
<tr>
<td>27.1.7</td>
<td>Perimeter Security</td>
<td>661</td>
</tr>
<tr>
<td>27.2</td>
<td>The Icing</td>
<td>662</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Home Office</td>
<td>662</td>
</tr>
<tr>
<td>27.2.2</td>
<td>Cost Analysis and Reduction</td>
<td>663</td>
</tr>
<tr>
<td>27.2.3</td>
<td>New Technologies</td>
<td>664</td>
</tr>
<tr>
<td>27.3</td>
<td>Conclusion</td>
<td>665</td>
</tr>
<tr>
<td>28</td>
<td>Software Depot Service</td>
<td>667</td>
</tr>
<tr>
<td>28.1</td>
<td>The Basics</td>
<td>669</td>
</tr>
<tr>
<td>28.1.1</td>
<td>Understand the Justification</td>
<td>669</td>
</tr>
<tr>
<td>28.1.2</td>
<td>Understand the Technical Expectations</td>
<td>670</td>
</tr>
<tr>
<td>28.1.3</td>
<td>Set the Policy</td>
<td>671</td>
</tr>
<tr>
<td>28.1.4</td>
<td>Select Depot Software</td>
<td>672</td>
</tr>
<tr>
<td>28.1.5</td>
<td>Create the Process Manual</td>
<td>672</td>
</tr>
<tr>
<td>28.1.6</td>
<td>Examples</td>
<td>673</td>
</tr>
<tr>
<td>28.2</td>
<td>The Icing</td>
<td>682</td>
</tr>
<tr>
<td>28.2.1</td>
<td>Different Configurations for Different Hosts</td>
<td>682</td>
</tr>
<tr>
<td>28.2.2</td>
<td>Local Replication</td>
<td>683</td>
</tr>
<tr>
<td>28.2.3</td>
<td>Commercial Software in the Depot</td>
<td>684</td>
</tr>
<tr>
<td>28.2.4</td>
<td>Second-Class Citizens</td>
<td>684</td>
</tr>
<tr>
<td>28.3</td>
<td>Conclusion</td>
<td>686</td>
</tr>
<tr>
<td>29</td>
<td>Web Services</td>
<td>689</td>
</tr>
<tr>
<td>29.1</td>
<td>The Basics</td>
<td>690</td>
</tr>
<tr>
<td>29.1.1</td>
<td>Web Service Building Blocks</td>
<td>690</td>
</tr>
<tr>
<td>29.1.2</td>
<td>The Webmaster Role</td>
<td>693</td>
</tr>
<tr>
<td>29.1.3</td>
<td>Service-Level Agreements</td>
<td>694</td>
</tr>
<tr>
<td>29.1.4</td>
<td>Web Service Architectures</td>
<td>694</td>
</tr>
<tr>
<td>29.1.5</td>
<td>Monitoring</td>
<td>698</td>
</tr>
<tr>
<td>29.1.6</td>
<td>Scaling for Web Services</td>
<td>699</td>
</tr>
<tr>
<td>29.1.7</td>
<td>Web Service Security</td>
<td>703</td>
</tr>
<tr>
<td>29.1.8</td>
<td>Content Management</td>
<td>710</td>
</tr>
<tr>
<td>29.1.9</td>
<td>Building the Manageable Generic Web Server</td>
<td>714</td>
</tr>
<tr>
<td>29.2</td>
<td>The Icing</td>
<td>718</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Third-Party Web Hosting</td>
<td>718</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Mashup Applications</td>
<td>721</td>
</tr>
<tr>
<td>29.3</td>
<td>Conclusion</td>
<td>722</td>
</tr>
</tbody>
</table>
Part V A Management Practices

30 Organizational Structures

30.1 The Basics

30.1.1 Sizing
30.1.2 Funding Models
30.1.3 Management Chain’s Influence
30.1.4 Skill Selection
30.1.5 Infrastructure Teams
30.1.6 Customer Support
30.1.7 Helpdesk
30.1.8 Outsourcing

30.2 The Icing

30.2.1 Consultants and Contractors

30.3 Sample Organizational Structures

30.3.1 Small Company
30.3.2 Medium-Size Company
30.3.3 Large Company
30.3.4 E-Commerce Site
30.3.5 Universities and Nonprofit Organizations

30.4 Conclusion

31 Perception and Visibility

31.1 The Basics

31.1.1 A Good First Impression
31.1.2 Attitude, Perception, and Customers
31.1.3 Priorities Aligned with Customer Expectations
31.1.4 The System Advocate

31.2 The Icing

31.2.1 The System Status Web Page
31.2.2 Management Meetings
31.2.3 Physical Visibility
31.2.4 Town Hall Meetings
31.2.5 Newsletters
31.2.6 Mail to All Customers
31.2.7 Lunch

31.3 Conclusion
32 Being Happy

32.1 The Basics
- 32.1.1 Follow-Through
- 32.1.2 Time Management
- 32.1.3 Communication Skills
- 32.1.4 Professional Development
- 32.1.5 Staying Technical

32.2 The Icing
- 32.2.1 Learn to Negotiate
- 32.2.2 Love Your Job
- 32.2.3 Managing Your Manager

32.3 Further Reading
32.4 Conclusion

33 A Guide for Technical Managers

33.1 The Basics
- 33.1.1 Responsibilities
- 33.1.2 Working with Nontechnical Managers
- 33.1.3 Working with Your Employees
- 33.1.4 Decisions

33.2 The Icing
- 33.2.1 Make Your Team Even Stronger
- 33.2.2 Sell Your Department to Senior Management
- 33.2.3 Work on Your Own Career Growth
- 33.2.4 Do Something You Enjoy

33.3 Conclusion

34 A Guide for Nontechnical Managers

34.1 The Basics
- 34.1.1 Priorities and Resources
- 34.1.2 Morale
- 34.1.3 Communication
- 34.1.4 Staff Meetings
- 34.1.5 One-Year Plans
- 34.1.6 Technical Staff and the Budget Process
- 34.1.7 Professional Development
34.2 The Icing
- 34.2.1 A Five-Year Vision
- 34.2.2 Meetings with Single Point of Contact
- 34.2.3 Understanding the Technical Staff’s Work

34.3 Conclusion

35 Hiring System Administrators

35.1 The Basics
- 35.1.1 Job Description
- 35.1.2 Skill Level
- 35.1.3 Recruiting
- 35.1.4 Timing
- 35.1.5 Team Considerations
- 35.1.6 The Interview Team
- 35.1.7 Interview Process
- 35.1.8 Technical Interviewing
- 35.1.9 Nontechnical Interviewing
- 35.1.10 Selling the Position
- 35.1.11 Employee Retention

35.2 The Icing
- 35.2.1 Get Noticed

35.3 Conclusion

36 Firing System Administrators

36.1 The Basics
- 36.1.1 Follow Your Corporate HR Policy
- 36.1.2 Have a Termination Checklist
- 36.1.3 Remove Physical Access
- 36.1.4 Remove Remote Access
- 36.1.5 Remove Service Access
- 36.1.6 Have Fewer Access Databases

36.2 The Icing
- 36.2.1 Have a Single Authentication Database
- 36.2.2 System File Changes

36.3 Conclusion
Our goal for this book has been to write down everything we’ve learned from our mentors and to add our real-world experiences. These things are beyond what the manuals and the usual system administration books teach.

This book was born from our experiences as SAs in a variety of organizations. We have started new companies. We have helped sites to grow. We have worked at small start-ups and universities, where lack of funding was an issue. We have worked at midsize and large multinationals, where mergers and spin-offs gave rise to strange challenges. We have worked at fast-paced companies that do business on the Internet and where high-availability, high-performance, and scaling issues were the norm. We’ve worked at slow-paced companies at which high tech meant cordless phones. On the surface, these are very different environments with diverse challenges; underneath, they have the same building blocks, and the same fundamental principles apply.

This book gives you a framework—a way of thinking about system administration problems—rather than narrow how-to solutions to particular problems. Given a solid framework, you can solve problems every time they appear, regardless of the operating system (OS), brand of computer, or type of environment. This book is unique because it looks at system administration from this holistic point of view; whereas most other books for SAs focus on how to maintain one particular product. With experience, however, all SAs learn that the big-picture problems and solutions are largely independent of the platform. This book will change the way you approach your work as an SA.

The principles in this book apply to all environments. The approaches described may need to be scaled up or down, depending on your environment, but the basic principles still apply. Where we felt that it might not be obvious how to implement certain concepts, we have included sections that illustrate how to apply the principles at organizations of various sizes.
This book is not about how to configure or debug a particular OS and will not tell you how to recover the shared libraries or DLLs when someone accidentally moves them. Some excellent books cover those topics, and we refer you to many of them throughout. Instead, we discuss the principles, both basic and advanced, of good system administration that we have learned through our own and others’ experiences. These principles apply to all OSs. Following them well can make your life a lot easier. If you improve the way you approach problems, the benefit will be multiplied. Get the fundamentals right, and everything else falls into place. If they aren’t done well, you will waste time repeatedly fixing the same things, and your customers1 will be unhappy because they can’t work effectively with broken machines.

Who Should Read This Book

This book is written for system administrators at all levels. It gives junior SAs insight into the bigger picture of how sites work, their roles in the organizations, and how their careers can progress. Intermediate SAs will learn how to approach more complex problems and how to improve their sites and make their jobs easier and their customers happier. Whatever level you are at, this book will help you to understand what is behind your day-to-day work, to learn the things that you can do now to save time in the future, to decide policy, to be architects and designers, to plan far into the future, to negotiate with vendors, and to interface with management. These are the things that concern senior SAs. None of them are listed in an OS’s manual. Even senior SAs and systems architects can learn from our experiences and those of our colleagues, just as we have learned from each other in writing this book. We also cover several management topics for SA trying to understand their managers, for SAs who aspire to move into management, and for SAs finding themselves doing more and more management without the benefit of the title.

Throughout the book, we use examples to illustrate our points. The examples are mostly from medium or large sites, where scale adds its own problems. Typically, the examples are generic rather than specific to a particular OS; where they are OS-specific, it is usually UNIX or Windows.

One of the strongest motivations we had for writing this book is the understanding that the problems SAs face are the same across all OSs. A new

1 Throughout the book, we refer to the end users of our systems as *customers* rather than *users*. A detailed explanation of why we do this is in Section 31.1.2.
OS that is significantly different from what we are used to can seem like a black box, a nuisance, or even a threat. However, despite the unfamiliar interface, as we get used to the new technology, we eventually realize that we face the same set of problems in deploying, scaling, and maintaining the new OS. Recognizing that fact, knowing what problems need solving, and understanding how to approach the solutions by building on experience with other OSs lets us master the new challenges more easily.

We want this book to change your life. We want you to become so successful that if you see us on the street, you’ll give us a great big hug.

Basic Principles

If we’ve learned anything over the years, it is the importance of simplicity, clarity, generality, automation, communication, and doing the basics first. These six principles are recurring themes in this book.

1. **Simplicity** means that the smallest solution that solves the entire problem is the best solution. It keeps the systems easy to understand and reduces complex component interactions that can cause debugging nightmares.

2. **Clarity** means that the solution is straightforward. It can be easily explained to someone on the project or even outside the project. Clarity makes it easier to change the system, as well as to maintain and debug it. In the system administration world, it’s better to write five lines of understandable code than one line that’s incomprehensible to anyone else.

3. **Generality** means that the solutions aren’t inherently limited to a particular case. Solutions can be reused. Using vendor-independent open standard protocols makes systems more flexible and makes it easier to link software packages together for better services.

4. **Automation** means using software to replace human effort. Automation is critical. Automation improves repeatability and scalability, is key to easing the system administration burden, and eliminates tedious repetitive tasks, giving SAs more time to improve services.

5. **Communication** between the right people can solve more problems than hardware or software can. You need to communicate well with other SAs and with your customers. It is your responsibility to initiate communication. Communication ensures that everyone is working
toward the same goals. Lack of communication leaves people concerned and annoyed. Communication also includes documentation. Documentation makes systems easier to support, maintain, and upgrade. Good communication and proper documentation also make it easier to hand off projects and maintenance when you leave or take on a new role.

6. *Basics first* means that you build the site on strong foundations by identifying and solving the basic problems before trying to attack more advanced ones. Doing the basics first makes adding advanced features considerably easier and makes services more robust. A good basic infrastructure can be repeatedly leveraged to improve the site with relatively little effort. Sometimes, we see SAs making a huge effort to solve a problem that wouldn’t exist or would be a simple enhancement if the site had a basic infrastructure in place. This book will help you identify what the basics are and show you how the other five principles apply. Each chapter looks at the basics of a given area. Get the fundamentals right, and everything else will fall into place.

These principles are universal. They apply at all levels of the system. They apply to physical networks and to computer hardware. They apply to all operating systems running at a site, all protocols used, all software, and all services provided. They apply at universities, nonprofit institutions, government sites, businesses, and Internet service sites.

What Is an SA?

If you asked six system administrators to define their jobs, you would get seven different answers. The job is difficult to define because system administrators do so many things. An SA looks after computers, networks, and the people who use them. An SA may look after hardware, operating systems, software, configurations, applications, or security. A system administrator influences how effectively other people can or do use their computers and networks.

A system administrator sometimes needs to be a business-process consultant, corporate visionary, janitor, software engineer, electrical engineer, economist, psychiatrist, mindreader, and, occasionally, a bartender.

As a result, companies call SAs different names. Sometimes, they are called network administrators, system architects, system engineers, system programmers, operators and so on.
This book is for “all of the above.”

We have a very general definition of system administrator: one who manages computer and network systems on behalf of another, such as an employer or a client. SAs are the people who make things work and keep it all running.

Explaining What System Administration Entails

It’s difficult to define system administration, but trying to explain it to a nontechnical person is even more difficult, especially if that person is your mom. Moms have the right to know how their offspring are paying their rent. A friend of Christine Hogan’s always had trouble explaining to his mother what he did for a living and ended up giving a different answer every time she asked. Therefore, she kept repeating the question every couple of months, waiting for an answer that would be meaningful to her. Then he started working for WebTV. When the product became available, he bought one for his mom. From then on, he told her that he made sure that her WebTV service was working and was as fast as possible. She was very happy that she could now show her friends something and say, “That’s what my son does!”

System Administration Matters

System administration matters because computers and networks matter. Computers are a lot more important than they were years ago. What happened?

The widespread use of the Internet, intranets, and the move to a web-centric world has redefined the way companies depend on computers. The Internet is a 24/7 operation, and sloppy operations can no longer be tolerated. Paper purchase orders can be processed daily, in batches, with no one the wiser. However, there is an expectation that the web-based system that does the process will be available all the time, from anywhere. Nightly maintenance windows have become an unheard-of luxury. That unreliable machine room power system that caused occasional but bearable problems now prevents sales from being recorded.

Management now has a more realistic view of computers. Before they had PCs on their desktops, most people’s impressions of computers were based on how they were portrayed in film: big, all-knowing, self-sufficient, miracle machines. The more people had direct contact with computers, the more realistic people’s expectations became. Now even system administration itself is portrayed in films. The 1993 classic *Jurassic Park* was the first mainstream movie to portray the key role that system administrators play in large systems.
The movie also showed how depending on one person is a disaster waiting to happen. IT is a team sport. If only Dennis Nedry had read this book.

In business, nothing is important unless the CEO feels that it is important. The CEO controls funding and sets priorities. CEOs now consider IT to be important. Email was previously for nerds; now CEOs depend on email and notice even brief outages. The massive preparations for Y2K also brought home to CEOs how dependent their organizations have become on computers, how expensive it can be to maintain them, and how quickly a purely technical issue can become a serious threat. Most people do not think that they simply “missed the bullet” during the Y2K change but that problems were avoided thanks to tireless efforts by many people. A CBS Poll shows 63 percent of Americans believe that the time and effort spent fixing potential problems was worth it. A look at the news lineups of all three major network news broadcasts from Monday, January 3, 2000, reflects the same feeling.

Previously, people did not grow up with computers and had to cautiously learn about them and their uses. Now more and more people grow up using computers, which means that they have higher expectations of them when they are in positions of power. The CEOs who were impressed by automatic payroll processing are soon to be replaced by people who grew up sending instant messages and want to know why they can’t do all their business via text messaging.

Computers matter more than ever. If computers are to work and work well, system administration matters. We matter.

Organization of This Book

This book has the following major parts:

- **Part I: Getting Started.** This is a long book, so we start with an overview of what to expect (Chapter 1) and some tips to help you find enough time to read the rest of the book (Chapter 2).
- **Part II: Foundation Elements.** Chapters 3–14 focus on the foundations of IT infrastructure, the hardware and software that everything else depends on.
- **Part III: Change Processes.** Chapters 15–21 look at how to make changes to systems, starting with fixing the smallest bug to massive reorganizations.
• Part IV: Providing Services. Chapters 22–29 offer our advice on building seven basic services, such as email, printing, storage, and web services.

• Part V: Management Practices. Chapters 30–36 provide guidance—whether or not you have “manager” in your title.

• The two appendixes provide an overview of the positive and negative roles that SAs play and a list of acronyms used in the book.

Each chapter discusses a separate topic; some topics are technical, and some are nontechnical. If one chapter doesn’t apply to you, feel free to skip it. The chapters are linked, so you may find yourself returning to a chapter that you previously thought was boring. We won’t be offended.

Each chapter has two major sections. The Basics discusses the essentials that you simply have to get right. Skipping any of these items will simply create more work for you in the future. Consider them investments that pay off in efficiency later on. The Icing deals with the cool things that you can do to be spectacular. Don’t spend your time with these things until you are done with the basics. We have tried to drive the points home through anecdotes and case studies from personal experience. We hope that this makes the advice here more “real” for you. Never trust salespeople who don’t use their own products.

What’s New in the Second Edition

We received a lot of feedback from our readers about the first edition. We spoke at conferences and computer user groups around the world. We received a lot of email. We listened. We took a lot of notes. We’ve smoothed the rough edges and filled some of the major holes.

The first edition garnered a lot of positive reviews and buzz. We were very honored. However, the passing of time made certain chapters look passé.

The first edition, in bookstores August 2001, was written mostly in 2000. Things were very different then. At the time, things were looking pretty grim as the dot-com boom had gone bust. Windows 2000 was still new, Solaris was king, and Linux was popular only with geeks. Spam was a nuisance, not an industry. Outsourcing had lost its luster and had gone from being the corporate savior to a late-night comedy punch line. Wikis were a research idea, not the basis for the world’s largest free encyclopedia. Google was neither a household name nor a verb. Web farms were rare, and “big sites” served millions of hits per day, not per hour. In fact, we didn’t have a chapter
on running web servers, because we felt that all one needed to know could
be inferred by reading the right combination of the chapters: Data Centers,
Servers, Services, and Service Monitoring. What more could people need?

My, how things have changed!

Linux is no longer considered a risky proposition, Google is on the rise,
and offshoring is the new buzzword. The rise of India and China as economic
superpowers has changed the way we think about the world. AJAX and other
Web 2.0 technologies have made the web applications exciting again.

Here’s what’s new in the book:

• Updated chapters: Every chapter has been updated and modernized and
new anecdotes added. We clarified many, many points. We’ve learned a
lot in the past five years, and all the chapters reflect this. References to
old technologies have been replaced with more relevant ones.

• New chapters:
 – Chapter 9: Documentation
 – Chapter 25: Data Storage
 – Chapter 29: Web Services

• Expanded chapters:
 – The first edition’s Appendix B, which had been missed by many read-
er s who didn’t read to the end of the book, is now Chapter 1: What
to Do When . . .
 – The first edition’s Do These First section in the front matter has ex-
 panded to become Chapter 2: Climb Out of the Hole.

• Reordered table of contents:
 – Part I: Getting Started: introductory and overview material
 – Part II: Foundation Elements: the foundations of any IT system
 – Part III: Change Processes: how to make changes from the smallest
to the biggest
 – Part IV: Providing Services: a catalog of common service offerings
 – Part V: Management Practices: organizational issues
What’s Next

Each chapter is self-contained. Feel free to jump around. However, we have carefully ordered the chapters so that they make the most sense if you read the book from start to finish. Either way, we hope that you enjoy the book. We have learned a lot and had a lot of fun writing it. Let’s begin.

Thomas A. Limoncelli
Google, Inc.
tom@limoncelli.org

Christina J. Hogan
BMW Sauber F1 Team
chogan@chogan.com

Strata R. Chalup
Virtual.Net, Inc.
strata@virtual.net

P.S. Books, like software, always have bugs. For a list of updates, along with news and notes, and even a mailing list you can join, please visit our web site: www.EverythingSysAdmin.com.
This page intentionally left blank
Acknowledgments

Acknowledgments for the First Edition

We can’t possibly thank everyone who helped us in some way or another, but that isn’t going to stop us from trying. Much of this book was inspired by Kernighan and Pike’s *The Practice of Programming* (Kernighan and Pike 1999) and John Bentley’s second edition of *Programming Pearls* (Bentley 1999).

We are grateful to Global Networking and Computing (GNAC), Synopsys, and Eircom for permitting us to use photographs of their data center facilities to illustrate real-life examples of the good practices that we talk about.

We are indebted to the following people for their helpful editing: Valerie Natale, Anne Marie Quint, Josh Simon, and Amara Willey.

The people we have met through USENIX and SAGE and the LISA conferences have been major influences in our lives and careers. We would not be qualified to write this book if we hadn’t met the people we did and learned so much from them.

Dozens of people helped us as we wrote this book—some by supplying anecdotes, some by reviewing parts of or the entire book, others by mentoring us during our careers. The only fair way to thank them all is alphabetically and to apologize in advance to anyone that we left out: Rajeev Agrawala, Al Aho, Jeff Allen, Eric Anderson, Ann Benninger, Eric Berglund, Melissa Binde, Steven Branigan, Sheila Brown-Klinger, Brent Chapman, Bill Cheswick, Lee Damon, Tina Darmohray, Bach Thuoc (Daisy) Davis, R. Drew Davis, Ingo Dean, Arnold de Leon, Jim Dennis, Barbara Dijker, Viktor Dukhovni, Chelle-Marie Ehlers, Michael Erlinger, Paul Evans, Rémy Evard, Lookman Fazal, Robert Fulmer, Carson Gaspar, Paul Glick, David “Zonker” Harris, Katherine “Cappy” Harrison, Jim Hickstein, Sandra Henry-Stocker, Mark Horton, Bill “Whump” Humphries, Tim Hunter, Jeff Jensen, Jennifer Joy, Alan Judge, Christophe Kalt, Scott C. Kennedy, Brian Kernighan, Jim Lambert, Eliot Lear,

Thanks also to Lumeta Corporation and Lucent Technologies/Bell Labs for their support in writing this book.

Last but not least, the people at Addison-Wesley made this a particularly great experience for us. In particular, our gratitude extends to Karen Gettman, Mary Hart, and Emily Frey.

Acknowledgments for the Second Edition

In addition to everyone who helped us with the first edition, the second edition could not have happened without the help and support of Lee Damon, Nathan Dietsch, Benjamin Feen, Stephen Harris, Christine E. Polk, Glenn E. Sieb, Juhani Tali, and many people at the League of Professional System Administrators (LOPSA). Special 73s and 88s to Mike Chalup for love, loyalty, and support, and especially for the mountains of laundry done and oceans of dishes washed so Strata could write. And many cuddles and kisses for baby Joanna Lear for her patience.

Thanks to Lumeta Corporation for giving us permission to publish a second edition.

Thanks to Wingfoot for letting us use its server for our bug-tracking database.

Thanks to Anne Marie Quint for data entry, copyediting, and a lot of great suggestions.

And last but not least, a big heaping bowl of “couldn’t have done it without you” to Mark Taub, Catherine Nolan, Raina Chrobak, and Lara Wysong at Addison-Wesley.
About the Authors

Tom, Christine, and Strata know one another through attending USENIX conferences and being actively involved in the system administration community. It was at one of these conferences that Tom and Christine first spoke about collaborating on this book. Strata and Christine were coworkers at Synopsys and GNAC, and coauthored Chalup, Hogan et al. (1998).

Thomas A. Limoncelli

Tom is an internationally recognized author and speaker on system administration, time management, and grass-roots political organizing techniques. A system administrator since 1988, he has worked for small and large companies, including Google, Cibernet Corp, Dean for America, Lumeta, AT&T, Lucent/Bell Labs, and Mentor Graphics. At Google, he is involved in improving how IT infrastructure is deployed at new offices. When AT&T trivested into AT&T, Lucent, and NCR, Tom led the team that split the Bell Labs computing and network infrastructure into the three new companies.

In addition to the first and second editions of this book, his published works include Time Management for System Administration (2005), and papers on security, networking, project management, and personal career management. He travels to conferences and user groups frequently, often teaching tutorials, facilitating workshops, presenting papers, or giving invited talks and keynote speeches.

Outside of work, Tom is a grassroots civil-rights activist who has received awards and recognition on both state and national levels. Tom’s first published paper (Limoncelli 1997) extolled the lessons SAs can learn from activists. Tom doesn’t see much difference between his work and activism careers—both are about helping people.

He holds a B.A. in computer science from Drew University. He lives in Bloomfield, New Jersey.
For their community involvement, Tom and Christine shared the 2005 Outstanding Achievement Award from USENIX/SAGE.

Christina J. Hogan

Christine’s system administration career started at the Department of Mathematics in Trinity College, Dublin, where she worked for almost 5 years. After that, she went in search of sunshine and moved to Sicily, working for a year in a research company, and followed that with 5 years in California.

She was the security architect at Synopsys for a couple of years before joining some friends at GNAC a few months after it was founded. While there, she worked with start-ups, e-commerce sites, biotech companies, and large multinational hardware and software companies. On the technical side, she focused on security and networking, working with customers and helping GNAC establish its data center and Internet connectivity. She also became involved with project management, customer management, and people management. After almost 3 years at GNAC, she went out on her own as an independent security consultant, working primarily at e-commerce sites.

Since then, she has become a mother and made a career change: she now works as an aerodynamicist for the BMW Sauber Formula 1 Racing Team. She has a Ph.D. in aeronautical engineering from Imperial College, London; a B.A. in mathematics and an M.Sc. in computer science from Trinity College, Dublin; and a Diploma in legal studies from the Dublin Institute of Technology.

Strata R. Chalup

Strata is the owner and senior consultant of Virtual.Net, Inc., a strategic and best-practices IT consulting firm specializing in helping small to midsize firms scale their IT practices as they grow. During the first dot-com boom, Strata architected scalable infrastructures and managed some of the teams that built them for such projects as talkway.net, the Palm VII, and mac.com. Founded as a sole proprietorship in 1993, Virtual.Net was incorporated in 2005. Clients have included such firms as Apple, Sun, Cimflex Teknowledge, Cisco, McAfee, and Micronas USA.

Strata joined the computing world on TOPS-20 on DEC mainframes in 1981, then got well and truly sidetracked onto administering UNIX by 1983, with Ultrix on the VAX 11-780, Unisys on Motorola 68K micro systems, and a dash of Minix on Intel thrown in for good measure. She has the
unusual perspective of someone who has been both a user and an administrator of Internet services since 1981 and has seen much of what we consider the modern Net evolve, sometimes from a front-row seat. An early adopter and connector, she was involved with the early National Telecommunications Infrastructure Administration (NTIA) hearings and grant reviews from 1993–1995 and demonstrated the emerging possibilities of the Internet in 1994, creating NTIA’s groundbreaking virtual conference. A committed futurist, Strata avidly tracks new technologies for collaboration and leverages them for IT and management.

Always a New Englander at heart, but marooned in California with a snow-hating spouse, Strata is an active gardener, reader of science fiction/fantasy, and emergency services volunteer in amateur radio (KF6NBZ). She is SCUBA-certified but mostly free dives and snorkles. Strata has spent a couple of years as a technomad crossing the country by RV, first in 1990 and again in 2002, consulting from the road. She has made a major hobby of studying energy-efficient building construction and design, including taking owner-builder classes, and really did grow up on a goat farm.

Unlike her illustrious coauthors, she is an unrepentant college dropout, having left MIT during her sophomore year. She returned to manage the Center for Cognitive Science for several years, and to consult with the EECS Computing Services group, including a year as postmaster@mit-eddie, before heading to Silicon Valley.
In this chapter, we pull together the various elements from the rest of the book to provide an overview of how they can be used to deal with everyday situations or to answer common questions system administrators (SAs) and managers often have.

1.1 Building a Site from Scratch

- Think about the organizational structure you need—Chapter 30.
- Check in with management on the business priorities that will drive implementation priorities.
- Plan your namespaces carefully—Chapter 8.
- Build a rock-solid data center—Chapter 6.
- Build a rock-solid network designed to grow—Chapter 7.
- Build services that will scale—Chapter 5.
- Build a software depot, or at least plan a small directory hierarchy that can grow into a software depot—Chapter 28.
- Establish your initial core application services:
 - Authentication and authorization—Section 3.1.3
 - Desktop life-cycle management—Chapter 3
 - Email—Chapter 23
 - File service, backups—Chapter 26
 - Network configuration—Section 3.1.3
 - Printing—Chapter 24
 - Remote access—Chapter 27
1.2 Growing a Small Site

- Provide a helpdesk—Chapter 13.
- Establish checklists for new hires, new desktops/laptops, and new servers—Section 3.1.1.5.
- Consider the benefits of a network operations center (NOC) dedicated to monitoring and coordinating network operations—Chapter 22.
- Think about your organization and whom you need to hire, and provide service statistics showing open and resolved problems—Chapter 30.
- Monitor services for both capacity and availability so that you can predict when to scale them—Chapter 22.
- Be ready for an influx of new computers, employees, and SAs—See Sections 1.23, 1.24, and 1.25.

1.3 Going Global

- Design your wide area network (WAN) architecture—Chapter 7.
- Follow three cardinal rules: scale, scale, and scale.
- Standardize server times on Greenwich Mean Time (GMT) to maximize log analysis capabilities.
- Make sure that your helpdesk really is 24/7. Look at ways to leverage SAs in other time zones—Chapter 13.
- Architect services to take account of long-distance links—usually lower bandwidth and less reliable—Chapter 5.
- Qualify applications for use over high-latency links—Section 5.1.2.
- Ensure that your security and permissions structures are still adequate under global operations.

1.4 Replacing Services

- Be conscious of the process—Chapter 18.
- Factor in both network dependencies and service dependencies in transition planning.
- Manage your Dynamic Host Configuration Protocol (DHCP) lease times to aid the transition—Section 3.1.4.1.
1.6 Moving to/Opening a New Building

- Don’t hard-code server names into configurations, instead, hard-code aliases that move with the service—Section 5.1.6.
- Manage your DNS time-to-live (TTL) values to switch to new servers—Section 19.2.1.

1.5 Moving a Data Center

- Schedule windows unless everything is fully redundant and you can move first half of a redundant pair and then the other—Chapter 20.
- Make sure that the new data center is properly designed for both current use and future expansion—Chapter 6.
- Back up every file system of any machine before it is moved.
- Perform a fire drill on your data backup system—Section 26.2.1.
- Develop test cases before you move, and test, test, test everything after the move is complete—Chapter 18.
- Label every cable before it is disconnected—Section 6.1.7.
- Establish minimal services—redundant hardware—at a new location with new equipment.
- Test the new environment—networking, power, uninterruptable power supply (UPS), heating, ventilation, air conditioning (HVAC), and so on—before the move begins—Chapter 6, especially Section 6.1.4.
- Identify a small group of customers to test business operations with the newly moved minimal services, then test sample scenarios before moving everything else.
- Run cooling for 48–72 hours, and then replace all filters before occupying the space.
- Perform a dress rehearsal—Section 18.2.5.

1.6 Moving to/Opening a New Building

- Four weeks or more in advance, get access to the new space to build the infrastructure.
- Use radios or walkie-talkies for communicating inside the building—Chapter 6 and Section 20.1.7.3.
• Use a personal digital assistant (PDA) or nonelectronic organizer—Section 32.1.2.

• Order WAN and Internet service provider (ISP) network connections 2–3 months in advance.

• Communicate to the powers that be that WAN and ISP connections will take months to order and must be done soon.

• Prewire the offices with network jacks during, not after, construction—Section 7.1.4.

• Work with a moving company that can help plan the move.

• Designate one person to keep and maintain a master list of everyone who is moving and his or her new office number, cubicle designation, or other location.

• Pick a day on which to freeze the master list. Give copies of the frozen list to the moving company, use the list for printing labels, and so on. If someone’s location is to be changed after this date, don’t try to chase down and update all the list copies that have been distributed. Move the person as the master list dictates, and schedule a second move for that person after the main move.

• Give each person a sheet of 12 labels preprinted with his or her name and new location for labeling boxes, bags, and personal computer (PC). (If you don’t want to do this, at least give people specific instructions as to what to write on each box so it reaches the right destination.)

• Give each person a plastic bag big enough for all the PC cables. Technical people can decable and reconnect their PCs on arrival; technicians can do so for nontechnical people.

• Always order more boxes than you think you’ll be moving.

• Don’t use cardboard boxes; instead, use plastic crates that can be reused.

1.7 Handling a High Rate of Office Moves

• Work with facilities to allocate only one move day each week. Develop a routine around this schedule.

• Establish a procedure and a form that will get you all the information you need about each person’s equipment, number of network and telephone connections, and special needs. Have SAs check out nonstandard equipment in advance and make notes.
• Connect and test network connections ahead of time.
• Have customers power down their machines before the move and put all cables, mice, keyboards, and other bits that might get lost into a marked box.
• Brainstorm all the ways that some of the work can be done by the people moving. Be careful to assess their skill level; maybe certain people shouldn’t do anything themselves.
• Have a moving company move the equipment, and have a designated SA move team do the unpacking, reconnecting, and testing. Take care in selecting the moving company.
• Train the helpdesk to check with customers who report problems to see whether they have just moved and didn’t have the problem before the move; then pass those requests to the move team rather than the usual escalation path.
• Formalize the process, limiting it to one day a week, doing the prep work, and having a move team makes it go more smoothly with less downtime for the customers and fewer move-related problems for the SAs to check out.

1.8 Assessing a Site (Due Diligence)

• Use the chapters and subheadings in this book to create a preliminary list of areas to investigate, taking the items in the Basics section as a rough baseline for a well-run site.
• Reassure existing SA staff and management that you are here not to pass judgment but to discover how this site works, in order to understand its similarities to and differences from sites with which you are already familiar. This is key in both consulting assignments and in potential acquisition due-diligence assessments.
• Have a private document repository, such as a wiki, for your team. The amount of information you will collect will overwhelm your ability to remember it: document, document, document.
• Create or request physical-equipment lists of workstations and servers, as well as network diagrams and service workflows. The goal is to generate multiple views of the infrastructure.
• Review domains of authentication, and pay attention to compartmentalization and security of information.
• Analyze the ticket-system statistics by opened-to-close ratios month to month. Watch for a growing gap between total opened and closed tickets, indicating an overloaded staff or an infrastructure system with chronic difficulties.

1.9 Dealing with Mergers and Acquisitions

• If mergers and acquisitions will be frequent, make arrangements to get information as early as possible, even if this means that designated people will have information that prevents them from being able to trade stock for certain windows of time.

• Some mergers require instant connectivity to the new business unit. Others are forbidden from having full connectivity for a month or so until certain papers are signed. In the first case, set expectations that this will not be possible without some prior warning (see previous item). In the latter case, you have some breathing room, but act quickly!

• If you are the chief executive officer (CEO), you should involve your chief information officer (CIO) before the merger is even announced.

• If you are an SA, try to find out who at the other company has the authority to make the big decisions.

• Establish clear, final decision processes.

• Have one designated go-to lead per company.

• Start a dialogue with the SAs at the other company. Understand their support structure, service levels, network architecture, security model, and policies. Determine what the new model is going to look like.

• Have at least one initial face-to-face meeting with the SAs at the other company. It’s easier to get angry at someone you haven’t met.

• Move on to technical details. Are there namespace conflicts? If so, determine how are you going to resolve them—Chapter 8.

• Adopt the best processes of the two companies; don’t blindly select the processes of the bigger company.

• Be sensitive to cultural differences between the two groups. Diverse opinions can be a good thing if people can learn to respect one another—Sections 32.2.2.2 and 35.1.5.

• Make sure that both SA teams have a high-level overview diagram of both networks, as well as a detailed map of each site’s local area network (LAN)—Chapter 7.
• Determine what the new network architecture should look like—Chapter 7. How will the two networks be connected? Are some remote offices likely to merge? What does the new security model or security perimeter look like?—Chapter 11.

• Ask senior management about corporate-identity issues, such as account names, email address format, and domain name. Do the corporate identities need to merge or stay separate? What implications does this have on the email infrastructure and Internet-facing services?

• Learn whether any customers or business partners of either company will be sensitive to the merger and/or want their intellectual property protected from the other company—Chapter 7.

• Compare the security policies, mentioned in Chapter 11—looking in particular for differences in privacy policy, security policy, and how they interconnect with business partners.

• Check router tables of both companies, and verify that the Internet Protocol (IP) address space in use doesn’t overlap. (This is particularly a problem if you both use RFC 1918 address space [Lear et al. 1994, Rekhler et al. 1996].)

• Consider putting a firewall between the two companies until both have compatible security policies—Chapter 11.

1.10 Coping with Frequent Machine Crashes

• Establish a temporary workaround, and communicate to customers that it is temporary.

• Find the real cause—Chapter 15.

• Fix the real cause, not the symptoms—Chapter 16.

• If the root cause is hardware, buy better hardware—Chapter 4.

• If the root cause is environmental, provide a better physical environment for your hardware—Chapter 6.

• Replace the system—Chapter 18.

• Give your SAs better training on diagnostic tools—Chapter 15.

• Get production systems back into production quickly. Don’t play diagnostic games on production systems. That’s what labs and preannounced maintenance windows—usually weekends or late nights—are for.
1.11 Surviving a Major Outage or Work Stoppage

- Consider modeling your outage response on the Incident Command System (ICS). This ad hoc emergency response system has been refined over many years by public safety departments to create a flexible response to adverse situations. Defining escalation procedures before an issue arises is the best strategy.

- Notify customers that you are aware of the problem on the communication channels they would use to contact you: intranet help desk “outages” section, outgoing message for SA phone, and so on.

- Form a “tiger team” of SAs, management, and key stakeholders; have a brief 15- to 30-minute meeting to establish the specific goals of a solution, such as “get developers working again,” “restore customer access to support site” and so on. Make sure that you are working toward a goal, not simply replicating functionality whose value is non-specific.

- Establish the costs of a workaround or fallback position versus downtime owing to the problem, and let the businesspeople and stakeholders determine how much time is worth spending on attempting a fix. If information is insufficient to estimate this, do not end the meeting without setting the time for the next attempt.

- Spend no more than an hour gathering information. Then hold a team meeting to present management and key stakeholders with options. The team should do hourly updates of the passive notification message with status.

- If the team chooses fix or workaround attempts, specify an order in which fixes are to be applied, and get assistance from stakeholders on verifying that the each procedure did or did not work. Document this, even in brief, to prevent duplication of effort if you are still working on the issue hours or days from now.

- Implement fix or workaround attempts in small blocks of two or three, taking no more than an hour to implement total. Collect error message or log data that may be relevant, and report on it in the next meeting.

- Don’t allow a team member, even a highly skilled one, to go off to try to pull a rabbit out of his or her hat. Since you can’t predict the length of the outage, you must apply a strict process in order to keep everyone in the loop.
Appoint a team member who will ensure that meals are brought in, notes taken, and people gently but firmly disengaged from the problem if they become too tired or upset to work.

1.12 What Tools Should Every SA Team Member Have?

- A laptop with network diagnostic tools, such as network sniffer, DHCP client in verbose mode, encrypted TELNET/SSH client, TFTP server, and so on, as well as both wired and wireless Ethernet.
- Terminal emulator software and a serial cable. The laptop can be an emergency serial console if the console server dies or the data center console breaks or a rogue server outside the data center needs console access.
- A spare PC or server for experimenting with new configurations—Section 19.2.1.
- A portable label printer—Section 6.1.12.
- A PDA or nonelectronic organizer—Section 32.1.2.
- A set of screwdrivers in all the sizes computers use.
- A cable tester.
- A pair of splicing scissors.
- Access to patch cables of various lengths. Include one or two 100-foot (30-meter) cables. These come in handy in the strangest emergencies.
- A small digital camera. (Sending a snapshot to technical support can be useful for deciphering strange console messages, identifying model numbers, and proving damage.)
- A portable (USB)/firewire hard drive.
- Radios or walkie-talkies for communicating inside the building—Chapter 6 and Section 20.1.7.3.
- A cabinet stocked with tools and spare parts—Section 6.1.12.
- High-speed connectivity to team members’ home and the necessary tools for telecommuting.
- A library of the standard reference books for the technologies the team members are involved in—Sections 33.1.1, 34.1.7, and bibliography.
- Membership to professional societies such as USENIX and LOPSA—Section 32.1.4.
• A variety of headache medicines. It’s really difficult to solve big problems when you have a headache.
• Printed, framed, copies of the SA Code of Ethics—Section 12.1.2.
• Shelf-stable emergency-only snacky bits.
• A copy of this book!

1.13 Ensuring the Return of Tools

• Make it easier to return tools: Affix each with a label that reads, “Return to [your name here] when done.”
• When someone borrows something, open a helpdesk ticket that is closed only when the item is returned.
• Accept that tools won’t be returned. Why stress out about things you can’t control?
• Create a team toolbox and rotate responsibility for keeping it up to date and tracking down loaners.
• Keep a stash of PC screwdriver kits. When asked to borrow a single screw driver, smile and reply, “No, but you can have this kit as a gift.” Don’t accept it back.
• Don’t let a software person have a screwdriver. Politely find out what the person is trying to do, and do it. This is faster than fixing the person’s mistakes.
• If you are a software person, use a screwdriver only with adult super-vision.
• Keep a few inexpensive eyeglass repair kits in your spares area.

1.14 Why Document Systems and Procedures?

• Good documentation describes the why and the how to.
• When you do things right and they “just work,” even you will have forgotten the details when they break or need upgrading.
• You get to go on vacation—Section 32.2.2.
• You get to move on to more interesting projects rather than being stuck doing the same stuff because you are the only one who knows how it works—Section 22.2.1.
• You will get a reputation as being a real asset to the company: raises, bonuses, and promotions, or at least fame and fortune.
• You will save yourself a mad scramble to gather information when investors or auditors demand it on short notice.

1.15 Why Document Policies?

• To comply with federal health and business regulations.
• To avoid appearing arbitrary, “making it up as you go along,” and senior management doing things that would get other employees into trouble.
• Because other people can’t read your mind—Section A.1.17.
• To communicate expectations for your own team, not only your customers—Section 11.1.2 and Chapter 12.
• To avoid being unethical by enforcing a policy that isn’t communicated to the people that it governs—Section 12.2.1.
• To avoid punishing people for not reading your mind—Section A.1.17.
• To offer the organization a chance to change their ways or push back in a constructive manner.

1.16 Identifying the Fundamental Problems in the Environment

• Look at the Basics section of each chapter.
• Survey the management chain that funds you—Chapter 30.
• Survey two or three customers who use your services—Section 26.2.2.
• Survey all customers.
• Identify what kinds of problems consume your time the most—Section 26.1.3.
• Ask the helpdesk employees what problems they see the most—Sections 15.1.6 and 25.1.4.
• Ask the people configuring the devices in the field what problems they see the most and what customers complain about the most.
• Determine whether your architecture is simple enough to draw by hand on a whiteboard; if its not, maybe it’s too complicated to manage—Section 18.1.2.
1.17 Getting More Money for Projects

- Establish the need in the minds of your managers.
- Find out what management wants, and communicate how the projects you need money for will serve that goal.
- Become part of the budget process—Sections 33.1.1.12 and 34.1.6.
- Do more with less: Make sure that your staff has good time-management skills—Section 32.1.2.
- Manage your boss better—Section 32.2.3.
- Learn how your management communicates with you, and communicate in a compatible way—Chapters 33 and 34.
- Don’t overwork or manage by crisis. Show management the “real cost” of policies and decisions.

1.18 Getting Projects Done

- Usually, projects don’t get done because the SAs are required to put out new fires while trying to do projects. Solve this problem first.
- Get a management sponsor. Is the project something that the business needs, or is it something the SAs want to implement on their own? If the former, use the sponsor to gather resources and deflect conflicting demands. If a project isn’t tied to true business needs, it is doubtful whether it should succeed.
- Make sure that the SAs have the resources to succeed. (Don’t guess; ask them!)
- Hold your staff accountable for meeting milestones and deadlines.
- Communicate priorities to the SAs; move resources to high-impact projects—Section 33.1.4.2.
- Make sure that the people involved have good time-management skills—Section 32.1.2.
- Designate project time when some staff will work on nothing but projects, and the remaining staff will shield them from interruptions—Section 31.1.3.
- Reduce the number of projects.
- Don’t spend time on the projects that don’t matter—Figure 33.1.
- Prioritize → Focus → Win.
• Use an external consultant with direct experience in that area to achieve the highest-impact projects—Sections 21.2.2, 27.1.5, and 30.1.8.
• Hire junior or clerical staff to take on mundane tasks, such as PC desktop support, daily backups, and so on, so that SAs have more time to achieve the highest-impact projects.
• Hire short-term contract programmers to write code to spec.

1.19 Keeping Customers Happy

• Make sure that you make a good impression on new customers—Section 31.1.1.
• Make sure that you communicate more with existing customers—Section 31.2.4 and Chapter 31.
• Go to lunch with them and listen—Section 31.2.7.
• Create a System Status web page—Section 31.2.1.
• Create a local Enterprise Portal for your site—Section 31.2.1.
• Terminate the worst performers, especially if their mistakes create more work for others—See Chapter 36.
• See whether a specific customer or customer group generates an unusual proportion of complaints or tickets compared to the norm. If so, arrange a meeting with the customer’s manager and your manager to acknowledge the situation. Follow this with a solution-oriented meeting with the customer’s manager and the stakeholders that manager appoints. Work out priorities and an action plan to address the issues.

1.20 Keeping Management Happy

• Meet with the managers in person to listen to the complaints: don’t try to do it via email.
• Find out your manager’s priorities, and adopt them as your own—Section 32.2.3.
• Be sure that you know how management communicates with you, and communicate in a compatible way—Chapters 33 and 34.
• Make sure that the people in specialized roles understand their roles—Appendix A.
1.21 Keeping SAs Happy

- Make sure that their direct manager knows how to manage them well—Chapter 33.
- Make sure that executive management supports the management of SAs—Chapter 34.
- Make sure that the SAs are taking care of themselves—Chapter 32.
- Make sure that the SAs are in roles that they want and understand—Appendix A.
- If SAs are overloaded, make sure that they manage their time well—Section 32.1.2; or hire more people and divide the work—Chapter 35.
- Fire any SAs who are fomenting discontent—Chapter 36.
- Make sure that all new hires have positive dispositions—Section 13.1.2.

1.22 Keeping Systems from Being Too Slow

- Define slow.
- Use your monitoring systems to establish where the bottlenecks are—Chapter 22.
- Look at performance-tuning information that is specific to each architecture so that you know what to monitor and how to do it.
- Recommend a solution based on your findings.
- Know what the real problem is before you try to fix it—Chapter 15.
- Make sure that you understand the difference between latency and bandwidth—Section 5.1.2.

1.23 Coping with a Big Influx of Computers

- Make sure that you understand the economic difference between desktop and server hardware. Educate your boss or chief financial officer (CFO) about the difference or they will balk at high-priced servers—Section 4.1.3.
- Make sure that you understand the physical differences between desktop and server hardware—Section 4.1.1.
- Establish a small number of standard hardware configurations, and purchase them in bulk—Section 3.2.3.
• Make sure that you have automated host installation, configuration, and updates—Chapter 3.

• Check power, space, and heating, ventilating, and air conditioning (HVAC) capacity for your data center—Chapter 6.

• Ensure that even small computer rooms or closets have a cooling unit—Section 2.1.5.5.

• If new machines are for new employees, see Section 1.24.

1.24 Coping with a Big Influx of New Users

• Make sure that the hiring process includes ensuring that new computers and accounts are set up before the new hires arrive—Section 31.1.1.

• Have a stockpile of standard desktops preconfigured and ready to deploy.

• Have automated host installation, configuration, and updates—Chapter 3.

• Have proper new-user documentation and adequate staff to do orientation—Section 31.1.1.

• Make sure that every computer has at least one simple game and a CD/DVD player. It makes new computer users feel good about their machines.

• Ensure that the building can withstand the increase in power utilization.

• If dozens of people are starting each week, encourage the human resources department to have them all start on a particular day of the week, such as Mondays, so that all tasks related to information technology (IT) can be done in batches and therefore assembly-lined.

1.25 Coping with a Big Influx of New SAs

• Assign mentors to junior SAs—Sections 33.1.1.9 and 35.1.5.

• Have an orientation for each SA level to make sure the new hires understand the key processes and policies; make sure that it is clear whom they should go to for help.

• Have documentation, especially a wiki—Chapter 9.

• Purchase proper reference books, both technical and nontechnical—time management, communication, and people skills—Chapter 32.

• Bulk-order the items in Section 1.12.
1.26 Handling a High SA Team Attrition Rate

- When an SA leaves, completely lock them out of all systems—Chapter 36.
- Be sure that the human resources department performs exit interviews.
- Make the group aware that you are willing to listen to complaints in private.
- Have an “upward feedback session” at which your staff reviews your performance.
- Have an anonymous “upward feedback session” so that your staff can review your performance.
- Determine what you, as a manager, might be doing wrong—Chapters 33 and 34.
- Do things that increase morale: Have the team design and produce a T-shirt together—a dozen dollars spent on T-shirts can induce a morale improvement that thousands of dollars in raises can't.
- Encourage everyone in the group to read Chapter 32.
- If everyone is leaving because of one bad apple, get rid of him or her.

1.27 Handling a High User-Base Attrition Rate

- Make sure that management signals the SA team to disable accounts, remote access, and so on, in a timely manner—Chapter 36.
- Make sure that exiting employees return all company-owned equipment and software they have at home.
- Take measures against theft as people leave.
- Take measures against theft of intellectual property, possibly restricting remote access.

1.28 Being New to a Group

- Before you comment, ask questions to make sure that you understand the situation.
- Meet all your coworkers one on one.
- Meet with customers both informally and formally—Chapter 31.
- Be sure to make a good first impression, especially with customers—Section 31.1.1.
• Give credence to your coworkers when they tell you what the problems in the group are. Don’t reject them out of hand.
• Don’t blindly believe your coworkers when they tell you what the problems in the group are. Verify them first.

1.29 Being the New Manager of a Group

• That new system or conversion that’s about to go live? Stop it until you’ve verified that it meets your high expectations. Don’t let your predecessor’s incompetence become your first big mistake.
• Meet all your employees one on one. Ask them what they do, what role they would like to be in, and where they see themselves in a year. Ask them how they feel you can work with them best. The purpose of this meeting is to listen to them, not to talk.
• Establish weekly group staff meetings.
• Meet your manager and your peers one on one to get their views.
• From day one, show the team members that you have faith in them all—Chapter 33.
• Meet with customers informally and formally—Chapter 31.
• Ask everyone to tell you what the problems facing the group are, listen carefully to everyone, and then look at the evidence and make up your own mind.
• Before you comment, ask questions to make sure that you understand the situation.
• If you’ve been hired to reform an underperforming group, postpone major high-risk projects, such as replacing a global email system, until you’ve reformed/replaced the team.

1.30 Looking for a New Job

• Determine why you are looking for a new job; understand your motivation.
• Determine what role you want to play in the new group—Appendix A.
• Determine which kind of organization you enjoy working in the most—Section 30.3.
• Meet as many of your potential future coworkers as possible to find out what the group is like—Chapter 35.

• Never accept the first offer right off the bat. The first offer is just a proposal. Negotiate! But remember that there usually isn’t a third offer—Section 32.2.1.5.

• Negotiate in writing the things that are important to you: conferences, training, vacation.

• Don’t work for a company that doesn’t let you interview your future boss.

• If someone says, “You don’t need to have a lawyer review this contract” and isn’t joking, you should have a lawyer review that contract. We’re not joking.

1.31 Hiring Many New SAs Quickly

• Review the advice in Chapter 35.

• Use as many recruiting methods as possible: Organize fun events at the appropriate conferences, use online boards, sponsor local user groups, hire famous people to speak at your company and invite the public, get referrals from SAs and customers—Chapter 35.

• Make sure that you have a good recruiter and human resources contact who knows what a good SA is.

• Determine how many SAs of what level and what skills you need. Use the SAGE level classifications—Section 35.1.2.

• Move quickly when you find a good candidate.

• After you’ve hired one person, refine the other job descriptions to fill in the gaps—Section 30.1.4.

1.32 Increasing Total System Reliability

• Figure out what your target is and how far you are from it.

• Set up monitoring to pinpoint uptime problems—Chapter 22.

• Deploy end-to-end monitoring for key applications—Section 24.2.4.

• Reduce dependencies. Nothing in the data center should rely on anything outside the data center—Sections 5.1.7 and 20.1.7.1.
1.33 Decreasing Costs

- Decrease costs by centralizing some services—Chapter 21.
- Review your maintenance contracts. Are you still paying for machines that are no longer critical servers? Are you paying high maintenance on old equipment that would be cheaper to replace?—Section 4.1.4.
- Reduce running costs, such as remote access, through outsourcing—Chapter 27 and Section 21.2.2.
- Determine whether you can reduce the support burden through standards and/or automation?—Chapter 3.
- Try to reduce support overhead through applications training for customers or better documentation.
- Try to distribute costs more directly to the groups that incur them, such as maintenance charges, remote access charges, special hardware, high-bandwidth use of wide-area links—Section 30.1.2.
- Determine whether people are not paying for the services you provide. If people aren’t willing to pay for the service, it isn’t important.
- Take control of the ordering process and inventory for incidental equipment such as replacement mice, minihubs, and similar. Do not let customers simply take what they need or direct your staff to order it.

1.34 Adding Features

- Interview customers to understand their needs and to prioritize features.
- Know the requirements—Chapter 5.
- Make sure that you maintain at least existing service and availability levels.
- If altering an existing service, have a back-out plan.
- Look into building an entirely new system and cutting over rather than altering the running one.
- If it’s a really big infrastructure change, consider a maintenance window—Chapter 20.
- Decentralize so that local features can be catered to.
- Test! Test! Test!
- Document! Document! Document!
1.35 Stopping the Hurt When Doing “This”

- Don’t do “that.”
- Automate “that.”

If It Hurts, Don’t Do It

A small field office of a multinational company had a visit from a new SA supporting the international field offices. The local person who performed the SA tasks when there was no SA had told him over the telephone that the network was “painful.” He assumed that she meant painfully slow until he got there and got a powerful electrical shock from the 10Base-2 network. He closed the office and sent everyone home immediately while he called an electrician to trace and fix the problem.

1.36 Building Customer Confidence

- Improve follow-through—Section 32.1.1.
- Focus on projects that matter to the customers and will have the biggest impact—Figure 33.1.
- Until you have enough time to complete the ones you need to, discard projects that you haven’t been able to achieve.
- Communicate more—Chapter 31.
- Go to lunch with customers and listen—Section 31.2.7.
- Create a good first impression on the people entering your organization—Section 31.1.1.

1.37 Building the Team’s Self-Confidence

- Start with a few simple, achievable projects; only then should you involve the team in more difficult projects.
- Ask team members what training they feel they need, and provide it.
- Coach the team. Get coaching on how to coach!

1.38 Improving the Team’s Follow-Through

- Find out why team members are not following through.
- Make sure that your trouble-ticket system assists them in tracking customer requests and that it isn’t simply for tracking short-term requests.
Be sure that the system isn’t so cumbersome that people avoid using it—Section 13.1.10.

- Encourage team members to have a single place to list all their requests—Section 32.1.1.
- Discourage team members from trying to keep to-do lists in their heads—Section 32.1.1.
- Purchase PDAs for all team members who want them and promise to use them—Section 32.1.1.

1.39 Handling an Unethical or Worrisome Request

- See Section 12.2.2.
- Log all requests, events, and actions.
- Get the request in writing or email. Try a a soft approach, such as “Hey, could you email me exactly what you want, and I’ll look at it after lunch?” Someone who knows that the request is unethical will resist leaving a trail.
- Check for a written policy about the situation—Chapter 12.
- If there is no written policy, absolutely get the request in writing.
- Consult with your manager before doing anything.
- If you have any questions about the request, escalate it to appropriate management.

1.40 My Dishwasher Leaves Spots on My Glasses

- Spots are usually the result of not using hot enough water rather than finding a special soap or even using a special cycle on the machine.
- Check for problems with the hot water going to your dishwasher.
- Have the temperature of your hot water adjusted.
- Before starting the dishwasher, run the water in the adjacent sink until it’s hot.

1.41 Protecting Your Job

- Look at your most recent performance review and improve in the areas that “need improvement”—whether or not you think that you have those failings.
• Get more training in areas in which your performance review has indicated you need improvement.
• Be the best SA in the group: Have positive visibility—Chapter 31.
• Document everything—policies and technical and configuration information and procedures.
• Have good follow-through.
• Help everyone as much as possible.
• Be a good mentor.
• Use your time effectively—Section 32.1.2.
• Automate as much as you can—Chapter 3 and Sections 16.2, 26.1.9, and 31.1.4.3.
• Always keep the customers’ needs in mind—Sections 31.1.3 and 32.2.3.
• Don’t speak ill of coworkers. It just makes you look bad. Silence is golden. A closed mouth gathers no feet.

1.42 Getting More Training
• Go to training conferences like LISA.
• Attend vendor training to gain specific knowledge and to get the inside story on products.
• Find a mentor.
• Attend local SA group meetings
• Present at local SA group meetings. You learn a lot by teaching.
• Find the online forums or communities for items you need training on, read the archives, and participate in the forums.

1.43 Setting Your Priorities
• Depending on what stage you are in, certain infrastructure issues should be happening.
 – Basic services, such as email, printing, remote access, and security, need to be there from the outset.
 – Automation of common tasks, such as machine installations, configuration, maintenance, and account creation and deletion, should happen early; so should basic policies.
 – Documentation should be written as things are implemented, or it will never happen.
1.45 Avoiding Stress

- Build a software depot and deployment system.
- Monitor before you think about improvements and scaling, which are issues for a more mature site.
- Think about setting up a helpdesk—Section 13.1.1.

• Get more in touch with your customers to find out what their priorities are.
• Improve your trouble-ticket system—Chapter 13.
• Review the top 10 percent of the ticket generators—Section 13.2.1.
• Adopt better revision control of configuration files—Chapter 17, particularly Section 17.1.5.1.

1.44 Getting All the Work Done

• Climb out of the hole—Chapter 2.
• Improve your time management; take a time-management class—Sections 32.1.2 and 32.1.2.11.
• Use a console server so that you aren’t spending so much time running back and forth to the machine room—Sections 6.1.10 and 4.1.8 and 20.1.7.2.
• Batch up similar requests; do as a group all tasks that require being in a certain part of the building.
• Start each day with project work, not by reading email.
• Make informal arrangements with your coworkers to trade being available versus finding an empty conference room and getting uninterrupted work done for a couple of hours.

1.45 Avoiding Stress

• Take those vacations! (Three-day weekends are not a vacation.)
• Take a vacation long enough to learn what hasn’t been documented well. Better to find those issues when you are returning in a few days than when you’re (heaven forbid) hit by a bus.
• Take walks; get out of the area for a while.
• Don’t eat lunch at your desk.
• Don’t forget to have a life outside of work.
• Get weekly or monthly massages.
• Sign up for a class on either yoga or meditation.
1.46 What Should SAs Expect from Their Managers?

- Clearly communicated priorities—Section 33.1.1.1
- Enough budget to meet goals—Section 33.1.1.12
- Feedback that is timely and specific—Section 33.1.3.2
- Permission to speak freely in private in exchange for using decorum in public—Section 31.1.2

1.47 What Should SA Managers Expect from Their SAs?

- To do their jobs—Section 33.1.1.5
- To treat customers well—Chapter 31
- To get things done on time, under budget
- To learn from mistakes
- To ask for help—Section 32.2.2.7
- To give pessimistic time estimates for requested projects—Section 33.1.2
- To set honest status of milestones as projects progress—Section 33.1.1.8
- To participate in budget planning—Section 33.1.1.12
- To have high ethical standards—Section 12.1.2
- To set at least one long vacation per year—Section 32.2.2.8
- To keep on top of technology changes—Section 32.1.4

1.48 What Should SA Managers Provide to Their Boss?

- Access to monitoring and reports so that the boss can update himself or herself on status at will
- Budget information in a timely manner—Section 33.1.1.12
- Pessimistic time estimates for requested projects—Section 33.1.2
- Honest status of milestones as projects progress—Section 33.1.1.8
- A reasonable amount of stability
This page intentionally left blank
Index

10 Gigabit Ethernet standard, 198
19-inch racks, 152, 155
802.3 Spanning Tree Protocol bridge, 45

A
Acceptable-use policy, 318, 320, 579
Access
data centers, 134
databases, 904–905
monitoring, 534–535
Access control policy, 229–230
Accidental file deletion, 621–623
Account names, 223
Accountability and shared accounts, 290, 292
Accounting policy, 568–569
Accounts, longevity policy, 230–231
Acquisitions overview, 8–9
Active Directory lookups, 720
Active listening, 376
mirroring, 792–794
reflection, 795–796
standardizing on phrases, 793–794
summary statements, 794–795
Active monitoring systems, 532–534
Active Server Pages, 691
ActiveDirectory, 237, 332
Ad hoc solution finder, 921–922
Add-ons and preloaded operating systems, 53
Administration
centralization, 507
Administrative functions, separate networks for, 89
Administrator access, 327
Administrator account, 291
AJAX, 691–692
Alerting to failure, 524
Alerts, 530–532
real-time monitoring, 527
Algorithms and high-latency networks, 102–103
Aliases, 231
e-mail servers, 549
Always make backups, 786
Always-on Internet technology, 664
“An Analysis of UNIX System Configuration” (Evard), 41–42
Anonymizer service, 335
Anonymizing redirection service, 258
ANS.1 format, 529
Antispam software, 550
Anti-virus software, 550
AOLServer, 691
Apache, 691, 720
AppleTalk, 569
Appliances, 84–85
Application servers, upgrading, 211
Applications
centralizing, 116
configuring properly, 32–33
critical servers lists, 34
high latency, 101
new configuration information and, 426–428
Applications (continued)
 optimizing RAID usage, 611–612
 response-time monitoring, 537
 security, 709–710
 streamlining write path, 612
 updating, 54–57
Architects, 401, 736
Archival backups, 624–625
Archival restores, 624
Archive tapes
 obsolescence, 624
 separating from other backups, 624
Archives, 624, 627
Archiving
 email, 784
 logs, 299
Asking for help, 808–809
Assessing sites overview, 7–8
Asset management, 513
Assumer, 379
Asynchronous JavaScript, 692
ATM (Asynchronous Transfer Mode), 187, 212
ATS, 139–140, 177
Attackers
 contacts in industry, 301
 logs, 299
 mail relay hosts, 556–557
 mean time to, 289
 responding to, 303–307
 site used to launch, 307
 spoofing real-time monitoring system, 525
Audio latency, 103
Audit trail, 415
Auditing, 298, 318–319
 security consultants, 308–309
Auditor, 302
AUP (acceptable-use policy), 276–277, 326–327
AUSCERT (Australian Computer Emergency Response Team), 289
Authentication, 290, 318
 Apache, 720
 biometric mechanism, 291
 CGI-based applications, 720–721
 handheld token-based system, 291
 inflexibility, 292
 information used for, 292
 over phone, 292
 remote access service, 661
 shared accounts, 290–291
 strong system of, 291
 web server software, 720
Authentication and authorization service, 97
Authentication services
 customer requirements, 96
 full redundancy, 122
Authorization, 290–293
Authorization matrix, 293–295, 320
AutoLoad, 47, 50
Automated front ends, 428
Automated installation, 43, 47–49, 53–54
Automated inventory, 238
Automated operating system installation, 32–33
Automated services, 737
Automated update system, 57
Automatic failover, 573, 577
Automatic network configuration, 469
Automating
 backups, 639–641
 combining with cloning, 51
 completely automated, 47–49
 done a little at a time, 413
 email service, 552
 fixing root problem, 413
 fixing symptoms and alerting SA, 412
 fixing symptoms without fixing root cause, 412
 hidden costs, 46
 manual steps and, 764–765
 monitoring, 535
 operating system, 46–47
 testing, 764
 updating servers, 463
 verification tests, 441
AutoPatch system, 54, 56
Availability monitoring, 527
Awards wall, 810–811
B

Back door, 906

Back-out plans, 417
 backups, 443
 relying on, 448
 service conversions, 465–466
 testing after use, 448–449
 when initiated, 444
 when to execute, 466
 writing, 443

Backup and restore system, 621
 basics, 620–643
 speed of interconnections, 635

Backup media, 622

Backup policies, 230

Backup software
 automation, 628
 homegrown, 641
 installation, 744–745
 scheduling algorithms, 639

Backup tapes
 changing M-W-F, 786
 file-by-file inventory of, 642–643
 passing cost to customer, 625
 tracking reuse, 643

Backups, 583, 619
 always making, 786
 automating, 639–641
 back-out plan, 443
 bubble-up dynamic schedule, 632
 centralization, 641–642
 commands, 639
 consumables planning, 635–637
 corporate guidelines, 625–626
 D2D2T (disk-to-disk-to-tape), 635
 data storage service, 598–601
 data-recovery SLA and policy, 626
 delegating, 641
 disk drive as buffer, 635
 DLTs (digital linear tapes), 635–637
 email, 559–560
 fire drills, 643–644
 full backups, 620, 627–628
 high-availability databases, 647–648
 homegrown backup software, 641
 incremental backups, 620, 627–628, 633
 Internet-based systems, 647
 jukeboxes, 639, 642
 length of cycle, 628–631
 locally replicated software, 683
 manual backups, 639, 641
 media, 644–647
 minimal tape index, 642
 mirrored disks, 84
 mirrors, 599–600
 mistimed, 626
 NAS, 600
 network-based backups, 641
 networked off-site, 646–647
 nine-track tape drives, 649
 no substitute for, 598–599
 off-site storage, 644–647
 RAID mirrors to speed, 600
 risks, 417
 SANs, 600–601
 scheduling, 627–633, 639
 SLAs, 625–626
 speed of, 633–634
 tape inventory, 639, 642–643
 tape usage, 628–633
 technology changes, 648–649
 thinking aspect of, 640–641
 time and capacity planning,
 633–635
 true incrementals or differentials,
 633

Balancing work and personal life,
 809–810

Bandwidth
 addictiveness of increases, 657
 hijacked, 703–704
 versus latency, 101–103

Bell Labs, 45–46, 234, 244
 AutoPatch system, 56
 Computer Science Research
 group, 65
 demo schedule, 419
 laptop subnet, 65
 network-split project, 461
 pillars versus layers approach, 461
 Rioting-Mob Technique, 459–460
 UNIX Room, 412
BGP (Border Gateway Protocol), 187
Biometric mechanism, 291
Blade servers, 91–92
Bleeding edge, 218
bleeding edger, 932
Blind guessing, 604
Bonuses, 825
Boot disks, mirroring, 83
Boot server, 121
Booting critical systems, 483
Boss philosophy, 811
Bot farms, 704
Bounced email, 409
Break, 599
Brick, 205
“Bring me a rock” management technique, 843
British Telecom, 465
Broadcast domain, 197
Browsers, 689
Budget administrator, 926–927
Budgets
nontechnical manager, 860–862
technical managers, 834–835
technical staff, 860–862
Bugtraq, 289
Build licenses, administrating, 332
Building
generator backups, 143
rewiring, 202
Bulk-license popular packages, 331
Business applications support team, 312
Business desktop computers, 73
Business partners relationship, 757
Businesses
constraints, 476
security meeting needs, 285–287
security through infrastructure, 288
Business-specific services, 95
Buy-versus-build decision, 845–848
Buzzword-compliant tools, 399
Buzzwords, 376

C

Cable bundling, 165
Cables
categories, 198
color coding, 161
hiding, 159
labeling, 167–169, 182, 206
lengths, 163
managing in racks, 156–158
networks, 163
organizing, 157–158
patch cables, 161–163
prelabeled, 168
raised floor, 159–160
slack in, 163
testing after installation, 202
value of test printouts, 203
Cage nut, 153
calendar command, 419
calendar global alias, 98
Calendar program, 33–34
Calendar server, 109, 231
CamelCase, 249
Canned solutions, 845
CAP (Columbia Appletalk Protocol) server, 121
Capacity monitoring, 527–528
Capacity planner, 926
Capacity planning, 524
Capturing command line, 245
Capturing screen shots, 244–245
Career goals, 812–813
Career paths, 833–834
Careful planner, 925–926
Carpenters, 410–412
The Case of the 500-Mile Email, 402
Cat-5 cable, 161
Cat-6 cable, 161–162
CDP (continuous data protection), 598, 614–615
Cellphones, 488
Center-of-the-universe host, 122
Central funnel architecture, 572–573
Central host, 210
Central machine, 121
Centralization, 501–502
110 percent, 504
access, 504
administration, 507
asset management, 513
backups, 641–642
balance, 504
basics, 502–512
candidates, 505–510
commodity, 509–510
consolidating purchasing, 513–515
consolidation, 506–507
cost savings, 505
distributed systems, 506
easier-to manage architecture, 505
experience counts, 503
giving up control, 505
guiding principles, 502–505
helpdesk, 741
impediment management decisions or politics, 505
improving efficiency, 501
increased purchasing power, 509
introducing new economies of scale, 505
involvement, 503
issues similar to new service, 504
left hand, right hand, 508–509
motivation, 502–503
outsourcing, 515–518
printing, 566–568
problem-solving, 502
remote access service, 658
single points of failure, 512
specialization, 508
tape changes, 641
veto power, 505
Centralized file servers, 509
Centralized funnel, 573
Centralized group for services, 508
Centralized model for customer support, 740–741
Centralized storage, 597–598
Centralizing network management, 738
services, 98, 737
CERT/CC, 289
Certificates, 704–706
CFO (chief financial officer), 734
CGI (Common Gateway Interface), 691
programs, 701–702
scripts, 691
servers, 695
CGI-based applications and authentication, 720–721
Change advisory board, 417
Change completion deadlines, 488–489
Change control namespace, 230
Change log, 451
Change management
audit trail, 415
automated checks, 426–428
automated front ends, 428
basics, 416–428
categories of systems changed, 416
communication and scheduling, 416
communications structure, 418–419
documentation, 422, 424
e-commerce companies, 415
ITIL (Infrastructure Library), 417
locking, 424–426
managing risk, 415
Nagano Olympics, 430–431
planning and testing, 416
process and documentation, 416
processes, 422, 424
reboot test, 427–428
revision control and automation, 416
revision history, 424–426
risk management, 417–418
scheduling, 419–422
specific procedures for each combination, 416
streamline processing, 431–432
successful large-scale events, 431
technical aspects, 424–428
types of changes made, 416
Change procedures, 236
Change proposals, managing, 479–481
Change-control forms, 422
Change-freeze times, 422, 423
CHANGELOG file, 453
Change-management meetings, 428–431
Change-proposal forms, 422
Chaos topology, 195
Checklists, 246–247, 821
Christine’s dream data center, 183–184
CIAC (Computer Incident Advisory Capability), 289
Cisco
 NetAid, 431
 routers, 395
Classifier role, 368
Classifying problems, 368–369
Clean Desk Policy, 315
Clean network architecture, 190–191
Clean state, 42
Clear directions, 842–843
Clerks
 installing software, 761–762
 managed by SAs versus by customers, 761
 simple automation, 763–764
 solving performance problem, 762–763
Client servers and OS configuration, 79–80
Clients
 email, 553
 moving away from resources, 64
 redundancy, 553–554
 services, 97
Clones, upgrading, 443
Cloning hard disks, 50–51
Closed cable management, 158
Closed services, 104
Closed source security-sensitive products, 296
Cluster file systems, 588
Clusters and namespace databases, 232
CMS (content-management system), 253
Code control systems, 425
Code red emergencies, 32
Code yellow emergencies, 32
Colocation (colo) center, 71, 743
Colocation facility, 129–130
Color coding
 cables, 161
 network cables, 167–168
 network jacks, 200
Commands, listing last executed, 245
Commercial encryption packages, 559
Commercial software, 684
Commodity centralization, 509–510
Commodity service, 510
Communicating service priorities, 820–821
Communication
 within company, 551
 company culture, 419
 customers, 837
 data centers, 170
 email service, 557–558
 emergencies, 488
 mail user agents, 551
 maintenance windows, 495
 nontechnical managers, 857–858
 plan updates, 57
 post maintenance, 490–491
 radios or mobile phones, 170
 scheduling and, 416
 sensitive updates, 420–421
 service conversions, 461–462
 stalled processes, 822
 technical issues, 791
Communication change, 418–419
Communication policy, 307
Communication skills
 active listening, 792–796
 happy SAs (system administrators), 790–796
 I statements, 791–792
 my problems, 791
 other people’s problems, 791
 our problems, 791
 your problems, 791
Communications closets, 300
Community strings, 529
CommVault, 622
Companies
 culture and communication, 419
 defending right to information, 310
 security, 314
Company policy, enforcing, 828–829
Company-confidential information, 274
Compensation (comp) time, 358
Competitive advantage, 847–848
Complete restores, 625
Complexity of networks, 190
Components
 failure, 597
 hot-swap, 86–87
 used by other applications, 115
Compression, 189
Computer closets, 35–36, 129
Computer room, 129
Computers
 building and initializing processes, 42
 centralizing purchasing process, 513–514
 clean desktop, 785
 clean state, 42
 configured state, 42
 coping with big influx of, 16–17
 debug process, 42
 early delivery to customer, 515
 entropy, 42
 function-based primary name, 109
 life cycle, 41–44
 new state, 42
 off state, 42
 preloading operating system, 51–53
 rebuild process, 42
 retiring, 44
 reviewing software on, 437
 service-based aliases, 469
 solid infrastructure, 287–288
 standardizing components, 514
 states and transitions exist, 43
 support time, 730
 tying services to, 98
 unknown state, 42
 updating, 42
 usable only in configured state, 43
 warranties, 76
Concurrent Versions System, 425
Condensing data, 525–526
Configuration files
 automated checks, 426–428
 locking, 424–426
 manually modified, 426–428
 master copies, 237
 separate for web site, 715
 tracking changes to, 453
Configuration fixes, 704
Configured state, 42–43
conf.v file, 425
ConServer, 80
Consistency policy, 233–234
Console access in data centers, 171
Console servers, 121, 171
Console window programs, 245
Consolidation
 centralization, 506–507
 purchasing, 513–515
Constraints, 476
Consultants, 743–745, 756
Consumables, 621
 planning and backups, 635–637
Contacts and security, 316–317
Containment, 63–64
Content scanning, 557
Contractors, 743–745
Contributing software policy, 671–672
Conversions, 465, 468
COO (chief operating officer), 734
Cooling
 air output from ceiling, 137
 computer closets, 35–36
 costs, 146
 data centers, 136–148
 humidity control, 137–138
 IDF closets, 201
 network devices, 201
 providing sufficient, 35–36
 racks, 151
 raised floors, 137
 rules, 137
 smaller solutions, 146
 spot coolers, 146
 UPS, 139
Coordination, ensuring, 483–488
CopyExact, 411
Copyright-adherence policy, 330–332
Corporate culture
 help desks reflecting, 346
 maintenance windows, 477
Corporate guidelines and backups, 625–626
Corporate namespaces, 543
Corporate network and third-party access, 279
Corporations
application response time, 537
ethical policies and controls, 323
helpdesks, 368
staffing helpdesks, 347
Cost/benefit analysis, 823
Costs, decreasing, 21
CPU
chip sets and L2 cache, 606–607
monitoring and, 524–525
monitoring usage, 601–602
servers, 70
Craft worker, 376–377
Crashes
coping with, 9
monitoring system, 36
Critical DNS server, upgrading, 453–454
Critical host maintenance contracts, 75–76
Critical inner voice, 805–807
Critical servers
dependencies, 483
lists of, 34
stringent change-management processes, 424
Critical services, 122
Critical systems, booting, 483
Criticism, 807–808
Crontabs, 78
Cross-functional teams, 310–313
Cross-shipping, 77
Cryptographic certificates, 705–706
CTO (chief technical officer), 733–734
CTRL-ALT-DEL, 81
The Cuckoo’s Egg (Stoll), 402
Customer advocate, 927
Customer dependency check, 437
Customer requests
basics, 364–380
frequent time-consuming requests, 383
greeting to, 364–367
Customer support, 735–736, 739–741, 931
centralized model, 740–741
decentralized model, 740
dedicated personnel, 739
hybrid models, 740
marketing-driven, 369
solutions, 847
Customers, 756
aligning priorities with expectations, 758–760
announcing upgrade to, 445–446
attitude of SAs, 756–758
becoming craft worker, 376
building confidence, 22
classifying problems, 368–369
communicating change to, 418–419
communicating conversion plan to, 461–462
communicating upgrade or back-out plan, 448–449
communication, 837
compelled to lie, 370
consultants, 756
cconversion having little impact on, 458–459
decentralization and, 511–512
defining emergencies for, 31
digging into problem before reporting it, 392–394
feature creep, 837
generating most tickets, 382
giving up control, 505
good first impression, 752–755
group statistics, 601
high and small things, 758–759
ignored requests, 28
ignoring messages from system administrators, 449
importance of printing, 565
incorrect jargon, 392
increased familiarity with, 381
inexperienced, 375
involving in standardization process, 66
keeping happy, 15
listening to concerns of, 503
locking out for server upgrade, 446–447
meeting with groups, 766–767
meeting with single point of contact, 866–868
opportunities to interact with, 757
perceptions, 751, 760
physical access to data center, 135
policies associated with email service, 558
prioritizing solutions, 375
processes to help themselves, 347–348
questions in particular category, 383
relationship with support team, 740–741
relying on services, 438
reporting same issue, 382–383
requirements, 837
restoring access after upgrade, 448
SA email to, 770–773
self-service requests, 383
service requirements, 98–100
service rollout, 120
setting hostnames, 62–63
standards, 66
task-length perception, 29–30
town hall meetings, 768–770
training, 462
usage guidelines, 326–327
useful feedback, 375
verifying repair of problem, 378
weekly meetings with, 867
Customer/SA, 931
Customization and decentralization, 511
Customizing striping, 611–612
Cutting edge, 218
Cylinders, 584

Data
backups, 619–620
block optimization, 607
condensing, 525–526
corruption, 267
expiring, 526
length of time to keep, 526
protection, 614
restoring, 619–620
security, 271–272
Data cables, 166
Data centers, 129
access, 134
basics, 130–176
biometric locks, 135–136
booting machines, 483
cleaned power, 138
communication, 170
communication backups, 131
console access, 171
cooling, 136–148
costs, 129
directing airflow, 137
duplicating critical services across, 268
dust and, 173
earthquake zone, 132
equipment, 130
extra electrical capacity, 144–145
extra space in, 179
extrawide doors, 134
fire suppression, 149–150
flooding, 132
heat sensors, 142
heating, 137
high security requirements, 135
high-reliability, 177–178
hot spots, 142
humidity control, 137–138
HVAC system, 142
ideal, 179–185
interruption of service, 473
keyboards, 171
keys, 135
labeling, 166–169
lightning protection, 132–133
locating servers in, 110
location, 131–132
Data centers (continued)
locking, 135
maintenance window, 130
MDF (main distribution frame), 204
minimum aisle width, 154
mobile items, 175–176
monitoring temperature, 143
monitors, 171
moving overview, 5
natural disasters, 131–132
physical checks, 300
planning for future, 130
political boundary, 131–132
power, 136–148
proximity badges, 135
racks, 150–159
raised floor, 134
redundancy, 176–177
redundant locations, 133–134
reliability, 110
restricting access, 135
security, 134–136
servers, 78–79
tools and supplies, 173–175
visitor policy, 136
wasted space, 156
wiring, 159–166
workbench, 172–173
working in, 173
Data flow analysis and scaling, 124–125
Data format, 189
Data integrity, 78, 267
Data pipeline optimization, 606–608
Data storage, 583, 864
basics, 584–611
CDP (continuous data protection), 614–615
cost, 589
current usage, 590
DAS (directly attached storage), 587
departments and groups assessment, 589
evaluating new solutions, 608–609
filesystems, 587
inventory and spares policy, 593
key individual disk components, 584–585
less-desirable hardware, 608
limits, 613–614
managing, 588–596
mapping groups onto storage infrastructure, 592–593
NAS (network-attached storage), 587–588
performance, 604–608
physical infrastructure, 609–610
pipeline optimization, 606–608
planning for future, 593–594
problems, 609–611
quotas, 592–593
RAID (Redundant Array of Independent Disks), 585–587
reframing as community resource, 588–589
resource difficulties, 592
SAN (storage area networks), 588
saturation behavior, 610–611
standards, 594–596
storage-needs assessment, 590–591
terminology, 584–588
testing new system, 608
timeouts, 610
unexpected events, 591
usage model, 608
volumes, 587
Data storage service, 596
backups, 598–601
historical monitoring, 601
monitoring, 601–603
reliability, 597–598
storage SLA, 596–597
Data transfer path saturation, 610–611
Data writes, 607
Database-driven web sites, 695–696, 716
Databases
automating data access, 710
high-availability and backups, 647–648
preparation function, 710
read-only views, 702
read-write views, 702
scaling usage, 702
tuning block size, 611–612
web sites, 701
Dataflow analysis example, 126
Dataflow model, 124–125
Data-recovery SLA and policy, 626
dbadmin account, 291
dbadmin group, 291
Deadlines for change completion, 488–489
Debug process, 42
Debugging
active monitoring systems, 533
basics, 391–398
better tools for, 399–400
email, 553
end-to-end understanding of system, 400–402
fixing cause, not symptom, 393–394
follow-the-path, 395
learn customer's problem, 392–393
Microsoft Windows, 396
networks, 190
right tools for, 395–398
Sun RPC-based protocols, 397–398
systematic about finding cause, 394–395
TCP-based protocols, 397–398
turning as, 399
UNIX systems, 396
Decentralization, 501
110 percent, 504
access, 504
balance, 504
basics, 502–512
candidates, 510–512
customization, 511
democratizing control, 510
diversity in systems, 512
fault tolerance, 510–511
guiding principles, 502–505
issues similar to building new service, 504
many single points of failure, 512
meeting customers' needs, 511–512
motivation, 502–503
opportunity to improve response times, 510
problem-solving, 502
veto power, 505
Decentralized model, 501, 740
Decision point, 417–418
Decisions
precompiling, 785–787
technical manager, 843–848
Decreasing costs, 21
Dedicated machines services, 120–122
Dedicated network router, 84
Deexecutioner, 379
Defense in depth, 272
Defining emergencies, 31
Defining scope of SA team's responsibility policy, 31
Definition of emergency policy, 821
Defragmenting hard disks, 614
Delegation, 831
Deleting files and UNIX shells, 410–411
Deletion policy, 671–672
Demarcation points, 205
Dependency chains, 539
Depots, 672
Descriptive names, 225–226
Desk location and visibility, 767
Desktop computers
cost in early 1990s, 90
eyear, 130
Desktops, rolling out new software to, 120
Developer's tool chain, 685
Device discovery, 535
Device drivers, 53
Devices
labeling, 34
monitoring discovery, 535
naming standards, 206
networks, 209–211
parts not hot swappable, 88
SNMP requests, 529
UPS (uninterruptible power supply), 35
Devices Control Panel, 410
DHCP
 automatically generating configuration, 59
 dynamic DNS servers, 61–65
dynamic leases, 60–61
hidden costs, 58
lease times, 64–65
moving clients away from resources, 64
network configuration, 58
public networks, 61
templates rather than per-host configuration, 58–60
DHCP: A Guide to Dynamic TCP/IP Network Configuration (Kercheval), 65
The DHCP Handbook (Lemon and Droms), 65
DHCP servers, 58
Diagnostic services and maintenance contracts, 75
Diagnostic tools, 395–398
Diameter, 232
diff command, 377, 440
Disaster worrier, 925
Disaster-recovery plan
 archives, 624
 basics, 261–267
damage limitation, 264–265
data integrity, 267
lack and risk-taking, 262
legal obligations, 263–264
media relations, 269
preparation, 265–267
recreating system, 266
redundant site, 268
requirements for, 264
risk analysis, 262–263
security disasters, 268–269
Disasters
 being prepared for, 265–266
damage limitation, 264–265
damage prevention, 263
 defining, 262
restoring services after, 265–266
risk analysis, 262–263
Disconnection policy, 306–307
 Disk failures, 602, 623
 Disk-cloning system, 32
 Disposable servers, 91
Distributed network support, 738
Distributed parity, 586
Distributed systems and centralization, 506
Distribution-server model, 668–669
Diversity in systems, 512
DLTs (digital linear tapes), 635–637
DNS, 96–97
 appliances, 84
 authenticating updates, 63
 hosts with static leases, 62
 MX (Mail eXchanger) records, 553
 no customer requirements, 98
 round-robin name server records, 699–700
 updates and TTL (time to live) field, 467
 zones and subzones, 233
DNS hosting, 717
DNS master, 121
DNS names, 225
Document repository, 247–248
 dynamic, 252
 important documents and, 266
 rollout issues, 251
 rules or policies, 248
 self-management versus explicit management, 251–252
 source code control, 248
Document retention policy, 560
Document root, 695
Document storage area, 247–248
Documentation, 241, 253
 accounts requiring special handling, 763
 basics, 242–252
 capturing command line, 245
 capturing screen shots, 244–245
 change management, 422, 424
 change procedures, 236
 checklists, 34, 246–247
 creation as you work, 34
 culture of respect, 253–254
device names, 206
document repository, 247–248
dynamic repository, 252
e-mail, 245–246
e-mail service, 557–558
enabling comments, 254
feedback, 243–244
labeling, 206
LAN connections, 207
making work easier, 241
maps of physical and logical
 networks, 205–206
metadata, 243
monitoring, 534–535
networks, 205–207
online, 206
partially automated installation, 49
print service, 573–574
QA (quality assurance), 243
quick guide, 244
redundancy, 241
request-tracking system, 246
restores, 638
revision control, 254
rollout issues, 251
routers, 207
search facility, 250–251
shared directory, 248
software depots, 672–673
sources for, 244–246
storage, 247–248
template, 243–244
title, 243
trouble-ticket system, 246
WAN connections, 207
what to document, 242–243
wikis, 249–250
Documentation repository, web-based,
 249–250
Documenting
 disliked processes, 242–243
 job description, 243
 security policies, 276–283
Doers of repetitive tasks, 936
DokuWiki, 253
Domain registration, 717
DOS, 587
DoS (denial-of-service) attack, 273,
 309, 320
Double component failure, 87
Draft server, 717
Dress rehearsal, 451–452
Drive controller, 585
Drive protocol, 585
Drivers and preloaded operating
 systems, 53
Drupal, 253
Dual-boot updates, 56
Due-diligence assessments, 7–8
Dumb pipelining algorithm, 7, 8
Dumpster diving, 229, 334
Duplex printing, 576
Duplexing units, 569
Dynamic DNS servers and DHCP,
 61–65
Dynamic leases, 60–62
Dynamic routing, 208
Dynamic to-do lists, 779
Dynamically generated web pages,
 691
E
EAP (employee assistance program),
 807
echo command, 410–411
ECMAScript, 691
E-commerce sites
 application response time, 537
 authorization matrix, 320
 backups, 625
 change management, 415
 end-to-end testing, 537
 helpdesks, 347, 368
 IT and system administration, 742
 layers and pillars conversions, 461
 maintenance windows, 475
 namespaces, 233
 pervasive monitoring, 535
 privacy laws, 337
 SA function of maintaining site, 742
 SA (system administrators) team,
 746–747
 security programs, 319–320
 verifying problems, 373
EDA, 311
Educating customers, 384
Educator, 923
EIGRP (Enhanced Interior Gateway Routing Protocol), 187
Eircom, 169
Electronic accomplishment wall, 811
Email, 543
 as alerting mechanism, 530
 all customers, 770–773
 archiving, 784
 arriving in unexpected place, 548
 backups, 559–560
 bounced, 409
 company-confidential information, 544
 consistent look and feel, 739
 content scanning, 557
 debugging, 553
 documentation, 245–246
 filtering, 284
 forwarding policy, 338, 552
 handling only once, 784
 internal and external email addresses, 545
 message sizes, 555
 message storage, 543
 monitoring, 337
 namespace, 544
 privacy policy, 544
 reading someone else’s, 339–340
 reliability, 543
 remote access service, 654
 retention policy, 559–560
 risks associated with, 558
 saving copy, 245
 scalability, 543
 SEC violations, 337
 traffic levels, 554
 working well, 33–34
Email access servers, 547
Email accounts, 552
Email addresses, 545
 name conflicts, 226–227
 reuse policy, 235
Email appliances, 84
Email clients
 checking for email at predefined interval, 555
 encryption, 559
 protocols, 551
Email machines and hot spares, 547
Email servers, 121, 503, 547
 aliases, 549
 monitoring, 552–553
Email service
 advanced monitoring, 560–561
 automation, 552
 bad mail-delivery scheme, 548–549
 basic monitoring, 552–553
 basics, 543–558
 beta test, 546
 communication, 557–558
 documentation, 557–558
 encryption, 559
 gateways and email translation devices, 549
 generality, 550–551
 high-volume list processing, 561–562
 lack of standardization, 549
 large bursts of traffic, 554
 machines involved in, 547–548
 message size limits, 556
 namespaces, 544–546
 policies, 558
 redundancy, 553–554
 reliability, 123, 546–547
 scaling, 554–556
 security, 544, 556–557
 simplicity, 547–549
 spam, 549–550
 spare spool space, 556
 virus blocking, 549–550
Email software, 106
Email system
 architecture, 543
 costs of malfunctioning, 546
 failure, 546
 namespace management system, 543
 open protocols, 543, 550–551
 proprietary, 107
 viruses, 557
Emergencies, 29, 31–32
 communication during, 488
 defining in writing, 353–354
 planning and, 354
Emergency facility, 266–267
Emergency lighting, 143
Employees
 explaining failure to, 839
 feedback, 839
 in-person orientation, 755–756
 listening to, 840–841
 publicly acknowledging, 838
 recognition, 838–839
 reprimands, 839–840
 respecting, 838–841
 retention, 401, 893–894
Encrypted tunnels, 212
Encryption, 189, 559, 656
Encryption system, 559
End-to-end expert, 937
End-to-end monitoring, 561
End-to-end testing, 536–537
End-to-end understanding of system, 400–402
Enjoying what you do, 804
Entropy, 42
Environment
 identifying fundamental problems in, 13
 services, 110–111
Environment variables, 406
Environmental issues and printers, 575–576
EPO (emergency power off) procedure, 485
Equipment
 height in rack units (U), 152
 labeling, 166
 reusing internally, 596
Error messages, real-time monitoring, 531
Escalation
 establishing process, 352–353
 monitoring rate of, 356
 Escalation policy, 353, 531–532
 Escalation procedure, 532
 ESMTP (extended SMTP), 550
Etherreal, 395
Ethernet, 101, 187, 198
Ethics, 323
 basics, 323–336
 copyright adherence, 330–332
 customer usage guidelines, 326–327
 hiding evidence, 336
 informed consent, 324
 issues, 23
 law enforcement and, 332–335
 people harming your company, 335
 privacy and monitoring policy, 336–337
 privileged-access code of conduct, 327–330
 professional code of conduct, 324–326
 something illegal/unethical, 338–340
ETR (estimated time to repair), 656
ETSI (European Telecommunication Standards Institute) standard, 177–178
Exchange mail server, 107
Executing solutions, 375–376
Exit process, 287
Experience counts, 503
Expertise, 508
Expiring data, 526
Extensibility and servers, 70
External audits, 308–309, 317
External sites and security, 717
F
Facilitator, 930–931
Failed disk, mirroring, 83
Failover, 86
Failures
 alerting to, 524
 corruption of arrays or scrambled data, 609
 hot-swap components, 87
 reporting, 530
 single points of, 510, 512
Family Educational Rights and Privacy Act, 323
Family time, 810
FAQ (Frequently Asked Questions), 256
Fast (100MB) Ethernet, 188, 198
FAT, 587
FAT32, 587
Fault tolerance and decentralization, 510–511
FC (fibre channel), 606
FCC (Federal Communications Commission), 330
FDDI (Fiber-Distributed Data Interface), 188
Feature creep, 837
Features, adding, 21
The Feeling Good Handbook (Burns), 806
Fiber termination, 202
Field offices security team, 312–313
File formats, 104
File Motel, 622
File servers, 121
appliances, 84
centralized, 509
File systems fragmentation, 614
Filer line of file appliance, 622
Files
accidentally deleting, 410–411, 621–623
automated checks, 426–428
capturing session to, 245
listing to be deleted, 410
mystery-deletes, 401–402
rebuilding, 413
Filesystems
journaling, 587
snapshots of, 622
Filtering email servers, 547
FIN packet, 700
Fire drills and backups, 643–644
Fire suppression in data centers, 149–150
Fire-prevention systems, 265
Firewalls, 271, 284, 289, 702
email protection, 557
general-purpose machines as, 211
inbound rules, 123
OS-based, 210–211
permitting only outbound email (SMTP) traffic, 123
remote access service, 655–656
Firing SAs (system administrators)
access databases, 904–905
corporate policies for, 900
physical access, 901
remote access, 901–902
service access, 901–904
single authentication database, 905
system file changes, 906
termination checklist, 900–901
First offer, 802–803
First tier of support, 352–353
First-class citizens, 45
First.last-style email addresses, 545
Five-year vision, 864–866
Fixing
biggest time-drain, 34–35
problems, 373–376
real problem, 413
same small things time after time, 408
things once, 405–412
Flash-cuts, 463–465
Flat namespaces, 223
Flat network topology, 197
Flat physical topology, 212
Flexibility, improving, 501
Flight director, 478
change completion deadlines, 488–489
developing master plan, 481–482
mentoring new, 492–493
performance level of SA team, 489
technique, 473–474
Floor puller game, 183
Follow-the-path debugging, 395
Follow-through, 28–29, 778–780
Formal documents and legal issues, 560
Formal training on tools, 400
Form-field corruption, 708
Formulaic names, 225
Four-post racks, 153–154
Fragmentation and multiuser systems, 614
Frame Relay, 212
Free software licenses and copying, 331
FreeBSD system, 211
Fresh installs, 450–451
Front-line support group, 119
Front-mountable servers, 153
FTP (File Transfer Protocol), 189, 296, 398
Full backups, 620, 624, 627–628
Full mesh, 212
Full redundancy, 86–87, 122
Full-disclosure mailing lists, 289
Functional group-based topology, 197
Functional names, 225–227
Functionality and security-sensitive products, 297
Fundamental services, 95, 111
Fuzzy match algorithm, 440

G
Gateways, 106–107, 549
General printer architecture policy, 568
General-purpose machines, 234
Generators, 139–140, 265
 backup building circuits, 143
distributing, 177
failure, 177
maintenance, 141
Generic services, 95
GET request, 528–529, 691
Getting Things Done, 815
Gigabit Ethernet, 198
Globalization overview, 4
Globally flat namespaces, 233
GNAC, Inc., 148, 157
GNU Stow, 672, 675–677
GNU/Cfengine, 237
Goal setting, 781–782
Goals, 830
 nontechnical managers, 836
 structure to achieve, 821
Golden host, 50
Golden master server, 718
Good first impressions, 752–755
Google, 90
 definition of emergencies, 32
gmail service, 784
IT teams, 747
mass email, 772
printer maps, 574
updating servers, 463
Google Maps, 721
Go-to person, 916–917
Graphical programs, 441
Graphs and historical monitoring, 527
Grouped power cords, 114
Groups
 mapping onto storage structure, 592–593
 new manager, 19
 new members, 18–19

H
The Hagglers Handbook (Koren and Goodman), 803
Halt key sequence, 121
Halt message, 121
Handheld token-based system, 291
Handles, 232–233
Handling paper once, 783–784
Happiness, 806–807
Happy SAs (system administrators), 777
 awards wall, 810–811
 basics, 778–797
 communication skills, 790–796
 follow-through, 778–780
 loving your job, 804–811
 managing your manager, 811–814
 negotiation, 798–803
 organizing, 778
 professional development, 796–797
 staying technical, 797
 time management, 780–790
to-do lists and appointment calendars, 778–780
Hard disk controllers, 83
Hard disks
 blocks, 584
 cloning, 50–51, 443
 cyclinders, 584
 DAD (disk access density), 613
defragmenting, 614
density, 613
discarding, 595
Hard disks (continued)
 drive controller, 585
 drive protocol, 585
 fragmentation, 613–614
 HBA (host bus adapter), 585
 heads, 584–585
 increasing size, 613
 key individual components, 584–585
 performance, 613
 platters, 584–585
 price per gigabyte, 583
 price per megabyte, 583
 sectors, 584
 spindle, 584–585
 tracks, 584
Hard emotions, 791–792
Hard outages, 114
Hardware, 81
 buying for servers, 69–71
 cost of, 72–74
 failure, 597
 grouped power cords, 114
 servers, 69
Hardware cards and remote console
 access, 81
HavenCo, 133
HBA (host bus adapter), 585
Head hunters, 875
Heating and data centers, 137
Hello. World program, 440–442
Help, specifying how to get, 351–352
Helpdesk, 343
 basics, 343–356
 better advertising for, 358–359
 call hand-off procedures, 347
 call-volume ratios, 347
 centralization, 741
 classifier role, 368
 communicating procedures, 344–345
 corporate culture, 346
 corporations, 368
 critically examining metrics, 517
 customer-to-attendant ratios, 347
 defining emergency in writing, 353–354
 defining processes for staff, 352
 defining scope of support, 348–351
 division of labor, 360
 e-commerce sites, 368
 emailing new policies, 359
 escalation procedures, 352–353, 741
 formal and informal, 344–345
 friendly face, 346
 greeters, 367
 having enough staff, 347
 home phone number of supervisor, 358
 identifying top 10 requesters, 357
 installing new service, 359–360
 metrics, 347
 multiple, 741
 multiyear trends, 356
 out-of-hours and 24/7 coverage, 357–358
 out-of-scope technologies, 350–351
 permitting tickets creation by email, 408
 portal Web site gateway, 359
 problems with service, 119
 recorder, 369–372
 as referral service, 350
 reporting problems, 359–360
 requesting new services, 359–360
 request-tracking software, 354–356
 SA (system administrators) teams, 741
 SAs (system administrators), 736–737
 scripts, 352
 SLAs (service-level agreements), 32
 specifying how to get help, 351–352
 statistics, 354–357
 time management, 351–352
 time-to-call completion, 347
 virtual, 345
 web site for documentation and FAQs, 348
Helping someone, 804–805
HHA (handheld authenticators), 278, 905
Hidden infrastructure, 491
High consistency, 233–234
High-availability data service, 598
High-availability databases backups, 647–648
High-availability sites, 495–497 availability, 497
High-latency links, 101
High-latency networks, 102–103
High-level management support for network policies, 280–282
Highly critical host maintenance contracts, 75
High-performing salespeople, 363
High-port-density network equipment, 168
High-reliability data centers, 177–178
High-volume list processing, 561–562
High-volume list services, 562
Hijacked web sites, 703–704
HIPAA (Health Insurance Portability and Accountability Act), 323
Hiring SAs (system administrators) basics, 871–894
diversity, 880–881
employee retention, 893–894
getting company noticed, 894–895
identifying people to hire, 871–872
interview process, 884–886
interview team, 882–883
job description, 872–874
knowing what you are looking for, 879–880
nontechnical interviewing, 891–892
persuading them to work for you, 871–872
recruiting, 875–877
rushing hiring decision, 878
selling position, 892–893
skill level, 874–875
team considerations, 878–882
technical interviewing, 886–890
timing, 877–878
Hiring System Administrators (Phillips and LeFebvre), 879
Hiring the person, 873, 876
Hiring the skill, 873, 876
Historical data
collection, 215–216, 523
trending, 493
Historical metamonitoring, 540
Historical monitoring, 523–527
data storage service, 601
scaling problems, 538
history command, 245
Hit-and-run sysadmin, 379
Home network routers, 211
Home office, 662–663
/home/adm/docs directory, 248
Homegrown off-site backup storage, 646
/home/src directory, 673
Horizontal cable management, 158
Horizontal scaling, 699–700
Hostnames, 62–63, 228
Hosts
broadcasting incorrect routing information, 208
center-of-the-universe, 122
complex routing problems, 209
consolidating services onto fewer, 506
determining hostname, 62
dynamic leases, 62
intruders breaking into, 703–704
IP addresses, 60–61
labeling, 182
MAC (media access control) address, 48
multihomed, 208
multiple servers on one, 697–698
names, 228
requiring to perform routing, 209
securing before going live, 290
simple routing, 207–209
single-homed, 208
starting in known state, 32–33
static leases, 62
Hot spares, 547, 587
Hot spots, 142
Hot-plug components versus hot-swap components, 88–89
Hot-swap components, 87–89
HousingMaps, 721
How to get help policy, 31, 820
How to print document, 573–574
How-to docs, 255–256
HP OpenView, 367
HP-UX, 46, 54
HTML (Hypertext Markup Language) and wikis, 249
HTTP (HyperText Transfer Protocol), 189
 error and status codes, 692–693
 web based products, 297
HTTP over SSL (Secure Sockets Layer), 704–705
HVAC systems, 141–142, 176–177

I
I statements, 791–792
IBM
 Clean Desk Policy, 315
 FDA division, 311
 Nagano Olympics, 430–431
ICMP (Internet control message protocol), 526–527
Ideal data centers, 179–185
IDF (intermediate distribution frame), 212–213
 aligning vertically in building, 199
 allocating space for, 198–199
 arranging, 205
 closet numbers, 200
 connecting, 203–205
 connecting cable, 198
 connecting to another IDF, 198
 connections with MDF, 199
 installing jacks, 201–202
 laying out, 198–199
 locking, 200
 numbering, 200
 punch block, 198
 remote console access, 200
 restricted access, 200
 RJ-45 connectors, 198
 running fiber, 202
 security, 200
 wiring, 198
IDF closets, 201
IDS (intrusion detection systems), 299
IEEE (Institute of Electrical and Electronic Engineers), 107
IEEE 802.1q VLAN protocols, 212
IEEE 802.1x, 61
IETF (Internet Engineering Task Force), 107, 562, 689
IETF standards, 214
Ignite-UX, 46
Illegal or unethical actions, 338–340
IMAP (Internet Message Access Protocol) server, 109
IMAP4, 189, 556
Implementers, 302, 737
Improving system administration
 biggest time-drain, 34–35
 calendaring, 33–34
 documenting as you go, 34
 email, 33–34
 host starting in known state, 32–33
 power and cooling, 35–36
 quick fixes, 35
 quick requests, 29–30
 simple monitoring, 36
 time-saving policies, 30–32
 trouble-ticket system, 28–29
Incident response, 303–307, 319
Incident-reporting mechanism, 305
Incident-response team, 303–304
Incremental backups, 620, 622, 627–628, 633
Independent services, 115
In-depth attacks, 308
Individual file restores, 624
Industrial espionage, 267
Informal documents and legal issues, 560
Informal off-site backup storage, 645
Information
 malicious alteration, 274
 protection, 271
 security, 313–314
Information-protection group, 318
Information-protection program, 315
Informed consent, 324
Infrastructure
 maintaining services, 730
 services, 97
 standards, 508–509
Infrastructure builder, 917–918
Infrastructure teams, 737–739
Input, validating, 709
Insecurity, 806
Insider trading, 337
Install room, 55
Installation, 43
 partially automated, 49–50
 pervasive monitoring, 535
 UNIX software, 668
 well-documented process, 49
Installer, 914
Installing new service, 359–360
Instant rollback of service conversion, 467–468
Integration and security-sensitive products, 297
Integrators, 736
Intel, 411
Intellectual property, protecting, 310
Intelligent queuing mechanisms, 118
Interactive web pages, 691–692
Intercompany security focus groups, 301
Interfaces, labeling, 167
Internal auditing, 298–300
Internal auditing team, 308
Internal mail servers, 123
Internal sites publishing model, 716
Internal verification, 299
Internal web services and security, 704
International business sites privacy laws, 337
Internet, 195
 gateway and law enforcement, 335
 mobile phone access, 692
 security, 271
 SMTP-based protocol, 550–551
 transmission of unencrypted information, 656
Internet-based backup systems, 647
Interpersonal communication, 376
Interpersonal effectiveness, 376
Interruption of service, 473
Interruptions, handling, 29–30
Interview process, 884–886
Interview team, 882–883
Intranets and privileged information, 704
Intrusion incident-response team, 303
Inventory, automated, 238
Inventory and spares policy, 593
Involvement, 503
I/O servers, 70
IP addresses, 60–61
 dependencies, 121
 longevity policy, 230–231
IP (intellectual property) manager, 310
IP-KVMs, 80–81
IRIX RoboInst, 54
Irrevocable key, 136
iSCSI, 606
ISDN (Integrated Services Digital Network), 196
ISO (International Organization for Standardization) standards, 257
ISPs maintenance windows, 475
ITIL (Infrastructure Library), 417
JavaScript, 691–692, 692
Job Descriptions for System Administrators (Darmohray), 874
Jobs
 advertisement, 872
 description, 243, 872–874
 looking for, 19–20
 protecting, 23–24
Journaling, 587
Jukeboxes, 639, 642
JumpStart, 46, 48–49, 51, 65, 406
Kerberos authentication system, 105
Kernel and packet routing, 210
Key escrow, 705
Keyboards in data centers, 171
Kick-off meetings, 100
KickStart, 46
Known state, 52, 55
KVM switches, 80–81, 486
L
L1-A, 81
L2 cache, 606–607
Lab technician, 919–920
Labeling
cables, 167–169, 182, 206
data centers, 166–169
equipment, 166
high-port-density network
equipment, 168
hosts, 182
interfaces, 167
keeping up to date, 168
network equipment connecting to
WANs, 168
network jacks, 200
networks, 205–206
policy for enforcing standards, 169
ports in software, 168
printers, 574
racks, 160
Labeling devices, 34
LAMP (Linux, Apache, MySQL, and
Perl), 697
LAMP (Linux, Apache, MySQL, and
PHP), 697
LAMP (Linux, Apache, MySQL, and
Python), 697
LANs, 188
connections documentation, 207
dynamically assigned leases, 60
large using VLANs, 212–213
network bandwidth, 524
not sent routing protocols on, 208
star topology, 191–192
Laptops and critical device drivers, 53
Large companies
SA (system administrators) team, 746
security program, 319
Latency
versus bandwidth, 101–103
finding problem, 398
recording information, 526
storage SLA, 596
Law enforcement, working with,
332–335
Layers approach, 460–461
Layers versus pillars, 460–461
LDAP (Lightweight Directory Access
Protocol), 115, 239, 720
LDP (Line Printer Daemon) Protocol
over TCP/IP, 569
Leading edge versus reliability,
217–218
Leaf node, 193
Learning
from carpenters, 410–412
from mistakes, 832
new skills, 796
Lease times and DHCP, 64–65
Legal department, 310–311, 313
Legal issues, 560
Level 0 backup, 620
Level 1 backup, 620
Level-focused person, 935
Levels, 585
Leveraging namespaces, 239
License servers, 761
Lights-out operation, 147
Line-of-sight radio communications,
487
Linux Documentation Project, 258
Linux system, 211
Linux tools, 667
LISA (Large Installation System
Administration) conference, 797,
848
List of printers, 574
List processing, 547
high-volume, 561–562
redundancy, 553
scaling, 554–555
List servers, 562
Live audio and video, streaming, 692
Live equipment, 150
Load balancers, 89, 554, 700, 702
Load balancing print service, 577
Load sharing, 87
Load testing, 117
Loading operating system, 46–54
Locally replicated software backups,
683
Location numbers, 200
Location-based topology, 197
Locking, 424–426
Log files, rotating, 533
Logging, 451, 710
Logic bomb, 906
Logical networks
 maps of, 205–206
 topology, 195–197
Logical-network topology, 205
Logins and name conflicts, 226
Log-retention policy, 277
Logs, 299
 detailed and timestamped, 306
 storing in nonstandard space, 710
Longevity policy, 230–231
Long-term motivators, 804–806
Long-term solution, 822–823
LOPSA (League of Professional System Administrators), 72, 324, 796
Lose-lose situation, 798
Lose-win situation, 798
Loving your job
 accepting criticism, 807–808
 asking for help, 808–809
 bad boss, 807
 balancing work and personal life, 809–810
 being motivated, 804–806
 enjoying what you do, 804
 great boss, 807
 happiness, 806–807
 support structure, 808
Low-latency environment, 102
Loyalty, 838
Lucent Technologies, 232–233, 457
LUDE, 672
Lumeta, 151, 477

M
MAC (media access control)
 address, 48
Mac OS X, 237
Mac OS X server, 211
Machine independence services, 109
Machine room, 82, 129
Mail delivery systems, 554–555
mail global alias, 98
Mail relay hosts, 553, 556–557
Mail transport systems, 554–555
Mail user agents communications, 551
Mail-filtering software, 788
Mailing lists, 399, 409, 552, 561–562, 788
Mailping, 536
Mainframes, 130
Maintainer, 915
Maintenance, 735–736
 generators, 141
 selecting window for, 443–445
 UPS, 140–141
Maintenance contracts, 74–78, 731
Maintenance patches, 297
Maintenance windows, 130
 basics, 475–492
 benefiting company, 474–475
 communications, 495
 comprehensive system testing, 489–490
 corporate culture, 477
 deadlines for change completion, 488–489
 developing master plan, 481–482
 direct console access, 486
 directing, 478
 disabling access, 482–483
 e-commerce sites, 475
 ensuring mechanics and coordination, 483–488
 flight director, 473–474, 478, 492–493
 handheld radios, 486–488
 hidden infrastructure, 491
 high availability for systems, 475
 high-availability sites, 495–497
 interruption of service, 473
 ISPs, 475
 KVM switches, 486
 limited service ability, 493–494
 managing change proposals, 479–481
 planning, 477
 postmaintenance communication, 490–491
 postmortem, 492
 reducing complexity and making testing easier, 474
 redundancy, 496
 reenabling remote access, 491
Maintenance windows (continued)
SA group visibility after, 491–492
scheduling, 474–476, 495
serial console servers, 486
shutdown/boot sequence, 483–485
testing console servers and tools, 482–483
trending historical data, 493
undetected problems, 492
weekly reminders, 476
Major outage, surviving overview, 10–11
Major updates, 420, 422
Majordomo mailing lists, 409
make account command, 237
make command, 236
make newuser command, 237
Makefiles, 237, 413
automating tasks, 677
VPATH facility, 673
Malicious alteration, 274
Malware
blocking, 550
protection, 284
Managed hosting, 718
Management
keeping happy overview, 15
security officer, 281
security policy issues, 300–314
tasks, 797
telling you to break the law, 331
time-saving policies, 31
Management chain, 733–734
Managers
career goals and, 812–813
grooming SAs for positions, 813
information provided for boss of, 26
making success of, 811–812
making your needs known to, 812
managing, 811–814
non-work-related requests, 814
raises and, 811
time management, 813
understanding security job, 282
upward delegation, 813–814
what system administrators expect from, 26
Managing quick requests correctly, 29–30
Managing risk, 415
Managing your manager, 811–814
Manual backups, 639, 641
Manual installation, 43
Manual processes, 46
Manual steps and automation, 764–765
Mashup applications, 721–722
Mass email, 770–773
Master images, 50
Master plan, 481–482
Master station, 538
MDA (mail delivery agents), 547
MDF (main distribution frame), 198–199, 203–205, 212–213
Mean time to attack, 289
Measuring, 604
Measuring twice, 410–411
Mechanics, ensuring, 483–488
Media
disasters and, 269
off-site backup storage, 644–647
Media servers, 696–697
MediaWiki, 253
Medium-sized company
SA (system administrators) team, 745–746
security program, 318–319
Memory and monitoring, 524–525
Mentor Graphics, 248, 445
Mentoring new flight director, 492–493
Mentors, 881–882
Mergers overview, 8–9
Merging existing namespaces, 226–227
Metamonitoring, 539–540
Metrics
helpdesks, 347
SAs (system administrators), 384
security, 317
MIBs, 528
Microformats, 692
Micromanagement, 855–856
Micromanaging, 841
Microsoft
 ActiveDirectory, 64, 237, 332
 DHCP servers, 60
 Exchange mail server, 107
 Kerberos authentication system, 105
 preventing interoperating with non-Microsoft Kerberos systems, 105
Microsoft Exchange, 551
Microsoft IIS, 691
Microsoft OSs, 438
Microsoft Windows, 410
 automating software updates, 54
 debugging, 396
 Remote Installation Service, 46
Microsoft Windows NT 4.0, 50
MIL-SPEC requirements, 72
Minicomputers, 130
Mirrored disks
 backups, 84
 break, 599
 reattached, 599
Mirroring, 83, 585–586, 587, 599–600, 792–794
MIS, 312
Misdelegator, 379
Mobile phones, 170–171, 692
Model-based training, 380, 381
Modem pools, 664
Modems and backward compatibility, 664
Modules, 672
MONET (multiwavelength optical network), 188
monitor, 930
Monitoring, 523
 accessibility, 534–535
 active systems for, 532–534
 alerting, 215
 application response time, 537
 automation, 535
 availability, 527
 basics, 523–534
 capacity, 527–528
 clogging network links, 538
 CPU and memory, 524–525
 CPU usage, 601–602
 crashes, 36
data storage service, 601–603
dependency chains, 539
device discovery, 535
disk failures, 602
documentation, 534–535
duplicating, 540
e-mail, 337
e-mail servers, 552–553
e-mail service, 552–553
end-to-end testing, 536–537, 561
file service operations, 603
granular priority system, 538
high-volume list services, 562
historical, 215–216, 523–524, 525–527
individual resource usage, 603
I/O local usage, 602
lack of usage, 603
master station, 538
metamonitoring, 539–540
multiple variables in SNMP, 528
network bandwidth, 524
network local interface, 602
networking bandwidth usage, 602–603
network-interface state transitions, 215
networks, 214–215
nonredundant network component, 539
notification scripts, 602
outages, 602
performance problems, 524
pervasive, 535
postmaster address, 553
print service, 574–575
problems failed to catch, 536
RAID for disk failures, 597
rate of change, 602
real-time, 215, 523–524, 527–534
remote probes, 538
routing problems, 215
scaling problems, 537–539
security, 525
services, 119
setting expectations, 336–337
Monitoring (continued)
- space used/space free, 602
- spikes or troughs, 601
- spoolers, 574–575
- status of printers, 575
- storage volume utilization, 601
- storage-access traffic, 601
- storage-to-server networks, 603
- tasks, 524
- web server errors, 698
- web services, 698–699

Monitoring and privacy policy, 277, 318, 321
Monitors in data centers, 171
Morale, 838, 855–857
Motivation, 502–503
Motivators, 804–805
Motorola, 316
mountd, 397

Moving data center overview, 5
MPLS (Mail Protocol Label Switching), 187
MRTGs (multirouter traffic graphics), 255, 538
MS-SMS (Microsoft’s System Management Service), 668
MTA (mail transport agent), 547
MTTR (mean time to repair), 73
MUA (mail user agent), 547
Multicast, 187
Multihomed hosts, 208, 210
Multimedia files, 692
Multimedia servers, 696–697
Multiple administrative domains, 219
Multiple inexpensive servers, 89–92
Multiple servers on one host, 697–698
Multiple-star topology, 192, 196
Multiply-redundant spoolers, 573
Multiuser systems and fragmentation, 614
Multiyear maintenance contracts, 800–801
My SQL, 238
Mystery file deletes, 401–402

N
- N + 1 redundancy, 85–87
- Name conflicts, 226–227
- Name services, 96, 122
- Name tokens, 545–550

Names
- aliases, 231
- corporate culture, 227–228
- descriptive, 225–226
- difficult-to-type, 228
- formulaic, 225, 227
- functional, 225–227
- hosts, 228
- longevity, 231
- no method for choosing, 225
- obscuring, 231
- security implications, 228
- sequential, 227
- thematic, 225, 227

Namespace databases, 232
Namespace management system, 543

Namespaces
- abstract or concrete thing, 223
- access control policy, 229–230
- adding software packages into, 244
- attributes, 223
- backup policies, 230
- basics, 224–237
- centralizing into SQL database, 238
- centralizing management, 236–237
- change control, 230
- change procedures, 236
- changes, 230
- cleanup, 236–237
- conflicts, 226
- consistency policy, 233–234
- corporate, 543
- customer-based updating, 239
- diameter, 232
- email service, 544–546
- flat, 223
- functional aliases, 227
- further automation, 238
- globally flat, 233
- inventory of all systems, 238
leverage, 239
longevity policy, 230–231
managed formally, 223–224
master copies, 237
merging existing, 226–227
name tokens, 545–550
naming policy, 224–228
policies, 224–236
protecting from modification, 230
reuse policy, 235
scope policy, 231–233
single, global, 232–233
thickness, 232
unique corporation-wide, 545
wide and thick e-commerce, 233
Naming conflicts, 715
Naming conventions, 207
Naming policy, 224–228
Naming standards, 234
NAS (network-attached storage), 587–588
backups, 600
configuration changes of underlying networks, 610
file-sharing services, 605
performance, 605
NAS servers, 598, 600
NAT (network address translation) gateways, 702
Natural disasters, 131–132, 645
NEBS (Network Equipment Building System) standard, 155, 177–178
Negative behavior, 824
Negotiations
after making request or offer, 802
always refusing first offer, 802–803
asking for what you honestly want, 801–802
being careful what you say, 803
developing positive relationship, 800
doing your homework, 800
format of meeting, 801
information not leaked, 798
knowing vendor’s competition, 799
multiyear maintenance contracts, 800–801
nebulous requests, 799
not revealing strategy to opponent, 802
planning, 799
power dynamic, 799
recognizing negotiating situation, 798–799
rehearsing situation, 800
silence as negotiating tool, 803
variety of techniques, 801
working toward win-win situation, 798
NetAid, 431
NetApp, 121, 622
NetApp Filers, 85
Network access control, 61
Network addressing architectures, 187
Network Administrator, 291
Network Appliance’s file server, 586
Network cables, 167–168
Network components outage and monitoring, 539
Network configuration, 57–61, 610
Network connectivity policy, 277
Network devices, 209–211
automating weekly audit, 529
cooling, 201
firewalls, 210–211
hardware or MAC address, 188
hot-swappable interface cards, 88
IP (or AppleTalk or DECnet), 188
moving packets quickly, 209–210
path data travels, 188
routers, 209–210
software upgrades and configuration changes, 211
switches, 209
transport information, 188
UPS (uninterruptible power supply), 35
Network disk, 668
Network equipment connecting to WANs, 168
protected power, 201
Network Information Service, 232
Network jacks, 200
Network Notes, 690
Network policies
 centralizing authority, 282–283
 high-level management support, 280–282
Network racks, 204
Network router, 84
Network row, 204
Network services
 design of, 196
 modern computing infrastructures, 739
 scripted tests, 441
Network vendors, 213–214
Network-based backups, 641
Network-based software push system, 668
Networked off-site backups, 646–647
Networking
 constants, 219–220
 TCP/IP, 188–189
Networking devices, 81
Networking printers, 568
Networks, 187
 administrative functions, 89
 assigned based on physical location, 197
 bandwidth and local area network, 524
 basics, 188–217
 cables, 163
 centralizing management, 738
 changes in design, 220
 clean architecture, 190–191
 complexity, 190
 connection to world-wide governments, 279–280
 debugging, 190
 demarcation points, 205
 direct cabling, 606
 documentation, 205–207
 IDF (intermediate distribution frame), 197–203
 inconsistent architecture, 196
 installing jacks, 201–203
 labeling, 205–206
 lack of single administrative group, 216–217
 leading edge versus reliability, 217–218
 lunch-related traffic, 215
 massive, disruptive cleaning, 473
 MDF (main distribution frame), 203–205
 modern computing infrastructures, 739
 monitoring, 214–215
 multiple administrative domains, 219
 naming conventions, 207
 network administrators support, 190
 network devices, 209–211
 OSI (Open Systems Interconnection) model, 188–189
 overlay networks, 212–213
 parameter updates, 57–61
 real-time monitoring, 215
 running fiber, 202
 security measures, 272
 simple host routing, 207–209
 single administrative domain, 216–217
 single set of policies and practices, 216
 solid infrastructure, 287–288
 standards-based protocols, 214
 topologies, 191–197
 tracking software licences, 332
 unsecured, 289
 vendor support, 190
 wiring, 198
Newsletters, 770
NFS, 397
 badcall, 603
 caches, 683
 dependencies outside data centers, 110–111
 mounting problems tools, 397
NFS server, 112
Nine-track tape drives, 649
NIS (Network Information Service) master, 121
NNTP, 398
Nonconstructive criticism, 808
Non-critical server, 74
Nonprofit organizations and SA
(system administrators) team, 747
Nonstandard protocols, 551
Nontechnical interviewing, 891–892
Nontechnical manager
analogy for, 835
basics, 853–863
budgets, 860–862
communication, 837, 857–858
customer requirements, 836
deadlines, 836
five-year vision, 864–866
goals, 836
morale, 855–857
one-year plans, 860
overriding technical decision, 856
priorities, 854–855
professional development, 862–863
rehearsing executive visits, 858–859
requirements tasks, 836–837
resources, 854–855
single point of contact meetings, 866–868
staff meetings, 858–859
supporting team, 857
technical managers and, 835–837
understanding technical staff's work, 868–869
Nonuniform operating system, 46–47
Nonverifier, 379
Non-work-related requests, 814
NTFS, 587
Nuclear power plants, 411

O
Off state, 42
Office location and visibility, 767
Office moves, 6–7
Off-shoring, 518
Off-site backup storage, 644–647
Off-site links, 258
Off-site records-storage service, 645–646
On-call expert, 923
One, some, many technique, 56–57, 120

The One Minute Manager (Blanchard), 815
The One Minute Sales Person
(Johnson), 815
One spooler per building, 573
One-day workshops and training
programs, 796, 862
One-year plans, 860
Online documentation, 206
Open architecture services, 104–107
Open architectures, 96
Open cable management, 158
Open file formats, 104, 106
Open protocols, 96, 104–106
Open source software
 licenses and copying, 331
security-sensitive products, 296
Open standards, 690
Open systems and gateways, 106
OpenDirectory, 237
OpenSSL, 705
Operational requirements services, 100–103
Optimization, 604, 607
Organizational structures
 basics, 727–743
examples, 745
Organizations
 ethics-related policies, 323
security policy issues, 300–314
Organizing from the Inside Out
(Morgenstern), 815
OS-based firewalls, 210–211
OSHA (Occupational Safety and
Health Administration) regulations, 257
OSI (Open Systems Interconnection) model, 188–189
OSPF (Open Shortest Path First), 187
OSs (operating systems)
 add-ons, 43
automated loading, 46–47
automating installation, 32–33,
763–764
caching algorithms, 701
checklists, 32, 53–54
client server configuration, 79–80
OSs (operating systems) (continued)
consistent method of loading, 32–33
degrading slowly, 43
disk-cloning system, 32
inconsistent configuration problems, 33
integrity, 43
known state, 52
less dependent on hardware, 53
life cycle, 41–42
loading, 41, 46–54
loading files, 43
maintaining, 44–65
manually loading, 763
nonuniformity, 46–47
preloaded, 51–53
promoting, 45
RAID 1, 83
reloading from scratch, 52
scripts or programs to bring machine up, 409
second-class-citizens, 684–685
single-function network appliances, 79
upgrading servers, 435–454
vendor loaded, 52
verifying software compatibility, 438–439
web servers, 79
workstations, 41
OTP (one-time password), 278
Outages, 382, 597
Out-of-hours and 24/7 helpdesk coverage, 357–358
Out-of-scope technologies, 350–351
Outsider, 934–935
Outsourcing
centralization, 515–518
colocation (colo) center, 743
printing, 577
remote access service, 658–661
SA (system administrators) teams, 741–743
security, 638, 742
Overhead power bus, 146–147
Overlay networks, 212–213

P
Packages, 673–675, 677–678
services and, 438
source code, 673
Packet routing, 210
Pages, 689
Paging, 530
PAM (pluggable authentication module), 720
Parallel/USB cable connection, 569
PARIS (Programmable Automatic Remote Installation Service), 51
Parking spaces for mobile items, 175–176
Partially automated installation, 49–50
Passive mode, 209
Passwords, 273, 528–529, 705
Patch cables, 161–163, 203
Patch panels, 160–161, 204
Patches, 33, 54, 56–57, 161
PCL, 569
PDA, taking along, 786–787
PDUs (power distribution units), 147–149
power supplies, 86
racks, 151
Peer programming, 447
Peer-to-peer print architecture, 572–573
Peer-to-peer services, 62
Penetration testing, 309
Per group spoolers, 573
Per project verification, 299
Perception, 751–765
Performance
changes in, 116–117
data storage, 604–608
intelligent queuing mechanisms, 118
NAS, 605
optimizing, 604
QoS (quality of service), 118
RAID, 604–605
RAM, 604
remote sites, 118–119
SANs, 606
services, 116–119
spindles, 604
Performance review, 834
Perimeter security, 272
Permanent fixes, 407–409
Permanent lease, 60
Permissions, 678, 710
Personal life, balancing with work, 809–810
Personal problems, 805
Pervasive monitoring, 535
Phone number conversion, 465
Phone-screening candidates, 877
PHP, 691
Physical access, 901
Physical issues and scripted tests, 441
Physical networks, maps of, 205–206
Physical security breaches, 300
Physical topology, 212
Physical visibility, 767
Physical-network conversion, 464
Physics, knowledge of, 402
Pillars approach, 460–461
ping, 397–398
Pipelining algorithms, 607
Pirated software, 330–332
pkginfo package, 438
Plaintext and wikis, 249
Planning
 maintenance windows, 477
 testing and, 416
Platforms, 44–45
 controlled by management or by SA team, 66
 standards, 508–509
Platters, 584–585
Policies, documenting overview, 13
Policy conformance, 319
Policy enforcer, 923–925
Policy navigator, 932
Policy writer, 301, 918
Polling systems, 525
POP (Post Office Protocol) server, 109
POP3, 556
POPI (Protection of Proprietary Information) program, 316
Port 80, 297
Portable serial consoles, 171
portmap traceroute function, 397
Positive behavior, 824
Positive roles, 914–932
Positive visibility, 752–765
POST requests, 691–692
Postgres, 238
Postinstall scripts, 54
Postmaintenance communication, 490–491
Postmaster address, monitoring, 553
Posts, 153–154
PostScript, 569
Potential security incidents, 304
Power
 ATS, 139–140
 available from several sources, 177
 cleaned, 138
 data centers, 136–148
 distributing to racks, 146–148
 emergency lighting, 143
 extra electrical capacity, 144–145
 generators, 139–140
 loss of, 265
 maximum load, 143–144
 overhead power bus, 146–147
 PDUs (power-distribution units), 147–148
 providing sufficient, 35–36
 redundancy, 176–177
 UPS, 138–141
Power cables, separating from data cables, 166
Power supplies, 85–86
PowerUser permissions, 291
The Practice of Programming
 (Kernighan and Pike), 440, 765
Precompiling decisions, 785–787
Preloaded operating systems, 51–53
Premade patch cables, 203
Preparation function, 710
Prewiring racks, 160
Prewiring trade-offs, 166
Price per gigabyte-month, 583
Price per megabyte, 583
print global alias, 98
Print jobs, 572
Print server, 121, 577
Print service
- accounting policy, 568–569
- automatic failover, 577
- basics, 566–567
- central funnel architecture, 572–573
- dedicated clerical support, 578
- documentation, 573–574
- general printer architecture policy, 568
- how to print document, 573–574
- level of centralization, 566–567
- list of printers, 574
- load balancing, 577
- minimizing waste, 575
- monitoring, 574–575
- peer-to-peer print architecture, 572–573
- printer access policy, 570
- printer equipment standard, 569–570
- printer label, 574
- printer naming policy, 571–572
- redundant systems, 577
- system design, 572–573

Print system
- installing new, 54–55
- spoolers, 573

Printer abuse, 579
- Printer access policy, 570
- Printer label, 574
- Printer naming policy, 571–572

Printers
- access to, 570
- canceling print jobs, 570–571
- confidentiality, 567
- consistent tray scheme, 574
- convenience, 567
- cost, 567
- dedicated clerical support, 578
- environmental issues, 575–576
- equipment standard, 569–570
- list of, 574
- maintenance, 568
- monitoring status, 575
- naming, 571–572
- no standards for, 567
- nonbusiness use, 579
- protocols, 569
- recommended configuration, 570
- sharing, 566–567
- special, 567
- supplies, 569
- test print, 575
- toner cartridges, 569

Printing
- architecture policies, 568
- centralization, 566–568
- commodity service, 510
- duplex, 576
- /etc/passwd file, 229
- importance of, 565
- outsourced, 577
- printer abuse, 579
- shredding, 578–579

Priorities
- nontechnical managers, 854–855
- setting, 24–25
- technical manager, 820–821, 843–845

Prioritizing
- problems, 27
- tasks, 781
- trouble tickets, 354

Privacy and monitoring policy, 336–337
- Privacy policies, 337, 544
- private password, 529
- Privileged access, 327–330
- Privileged users, 323
- Privileged-access code of conduct, 327–330
- Privileges and web servers, 710
- Proactive solutions, 76
- Problem preventer, 915–916
- Problem reports, tracking, 366
- Problem statements, 369–372
- Problem-reporting mechanisms, 304
- Problem-reporting procedures, 304
- Problems
 - architectural decisions, 384–385
 - classifying, 368–369
 - educating customers, 384
 - encapsulating test in script or batch file, 372
finding real, 393
fixing, 373–376
fixing cause, no symptom, 393–394
fixing once, 405–413
fixing upstream, 823
flexible solutions, 371
formal decision tree, 368
helping customer save face, 371
identifying, 367–373
Internet routing, 370
knowledge of physics, 402
learning about customer’s, 392–393
more accurate method to reproduce, 378
prioritizing, 27
process of elimination, 394
reproducing, 372–373
short-term solutions, 35
skipping steps, 378–380
solutions, 373–376
successive refinement, 394–395
support groups, 369
systematic about finding cause, 394–395
unreported or not affecting users, 372
verifying, 372–373
verifying repair, 376–378
Problem-solving, 502
Procedures documenting overview, 12–13
Process and documentation, 416
Process of elimination, 394
Processes
 centralization, 505
 change management, 422, 424
 high confidence in completion, 65–66
 recording knowledge about, 413
proclmail, 784, 788
Procrastination, 787
Product finder, 920–921
Product-development group, 312
Production server, 717
Products
 gluing together several, 846
 integrating or customizing, 845–846
 versus protocols, 104–105
 security-sensitive purposes, 295–298
 standardizing on, 509
 volume purchasing deals, 513
Professional code of conduct, 324–326
Professional development, 796–797, 862–863
Professional organizations, 796
Profiles, managing, 720
Program Files directory, 438
Programming Pearls (Bentley), 765
Projects
 design documents for larger, 841
 finishing overview, 14–15
 kick-off meetings, 100
 Promotions, asking for, 812
 Proprietary email software, 106
 Proprietary email system, 107
 Proprietary file formats, 104
 Proprietary protocols, 104
 Prosecution policy, 306
Protocols
 based on TCP, 397–398
 embedding communications into, 297
 limiting on WAN, 191
 open, 104
 versus products, 104–105
 proprietary, 104
 standards-based, 214
 Sun RPC-based, 397
 TCP-based, 398
 vendor-proprietary, 107, 214
Provisioning new services, 360
Proximity badge readers, 135
Public information, 274
Public networks, 61
public password, 529
Punch block, 198
Purchasing, consolidating, 513–515
Push-to-talk features, 488
PUT, 528–529
Q
QA server, 717
QoS (quality of service), 118, 187
QPS (queries per second), 89–90, 694
Quick fixes, 35
Quick requests, 29–30

R
Rack frame, 90
Rack unit (U), 152
Racks
 19-inch racks, 152, 155
 air circulation, 156
 boltless, 153
 cable management, 152, 156–158
 cage nut, 153
 cooling system, 151
 data centers, 150–159
 depth, 155
 with doors, 156
 environment, 159
 extra floor space, 159
 first of each group of holes, 152
 four-post, 153, 154
 height, 154–155
 hole size, 153
 keeping power cables away from
 network cables, 151
 labeling, 160
 mounting servers, 153–154
 NEBS (Network Equipment Building
 System) compliant, 155
 numbering holes, 152–153
 organizing equipment, 151
 overview, 152–153
 patch panel, 160–161
 PDUs (power-distribution units), 151
 posts, 153–154
 prewiring, 160
 rack-mount units, 159
 rails, 152
 server wiring, 163
 shelves, 159
 specific purpose, 151
 strength, 158
 threaded, round holes for bolting
 equipment, 153
 too much prewiring, 163–164
 two-post, 154
 vertical power distribution units, 166
 width, 155
 wiring infrastructure, 151
Rack-unit, 90
Radical print solutions, 374
Radios, 170
RADIUS authentication protocol, 232
RAID (Redundant Array of
 Independent Disks), 87–88, 585–587
 customizing striping, 611–612
 file snapshots, 599
 hardware failure, 83
 hot spare, 587
 levels, 585
 monitoring for disk failures, 597
 not substitute for backup, 598–599
 optimizing usage by applications,
 611–612
 performance, 604–605
 reliability, 597
 triple-mirror configuration, 600
RAID 0, 585–586, 604–605
RAID 1, 83, 585–586, 605
RAID 2, 586
RAID 3, 586, 605
RAID 4, 586, 605
RAID 5, 586, 605
RAID 10, 586–587, 605
RAID mirrors to speed backups, 600
RAIDs 6-9, 586
Rails, 152
Raised floors, 137, 147, 159–160
RAM, 604
Ramanujan, 228
RAS devices, 211
Raw storage, 589–590
RCS, 237, 453
RDF (Resource Description
 Framework) Site Summary, 251
Reactive solutions, 76–77
Reading, 796
README file, 248
“Ready to eat” systems, 503
Real-time availability monitoring,
 215
Real-time monitoring, 523–524, 527–534
acknowledging, 532
active monitoring systems, 532–534
alert policy, 530
alerts, 527, 530–531
availability monitoring, 527
capacity monitoring, 527–528
critical outage, 530–531
error messages, 531
escalation policy, 531–532
escalation procedure, 532
flexibility, 528
handling problems, 539
indicating condition of monitored item, 538
scaling problems, 538
SNMP (Simple Network Monitoring Protocol), 528–529
standard mechanisms, 527
storage requirements, 527
test modules, 528
Reboot test, 427–428
Rebuild process, 42–43
Rebuilding files, 413
Recorder, 369–372
Recording requests, 786
Recruiting, 875–877
Recycling, 575–576
RedHat Linux, 46, 54
Redirect, 715
Redundancy
centralized funnel, 573
clients, 553–554
data centers, 176–177
data integrity, 122
data synchronization, 122
email service, 553–554
full, 86–87
high-availability sites, 496–497
HVAC systems, 176–177
list processing hosts, 553
load sharing, 87
mail relay hosts, 553
maintenance windows, 496
\(n+1\), 86–87
physical-network design, 205
power, 176–177
spoolers, 568
upgrades, 123
Redundant multiple-star topology, 193–194
Redundant power supplies, 85–86
Redundant servers, 89
Redundant site, 268
Reference lists, 256–257
Reflection, 795–796
Refresh period, 467
Registry, 410
Regression testing, 440
Reigning in partner network connections, 279–280
Relational Junction, 702
Reliability
choosing affordable amount, 598
data centers, 110
data storage service, 597–598
e-mail service, 123, 546–547
grouping, 113–115
versus leading-edge networks, 217
NAS servers, 598
RAID, 597
remote access service, 656
security and, 273
servers, 112–115
services, 101, 112–115
software depots, 670
web hosting, 719
web servers, 704
Remote access
aspects not to outsource, 659
authentication database, 659
connecting to Internet, 653
cost analysis and reduction, 663–664
directly connecting computer to network, 653
home office, 662–663
problems lumped together as, 653
reenabling, 491
removing, 901–902
Remote access outsourcing companies, 658–661
Remote access policy, 277
Remote access service, 653
acceptable use, 656
always-on connections, 656
from another company’s site, 656
authentication, 661
basics, 654–662
centralization, 658
common customers, 654
coverage area, 654
customers for trial services, 657
email, 654
encryption, 656
ETR (estimated time to repair), 656
firewalls, 655–656
helpdesk staff, 657
high-speed access, 656
home use of, 654–655
low-cost, convenient solution, 654–656
new technologies, 664–665
outsourcing, 658–661
perimeter security, 661–662
policy, 656
reliability, 656
requirements, 654–656
responsibilities for access, 656
security and, 655–656
security policies, 656
service levels, 656–658
short-duration connections, 654
in trial phase, 657
Remote console access, 80–83, 200
Remote email access, 557
Remote Installation Service, 46
Remote power management, 147
Remote sites, 118–119
Removable media, 337
Removing roadblocks, 821–823
Rensselaer Polytechnic Institute, 238
Repair person, 914–915
Repeatability, 32
Repeaters, 488
Replacing services overview, 4–5
Replication, 676
Reporting problems, 359–360
Reproducer role, 372–373
Reproducing problems, 372–373
Reputation as can-do person, 760–761
Request management, 28–29
Request Tracker, 29
Requesting new services, 359–360
Requests, 759, 786
Request-tracking software, 354–356
Request-tracking system, 246
Resources
security team, 300–303
servers, 125
Respecting employees, 838–841
Response policy, 305–306
Restores, 619
accidental file deletion, 621–623
archival backups, 624–625
complete restores, 625
data-recovery SLA and policy, 626
disk failure, 623
documentation, 638
fire drills for, 644
individual file, 624
process issues, 637–638
reasons for, 621–624
security implications, 637–638
self-service, 622–623
setting expectations with customers, 637
speed of, 634
tape inventory, 642–643
technology changes, 648–649
time and capacity planning, 633–635
training system administrators, 638
types, 624–625, 627
Retention policy of email, 559–560
Reuse policy, 235
Revenue-generating Internet presence, 742
Revision control and automation, 416
Revision Control System, 425
Revision history, 424–426
Rewards, 824–825
Rewiring building, 202
RFCs, static assignment, 60–61
Ring topologies, 192–193, 196
Rioting-Mob Technique, 459–460
RIP, RIPv2 (Routing Information Protocol), 207
Risk analysis, 262–263
Risk manager, 303
Risks, 415, 417–418
Risk-taking, 262
RJ-45 connectors, 198
Roaming profiles, 78
Robolnst, 46, 54
Role accounts, 290–291, 293
Rolling upgrade, 123
Root access, 327
Root account, 291
Round-robin DNS name server records, 699–700
Routers, 86, 187, 207, 209–211
Routine updates, 420, 422
Routing, 208
Routing hosts, 123
Routing protocol, 209
Routing protocols, 187
RPMs, 54
RSS feed, 692
RT wiki, 253
RTT (round-trip time), 101

S
SA (system administration) team
attitude of, 756–758
becoming system advocate, 760–765
blatant disrespect for people, 756
building self-confidence, 22
business applications support team, 312
business partners relationship, 757
centralized models, 732–733
centralizing, 507
clear directions, 842
clerk role, 761
coaching, 831–833
communicating change to, 418–419
consultants, 743–745
contractors, 743–745
customer support, 735–736, 739–741
customers, 756
customer-to-SA ratio, 729–730
decentralized models, 732–733
deployment of new services, 736
designing new service architectures, 736
Dilbert check, 879
distributed network support, 738
division of labor, 759
e-commerce sites, 746–747
eliminating redundancy, 732
fixing quick requests, 759
funding models, 730–733
goals, 830
helpdesk, 741
helping customer help himself, 756
high support costs, 729
hiring considerations, 878–882
improving follow-through, 22–23
infrastructure teams, 737–739
in-person orientation, 755–756
large company, 746
long-term solution, 822–823
maintenance, 735–736
maintenance contracts, 731
management chain’s influence, 733–735
manager keeping track of, 825–827
medium-sized company, 745–746
morale, 821
more customized service, 732
nonprofit organizations, 747
opportunities for growth on, 881
outsourcing, 741–743
overstaffing, 728
perception of, 756–758
personality clashes, 878–879
priorities and customer expectations, 758–760
promoting from within, 737
reduced duplication of services, 732
requests against policy, 756
resentment toward customers, 757
restricting size and growth, 730
rewarding, 824–825
roles, 735–737, 934–937
saying no when appropriate, 756
security as cooperative effort, 311–312
SA (system administration) team (continued)

- senior generalists, 736
- short-term solution, 822–823
- sizing, 728–730
- skill selection, 735–737
- small company, 745
- specializing, 745–746
- standardization, 732
- strengthening, 849
- strengths and weaknesses, 732
- structure, 727–743
- system clerk, 760
- town hall meeting, 768–770
- understaffing, 731
- universities, 747
- users, 756
- venting about customers, 757–758
- viewed as cost center, 730–731
- vision for, 830–831
- written policies to guide, 820

Safe-delete programs, 383

SAGE (System Administrators’ Guild), 72, 324, 399

SANs (storage area networks), 180, 588
- AoE (ATA over Ethernet), 606
- backups, 600–601
- caveats, 603–604
- cluster file systems, 588
- components from different vendors, 603
- configuration of underlying networks, 610
- generating snapshots of LUNs, 601
- moving backup traffic off primary network, 635
- moving file traffic off main network, 606
- performance, 606
- reducing isolated storage, 588
- tape backup units, 588

SANS Computer Security Incident Handling: Step-by-Step booklet, 307

Sarbanes-Oxley Act, 323

Sarbanes-Oxley compliance, 746

Sarbanes-Oxley governing-practice regulations, 257

SAs (system administrators)
- assumer, 379
- attire, 753
- basics, 364–380
- boundaries between areas of responsibility, 285–286
- career crisis, 834
- career goals, 812–813
- career paths, 833–834
- Carte Blanche Night, 445
- checklists, 821
- closer, 380
- craft worker, 376
- deexecutioner, 379
- dress rehearsal for paper presentations, 768
- firing, 899–908
- fixing problems, 533
- flexibility, 371
- good first impression, 752–755
- greeting customer, 364–367
- helpdesk, 736–737
- high-quality handoffs, 381
- high-stress work life, 855
- hiring, 20, 871–896
- hit-and-run sysadmin, 379
- holistic improvement, 381
- increased customer familiarity, 381
- informed consent, 324
- interaction with customer at appointment, 753
- interesting projects, 744, 824
- involved in hiring process, 760
- isolation, 27
- job description, 872–874
- law enforcement and, 332–335
- learning from mistakes, 832
- lunch with customers, 773
- management expectations, 26
- management meetings, 766–767
- meetings with single point of contact, 866–868
- metrics, 384
- misdelegator, 379
model-based training, 380–381
monitoring system, 534
morale, 855–857
negative roles, 932–934
new hire’s first day, 754–755
nonverifier, 379
ogre, 378
outsourcing remote access, 658–659
PC delivery, 755
physical visibility, 767
positive roles, 914–932
positive visibility, 755
problem identification, 367–373
professional development, 862–863
promoting to management, 797
reproducer role, 372–373
selling security to, 314
setting priorities for, 734
shared responsibilities for machines, 285–286
special announcements for major outages, 382
standards, 66
stereotypes, 378–380
system status web page, 765–766
technical development, 833
trend analysis, 382–384
understanding customers expectations, 99
visibility paradox, 765
working alone, 380
wrong fixer, 379
yelling at people, 753–754
SAS-70 (Statement of Auditing Standards No. 70), 178

Scaling
CGI programs, 702
challenges, 702–703
choosing method, 701–702
data flow analysis, 124–125
database usage, 702
email service, 554–556
gradual, 701–702
horizontal, 699–700
IMAP4, 556
importance of, 703
load balancers, 702
POP3, 556
problems and monitoring, 537–539
pulling data from several sources, 702
services, 100
subsystems and common resources, 702
vertical, 699, 700–701
web services, 699–703
SCCS (Source Code Control System), 237

Scheduling
change management, 419–422
change-freeze times, 422, 423
maintenance windows, 475–476, 495
major updates, 420
no changes on Friday, 421
routine update, 420
sensitive updates, 420, 422
SCM (Software Configuration Management), 67
Scope of responsibility, 350
Scope of support, 348–351
Scope of work policy, 821
Scope policy, 231–233
Scope-of-support policy, 348–350
script command, 245
Scripting languages, 710
Scripts
to bring machine up, 409
helpdesks, 352
OK or FAIL message, 440
outputting commands to do task, 763
sharing, 411
software verification tests, 439–442
Search engines web repository, 250–251
Search facility, 250–251
SEC (Securities and Exchange Commission), 329–330
Second tier of support, 352–353
Second-best situation, 798
Second-class-citizens, 684–685
Secure connections, 704–706
Securing hosts before going live, 290
Security, 271
 applications, 709–710
 asking right questions, 273–275
 authentication, 290–293
 authorization, 290–293
 authorization matrix, 293–295
 automating data access, 710
 bulk emails, 338
 certificates, 704–706
 companies, 314
 competitive advantage, 314
 contacts, 316–317
 containment, 63–64
 cooperative effort, 311–312
 data, 271–272
 data centers, 134–136
 defeating or finding way around, 285
 directory traversal, 707–708
 effectively selling, 313–314
 email filtering, 284
 email service, 544, 556–557
 enabling people to work effectively, 285–286
 external sites, 717
 features consistently enabled, 33
 firewalls, 284
 form-field corruption, 708
 hosts determining hostname, 62
 IDF (intermediate distribution frame), 200
 implications of restores, 637–638
 information, 313–314
 information protection, 274
 internal auditing, 298–300
 internal web services, 704
 Internet, 271
 known, standard configurations, 287
 limiting potential damage, 709
 logging, 710
 logs, 299
 malware protection, 284
 mean time to attack, 289
 meeting business needs, 285–287
 metrics, 317
 monitoring, 525
 names, 228
 off-site backup storage, 646
 only as good as weakest link, 283
 outsourcing, 742
 passwords, 273
 permissions and privileges, 710
 pervasive, 315–316
 physical breaches, 300
 process for someone leaving company, 287
 projects verification, 299
 protecting important data, 275–276
 protecting service availability, 274–275
 protecting web server application, 706–707
 protecting web server content, 707–708
 raising awareness, 316
 reliability, 273
 remote access outsourcing
 companies, 660
 remote access service, 655–656
 remote console, 82–83
 remote email access, 557
 secure connections, 704–706
 secure perimeter, 661–662
 security-sensitive products, 296
 selecting right products and vendors, 295–298
 servers, 97
 shared development environment, 286–287
 single administrative domain, 217
 sites without, 284–285
 SNMP problems, 529
 solid infrastructure, 287–288
 spotlighting bad behavior, 291
 SQL injection, 708
 staff disagreeing with management decisions, 281
 state of, 284
 statically assigned IP addresses, 61
 technologies, 316–317
 theft of resources, 275
 through obscurity, 296
 UNIX, 271
 validating input, 709
AUP (acceptable-use policy), 276–277
basics, 272–277
better technology means less, 278
communication policy, 307
cooperation from other departments, 276
defense in depth, 272
disconnection policy, 306–307
documenting, 276–283
external audits, 308–309
HHA (handheld authenticators), 278
lack hampering security team, 278–279
log-retention policy, 277
management and organizational issues, 300–314
monitoring and privacy policy, 277
network connectivity policy, 277
outside auditing company, 300
partner network connections, 279–280
perimeter security, 272
remote access policy, 277
response policy, 305–306
technical staff, 283–300
without management support, 281–282
Security policy council, 282–283
Security professionals, 316
Security programs
e-commerce sites, 319–320
large companies, 319
medium-size company, 318–319
organization profiles, 317–321
small company, 318
universities, 320–321
Security Symposium, 797
Security system, 273
Security team
advisories, 289
auditor, 302
benchmarking company, 301
business applications support team, 312
contacts in industry, 300–301
cross-functional teams, 310–313
effectively selling security, 313–314
field offices, 312–313
full-disclosure mailing lists, 289
implementer, 302
incident response, 303–307
incident-response team, 303
independent feedback, 308
intercompany security focus groups, 301
involved at outset, 311
knowing latest attacks, 289
legal department, 310
points of contact, 304
policy writer, 301
product-development group, 312
reasonable staffing levels, 300
resources, 300–303
risk manager, 303
security architect, 301–302
security bulletins, 289
security operations staff, 302
variety of skills, 301–303
Security-awareness program, 318
Security-sensitive logs, 299
Security-sensitive products, 295–298
Self-help books, 815
Self-help desk, 255
Self-help systems, 345
Self-service restores, 622–623
Selling position, 892–893
Sendmail, 545
Senior generalists, 736
Senior management, 308, 313
Sensitive updates, 420, 422
SEPP, 672
Sequential names, 227
Sequential reads, 586
Serial console concentrators, 80–81
Serial console servers, 486
Serial consoles, 81
Serial port-based devices, 80
Serial ports, monitoring, 81
Server appliances, 84–85
Server computers, 73
Server upgrades, 448–449
Server virtualization, 506–507
Servers
access to, 97
buying hardware for, 69–71
colocation centers, 71
connected to multiple networks, 110
controlled introduction, 74–75
cooling and ventilation, 71
cost, 73, 90
cost of hardware, 72–74
CPUs, 70
data center, 78–79
data integrity, 78
disposable, 91
downtime, 74
extensibility, 70
front-mountable, 153
full redundancy, 122
full versus N + 1 redundancy, 86–87
growing number of customers, 117
hardware, 69
heterogeneous environments, 72
high availability options, 71
high availability requirements, 135
high performance throughput, 70
homogeneous environments, 72
hot-swap components, 87–88
hot-swap hardware, 74
I/O, 70
KVM switches, 80–81
lack of similar configurations on, 506
large groups of similar, 74
listing contents of directories, 248
load balancers, 89
load sharing, 87
locating in data center, 110
location of, 78–79
LUN (logical unit number), 588
maintenance contracts, 71, 74–78
management options, 71
MIL-SPEC requirements, 72
mirroring boot disks, 83
mounting in racks, 153–154
MTTR (mean time to repair), 73
multiple inexpensive, 89–92
name conflicts, 226
no side-access needs, 71
operating system configuration, 79–80
OS configuration, 79–80
peak utilization, 117
rack mounting, 78–79
rack-mountable, 70–71
redundant hardware, 74
redundant power supplies, 85–86
reliability, 110, 112–115
reliability and service ability, 84–89
remote console access, 80–83
required software, 79
resources, 125
restricting direct login access, 111
security, 97
separate networks for administrative functions, 89
server appliances, 84–85
services, 95, 118
simplicity, 97
spare parts, 74–78
terminals, 80
upgrade options, 70
upgrading, 435–454
UPS (uninterruptible power supply), 35
usage patterns, 125
vendors, 72
versatility, 70
wiring, 163
Service
conversions, 457
protection, 614
Service access, 901–904
Service checklist, 436–438, 453
Service conversions
adoption period, 464
avoiding, 468–469
back-out plan, 465–466
basics, 458
communication, 461–462
dividing into tasks, 460–461
doing it all at once, 463–465
failure, 466
flash-cuts, 463–465
future directions for product, 468
gradual, 463
instant rollback, 467–468
invisible change, 457
layers versus pillars, 460–461
minimizing intrusiveness, 458–460
old and new services available
simultaneously, 464
physical-network conversion, 464
Rioting-Mob Technique, 459–460
simultaneously for everyone,
464–465
slowly rolling out, 463
solid infrastructure in place, 458
test group, 463
training, 462
vendor support, 470
without service interruption, 459
Services, 95
adding and removing at same time,
450
additional requirements, 96
administrative interface, 100
adversely affecting, 112
associated with service-based name,
121
authentication and authorization
service, 97
average size of data loaded, 125
bad first impression, 117
basic requirements, 95
basics, 96–120
budget, 103
business-specific, 95
capacity planning, 119
cascading failures, 97
catch-22 dependencies, 111
centralization, 98, 116, 505, 508
client systems, 97
closed, 104
complexity, 107–108
consolidating, 506
critical, 122
customer requirements, 96, 98–100
customers relying on, 438
data storage, 596–604
dataflow analysis for scaling,
124–125
dedicated machines, 120–122
default responsible entity, 532
depending on few components, 113
desired features, 101
disabling, 450
equipment, 96, 110–111
escalation procedure, 532
failover system, 122
features wanted in, 98–99
first impressions, 120
five-year vision, 864–866
full redundancy, 122–123
function-based names, 109
fundamental, 95
generic, 95
hard outages, 114
hardware and software for, 108–109
high level of availability, 110
independent, 98, 115
infrastructure, 97
integrated into helpdesk process, 116
kick-off meetings, 100
latency, 103
listing, 453
lists of critical servers, 34
load testing, 117
machine independence, 109
machines and software part of, 97
mashup applications, 721–722
Microsoft Windows, 410
modeling transactions, 124
Services (continued)
monitoring, 103, 119
more supportable, 98
moving, 109
network performance issues, 101
network topology, 113–114
no customer requirements, 98
no direct or indirect customers, 438
open architecture, 96, 104–107
open protocols, 96
operational requirements, 100–103
packages and, 438
performance, 96, 116–119
potential economies of scale, 501
protecting availability, 274–275
prototyping phase, 657–658
providing limited availability, 493–494
redundancy, 112
reliability, 96, 97, 101, 112–115
relying on email, 96
relying on network, 96
relying on other services, 96–97
remote sites, 118–119
reorganizing, 501
restricted access, 111–112
restricting direct login access, 111
rolled out to customers, 120
scaling, 100
server-class machines, 96
servers, 118
simple text-based protocols, 441
simplicity, 107–108, 113
single or multiple servers, 115
single points of failure, 113
SLA (service-level agreement), 99
soft outages, 114
splitting, 121–122
stand-alone machines providing, 96
standards, 116
talking directly to clients, 62
testing, 469
tied to global alias, 98
tied to IP addresses, 109, 121
transaction based, 124
trouble tickets, 103
ty ing to machine, 98
upgrade path, 100–101
usability trials, 99
vendor relations, 108
virtual address, 109
Web-based, 469
Services Control Panel, 410
Shared accounts, 290–292
Shared development environment, 286–287
Shared directory, 248
Shared role accounts, 293
Shared voicemail, 292–293
Shoe-shining effect, 634
Short-term solution, 822–823
Shredding, 578–579
Shutdown sequence, 485
Shutdown/boot sequence, 483–485
SIDs (Windows), 223
Simple host routing, 207–209
Single, global namespaces, 232–233
Single administrative domain, 216–217
Single authentication database, 905
Single points of failure, 510, 512
Single-function network appliances, 79
Single-homed hosts, 208
Sites
assessing overview, 7–8
used to launch new attacks, 307
virtual connections between, 212
without security, 284–285
Skill level, 874–875
SLAs (service-level agreements), 32
backup and restore system, 621
backups, 625–626
monitoring conformance, 525
remote access outsourcing
companies, 660
services, 99
web service, 694
Slow bureaucrats, 789–790
Small company
SA (system administrators) team, 745
security program, 318
Smart pipelining algorithm, 607
SMB (Server Message Block) print
protocol, 569
SME (subject matter expert), 374, 375
SMS and automating software updates, 54
SMTP (Simple Mail Transfer Protocol), 104, 189, 398, 548
smtp global alias, 98
SMTP server, 109
Snake Oil Warning Signs: Encryption Software to Avoid (Curtin), 316
Snake Oil Warning Signs: Encryption Software to Avoid (Curtin), 559
Snapshots of filesystems, 622
SNMP (Simple Network Monitoring Protocol), 528–529
SNMP packets, 529
SNMPv2, 526
SNMPv2 polling, 527
SNMPv2 traps, 527
Social engineering, 303, 308–309, 333–334
Social engineers, 334
SOCKS relay, 121
Soft emotions, 791–792
Soft outages, 114
Software
collection policy, 671–672
installation test suite, 440
labeling ports, 168
management approval for downloading, 331
no longer supported, 439
old and new versions on same machine, 452
regression testing, 440
reuse policy, 235
selecting for support depot, 672
single place for customers to look for, 669
tracking licenses, 672
upgrade available but works only on new OS, 439
upgrading to release supported on both OSs, 439
verification tests, 439–442
verifying compatibility, 438–439
Software depots, 667
bug fixes, 670
bugs and debugging, 671
building and installing packages, 671
commercial software, 684
contributing software policy, 671–672
customer wants from, 670
deletion policy, 671–672
different configurations for different hosts, 682
documenting local procedure for injecting new software packages, 672–673
justification for, 669–670
librarians, 669
local replication, 683
managing UNIX symbolic links, 672
new versions of package, 670
OSs supported, 671
packages maintained by particular person, 671
reliability requirements, 670
requests for software, 669–670, 672
same software on all hosts, 670
scope of distribution, 672
second-class-citizens, 684–685
Solaris, 667–668
technical expectations, 670
tracking licenses, 672
UNIX, 668, 673–679
upgrades, 671
Windows, 668, 679–682
Software Distributor (SD-UX), 54
Software licenses, 332
Software piracy, 330–332
Software updates, 54–57
Solaris
automating software updates, 54
JumpStart, 46, 48, 65, 406
software depot, 667–668
solution designer, 921
Solutions, 373–376
building from scratch, 846–847
executing, 375–376
expensive, 374
proposals, 374
radical print, 374
radical print solutions, 374
selecting, 374–375
Solutions database, 246
SONET (synchronous optical network), 188
Source Code Control System, 425
SOURCENAME script, 673–674
SourceSafe, 425
Spam, 703
 blocking, 550
 email service, 549–550
Spammers, 338
Spare parts, 74–78
 cross-shipped, 77
 valuable, 175
Spare-parts kit, 77–78
Spare parts, organizing, 174
Special applications, 53
Specialization and centralization, 508
Special-purpose formats, 692
Special-purpose machines, 234
Spindles, 584–585, 604
Splitting
 center-of-the-universe host, 122
Splitting central machine, 121
Splitting services, 121–122
Spoolers
 monitoring, 574–575
 print system, 573
 redundancy, 568
Spot coolers, 146
Spreadsheets
 service checklist, 436–438
Spyware, 284
SQL injection, 708
SQL lookups, 720
SQL (Structured Query Language) request, 103
SSH package, 80
SSL (Secure Sockets Layer)
 cryptographic certificates, 705
Staff
 defining processes for, 352
Staff meetings
 knowledge transfer, 859
 nontechnical managers, 858–859
Staffing helpdesks, 347
Stakeholders, 100, 429
 hardware standards, 595
 signing off on each change, 429
Stalled processes
 being a good listener, 822
 being good listener, 822
 communication, 822
 restarting, 821–823
Standard configuration
 customers involved in, 66
Standard configurations
 multiple, 66–67
Standard protocols, 107, 468
Standardization
 data storage, 594–596
Standardizing on certain phrases, 793–794
Standardizing on products, 509
Standards-based protocols, 214
Star topology, 191–192, 196
 multiple stars variant, 192
 single-point-of-failure problem, 191–192
Start-up scripts, 409
Static documents, 694–695
Static files, 701
Static leases
 hosts, 62
Static web server, 694–695
Static web sites
 document root, 695
 status, 397
Status messages, 766
Stop-gap measures
 preventing from becoming permanent solutions, 50
Storage
 documentation, 247–248
Storage consolidation, 506
Storage devices
 confusing speed onf, 610
 other ways of networking, 606
Storage servers
 allocating on group-by-group basis, 588
 serving many groups, 589
Storage SLA, 596–597
- availability, 596
- latency, 596
- response time, 596

Storage standards, 594–596

Storage subsystems
- discarding, 595

Storage-needs assessment, 590–591

Streaming, 692

Streaming video
- latency, 103

Streaming-media, 696–697

Stress
- avoiding, 25

Strictly confidential information, 274

Striping, 585, 586
- customizing, 611–612

StudlyCaps, 249

SubVersion, 248, 425

Subzones, 233

Successive refinement, 394–395

sudo, 383

sudo command, 714

sudo program, 329

SUID (set user ID) programs, 383

Summary statements, 794–795

Sun Microsystems, 799

Sun OS 5.x
- JumpStart, 51

Sun RPC-based protocols, 397

SunOS 4.x
- PARIS (Programmable Automatic Remote Installation Service), 51
- unable to automate, 51

Supercomputers, 130

Superuser account
- access from unknown machine, 293

Supplies
- organizing, 174

Support
- customer solutions, 847
- defining scope of, 348–351
- first tier of, 352–353
- how long should average request take to complete, 349
- second tier of, 352–353
- what is being supported, 348
- when provided, 348–349
- who will be supported, 348

Support groups
- problems, 369

Support structure, 808

/sw/contrib directory, 678

/sw/default/bin directory, 674

Switches, 187, 209

swlist package, 438

Symbolic links
- managing, 675

Symptoms
- fixing, 393–394
- fixing without fixing root cause, 412

System
- balancing stress on, 591–592
- end-to-end understanding, 400–402
- increasing total reliability, 20

System Administrator’s Code of Ethics, 324–3267

System administration, 364
- accountability for actions, 29
- as cost center, 734
- tips for improving, 28–36

System Administrator team
- defining scope of responsibility policy, 31
- emergencies, 29
- handling day-to-day interruptions, 29–30
- specialization, 29

System Administrator team member tools, 11–12

System advocates, 760–765

System boot scripts, 427

System clerk, 760

system clerk, 918–919

System configuration files, 424–426

System file changes, 906

System files, 428

System Management Service, 55–56

System software, updating, 54–57

System status web page, 765–766
Systems
diversity in, 512
documenting overview, 12–13
polling, 525
speeding up overview, 16
Systems administrators
coping with big influx, 17
keeping happy overview, 16
Systems administrators team, 18

Tape backup units, 588
Tape drives, 642
nine-track, 649
shoe-shining effect, 634
speeds, 634
Tape inventory, 642–643
tar files, 673
Tasks
automating, 763–764
checklists of, 34
daily, 785
domino effect, 759
intrusive, 460
layers approach, 460–461
monitoring, 524
not intrusive, 460
order performed, 30
outsourcing, 515
pillars approach, 460–461
prioritizing, 30, 781
TCP, 527, 700
TCP connections, 526
TCP-based protocols, 397–398, 398
tcpdump, 395
TCP/IP, 191
TCP/IP (Transmission Control Protocol/Internet Protocol), 187
TCP/IP Illustrated, Volume 1 (Stevens), 398
TCP/IP networking, 188–189
TDD (Test-Driven Development), 442
Tech rehearsal, 452
Technical development, 833
technical interviewing, 886–890
Technical lead, 797

Technical library or scrapbook, 257–258
Technical manager
as bad guy, 828
buy-versus-build decision, 845–848
clear directions, 842–843
coaching, 831–833
decisions, 843–848
decisions that appear contrary to direction, 830–831
employees, 838–843
informing SAs of important events, 840
involved with staff and projects, 841
listening to employees, 840–841
micromanaging, 841
positive about abilities and direction, 841–842
priorities, 843–845
recognition for your accomplishments, 850
respecting employees, 838–841
responsibilities, 843
role model, 838
roles, 843
satisfied in role of, 850
selling department to senior management, 849–850
strengthening SA team, 849
vision leader, 830–831
Technical managers
automated reports, 826
basics, 819–848
blame for failures, 827
brainstorming solutions, 822–823
budgets, 834–835
bureaucratic tasks, 822
career paths, 833–834
communicating priorities, 820–821
contract negotiations and bureaucratic tasks, 827–828
enforcing company policy, 828–829
keeping track of team, 825–827
knowledgeable about new technology, 835
meetings with staff, 825–826
nontechnical managers and, 835–837
Index 1003

pessimistic estimates, 836
recognizing and rewarding successes, 827
removing roadblocks, 821–823
reports and, 825
responsibilities, 820–835
rewards, 824–825
SLAs, 820
soft issues, 822
structure to achieve goals, 821
supporting role for team, 827–830
team morale, 821
technical development, 833
tracking group metrics, 827
written policies to guide SA team, 820–821
Technical staff
budgets, 860–862
security policies, 283–300
technocrat, 927–928
Technologies
security, 316–317
Technology platforms, 697
technology staller, 932
tee command, 395
Telecommunications industry
high-reliability data centers, 177–178
TELNET, 80, 398
Templates
announcing upgrade to customers, 445–446
database-driven web sites, 695
DHCP systems, 58–60
Temporary fix, 412
Temporary fixes
avoiding, 407–409
TERM variable, 406
Terminal
capture-to-file feature, 245
Terminal servers, 171
Terminals, 80
termination checklist, 900–901
Test plan, 417
Test print, 575
Testing
alert system, 531
comprehensive system, 489–490
finding problems, 490
server upgrade, 447
Tests integrated into real-time monitoring system, 451
TFTP (Trivial File Transfer Protocol) server, 59
Theft of intellectual property, 267
Theft of resources, 275
Thematic names, 225, 227
Third-party spying
wireless communication, 530
Third-party web hosting, 718–721
Ticket system
knowledge base flag, 246
Tickets
email creation, 408
Time management, 780–790
daily planning, 782–783
daily tasks, 785
difficulty of, 780–781
finding free time, 788
goal setting, 781–782
handling paper once, 783–784
human time wasters, 789
interruptions, 780–781
managers, 813
precompiling decisions, 785–787
slow bureaucrats, 789–790
staying focused, 785
training, 790
Time Management for System Administrators (Limoncelli), 815
Time saving policies
defining emergencies, 31
defining scope of SA team’s responsibility policy, 31
how people get help policy, 31
Time server, 121
Time-drain
fixing biggest, 34–35
Timeouts
data storage, 610
Time-saving policies, 30–32
written, 31
timing
hiring SAs (system administrators), 877–878
Index

Tivoli, 367
TLS (Transport Layer Security), 704
/tmp directory, 56
Token-card authentication server, 121
Tom’s dream data center, 179–182
Tool chain, 685
Tools
 better for debugging, 399–400
 buzzword-compliant, 399
 centralizing, 116
 characteristics of good, 397
 debugging, 395–398
 ensuring return, 12
 evaluating, 399
 evaluation, 400
 formal training on, 400
 knowing why it draws conclusion, 396–397
 NFS mounting tools, 397
 System Administrator team member, 11–12
Tools and supplies
 data centers, 173–175
Topologies, 191–197
 chaos topology, 195
 flat network topology, 197
 functional group-based topology, 197
 location-based topology, 197
 logical network topology, 195–197
 multiple-star topology, 192
 multistar topology, 196
 redundant multiple-star topology, 193–194
 ring topologies, 192–193, 196
 star topology, 191–192, 196
Town hall meetings, 768–770
 customers, 768–770
 dress rehearsal for paper presentations, 768
 feedback from customers, 769
 introductions, 769
 meeting review, 770
 planning, 768
 presentations, 768
 question-and-answer sessions, 768
 review, 769
 show and tell, 769–770
 welcome, 768
Trac wiki, 253
traceroute, 397, 398
Tracking changes, 319
Tracking problem reports, 366
Tracks, 584
Training
 customers, 462
 service conversions, 462
Transactions
 modeling, 124
 successfully completing, 537
Transparent failover, 553–554
Traps
 SNMP (Simple Network Monitoring Protocol), 528
Trend analysis
 SAs (System administrators), 382–384
Trending historical data, 493
Triple-mirror configuration, 600
Trojan horse, 671
Trouble reports
 enlightened attitude toward, 758
Trouble tickets
 enlightened attitude toward, 758
 prioritizing, 354
Trouble-ticket system, 28–29
 documentation, 246
Trouble-tracking software, 366
Turning as debugging, 399
Two-post posts, 153
Two-post racks, 154

U
UCE (unsolicited commercial email), 549–550
UID
 all-accounts usage, 234
 UID ranges, 234
UIDs (UNIX), 223
Universities
 acceptable-use policy, 320
 codes of conduct, 327
constraints, 476
monitoring and privacy policy, 321
no budget for centralized services, 747–748
SA (system administrators) team, 747
security programs, 320–321
staffing helpdesks, 347
UNIX
add-on packages for, 452–453
automounter, 231
boot-time scripts, 438
calendar command, 419
at cmd, 65
code control systems, 425
crontab files, 438
customized version, 52
diff command, 377, 440
/etc/ethers file, 59
/etc/hosts file, 59–60
/etc/passwd file, 578
history command, 245
level 0 backup, 620
level 1 backup, 620
listing TCP/IP and UDP/IP ports, 438
login IDs, 225
maintaining revision history, 425–426
make command, 236
reviewing installed software, 438
root account, 291
script command, 245
security, 271
set of UIDs, 223
software depot, 668
strict permissions on directories, 43
sudo command, 714
SUID (set user ID) programs, 383
syncing write buffers to disk before halting system, 608
system bot scripts modified by hand, 427
tee command, 395
tools, 667
/usr/local/bin, 667
/var/log directory, 710
Web server Apache, 452
wrapper scripts, 671
UNIX Backup and Recovery (Preston), 620
UNIX desktops
configured email servers, 547
UNIX kernels, 396
UNIX printers
names, 571–572
UNIX servers
later users for tests, 442
UNIX shells
deleting files, 410–411
UNIX software
installation, 668
UNIX software depot
archiving installation media, 678
area where customers can install software, 678
automating tasks, 677
automounter map, 675–677
commercial software, 684
control over who can add packages, 678
defining standard way of specifying OSs, 677
deleting packages, 677
/home/src directory, 673
managing disk space, 677–678
managing symbolic links and automounter maps, 676–677
master file, 677
network of hosts, 675–677
NFS access, 681
obsolete packages, 676
packages, 673
policies to support older OSs, 676
programs in package, 675
reliability requirements, 676
replication, 676
SOURCENAME script, 673–674
/sw/contrib directory, 678
/sw/default/bin directory, 674
symbolic links, 674–675
wrappers, 679
UNIX software depots
 different configurations for different
 hosts, 682
 local replication, 683
 NFS caches, 683
UNIX systems
 NFS, 110–111
UNIX system
 /etc/passwd file, 229
 /etc/shadow file, 229
 login IDs, 229
 /var/adm/CHANGES file, 451
UNIX systems
 assembly-line approach to
 processing, 395
 configuring to send email from
 command line, 408
 crontabs, 78
 debugging, 396
 distributing printcap information, 572
 mail-processing utilities, 784
 Network Information Service, 232
 no root access for user, 78
 simple host routing, 207–208
 sudo program, 329
 tcpdump, 395
 /var directory, 78
UNIX workstations, 130
UNIX/Linux
 filesystem, 587
Unknown state, 42
Unproductive workplace, 806
Unrealistic promises, 503–504
unrequested solution person, 922
Unsafe workplace, 806
Unsecured networks, 289
Updates
 absolute cutoff conditions, 418
 authentication DNS, 63
 back-out plan, 418
 communication plan, 57
 differences from installations,
 55–56
 distributed to all hosts, 57
 dual-boot, 56
 host already in use, 55
 host in usable state, 55
 host not connected, 56
 known state, 55
 lease times aiding in propagating, 64–65
 live users, 55–56
 major, 420, 422
 network parameters, 57–61
 performing on native network of
 host, 55
 physical access not required, 55
 routine, 420, 422
 security-sensitive products, 297
 sensitive, 420–421, 422
 system software and applications,
 54–57
Updating applications, 54–57
Updating system software, 54–57
Upgrades
 advanced planning reducing need,
 468
 automating, 33
 redundancy, 123
Upgrading
 application servers, 211
 clones, 443
 critical DNS server, 453–454
Upgrading servers
 adding and removing services at
 same time, 450
 announcing upgrade to customers,
 445–446
 basics, 435–449
 customer dependency check, 437
 dress rehearsal, 451–452
 exaggerating time estimates, 444
 executing tests, 446
 fresh installs, 450–451
 installing of old and new versions on
 same machine, 452
 length of time, 444
 locking out customers, 446–447
 logging system changes, 451
 minimal changes from base,
 452–453
 multiple system administrators,
 447
review meeting with key representatives, 437
selecting maintenance window, 443–445
service checklist, 436–438
tech rehearsal, 452
testing your work, 447
tests integrated into real-time monitoring system, 451
verification tests, 439–442
verifying software compatibility, 438–439
when, 444
writing back-out plan, 443
UPS (uninterruptible power supply), 35, 138–141, 265
cooling, 139
environmental requirements, 140–141
failure, 177
lasting longer than hour, 139
maintenance, 140–141
notifying staff in case of failure or other problems, 138
power outages, 138
switch to bypass, 140
trickle-charge batteries, 141
Upward delegation, 813–814
URL (uniform resource locator), 690
changing, 715
inconsistent, 715
messy, 715
URL namespace planning, 715
Usability
security-sensitive products, 296–297
Usable storage, 589–590
USENIX, 399, 848
USENIX (Advanced Computing Systems Association), 796
USENIX Annual Technical Conference, 796–797
USENIX LISA conference, 562
User base
high attrition rate, 18
Users, 756
balance between full access and restricting, 43
ethics-related policies, 323
USS (user code of conduct), 326
Utilization data, 524
V
Variables
SNMP (Simple Network Monitoring Protocol), 528
VAX/VMS operating system, 622
vendor liaison, 928–929
Vendor loaded operating systems, 52
Vendor relations
services, 108
Vendor support networks, 190
Vendor-proprietary protocols, 107, 214
Vendors
business computers, 70–72
configurations tuned for particular applications, 108
home computers, 70–72
network, 213–214
product lines computers, 70–72
proprietary protocols, 104
RMA (returned merchandise authorization), 77
security bulletins, 289
security-sensitive purposes, 295–298
server computers, 70–72
support for service conversions, 470
Vendor-specific security, 707
Verification tests
automating, 441
Hello. World program, 440–442
manual, 441–442
OK or FAIL message, 440
Verifying
problem repair, 376–378
problems, 372–373
Version control system, 453
Versions
storing differences, 425
Vertical cable management, 158
Vertical scaling, 699, 700–701
Veto power, 505
vir shell script, 425
Virtual connections between sites, 212
Virtual helpdesks, 345
 welcoming, 346
Virtual hosts, 506–507
Virtual machines
 defining state, 507
 migrating onto spare machine, 507
 rebalancing workload, 507
Virtual servers, 91
Virtualization cluster, 507
Virus blocking
 email service, 549–550
Viruses, 284
 email system, 557
 introduced through pirated software, 330
 web sites, 704
Visibility, 751
 desk location and, 767
 newsletters, 770
 office location and, 767
 status messages, 766
 town meetings, 768–770
Visibility paradox, 765
Vision leader, 830–831
visionary, 929
VLAN, 212
 large LANs using, 212–213
 network topology diagrams, 213
Voicemail
 confidential information, 292
 shared, 292–293
Volumes, 587
 filesystem, 587
VPATH facility, 673
VPN service, 664
VPNs, 187, 284
VT-100 terminal, 80

W
W3C (World Wide Web Consortium), 689
WAFL file system, 586
WAN (wide area network), 102
WAN connections
 documentation, 207
WANs, 187, 188
 limiting protocols, 191
 redundant multiple-star topology, 194
 Ring topologies, 193
 star topology, 191–192
Wattage monitor, 610
Web
 data formats, 692
 open standards, 689
 security, 271
 special-purpose formats, 692
Web applications, 690
 managing profiles, 720
 standard formats for exchanging data between, 721–722
Web browser
 system status web page, 766
Web browsers, 690, 691
 multimedia files, 692
Web client, 691
Web content, 717
 accessing, 689
Web council, 711–712
 change control, 712–713
Web farms
 redundant servers, 89
Web forms
 intruder modification, 708
Web hosting, 717
 advantages, 718
 managing profiles, 719–721
 reliability, 719
 security, 719
 third-party, 718–721
 unified login, 719–721
Web outsourcing
 advantages, 718–719
 disadvantages, 719
 hosted backups, 719
 web dashboard, 719
Web pages
 dynamically generated, 691
 HTML or HTML derivative, 692
 interactive, 691–692
Web proxies
 layers approach, 461
Web repository
 search engines, 250–251
Web server Apache
 UNIX, 452
Web server appliances, 84
Web server software
 authentication, 720
Web servers, 691
 adding modules or configuration directives, 716
 alternative ports, 697–698
 building manageable generic, 714–718
 directory traversal, 707–708
 Horizontal scaling, 699–700
 letting others run web programs, 716
 limiting potential damage, 709
 logging, 698, 710
 managing profiles, 720
 monitoring errors, 698
 multimedia servers, 696–697
 multiple network interfaces, 698
 OS (operating system), 79
 overloaded by requests, 699
 pages, 689
 permissions, 710
 privileges, 710
 protecting application, 706–707
 protecting content, 707–708
 questions to ask about, 714
 redirect, 715
 reliability, 704
 round-robin DNS name server records, 699–700
 security, 703–710
 server-specific information, 699
 static documents, 694–695
 validating input, 709
 vertical scaling, 700–701
 web-specific vulnerabilities, 707
Web service
 architectures, 694–698
 basics, 690–718
 building blocks, 690–693
 CGI servers, 695
 database-driven web sites, 695–696
 multimedia servers, 696–697
 SLAs (service level agreements), 694
 static web server, 694–695
 URL (uniform resource locator), 690
Web services
 AJAX, 691–692
 centralizing, 506
 content management, 710–714
 Horizontal scaling, 699–700
 load balancers, 700
 monitoring, 698–699
 multiple servers on one host, 697–698
 scaling, 699–703
 security, 703–710
 vertical scaling, 700–701
 web client, 691
Web sites, 399, 689
 basic principles for planning, 715–716
 building from scratch overview, 3
 certificates, 704–706
 CGI programs, 701
 CGI servers, 695
 change control, 712–716
 changes, 713
 compromised, 704
 content updates, 712
 database-driven, 695–696
 databases, 701
 deployment process for new releases, 717–718
 DNS hosting, 717
 document repository, 248
 domain registration, 717
 fixes, 713
 form-field corruption, 708
 growing overview, 4
 hijacked, 703–704
 HTTP over SSL (Secure Sockets Layer), 704–705
 political issue, 713–714
 publication system, 253
 secure connections, 704–706
 separate configuration files, 715
 setting policy, 693–694
Web sites (continued)
SQL injection, 708
static, 694–695
static files, 701
updates, 713
updating content, 716
viruses, 704
visitors, 704
web content, 717
web hosting, 717
web system administrator, 693
web team, 711–712
webmaster, 693–694
Web system administrator, 693
Web team, 711–712
Web-based documentation repository, 249–250
Web-based request system
provisioning new services, 360
Web-based service
surfing web anonymously, 335
Web-Based Services, 469
Webmaster, 693–694, 711, 712
Week-long conferences, 796, 862
WiFi networks
network access control, 61
Wiki Encyclopedia, 252
Wiki sites, 692
Wikipedia, 252, 258
Wikis, 249–250, 252
ease of use, 251
enabling comments, 254
FAQ (Frequently Asked Questions), 256
formatting commands, 249
help picking, 250
how-to docs, 255–256
HTML (Hypertext Markup Language), 249
internal group-specific documents, 255
low barrier to entry, 254
naming pages, 249
off-site links, 258
placeholder pages, 249
plaintext, 249
procedures, 257
reference lists, 256–257
requests through ticket system, 255
revision control, 254
self-help desk, 255
source-code control system, 249
structure, 254
taxonomy, 254
technical library or scrapbook, 257–258
wiki-specific embedded formatting tags or commands, 249
WikiWikiWeb, 249
WikiWords, 249
Windows
Administrator account, 291
code control systems, 425
distribution-server model, 668–669
filesystem, 587
loading files into various system directories, 43
login scripts, 115
network disk, 668
network-based software push system, 668
PowerUser permissions, 291
security, 271
software depot, 668
WINS directory, 223
Windows NT
automating installation, 47
listing TCP/IP and UDP/IP ports, 438
Services console, 438
SMB (Server Message Block) print protocol, 569
unique SID (security ID), 51
Windows NT Backup and Restore (Leber), 620
Windows platforms
roaming profiles, 78
storing data on local machines, 78
Windows software depot, 669
commercial software, 684
selecting software for, 672
Windows software depots, 679
Admin directory, 680–681
certain products approved for all systems, 680–681
directory for each package, 681
 disk images directory, 680
 Experimental directory, 680
 notes about software, 681
 Preinstalled directory, 680
 replicating, 681–682
 self-installed software, 680
 special installation prohibitions and
 controls, 680–681
 Standard directory, 680
 version-specific packages, 681
WINS directory, 223
Wireless communication
 as alerting mechanism, 530
 third-party spying, 530
Wiring
 data centers, 159–166
 good cable-management
 practices, 151
 higher-quality copper or fiber, 198
 IDF (intermediate distribution
 frame), 198
 networks, 198
 payoff for good, 164–165
 servers, 163
Wiring closet, 197–203
Wiring closets
 access to, 201
 floorplan for area served, 200
 protected power, 201
 training classes, 200
Work
 balancing with personal life, 809–810
 Work stoppage
 surviving overview, 10–11
Workbench
 data centers, 172–173
Worksations
 maintenance contracts, 74
Workstations, 41
 automated installation, 43
 bulk-license popular packages, 331
 defining, 41
 disk failure, 78
 long life cycles, 41
 maintaining operating systems, 44–65
 managing operating systems, 41
 manual installation, 43
 network configuration, 57–61
 reinstallation, 43–44
 spareparts, 74
 storing data on servers, 78
 updating system software and
 applications, 54–57
Worms, 284
Wrapper scripts, 671
Wrappers, 679
Write streams
 streamlining, 612

X
xed shell script, 425
XML, 692
XSRF (Cross-Site Reverse Forgery), 710

Y
Yahoo!, 90