
Preface

A former colleague of mine used to say that thick books about design patterns were
evidence of an inadequate programming language. What he meant was that, because
design patterns are the common idioms of code, a good programming language
should make them very easy to implement. An ideal language would so thoroughly
integrate the patterns that they would almost disappear from sight.

To take an extreme example, in the late 1980s I worked on a project that pro-
duced object-oriented code in C. Yes, C, not C++. We pulled off this feat by having
each “object” (actually a C structure) point to a table of function pointers. We oper-
ated on our “objects” by chasing the pointer to the table and calling functions out
of the table, thereby simulating a method call on an object. It was awkward and
messy, but it worked. Had we thought of it, we might have called this technique the
“object-oriented” pattern. Of course, with the advent of C++ and then Java, our
object-oriented pattern disappeared, absorbed so thoroughly into the language that it
vanished from sight. Today, we don’t usually think of object orientation as a pattern—
it is too easy.

But many things are still not easy enough. The justly famous Gang of Four book
(Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides) is required reading for every software engineer today. But actu-
ally implementing many of the patterns described in Design Patterns with the lan-
guages in widespread use today (Java and C++ and perhaps C#) looks and feels a lot
like my 1980s-vintage handcrafted object system. Too painful. Too verbose. Too prone
to bugs.

xix

00_0321290452_FM.qxd 11/15/07 10:44 AM Page xix

The Ruby programming language takes us a step closer to my old friend’s ideal, a
language that makes implementing patterns so easy that sometimes they fade into the
background. Building patterns in Ruby is easier for a number of reasons:

• Ruby is dynamically typed. By dispensing with static typing, Ruby dramatically
reduces the code overhead of building most programs, including those that imple-
ment patterns.

• Ruby has code closures. It allows us to pass around chunks of code and associated
scope without having to laboriously construct entire classes and objects that do
nothing else.

• Ruby classes are real objects. Because a class in Ruby is just another object, we can
do any of the usual runtime things to a Ruby class that we can do to any other
object: We can create totally new classes. We can modify existing classes by adding
or deleting methods. We can even clone a class and change the copy, leaving the
original alone.

• Ruby has an elegant system of code reuse. In addition to supporting garden-variety
inheritance, Ruby allows us to define mixins, which are a simple but flexible way
to write code that can be shared among several classes.

All of this makes code in Ruby compressible. In Ruby, as in Java and C++, you
can implement very sophisticated ideas, but with Ruby it becomes possible to hide the
details of your implementations much more effectively. As you will see on the pages
that follow, many of the design patterns that require many lines of endlessly repeated
boilerplate code in traditional static languages require only one or two lines in Ruby.
You can turn a class into a singleton with a simple include Singleton command. You
can delegate as easily as you can inherit. Because Ruby enables you to say more inter-
esting things in each line of code, you end up with less code.

This is not just a question of keyboard laziness; it is an application of the DRY
(Don’t Repeat Yourself) principle. I don’t think anyone today would mourn the pass-
ing of my old object-oriented pattern in C. It worked for me, but it made me work
for it, too. In the same way, the traditional implementations of many design patterns
work, but they make you work, too. Ruby represents a real step forward in that you
become able to do work only once and compress it out of the bulk of your code. In
short, Ruby allows you to concentrate on the real problems that you are trying to solve
instead of the plumbing. I hope that this book will help you see how.

xx Preface

00_0321290452_FM.qxd 11/15/07 10:44 AM Page xx

Who Is This Book For?
Simply put, this book is intended for developers who want to know how to build sig-
nificant software in Ruby. I assume that you are familiar with object-oriented pro-
gramming, but you don’t really need any knowledge of design patterns—you can pick
that up as you go through the book.

You also don’t need a lot of Ruby knowledge to read this book profitably. You will
find a quick introduction to the language in Chapter 2, and I try to explain any Ruby-
specific language issues as we go.

How Is This Book Organized?
This book is divided into three parts. First come a couple of introductory chapters,
starting with the briefest outline of the history and background of the whole design
patterns movement, and ending with a quick tour of the Ruby language at the “just
enough to be dangerous” level.

Part 2, which takes up the bulk of these pages, looks at a number of the original
Gang of Four patterns from a Ruby point of view. Which problem is this pattern try-
ing to solve? What does the traditional implementation of the pattern—the imple-
mentation given by the Gang of Four—look like in Ruby? Does the traditional
implementation make sense in Ruby? Does Ruby provide us with any alternatives that
might make solving the problem easier?

Part 3 of this book looks at three patterns that have emerged with the introduc-
tion and expanded use of Ruby.

A Word of Warning
I cannot sign my name to a book about design patterns without repeating the mantra
that I have been muttering for many years now: Design patterns are little spring-loaded
solutions to common programming problems. Ideally, when the appropriate problem
comes along, you should trigger the design pattern and your problem is solved. It is that
first part—the bit about waiting for the appropriate problem to come along—that
some engineers have trouble with. You cannot say that you are correctly applying a
design pattern unless you are confronting the problem that the pattern is supposed to solve.

The reckless use of every design pattern on the menu to solve nonexistent prob-
lems has given design patterns a bad name in some circles. I would contend that Ruby

Preface xxi

00_0321290452_FM.qxd 11/15/07 10:44 AM Page xxi

makes it easier to write an adapter that uses a factory method to get a proxy to the
builder, which then creates a command, which will coordinate the operation of adding
two plus two. Ruby will make that process easier, but even in Ruby it will not make
any sense.

Nor can you look at program construction as a simple process of piecing together
some existing design patterns in new combinations. Any interesting program will
always have unique sections, bits of code that fit that specific problem perfectly and
no other. Design patterns are meant to help you recognize and solve the common
problems that arise repeatedly when you are building software. The advantage of
design patterns is that they let you rapidly wing your way past the problems that some-
one has already solved, so that you can get on to the hard stuff, the code that is unique
to your situation. Design patterns are not the universal elixir, the magic potion that
will fix all of your design problems. They are simply one technique—albeit a very use-
ful technique—that you can use to build programs.

About the Code Style Used in This Book
One thing that makes programming in Ruby so pleasant is that the language tries to
stay out of your way. If there are several sensible ways of saying something, Ruby will
usually support them all:

One way to say it

if (divisor == 0)

puts 'Division by zero'

end

And another

puts 'Division by zero' if (divisor == 0)

And a third

(divisor == 0) && puts 'Division by zero'

Ruby also tries not to insist on syntax for syntax’s sake. Where possible, it will let
you omit things when the meaning is clear. For example, you can usually omit the
parentheses around the argument list when calling a method:

xxii Preface

00_0321290452_FM.qxd 11/15/07 10:44 AM Page xxii

puts('A fine way to call puts')

puts 'Another fine way to call puts'

You can even forget the parentheses when you are defining the argument list of a
method and around the conditional part of an if statement:

def method_with_3_args a, b, c

puts "Method 1 called with #{a} #{b} #{c}"

if a == 0

puts 'a is zero'

end

end

The trouble with all of these shortcuts, convenient as they are in writing real Ruby
programs, is that when liberally used, they tend to confuse beginners. Most program-
mers who are new to Ruby are going to have an easier time with

if file.eof?

puts('Reached end of file')

end

or even

puts 'Reached end of file' if file.eof?

than with

file.eof? || puts('Reached end of file')

Because this book is more about the deep power and elegance of Ruby than it is
about the details of the language syntax, I have tried to strike a balance between mak-
ing my examples actually look like real Ruby code on the one hand while still being
beginner friendly on the other hand. In practice, this means that while I take advan-
tage of some obvious shortcuts, I have deliberately avoided the more radical tricks. It
is not that I am unaware of, or disapprove of, the Ruby syntactical shorthand. It is just
that I am more interested getting the conceptual elegance of the language across to
readers who are new to Ruby. There will be plenty of time to learn the syntactical
shortcuts after you have fallen hopelessly in love with the language.

Preface xxiii

00_0321290452_FM.qxd 11/15/07 10:44 AM Page xxiii

