
Hartl/Prochazka Book June 21, 2007 11:8

CHAPTER 11
Searching and browsing

In principle, our alphabetical community index lets any user find any other user, but using
it in this way would be terribly cumbersome. In this chapter, we add more convenient
and powerful ways to find users. We begin by adding full-text search to RailsSpace by
making use of an open-source project called Ferret. We then stalker-enable our site with
browsing by age, sex, and location.

Adding search and browse capability to RailsSpace will involve the creation of custom
pagination and validations, which means that we will start to rely less on the built-in
Rails functions. This chapter also contains a surprising amount of geography, some fairly
fancy finds, and even a little math.

11.1 Searching
Though it was quite a lot of work to get the community index to look and behave
just how we wanted, the idea behind it is very simple. In contrast, full-text search—for
user information, specs, and FAQs—is a difficult problem, and yet most users probably
expect a site such as RailsSpace to provide it. Luckily, the hardest part has already been
done for us by the Ferret project,1 a full-text search engine written in Ruby. Ferret makes
adding full-text search to Rails applications a piece of cake through the acts_as_ferret
plugin.

In this section, we’ll make a simple search form (adding it to the main community
page in the process) and then construct an action that uses Ferret to search RailsSpace
based on a query submitted by the user.

1 http://ferret.davebalmain.com/trac/

327

Hartl/Prochazka Book June 21, 2007 11:8

328 Chapter 11: Searching and browsing

11.1.1 Search views
Since there’s some fairly hairy code on the back-end, it will be nice to have a working
search form that we can use to play with as we build up the search action incrementally.
Since we’ll want to use the search form in a couple of places, let’s make it a partial:

Listing 11.1 app/views/community/ search form.rthml

<% form_tag({ :action => "search" }, :method => "get") do %>

<fieldset>

<legend>Search</legend>

<div class="form_row">

<label for="q">Search for:</label>

<%= text_field_tag "q", params[:q] %>

<input type="submit" value="Search" />

</div>

</fieldset>

<% end %>

This is the first time we’ve constructed a form without using the form_for function,
which is optimized for interacting with models. For search, we’re not constructing a
model at any point; we just need a simple form to pass a query string to the search
action. Rails makes this easy with the form_tag helper, which has the prototype

form_tag(url_for_options = {}, options = {})

The form_tag function takes in a block for the form; when the block ends, it automat-
ically produces the </form> tag to end the form. This means that the rhtml

<% form_tag({ :action => "search" }, :method => "get") do %>

.

.

.

<% end %>

produces the HTML

<form action="/community/search" method="get">

.

.

.

</form>

Note that in this case we’ve chosen to have the search form submit using a GET request,
which is conventional for search engines (and allows, among other things, direct linking
to search results since the search terms appear in URL).

As in the case of the link_to in the community index (Section 10.3.3), the curly
braces around { :action => "search" } are necessary. If we left them off and wrote
instead

Hartl/Prochazka Book June 21, 2007 11:8

11.1 Searching 329

<% form_tag(:action => "search", :method => "get") %>

.

.

.

<% end %>

then Rails would generate

<form action="/community/search?method=get" method="post">

.

.

.

</form>

instead of

<form action="/community/search" method="get">

.

.

.

</form>

The other Rails helper we use is text_field_tag, which makes a text field filled
with the value of params[:q]. That is, if params[:q] is "foobar", then

<%= text_field_tag "q", params[:q] %>

produces the HTML

<input id="q" name="q" type="text" value="foobar" />

We’ve done a lot of work making useful partials, so the search view itself is beautifully
simple:

Listing 11.2 app/views/community/search.rthml

<%= render :partial => "search_form" %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

We’ll also put the search form on the community index page (but only if there is no
@initial variable, since when the initial exists we want to display only the users whose
last names begin with that letter):

Listing 11.3 app/views/community/index.rhtml

.

.

.

<% if @initial.nil? %>

<%= render :partial => "search_form" %>

<% end %>

Hartl/Prochazka Book June 21, 2007 11:8

330 Chapter 11: Searching and browsing

Figure 11.1 The evolving community index page now includes a search form.

You can submit queries to the resulting search page (Figure 11.1) to your heart’s
content, but of course there’s a hitch: It doesn’t do anything yet. Let’s see if we can ferret
out a solution to that problem.

11.1.2 Ferret
As its web page says, “Ferret is a high-performance, full-featured text search engine
library written for Ruby.” Ferret, in combination with acts_as_ferret, builds up an
index of the information in any data model or combination of models. In practice,
what this means is that we can search through (say) the user specs by associating the
special acts_as_ferret attribute with the Spec model and then using the method
Spec.find_by_contents, which is added by the acts_as_ferret plugin. (If this all
seems overly abstract, don’t worry; there will be several concrete examples momentarily.)

Ferret is relatively easy to install, but it’s not entirely trouble-free. On OS X it looks
something like this:2

> sudo gem install ferret

Attempting local installation of 'ferret'

2 As with the installation steps in Chapter 2, if you don’t have sudo enabled for your user, you will have to log
in as root to install the ferret gem.

Hartl/Prochazka Book June 21, 2007 11:8

11.1 Searching 331

Local gem file not found: ferret*.gem

Attempting remote installation of 'ferret'

Updating Gem source index for: http://gems.rubyforge.org

Select which gem to install for your platform (powerpc-darwin7.8.0)

1. ferret 0.10.11 (ruby)

2. ferret 0.10.10 (ruby)

3. ferret 0.10.9 (mswin32)

.

.

.

39. Cancel installation

> 1

Building native extensions. This could take a while...

.

.

.

Successfully installed ferret, version 0.10.11

The process is virtually identical for Linux; in both Mac and Linux cases, you should
choose the most recent version of Ferret labeled “(ruby)”, which should be #1. If, on the
other hand, you’re using Windows, run

> gem install ferret

and be sure to choose the most recent version of Ferret labeled “mswin32”, which
probably won’t be the first choice.

The second step is to install the Ferret plugin:3

> ruby script/plugin install svn://projects.jkraemer.net/acts_as_ferret/tags/

stable/acts_as_ferret

A /rails/rails_space/vendor/plugins/acts_as_ferret

A /rails/rails_space/vendor/plugins/acts_as_ferret/LICENSE

A /rails/rails_space/vendor/plugins/acts_as_ferret/rakefile

A /rails/rails_space/vendor/plugins/acts_as_ferret/init.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/more_like_this.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/multi_index.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/acts_as_ferret.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/instance_methods.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/class_methods.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/README

3 If you don’t have the version control system Subversion installed on your system, you should download and
install it at this time (http://subversion.tigris.org/). If you have experience compiling programs from
source, you should have no trouble, but if you are more comfortable with Windows installations, then you
should skip right to http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91

and download the svn-<version>-setup.exe with the highest version number. Double-clicking on the
resulting executable file will then install Subversion.

Hartl/Prochazka Book June 21, 2007 11:8

332 Chapter 11: Searching and browsing

That may look intimidating, but the good news is that you don’t have to touch
any of these files. All you have to do is restart the development webserver to activate
Ferret and then indicate that the models are searchable using the (admittedly somewhat
magical) acts_as_ferret function:

Listing 11.4 app/models/spec.rb

class Spec < ActiveRecord::Base

belongs_to :user

acts_as_ferret

.

.

.

Listing 11.5 app/models/faq.rb

class Faq < ActiveRecord::Base

belongs_to :user

acts_as_ferret

.

.

.

Listing 11.6 app/models/user.rb

class User < ActiveRecord::Base

has_one :spec

has_one :faq

acts_as_ferret :fields => ['screen_name', 'email'] # but NOT password

.

.

.

Notice in the case of the User model that we used the :fields options to indicate
which fields to make searchable. In particular, we made sure not to include the password
field!

11.1.3 Searching with find_by_contents
Apart from implying that he occasionally chases prairie dogs from their burrows, what
does it mean when we say that a user acts_as_ferret? For the purposes of RailsSpace
search, the answer is that acts_as_ferret adds a function called find_by_contents

Hartl/Prochazka Book June 21, 2007 11:8

11.1 Searching 333

that uses Ferret to search through the model, returning results corresponding to a given
query string (which, in our case, comes from the user-submitted search form). The
structure of our search action builds on find_by_contents to create a list of matches
for the query string:

Listing 11.7 app/controllers/community controller.rb

def search

@title = "Search RailsSpace"

if params[:q]

query = params[:q]

First find the user hits...

@users = User.find_by_contents(query, :limit => :all)

...then the subhits.

specs = Spec.find_by_contents(query, :limit => :all)

faqs = Faq.find_by_contents(query, :limit => :all)

.

.

.

Here we’ve told Ferret to find all the search hits in each of the User, Spec, and FAQ
models.

Amazingly, that’s all there is to it, as far as search goes: Just those three lines are
sufficient to accomplish the desired search. In fact, if you submit a query string from the
search form at this point, the results should be successfully returned—though you will
probably find that your system takes a moment to respond, since the first time Ferret
searches the models it takes a bit of time while it builds an index of search results. This
index, which Ferret stores in a directory called index in the Rails root directory, is what
makes the magic happen—but it is also the source of some problems (see the sidebar “A
dead Ferret”).

A dead Ferret4

Occasionally, when developing with Ferret, the search results will mysteriously disap-
pear. This is usually associated with changes in the database schema (from a migration,
for example). When Ferret randomly croaks in this manner, the solution is simple:

4 “He’s not dead—he’s resting!”

Hartl/Prochazka Book June 21, 2007 11:8

334 Chapter 11: Searching and browsing

1. Shut down the webserver.
2. Delete Ferret’s index directory.
3. Restart the webserver.

At this point, Ferret will rebuild the index the next time you try a search, and every-
thing should work fine.

Now that we’ve got the search results from Ferret, we have to collect the users for
display; this requires a little Ruby array manipulation trickery:

Listing 11.8 app/controllers/community controller.rb

def search

if params[:q]

query = params[:q]

First find the user hits...

@users = User.find_by_contents(query, :limit => :all)

...then the subhits.

specs = Spec.find_by_contents(query, :limit => :all)

faqs = Faq.find_by_contents(query, :limit => :all)

Now combine into one list of distinct users sorted by last name.

hits = specs + faqs

@users.concat(hits.collect { |hit| hit.user }).uniq!

Sort by last name (requires a spec for each user).

@users.each { |user| user.spec ||= Spec.new }

@users = @users.sort_by { |user| user.spec.last_name }

end

This introduces the concat and uniq! functions, which work like this:

> irb

irb(main):001:0> a = [1, 2, 2, 3]

=> [1, 2, 2, 3]

irb(main):002:0> b = [4, 5, 5, 5, 6]

=> [4, 5, 5, 5, 6]

irb(main):003:0> a.concat(b)

=> [1, 2, 2, 3, 4, 5, 5, 5, 6]

irb(main):004:0> a

=> [1, 2, 2, 3, 4, 5, 5, 5, 6]

irb(main):005:0> a.uniq!

=> [1, 2, 3, 4, 5, 6]

irb(main):006:0> a

=> [1, 2, 3, 4, 5, 6]

Hartl/Prochazka Book June 21, 2007 11:8

11.1 Searching 335

Figure 11.2 Search results for q=*, returning unpaginated results for all users.

You can see that concat concatenates two arrays—a and b—by appending b to a, while
a.uniq! modifies a5 by removing duplicate values (thereby ensuring that each element
is unique).

We should note that the line

@users = @users.sort_by { |user| user.spec.last_name }

also introduces a new Ruby function, used here to sort the users by last name; it’s so
beautifully clear that we’ll let it pass without further comment.

At this stage, the search page actually works, as you can see from Figure 11.2. But,
like the first cut of the RailsSpace community index, it lacks a result summary and

5 Recall from Section 6.6.2 that the exclamation point is a hint that an operation mutates the object in question.

Hartl/Prochazka Book June 21, 2007 11:8

336 Chapter 11: Searching and browsing

pagination. Let’s make use of all the work we did in Section 10.4 and add those features
to the search results.

11.1.4 Adding pagination to search
Now that we’ve collected the users for all of the search hits, we’re tantalizingly close
to being done with search. All we have to do is paginate the results and add the result
summary. In analogy with the pagination from Section 10.4.1, what we’d really like to
do is this:

Listing 11.9 app/controllers/community controller.rb

def search

if params[:q]

.

.

.

@pages, @users = paginate(@users)

end

end

Unfortunately, the built-in paginate function only works when the results come
from a single model. It’s not too hard, though, to extend paginate to handle the
more general case of paginating an arbitrary list—we’ll just use the Paginator class
(on which paginate relies) directly. Since we’d like the option to paginate results in
multiple controllers, we’ll put the paginate function in the Application controller:

Listing 11.10 app/controllers/application.rb

class ApplicationController < ActionController::Base

.

.

.

Paginate item list if present, else call default paginate method.

def paginate(arg, options = {})

if arg.instance_of?(Symbol) or arg.instance_of?(String)

Use default paginate function.

collection_id = arg # arg is, e.g., :specs or "specs"

super(collection_id, options)

else

Paginate by hand.

items = arg # arg is a list of items, e.g., users

items_per_page = options[:per_page] || 10

page = (params[:page] || 1).to_i

Hartl/Prochazka Book June 21, 2007 11:8

11.1 Searching 337

result_pages = Paginator.new(self, items.length, items_per_page, page)

offset = (page - 1) * items_per_page

[result_pages, items[offset..(offset + items_per_page - 1)]]

end

end

end

There is some moderately advanced Ruby here, but we’ll go through it step by step. In
order to retain compatibility with the original paginate function, the first part of our
paginate checks to see if the given argument is a symbol or string (such as, for example,
:specs as in Section 10.4.1), in which case it calls the original paginate function using
super (a usage we saw before in Section 9.5).

If the first argument is not a symbol or string, we assume that it’s an array of items
to be paginated. Using this array, we create the result pages using a Paginator object,
which is initialized as follows:

Paginator.new(controller, item_count, items_per_page, current_page=1)

In the context of the Application controller, the first argument to new is just self, while
the item count is just the length of items and the items per page is either the value of
options[:per_page] or 10 (the default). We get the number of the current page by
using

page = (params[:page] || 1).to_i

which uses the to_i function to convert the result to an integer, since params

[:page] will be a string if it’s not nil.6

Once we’ve created the results pages using the Paginator, we calculate the array
indices needed to extract the page from items, taking care to avoid off-by-one errors.
For example, when selecting the third page (page = 3) with the default pagination of 10,

offset = (page - 1) * items_per_page

yields

offset = (3 - 1) * 10 = 20

This means that

items[offset..(offset + items_per_page - 1)]

is equivalent to

items[20..39]

which is indeed the third page.

6 Calling to_i on 1 does no harm since it’s already an integer.

Hartl/Prochazka Book June 21, 2007 11:8

338 Chapter 11: Searching and browsing

Figure 11.3 Search results for q=*, returning paginated results for all users.

Finally, at the end of paginate, we return the two-element array

[result_pages, items[offset..(offset + items_per_page - 1)]]

so that the object returned by our paginate function matches the one from the original
paginate.

That’s a lot of work, but it’s worth it; the hard-earned results appear in Figure 11.3.
Note that if you follow the link for (say) page 2, you get the URL of the form

http://localhost:3000/community/search?page=2&q=*

which contains the query string as a parameter. This works because back in Section 10.4.1
we told pagination_links about the params variable:

Hartl/Prochazka Book June 21, 2007 11:8

11.1 Searching 339

Listing 11.11 app/views/community/ user table.rhtml

.

.

.

Pages: <%= pagination_links(@pages, :params => params) %>

.

.

.

Rails knows to include the contents of params in the URL.

11.1.5 An exception to the rule
We’re not quite done with search; there’s one more thing that can go wrong. Alas, some
search strings cause Ferret to croak. In this case, as seen in Figure 11.4, Ferret raises the
exception

Ferret::QueryParser::QueryParseException

indicating its displeasure with the query string "--".7

The way to handle this in Ruby is to wrap the offending code in a begin...rescue
block to catch and handle the exception:

Listing 11.12 app/controllers/community controller.rb

def search

if params[:q]

query = params[:q]

begin

First find the user hits...

@users = User.find_by_contents(query, :limit => :all)

...then the subhits.

specs = Spec.find_by_contents(query, :limit => :all)

faqs = Faq.find_by_contents(query, :limit => :all)

Now combine into one list of distinct users sorted by last name.

hits = specs + faqs

@users.concat(hits.collect { |hit| hit.user }).uniq!

Sort by last name (requires a spec for each user).

@users.each { |user| user.spec ||= Spec.new }

@users = @users.sort_by { |user| user.spec.last_name }

@pages, @users = paginate(@users)

rescue Ferret::QueryParser::QueryParseException

Continues

7 This appears to be fixed as of Ferret 0.11.0.

Hartl/Prochazka Book June 21, 2007 11:8

340 Chapter 11: Searching and browsing

Figure 11.4 Ferret throws an exception when given an invalid search string.

@invalid = true

end

end

end

Here we tell rescue to catch the specific exception raised by Ferret parsing errors, and
then set the @invalid instance variable so that we can put an appropriate message in
the view (Figure 11.5):

Listing 11.13 app/views/community/search.rhtml

<%= render :partial => "search_form" %>

<% if @invalid %>

<p>Invalid character in search.</p>

Hartl/Prochazka Book June 21, 2007 11:8

11.2 Testing search 341

Figure 11.5 The ferret query parse exception caught and handled.

<% end %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

And with that, we’re finally done with search!

11.2 Testing search
Testing the search page is easy in principle: Just hit /community/search with an
appropriate query string and make sure the results are what we expect. But a key part
of testing search should be to test the (currently untested) pagination. Since we’re using
the default pagination value of 10, that means creating at least eight more users to add
to the three currently in our users fixture:8

Listing 11.14 test/fixtures/users.yml

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

valid_user:

id: 1

screen_name: millikan

Continues

8 Even though one of these users is invalid, it still exists in the test database when the Rails test framework loads
the fixtures; Ferret doesn’t know anything about validations, so it gamely finds all three users.

Hartl/Prochazka Book June 21, 2007 11:8

342 Chapter 11: Searching and browsing

email: ram@example.com

password: electron

invalid_user:

id: 2

screen_name: aa/noyes

email: anoyes@example,com

password: sun

Create a user with a blank spec.

specless:

id: 3

screen_name: linusp

email: lpauling@example.com

password: 2nobels

Of course, we could hand-code eight more users, but that’s a pain in the neck.
Fortunately, Rails has anticipated our situation by enabling embedded Ruby in YAML
files, which works the same way that it does in views. This means we can generate our
extra users automatically by adding a little ERb to users.yml:

Listing 11.15 test/fixtures/users.yml

.

.

.

Create 10 users so that searches can invoke pagination.

<% (1..10).each do |i| %>

user_<%= i %>:

id: <%= i + 3 %>

screen_name: user_<%= i %>

email: user_<%= i %>@example.com

password: foobar

<% end %>

Note that our generated users have ids given by <%= i + 3 %> rather than <%= i %>

in order to avoid conflicts with the previous users’ ids.
With these extra 10 users, a search for all users using the wildcard query string "*"

should find a total of 13 matches, while displaying matches 1–10:

Listing 11.16 test/functional/community controller test

.

.

.

class CommunityControllerTest < Test::Unit::TestCase

Hartl/Prochazka Book June 21, 2007 11:8

11.3 Beginning browsing 343

fixtures :users

fixtures :specs

fixtures :faqs

.

.

.

def test_search_success

get :search, :q => "*"

assert_response :success

assert_tag "p", :content => /Found 13 matches./

assert_tag "p", :content => /Displaying users 1–10./

end

end

This gives

> ruby test/functional/community_controller_test.rb -n test_search_success

Loaded suite test/functional/community_controller_test

Started

.

Finished in 0.849541 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Despite being short, this test catches several common problems, and proved valuable
while developing the search action.

11.3 Beginning browsing
Because Ferret does the heavy search lifting, browsing for users—though less general
than search—is actually more difficult. In this section and the next (Section 11.4), we’ll
set out to create pages that allow each user to find others by specifying age (through a
birthdate range), sex, and location (within a particular distance of a specified zip code)—
the proverbial “A/S/L” from chat rooms. In the process, we’ll create a nontrivial custom
form (with validations) and also gain some deeper experience with the Active Record
find function (including some fairly fancy SQL).

11.3.1 The browse page
Let’s start by constructing a browse page, which will be a large custom (that is, non-
form_for) form. On the back-end, the action is trivial for now:

Hartl/Prochazka Book June 21, 2007 11:8

344 Chapter 11: Searching and browsing

Listing 11.17 app/views/controllers/community controller.rb

def browse

@title = "Browse"

end

The browse view is also trivial, since it just pushes the hard work into a partial:

Listing 11.18 app/views/community/browse.rhtml

<%= render :partial => "browse_form" %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

This brings us to the browse form itself, which is relatively long but whose structure
is simple. Using Rails tag helpers and the params variable, we build up a form with
fields for each of the A/S/L attributes:

Listing 11.19 app/views/community/ browse form.rhtml

<% form_tag({ :action => "browse" }, :method => "get") do %>

<fieldset>

<legend>Browse</legend>

<div class="form_row">

<label for="age">Age:</label>

<%= text_field_tag "min_age", params[:min_age], :size => 2 %>

–

<%= text_field_tag "max_age", params[:max_age], :size => 2 %>

</div>

<div class="form_row">

<label for="gender">Gender:</label>

<%= radio_button_tag :gender, "Male",

params[:gender] == 'Male',

:id => "Male" %>Male

<%= radio_button_tag :gender, "Female",

params[:gender] == 'Female',

:id => "Female" %>Female

</div>

<div class="form_row">

<label for="location">Location:</label>

Within

<%= text_field_tag "miles", params[:miles], :size => 4 %>

miles from zip code:

<%= text_field_tag "zip_code", params[:zip_code],

:size => Spec::ZIP_CODE_LENGTH %>

</div>

Hartl/Prochazka Book June 21, 2007 11:8

11.3 Beginning browsing 345

<%= submit_tag "Browse", :class => "submit" %>

</fieldset>

<% end %>

As in Section 11.1.1, we use text_field_tag, which has the function prototype

text_field_tag(name, value = nil, options = {})

so that if, for example, params[:min_age] is 55, the code

<%= text_field_tag "min_age", params[:min_age], :size => 2 %>

produces the HTML

<input id="min_age" name="min_age" size="2" type="text" value="55" />

Similarly, we have the radio button helper,

radio_button_tag(name, value, checked = false, options = {})

Then if params[:gender] is "Female", the code

<%= radio_button_tag :gender, "Female",

params[:gender] == 'Female',

:id => "Female" %>Female

produces

<input checked="checked" id="Female" name="gender" type="radio" value="Female" />

with the Female box “checked”9 since params[:gender] == 'Female' is true.
With the browse form partial thus defined, the browse view is already in its final

form (Figure 11.6).

11.3.2 Find by A/S/L (hold the L)
The browse form already “works” in the sense that it doesn’t break if you submit it,
and it even remembers the values you entered (Figure 11.7). Apart from that, though,
it doesn’t actually do anything. Let’s take the first step toward changing that:

Listing 11.20 app/views/controllers/community controller.rb

def browse

@title = "Browse"

return if params[:commit].nil?

Continues

9 It’s actually filled in rather than checked since it’s a radio button and not a checkbox, but we can’t help the
terminology used by the HTML standard.

Hartl/Prochazka Book June 21, 2007 11:8

346 Chapter 11: Searching and browsing

Figure 11.6 The final browse form.

specs = Spec.find_by_asl(params)

@pages, @users = paginate(specs.collect { |spec| spec.user })

end

In keeping with our usual practice, we’ve hidden as many details as possible beneath an
abstraction layer, in this case the function find_by_asl, which we’ve chosen to be a
class method for the Spec model.

Figure 11.7 The browse form with some values submitted.

Hartl/Prochazka Book June 21, 2007 11:8

11.3 Beginning browsing 347

We’ll implement find_by_asl momentarily, but first we need to explain the line

return if params[:commit].nil?

You may have noticed in Figure 11.7 that the string browse=commit appears in the
URL;10 this means that params[:commit] tells us if the form has been submitted. As
a result,

return if params[:commit].nil?

returns if the form hasn’t been submitted, thereby causing Rails to render the browse
form immediately. (In previous chapters, we used the param_posted? function defined
in Section 6.6.5 to detect form submission via POST requests, but, like the search form,
the browse form uses a GET request instead.)

Having addressed the case of hitting the browse page directly, it’s now time to handle
browse form submission by writing find_by_asl for browsing by age and gender.
(Though fairly tricky, the age and gender searches are much easier than the search
by location, so we defer the latter to Section 11.4.2.) Browsing by age and gender
involves the trickiest database query so far, so we’ll discuss each piece of the puzzle
before assembling them into the final find_by_asl method. For concreteness, let’s
consider the case of searching for all female RailsSpace members between the ages of 55
and 65.11

First, let’s consider the essential form of the query we need to make. In MySQL, the
code to select females with ages between 55 and 65 would look something like this:

SELECT * FROM specs WHERE

ADDDATE(birthdate, INTERVAL 55 YEAR) < CURDATE() AND

ADDDATE(birthdate, INTERVAL 66 YEAR) > CURDATE() AND

gender = 'Female'

This uses CURDATE(), which returns the current date, as well as the MySQL ADDDATE

function, which is convenient for doing date arithmetic. For example, we use the code

ADDDATE(birthdate, INTERVAL 66 YEAR) > CURDATE()

to select specs with birthdates that give a date after the current date when you add 66
years to them—which will be true for anyone age 65 or younger.

Next, we’ll introduce a new aspect of the :conditions option in find. Recall
from Section 10.3.1 that we can ensure safe SQL queries by using question marks as

10 browse=commit is inserted automatically by the Rails submit_tag helper.
11 Recall that our sample data is based on Caltech distinguished alumni, with made-up ages starting at 50.

Hartl/Prochazka Book June 21, 2007 11:8

348 Chapter 11: Searching and browsing

string place-holders; for example, assuming a suitable params variable, we could use the
following to find all RailsSpace users of a particular gender:

Spec.find(:all, :conditions => ["gender = ?", params[:gender]])

The new syntax, which we will use in find_by_asl, uses a symbol and a full hash
instead:

Spec.find(:all, :conditions => ["gender = :gender", params])

In this case, when building up the SQL query corresponding to this particular find,
Rails knows to insert an escaped-out version of params[:gender] in place of :gender.

Finally, the last piece of the puzzle is Ruby’s array append syntax <<, which we can
demonstrate using an irb session:

> irb

irb(main):001:0> a = []

=> []

irb(main):002:0> a << "foo"

=> ["foo"]

irb(main):003:0> a << "bar" << "baz"

=> ["foo", "bar", "baz"]

irb(main):004:0> a.join(" AND ")

=> "foo AND bar AND baz"

Note from line 003 that array appends can be chained together. We’ve also antici-
pated a key step in building up the find conditions by joining the array elements on
" AND " in the final line.

Our strategy for find_by_asl is to make an array of strings with one element for
each potential part of the WHERE clause. We’ll then join that array with " AND " for use
in :conditions. A call to find will then perform the query using the SQL string we’ve
constructed. Putting everything together leads to the following method:

Listing 11.21 app/models/spec.rb

Find by age, sex, location.

def self.find_by_asl(params)

where = []

Set up the age restrictions as birthdate range limits in SQL.

unless params[:min_age].blank?

where << "ADDDATE(birthdate, INTERVAL :min_age YEAR) < CURDATE()"

end

unless params[:max_age].blank?

where << "ADDDATE(birthdate, INTERVAL :max_age+1 YEAR) > CURDATE()"

end

Set up the gender restriction in SQL.

where << "gender = :gender" unless params[:gender].blank?

Hartl/Prochazka Book June 21, 2007 11:8

11.3 Beginning browsing 349

if where.empty?

[]

else

find(:all,

:conditions => [where.join(" AND "), params],

:order => "last_name, first_name")

end

end

Note that we’ve elected to return an empty list if there are no restrictions; another option
would be to return all users in that case, but we think returning no users makes more
sense. We’ve also added the obligatory ordering by last name, first name in the call to
find.

By the way, it’s worth noting that our method for performing queries infind_by_sql
violates database independence, which has both advantages and disadvantages (see the
sidebar “Getting database religion”).

Getting database religion

In building up a where string for use in the :conditions option, we have used
MySQL-specific code such as ADDDATE, thereby violating database agnosticism (and
thus becoming database theists). This is not such a bad choice, when you consider
the alternative. To maintain database independence, we would have to select all of
the users and then apply the various conditions to the resulting Ruby array. For a
sufficiently small user base, this would be no problem, but it scales horribly with the
number of users, since it requires loading a significant part of the database into mem-
ory for every call to find_by_sql. Building up a query string, on the other hand,
allows us to perform the query all at once in the database---thereby making use of
exactly what databases are good at.

In the present case, our judgment is that the benefit of breaking database-
independence outweighs the cost, but we should be mindful that we would
have to rewrite find_by_sql if we ever switched to a database other than
MySQL.

With find_by_asl thus defined, the browse form is live, and searches by age and
gender work essentially as advertised (Figure 11.8). What remains is to add location
search—a decidedly nontrivial task, but one we will nevertheless rise to accomplish.

Hartl/Prochazka Book June 21, 2007 11:8

350 Chapter 11: Searching and browsing

Figure 11.8 Browsing our database by restricting spec parameters.

11.4 Location, location, location
In order to add the “L” in “A/S/L” to our browse feature, we need to include some
geographical knowledge in the RailsSpace database. Once we’ve done that, we’ll be in
a position to make the distance calculation needed to find all locations within a certain
radius of a given zip code. While we’re at it, we’ll use our newfound geographical prowess
to add some polish to the user display tables.

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 351

11.4.1 A local database of geographical data
We need to populate our local database with the locations (in latitude and longitude) of
various zip codes. We’ll use a free zip code database found at

http://www.populardata.com/

That data works fine on OS X and Linux, but you need to massage it a little bit to get it
to work on Windows; a Windows-friendly version of the data (as well as a copy of the
original) can be found at

http://www.RailsSpace.com/book

After you download the file (text version), unzip it and rename it to geo_data.csv.
Since we want all the RailsSpace databases (development, test, and eventually produc-
tion) to have the geographical information, we’ll put the data-loading step in a mi-
gration; for convenience, move geo_data.csv to the db/migrate directory. Then,
create the migration, which creates a table called geo_data together with the relevant
columns:

> ruby script/generate migration CreateGeoData

exists db/migrate

create db/migrate/007_create_geo_data.rb

Here is the migration itself:

Listing 11.22 db/migrate/007 create geo data.rb

class CreateGeoData < ActiveRecord::Migration

def self.up

create_table :geo_data do |t|

t.column :zip_code, :string

t.column :latitude, :float

t.column :longitude, :float

t.column :city, :string

t.column :state, :string

t.column :county, :string

t.column :type, :string

end

add_index "geo_data", ["zip_code"], :name => "zip_code_optimization"

csv_file = "#{RAILS_ROOT}/db/migrate/geo_data.csv"

fields = '(zip_code, latitude, longitude, city, state, county)'

execute "LOAD DATA INFILE '#{csv_file}' INTO TABLE geo_data FIELDS " +

"TERMINATED BY ',' OPTIONALLY ENCLOSED BY \"\"\"\" " +

"LINES TERMINATED BY '\n' " + fields

end

Continues

Hartl/Prochazka Book June 21, 2007 11:8

352 Chapter 11: Searching and browsing

def self.down

drop_table :geo_data

end

end

> rake db:migrate

(in /rails/rails_space)

== CreateGeoData: migrating ==

-- create_table("geo_data")

-> 0.0883s

-- execute("LOAD DATA INFILE '/rails/rails_space/config/../db/migrate/geo_data."

csv' INTO TABLE

geo_data FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY \"\"\"\" LINES"

TERMINATED BY '\n'(zip_code, latitude, longitude, city, state, county, type)")

-> 0.9792s

== CreateGeoData: migrated (1.0684s) =======================================

The migration is a bit advanced, and it would take us too far afield to go into all the
details,12 but once you’ve run it as above, you should be able to see a promising table
called geo_data in the database (Figure 11.9). You can see there that the geographical
database contains a correspondence between zip codes and latitude/longitude, as well as
the city, state, and even county of each location.

Since we will want to manipulate GeoData objects using Active Record—using, in
particular, the find_by_zip_code method automatically created due to the zip_code
database column—we need to create a (virtually) blank model just to tell Rails that
GeoDatum13 inherits from ActiveRecord::Base:

Listing 11.23 app/models/geo datum.rb

class GeoDatum < ActiveRecord::Base

end

With that, we’re ready to do the actual distance search.

11.4.2 Using GeoData for location search
When last we left the browse action, we had optimistically called our new find function
find_by_asl.

Now that the RailsSpace database is geographically aware, it’s time to add the “L.”

12 It’s worth noting, though, that through the execute command we can execute arbitrary SQL queries in a
migration.
13 Yes, the Rails inflector knows that the singular of GeoData is GeoDatum.

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 353

Figure 11.9 The geographical data in the database.

Our strategy will be to take the user-submitted zip code, find the location in the
geographical database, and then select every spec whose zip code is within the given
number of miles of that location. If this sounds suspiciously like math, you’re right:
We’ll have to use a formula for calculating distances on a sphere as a function of latitude
and longitude.14 We’ll start by writing a function in the Spec model that returns a string
appropriate for calculating the distance between the given point and an arbitrary location
(as identified by longitude and latitude):

14 Seriously, what were the chances that a couple of Caltech Ph.D.’s could write a whole book without using
at least a little math?

Hartl/Prochazka Book June 21, 2007 11:8

354 Chapter 11: Searching and browsing

Listing 11.24 app/models/spec.rb

.

.

.

private

Return SQL for the distance between a spec's location and the given point.

See http://en.wikipedia.org/wiki/Haversine_formula for more on the formula.

def self.sql_distance_away(point)

h = "POWER(SIN((RADIANS(latitude - #{point.latitude}))/2.0),2) + " +

"COS(RADIANS(#{point.latitude})) * COS(RADIANS(latitude)) * " +

"POWER(SIN((RADIANS(longitude - #{point.longitude}))/2.0),2)"

r = 3956 # Earth's radius in miles

"2 * #{r} * ASIN(SQRT(#{h}))"

end

end

As noted in the comments, this uses the haversine formula for calculating distances on a
sphere, which can be found (among other places) at

http://en.wikipedia.org/wiki/Haversine_formula

We’re now ready to add distance search to find_by_asl. We can get the location
using GeoDatum.find_by_zip_code and then add the requirement that the (SQL)
distance away is less than or equal to the miles supplied through the browse form:

Listing 11.25 app/models/spec.rb

Find by age, sex, location.

def self.find_by_asl(params)

where = []

.

.

.

where << "gender = :gender" unless params[:gender].blank?

Set up the distance restriction in SQL.

zip_code = params[:zip_code]

unless zip_code.blank? and params[:miles].blank?

location = GeoDatum.find_by_zip_code(zip_code)

distance = sql_distance_away(location)

where << "#{distance} <= :miles"

end

if where.empty?

[]

else

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 355

find(:all,

:joins => "LEFT JOIN geo_data ON geo_data.zip_code = specs.zip_code",

:conditions => [where.join(" AND "), params],

:order => "last_name, first_name")

end

end

By the way, if you were nervous about the appearance of latitude in sql_

distance_away, that’s a good sign—after all, the Spec model has no such column,
so there’s no way such a query could work. The solution, as you might infer from the
find above, is to join the geo_data and specs tables, which effectively endows each
spec with latitude and longitude attributes. So far in this book, we’ve used lots of joins,
but they’ve always been implicit, since Active Record handles the details for us; in this
case, we need an explicit join in order to do the age, sex, and location select all in one
step. Moreover, we want to find users by age and gender even if the zip code is blank,
which means we need a specific kind of operation called a left join15—with an ordi-
nary join, a search for female users, say, would return only those users who specified a
zip code.

With the location query string added in find_by_asl, we can finally bask in the
glory of being able to find all the youngest female RailsSpace users within 250 miles of
Caltech (Figure 11.10). Oops—well, that’s pretty much what we expected. Fine—how
about the old men (Figure 11.11)? Yup, that’s the Caltech we know and love!

11.4.3 Location names
You may have noticed that in nonempty search results, the location is identified by zip
code alone (Figure 11.11). In real life, we expect that many users would elect to type in
their city and state as well, but—now that we have a geographical database—it would
be nice to fill in those fields automatically based on zip code. That’s the aim of this
section.

Our first step is to polish the city name strings, which (as you can see from Fig-
ure 11.9) are currently ALL CAPS; we need a way to convert, for example, LOS ANGELES

to Los Angeles. To do this, we’ll add a couple of (very closely related) functions to the
String class to capitalize each word in a space-separated string:

15 See, for example, http://www.w3schools.com/sql/sql_join.asp, or do a web search for SQL join to
get more information on the different types of joins.

Hartl/Prochazka Book June 21, 2007 11:8

356 Chapter 11: Searching and browsing

Figure 11.10 All female RailsSpace users between the ages of 50 and 65 within 250 miles of Caltech.

Listing 11.26 lib/string.rb

class String

.

.

.

Capitalize each word (space separated).

def capitalize_each

space = " "

split(space).each{ |word| word.capitalize! }.join(space)

end

Capitalize each word in place.

def capitalize_each!

replace capitalize_each

end

end

Note in the second function capitalize_each! that we use the replace function,
which is a special Ruby function to replace self with another object (thereby mutating
it); in this case, the given string (self) gets replaced by the result of capitalize_each.

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 357

Figure 11.11 All male RailsSpace users between the ages of 65 and 90 within 250 miles of Caltech.

It’s important to emphasize that the Ruby capitalize! method (on which
capitalize_each relies) converts both los and LOS to Los, so that the all-caps city
names will be properly converted:

> ruby script/console

Loading development environment.

>> "LOS ANGELES".capitalize_each

=> "Los Angeles"

After restarting the development webserver to load the changes to string.rb, we’ll
be ready to look up the city and state based on zip code and then format the city name
appropriately:

Hartl/Prochazka Book June 21, 2007 11:8

358 Chapter 11: Searching and browsing

Listing 11.27 app/models/spec.rb

Return a sensibly formatted location string.

def location

if not zip_code.blank? and (city.blank? or state.blank?)

lookup = GeoDatum.find_by_zip_code(zip_code)

if lookup

self.city = lookup.city.capitalize_each if city.blank?

self.state = lookup.state if state.blank?

end

end

[city, state, zip_code].join(" ")

end

We use the test if lookup since our database doesn’t have city/state values for all zip
codes. Note that we don’t override the user-defined city and state if they’re already
present; we’ll trust our users enough to give them the power to trump the data in our
geographical database.16

Having city and state in addition to zip code really fleshes out the search results, as
seen in Figure 11.12.

11.4.4 Adding browse validation
There’s only one problem left with the RailsSpace browse page: Putting in invalid data
breaks the form rather badly (Figure 11.13). This is the first time we’ve had to validate
a form that wasn’t simply the display for a model, so instead of using built-in model
validations we have to do things (mostly) by hand.

The validations themselves are fairly simple. We want to verify that the maximum
and minimum ages are valid integers, that the number of miles is a valid floating point
number, and that the zip code is correctly formatted and exists in our database. We’ll
create a Spec model object, to which we will attach the errors, so that we can display
them using error_messages_for('spec').

It will be helpful when validating the input to have methods to detect invalid integers
and floats. We’ll add relevant methods to the Object class, taking advantage of Ruby’s
policy of raising an ArgumentError exception for a failed numerical conversion:

> irb

irb(main):001:0> Integer("foo")

ArgumentError: invalid value for Integer: "foo"

from (irb):1:in 'Integer'

from (irb):1

16 One of the authors once lived in 90048, which shows up as West Hollywood in many databases but is actually
located in the city of Los Angeles.

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 359

Figure 11.12 Browse results with city and state lookup.

irb(main):002:0> Float("bar")

ArgumentError: invalid value for Float(): "bar"

from (irb):2:in 'Float'

from (irb):2

This behavior suggests the following tests for valid ints and floats, using the same
begin...rescue syntax we used in Section 11.1.5 to catch the Ferret exception:

Listing 11.28 lib/object.rb

class Object

Return true if the object can be converted to a valid integer.

Continues

Hartl/Prochazka Book June 21, 2007 11:8

360 Chapter 11: Searching and browsing

Figure 11.13 Browsing for ‘‘foo” instead of integers.

def valid_int?

begin

Integer(self)

true

rescue ArgumentError

false

end

end

Return true if the object can be converted to a valid float.

def valid_float?

begin

Float(self)

true

rescue ArgumentError

false

end

end

end

By the way, we put these methods in the Object class (which is the base class for all
Ruby objects) rather than in String because we want to be able to test nil; as it turns

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 361

out, nil.valid_int? is true (Integer(nil) == 0) while nil.valid_float? is false
(Float(nil) raises an ArgumentError exception).

In order for these new functions to be loaded, we need to add a line to the Application
helper:

Listing 11.29 app/helpers/application helper.rb

module ApplicationHelper

require 'string'

require 'object'

.

.

.

Then, restart the webserver so that the new Object functions will be included.
In order to catch the form entry errors, we’ll define a function called valid_input?

and then wrap find_by_asl and pagination inside if valid_input?:

Listing 11.30 app/views/controllers/community controller.rb

def browse

@title = "Browse"

return if params[:commit].nil?

if valid_input?

specs = Spec.find_by_asl(params)

@pages, @users = paginate(specs.collect { |spec| spec.user })

end

end

Of course, we have to write valid_input?, which is reasonably long but is straight-
forward. As mentioned above, we’ll first create a new spec, on which we will accumulate
errors for display in the view. We then march through the different requirements for
valid input, adding an error for each one that fails. The only mildly tricky part is the
use of @spec.valid? to verify the zip code format; this just piggybacks on the zip code
validation we already built. The full function appears as follows:

Listing 11.31 app/views/controllers/community controller.rb

.

.

.

private

Return true if the browse form input is valid, false otherwise.

Continues

Hartl/Prochazka Book June 21, 2007 11:8

362 Chapter 11: Searching and browsing

def valid_input?

@spec = Spec.new

Spec validation (with @spec.valid? below) will catch invalid zip codes.

zip_code = params[:zip_code]

@spec.zip_code = zip_code

There are a good number of zip codes for which we have no information.

location = GeoDatum.find_by_zip_code(zip_code)

if @spec.valid? and not zip_code.blank? and location.nil?

@spec.errors.add(:zip_code, "does not exist in our database")

end

The age strings should convert to valid integers.

unless params[:min_age].valid_int? and params[:max_age].valid_int?

@spec.errors.add("Age range")

end

The zip code is necessary if miles are provided.

miles = params[:miles]

if miles and not zip_code

@spec.errors.add(:zip_code, "can't be blank")

end

The number of miles should convert to a valid float.

unless miles.nil? or miles.valid_float?

@spec.errors.add("Location radius")

end

The input is valid iff the errors object is empty.

@spec.errors.empty?

end

Note that a line such as @spec.errors.add("Location radius") simply leads to
an error string of the form "Location radius is invalid", while @spec.errors.
add(:zip_code, "can't be blank") gives the error string "Zip code can't be

blank".
The code as it stands is already sufficient to protect our form from invalid input, but

it would be inconsiderate not to tell our users what the problems are. Unfortunately, if
we simply use the code

<%= error_messages_for('spec') %>

as we have in previous chapters, we’ll get error messages like “2 errors prohibited this spec
from being saved,” which would be confusing in the context of our browse form—we’re
browsing for users, not trying to save a spec. The solution involves using the sub string
method, which simply substitutes one string for another:17

> irb

irb(main):001:0> s = "foo bar baz"

17 The closely related global substitution method gsub is also useful; where sub replaces only the first occurrence
of a particular string, gsub replaces all of them.

Hartl/Prochazka Book June 21, 2007 11:8

11.4 Location, location, location 363

=> "foo bar baz"

irb(main):002:0> s.sub("baz", "quux")

=> "foo bar quux"

Applying this idea to the browse view yields the following:

Listing 11.32 app/views/community/browse.rhtml

<%= error_messages_for('spec').sub('prohibited this spec from being saved',

'occurred') %>

<%= render :partial => "browse_form" %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

This way, we get errors of the form “3 errors occurred” (Figure 11.14), which makes a
lot more sense.

11.4.5 The final community home page
Having built the index, search, and browse pages, we’ll end by adding the browse partial
to make the RailsSpace community page a one-stop shop for finding RailsSpace users
(Figure 11.15):

Figure 11.14 Browse form with a nice description of the errors.

Hartl/Prochazka Book June 21, 2007 11:8

364 Chapter 11: Searching and browsing

Figure 11.15 The final community page with index, browse, and search.

Listing 11.33 app/views/community/index.rhtml

<h2><%= @title %></h2>

<fieldset>

<legend>Alphabetical Index</legend>

<% @letters.each do |letter| %>

<% letter_class = (letter == @initial) ? "letter_current" : "letter" %>

<%= link_to(letter, { :action => "index", :id => letter },

:class => letter_class) %>

<% end %>

<br clear="all" />

</fieldset>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

<% if @initial.nil? %>

<%= render :partial => "browse_form" %>

<%= render :partial => "search_form" %>

<% end %>

