Preface

CMMI Distilled was originally conceived as a way to introduce the CMMI Product Suite and model-based continuous process improvement to a wide audience. Our goal was to offer a succinct, no-nonsense, minimal-jargon, wittily written, practical guide that was less than half the weight of the “official” CMMI book. We wanted to describe the origins of the model and give the readers some insight into how the 200-plus CMMI authors worked (and fought) to produce it. The first edition had a good deal of “why” information, aimed at folks who had used one of the three source models and who wanted to understand how CMMI differed from earlier models. Of course, it also had the “what” and “how” information about CMMI Version 1.0.

The second edition coincided (roughly) with the release of CMMI Version 1.1, so it included significant changes to the original “what” and “how” sections. At that point CMMI was no longer new and people were beginning to move away from the source models, so we removed some of the “why” material. To reflect the broader reach of CMMI and the need to support practitioners in acquiring sponsors for their improvement initiatives, the second edition added material aimed at managers rather than practitioners.

CMMI content and usage continue to evolve, so now we have created a third edition, building on the legacy of the first two. CMMI began as a tool for managing improvements in engineering development organizations, with a focus on systems and software. In CMMI Version 1.2, this attention to engineering has been strengthened by including explicit hardware-related information. More intriguing, however, are two new members of the CMMI Product Suite: one for the acquirer of systems instead of the developer, and the other for service providers instead of product builders. With these two additions, the potential scope of application for CMMI within an organizational enterprise has broadened significantly. At the same time, CMMI is finding use outside the traditional engineering field. For example, it has been adopted by enterprises as varied as medical facilities seeking to improve their patient care and government entities trying to build and improve their infrastructure.
We had three primary reasons for writing the third edition of *CMMI Distilled*.

1. We wanted to update the book to include changes to the CMMI architecture, content, and presentation, as well as the ongoing domain extensions to the model. The full, updated model content for version 1.2 is covered in the same way as in our previous editions. We use the graphics from the CMMI training material and describe the model components clearly and simply.

2. We wanted to further reduce the amount of historical information relating to the origins of CMMI. For those who may be interested, this material is well covered in the previous editions of this book.

3. We wanted to update and expand upon the practical advice we offer for those using the model. In this edition, we more fully address CMMI usage in tandem with Six Sigma, lean engineering, and other continuous improvement approaches. We also discuss some of the changes to the appraisal methods; specifically, we provide additional guidance on preparing for and managing appraisals, and on using the appraisal results as a powerful input to improvement activities.

Those who have read the previous editions of this book will not be surprised to find that we have included yet another literary offering (three songs) addressing CMMI and the world of continuous improvement. In fact, for those of you who may have missed the first two editions, the earlier “literary gems” can be found on the Pearson Web site at informit.com/aw under either “literary gems” or “superfluous material”—for some reason, the editors were still discussing this as of publication.

And so, in recognition of the explosive growth of CMMI as a process improvement tool of choice around the world, and having incorporated the most recent developments in the evolution of the model suite, we are pleased and excited to present this third edition of *CMMI Distilled*. We hope that it will continue to help our readers understand the CMMI Product Suite and use it wisely for their continuous improvement initiatives.

As always, we couldn’t have put this third edition together without the support, wisdom, and patience of our wonderful wives. Pam, Debbi, and Jo—we still love you the best of all!

Dennis, Aaron, and Rich

April 2008
The implementation of continuous improvement in an organization is possible using two or more single-discipline models. There are many advantages, however, in having just one model that covers multiple disciplines. For this reason, the U.S. Department of Defense—specifically, the Under Secretary of Defense for Acquisition, Technology, and Logistics—teamed up with the National Defense Industrial Association (NDIA) to jointly sponsor the development of Capability Maturity Model Integration (CMMI). In 2000, under the stewardship of the Software Engineering Institute (SEI) at Carnegie Mellon University, this effort produced the first integrated CMMI models, together with associated appraisal and training materials. The year 2002 saw the release of CMMI version 1.1. Version 1.2 was released in 2006.
This chapter begins with an overview of the kinds of information and guidance found in CMMI models. For those not familiar with any of the source models, it provides a good introduction to CMMI’s scope and usefulness. We follow this overview with a discussion of CMMI objectives and history. Next comes information on the source models that were used in creating CMMI. Finally, we describe the CMMI project organization.

3.1 An Overview of CMMI

The CMMI Product Suite contains an enormous amount of information and guidance to help an organization improve its processes. But how does this information help? To answer this question, we start by noting that the CMMI models contain essentially two kinds of materials:

- Materials to help you evaluate the content of your processes—information that is essential to your technical, support, and managerial activities
- Materials to help you improve process performance—information that is used to increase the capability of your organization’s activities

We start with a brief look at each of these types of materials.

3.1.1 Process Content

CMMI provides guidance for your managerial processes. For example, you should establish and maintain a plan for managing your work, and make sure everyone involved is committed to performing and supporting the plan. When you plan, you should define exactly how you will develop and maintain cost, schedule, and product estimates. When you do the work that you have planned, you should compare the performance and progress against the plan, and initiate corrective actions if actual and planned results are out of synch. You should establish and maintain agreements with your suppliers and make sure that both parties satisfy them. CMMI also incorporates information on managing project risk and on creating and managing teams.

CMMI guidance on technical matters includes ways to develop, derive, and manage requirements, and to develop technical solutions that
meet those requirements. The integration of product components depends on good interface information, and CMMI reminds us that integration activities need to be planned and verified. In following the CMMI model, you should make sure that the products and services you develop are consistent with their original requirements and satisfy the customer’s needs through verification and validation practices.

Support processes for technical and managerial activities are also addressed as part of CMMI. You should always manage the versions and configurations of intermediate work products as well as end products and services. You should have methods for ensuring that the processes you have defined are followed and the products you are developing meet the quality specifications you have established. You need to decide which information is important and establish ways to measure and track it. In some cases, you need to plan ways to resolve issues formally. You may need to figure out the root cause of serious problems with your products or key processes.

3.1.2 Process Improvement

Once processes have been established, improving them becomes a key goal. The improvement information in CMMI models includes the creation of a viable, improvable process infrastructure. To build this infrastructure, CMMI includes ways to get your organization to focus on defining and following its processes. Through training and standardization, you can make sure all members of the organization know their roles and understand how to execute them in the process. The measurement data you collect can be applied to improve your process performance, to innovate when processes need to evolve, and to ensure that your organization is able to meet changing needs.

Processes need to be planned just like projects, and it helps if the organization has given some weight and validity to process compliance through policy. You need to make sure that resources are available for trained, empowered people to perform the process. Those with a vested interest in a process need to be identified and involved. Work products that result from performing a process should be managed, the process documentation should be controlled, and progress against the process plan should be tracked as well. Someone should be responsible for objectively evaluating that the process is being followed, and management should be briefed periodically on process performance.
Processes become more capable when they are standardized across the organization and their performance is monitored against historical data. With capable processes, you can detect variations in performance and address potential problems early. Ultimately, you should be continuously improving the processes by identifying the root causes of process variability and finding innovative ways to make them better.

3.1.3 CMMI and Business Objectives

In Chapter 1, we identified some common organizational business objectives. Based on this brief overview of CMMI’s process content and concern with process improvement, how could you expect CMMI to help your organization in meeting such objectives? Let’s look at each objective individually.

Produce Quality Products or Services. The process improvement concept in CMMI models evolved from the Deming, Juran, and Crosby quality paradigm: Quality products are a result of quality processes. CMMI has a strong focus on quality-related activities, including requirements management, quality assurance, verification, and validation.

Create Value for the Stockholders. Mature organizations are likely to make better cost and revenue estimates than those with less maturity, and then exhibit performance in line with those estimates. CMMI supports quality products, predictable schedules, and effective measures to support management in making accurate and defensible forecasts. Process maturity can guard against project performance problems that could weaken the value of the organization in the eyes of investors.

Be an Employer of Choice. Watts Humphrey has said, “Quality work is not done by accident; it is done only by skilled and motivated people.” CMMI emphasizes training, both in disciplines and in process. Experience has shown that organizations with mature processes have far less turnover than immature organizations. Engineers, in particular, are more comfortable in an organization where there is a sense of cohesion and competence.

Enhance Customer Satisfaction. Meeting cost and schedule targets with high-quality products that are validated against customer needs is a good formula for customer satisfaction. CMMI addresses all of these

ingredients through its emphasis on planning, monitoring, and measuring, and the improved predictability that comes with more capable processes.

Increase Market Share. Market share is a result of many factors, including quality products and services, name identification, pricing, and image. Clearly customer satisfaction is a central factor, and in the marketplace having satisfied customers can be contagious. Customers like to deal with suppliers that have a reputation for meeting their commitments. CMMI improves estimation and lowers process variability to enable better, more accurate bids that are demonstrably achievable. It also contributes to meeting essential quality goals.

Implement Cost Savings and Successful Practices. CMMI encourages measurement as a managerial tool. By using the historical data collected to support project estimation, an organization can identify and widely deploy practices that work, and eliminate those that don’t.

Gain an Industry-wide Recognition for Excellence. The best way to develop a reputation for excellence is to consistently perform well on projects, delivering quality products and services that address user needs within cost and schedule parameters. Having processes that incorporate CMMI practices can enhance that reputation.

As you can see, CMMI comprises information that can make a significant impact on your organization and on the achievement of your business objectives. In the next sections, we’ll discuss a different set of objectives—those that led to the development of CMMI itself. In addition, we explore the models that were used as the basis for the information CMMI contains, and something of the structure in place to manage it. More detail on CMMI contents is provided in subsequent chapters.

3.2 CMMI Objectives

While CMMI has many business-related benefits, the CMMI project as defined by its sponsors was directed toward the development of more efficient and effective process improvement models. It had both initial and longer-term objectives. The initial objective (represented in version 1.1 of the CMMI Product Suite) was to integrate three specific process improvement models: software, systems engineering, and integrated product and process development. This integration was intended to
reduce the cost of implementing multidisciplinary model-based process improvement by accomplishing the following tasks:

- Eliminating inconsistencies
- Reducing duplication
- Increasing clarity and understanding
- Providing common terminology
- Providing consistent style
- Establishing uniform construction rules
- Maintaining common components
- Assuring consistency with ISO/IEC 15504

In the update to CMMI version 1.2, one objective of the CMMI Team was to improve and simplify the model as it applies to engineering development activities. A second objective was to expand the scope of the model beyond the world of development to include both acquisition and the delivery of services. Figure 3-1 illustrates these objectives and the product line approach developed by the CMMI Team. It remains to be seen whether in the future other disciplines and constellations will be added to the CMMI Product Suite.

To facilitate both current and future model integration, the CMMI Team created an automated, extensible framework that can house model components, training material components, and appraisal materials. Defined rules govern the potential addition of more disciplines into this framework.

From the start, the CMMI project had to find an acceptable balance between competing requirements relating to change. The task of integration, which by its very nature requires change from each of the original single-discipline models, meant that all model users could expect new ways of thinking about process improvement to be needed in a CMMI environment. At the same time, an equally strong requirement called for protecting the investments in process improvement made by

2. The “CMMI Team” encompasses all who were and are involved in the CMMI project, including the Steering Group, the Product Team, and the Stakeholder Group. See Section 3.4 for a description of the CMMI Project Organization.

3. CMMI-DEV designates the CMMI model constellation that addresses development activities, and with the addition of IPPD included the designation becomes CMMI-DEV +IPPD; CMMI-ACQ designates the model constellation as it applies to acquisition organizations; and CMMI-SVC designates the model constellation (still being developed as we go to publication with this book) as it applies to service providers.

4. A constellation groups together the parts of the model that apply to a special area of interest.
3.2 CMMI Objectives

Figure 3-1: The CMMI concept

CMMI Milestones

1997 CMMI initiated by U.S. Department of Defense and NDIA
1998 First team meeting held
1999 Concept of operations released
 First pilot completed
2000 Additional pilots completed
 CMMI-SE/SW version 1.0 released for initial use
 CMMI-SE/SW/IPPD version 1.0 released for initial use
 CMMI-SE/SW/IPPD/SS released for piloting
2002 CMMI-SE/SW version 1.1 released
 CMMI-SE/SW/IPPD version 1.1 released
 CMMI-SE/SW/IPPD/SS version 1.1 released
 CMMI-SW version 1.1 released
2006 CMMI-DEV version 1.2 released
 CMMI-DEV +IPPD version 1.2 released
2007 CMMI-ACQ version 1.2 released
former users of those models, which meant controlling the introduction of new materials for each discipline. Judging from the significant rate of adoption throughout the world, we believe the CMMI project has achieved an appropriate balance between old and new.

3.3 The Three Source Models

To truly appreciate the significance of the CMMI accomplishments, you need to understand a bit of the history that led up to the development of the CMMI product suite. Of primary importance are the stories of the source models. Table 3-1 summarizes the three source models for CMMI.

Table 3-1: Source Models for CMMI

<table>
<thead>
<tr>
<th>Model Discipline</th>
<th>Source Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>SW-CMM, draft version 2(c)</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>EIA/IS 731</td>
</tr>
<tr>
<td>Integrated Product and Process Development</td>
<td>IPD-CMM, version 0.98</td>
</tr>
</tbody>
</table>

3.3.1 The CMM for Software

The character of software development sometimes seems closer to mathematics and art than it does to most other engineering disciplines. Software is inherently an intangible, intellectual development medium. No laws of physics govern its behavior; it is both marvelously and dangerously malleable. For this reason, it is critical that mature disciplines and processes be applied when working with software.

Software engineering and process management have been intimately associated since the pioneering work of Ron Radice and Richard Phillips in Watts Humphrey’s group at IBM in the 1980s. Basing their work on the tenets of the quality movement, Radice and Phillips led the

way in crafting a way to capture successful software development practices and then organize those practices so as to help struggling organizations get a handle on their processes and improve them. Given the nature of software development, it was not surprising that the large majority of the practices related to management discipline and processes.

Software Engineering

As defined in IEEE Standard 610.12, software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software—that is, the application of engineering to software.6

In 1986, Watts Humphrey, the SEI, and the Mitre Corporation responded to a request by the U.S. federal government to create a way of evaluating the software capability of its contractors. The group used IBM’s concepts to create a software maturity framework, a questionnaire, and two appraisal methods. Over the next few years, this work was continued and refined.

In 1991, the SEI published the CMM for Software version 1.0, a model that describes the principles and practices underlying software process maturity. The CMM is organized to help software organizations improve along an evolutionary path, growing from an ad hoc, chaotic environment into mature, disciplined software processes. The CMM was used and evaluated for two years, and then revised and released as version 1.1 in 1993.7 A similar revision was planned for 1997 as version 2.0;8 this version was developed but never released as an independent model. However, the good work did not go to waste: The proposed revision was used as the source for the CMMI integration effort. In addition, two documents regarding software appraisals were used: the CMM

Software engineering’s scope extends beyond the primary material contained in the CMM for Software to include software-related topics such as requirements elicitation, installation, operation, and maintenance. The CMMI model covers these areas in more detail through inclusion of appropriate material from the Systems Engineering Capability Model.

3.3.2 The Systems Engineering Capability Model

Systems engineering integrates all of the system-related disciplines so that systems meet business and technical needs in the most effective way, while striving to minimize local optimization and maximize return on investment. Another way of envisioning systems engineering is as the application of a set of rigorous engineering techniques to the solution of a complex technical problem.

<table>
<thead>
<tr>
<th>Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOSE defines systems engineering as “an interdisciplinary approach and means to enable the realization of successful systems.”</td>
</tr>
</tbody>
</table>

It is difficult to fully understand the scope of systems engineering without looking at the various specialty disciplines associated with it. In *Essentials of Project and Systems Engineering Management*, Howard Eisner lists 30 key elements of systems engineering. These elements include such diverse areas as mission engineering, architectural design, life-cycle costing, alternatives analysis, technical data management, operations and maintenance, integrated logistics support, and reengineering.

The systems engineering material in the CMMI has a complex history. In a modern-day “Tale of Two Capability Models,” two organizations...

11. INCOSE Winter Workshop, January 1996.
undertook to model systems engineering practices. In August 1995, the Enterprise Process Improvement Collaboration (EPIC—a group of industry, academic, and government organizations) released the Systems Engineering Capability Maturity Model (SE-CMM). EPIC enlisted the SEI and architect Roger Bate to lead the development. The team pulled its systems engineering expertise primarily from aerospace and defense industry corporations and from the Software Productivity Consortium. The result was a model based on the appraisal model architecture contained in draft versions of ISO/IEC 15504 that addressed engineering, project, process, and organization practices.13

Around the same time that the SE-CMM was under development, INCOSE created a checklist for evaluating the capabilities of systems engineering organizations based on various engineering standards. Over time, this checklist evolved into a full-blown capability model known as the Systems Engineering Capability Assessment Model (SECAM). SECAM extended the SPICE concepts of a continuous model but focused more specifically on systems engineering practices than the SE-CMM, using EIA 632, “Processes for Engineering a Model,” as the fundamental reference.

Needless to say, an environment with two models developed by two reputable organizations that purported to address the same issues was ripe for a model war. Which model would emerge as the “standard” by which organizations could be evaluated? After a year of heated discussions, in 1996 EPIC and INCOSE agreed to work together under the auspices of the Government Electronic and Information Technology Association (GEIA) of the Electronic Industries Alliance (EIA), with the goal of merging the two models into a single EIA standard. The result was an interim standard EIA/IS 731, “Systems Engineering Capability Model” (SECM).14 By issuing the interim standard, the systems engineering community could apply a single, common description of systems engineering processes to the CMMI project.

13. In January 1993, an international working group (WG 10) was formed as part of subcommittee 7 (SC7) of the ISO/IEC Joint Technical Committee 1 (JTC1) to create a standard for software process assessment. Piloting of working drafts was accomplished through a project called SPICE (Software Process Improvement and Capability Determination). The combined effort of WG 10 and the SPICE project resulted in the development of ISO/IEC 15504 as a draft standard. At the time of writing the third edition of this book, an international standard has been released, and it has been refocused to address “process assessment” generally—that is, it is not limited just to software process assessment.

Systems engineering in CMMI remains heavily influenced by EIA 731. While echoes of the controversy between SECM and SE-CMM found voice in CMMI discussions, the resulting systems engineering content reflects an even stronger evolution of the original concepts. It preserves some of the innovations of EIA 731 while providing a more consistent underlying architecture compatible with the emerging international standards.15 The standard includes both the SECM model (Part 1) and an appraisal method (Part 2).

3.3.3 The Integrated Product Development CMM

The source model for integrated product and process development was a draft of the Integrated Product Development CMM, known as IPD CMM version 0.98. This model had been developed almost to the point of its initial formal release when the CMMI project began in 1998.

From the outset, the CMMI Team wanted to include the concept of integrated product and process development (IPPD) in the CMMI product suite. This concept was fundamental to many of the large member corporations of NDIA, and it was strongly supported by the Department of Defense (DoD).16 Unfortunately, the definition of IPPD used in the CMMI requirements document was derived from the DoD’s experience with integrated operation of government system acquisition programs—and acquisition was not an initial discipline for CMMI. This discrepancy led to some difficulty in addressing the IPPD tenets within the CMMI scope. Adding to the confusion was a lack of consensus in the industry (and among members of the CMMI Team) regarding the fundamental concepts and best practices of integrated product development. Because it represented a relatively new means of organizing and accomplishing engineering work, there were nearly as many definitions as there were organizations.

This problem was not unique to CMMI. Indeed, the team established by EPIC to develop the IPD CMM, which was supported by many of the same members of the SE-CMM team, struggled with IPPD concepts for more than two years before being subsumed into the CMMI effort. The final draft IPD-CMM was established as a source document for CMMI, but the draft never achieved the status of a finished product.

15 For example, see ISO/IEC 15504 and ISO/IEC 15288.

16 The U.S. Air Force played a significant role in the development of the IPD CMM.
IPPD emphasizes the involvement of stakeholders from all technical and business functions throughout the product development life cycle—customers, suppliers, and developers of both the product and product-related processes, such as testing and evaluation, manufacturing, support, training, marketing, purchasing, financial, contracting, and disposal processes. Clearly, implementing IPPD affects more than an organization’s engineering processes and practices. Because it is essentially a way of doing business, it may radically change organizational structure and modify leadership behavior.

Integrated Product and Process Development

CMMI defines *integrated product and process development* as a systematic approach to product development that achieves a timely collaboration of necessary disciplines throughout the product life cycle, to better satisfy customer needs, expectations, and requirements.

3.4 CMMI Project Organization

During the development phase that led to the initial CMMI materials, the project was organized in terms of a Steering Group, a Product Development Team, and a Stakeholder Group. In all, it involved the efforts of more than 200 people over a period of more than six years. The three groups comprised representatives from industry, government, and the SEI. Representatives of the disciplines whose models were to be integrated into CMMI were included in all three groups.

The Steering Group produced a list of requirements for CMMI, which was then reviewed by the Stakeholder Group and subsequently used by the Product Development Team to guide its creation of the CMMI products. The Product Development Team was a cross-disciplinary group created for the initial development work; it was charged with ensuring that the viewpoints and interests of each discipline were adequately considered in the integration process. The Stakeholder Group reviewed the initial draft CMMI materials, with its work being followed by a public review of a second round of draft materials, prior to
the release of version 1.0 in late 2000. Taking advantage of early feedback from version 1.0 users, and responding to more than 1500 change requests, version 1.1 of the Product Suite was released in 2002.

The cross-disciplinary team that produced the initial CMMI models included members with backgrounds in software engineering, systems engineering, and integrated product and process development. Most engineering organizations maintain these skills, but the manner in which they are aligned and interact varies across organizations. Thus the CMMI Team not only had to resolve differences between the three source models, but also had to bridge the cultural, linguistic, and professional differences separating engineering specialties and organizations. The bridges that had to be built in constructing the CMMI models serve as precursors of those that users of the models will need to construct to successfully support integrated process improvement and process appraisal.

During the CMMI development effort, the CMMI Team actively sought to keep balanced membership across the three disciplines. This move was supported by the strong interest espoused by the software and systems engineering communities. Thanks to the wide acceptance of the
CMM Software, strong advocacy was provided by the SEI and organizations that had used the model, understood its value, and wanted to see that value preserved in the integrated CMMI models. Likewise, in the systems engineering world, the International Council on Systems Engineering (INCOSE) advocated inclusion of systems engineering practices. Even the integrated product and process development community was represented on the CMMI Team, albeit with members voicing a somewhat wider range of views on how integrated product and process development should be handled than did the more established discipline representatives. In the end, this team of experienced and active people, each of whom brought his or her specific expertise and preferences to the table, came together to create the CMMI product suite.

Once the development phase of the initial CMMI product suite was complete, a new organizational structure was established (see Figure 3-2). That is, the CMMI Team evolved into the CMMI Product Team that exists today. This team has access to expert groups for software, systems engineering, integrated product and process development,
supplier sourcing, appraisals, and the core CMMI components. A configuration control board was established to guide CMMI evolution, and the SEI was named as the Steward of the CMMI Product Suite. In its role as Steward, SEI is responsible for maintenance and support of CMMI. As time goes on, new cross-functional teams of experts will be required to handle revisions of existing products and the subsequent work of adding disciplines to the CMMI framework such as the Services Constellation Team and the Acquisition Constellation Team.
Index

A
A method, SCAMPI, 184–185
AAS (Advanced Automation System), 13
Accountability
building into every step, 48
developing relationships based on, 38
as everyday responsibility, 22
of leadership, 27
of stakeholders, 29–30
Acquisition constellation, 70. See also
CMMI-ACQ (CMMI for Acquisition)
Acquisition constellation process areas, 153–160
Acquisition Requirements Development, 155–156
Acquisition Technical Management, 156–157
Acquisition Validation, 157–158
Acquisition Verification, 158–159
Agreement Management, 154–155
maturity levels and, 118
overview of, 153–154
Agreement and Supplier Agreement Development, 159–160
Agreement Management, 154–155, 167
ARD (Acquisition Requirements Development)
ATM working with, 156–157
overview of, 155–156
related process areas, 167
Agilities
advent of, 15–16
process integration and, 19
project and program process improvement, 204
AM (Agreement Management), 154–155, 167
Analyse, Six Sigma methodology, 41
Appraisal Requirements for CMMI, Version 1.2 (ARC V1.2), 183–184
Appraisals, 183–195
conducting regular, 48
against continuous models, 86
defined, 36
misunderstanding current model concepts, 203
requirements, 184–188
role in continuous improvement, 193–195
against staged models, 85
ARC-compliant appraisal method, 184–186
ARD (Acquisition Requirements Development)
ATM working with, 156–157
overview of, 155–156
related process areas, 167
Organizational Service Management, 161–162
overview of, 80
Service Continuity, 163
Service System Development, 165–166
Advanced Automation System (AAS), 13
Affirmations, SCAMPI A appraisals, 190
Additions
defined, 115
document map for, 82
Acronyms, continuous groupings, 91–92
Acronyms, staged groupings, 90–91
ATM (Acquisition Technical Management), 156–157, 167
Availability, Capacity and Availability Management, 162
AVAL (Acquisition Validation), 157–158, 167
AVER (Acquisition Verification), 158–159, 167

B

Balancing Agility and Discipline (Boehm and Turner), 16
Bate, Roger, 63
Benchmarks, CMMI. See CLs (capability levels)
Black Belt, 46
Business objectives
continuous improvement, 22–24
overview of, 56–57
process improvement linked to, 8–10, 28–29
process integration benefits, 17–19
process performance and, 34–35
strong leadership and, 27–28

C

CAM (Capacity and Availability Management), 162–163, 167
Capability dimension
capability levels. See CLs (capability levels)
generic practices, 105–112
organizational evolution and, 112–113
overview of, 98–103
Capability Maturity Model Integration. See CMMI (Capability Maturity Model Integration)
Capability models, 7–8
Capacity and Availability Management (CAM), 162–163, 167
CAR (Causal Analysis and Resolution) related process areas, 168
specific goals for, 73
Support process area, 142–143
CBA IPI (CMM-Based Appraisal for Internal Process Improvement), 62
Chesapeake Bay, 50–51
Clark, William, 172–173
Class A method, 184–186, 188–193
Class B method, 184–186, 189
Class C method, 184–186, 189
CLs (capability levels)
benchmarking using, 36
choosing continuous models, 179
CL 1 process. See Performed process (CL 1)
CL 2 process. See Managed process (CL 2)
CL 3 process. See Defined process (CL 3)
CL 4 process. See Quantitatively Managed process (CL 4)
CL 5 process. See Optimizing process (CL 5)
maturity levels vs., 103
organizational evolution and, 112–113
overview of, 98–99
using profiles, 86–87
CM (Configuration Management)
overview of, 137–138
related process areas, 168
specific goals and practices, 76
CMF (CMMI Model Foundation)
defined, 70, 115
future of domain-independent CMMI model, 201–203
overview of, 80–81
CMM Appraisal Framework, 62
CMM-Based Appraisal for Internal Process Improvement (CBA IPI), 62
CMM for Software
CMMI created from, 25
development of, 61–62
success and imitation of, 16
CMMI-ACQ (CMMI for Acquisition)
defined, 116
process areas, 153–160
process areas and maturity levels, 118
CMMI (Capability Maturity Model Integration) appraisals. See Appraisals
business objectives, 8–10, 56–57
Continuous improvement. See Continuous improvement

Customer focus, 30
dimensions. See Dimensions

Goal, 3
Leadership, 46
Maturity and capability emphases, 42
Milestones, 59
Objectives, 57–60
Origins, 25
Overview of, 54
Process areas. See Process areas
Process content, 54–55
Process improvement, 7–8, 55–56
Project organization, 65–68
Representations. See Representations
Source models in, 60–65
Stakeholder focus of, 29–30

CMMI, content, 69–82
Additions, 80
Classification, 71–72
CMMI Model Foundation and, 80–81
Constellations, 70
Document map for, 81–82
Expected materials, 74–76
Informative materials, 76–79
Process, 54–55
Process areas, 70–71
Required materials, 72–74

CMMI (Capability Maturity Model Integration), evolution of, 199–208
Active participation in, 207–208
Domain-independence, 201–203
Improvement scope, 205–206
Misunderstanding current model concepts, 203
Process performance, 205
Project and program process improvement, 203–205
Simplification, 200
Steering group and sponsorship, 206–207

CMMI-DEV (CMMI for Development)
Defined, 116
Development constellation, 70, 143–153
Organization of process areas, 89–92

CMMI for Acquisition. See CMMI-ACQ
(CMMI for Acquisition)

CMMI Model Foundation. See CMF
(CMMI Model Foundation)

CMMI Steward, 192

CMMI Survival Guide (Garcia and Turner), 8, 24

CMMI-SVC (CMMI for Services)
development of, 58–59, 70
Latest draft of, 116
Services Constellation Process areas, 160–166
Commercial off-the-shelf (COTS) software, 6
Complexity, of modern systems, 12–14
Configuration Management. See CM (Configuration Management)

Constellations
Acquisition. See Acquisition
Constellation process areas
CMMI Model Foundation, 80–81
Development. See Development
Constellation
Domain-independent model lack of orientation to, 202
Engineering. See Engineering
Constellation process areas
Overview of, 70
Process Management, 116, 161–162
Service Establishment and Delivery, 118, 161
Services. See Services constellation process areas

Continuous improvement, 21–49
Business performance and, 22–24
Business strategies and results linked to, 28–29
Culture of, 26–27
Customer focus of, 29–30
Everyone participating in, 45–47
Large-scale, 31–32
Managing activities, 43–45
Practical advice for, 47–49
Quality in, 30–31
Strong leadership and, 27–28
Tools for, 25
Continuous improvement, keys for, 33–43
 CMMI, 36
 knowledge management, 42–43
 lean engineering approach, 36–39
 process excellence, 33–36
 Six Sigma methodology, 39–42
 using, 43
Continuous representation models
capability dimension in. See
 Capability dimension
defined, 84
 equivalent staging, 92–96
 legacy models vs. CMMI v1.2, 180
 overview of, 85–87
 reasons for liking, 178–180
Contractual requirements, Acquisitions, 155–156
Control
governance of CMMI, 206–207
 Project Monitoring and Control,
 129–131
 Six Sigma methodology, 42
Control charts, Six Sigma methodology, 40
Costs
 ARC limitations, 187–188
 business objectives and, 57
 process improvement calculations,
 9–10, 28, 35
 process integration benefits, 17
 quality as important as, 30–31
 SCAMPI A appraisals and, 192
 well-designed accounting system for,
 48
COTS (commercial off-the-shelf)
 software, 6
Crisis management, 23–24, 26
Critical to delivery (CTQs), Six Sigma methodology, 42
Crosby, Philip, 178
Croseus of Lydia, King, 197
Cross-discipline teams
 CMMI Product Development Teams,
 65–66
 process improvement and, 15
 tips for, 49
Cross-training, 45
CTQs (critical to delivery), Six Sigma methodology, 42
CTXs analysis, Six Sigma methodology, 42
Culture, continuous improvement
 establishing, 22
 nurturing, 23, 26–27, 33
Current-state maps, lean engineering, 38–39
Customers
 Acquisition Requirements
 Development for, 155–156
 aligning with priorities of, 24
 business objectives and, 56–57
 calculating satisfaction of, 35
 Decision Analysis and Resolution for,
 141–142
 engaging real process users, 48
 focusing on, 29–30
 Organizational Service Management
 for, 161–162
 requirements established by, 26,
 144–146
D
DAR (Decision Analysis and
 Resolution), 141–142, 168
Data collection, ARC appraisal method, 185
Data consolidation, ARC appraisal
 method, 186
DB Systems GmbH, 10
Deciders, CMMI, 206
Decision Analysis and Resolution
 (DAR), 141–142, 168
Defects, Six Sigma methodology, 40
Define, measure, analyze, improve and
 control (DMAIC), Six Sigma, 40–42
Define, Six Sigma methodology, 41
Defined process (CL 3)
 building capability, 101
 defined, 99–100
 generic practices in, 109–110
 overview of, 101–102
Defined process (ML 3), 103
Deming, Juran, and Crosby quality
 paradigm, 56
Department of Defense. See DoD
(Department of Defense)
Design, and Technical Solution process area, 146–148
Development constellation, 143–153. See also CMMI-DEV (CMMI for Development)
Engineering process areas, 143–151
overview of, 146
Project management process area, 151–153
DI-CMMI (domain-independent CMMI) model, 201–203
dimensions, 97–113
 capability, generic practices in, 105–112
 capability, overview of, 98–103
 maturity, generic practices in, 112
 maturity, overview of, 103–104
 organizational capability evolution and, 112–113
overview of, 97–98
Direct artifacts, SCAMPI A appraisals, 190
Discipline amplifications, 78–79
DMAIC (define, measure, analyze, improve and control), Six Sigma, 40–42
Document maps, 81–82
Documentation, ARC appraisal method, 185, 186
DoD (Department of Defense)
CMMI initiated by, 53, 59
developing IPPD, 64
governance of CMMI and, 206–207
on process performance, 205
Domain-independent CMMI (DI-CMMI) model, 201–203

Employees
continuous improvement activities, 43–45
necessity to understand processes, 45–46
nurturing culture of continuous improvement, 26–27
recognizing outstanding service of, 23
Engineering constellation process areas, 143–151
defined, 92
maturity levels and, 117
overview of, 135, 143–144
Product Integration, 148–149
Requirements Development, 144–146
Requirements Management, 135–136
Service System Development, 165–166
Services, 163–164
Technical Solution, 146–148
Validation, 150–151
Verification, 149–150
Engineering environment
 benefits of process integration, 17–19
 changes in, 6
 evolving approaches, 14–16
 process improvement model for, 58–59
twenty-first century, 12–14
Enterprise Process Improvement Collaboration (EPIC), 63
EPIC (Enterprise Process Improvement Collaboration), 63
Equivalent staging
 capability profiles for, 86–87
 overview of, 92–96
 for users of continuous representation, 180
Essentials of Project and Systems Engineering Management (Eisner), 62
Establishment and Delivery process areas, Service
 Incident and Request Management, 164
 Service Delivery, 165
 Service System Development, 165–166
 Service Transition, 166

EIA (Electronic Industries Alliance)
EIA 632 (SECAM), 63
EIA 731 (as continuous model), 85
EIA/IS 731 (SECM), 63
Electronic Industries Alliance. See EIA (Electronic Industries Alliance)
Executives, and strong leadership, 27–28
Expected material (practices)
 content classification as, 71–72
 document map for, 82
 overview of, 74–76

F

FAA (Federal Aviation Administration), 13
Federal Aviation Administration (FAA), 13
Fishbone charts, Six Sigma, 42
FMEA (failure modes and effect analysis), Six Sigma methodology, 40
Focus
 process integration clarifying, 17–18
 SCAMPI A appraisals, 189
Foundation process areas
 Engineering, 135–136
 Process Management, 119–127
 Project Management, 127–135
 Support, 136–143
Framework, developing CMMI, 58–59
Freedom, of continuous models, 178

G

GEIA (Government Electronic and Information Technology Association), of EIA, 63
Generic goals, required materials, 72–73
Generic practices
 CL 0 process, 105
 CL 1 process, 99–100, 105
 CL 2 process, 100–101, 105–109
 CL 3 process, 109–110
 CL 4 process, 110–111
 CL 5 process, 111–112
 continuous models using, 85–87
 elaborations on, 79
 in maturity dimension, 112
 maturity vs. capability levels, 103–104
 misunderstanding current model
 concepts of, 200, 203
 overview of, 74–76

GPs. See Generic practices
Green Belt, 46

H

Hardware, complexity of modern, 13
Humphrey, Watts, 61
Hypothesis testing, Six Sigma methodology, 42

I

IBM Australia Application Management Services, 10
Improve, Six Sigma methodology, 41
Improvement, 124–126, 205–206
Incident and Request Management (IRM), 164, 168
INCOSE (International Council on Systems Engineering), 67
Indirect artifacts, SCAMPI A appraisals, 190
Informative material
 additions extending, 80
 content classification as, 72
 document maps for, 82
 overview of, 76–79
Infrastructure, process excellence, 33–34
Initial process (ML 1), 104
Institutionalization, CMMI, 73–74
Integrated process improvement, 3–20
 appraisal in, 193–195
 benefits of, 17–19
 business objectives and, 8–10
 continuous improvement. See
 Continuous improvement in engineering, 12–16
 goal of, 3
 golf example of, 11–12
 model-based process improvement,
 6–8
 models and standards, 16
 need for, 6–7
Integrated Product Teams (IPT), 14–15
Integrated Project Management. See IPM (Integrated Project Management)
Integration, product, 148–149
International Council on Systems Engineering (INCOSE), 67
Introductory notes, 77
IPD-CMM, 64–65
IPM (Integrated Project Management)
 IPM+IPPD, 131–133
 related process areas, 168
 selecting process areas, 88
IPPD (Integrated Product and Process Development)
 collaboration of stakeholders in,
 29–30
 evolving approach of, 14–15
 Integrated Project Management with
 and without, 131–133
Organizational Process Definition
 plus, 120–121
 source model for, 64–65
IPT (Integrated Product Teams),
 14–15
IRM (Incident and Request Management), 164, 168
ISO 9000 standards, 35–36
ISO/IEC standards
 15504 (SE-CMM), 63
 15504 (SE-CMM), SCAMPI A
 designed for, 192
 overview of, 16

K
Key characteristics, Six Sigma methodology, 42
KM (Knowledge management), 42–43
Knowledge retention, 43

L
LAI (Lean Advancement Initiative),
 36–37
Large-scale organizations, continuous improvement, 22–24, 31–32
Lead appraisers, ARC Class A appraisals, 191–192
Leadership, strong, 27–28
Lean Advancement Initiative (LAI),
 36–37
Lean engineering
 continuous improvement in,
 36–39
 customer focus of, 29
 leadership in, 46
 origins of, 25
 process efficiency/removal of waste
 in, 42
 process integration in, 18–19
LEM (Lean Enterprise Model), 29,
 37–38
Levels, CMMI, 36
Lewis, Meriweather, 172–173
The Limits of Software (Britcher), 13

M
MA (Measurement and Analysis),
 139–140, 168
Managed process (CL 2), 99–101,
 105–109
Managed process (ML 2), 103
Managed process, CMMI, 73–74
Manufacturing tools, 25
Market share, 57
Master Black Belt, 46
Materials, CMMI models
content classification and, 72–74
expected materials, 74–76
informative materials, 76–79
required materials, 72–74
Maturity dimension
generic practices in, 112
organizational capability evolution
and, 112–113
overview of, 103–104
Measure, Six Sigma methodology, 41
Measurement and Analysis (MA),
139–140, 168
Metrics
calculating process improvement
projects, 35
in continuous improvement culture,
23
facilitating collection of data, 48
Milestones, 59
MLs (maturity levels)
benchmarking using, 36
equivalent staging using, 92–96
organization of process areas,
90–91
overview of, 103
process areas by category, 116–119
Process Management category, 119
Project Management category, 128
selection of process areas, 88–89
staged groupings, 90–91
staged models, 84–85
structure of, 104
Model-based process improvement, 7
Modular Open Systems Approach
(MOSA), 146
Monitoring
Measurement and Analysis process
area, 139–140
Project Monitoring and Control
process area, 129–131
MOSA (Modular Open Systems
Approach), 146

See NDIA (National Defense Industrial
Association)
NDIA (National Defense Industrial
Association)
choosing who should control CMMI,
206–207
developing CMMI, 53
development of IPPD, 64
Nez Perce tribe, 172–173
Non-focus projects, SCAMPI A
appraisals, 189
Northrop Grumman IT Defense
Enterprise Solutions, 10
Not Performed process (CL 0)
building capability, 101
generic practices and, 105
overview of, 98–99
Notes, 78

O
Objectives, CMMI, 57–60
OID (Organizational Innovation and
Deployment), 124–126, 168
OPD+IPPD (Organizational Process
Definition + IPPD), 120–122,
168
OPF (Organizational Process Focus),
122–123, 168
OPP (Organizational Process
Performance), 73, 123–124
Opportunities, in Six Sigma, 40
Optimizing process (CL 5), 99, 101–103,
111–112
Optimizing process (ML 5), 103
Oracle at Delphi, 196–197
Organizational capability evolution,
112–113
Organizational Innovation and
Deployment (OID), 124–126, 168
Organizational Process Definition
+ IPPD (OPD+IPPD), 120–122,
168
Organizational Process Focus (OPF),
122–123, 168
Organizational Process Performance
(OPP), 73, 123–124

N
Names, 77
Practices
achieving goals with, 74–76
in continuous models, 85–87
generic. See Generic practices
incorporating lessons learned into, 34
specific, 74–75
in staged models, 84–85
subpractices, 77
using Specific Goal and Practice
Summary, 77
Preparation, ARC appraisal method, 185
Problem Management (PM), 164, 168
Procedures, 34
Process and Product Quality Assurance
(PPQA), 138–139, 168
Process areas, 115–171
Acquisition constellation, 153–160
additions extending, 80
categories of, 116–118
CMMI Model Foundation and, 80–81
continuous models, 85–87
Development constellation, 143–153
Foundation. See Foundation process
areas
organizing, 89–92
overview of, 70–71
relationships among, 167–171
selecting, 87–89
Services constellation, 160–166
staged models, 84–85, 176–178
Process assessment standard, 16
Process improvement. See also Integrated
process improvement
CMMI, 55–56
project and program, 203–205
targeting with capability profiles, 86
Process library, 33–34
Process Management Foundation
process areas, 119–127
continuous groupings, 91
maturity levels and, 116
Organizational Innovation and
Deployment, 124–126
Organizational Process Definition,
120–122
Organizational Process Focus,
122–123

P
Participation, in CMMI, 207–208
Peer reviews, 149–150
Performance
ARC appraisal method requirements, 186–187
evolving CMMI and, 205
Measurement and Analysis, 139–140
measuring and monitoring process
for, 34–35
measuring improvement. See
Dimensions
Organizational Process Performance,
123–124
Quantitative Project Management,
133–134
Performed process (CL 1), 99–101, 105
Personal Software Process (PSP)
training, 10
Phillips, Richard, 60–61
PI (Product Integration), 148–149, 168
Pilot projects, 49
Planning
ARC appraisal method, 185
process, 139–140
project. See PP (Project Planning)
PM (Problem Management), 164, 168
PMC (Project Monitoring and Control)
overview of, 129–131
related process areas, 168
specific goals for, 73
PP (Project Planning)
project management process area,
128–129
related process areas, 168
Requirements Management,
135–136
Risk Management building on, 134
PPQA (Process and Product Quality
Assurance), 138–139, 168
Practice implementation indicators,
SCAMPI A method, 190

OSM (Organizational Service
Management), 161–162, 168
OT (Organizational Training), 126–127,
168
Process Management Foundation

process areas (cont.)
 Organizational Process Performance, 123–124
 Organizational Training, 126–127
 overview of, 119–120
 Services, 161–162
Process stimulation, Six Sigma, 40
Product Development Teams, 29–30, 65–68
Product Integration (PI), 148–149, 168
Products
 Process and Product Quality Assurance, 138–139
 Product Integration, 148–149
 Requirements Development, 144–146
 Supplier Agreement Management, 151–153
 Technical Solution, 146–148
 Validation process area, 149–150
 Verification process area, 149–150
Profiles
 capability level, 86–87
 target, 86, 92–96
Programs, process improvement for, 203–205
Project Management process areas, 127–135
 continuous groupings, 91
 Development, 151–153
 Integrated Project Management, 131–133
 and maturity levels, 117
 overview of, 127–128
 Project Monitoring and Control, 129–131
 Project Planning, 128–129
 Quantitative Project Management, 133–134
 Risk Management, 134–135
 Services, 162–163
Project Monitoring and Control. See
 PMC (Project Monitoring and Control)
Projects
 organization, 65–68
 planning. See PP (Project Planning)
 process improvement for, 203–205
PSP (Personal Software Process)
 training, 10
Purpose statement, 76–77

Q

QPM (Quantitative Project Management)
 overview of, 112–113
 project management process area, 133–134
 related process areas, 168
Quality
 CMMI business objectives, 56
 continuous improvement and, 30–31
 Process and Product Quality Assurance, 138–139
Quality Management Maturity Grid, 178
Quantitatively Managed process (CL 4)
 building capability, 101
 defined, 99–100
 generic practices in, 110–111
 overview of, 102
Quantitatively Managed process (ML 4), 103

R

Radice, Ron, 60–61
Ratings, ARC appraisal method, 186–188, 190
RD (Requirements Development)
 defined, 88
 developing product component requirements, 152
 overview of, 144–146
 related process areas, 168
Redundant processes, 17
References, 77
Regression analysis, Six Sigma methodology, 40
Reliability, ARC appraisal method, 187–188
Reporting results
 ARC appraisals, 186
 SCAMPI A appraisals, 191
Repository, redundant process asset, 17
Representations, 83–96
 continuous models, 85–87
equivalent staging, 92–96
organizing process areas, 89–92
overview of, 83–84
selecting process areas, 87–89
staged models, 84–85
Representations, choosing, 175–182
 continuous models, 178–180
overview of, 175–176
reasons for, 180–181
staged models, 176–178
Reputation for excellence, 57
REQM (Requirements Management)
 Engineering process area, 135–136
overview of, 88–89
specific goals for, 73
REQM (Requirements Management)+SVC, 163–164, 169
Required material (goal)
 content classification as, 71–72
document map for, 82
overview of, 72–74
Requirements Development. See RD (Requirements Development)
Requirements Management. See REQM (Requirements Management)
Responsibilities, ARC appraisal method, 185
return on investment (ROI), 10, 35
Reuter’s, and CMMI success, 10
Risk Management (RSKM), 134–135, 169
ROI (return on investment), 10, 35
Root cause, 112
RSKM (Risk Management), 134–135, 169

S
Safety, in lean engineering, 37
SAM (Supplier Agreement Management), 151–153, 169
SCAMPI (Standard CMMI Appraisal Method for Process Improvement)
 defined, 183–184
A method, 184–185
overview of, 188–193
Schedules, 30–31, 56–57
SCON (Service Continuity), 163, 169
SD (Service Delivery), 165, 169
SE-CMM (Systems Engineering Capability Maturity Model), 63–64
SE (Systems Engineering), 57–60, 62–64, 67
SECAM (Systems Engineering Capability Assessment Model), 63
SECM (Systems Engineering Capability Model), 25, 63–64
SEI (Software Engineering Institute), 53
 CMM for Software version 1.0, 61
governance of CMMI and, 206–207
as Steward of CMMI Product Suite, 68
submitting change requests to, 207
Service Continuity (SCON), 163, 169
Service Delivery (SD), 165, 169
Service Establishment and Delivery constellation, 118, 161
Service System Development (SSD), 165–166, 169
Service Transition (ST), 166, 169
Services constellation process areas, 160–166. See also CMMI-SVC (CMMI for Services)
 Engineering, 163–164
 Establishment and Delivery, 164–166
overview of, 160–161
 Process Management, 161–162
 Project Management, 162–163
 Support, 164
Services Constellation Team, 68
Shine, in lean engineering, 37
Simplified model, future CMMI, 200–203
SIPOC (suppliers, inputs, processes, outputs and customers), Six Sigma, 42
Six S approach, lean engineering, 37–38
Six Sigma methodology
 continuous improvement and, 39–42
customer focus of, 29
leadership in, 46
origins of, 25
 process control/reducing variability in, 42
Skill development. See Training
Smaller organizations, continuous improvement, 24
Software
 complexity of modern systems, 13
Software (cont.)
development tools, 25
ingineering, 61
life cycle processes, 16
process improvement model for,
57–59
project organization for, 66–67
source model for, 60–62
Software Engineering Institute. See SEI
(Software Engineering Institute)
Software Process Improvement and
Capability dEtermination (SPICE)
project, 63
Software Productivity Consortium, 63
Solicitation and Supplier Agreement
Development (SSAD), 159–160, 169
Sort, in lean engineering, 37
Source models, CMMI, 60–65
SPC (statistical process control), Six
Sigma methodology, 42
Specific goals
additions extending, 80
for process areas, 72–73
Specific Goal and Practice Summary,
77
Specific practices, 74–75, 80
SPICE (Software Process Improvement
and Capability dEtermination) project,
63
Spiral development, 15–16
Sponsorship, 206–207
SSAD (Solicitation and Supplier
Agreement Development), 159–160,
169
SSD (Service System Development),
165–166, 169
ST (Service Transition), 166, 169
Staged representation models
defined, 84
equivalent staging, 92–96
equivalent staging and, 92–96
legacy models vs. CMMI v1.2, 181
maturity dimension in, 103–104
organizational capability evolution
and, 112–113
overview of, 84–85
reasons for liking, 176–178
selecting process areas, 88
staged groupings, 90–91
Staging, with continuous models,
179–180
Stakeholder Group, project organization,
65–68
Stakeholders
Decision Analysis and Resolution,
141–142
Integrated Project Management,
131–133
IPPD implementation, 65
overview of, 29–30
Standard CMMI Appraisal Method for
Process Improvement. See SCAMPI
(Standard CMMI Appraisal Method for
Process Improvement)
Standardize, in lean engineering, 37
Standards. See also EIA (Electronic
Industries Alliance); ISO/IEC
standards
creating, 49
governance of CMMI, 206
ISO 9000, 35–36
Organizational Service Management
and, 161–162
Statistical process control (SPC), Six
Sigma methodology, 42
Steering Group
CMMI project organization, 65–68
governance of CMMI and,
206–207
joining, 207
managing continuous improvement,
44–45
Stepwise development, 14
Stockholders, business objectives, 56
Stovepipe process improvement,
limitations of, 18
Straighten, in lean engineering, 37
Subpractices, 77
Supplier Agreement Management
(SAM), 151–153, 169
Suppliers
Acquisition Requirements
Development, 155–156
Acquisition Technical Management,
156
Agreement Management, 154–155
Solicitation and Supplier Agreement
Development, 159–160
suppliers, inputs, processes, outputs and customers (SIPOC), Six Sigma, 42
Support process areas, 136–143
 Causal Analysis and Resolution, 142
 Configuration Management, 137–138
 continuous groupings?, 92
 Decision Analysis and Resolution, 141–142
 maturity levels for, 117
 Measurement and Analysis, 139–140
 overview of, 136–137
 Process and Product Quality Assurance, 138–139
 Services, 164
Sustain, in lean engineering, 37
SW-CMM, 10, 60–62
System life cycle standard, 16
Systems Engineering Capability Assessment Model (SECAM), 63
Systems Engineering Capability Maturity Model (SE-CMM), 63–64
Systems Engineering Capability Model (SECM), 25, 63–64
Systems Engineering (SE), 57–60, 62–64, 67

T

Technical Solution (TS) process area. See TS (Technical Solution)
Tools
 continuous improvement, 24–25
 Six Sigma methodology, 40
The Tower of Babel (Dore), 2
Tower of Babel story, 2–3
Training
 CMMI emphasis on, 56
 continuous improvement and, 23, 45
 cost benefits of, 17

Organizational Training, 48, 126–127
Service Continuity, 163
TS (Technical Solution)
 overview of, 146–148
 related process areas, 169
 SAM working closely with, 152
Typical supplier deliverables, 77
Typical work products, 77

U

U.S. Department of Defense. See DoD (Department of Defense)

V

Validation
 Acquisition Validation, 157–158
 ARC appraisal method, 186
 Requirements Development and, 144–146
 VAL (Validation), 150–151, 169
Value-added steps, lean engineering, 38–39
Value-stream maps, lean engineering, 38–39
Verification
 Acquisition Verification, 158–159
 VER (Verification), 149–150, 169
Visibility, of continuous models, 178
VOC (voice of customer), 29, 42

W

Welch, Jack, 40
Work products, 77
Work teams, 45
Workshop approach, 49