
Preface

“I know the human being and fish can coexist peacefully.”

- George W. Bush, Saginaw, Mich., Sept. 29, 2000

INTRODUCTION

The concept of fuzzing has been around for almost two decades but has only recently
captured widespread attention. A plague of vulnerabilities affecting popular client-side
applications, including Microsoft Internet Explorer, Microsoft Word, and Microsoft
Excel, were seen in the year 2006 and a large portion of these vulnerabilities were discov-
ered through fuzzing. This effective application of fuzzing technologies gave rise to new
tools and increased exposure. The sheer fact that this is the first published book dedi-
cated to the subject matter is an additional indicator that there is an increasing interest
in fuzzing.

Having been involved in the vulnerability research community for years, we have used
a variety of fuzzing technologies in our day to day work, ranging from immature hobby
projects to high end commercial products. Each of the authors has been involved in the
development of both privately held and publicly released fuzzers. We leveraged our com-
bined experience and ongoing research projects to compose this bleeding edge book,
which we hope you will find beneficial.

xxi

6119fm.qxp 5/24/2007 12:00 PM Page xxi

INTENDED AUDIENCE

Security books and articles are frequently written by security researchers for the benefit
of other security researchers. We strongly believe that the quantity and severity of vul-
nerabilities will continue to grow so long as security is deemed to be the sole responsibil-
ity of a security team. As such, we have taken strong efforts to write for a large audience
including both readers who are new to fuzzing and those who have already had signifi-
cant exposure.

It is unrealistic to believe that secure applications can emerge from the development
process if we simply hand completed applications to a security team for a quick audit
prior to production launch. Gone are the days when a developer or a member of the QA
Team can say, “security’s not my problem – we have a security team that worries about
that”. Security must now be everyone’s problem. Security must be baked into the soft-
ware development lifecycle (SDLC), not brushed on at the end.

Asking the development and QA teams to focus on security can be a tall order, espe-
cially for those that have not been asked to do so in the past. We believe that fuzzing
presents a unique vulnerability discovery methodology that is accessible to a wide audi-
ence due to the fact that it can be highly automated. While we are hopeful that seasoned
security researchers will gain valuable insights from this book, we are equally hopeful
that it will be accessible to developers and QA teams. Fuzzing can and should be an inte-
gral part of any SDLC, not just at the testing phase, but also during development. The
earlier a defect can be identified, the less costly it will be to remediate.

PREREQUISITES

Fuzzing is a vast subject. While we cover many non-fuzzing specific basics throughout
the book, a number of assumptions regarding prior knowledge have been made. Readers
should have at least a basic understanding of programming and computer networking
prior to taking on this book. Fuzzing is all about automating security testing so naturally
much of the book is dedicated to building tools. We have purposely selected multiple
programming languages for these tasks. Languages were selected according to the task at
hand, but this also demonstrates that fuzzing can be approached in numerous ways. It is
certainly not necessary to have a background in all of the languages used, but having a
language or two under your belt will go a long way in helping you to get the most from
these chapters.

We detail numerous vulnerabilities throughout the book and discuss how they might
have been identified through fuzzing. However, it is not our goal to define or dissect the
nature of the vulnerabilities themselves. Many excellent books have been written which
are dedicated to this topic. If you are looking for a primer on software vulnerabilities,

PREFACE

xxii

6119fm.qxp 5/24/2007 12:00 PM Page xxii

Exploiting Software by Greg Hoglund and Gary McGraw, books from the Hacking
Exposed series and The Shellcoder’s Handbook by Jack Koziol, David Litchfield, et al. are
great references.

APPROACH

How to best leverage this book depends upon your background and intentions. If you
are new to fuzzing, we would recommend digesting the book in a sequential manner as it
has been intentionally laid out to provide necessary background information prior to
moving onto more advanced topics. If however, you’ve already spent time using various
fuzzing tools, don’t be afraid to dive directly into topics of interest as the various logical
sections and chapter groupings are largely independent of one another.

Part I is designed to set the stage for the specific types of fuzzing that are discussed in
the remainder of the book. If you’re new to the world of fuzzing, consider this to be
required reading. Fuzzing can be used as a vulnerability discovery methodology for just
about any target, but all approaches follow the same basic principles. In Part I, we seek to
define fuzzing as a vulnerability discovery methodology and detail the knowledge that
will be required regardless of the type of fuzzing which is conducted.

Part II focuses on fuzzing specific classes of targets. Each target is divided across two
or three chapters. The first chapter provides background information specific to the tar-
get class and the subsequent chapters focus on automation, detailing the construction of
fuzzers for that particular target. Two automation chapters are provided when separate
tools are deemed necessary for the Windows and UNIX platforms. For example, consider
the chapter triplet on “File Format Fuzzing” starting with Chapter 11 which details back-
ground information related to fuzzing file parsers. Chapter 12, “File Format Fuzzing:
Automation on UNIX” details the actual programming of a UNIX-based file fuzzer and
Chapter 13, “File Format Fuzzing: Automation on Windows” details the construction of
a file format fuzzer designed to run in the Windows environment.

Part III tackles advanced topics in fuzzing. For readers who already have a strong
knowledge of fuzzing it may be appropriate to jump directly into Part III, while most
readers will likely want to spend time in Parts I and II before moving onto these topics.
In Part III, we focus on emerging technologies that are just beginning to be implemented
but will become critical for advanced vulnerability discovery tools that leverage fuzzing
in the future.

Finally, in Part IV, we reflect on what we’ve learned throughout the book and then
peer into the crystal ball to see where we’re headed in the future. While fuzzing is not a
new concept, it still has plenty of room to grow, and we hope that this book will inspire
further research in this space.

PREFACE

xxiii

6119fm.qxp 5/24/2007 12:00 PM Page xxiii

A TOUCH OF HUMOR

Writing a book is serious work, especially a book on a complex subject like fuzzing. That
said, we like to have fun as much as the next person (actually probably significantly more
than the average person) and have made our best effort to keep the writing entertaining.
In that spirit, we decided to open each chapter with a brief quotation from the 43rd

President of the United States, George W. Bush (a.k.a. Dubya). No matter what your
political affiliation or beliefs may be, no one can argue that Mr. Bush has cooked up
many entertaining quotes over the years, enough to fill entire calendars1 even! We’ve
compiled some of our favorites to share with you and hope you find them as funny as we
do. As you’ll see throughout the book, fuzzing can be applied against a variety of targets,
evidently even the English language.

ABOUT THE COVER

At times, vulnerabilities have at times been referred to as “fish.” (For example, see the
thread on “The L Word & Fish”2 from the DailyDave security mailing list.) This is a useful
analogy that can be applied across the board when discussing security and vulnerabilities.
A researcher can be called a fisherman. Reverse engineering the assembly code of an appli-
cation, line by line, in search of a vulnerability may be referred to as “deep sea fishing.”
In comparison to many other auditing tactics, fuzzing for the most part only scratches
the surface and is highly effective at capturing the “easy” fish. In addition, the grizzly bear
is a notable “fuzzy,” yet powerful animal. Combined, these are the main motivations
behind our choice of cover art where the bear, representing a fuzzer, is shown capturing a
fish, representing a vulnerability.

COMPANION WEBSITE:WWW.FUZZING.ORG

The fuzzing.org website is an absolutely integral part of this book as opposed to a sup-
plemental resource. In addition to housing errata that is sure to emerge post publication,
the website will serve as the central repository for all source code and tools covered
throughout the book. Over time, we intend to evolve fuzzing.org beyond a book-centric
companion website into a valuable community resource with tools and information
related to all fuzzing disciplines. We welcome your feedback in order to help make the
site a valuable and open knowledgebase.

PREFACE

xxiv

1 http://tinyurl.com/33l54g

2 http://archives.neohapsis.com/archives/dailydave/2004-q1/0023.html

6119fm.qxp 5/24/2007 12:00 PM Page xxiv

