
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321444431
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321444431
https://plusone.google.com/share?url=http://www.informit.com/title/9780321444431
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321444431
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321444431/Free-Sample-Chapter

Praise for SQL Queries for Mere Mortals®, Second Edition

Unless you are working at a very advanced level, this is the only SQL book you

will ever need. The authors have taken the mystery out of complex queries and

explained principles and techniques with such clarity that a “Mere Mortal” will

indeed be empowered to perform the superhuman. Do not walk past this book!

— Graham Mandeno, Database Consultant

I learned SQL primarily from the first edition of this book, and I am pleased to see

a second edition of this book so that others can continue to benefit from its organ-

ized presentation of the language. Starting from how to design your tables so that

SQL can be effective (a common problem for database beginners), and then con-

tinuing through the various aspects of SQL construction and capabilities, the

reader can become a moderate expert upon completing the book and its samples.

Learning how to convert a question in English into a meaningful SQL statement

will greatly facilitate your mastery of the language. Numerous examples from real

life will help you visualize how to use SQL to answer the questions about the data

in your database. Just one of the “watch out for this trap” items will save you more

than the cost of the book when you avoid that problem when writing your queries.

I highly recommend this book if you want to tap the full potential of your data-

base.

— Kenneth D. Snell, Ph.D., Database Designer/Programmer

I don’t think they do this in public schools any more, and it is a shame, but do you

remember in the seventh and eighth grades when you learned to diagram a sen-

tence? Those of you who do may no longer remember how you did it, but all of

you do write better sentences because of it. John Viescas and Mike Hernandez

must have remembered because they take everyday English queries and literally

translate them into SQL. This is an important book for all database designers. It

takes the complexity of mathematical Set Theory and of First Order Predicate

Logic, as outlined in E. F. Codd’s original treatise on relational database design,

and makes it easy for anyone to understand. If you want an elementary- through

intermediate-level course on SQL, this is the one book that is a requirement, no

matter how many others you buy.

— Arvin Meyer, MCP, MVP

SQL Queries for Mere Mortals, Second Edition, provides a step-by-step, easy-to-

read introduction to writing SQL queries. It includes hundreds of examples with

detailed explanations. This book provides the tools you need to understand, mod-

ify, and create SQL queries.

— Keith W. Hare, Convenor, ISO/IEC JTC1 SC32 WG3—

the International SQL Standards Committee

Even in this day of wizards and code generators, successful database developers

still require a sound knowledge of Structured Query Language (SQL, the standard

language for communicating with most database systems). In this book, John and

Mike do a marvelous job of making what’s usually a dry and difficult subject come

alive, presenting the material with humor in a logical manner, with plenty of rele-

vant examples. I would say that this book should feature prominently in the collec-

tion on the bookshelf of all serious developers, except that I’m sure it’ll get so

much use that it won’t spend much time on the shelf!

— Doug Steele, Microsoft Access Developer and author

SQL Queries
for

Mere Mortals®

Second Edition

Addison-Wesley presents the
For Mere Mortals® Series

Series Editor: Michael J. Hernandez

The goal of the For Mere Mortals® Series is to present you with information on important
technology topics in an easily accessible, common-sense manner.The primary audience
for Mere Mortals books is that of readers who have little or no background or formal
training in the subject matter. Books in the Series avoid dwelling on the theoretical and
instead take you right into the heart of the topic with a matter-of-fact,hands-on approach.
The books are not designed to address all the intricacies of a given technology, but they
do not avoid or gloss over complex, essential issues either. Instead, they focus on provid-
ing core, foundational knowledge in a way that is easy to understand and that will prop-
erly ground you in the topic.This practical approach provides you with a smooth learning
curve and helps you to begin to solve your real-world problems immediately. It also pre-
pares you for more advanced treatments of the subject matter, should you decide to pur-
sue them,and even enables the books to serve as solid reference material for those of you
with more experience.The software-independent approach taken in most books within
the Series also teaches the concepts in such a way that they can be applied to whatever
particular application or system you may need to use.

Titles in the Series:

Project Management for Mere Mortals®

Claudia M. Baca. ISBN: 0321423453

User Interface Design for Mere Mortals™
Eric Butow. ISBN: 0321447735

Database Design for Mere Mortals®, Second Edition:
A Hands-On Guide to Relational Database Design
Michael J. Hernandez. ISBN: 0201752840

Microsoft Office Project for Mere Mortals®:
Solving the Mysteries of Microsoft Office Project
Patti Jansen. ISBN: 0321423429

UML for Mere Mortals®

Robert A. Maksimchuk and Eric J. Naiburg. ISBN: 0321246241

VSTO for Mere Mortals™
Kathleen McGrath and Paul Stubbs. ISBN: 0321426711

SQL Queries for Mere Mortals®:
A Hands-On Guide to Data Manipulation in SQL, Second Edition
John L.Viescas and Michael J. Hernandez. ISBN: 0321444434

For more information, check out the series web site at
www.awprofessional.com/ForMereMortalsSeries.

www.awprofessional.com/ForMereMortalsSeries

SQL Queries
for

Mere Mortals®

Second Edition
A Hands-On Guide

to Data Manipulation in SQL

John L. Viescas

Michael J. Hernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco •

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact: U.S. Corporate and Government Sales, (800) 382-3419 corpsales@
pearsontechgroup.com

For sales outside the United States please contact: International Sales, international@pearsoned.com

This Book Is Safari Enabled
The Safari Enabled icon on the cover of your favorite technology book means the book is available through
Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find
code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

¥ Go to www.informit.com/onlineedition
¥ Complete the brief registration form
¥ Enter the coupon code UJMR-HEPL-JWHY-IWLN-ISE2

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-service@
safaribooksonline.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Viescas, John L., 1947-
SQL queries for mere mortals : a hands-on guide to data manipulation in

SQL / John L. Viescas and Michael J. Hernandez. Ñ 2nd ed.
p. cm.

On t.p. of previous ed. Michael J. HernandezÕs name appeared first.
Includes index.
ISBN 0-321-44443-4 (pbk. : alk. paper)
1. SQL (Computer program language) 2. Database searching. I. Hernandez,

Michael J. (Michael James), 1955- II. Viescas, John L., 1947- SQL queries for
mere mortals. III. Title.

QA76.73.S67H48 2007
005.75Õ85Ñdc22 2007026881

Copyright © 2008 by Michael J. Hernandez and John L. Viescas

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:
Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116, Fax (617) 671-3447

ISBN-13: 978-0-321-44443-1
ISBN-10: 0-321-44443-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Eighth printing, September 2013

Editor-in-Chief: Karen Gettman
Acquisitions Editor: Chuck Toporek
Managing Editor: John Fuller
Project Editor: Elizabeth Ryan
Copy Editor: Chrysta Meadowbrooke

Indexer: Coughlin Indexing
Proofreader: Mike Shelton
Technical Reviewers: Keith Hare,

Stephen Forte

Cover Designer: Alan Clements
Composition: Pine Tree Composition

www.informit.com/onlineedition

Contents

Foreword xvii

Preface xix

About the Authors xxi

Introduction xxiii

Are You a Mere Mortal? xxiii
About This Book xxiv
What This Book Is Not xxv
How to Use This Book xxvi
Reading the Diagrams Used in This Book xxvii
Sample Databases Used in This Book xxx
“Follow the Yellow Brick Road” xxxii

PART I Relational Databases and SQL 1

CHAPTER 1 What Is Relational? 3

Topics Covered in This Chapter 3
Types of Databases 3
A Brief History of the Relational Model 4

In the Beginning . . . 4
Relational Database Software 5

Anatomy of a Relational Database 6
Tables 6
Fields 7
Records 8
Keys 8

vii

Views 9
Relationships 11

What’s in It for You? 15
Where Do You Go from Here? 16
Summary 17

CHAPTER 2 Ensuring Your Database Structure Is Sound 19

Topics Covered in This Chapter 19
Why Is This Chapter Here? 19
Why Worry about Sound Structures? 20
Fine-Tuning Fields 21

What’s in a Name? (Part One) 21
Smoothing Out the Rough Edges 23
Resolving Multipart Fields 25
Resolving Multivalued Fields 27

Fine-Tuning Tables 30
What’s in a Name? (Part Two) 30
Ensuring a Sound Structure 32
Resolving Unnecessary Duplicate Fields 33
Identification Is the Key 39

Establishing Solid Relationships 42
Establishing a Deletion Rule 44
Setting the Type of Participation 46
Setting the Degree of Participation 48

Is That All? 50
Summary 51

CHAPTER 3 A Concise History of SQL 53

Topics Covered in This Chapter 53
The Origins of SQL 54
Early Vendor Implementations 55
“. . . And Then There Was a Standard” 56
Evolution of the ANSI/ISO Standard 58

Other SQL Standards 61

Commercial Implementations 64
What the Future Holds 65
Why Should You Learn SQL? 65
Summary 66

viii Contents

PART II SQL Basics 69

CHAPTER 4 Creating a Simple Query 71

Topics Covered in This Chapter 71
Introducing SELECT 72
The SELECT Statement 73
A Quick Aside: Data versus Information 75
Translating Your Request into SQL 77

Expanding the Field of Vision 81
Using a Shortcut to Request All Columns 83

Eliminating Duplicate Rows 84
Sorting Information 87

First Things First: Collating Sequences 88
Let’s Now Come to Order 89

Saving Your Work 92
Sample Statements 93
Summary 102
Problems for You to Solve 103

CHAPTER 5 Getting More Than Simple Columns 105

Topics Covered in This Chapter 105
What Is an Expression? 106
What Type of Data Are You Trying to Express? 107
Changing Data Types: The CAST Function 110
Specifying Explicit Values 112

Character String Literals 112
Numeric Literals 114
Datetime Literals 115

Types of Expressions 117
Concatenation 117
Mathematical Expressions 121
Date and Time Arithmetic 124

Using Expressions in a SELECT Clause 128
Working with a Concatenation Expression 128
Naming the Expression 129
Working with a Mathematical Expression 131

Contents ix

Working with a Date Expression 132
A Brief Digression: Value Expressions 133

That “Nothing” Value: Null 135
Introducing Null 136
The Problem with Nulls 138

Sample Statements 139
Summary 147
Problems for You to Solve 149

CHAPTER 6 Filtering Your Data 151

Topics Covered in This Chapter 151
Refining What You See Using WHERE 151

The WHERE Clause 152
Using a WHERE Clause 154

Defining Search Conditions 156
Comparison 156
Range 164
Set Membership 167
Pattern Match 169
Null 173
Excluding Rows with NOT 175

Using Multiple Conditions 178
Introducing AND and OR 179
Excluding Rows: Take Two 184
Order of Precedence 187
Checking for Overlapping Ranges 191

Nulls Revisited: A Cautionary Note 193
Expressing Conditions in Different Ways 197
Sample Statements 198
Summary 206
Problems for You to Solve 207

PART III Working with Multiple Tables 211

CHAPTER 7 Thinking in Sets 213

Topics Covered in This Chapter 213
What Is a Set, Anyway? 214

x Contents

Operations on Sets 215
Intersection 216

Intersection in Set Theory 216
Intersection between Result Sets 217
Problems You Can Solve with an Intersection 221

Difference 222
Difference in Set Theory 222
Difference between Result Sets 224
Problems You Can Solve with Difference 227

Union 228
Union in Set Theory 228
Combining Result Sets Using a Union 230
Problems You Can Solve with Union 232

SQL Set Operations 233
Classic Set Operations versus SQL 233
Finding Common Values: INTERSECT 234
Finding Missing Values: EXCEPT (Difference) 236
Combining Sets: UNION 239

Summary 242

CHAPTER 8 INNER JOINs 243

Topics Covered in This Chapter 243
What Is a JOIN? 243
The INNER JOIN 244

What’s “Legal” to JOIN? 244
Column References 245
Syntax 246
Check Those Relationships! 261

Uses for INNER JOINs 262
Find Related Rows 262
Find Matching Values 263

Sample Statements 263
Two Tables 264
More Than Two Tables 270
Looking for Matching Values 277

Summary 288
Problems for You to Solve 289

Contents xi

CHAPTER 9 OUTER JOINs 293

Topics Covered in This Chapter 293
What Is an OUTER JOIN? 293
The LEFT/RIGHT OUTER JOIN 295

Syntax 296
The FULL OUTER JOIN 314

Syntax 314
FULL OUTER JOIN on Non-Key Values 317
UNION JOIN 317

Uses for OUTER JOINs 318
Find Missing Values 318
Find Partially Matched Information 319

Sample Statements 319
Summary 335
Problems for You to Solve 335

CHAPTER 10 UNIONs 339

Topics Covered in This Chapter 339
What Is a UNION? 339
Writing Requests with UNION 342

Using Simple SELECT Statements 342
Combining Complex SELECT Statements 345
Using UNION More Than Once 349
Sorting a UNION 351

Uses for UNION 352
Sample Statements 353
Summary 365
Problems for You to Solve 366

CHAPTER 11 Subqueries 369

Topics Covered in This Chapter 369
What Is a Subquery? 370

Row Subqueries 370
Table Subqueries 371
Scalar Subqueries 372

xii Contents

Subqueries as Column Expressions 372
Syntax 372
An Introduction to Aggregate Functions: COUNT and MAX 375

Subqueries as Filters 377
Syntax 378
Special Predicate Keywords for Subqueries 379

Uses for Subqueries 392
Build Subqueries as Column Expressions 392
Use Subqueries as Filters 393

Sample Statements 394
Subqueries in Expressions 395
Subqueries in Filters 400

Summary 409
Problems for You to Solve 410

PART IV Summarizing and Grouping Data 413

CHAPTER 12 Simple Totals 415

Topics Covered in This Chapter 415
Aggregate Functions 416

Counting Rows and Values with COUNT 418
Computing a Total with SUM 421
Calculating a Mean Value with AVG 423
Finding the Largest Value with MAX 424
Finding the Smallest Value with MIN 426
Using More Than One Function 427

Using Aggregate Functions in Filters 428
Sample Statements 431
Summary 438
Problems for You to Solve 439

CHAPTER 13 Grouping Data 441

Topics Covered in This Chapter 441
Why Group Data? 442
The GROUP BY Clause 444

Syntax 445
Mixing Columns and Expressions 450

Contents xiii

Using GROUP BY in a Subquery in a WHERE Clause 452
Simulating a SELECT DISTINCT Statement 453

“Some Restrictions Apply” 454
Column Restrictions 455
Grouping on Expressions 457

Uses for GROUP BY 458
Sample Statements 459
Summary 470
Problems for You to Solve 471

CHAPTER 14 Filtering Grouped Data 473

Topics Covered in This Chapter 473
A New Meaning of “Focus Groups” 474
When You Filter Makes a Difference 478

Should You Filter in WHERE or in HAVING? 478
Avoiding the HAVING COUNT Trap 481

Uses for HAVING 486
Sample Statements 487
Summary 496
Problems for You to Solve 496

PART V Modifying Sets of Data 499

CHAPTER 15 Updating Sets of Data 501

Topics Covered in This Chapter 501
What Is an UPDATE? 501
The UPDATE Statement 502

Using a Simple UPDATE Expression 503
A Brief Aside: Transactions 506
Updating Multiple Columns 507
Using a Subquery to Filter Rows 508
Using a Subquery UPDATE Expression 514

Uses for UPDATE 516
Sample Statements 517
Summary 533
Problems for You to Solve 534

xiv Contents

CHAPTER 16 Inserting Sets of Data 537

Topics Covered in This Chapter 537
What Is an INSERT? 537
The INSERT Statement 539

Inserting Values 539
Generating the Next Primary Key Value 542
Inserting Data by Using SELECT 544

Uses for INSERT 550
Sample Statements 552
Summary 562
Problems for You to Solve 563

CHAPTER 17 Deleting Sets of Data 567
Topics Covered in This Chapter 567
What Is a DELETE? 567
The DELETE Statement 568

Deleting All Rows 569
Deleting Some Rows 571

Uses for DELETE 575
Sample Statements 576
Summary 583
Problems for You to Solve 584

In Closing 587

APPENDICES 589

A SQL Standard Diagrams 591

B Schema for the Sample Databases 601

C Date and Time Functions 607

D Suggested Reading 615

Index 617

Contents xv

This page intentionally left blank

Foreword

In the 20 years since the database language SQL was adopted as an interna-
tional standard, and the 25 years since SQL database products appeared on
the market, SQL has become the predominant language for storing, modify-
ing, retrieving, and deleting data. Today, a significant portion of the world’s
data—and the world’s economy—is tracked using SQL databases.

SQL is everywhere because it is a very powerful tool for manipulating data. It
is in high-performance transaction processing systems. It is behind Web inter-
faces. I’ve even found SQL in network monitoring tools and spam firewalls.

Today, SQL can be executed directly, embedded in programming languages,
and accessed through call interfaces. It is hidden inside GUI development
tools, code generators, and report writers. However visible or hidden, the
underlying queries are SQL. Therefore, to understand existing applications
and to create new ones, you need to understand SQL.

SQL Queries for Mere Mortals, Second Edition, provides a step-by-step, easy-
to-read introduction to writing SQL queries. It includes hundreds of examples
with detailed explanations. This book provides the tools you need to under-
stand, modify, and create SQL queries.

As a database consultant and a participant in both the U.S. and international
SQL standards committees, I spend a lot of time working with SQL. So, it is
with a certain amount of authority that I state,“The authors of this book not
only understand SQL, they also understand how to explain it.” Both qualities
make this book a valuable resource.

Keith W. Hare
Senior Consultant, JCC Consulting, Inc.

Vice Chair, INCITS H2—the USA SQL Standards Committee
Convenor, ISO/IEC JTC1 SC32 WG3—the International

SQL Standards Committee

xvii

This page intentionally left blank

Preface

“Language is by its very nature a communal thing;
that is, it expresses never the exact thing but a

compromise—that which is common to you, me, and everybody.”
—Thomas Earnest Hulme, Speculations

Learning how to retrieve information from or manipulate information in a
database is commonly a perplexing exercise. However, it can be a relatively
easy task as long as you understand the question you’re asking or the change
you’re trying to make to the database. After you understand the problem, you
can translate it into the language used by any database system, which in most
cases is Structured Query Language (SQL). You have to translate your request
into an SQL statement so that your database system knows what information
you want to retrieve or change. SQL provides the means for you and your
database system to communicate.

Throughout our many years as database consultants, we’ve found that the
number of people who merely need to retrieve information from a database
or perform simple data modifications in a database far outnumber those who
are charged with the task of creating programs and applications for a data-
base. Unfortunately, no books focus solely on this subject, particularly from a
“mere mortals” viewpoint. There are numerous good books on SQL, to be
sure, but most are targeted to database programming and development.

With this in mind, we decided it was time to write a book that would help
people learn how to query a database properly and effectively. We produced
the first edition of this book in 2000. With this new edition,we also wanted to
introduce you to the basic ways to change data in your database using SQL.
The result of our decision is in your hands. This book is unique among SQL
books in that it focuses on SQL with little regard to any one specific database
system implementation. This second edition includes hundreds of new exam-
ples, and we included versions of the sample databases using the popular
open-source MySQL database system. When you finish reading this book,
you’ll have the skills you need to retrieve or modify any information you
require.

xix

Acknowledgments

Writing a book such as this is always a cooperative effort. There are always
editors,colleagues, friends,and relatives willing to lend their support and pro-
vide valuable advice when we need it the most. These people continually pro-
vide us with encouragement, help us to remain focused, and motivate us to
see this project through to the end.

First and foremost, we want to thank our acquisitions editor, Elizabeth Peter-
son, for prodding us to produce this second edition. Thanks also to Kristin
Weinberger for shepherding us along the way. And we can’t forget our final
acquisitions editor, Chuck Toporek, as well as Romny French and the produc-
tion staff—they’re a great team! Special thanks to Chrysta Meadowbrooke,
who did a fabulous job copyediting the final manuscript. She cleaned up lots
of inconsistencies and even pointed out some SQL examples that needed fix-
ing! Finally, thanks to editor-in-chief Karen Gettman, who put this team
together and kept a watchful eye over the entire process.

Next, we’d like to acknowledge our technical editors, particularly Stephen
Forte and Keith Hare. Keith especially spent time working through all the
examples, pointing out a few errors, and making suggestions to enhance the
text. Thanks once again to all of you for your time and input and for helping
us to make this a solid treatise on SQL queries.

Finally, another very special thanks to Keith Hare for providing the Foreword.
As the Convenor of the International SQL Standards Committee, Keith is an
SQL expert par excellence. We have a lot of respect for Keith’s knowledge
and expertise on the subject,and we’re pleased to have his thoughts and com-
ments at the beginning of our book.

xx Preface and Acknowledgments

About the Authors

John L. Viescas is an independent database consult-
ant with more than 40 years of experience. He began
his career as a systems analyst,designing large database
applications for IBM mainframe systems. He spent six
years at Applied Data Research in Dallas, Texas, where
he directed a staff of more than 30 people and was
responsible for research, product development, and
customer support of database products for IBM main-
frame computers. While working at Applied Data

Research, John completed a degree in business finance at the University of
Texas at Dallas, graduating cum laude.

John joined Tandem Computers, Inc., in 1988, where he was responsible for
the development and implementation of database marketing programs in Tan-
demÕs U.S. Western Sales region. He developed and delivered technical semi-
nars on TandemÕs relational database management system,NonStop SQL. John
wrote his first book,A Quick Reference Guide to SQL (Microsoft Press,1989),
as a research project to document the similarities in the syntax among the
ANSI-86 SQL standard, IBMÕs DB2, MicrosoftÕs SQL Server, Oracle Corpora-
tionÕs Oracle, and TandemÕs NonStop SQL. He wrote the first edition of Run-
ning Microsoft Access(Microsoft Press, 1992) while on sabbatical from
Tandem. He has since written four editions of Running, two editions of
Microsoft Office Access Inside Out (Microsoft Press, 2003 and 2007Ñthe suc-
cessor to the Running series), and Building Microsoft Access Applications
(Microsoft Press, 2005).

John formed his own company in 1993. He provides information systems
management consulting for a variety of small to large businesses around the
world, with a specialty in the Microsoft Access and SQL Server database man-
agement products. He maintains offices in Nashua,New Hampshire,and Paris,
France. He has been recognized as a ÒMost Valuable ProfessionalÓ(MVP) since
1993 by Microsoft Product Support Services for his assistance with technical

xxi

questions on public support forums. He set a landmark 20 consecutive years
as an MVP in 2013.

You can visit JohnÕs Web site at www.viescas.com or contact him by e-mail at
john@viescas.com.

Michael J. Hernandez has been an independent rela-
tional database consultant specializing relational data-
base design. He has more than 20 years of experience
in the technology industry, developing database appli-
cation for a wide variety of clients. HeÕs been a con-
tributing author to wide variety of magazine columns,
white papers,books and periodicals,and is coauthor of
the best-selling SQL Queries for Mere Mortals. Mike
has been a top-rated and noted technical trainer for the

government, the military, the private sector and companies throughout the
United States. He has spoken at numerous national and international confer-
ences, and has consistently been a top-rated speaker and presenter.

Aside from his technical background,Mike has a diverse set of skills and inter-
ests that he also pursues, ranging from the artistic to the metaphysical. His
greatest interest is still the guitar, as heÕs been a practicing guitarist for more
than 40 years and once played professionally for 15 years. HeÕs also a working
actor, a great cook, loves to teach (writing, public speaking, music), has a gift
for bad puns, and even reads Tarot cards.

He says heÕs never going to retire, per se, but rather just change whatever it is
heÕs doing whenever he finally gets tired of it and move on to something else
that interests him.

xxii About the Authors

Introduction

“I presume you’re mortal, and may err.”
—James Shirley

The Lady of Pleasure

If you’ve used a computer more than casually, you have probably used Struc-
tured Query Language, or SQL—perhaps without even knowing it. SQL is the
standard language for communicating with most database systems. Any time
you import data into a spreadsheet or perform a merge into a word process-
ing program,you’re most likely using SQL in some form or another. Every time
you go online to an e-commerce site on the Web and place an order for a
book, a recording, a movie, or any of the dozens of other products you can
order, there’s a very high probability that the code behind the Web page
you’re using is accessing its databases with SQL. If you need to get informa-
tion from a database system that uses SQL, you can enhance your understand-
ing of the language by reading this book.

Are You a Mere Mortal?

You might ask,“Who is a mere mortal? Me?”The answer is not simple. When
we started to write this book, we thought we were experts in the database
language called SQL. Along the way, we discovered we were mere mortals
too, in several areas. We understood a few specific implementations of SQL
very well, but we unraveled many of the complex intricacies of the language
as we studied how it is used in many commercial products. So, if you fit any of
the following descriptions, you’re a mere mortal too!

• If you use computer applications that let you access information from a
database system, you’re probably a mere mortal. The first time you
don’t get the information you expected using the query tools built in to

xxiii

your application, you’ll need to explore the underlying SQL statements
to find out why.

• If you have recently discovered one of the many available desktop data-
base applications but are struggling with defining and querying the
data you need, you’re a mere mortal.

• If you’re a database programmer who needs to “think out of the box” to
solve some complex problems, you’re a mere mortal.

• If you’re a database guru in one product but are now faced with inte-
grating the data from your existing system into another system that sup-
ports SQL, you’re a mere mortal.

In short,anyone who has to use a database system that supports SQL can use
this book. As a beginning database user who has just discovered that the data
you need can be fetched using SQL, you will find that this book teaches you
all the basics and more. For an expert user who is suddenly faced with solving
complex problems or integrating multiple systems that support SQL, this
book will provide insights into leveraging the complex abilities of the SQL
database language.

About This Book

Everything you read in this book is based on the current International Organi-
zation for Standardization (ISO) Standard for the SQL database language (doc-
ument ISO/IEC 9075-2:2003), as currently implemented in most of the
popular commercial database systems. The ISO document was also adopted
by the American National Standards Institute (ANSI),so this is truly an interna-
tional standard. The SQL you’ll learn here is not specific to any particular soft-
ware product.

As you’ll learn in more detail in Chapter 3, A Concise History of SQL, the SQL
Standard defines both more and less than you’ll find implemented in most com-
mercial database products. Most database vendors have yet to implement many
of the more advanced features,but most do support the core of the standard.

We researched a wide range of popular products to make sure that you can
use what we’re teaching in this book. When we found parts of the core of the
language not supported by some major products, we warned you in the text
and showed you alternate ways to state your database requests in standard
SQL. When we found significant parts of the SQL Standard supported by only

xxiv Introduction

a few vendors, we introduced you to the syntax and then suggested alterna-
tives.

We have organized this book into five major sections.

• Part I, Relational Databases and SQL, explains how modern database sys-
tems are based on a rigorous mathematical model and provides a brief
history of the database query language that has evolved into what we
know as SQL. We also discuss some simple rules that you can use to
make sure your database design is sound.

• Part II, SQL Basics, introduces you to using the SELECT statement, creat-
ing expressions, and sorting information with an ORDER BY clause.
You’ll also learn how to filter data by using a WHERE clause.

• Part III,Working with Multiple Tables, shows you how to formulate
queries that draw data from more than one table. Here we show you
how to link tables in a query using the INNER JOIN, OUTER JOIN, and
UNION operators, and how to work with subqueries.

• Part IV, Summarizing and Grouping Data, discusses how to obtain sum-
mary information and group and filter summarized data. Here is where
you’ll learn about the GROUP BY and HAVING clauses.

• Part V, Modifying Sets of Data, explains how to write queries that modify a
set of rows in your tables. In the chapters in this section, you’ll learn how
to use the UPDATE, INSERT, and DELETE statements.

At the end of the book in the appendices, you’ll find syntax diagrams for all
the SQL elements you’ve learned, layouts of the sample databases,a list of date
and time manipulation functions implemented in five of the major database
systems, and book recommendations to further your study of SQL. There is
also a CD containing all the sample databases used throughout the book in
several different formats.

What This Book Is Not

Although this book is based on the 2003 SQL Standard that was current at the
time of this writing (a 2007/2008 draft standard is in the works), it does not
cover every aspect of the standard. In truth, many features in the 2003 SQL
Standard won’t be implemented for many years—if at all—in the major data-
base system implementations. The fundamental purpose of this book is to

Introduction xxv

give you a solid grounding in writing queries in SQL. Throughout the book,
you’ll find us recommending that you “consult your database documentation”
for how a specific feature might or might not work. That’s not to say we cov-
ered only the lowest common denominator for any feature among the major
database systems. We do try to caution you when some systems implement a
feature differently or not at all.

You’ll find it difficult to create other than simple queries using a single table if
your database design is flawed. We included a chapter on database design to
help you identify when you will have problems,but that one chapter includes
only the basic principles. A thorough discussion of database design principles
and how to implement a design in a specific database system is beyond the
scope of this book.

This book is also not about how to solve a problem in the most efficient way.
As you work through many of the later chapters, you’ll find we suggest more
than one way to solve a particular problem. In some cases where writing a
query in a particular way is likely to have performance problems on any sys-
tem, we try to warn you about it. But each database system has its own
strengths and weaknesses. After you learn the basics, you’ll be ready to move
on to digging into the particular database system you use to learn how to for-
mulate your query solutions so that they run in a more optimal manner.

How to Use This Book

We have designed the chapters in this book to be read in sequence. Each suc-
ceeding chapter builds on concepts taught in earlier chapters. However, you
can jump into the middle of the book without getting lost. For example, if you
are already familiar with the basic clauses in a SELECT statement and want to
learn more about JOINs,you can jump right in to Chapters 7 Thinking in Sets,
8 INNER JOINS, and 9 OUTER JOINS.

At the end of many of the chapters you’ll find an extensive set of sample prob-
lems, their solutions, and sample result sets. We recommend that you study
several of the samples to gain a better understanding of the techniques
involved and then try solving some of the later samples yourself without look-
ing at the solutions we propose.

Note that where a particular query returns dozens of rows in the result set,
we show you only the first few rows in this book to give you an idea of how
the answer should look. You might not see the exact same result on your sys-
tem, however, because each database system that supports SQL has its own

xxvi Introduction

optimizer that figures out the fastest way to solve the query. Also, the first few
rows you see returned by your database system might not exactly match the
first few we show you unless the query contains an ORDER BY clause that
requires the rows to be returned in a specific sequence.

We’ve also included a complete set of problems for you to solve on your own,
which you’ll find at the end of most chapters. This gives you the opportunity
to really practice what you’ve just learned in the chapter. Don’t worry—the
solutions are included in the sample databases on the CD. We’ve also included
hints on those problems that might be a little tricky.

After you have worked your way through the entire book,you’ll find the com-
plete SQL diagrams in Appendix A to be an invaluable reference for all the
SQL techniques we showed you. You will also be able to use the sample data-
base layouts in Appendix B to help you design your own databases.

Reading the Diagrams Used in This Book

The numerous diagrams throughout the book illustrate the proper syntax for
the statements, terms, and phrases you’ll use when you work with SQL. Each
diagram provides a clear picture of the overall construction of the SQL ele-
ment currently being discussed. You can also use any of these diagrams as
templates to create your own SQL statements or to help you acquire a clearer
understanding of a specific example.

All the diagrams are built from a set of core elements and can be divided into
two categories: statements and defined terms. A statement is always a major
SQL operation, such as the SELECT statement we discuss in this book, while a
defined term is always a component used to build part of a statement, such as
a value expression, a search condition, or a conditional expression. (Don’t
worry—we’ll explain all these terms later in the book.) The only difference
between a syntax diagram for a statement and a syntax diagram for a defined
term is the manner in which the main syntax line begins and ends. We
designed the diagrams with these differences so that you can clearly see
whether you’re looking at the diagram for an entire statement or a diagram for
a term that you might use within a statement. Figure 1 (on page xxviii) shows
the beginning and end points for both diagram categories. Aside from this dif-
ference, the diagrams are built from the same elements. Figure 2 (on page
xxviii) shows an example of each type of syntax diagram and is followed by a
brief explanation of each diagram element.

Introduction xxvii

1. Statement start point—denotes the beginning of the main syntax line for
a statement. Any element that appears directly on the main syntax line is a
required element, and any element that appears below it is an optional
element.

2. Main syntax line—determines the order of all required and optional ele-
ments for the statement or defined term. Follow this line from left to right (or
in the direction of the arrows) to build the syntax for the statement or defined
term.

3. Keyword(s)—indicates a major word in SQL grammar that is a required part
of the syntax for a statement or defined term. In a diagram, keywords are format-
ted in capital letters and bold font. (You don’t have to worry about typing a key-
word in capital letters when you actually write the statement in your database
program, but it does make the statement easier to read.)

xxviii Introduction

Figure 1 Syntax line end points for statements and defined terms

Defined Term Line

Statement Line

Figure 2 Sample statement and defined term diagrams

SELECT

SELECT Statement

,

DISTINCT

FROM

Value Expression
alias

AS

WHERE Search Condition

*

,
table_name

1 2

3

8

9

5

10

7

8

4

column_name
.

correlation_name

Column Reference
11 12

6

6

table_name

4. Literal entry—specifies the name of a value you explicitly supply to the state-
ment. A literal entry is represented by a word or phrase that indicates the type of
value you need to supply. Literal entries in a diagram are formatted in all lower-
case letters.

5. Defined term—denotes a word or phrase that represents some operation that
returns a final value to be used in this statement. We’ll explain and diagram every
defined term you need to know as you work through the book. Defined terms
are always formatted in italic letters.

6. Optional element—indicates any element or group of elements that appears
below the main syntax line. An optional element can be a statement, keyword,
defined term, or literal value and, for purposes of clarity, is placed on its own line.
In some cases, you can specify a set of values for a given option, with each value
separated by a comma (see number 8). Also, several optional elements have a set
of sub-optional elements (see number 7). In general, you read the syntax line for
an optional element from left to right, in the same manner that you read the main
syntax line. Always follow the directional arrows and you’ll be in good shape.
Note that some options allow you to specify multiple values or choices, so the
arrow will flow from right to left. After you’ve entered all the items you need,
however, the flow will return to normal from left to right. Fortunately, all optional
elements work the same way. After we show you how to use an optional element
later in the book, you’ll know how to use any other optional element you
encounter in a syntax diagram.

7. Sub-optional element—denotes any element or group of elements that
appears below an optional element. Sub-optional elements allow you to fine-tune
your statements so that you can work with more complex problems.

8. Option list separator—indicates that you can specify more than one value
for this option and that each value must be separated with a comma.

9. Alternate option—denotes a keyword or defined term that can be used as an
alternative to one or more optional elements. The syntax line for an alternate
option will bypass the syntax lines of the optional elements it is meant to
replace.

10. Statement end point—denotes the end of the main syntax line for a
statement.

11. Defined term start point—denotes the beginning of the main syntax line
for a defined term.

12. Defined term end point—denotes the end of the main syntax line for a
defined term.

Now that you’re familiar with these elements,you’ll be able to read all the syn-
tax diagrams in the book. And on those occasions when a diagram requires
further explanation, we provide you with the information you need to read

Introduction xxix

the diagram clearly and easily. To help you better understand how the dia-
grams work, here’s a sample SELECT statement that we built using Figure 2.

SELECT FirstName, LastName, City, DOB AS DateOfBirth
FROM Students
WHERE City = 'El Paso'

This SELECT statement retrieves four columns from the Students table, as
we’ve indicated in the SELECT and FROM clauses. As you follow the main syn-
tax line from left to right, you see that you have to indicate at least one value
expression. A value expression can be a column name, an expression created
using column names, or simply a constant (literal) value that you want to dis-
play. You can indicate as many columns as you need with the value expres-
sion’s option list separator (a comma). This is how we were able to use four
column names from the Student table. We were concerned that some people
viewing the information returned by this SELECT statement might not know
what DOB means, so we assigned an alias to the DOB column with the value
expression’s AS sub-option. Finally, we used the WHERE clause to make cer-
tain the SELECT statement shows only those students who live in El Paso. (If
this doesn’t quite make sense to you just now, there’s no cause for alarm.
You’ll learn all this in great detail throughout the remainder of the book.)

You’ll find a full set of syntax diagrams in Appendix A. They show the com-
plete and proper syntax for all the statements and defined terms we discuss in
the book. If you happen to refer to these diagrams as you work through each
chapter, you’ll notice a slight disparity between some of the diagrams in a
given chapter and the corresponding diagrams in the appendix. The diagrams
in the chapters are just simplified versions of the diagrams in the appendix.
These simplified versions allow us to explain complex statements and
defined terms more easily and give us the ability to focus on particular ele-
ments as needed. But don’t worry—all the diagrams in the appendix will
make perfect sense after you work through the material in the book.

Sample Databases Used in This Book

Bound into the back of the book,you’ll find a CD-ROM containing five sample
databases that we use for the example queries throughout the book. We’ve
also included diagrams of the database structures in Appendix B: Schema for
the Sample Databases.

xxx Introduction

1. Sales Orders. This is a typical order entry database for a store that sells bicycles
and accessories. (Every database book needs at least one order entry example,
right?)

2. Entertainment Agency . We structured this database to manage entertainers,
agents, customers, and bookings. You would use a similar design to handle event
bookings or hotel reservations.

3. School Scheduling . You might use this database design to register students at a
high school or community college. This database tracks not only class registra-
tions but also which instructors are assigned to each class and what grades the
students received.

4. Bowling League . This database tracks bowling teams, team members, the
matches they played, and the results.

5. Recipes. You can use this database to save and manage all your favorite recipes.
We even added a few that you might want to try.

On the sample CD or ftp site (ftp://ftp.viescas.com/Download/SQLQFMM/
SQLQFMM2.zip), you can find all five databases in four different formats.

€ Because of the great popularity of the Microsoft Office Access desktop
database, we created one set of databases (.mdb file extension) using
Microsoft Access 2000 (Version 9.0). We chose Version 9 of this prod-
uct because it closely supports the current ISO/IEC SQL Standard, and
you can open database files in this format using Access 2000, 2002
(XP), 2003, and 2007. You can find these files in the MSAccess sub-
folder.

€ The second format consists of database files (.mdf file extension) cre-
ated using Microsoft SQL Server 2000. We have also included SQL com-
mand files (.sql file extension) and batch files (.bat file extension) that
you can use to attach the samples to a Microsoft SQL Server catalog.You
can also attach these files to a Microsoft SQL Server 2005 server. You
can find these files in the MSSQLServer subfolder. You can obtain a
free copy of Microsoft SQL Server 2005 Express Edition at
http://msdn.microsoft.com/vstudio/express/sql/download/default.aspx.

€ We created the third set of databases using the popular open-source
MySQL version 5 database system. You can either point your InnoDB
data directory to the MySQL subfolder or use the scripts (.sql file exten-
sion) you can also find in that folder to create the database structure,
load the data, and create the sample views in your own MySQL data
folder. You can obtain a free copy of the community edition of the
MySQL database system at http://www.mysql.com/.

Introduction xxxi

http://www.mysql.com/
http://msdn.microsoft.com/vstudio/express/sql/download/default.aspx

• The fourth format is a series of SQL scripts that you can modify and use
with any major database system that supports SQL. You can find scripts to
define the schema (the tables) of each database, to load the data using
INSERT statements, and to create the queries using CREATE VIEW state-
ments in the SQLScripts subfolder. Although we created these scripts using
utilities in Microsoft SQL Server, we simplified them to make them generic
for use with most database systems.

To install the sample files,see the file ReadMe.txt in the root folder of the sam-
ple CD. If you mount the sample CD on an Apple Macintosh system, you will
find only the sample files for MySQL and the SQL scripts.

❖ Note Although we were very careful to use the most common and sim-
plest syntax for the CREATE TABLE, CREATE INDEX, CREATE CONSTRAINT,
and INSERT commands in the sample SQL scripts, you (or your database
administrator) might need to modify these files slightly to work with your
database system. If you’re working with a database system on a remote
server, you might need to gain permission from your database administrator
to build the samples from the SQL commands we supplied.

For the chapters in Parts II, III, and IV that focus on the SELECT statement,
you’ll find all the example statements and solutions in the “example” version
of each sample database (e.g., SalesOrdersExample, EntertainmentAgency
Example). Because the examples in Part V modify the sample data,we created
“modify” versions of each of the sample databases (e.g., SalesOrdersModify,
EntertainmentAgencyModify). The sample databases for Part V also include
additional columns and tables not found in the SELECT examples that enable
us to demonstrate certain features of UPDATE, INSERT, and DELETE queries.

“Follow the Yellow Brick Road”

—Munchkin to Dorothy in The Wizard of Oz

Now that you’ve read through the Introduction, you’re ready to start learning
SQL, right? Well, maybe. At this point, you’re still in the house, it’s still being
tossed about by the tornado, and you haven’t left Kansas.

Before you make that jump to Chapter 4, Creating a Sample Query, take our
advice and read through the first three chapters. Chapter 1, What Is Rela-
tional?, will give you an idea of how the relational database was conceived

xxxii Introduction

and how it has grown to be the most widely used type of database in the
industry today. We hope this will give you some amount of insight into the
database system you’re currently using. In Chapter 2, Ensuring Your Database
Structure Is Sound, you’ll learn how to fine-tune your data structures so that
your data is reliable and, above all, accurate.You’re going to have a tough time
working with some of the SQL statements if you have poorly designed data
structures, so we suggest you read this chapter carefully.

Chapter 3 is literally the beginning of the “yellow brick road.”Here you’ll learn
the origins of SQL and how it evolved into its current form. You’ll also learn
about some of the people and companies who helped pioneer the language
and why there are so many varieties of SQL. Finally,you’ll learn how SQL came
to be a national and international standard and what the outlook for SQL will
be in the years to come.

After you’ve read these chapters, consider yourself well on your way to Oz.
Just follow the road we’ve laid out through each of the remaining chapters.
When you’ve finished the book,you’ll find that you’ve found the wizard—and
he is you.

Introduction xxxiii

This page intentionally left blank

7
Thinking in Sets

“Small cheer and a great welcome makes a merry feast.”
—William Shakespeare

Comedy of Errors, Act 3, scene 1

Topics Covered in This Chapter

What Is a Set,Anyway?

Operations on Sets

Intersection

Difference

Union

SQL Set Operations

Summary

By now, you know how to create a set of information by asking for specific
columns or expressions on columns (SELECT), how to sort the rows (ORDER
BY), and how to restrict the rows returned (WHERE). Up to this point, we’ve
been focusing on basic exercises involving a single table. But what if you
want to know something about information contained in multiple tables?
What if you want to compare or contrast sets of information from the same or
different tables?

Creating a meal by peeling,slicing,and dicing a single pile of potatoes or a sin-
gle bunch of carrots is easy. From here on out, most of the problems we’re
going to show you how to solve will involve getting data from multiple tables.
We’re not only going to show you how to put together a good stew—we’re
going to teach you how to be a chef!

Before digging into this chapter, you need to know that it’s all about the con-
cepts you must understand in order to successfully link two or more sets of

213

information. We’re also going to give you a brief overview of some specific syn-
tax defined in the SQL Standard that directly supports the pure definition of
these concepts. Be forewarned,however, that many current commercial imple-
mentations of SQL do not yet support this “pure”syntax. In later chapters,we’ll
show you how to implement the concepts you’ll learn here using SQL syntax
that is commonly supported by most major database systems. What we’re after
here is not the letter of the law but rather the spirit of the law.

What Is a Set, Anyway?

If you were a teenager any time from the mid-1960s onward, you might have
studied set theory in a mathematics course. (Remember New Math?) If you
were introduced to set algebra, you probably wondered why any of it would
ever be useful.

Now you’re trying to learn about relational databases and this quirky language
called SQL to build applications, solve problems, or just get answers to your
questions. Were you paying attention in algebra class? If so, solving prob-
lems—particularly complex ones—in SQL will be much easier.

Actually, you’ve been working with sets from the beginning of this book. In
Chapter 1,What Is Relational?, you learned about the basic structure of a rela-
tional database—tables containing records that are made up of one or more
fields. (Remember that in SQL, records are known as rows, and fields are
known as columns.) Each table in your database is a set of information about
one subject. In Chapter 2, Ensuring Your Database Structure Is Sound, you
learned how to verify that the structure of your database is sound. Each table
should contain the set of information related to one and only one subject or
action.

In Chapter 4, Creating a Simple Query, you learned how to build a basic
SELECT statement in SQL to retrieve a result set of information that contains
specific columns from a single table and how to sort those result sets. In
Chapter 5, Getting More Than Simple Columns, you learned how to glean a
new set of information from a table by writing expressions that operate on
one or more columns. In Chapter 6, Filtering Your Data, you learned how to
restrict further the set of information you retrieve from your tables by adding
a filter (WHERE clause) to your query.

As you can see, a set can be as little as the data from one column from one
row in one table. Actually, you can construct a request in SQL that returns no
rows—an empty set. Sometimes it’s useful to discover that something does

214 Chapter 7

not exist. A set can also be multiple columns (including columns you create
with expressions) from multiple rows fetched from multiple tables. Each row
in a result set is a member of the set. The values in the columns are specific
attributes of each member—data items that describe the member of the set.
In the next several chapters, we’ll show how to ask for information from mul-
tiple sets of data and link these sets together to get answers to more complex
questions. First, however, you need to understand more about sets and the
logical ways to combine them.

Operations on Sets

In Chapter 1, we discussed how Dr. E. F. Codd invented the relational model
on which most modern databases and SQL are based. Two branches of math-
ematics—set theory and first-order predicate logic—formed the foundation
of his new model.

After you graduate beyond getting answers from only a single table, you need
to learn how to use result sets of information to solve more complex prob-
lems. These complex problems usually require using one of the common set
operations to link data from two or more tables. Sometimes, you’ll need to
get two different result sets from the same table and then combine them to
get your answer.

The three most common set operations are as follows.

• Intersection—You use this to find the common elements in two or
more different sets: “Show me the recipes that contain both lamb
and rice.”“Show me the customers who ordered both bicycles and
helmets.”

• Difference—You use this to find items that are in one set but not
another: “Show me the recipes that contain lamb but do not contain
rice.”“Show me the customers who ordered a bicycle but not a helmet.”

• Union—You use this to combine two or more similar sets: “Show me
all the recipes that contain either lamb or rice.”“Show me the custom-
ers who ordered either a bicycle or a helmet.”

In the following three sections, we’ll explain these basic set operations—the
ones you should have learned in high school algebra. The SQL Set Operations
section later in this chapter gives an overview of how these operations are
implemented in “pure”SQL.

Thinking in Sets 215

Intersection

No, it’s not your local street corner. An intersection of two sets contains the
common elements of two sets. Let’s first take a look at an intersection from
the pure perspective of set theory and then see how you can use an intersec-
tion to solve business problems.

Intersection in Set Theory

An intersection is a very powerful mathematical tool often used by scientists
and engineers. As a scientist, you might be interested in finding common
points between two sets of chemical or physical sample data. For example, a
pharmaceutical research chemist might have two compounds that seem to
provide a certain beneficial effect. Finding the commonality (the intersec-
tion) between the two compounds might help discover what it is that makes
the two compounds effective. Or, an engineer might be interested in finding
the intersection between one alloy that is hard but brittle and another alloy
that is soft but resilient.

Let’s take a look at intersection in action by examining two sets of numbers.
In this example, each single number is a member of the set. The first set of
numbers is as follows.

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows.

3, 7, 8, 22, 55, 71, 99

The intersection of these two sets of numbers is the numbers common to
both sets.

8, 55

The individual entries—the members—of each set don’t have to be just single
values. In fact,when solving problems with SQL,you’ll probably deal with sets
of rows.

According to set theory,when a member of a set is something more than a sin-
gle number or value, each member (or object) of the set has multiple attri-
butes or bits of data that describe the properties of each member. For

216 Chapter 7

example, your favorite stew recipe is a complex member of the set of all
recipes that contains many different ingredients. Each ingredient is an attri-
bute of your complex stew member.

To find the intersection between two sets of complex set members, you have
to find the members that match on all the attributes. Also, all the members in
each set you’re trying to compare must have the same number and type of
attributes. For example, suppose you have a complex set like the one below,
in which each row represents a member of the set (a stew recipe), and each
column denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following.

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The intersection of these two sets is the one member whose attributes all
match in both sets.

Potatoes Beef Stock Beef Cabbage

Intersection between Result Sets

If the previous examples look like rows in a table or a result set to you, you’re
on the right track! When you’re dealing with rows in a set of data that you

Thinking in Sets 217

fetch with SQL, the attributes are the individual columns. For example, sup-
pose you have a set of rows returned by a query like the following one.
(These are recipes from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are recipes
from Mike’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The intersection of these two sets is the two members whose attributes all
match in both sets—that is, the two recipes that Mike and John have in
common.

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Sometimes it’s easier to see how intersection works using a set diagram. A set
diagram is an elegant yet simple way to diagram sets of information and

218 Chapter 7

graphically represent how the sets intersect or overlap. You might also have
heard this sort of diagram called a Euler or Venn diagram. (By the way,
Leonard Euler was an eighteenth-century Swiss mathematician, and John
Venn used this particular type of logic diagram in 1880 in a paper he wrote
while a Fellow at Cambridge University. So you can see that “thinking in sets”
is not a particularly modern concept!)

Let’s assume you have a nice database containing all your favorite recipes.You
really like the way onions enhance the flavor of beef, so you’re interested in
finding all recipes that contain both beef and onions. Figure 7–1 shows the
set diagram that helps you visualize how to solve this problem.

Thinking in Sets 219

Figure 7–1 Finding out which recipes have both beef and onions

Recipes with Both
Beef and Onions

Recipes with
Beef

Recipes with
Onions

The upper circle represents the set of recipes that contain beef. The lower cir-
cle represents the set of recipes that contain onions. Where the two circles
overlap is where you’ll find the recipes that contain both—the intersection of
the two sets. As you can imagine,you first ask SQL to fetch all the recipes that
have beef. In the second query, you ask SQL to fetch all the recipes that have
onions. As you’ll see later, you can use a special SQL keyword—INTERSECT—
to link the two queries to get the final answer.

Yes,we know what you’re thinking. If your recipe table looks like the samples
above, you could simply say the following.

“Show me the recipes that have beef as the meat ingredient and onions as
the vegetable ingredient.”

Translation Select the recipe name from the recipes table where meat
ingredient is beef and vegetable ingredient is onions

Clean Up Select the recipe name from the recipes table where meat
ingredient is = beef and vegetable ingredient is = onions

SQL SELECT RecipeName
FROM Recipes
WHERE MeatIngredient = 'Beef'

AND VegetableIngredient = 'Onions'

Hold on now! If you remember the lessons you learned in Chapter 2, you
know that a single Recipes table probably won’t cut it. (Pun intended!) What
about recipes that have ingredients other than meat and vegetables? What
about the fact that some recipes have many ingredients and others have
only a few? A correctly designed recipes database will have a separate
Recipe_Ingredients table with one row per recipe per ingredient. Each ingre-
dient row will have only one ingredient, so no single row can be both beef
and onions at the same time. You’ll need to first find all the beef rows, then
find all the onions rows, and then intersect them on RecipeID. (If you’re con-
fused about why we’re criticizing the previous table design, be sure to go
back and read Chapter 2!)

How about a more complex problem? Let’s say you want to add carrots to the
mix. A set diagram to visualize the solution might look like Figure 7–2.

220 Chapter 7

Figure 7–2 Determining which recipes have beef, onions, and carrots

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef,
Onions, and Carrots

Got the hang of it? The bottom line is that when you’re faced with solving a
problem involving complex criteria,a set diagram can be an invaluable way to
see the solution expressed as the intersection of SQL result sets.

Problems You Can Solve with an Intersection

As you might guess, you can use an intersection to find the matches between
two or more sets of information. Here’s just a small sample of the problems you
can solve using an intersection technique with data from the sample databases.

“Show me customers and employees who have the same name.”

“Find all the customers who ordered a bicycle and also ordered a helmet.”

“List the entertainers who played engagements for customers Bonnicksen
and Rosales.”

“Show me the students who have an average score of 85 or better in Art
and who also have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at both Thunder-
bird Lanes and Bolero Lanes.”

“Show me the recipes that have beef and garlic.”

One of the limitations of using a pure intersection is that the values must match
in all the columns in each result set. This works well if you’re intersecting two or
more sets from the same table—for example, customers who ordered bicycles
and customers who ordered helmets. It also works well when you’re intersect-
ing sets from tables that have similar columns—for example, customer names
and employee names. In many cases, however, you’ll want to find solutions that
require a match on only a few column values from each set. For this type of prob-
lem, SQL provides an operation called a JOIN—an intersection on key values.
Here’s a sample of problems you can solve with a JOIN.

“Show me customers and employees who live in the same city.” (JOIN on
the city name.)

“List customers and the entertainers they booked.” (JOIN on the engage-
ment number.)

“Find the agents and entertainers who live in the same ZIP Code.” (JOIN
on the ZIP Code.)

“Show me the students and their teachers who have the same first name.”
(JOIN on the first name.)

Thinking in Sets 221

“Find the bowlers who are on the same team.” (JOIN on the team ID.)

“Display all the ingredients for recipes that contain carrots.” (JOIN on the
ingredient ID.)

Never fear. In the next chapter we’ll show you all about solving these prob-
lems (and more) by using JOINs. And because so few commercial implemen-
tations of SQL support INTERSECT, we’ll show how to use a JOIN to solve
many problems that might otherwise require an INTERSECT.

Difference

What’s the difference between 21 and 10? If you answered 11, you’re on the
right track! A difference operation (sometimes also called subtract, minus, or
except) takes one set of values and removes the set of values from a second
set. What remains is the set of values in the first set that are not in the second
set. (As you’ll see later, EXCEPT is the keyword used in the SQL Standard.)

Difference in Set Theory

Difference is another very powerful mathematical tool. As a scientist, you
might be interested in finding what’s different about two sets of chemical or
physical sample data. For example, a pharmaceutical research chemist might
have two compounds that seem to be very similar, but one provides a certain
beneficial effect and the other does not. Finding what’s different about the
two compounds might help uncover why one works and the other does not.
As an engineer,you might have two similar designs,but one works better than
the other. Finding the difference between the two designs could be crucial to
eliminating structural flaws in future buildings.

Let’s take a look at difference in action by examining two sets of numbers.
The first set of numbers is as follows.

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows.

3, 7, 8, 22, 55, 71, 99

The difference of the first set of numbers minus the second set of numbers is
the numbers that exist in the first set but not the second.

1, 5, 9, 32, 78

222 Chapter 7

Note that you can turn the previous difference operation around. Thus, the
difference of the second set minus the first set is

3, 7, 22, 71, 99

The members of each set don’t have to be single values. In fact, you’ll most
likely be dealing with sets of rows when trying to solve problems with SQL.

Earlier in this chapter we said that when a member of a set is something more
than a single number or value, each member of the set has multiple attributes
(bits of information that describe the properties of each member). For exam-
ple, your favorite stew recipe is a complex member of the set of all recipes
that contains many different ingredients. You can think of each ingredient as
an attribute of your complex stew member.

To find the difference between two sets of complex set members,you have to
find the members that match on all the attributes in the second set with mem-
bers in the first set. Don’t forget that all of the members in each set you’re try-
ing to compare must have the same number and type of attributes. Remove
from the first set all the matching members you find in the second set,and the
result is the difference. For example, suppose you have a complex set like the
one below. Each row represents a member of the set (a stew recipe),and each
column denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like this.

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

Thinking in Sets 223

224 Chapter 7

The difference of the first set minus the second set is the objects in the first
set that don’t exist in the second set.

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Pasta Water Pork Onions

Difference between Result Sets

When you’re dealing with rows in a set of data fetched with SQL, the attri-
butes are the individual columns. For example, suppose you have a set of
rows returned by a query like the following one. (These are recipes from
John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are recipes
from Mike’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

Thinking in Sets 225

The difference between John’s recipes and Mike’s recipes (John’s minus
Mike’s) is all the recipes in John’s cookbook that do not appear in Mike’s
cookbook.

Recipe Starch Stock Meat Vegetable

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Pork Stew Pasta Water Pork Onions

You can also turn this problem around. Suppose you want to find the recipes
in Mike’s cookbook that are not in John’s cookbook. Here’s the answer.

Recipe Starch Stock Meat Vegetable

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Again, we can use a set diagram to help visualize how a difference operation
works. Let’s assume you have a nice database containing all your favorite recipes.
You really do not like the way onions taste with beef,so you’re interested in find-
ing all recipes that contain beef but not onions. Figure 7–3 shows you the set dia-
gram that helps you visualize how to solve this problem.

Figure 7–3 Finding out which recipes have beef but not onions

Recipes with Beef
but Not Onions

Recipes with
Beef

Recipes with
Onions

The upper full circle represents the set of recipes that contain beef. The
lower full circle represents the set of recipes that contain onions. As you
remember from the discussion about INTERSECT,where the two circles over-
lap is where you’ll find the recipes that contain both. The dark-shaded part of
the upper circle that’s not part of the overlapping area represents the set of
recipes that contain beef but do not contain onions. Likewise, the part of the
lower circle that’s not part of the overlapping area represents the set of
recipes that contain onions but do not contain beef.

You probably know that you first ask SQL to fetch all the recipes that have
beef. Next, you ask SQL to fetch all the recipes that have onions. (As you’ll see
later in this chapter, the special SQL keyword EXCEPT links the two queries
to get the final answer.)

Are you falling into the trap again? (You did read Chapter 2, didn’t you?) If
your recipe table looks like the samples earlier, you might think that you
could simply say the following.

“Show me the recipes that have beef as the meat ingredient and that do
not have onions as the vegetable ingredient.”

Translation Select the recipe name from the recipes table where meat
ingredient is beef and vegetable ingredient is not onions

Clean Up Select the recipe name from the recipes table where meat
ingredient is = beef and vegetable ingredient is not <> onions

SQL SELECT RecipeName
FROM Recipes
WHERE MeatIngredient = 'Beef'

AND VegetableIngredient <> 'Onions'

Again, as you learned in Chapter 2, a single Recipes table isn’t such a hot idea.
(Pun intended!) What about recipes that have ingredients other than meat
and vegetables? What about the fact that some recipes have many ingredients
and others have only a few? A correctly designed Recipes database will have a
separate Recipe_Ingredients table with one row per recipe per ingredient.
Each ingredient row will have only one ingredient, so no one row can be both
beef and onions at the same time. You’ll need to first find all the beef rows,
then find all the onions rows, then difference them on RecipeID.

How about a more complex problem? Let’s say you hate carrots, too. A set dia-
gram to visualize the solution might look like Figure 7–4.

First you need to find the set of recipes that have beef, and then get the dif-
ference with either the set of recipes containing onions or the set containing

226 Chapter 7

Thinking in Sets 227

Figure 7–4 Finding out which recipes have beef but no onions or carrots

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef but
No Onions or Carrots

carrots. Take that result and get the difference again with the remaining set
(onions or carrots) to leave only the recipes that have beef but no carrots or
onions (the light-shaded area in the upper circle).

Problems You Can Solve with Difference

Unlike intersection (which looks for common members of two sets), differ-
ence looks for members that are in one set but not in another set. Here’s just
a small sample of the problems you can solve using a difference technique
with data from the sample databases.

“Show me customers whose names are not the same as any employee.”

“Find all the customers who ordered a bicycle but did not order a hel-
met.”

“List the entertainers who played engagements for customer Bonnicksen
but did not play any engagement for customer Rosales.”

“Show me the students who have an average score of 85 or better in Art
but do not have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes but not at Bolero Lanes.”

“Show me the recipes that have beef but not garlic.”

One of the limitations of using a pure difference is that the values must match
in all the columns in each result set. This works well if you’re finding the dif-
ference between two or more sets from the same table—for example, cus-
tomers who ordered bicycles and customers who ordered helmets. It also

works well when you’re finding the difference between sets from tables that
have similar columns—for example, customer names and employee names.

In many cases, however, you’ll want to find solutions that require a match on
only a few column values from each set. For this type of problem, SQL pro-
vides an OUTER JOIN operation, which is an intersection on key values that
includes the unmatched values from one or both of the two sets. Here’s a sam-
ple of problems you can solve with an OUTER JOIN.

“Show me customers who do not live in the same city as any employees.”
(OUTER JOIN on the city name.)

“List customers and the entertainers they did not book.” (OUTER JOIN on
the engagement number.)

“Find the agents who are not in the same ZIP Code as any entertainer.”
(OUTER JOIN on the ZIP Code.)

“Show me the students who do not have the same first name as any
teachers.” (OUTER JOIN on the first name.)

“Find the bowlers who have an average of 150 or higher who have never
bowled a game below 125.” (OUTER JOIN on the bowler ID from two dif-
ferent tables.)

“Display all the ingredients for recipes that do not have carrots.” (OUTER
JOIN on the recipe ID.)

Don’t worry! We’ll show you all about solving these problems (and more)
using OUTER JOINs in Chapter 9. Also, because few commercial implementa-
tions of SQL support EXCEPT (the keyword for difference), we’ll show how
to use an OUTER JOIN to solve many problems that might otherwise require
an EXCEPT.

Union

So far we’ve discussed finding the items that are common in two sets (inter-
section) and the items that are different (difference). The third type of set
operation involves adding two sets (union).

Union in Set Theory

Union lets you combine two sets of similar information into one set. As a scien-
tist, you might be interested in combining two sets of chemical or physical sam-
ple data. For example, a pharmaceutical research chemist might have two

228 Chapter 7

different sets of compounds that seem to provide a certain beneficial effect. The
chemist can union the two sets to obtain a single list of all effective compounds.

Let’s take a look at union in action by examining two sets of numbers. The
first set of numbers is as follows.

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows.

3, 7, 8, 22, 55, 71, 99

The union of these two sets of numbers is the numbers in both sets combined
into one new set.

1, 5, 8, 9, 32, 55, 78, 3, 7, 22, 71, 99

Note that the values common to both sets, 8 and 55, appear only once in the
answer. Also, the sequence of the numbers in the result set is not necessarily
in any specific order. When you ask a database system to perform a UNION,
the values returned won’t necessarily be in sequence unless you explicitly
include an ORDER BY clause. In SQL,you can also ask for a UNION ALL if you
want to see the duplicate members.

The members of each set don’t have to be just single values. In fact, you’ll
probably deal with sets of rows when working with SQL.

To find the union of two or more sets of complex members, all the members
in each set you’re trying to union must have the same number and type of
attributes. For example, suppose you have a complex set like the one below.
Each row represents a member of the set (a stew recipe), and each column
denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following.

Thinking in Sets 229

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The union of these two sets is the set of objects from both sets. Duplicates are
eliminated.

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Beans Water Pork Onions

Combining Result Sets Using a Union

It’s a small leap from sets of complex objects to rows in SQL result sets. When
you’re dealing with rows in a set of data that you fetch with SQL,the attributes are
the individual columns. For example,suppose you have a set of rows returned by
a query like the following one. (These are recipes from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

230 Chapter 7

A second query result set might look like this one. (These are recipes from
Mike’s cookbook).

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The union of these two sets is all the rows in both sets. Maybe John and Mike
decided to write a cookbook together, too!

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Let’s assume you have a nice database containing all your favorite recipes.You
really like recipes with either beef or onions, so you want a list of recipes that
contain either ingredient. Figure 7–5 (on page 232) shows you the set dia-
gram that helps you visualize how to solve this problem.

The upper circle represents the set of recipes that contain beef. The lower cir-
cle represents the set of recipes that contain onions. The union of the two cir-
cles gives you all the recipes that contain either ingredient, with duplicates
eliminated where the two sets overlap. As you probably know, you first ask
SQL to fetch all the recipes that have beef. In the second query, you ask SQL

Thinking in Sets 231

232 Chapter 7

Figure 7–5 Finding out which recipes have either beef or onions

Recipes with Beef
or OnionsRecipes with

Beef

Recipes with
Onions

to fetch all the recipes that have onions. As you’ll see later, the SQL keyword
UNION links the two queries to get the final answer.

By now you know that it’s not a good idea to design a recipes database with
a single table. Instead, a correctly designed recipes database will have a sepa-
rate Recipe_Ingredients table with one row per recipe per ingredient. Each
ingredient row will have only one ingredient, so no one row can be both beef
or onions at the same time. You’ll need to first find all the recipes that have a
beef row, then find all the recipes that have an onions row, and then union
them.

Problems You Can Solve with Union

A union lets you “mush together”rows from two similar sets—with the added
advantage of no duplicate rows. Here’s a sample of the problems you can
solve using a union technique with data from the sample databases.

“Show me all the customer and employee names and addresses.”

“List all the customers who ordered a bicycle combined with all the cus-
tomers who ordered a helmet.”

“List the entertainers who played engagements for customer Bonnicksen
combined with all the entertainers who played engagements for cus-
tomer Rosales.”

“Show me the students who have an average score of 85 or better in Art
together with the students who have an average score of 85 or better in
Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes combined with bowlers who had a raw score of 140 or better at
Bolero Lanes.”

“Show me the recipes that have beef together with the recipes that have
garlic.”

As with other “pure” set operations, one of the limitations is that the values
must match in all the columns in each result set. This works well if you’re
unioning two or more sets from the same table—for example,customers who
ordered bicycles and customers who ordered helmets. It also works well
when you’re performing a union on sets from tables that have like columns—
for example, customer names and addresses and employee names and
addresses. We’ll explore the uses of the SQL UNION operator in detail in
Chapter 10.

In many cases where you would otherwise union rows from the same table,
you’ll find that using DISTINCT (to eliminate the duplicate rows) with com-
plex criteria on joined tables will serve as well. We’ll show you all about solv-
ing problems this way using JOINs in Chapter 8, INNER JOINs.

SQL Set Operations

Now that you have a basic understanding of set operations, let’s look briefly at
how they’re implemented in SQL.

Classic Set Operations versus SQL

As noted earlier,not many commercial database systems yet support set inter-
section (INTERSECT) or set difference (EXCEPT) directly. The current SQL
Standard, however, clearly defines how these operations should be imple-
mented. We think that these set operations are important enough to at least
warrant an overview of the syntax.

As promised, we’ll show you alternative ways to solve an intersection or dif-
ference problem in later chapters using JOINs. Because most database sys-
tems do support UNION, Chapter 10 is devoted to its use. The remainder of
this chapter gives you an overview of all three operations.

Thinking in Sets 233

Finding Common Values: INTERSECT

Let’s say you’re trying to solve the following seemingly simple problem.

“Show me the orders that contain both a bike and a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

❖ Note Readers familiar with SQL might ask why we didn’t JOIN
Order_Details to Products and look for bike or helmet product names. The
simple answer is that we haven’t introduced the concept of a JOIN yet, so
we built this example on a single table using IN and a list of known bike
and helmet product numbers.

That seems to do the trick at first,but the answer includes orders that contain
either a bike or a helmet, and you really want to find ones that contain both a
bike and a helmet! If you visualize orders with bicycles and orders with hel-
mets as two distinct sets, it’s easier to understand the problem. Figure 7–6
shows one possible relationship between the two sets of orders using a set
diagram.

Actually, there’s no way to predict in advance what the relationship between
two sets of data might be. In Figure 7–6, some orders have a bicycle in the list
of products ordered, but no helmet. Some have a helmet, but no bicycle. The
overlapping area, or intersection, of the two sets is where you’ll find orders
that have both a bicycle and a helmet. Figure 7–7 shows another case where
all orders that contain a helmet also contain a bicycle, but some orders that
contain a bicycle do not contain a helmet.

Seeing “both” in your request suggests you’re probably going to have to break
the solution into separate sets of data and then link the two sets in some way.
(Your request also needs to be broken into two parts.)

234 Chapter 7

Thinking in Sets 235

Figure 7–6 One possible relationship between two sets of orders

Orders for Both
Bicycles and Helmets

Orders for
a Bicycle

Orders for
a Helmet

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Figure 7–7 All orders for a helmet also contain an order for a bicycle.

Orders for
a Bicycle

Orders for
a Helmet

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—an inter-
section of the two sets. Figure 7–8 shows the SQL syntax diagram that handles
this problem. (Note that you can use INTERSECT more than once to combine
multiple SELECT statements.)

236 Chapter 7

Figure 7–8 Linking two SELECT statements with INTERSECT

SELECT Expression

SELECT Statement SELECT StatementINTERSECT

ALL

You can now take the two parts of your request and link them with an
INTERSECT operator to get the correct answer.

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
INTERSECT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

The sad news is that not many commercial implementations of SQL yet sup-
port the INTERSECT operator. But all is not lost! Remember that the primary
key of a table uniquely identifies each row. (You don’t have to match on all
the fields in a row—just the primary key—to find unique rows that inter-
sect.) We’ll show you an alternative method (JOIN) in Chapter 8 that can
solve this type of problem in another way. The good news is that most com-
mercial implementations of SQL do support JOIN.

Finding Missing Values: EXCEPT (DIFFERENCE)

Okay, let’s go back to the bicycles and helmets problem again. Let’s say you’re
trying to solve this seemingly simple request as follows.

“Show me the orders that contain a bike but not a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers
and product number is not in the list of helmet product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers
and product number is not in the list of helmet product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

AND ProductNumber NOT IN (10, 25, 26)

Unfortunately, the answer shows you orders that contain only a bike! The
problem is that the first IN clause finds detail rows containing a bicycle, but
the second IN clause simply eliminates helmet rows. If you visualize orders
with bicycles and orders with helmets as two distinct sets, you’ll find this eas-
ier to understand. Figure 7–9 shows one possible relationship between the
two sets of orders.

Thinking in Sets 237

Figure 7–9 Orders for a bicycle that do not also contain a helmet

Orders for a Bicycle
but Not for a HelmetOrders for

a Bicycle

Orders for
a Helmet

Seeing “except”or “but not” in your request suggests you’re probably going to
have to break the solution into separate sets of data and then link the two
sets in some way. (Your request also needs to be broken into two parts.)

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a differ-
ence of the two sets. SQL uses the EXCEPT keyword to denote a difference
operation. Figure 7–10 shows you the SQL syntax diagram that handles this
problem.

238 Chapter 7

You can now take the two parts of your request and link them with an
EXCEPT operator to get the correct answer.

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
EXCEPT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Figure 7–10 Linking two SELECT statements with EXCEPT

SELECT Expression

SELECT Statement SELECT StatementEXCEPT
ALL

Remember from our earlier discussion about the difference operation that
the sequence of the sets matters. In this case you’re asking for bikes “except”
helmets. If you want to find out the opposite case—orders for helmets that do
not include bikes—you can turn it around as follows.

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)
EXCEPT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

The sad news is that not many commercial implementations of SQL yet sup-
port the EXCEPT operator. Hang on to your helmet! Remember that the pri-
mary key of a table uniquely identifies each row. (You don’t have to match on
all the fields in a row—just the primary key—to find unique rows that are dif-
ferent.) We’ll show you an alternative method (OUTER JOIN) in Chapter 9
that can solve this type of problem in another way. The good news is that
most commercial implementations of SQL do support OUTER JOIN.

Combining Sets: UNION

One more problem about bicycles and helmets, then we’ll pedal on to the
next chapter. Let’s say you’re trying to solve this request, which looks simple
enough on the surface.

“Show me the orders that contain either a bike or a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

Actually, that works just fine! So why use a UNION to solve this problem? The
truth is, you probably would not. However, if we make the problem more
complicated, a UNION would be useful.

Thinking in Sets 239

“List the customers who ordered a bicycle together with the vendors who
provide bicycles.”

Unfortunately, answering this request involves creating a couple of queries
using JOIN operations, then using UNION to get the final result. Because we
haven’t shown you how to do a JOIN yet, we’ll save solving this problem for
Chapter 10. Gives you something to look forward to, doesn’t it?

Let’s get back to the “bicycles or helmets”problem and solve it with a UNION.
If you visualize orders with bicycles and orders with helmets as two distinct
sets, then you’ll find it easier to understand the problem. Figure 7–11 shows
you one possible relationship between the two sets of orders.

240 Chapter 7

Figure 7–11 Orders for bicycles or helmets

Orders for a Bicycle
or a Helmet

Orders for
a Bicycle

Orders for
a Helmet

Seeing “either,”“or,” or “together” in your request suggests that you’ll need to
break the solution into separate sets of data and then link the two sets with a
UNION. This particular request can be broken into two parts.

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a union
of the two sets. Figure 7–12 shows the SQL syntax diagram that handles this
problem.

Thinking in Sets 241

Figure 7–12 Linking two SELECT statements with UNION

SELECT Expression

SELECT Statement SELECT StatementUNION
ALL

You can now take the two parts of your request and link them with a UNION
operator to get the correct answer.

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
UNION
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

The good news is that most commercial implementations of SQL support the
UNION operator. As is perhaps obvious from the examples, a UNION might be
doing it the hard way when you want to get an “either-or” result from a single
table. UNION is most useful for compiling a list from several similarly structured
but different tables. We’ll explore UNION in much more detail in Chapter 10.

SUMMARY

We began this chapter by discussing the concept of a set. Next, we discussed
each of the major set operations implemented in SQL in detail—intersection,
difference, and union. We showed how to use set diagrams to visualize the
problem you’re trying to solve. Finally, we introduced you to the basic SQL
syntax and keywords (INTERSECT, EXCEPT, and UNION) for all three opera-
tions just to whet your appetite.

At this point you’re probably saying,“Wait a minute, why did you show me
three kinds of set operations—two of which I probably can’t use?”Remember
the title of the chapter: Thinking in Sets. If you’re going to be at all successful
solving complex problems, you’ll need to break your problem into result sets
of information that you then link back together.

So, if your problem involves “it must be this and it must be that,” you might
need to solve the “this”and then the “that”and then link them to get your final
solution. The SQL Standard defines a handy INTERSECT operation—but an
INNER JOIN might work just as well. Read on in Chapter 8.

Likewise, if your problem involves “it must be this but it must not be that,”
you might need to solve the “this” and then the “that” and then subtract the
“that” from the “this” to get your answer. We showed you the SQL Standard
EXCEPT operation, but an OUTER JOIN might also do the trick. Get the
details in Chapter 9.

Finally, we showed you how to add sets of information using a UNION. As
promised, we’ll really get into UNION in Chapter 10.

242 Chapter 7

This page intentionally left blank

Index

617

A
abbreviations

in field names, 22
in table names, 31

Access. See under Microsoft
acronyms

in field names, 22
in table names, 31

aggregate functions, 74, 375–377, 416–428.
See also AVG; COUNT; COUNT(*);
MAX; MIN; SUM

column name in, 419
in filters, 428–430
grouping of,442–444 (See also GROUP BY)
imbedding of, 428
multiple, 427–428
Nulls and, 417, 420
overview, 416–418
sample statements, 431–438
syntax, 416, 416f, 595f
uses of, 416
WHERE clause in, 419, 430

aliases
for column names, 131
for tables, 252–254, 252f

ALL
in subqueries, 386–389, 387f, 393–394,

406–407
syntax, 487f, 598f

in UNIONs, 228–230, 341, 343, 345, 348
Allaire, Cold Fusion, 6
American National Standards Institute

(ANSI), 57. See also SQL Standard
American Standard Code for Information

interchange (ASCII), 107
analytic databases, defined, 4
AND, 179, 180f

null values and, 195–196

with OR, 183–184
sample statements, 204–205

Ansa Software, Paradox, 5
ANSI (American National Standards

Institute), 57
ANSI/ISO standard. See SQL Standard
ANSI NCITS-H2, 62
“ANSI X3.168-1989 Database Language

Embedded SQL,”58
“ANSI X3.135-1986 Database Language SQL”

(SQL/86), 57–58
ANY, 386–389, 387f, 400, 598f
approximate numeric data type, 108–109
archiving of data, 547–549, 554–555

deleting data after archiving, 574–575, 579
artificial primary keys, 41–42, 41f
AS, 130–131, 252–253, 252f
ASC, 91, 96, 98–99, 100–101
ASCII (American Standard Code for Informa-

tion interchange), 107, 157–159
Ashton Tate, dBase, 5
asterisk shortcut, 83–84, 83f
ASYMMETRIC BETWEEN, 165
attribute, defined, 6, 215. See also fields
AUTO_INCREMENT, 543
AutoNumber (Access), 543
AVG, 416f, 423–424, 432, 435, 595f.

See also aggregate functions

B
base tables, defined, 9
Begg, Carolyn, 50
BETWEEN, 154, 164–167, 164f, 191–193

ASYMMETRIC, 165
SYMMETRIC, 165

BIGINT data type, 108
BINARY data type, 108
BINARY LARGE OBJECT data type, 108

BIT data type, 108, 109
BIT_LENGTH, 595f
BIT VARYING data type, 108
BLOB data type, 108
Boolean data type, 109

C
calculated columns, naming of, 129–131, 130f
calculated data. See also expressions

in fields
disadvantages of, 24, 25
resolving of, 33
uses of, 514–516

in SELECT statements, 74
Call-Level Interface (CLI) specification, 61–62
Cartesian product, 248, 297
cascade deletion rule, 45, 46f
case sensitivity

in collation of character string literals,
157–160

in comparison of character string literals,
171

CAST, 110–112, 110f
for datetime literal compatibility, 117,

119–120, 141, 142–143, 144–145
for mathematical expression compatibility,

123–124
syntax, 110f, 594f

Chamberlin, Donald, 54
changing data. See DELETE; INSERT; UPDATE
CHARACTER (CHAR) data type, 107
CHARACTER (CHAR) LARGE OBJECT data

type, 107
CHARACTER (CHAR) VARYING data type,

107
character string functions, syntax, 594f
character string literals

collating sequence of, 157–160
concatenating, 118–119, 118f
less than and greater than comparisons,

162
LIKE and, 169–173, 170f
MAX and, 424
range condition predicates, 166
specifying, 112–114, 113f
syntax, 113f, 492f

CHAR_LENGTH, 595f

CLI (Call-Level Interface) specification,
61–62

client/server computing, introduction of, 5, 65
CLOB data type, 107
Codd, Edgar F., 4–5, 54
Cold Fusion, 6
collating sequence

of character string literals, 157–160
ORDER BY clause and, 88–89

columns
added, SELECT statement and, 84
aliases for, 131
calculated, naming of, 129–131, 130f
column references, 245–246, 246f, 249,

593f
deleted, SELECT statement and, 84
ordering of, 82–83
as term, 72

COMMIT, 506
comparison predicates, 156–164

comparison operators, 154
equality and inequality, 160–161
exclusive, 161
inclusive, 161
less than and greater than, 162–164
NOT operator and, 185–186
string values collating sequence, 157–160
syntax, 157f, 597f
types of, 156–157, 157f

composite primary keys (CPK)
defined, 8, 39
use of, 39

Computer Associates International, Inc., 56
concatenation expressions, 117–120, 118f

length limits for returns, 119
in SELECT clause, 128–129
storing as data, 24
syntax, 118f

concatenation operators, 117–118, 118f
Connolly,Thomas, 50
copying of data, 547–549
correlation names (aliases)

for column names, 131
for tables, 252–254, 252f

CORRESPONDING clause, 343
COUNT, 375–376, 420–421. See also

aggregate functions

618 Index

DISTINCT and, 420, 469
HAVING COUNT trap, 481–485
Null values and, 420
sample statements, 427–428, 431, 435
syntax, 376f, 416f, 595f

COUNT(*), 375–376, 418–420
DISTINCT and, 421
Null values and, 417
sample statements, 395, 397, 399, 437, 438
syntax, 376f, 416f, 595f
WHERE clause of, 419

CPK. See composite primary keys

D
data. See also data types

defined, 75
dynamic, defined, 4
static, defined, 4
vs. information, 75–77, 76f

Database 2 (DB2). See under IBM
database design. See also database structure

books on, 16–17
importance of understanding, 19–20
methodology, good

analysis of database with, 50
value of, 16

vs. database theory, 16
vs. implementation, 16

Database Design for Mere Mortals
(Hernandez), 5, 16, 42, 50

database implementation, vs. database design,
16

database models
relational, history of, 4–6
types of, 4

databases
examples

downloadable version of, 93
schema of, 601–605

types of, 3–4
Web-centric, 6, 65

database structure
fine-tuning

fields, 21–29
tables, 30–42
thorough design process analysis, 50

sound, importance of, 20

Database Systems:A Practical Approach
(Connolly and Begg), 50

database theory
importance of understanding, 16
vs. database design, 16

data types, 107–109
changing types, 110–112, 110f
extended, 109

Date, C. J., 16, 58
DATE data type, 109
date expressions, 124–126, 125f

leap year adjustments, 144–145
sample expressions, 141, 142–143,

144–145
in SELECT clause, 132–133

date functions
in specific software, 607–614
syntax, 594f

DATE keyword, 116, 117
date literals

BETWEEN and, 165–166, 167
specifying, 115–116
syntax, 115f, 592f

datetime arithmetic expressions, 124–127
DATETIME data type. See also entries under

date; time; timestamp
concatenation of, 119–120
overview of, 109

datetime functions
in specific software, 607–614
syntax, 594f

datetime literals
specifying, 115–117, 115f
syntax, 115f, 592f

dBase, 5
DB2 (Database 2). See under IBM
DEC data type, 108
DECIMAL data type, 108
DEFAULT, 540
degree of participation

defined, 48
enforcement of, 49–50
setting, 48–50, 49f

DELETE
of all rows, 569–570
of data after archiving, 574–575, 579
overview, 567–568

Index 619

DELETE (cont.)
recovering lost data, 506–507, 570
sample statements, 576–583
of some rows, 571–575
syntax, 568–569, 568f, 599f
transactions and, 506–507, 570
transforming SELECT statement into, 572,

572f
uses of, 568, 575–576
verifying accuracy of target materials,

571–572
WHERE clause in, 568, 568f, 571–575

sample statements, 576–583
subqueries, 573–575

deletion rule
defined, 44
establishing, 44–45, 46f
types of, 45, 46f

delimited identifiers, 22, 32
derived tables, in INNER JOIN, 254–256, 255f
DESC keyword, 90–91, 100
diagrams. See syntax diagrams
difference, 222–227. See also EXCEPT

commercial systems’ support, 233
limitations of, 227–228
by OUTER JOIN with Null test, 295, 300,

318
between result sets, 224–227
set diagrams of, 225–227, 225f, 227f
in set theory, 222–224
uses of, 215, 227–228

DISTINCT
AVG and, 424
COUNT/COUNT(*) and, 376, 420, 469
in JOINs, 233, 247f, 252f, 255f, 296f, 302f,

305f, 358, 384
MAX and, 425–426
MIN and, 426–427
in SELECT statements, 84–86, 85f, 97, 102
in UNIONs, 348

“does not apply,”vs. “is not applicable,”
137–138

DOUBLE PRECISION data type, 108–109
duplicate fields

disadvantages of, 24–25, 36
identification of, 33
resolving of, 33–38

duplicate rows, eliminating, 84–86, 85f
dynamic data, defined, 4

E
EBCDIC (Extended Binary Coded Decimal

Interchange Code), 158–159, 197
embedded SQL, specification for, 58–59
enforcement, of participation degree, 49–50
equality comparison predicates, 160–161
escape characters, 172
ESCAPE option, of LIKE predicate, 169f,

172–173
Euler, Leonard, 219
Euler diagrams, 219. See also set diagrams
events, defined, 7, 7f, 32–33
exact number data type, 108
EXCEPT, 222–227

alternatives to, 295
syntax, 236–239, 238f

execution, of query
defined, 93
methods, 93

EXISTS, 389–392, 393–394, 402–403, 598f
expressions. See also value expressions

column, subqueries as, 372–377
aggregate functions for, 375–377, 376f
GROUP BY in, 452–453, 461–463
sample statements, 395–499
syntax, 372–375
uses, 392

data types
changing of, 110–112, 110f

(See also CAST)
overview of, 107–109

defined, 106
literal values, specifying, 112–117

character string literals, 112–114, 113f
datetime literals, 115–117, 115f
numeric literals, 114f

naming of, 129–131, 130f
overview of, 106
in SELECT clause, 128–135

concatenation expressions, 128–129
date expressions, 132–133
mathematical expressions, 131–132
sample statements, 139–147
value expressions, 135, 135f

620 Index

types of, 117–127
concatenation, 117–120, 118f

length limits for returns, 119
in SELECT clause, 128–129
storing as data, 24
syntax, 118f

date and time, 124–127
leap year adjustments, 144–145
sample expressions, 141, 142–143,

144–145
in SELECT clause, 132–133

mathematical, 121–124, 121f
nulls in, 138–139, 139f
sample statements, 140, 143, 145, 147
in SELECT clause, 131–132

uses of, 128
Extended Binary Coded Decimal Interchange

Code (EBCDIC), 107, 158–159
extended data types, 109
extensions to SQL standard, 60–61, 73
EXTRACT, 595f

F
false, value of, 507–508
Federal Information Processing Standard

(FIPS), 61
fields

duplicate
disadvantages of, 24–25, 36
identification of, 33
resolving of, 33–38

fine-tuning of, 21–29
multipart

identification of, 24, 25, 25f, 26, 27f
resolving of, 25–27, 33

multivalued
identification of, 24, 27–28, 27f
resolving of, 27–29, 28f, 33

naming of, 21–22
overview of, 7–8
structure, fine-tuning of, 23–25, 23f
as term, 72

filters. See also HAVING clause; WHERE
clause

aggregate functions in, 428–430
subqueries as, 377–392

predicate keywords, 380–392

sample statements, 400–409
syntax, 378–380, 378f
uses, 393–394

WHERE vs. HAVING, uses of, 478–485
FIPS (Federal Information Processing

Standard), 61
FIPS PUB 127, 61
FK (foreign keys), 9, 9f
FLOAT data type, 108–109
foreign keys (FK), 9, 9f
FROM clause

in FULL OUTER JOIN, 314f
in INNER JOIN, 247, 247f, 249–250

correlation names for tables, 252–254,
252f

embedded JOIN in, 256–261, 257f, 260f
sample statements, 270–272,

276–277, 280–282, 284–288
embedded select statement in, 254–256,

255f
sample statements, 278–282, 284–288

in OUTER JOIN, 296–300, 296f
embedded JOIN in, 304–314, 305f, 306f,

308f
sample statements, 320–324,

326–331, 333–334
embedded select statements in,

301–304, 302f
sample statements, 320–322,

326–327, 329–331
in SELECT, 74, 74f
in UNION JOIN, 318f

FULL OUTER JOIN, 314–317, 314f
alternatives to, 316, 334
on non-key values, 317

function, defined, 73, 92

G
greater than comparison predicates,

162–164
GROUP BY, 444–458

aggregate functions in, 452, 455, 457–458
mixing columns and expressions, 450–452
nonaggregate column references, 450, 452,

455–456
sample statements, 459–470
as SELECT DISTINCT alternative, 453–454

Index 621

GROUP BY (cont.)
in SELECT statement, 74f, 75
in subquery, 452–453, 461–463
syntax, 445–450, 445f
uses for, 458
without aggregate functions, 453–454

H
HAVING clause, 74f, 75

HAVING COUNT trap, 481–485
restrictions on, 476
sample statements, 487–496
syntax, 476, 476f
uses of, 474–478, 486–487
vs. WHERE, uses of, 478–485

HAVING COUNT trap, 481–485
Hernandez, Michael J., 5, 16, 42, 50

I
IBM

DB2 (Database 2)
concatenation in, 118
data entry in, 538
date and time functions in, 607–608
history of, 5, 56, 57
not equal to operator, 161

SAA (Systems Application Architecture),
61

SQL/Data System (SQL/DS), 56
SQL development, 54–55
string values collating sequence, 158–159
System R, 5, 54–55

identifiers
delimited, 22, 32
regular, 22, 32

inequality comparison predicates, 160–161
information

defined, 75
vs. data, 75–77, 76f

Informix-SE, 65, 118
INGRES, 5, 56, 57, 118
IN keyword, 380–386, 381f, 393–394, 404
INNER JOIN, 244–262

ON clause, 247–250, 247f
column references, 245–246, 246f, 249
correlation names for tables, assigning,

252–254, 252f

embedded JOINS in, 256–261, 257f, 260f
sample statements, 270–272, 276–277,

280–282, 284–288
embedded SELECT statements in, 254–256,

255f
sample statements, 278–282, 284–288

JOIN-eligible data types, 244–245
knowledge of tables and, 261–262
overview of, 244
sample statements, 263–288
syntax, 246–262, 247f, 257f
of three or more tables, 256–261, 257f,

260f, 270–277, 347f
of two tables, 247–251, 247f, 257f,

264–269, 339–340, 340f
uses for, 262–263
USING clause, 247, 247f, 250–251

IN predicate, 154, 167–169, 168f, 598f
INSERT

column references in, 540
individual values and rows, 539–544, 539f
overview, 537–539
primary keys, automatic generation of,

542–544
sample statements, 552–563
with SELECT expression, 544–550, 544f,

545f, 599f
sample expressions, 554–555, 556–559,

561–562
sets of data, 544–550, 544f, 545f
transactions and, 506
uses for, 550–551
with VALUES keyword, 539–544

sample statements, 552–553, 556,
559–560

syntax, 539f, 599f
INTEGER (INT) data type, 108, 109
International Organization for Standardization

(ISO), 58. See also SQL Standard
INTERSECT, syntax, 234–236, 236f
intersection, 216–222. See also INTERSECT

commercial systems’ support, 233
limitations of, 221
set diagrams of, 218–221, 219f, 220f, 235f
of set results, 217–221
in set theory, 216–217
uses of, 215, 221–222

INTERVAL data type, 109, 125

622 Index

interval literals, 116, 593f
An Introduction to Database Systems

(Date), 16
“is not applicable,”vs. “does not apply,”

137–138
IS NULL predicate, 154, 173–175, 174f, 197,

205, 295, 300, 318
syntax, 174f, 598f

“ISO 9075-1987 Database Language SQL,”
58

“ISO 9075:1989 Database Language SQL with
Integrity Enhancements” (SQL/89),
58

“ISO/IEC 9075:1992 Database Language SQL,”
59–60

ISO (International Organization for Standard-
ization), 58. See also SQL standard

J
JOIN. See also INNER JOIN; OUTER JOIN

alternatives to, 250
commercial systems’ support, 250
default mode, 247
NATURAL, 251, 301
overview of, 243–244
UNION, 317, 318f
uses of, 221–222

K
keys

composite primary (CPK)
defined, 8, 39
use of, 39

foreign (FK), 9, 9f
overview of, 8–9
primary (PK)

artificial, 41–42, 41f
automatic generation of, 542–544
composite, 8, 39
criteria for, 39–41, 40f, 41f
defined, 6, 8, 9f, 39
functions of, 8, 33
simple, 39

L
largest value. See MAX
LEFT OUTER JOIN

defined, 295–296

sample statements, 319–334
syntax, 296–314, 296f

less than comparison predicates, 162–164
LIKE, 154, 169–173, 169f

ESCAPE option, 169f, 172–173
sample pattern strings, 170t
sample statements, 206
syntax, 169f, 598f
wildcard characters, 169–170

linking tables
advantages of, 14–15
defined, 13
defining of, 13–14
in resolving duplicate fields, 37–38, 37f, 38f
in resolving multivalued fields, 28, 29f

literals. See also character string literals; date
literals; datetime literals; numeric
literals; time literals; timestamp
literals

interval, 116, 593f
keywords for, 116, 117
specifying values for

character string literals, 112–114, 113f
datetime literals, 115–117, 115f
numeric literals, 114f

types
changing, 110–112, 110f

(See also CAST)
overview, 107–109

lost data, recovering,570. See also transactions

M
mandatory participation, 46–47, 48f
many-to-many relationship, 13–15, 13f, 14f,

43–44, 44f
mathematical expressions, 121–124, 121f

nulls in, 138–139, 139f
sample statements, 140, 143, 145, 147
in SELECT clause, 131–132

MAX, 376–377, 424–426. See also aggregate
functions

in multiple aggregate functions, 427
sample statements, 396, 398, 434
syntax, 376f, 416f, 595f

mean values. See AVG
members, of set. See also IN predicate

characteristics of, 216–217
defined, 215

Index 623

MEMO data type, 107
Microrim, 5
Microsoft

Access, 29, 65, 92
AutoNumber in, 543
concatenation in, 118
COUNT DISTINCT and, 470
date and time functions in, 609–610
date entry in, 537–538
DELETE in, 570, 570f
GROUP BY in, 456
JOINs in, 320, 334
LIKE predicate in, 170
subqueries, aggregate functions in, 521
transactions in, 506
UPDATE

JOIN clause in, 511–512, 521
subquery UPDATE expressions, 514
ODBC (Open Database Connectivity)

specification, 62
SQL Server

concatenation in, 118
date and time functions in, 610
FULL OUTER JOINs in, 316
history of, 5–6, 65
Identity data type, 543
not equal to operator, 161
OUTER JOIN in, 299
TOP keyword in, 92
UPDATE, JOIN clause in, 511–512

Visual Studio, 6
MIN, 416f, 426–427, 433, 595f. See also

aggregate functions
MONEY/CURRENCY data type, 109
multipart fields

identification of, 24, 25, 25f, 26, 27f
resolving of, 25–27, 33

multiple column retrieval, 81–83, 81f
multivalued fields

identification of, 24, 27–28, 27f
resolving of, 27–29, 28f, 33

MySQL
AUTO_INCREMENT in, 543
concatenation in, 118
data entry in, 538
date and time functions in, 611–613
datetime specification in, 116, 117

embedded SELECT statements in, 255
history of, 6
JOINs in, 334

N
names. See also aliases

for columns, 130–131
of fields, 21–22
of tables, 30–32

NATIONAL CHARACTER (CHAR) data type,
107–108

NATIONAL CHARACTER (CHAR) LARGE
OBJECT data type, 108

NATIONAL CHARACTER (CHAR) VARYING
data type, 108

National Committee for Information
Technology Standards (NCITS), 62

National Institute of Standards and
Technology (NIST), 61

NATURAL JOIN, 251, 301
NCHAR data type, 107–108
NCHAR VARYING data type, 108
NCITS-H2, 62
NCITS (National Committee for Information

Technology Standards), 62
NCLOB data type, 108
NEXTVAL, 543
NIST (National Institute of Standards

and Technology), 61
not equal to operator, 161
NOT operator

in comparison conditions, 185–186
double, 186–187
as first keyword, 184–187, 185f
within predicate, 175–178, 176f
sample statements, 186–187

NTEXT data type, 108
Nulls, 135–139. See also IS NULL predicate

COUNT and, 420
COUNT(*) and, 417
defined, 136–137
in mathematical expressions, 138–139,

139f
and multiple condition searches, 193–197,

194f, 195f, 196f
uses of, 137–138

NUMERIC data type, 108

624 Index

numeric functions, syntax, 595f
numeric literals

BETWEEN and, 164–165
specifying, 114f
syntax, 114f, 592f

O
objects, defined, 7, 32
ODBC (Open Database Connectivity)

specification, 62
Office Access 2007, 29
ON clause, 247–250, 247f, 296f, 297–301
one-to-many relationship, 12, 12f, 43, 43f
one-to-one relationship, 11–12, 12f, 42–43, 43f
Open Database Connectivity (ODBC)

specification, 62
operational databases, defined, 4
optional participation, 46–47, 48f
Oracle

concatenation in, 118
data entry in, 538
date and time functions in, 613–614
GROUP BY in, 456
history of, 5, 55–56
NEXTVAL in, 543
OUTER JOIN in, 299

ORDER BY
ASC keyword, 91, 96, 98–99, 100–101
column name, specifying, 90–91, 351–352,

351f
column number, specifying, 351–352, 351f
DESC keyword, 90–91, 100
order of precedence in, 88–89
in SELECT statements, 87–92, 87f

sample statements, 96, 98–99, 100–101,
146, 200–202

in UNIONs, 351–352, 351f
ordering

of columns, 82–83
of rows, 87–92, 87f

order of precedence
in mathematical expressions, 121–123
in multiple search conditions, 182

default order, 187–188
and efficiency of search, 190–191
prioritizing of conditions, 188–190

in ORDER BY clause, 88–89

OR operator, 180–182, 181f
with AND, 183–184
null values and, 196, 196t
sample statements, 203

orphaned records
avoiding, 9, 44–45
defined, 44

OUTER JOIN
ON clause, 296f, 297–301
commercial systems’ support, 299
embedded JOINS in, 304–314, 305f, 306f,

308f
sample statements, 320–324, 326–331,

333–334
embedded SELECT statements in, 301–304,

302f
sample statements, 320–322, 326–327,

329–331
FULL, 314–317, 314f

alternatives to, 316, 334
on non-key values, 317

LEFT
defined, 295–296
sample statements, 319–334
syntax, 296–314, 296f

overview, 293–295
RIGHT

defined, 295–296
syntax, 296–314, 296f

sample statements, 319–334
syntax, 296–314, 296f
of three of more tables, 304–314, 306f, 308f
of two tables, 296–301, 296f, 305f
uses of, 228, 318–319
USING clause, 296f, 297, 300–301

overlapping ranges,checking for,191–193,192f

P
Paradox, 5
parent-child relationship, 311
parentheses

for combining search conditions, 184
in embedded JOINS within JOINS,

257–258, 257f, 304–305, 306f, 308f
in embedded SELECT statements within

JOINS, 254–255, 255f
in mathematical expressions, 122–123

Index 625

parentheses (cont.)
in prioritizing of conditions, 189–190
for subqueries, 374

participation degree
defined, 48
enforcement of, 49–50
setting, 48–50, 49f

participation type, setting, 46–47, 47f, 48f
pattern-matching condition. See LIKE
PK. See primary keys
POSITION, 595f
predicates. See also search conditions

quantified, 386–389, 387f
in WHERE clause (See also BETWEEN;

comparison predicates; IN
predicate; IS NULL predicate; LIKE)

efficiency of, 190–191
expressing in different ways, 197–198
INTERSECT, 234–236, 236f
multiple conditions, 178–197
NOT operator, 175–178, 176f, 184–187,

185f
nulls, evaluation of, 193–197, 194f, 195f,

196f
AND operator, 179, 180f, 183–184,

195–196, 204–205
order of precedence. See order

of precedence
OR operator, 180–182, 181f, 184–185,

196, 196t, 203
AND and OR together, 183–184
overview, 152–154
sample statements, 198–206

primary keys (PK)
artificial, 41–42, 41f
automatic generation of, 542–544
composite, 8, 39
criteria for, 39–41, 40f, 41f
defined, 6, 8, 9f, 39
functions of, 8, 33
simple, 39

primary tables, defined, 11

Q
quantified predicates, 386–389, 387f
QUEL (Query Language), 56, 57
query. See also SELECT query

defined, 10, 73, 92–93

execution methods, 93
saved, defined, 10

Query Language (QUEL), 56, 57
query optimizers, 190–191, 256, 308–309,

320, 354
quotes

for character string literals, 112–113, 113f
single, embedded, 186

R
range, finding data within. See BETWEEN
R:BASE, 5
RDBMSs. See relational database management

systems
REAL data type, 108–109
records

orphaned
avoiding, 9, 44–45
defined, 44

overview of, 8
as term, 72

recovering lost data, 570. See also
transactions

regular identifiers, 22, 32
relation, 6. See also tables
relational database management systems

(RDBMSs)
collating sequences of, 88–89
history of, 55–56, 64–65
products, 5–6

relational databases
anatomy of, 6–15
history of model, 4–6
importance of understanding, 15–16

relational database software. See relational
database management systems

“A Relational Model of Data for Large Shared
Databanks” (Codd), 5

Relational Software, Inc., 55–56
Relational Technology, Inc., 56
relationships between tables. See also linking

tables
degree of participation

defined, 48
enforcement of, 49–50
setting, 48–50, 49f

deletion rule
defined, 44

626 Index

establishing, 44–45, 46f
types of, 45, 46f

relationship characteristics, establishing,
44–50

type of participation, setting, 46–47, 47f, 48f
unresolved, defined, 13, 13f

Request/Translation/Clean UP/SQL
technique, 77–81

restrict deletion rule, 45, 46f
result set, defined, 77
RIGHT OUTER JOIN

defined, 295–296
syntax, 296–314, 296f

ROLLBACK, 506
ROUND, 521, 522
rows

counting of. See COUNT(*)
ordering of, 87–92, 87f
as term, 72

row subqueries, 370–371
row value constructors, 370–371

S
SAA (Systems Application Architecture), 61
sample database schema, 601–605
saved query, defined, 10
saving, of SELECT statements, 92–93
scalar subqueries, 370, 372, 373–375
search conditions. See also HAVING clause;

ON clause; predicates; WHERE
clause

combining with parentheses, 184
expressing in different ways, 197–198
order of precedence, 182

default order, 187–188
and efficiency of search, 190–191
prioritizing of conditions, 188–190

syntax diagram, 178f, 185f, 597f
in WHERE clause, 152–153

secondary tables, defined, 11
SELECT clause

expressions in, 128–135
concatenation expressions, 128–129
date expressions, 132–133
mathematical expressions, 131–132
sample statements, 139–147
value expressions, 135, 135f

overview of, 74, 74f

SELECT expression
defined, 342
INSERT using, 544–550, 544f, 545f
as part of SELECT operation, 72
syntax, 591f
in value expression, 373, 373f

SELECT operation
overview, 72
parts of, 72 (See also SELECT expression;

SELECT query; SELECT statement)
SELECT query, 87–92, 87f

defined, 87
as part of SELECT operation, 72
sample statements, 96, 98–99, 100–101,

146, 200–202
sorting rows with, 87–92, 87f
syntax, 87–88, 87f, 591f

SELECT statement
added or deleted columns and, 84
all columns, retrieval of, 83–84, 83f
clauses of, 73–75, 74f (See also FROM

clause; GROUP BY; HAVING;
SELECT clause; WHERE clause)

defining, 73
duplicate rows, eliminating, 84–86, 85f
embedded

in INNER JOIN, 254–256, 255f
sample statements, 278–282, 284–288

in OUTER JOIN, 301–304, 302f
sample statements, 320–322,

326–327, 329–331
keywords, 73
multiple columns, retrieval of, 81–83, 81f
ordering of columns, 82–83
ordering of rows, 87–92, 87f
overview of, 73
as part of SELECT operation, 72
sample statements, 93–102
saving, 92–93
subqueries in, 372–377

aggregate functions for, 375–377, 376f
GROUP BY in, 452–453, 461–463
sample statements, 395–499
syntax, 372–375
uses, 392

syntax, 74f, 77–78, 78f, 81f, 135f, 372f
transforming into DELETE statement, 572,

572f

Index 627

SELECT statement (cont.)
transforming into UPDATE statement, 505,

506f
translating requests into SQL, 77–81

SEQUEL (Structured English Query
Language), 54

SEQUEL-XRM, 54
SERIAL/ROWID data type, 109
set(s)

defined, 214–215
members of (See also IN predicate)

characteristics of, 216–217
defined, 215

operations on, 215 (See also difference;
intersection; union)

set diagrams
difference, 225–227, 225f, 227f
intersection, 218–221, 219f, 220f, 235f
union, 231–232, 232f

set identifier columns, 348, 357, 391
set theory

difference in, 222–224
intersection in, 216–217
union in, 228–230

simple primary keys, 39
smallest value. See MIN
SMALLINT data type, 108
SOME, 386–389, 387f, 393–394, 598f
spaces, in expression names, 130
Specifying Queries as Relational Expressions

(SQUARE), 55
SQL

early vendor implementations, 55–56
future of, 65
history of, 53–65
importance of learning, 65–66
pronunciation of, 54

SQL3, 62, 62t–64t
SQL/86, 57–58, 59
SQL/89, 58, 59
SQL/92, 59–60
SQL:1999, 65
SQL:2003, 65
SQL:2007, 65
SQL Access group, 61
SQL/Data System (SQL/DS), 56
SQL/DS (SQL/Data System), 56

SQL Server. See under Microsoft
SQL Standard

alternative standards, 61–62
database models and, 4
data types in, 107–109
datetime expressions and, 127
development of, 56–58
evolution of, 58–64
extensions to, 60–61, 73
identifiers, types of, 22, 32
ORDER BY clause in, 88
parts of, 62, 62t–64t

SQUARE (Specifying Queries as Relational
Expressions), 55

START TRANSACTION, 506
static data, defined, 4
Stonebraker, Michael, 56
stored procedure, defined, 73, 92
Structured English Query Language

(SEQUEL), 54
subqueries

for automatic primary keys generation,
543–544

as column expressions, 372–377
aggregate functions for, 375–377, 376f
GROUP BY in, 452–453, 461–463
sample statements, 395–499
syntax, 372–375
uses, 392

defined, 370
in DELETE statement, 573–575
as filters, 377–392

predicate keywords, 380–392
sample statements, 400–409
syntax, 378–380, 378f
uses, 393–394

row, 370–371
scalar, 370, 372, 373–375
within subqueries, 382–383
subquery UPDATE expressions, 514–516
table, 370, 371–372
types of, 370–372
in UPDATE statement, 508–514
uses for, 392–394
as value expression of aggregate function,

428
WHERE clause of, 373, 380

628 Index

SUBSTRING, 594f
SUM, 416f, 421–423, 427–428, 433, 434, 595f.

See also aggregate functions
Sybase Enterprise Application Studio, 6, 161
SYMMETRIC BETWEEN predicate, 165
syntax diagrams

IN, 168f, 381f, 598f
aggregate functions, 416f, 595f
ALL, 487f, 598f
ANY, 487f, 598f
asterisk shortcut, 83f
AVG, 416f, 595f
CAST, 110f, 594f
character string functions, 594f
character string literals, 113f, 592f
column references, 246f, 593f
comparison predicates, 157f, 597f
concatenation expression, 118f
correlation names for table, 252f
COUNT/COUNT(*), 376f, 416f, 595f
date expression, 125f
date functions, 594f
datetime functions, 594f
datetime literals, 115f, 592f
DELETE, 568f, 599f
DISTINCT, 85f
EXCEPT, 238f
EXISTS, 598f
filtering with comparison predicate, 378f
GROUP BY, 445f
HAVING, 476f
INSERT

using SELECT expression,544f, 545f, 599f
with VALUES, 539f, 599f

INTERSECT, 236f
interval literals, 593f
IS NULL, 174f, 598f
JOIN, 596f

FULL OUTER, 314f
INNER

of three or more tables, 257f, 260f,
347f

of two tables, 247f, 257f, 305f
of more than two tables in alternating

sequence, 260f, 308f
OUTER

of three or more tables, 306f, 308f

of two tables, 296f, 305f
using SELECT statements, 302f

of three or more tables, 257f, 260f, 306f,
308f, 347f

of two tables, 247f, 257f, 296f, 305f
UNION, 318f

LIKE predicate, 169f, 598f
literals, 113f, 114f, 115f, 592f
mathematical expressions, 121f
MAX, 376f, 416f, 595f
MIN, 416f, 595f
naming of expression, 130f
NOT, 176f, 185f
numeric functions, 595f
numeric literals, 114f, 592f
ORDER BY, 351f
BETWEEN predicate, 164f, 597f
quantified predicate, 387f
search conditions, 178f, 185f, 597f
SELECT expression, 373f, 591f
SELECT query, 87f, 591f
SELECT statement, 74f, 78f, 81f, 135f, 372f

with all clauses, 476f
embedded in INNER JOIN, 255f
OUTER JOIN using, 302f
UNION of two, 342f

SOME, 487f, 598f
subquery with IN predicate, 381f
SUM, 416f, 595f
time expressions, 126f
time functions, 594f
TIMESTAMP functions, 594f
UNION, 241f, 340f

ORDER BY clause, 351f
of three tables, 349f
of two SELECT statements, 342f

UPDATE, 502f, 599f
value expression, 134f, 373f, 592f
WHERE clause, 153f

System R, 5, 54–55
Systems Application Architecture (SAA), 61

T
tables

base, defined, 9
correlation names (aliases), 252–254, 252f
derived, in INNER JOIN, 254–256, 255f

Index 629

tables (cont.)
fine-tuning of, 30–42
INNER JOIN of, 247–251, 247f
linking

advantages of, 14–15
defined, 13
defining of, 13–14
in resolving duplicate fields, 37–38, 37f,

38f
in resolving multivalued fields, 28, 29f

logical, defined, 244
naming of, 22, 30–32
overview of, 6–7, 6f
primary, defined, 11
relationships between. See relationships

between tables
secondary, defined, 11
structure, fine-tuning of, 32–33

table subqueries, 370, 371–372
TEXT data type, 107
TIME data type, 109
time expressions, 126–127, 126f
time functions

in specific software, 607–614
syntax, 594f

TIME keyword, 116, 117
time literals

specifying, 116
syntax, 115f, 592f

TIMESTAMP data type, 109
TIMESTAMP functions

in specific software, 607–614
syntax, 594f

TIMESTAMP keyword, 116
timestamp literals

specifying, 116
syntax, 115f, 592f

TINYINT data type, 108, 109
TOP, 92
totals. See SUM
transactions, 506–507, 554, 570
triggers, 42, 516
TRIM, 594f
true, value for, 507–508
tuple, 6. See also records
type of participation, setting, 46–47, 47f,

48f

U
UNION

alternatives to, 352–353, 357–358
column names in, 345
commercial systems’ support, 241
of complex SELECT statements, 345–348,

347f
CORRESPONDING clause, 343
data type computability, 341–342
multiple, 349–350, 349f
overview, 39–342
sample statements, 353–365
set identifier columns and, 348, 357
set requirements, 341
of simple SELECT statements, 342–345,

342f
sorting of, 351–352, 351f

sample statements, 354–355, 362–363
syntax, 239–241, 241f, 340–341, 340f
uses of, 215, 232, 233, 352–353

UNION ALL, 228–230, 341, 343, 345, 348
UNION JOIN, 317, 318f
union (set operation), 228–233

combining result sets with, 230–232
concept, 228–230
limitations of, 233
set diagrams, 231–232, 232f
uses of, 215, 232–233

University of California, Berkeley, 5, 56
UNIX, SQL standards for, 61
unresolved relationships, defined, 13, 13f
UPDATE

DISTINCT keyword and, 86
JOIN in, 508–509, 511–512
multiple columns, 507–508
overview, 501–502
sample statements, 503–504, 517–533
selected rows, 504
subquery UPDATE expressions, 514–516
syntax, 502–503, 502f, 599f
transactions and, 506–507, 554
transforming SELECT statement into, 505,

506f
translation process, 503
uses for, 516–517
verifying accuracy of target materials,

505

630 Index

WHERE clause, 502, 502f, 504–505, 506f,
507–508

subquery filters, 508–514
USE, 538
USING clause

alternatives to, 301
INNER JOIN, 247, 247f, 250–251
OUTER JOIN, 296f, 297, 300–301

V
value expressions, 133–135, 134f

components of, 134
defined, 134
in SELECT clause, 135, 135f, 372–373, 373f

sample statements, 139–147
syntax for, 134, 134f, 373, 373f, 592f

VALUES, INSERT statements with, 539–544
sample statements, 552–554, 556, 559–560
syntax, 539f, 599f

VARCHAR data type, 107
Venn, John, 219
Venn diagrams, 219. See also set diagrams
views

defined, 73, 92
overview of, 9–10, 11f

Visual Studio, 6

W
“what if?”questions, 106
WHERE clause, 151–156

in aggregate functions, 419, 430
alternatives to, 352–353, 357–358
composition of, 154–156
in DELETE statement, 568, 568f, 571–575

sample statements, 576–583
subqueries, 573–575

in multiple UNIONs, 350

predicates (filters) in (See also BETWEEN;
comparison predicates; IN
predicate; IS NULL predicate; LIKE)

efficiency of, 190–191
expressing in different ways, 197–198
INTERSECT, 234–236, 236f
multiple conditions, 178–197
NOT operator, 175–178, 176f, 184–187,

185f
nulls, evaluation of, 193–197, 194f, 195f,

196f
AND operator, 179, 180f, 183–184,

195–196, 204–205
order of precedence. See order

of precedence
OR operator, 180–182, 181f, 184–185,

196, 196t, 203
AND and OR together, 183–184
overview, 152–154
sample statements, 198–206
in UPDATE statements, 508–514

in SELECT statement, 74f, 75
of subquery, 373, 380
syntax of, 152, 153f
in UPDATE statement, 502, 502f, 504–505,

506f, 507–508
subquery filters, 508–514

uses of
generally, 151–152
vs. HAVING, 478–485

Wong, Eugene, 56

X
X3, 57, 62
“X3.135-1992 Database Language SQL,”59–60
X3H2, 57
X/OPEN standard, 61

Index 631

	Contents
	Foreword
	Preface
	About the Authors
	Introduction
	Are You a Mere Mortal?
	About This Book
	What This Book Is Not
	How to Use This Book
	Reading the Diagrams Used in This Book
	Sample Databases Used in This Book
	“Follow the Yellow Brick Road”

	CHAPTER 7 Thinking in Sets
	Topics Covered in This Chapter
	What Is a Set, Anyway?
	Operations on Sets
	Intersection
	Difference
	Union
	SQL Set Operations
	Summary

	Index

