Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1 $

TALES OF APPLICATION
COMPATIBILITY

THESE sTORIES, UNLIKE the ones in Chapter 13, aren't really trying to teach
you anything. They're just interesting little stories. Often, telling these little
vignettes around the lunch table was our last grasp on sanity.

P

=
The tools of application compatibility

To seT soME of these stories into context, I'll start with some background on
the application compatibility infrastructure, which has evolved over the
decades. At first, the only way to address a compatibility problem was to
change the core operating system so that the compatibility fix applied to all
programs. If one program relied on a feature behaving a particular way, then
the feature had to continue behaving that way for all programs. Part of the
reason was that there simply wasn't any infrastructure available at the time to
target a particular program, and part of the reason was the principle, “Well, if
we found one program doing it, there are probably lots of others that do it,
too.” The application compatibility team tests thousands of applications,
but that's still only a small fraction of the total number of applications out
there.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2$

2 /fﬁ THE OLD NEW THING

In Windows 3.0, the operating system gained the capability of tailoring its
behavior according to whether the running application was designed for
Windows 3.0 or an earlier version of Windows. The general principle was
still, “If one program relies on a particular behavior, then there are probably
others.” But on occasion, the old behavior was so undesirable that having the
operating system behave in different ways depending on how the application
was written was the lesser of two evils,

Windows 3.1 contained many additional changes, and with those changes
came new compatibiiity issues. For example, some programs were passing
invalid parameters and relying on some quirk of how Windows behaved when
faced with particular types of abuse. A program might have passed invalid
ﬂags, that is, ﬂags with no defined meaning, in Windows 3.0. A function may
have accepted the flags 0x0001 and oxo0002, say, but a program passed
0x0005 instead. In Windows 3.0, the function interpreted the value as
0x0001 | 0x0004 and ignored the 0x0004. Come Windows 3.1, the value
0x0004 gained a particular meaning, and this old program now was receiving
some new, unwanted behavior. The solution was to ignore the value 0x0004 if
the program was designed for Windows 3.0.

Often, however, disabling a feature for all Windows 3.0 programs would
have undermined the feature too severely. For example, a few programs could
not cope with improvements that had been made to Windows printing. If
only the target operating system version number were checked, then no
Windows 3.0 programs would have benefited from these improvements.
Instead, the speciﬁc programs that had trouble with optimized printing were
tagged, and the improvements were disabled only for those programs.

In Windows 95, a new tool joined the application compatibility arsenal: the
patch. If a program was doing something wrong in such a way that the oper-
ating system couldn't really work around the problem, then there was an
option in the loader to detect the program and apply a set of patches to the
in-memory image to fix the problem. This was a very powerful technique, but
it came with many caveats. First, a patch appiies oniy toa particuiar version of
a program. When a new version comes out, the code is different and applying

the patch would end up modifying the wrong thing. Care, therefore, had to be

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3$

Tales of Application Compatibility = 3

taken to ensure that the program being patched really was the one the patch
was designed for. Furthermore, the program’s vendor had to be contacted, and
permission obtained, to modify its program. Some vendors would change
their program without updating the version number, making the development
of a patch even trickier, which is why the vendor was asked to provide a list of
all known versions of its program that had this problem so that a patch could
be developed for each version. And, of course, the details of the patch were
given to the vendors so that they could fix their program and thus prevent
future versions from having the same problem. This last step is essential,
because the patch can't apply to versions that didn't exist when the patch was
developed.

Windows 2000 took another major step forward with the introduction of
shims. The idea behind shims is to remove application-specific compatibility
hacks from the core operating system and move them to a supporting library.
When the loader detects that an application requires special compatibility
behavior, the corresponding shim is loaded, and the shim inserts itself
between the application and the operating system, thereby allowing the shim
to provide whatever compatibility behaviors are necessary. For example, one
useful shim is known as HeapPadAllocation; it is applied to programs that
have heap buffer overrun bugs. The shim intercepts calls to the
HeapAllocate function and adds a specified amount to the requested size.
That way, when the program overruns a buffer, it merely corrupts the padding
rather than corrupting the next heap block.

With all these tools available, the compatibility team faces a decision once
a compatibility problem has been analyzed and understood: They need to
evaluate whether this is a problem specific to one application or whether the
problem is likely to affect many other applications as well. If the problem is
peculiar enough that only that one program suffers from it, then a shim would
be a suitable solution. On the other hand, if they conclude that the problem
will probably afflict many programs (which, given the tip-of-the-iceberg prin-
ciple, is the more likely alternative), then the next decision is whether a fix
would be harmful to unaffected programs if it were applied generally. In many
cases, applying the fix to the core operating system doesn't harm the other

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4 $

4 2\3 THE OLD NEW THING

programs in the system. The operating system is just “more compatible than
you might have expected.” But in other cases, such as the HeapPad Allocation
example, applying the fix to all programs would be harmful. In those cases, a
shim would be warranted.

Note also that all the application compatibility tools apply on the process
level. If a problem exists in an extension mechanism, such as an Explorer shell
extension or an Internet Explorer Web browser extension or simply a COM
object, then an application-level fix would not accomplish anything. For the
Web browser extension, the compatibility fix would be applied to Internet
Explorer, in which case there's no point making the fix to the window manag-
er if you can just put it into Internet Explorer itself. With a COM object,
youe in even worse shape, because COM objects by their nature can be
loaded into any process. Your only choice is to put the compatibility fix into
the core operating system.

That's a quick overview of the application compatibility toolbox. The fol-
lowing anecdotes cover a wide time frame, and knowing what compatibility
tricks were available at the time of each particular problem may help you
understand why Windows settled on the solution it did. Otherwise, you may
ask questions akin to this one overheard at a showing of the movie Apollo 13:
“Why didn't they just use the Space Shuttle to rescue the astronauts?”

=
Contacting a vendor about a bug
in its application

THE pETAILS OF the conversation are imaginary, but the point is real.

“Hello?”

“Hello, this is XYZ from Microsoft Windows application compatibility.
We found a bug in your application that renders it unusable, and we added a
workaround to Windows 95 so that your program still works.”

“That’s great, thanks! Bye-bye.” Click.

Ring-ring.

“Hello?”

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 5 $

Tales of Application Compatibility = 5

“Hi again, um, didn't you want to know what the bug was?”

“Why does it matter? You fixed it. Thanks! You guys are awesome.”

“Right, well, you see, the workaround is applied only to the current version
of your program. Windows won't apply the workaround to future versions of
your program, so once you ship your next version, it'll crash.”

“Oh. Um, hang on, let me get one of our programmers on the line.”

You really don't get their attention until you mention that their program
will eventually stop working.

When I was working on application compatibility for MS-DOS-based
programs (games mostly), I would often call the vendor to let the company
know that its program wasn't working on Windows 95. Many of the vendors

replied, “Oh, we don't support Windows.”

P

=~
Rolling your own version of standard
system functions

WE RECEIVED REPORTS that a popular software development library was failing
to run on Windows 95. Upon closer inspection, we found the reason: The pro-
gram wanted to look at the system configuration file that was responsible for
Windows device drivers, known as system.ini. Instead of using the
GetPrivateProfileString function to read strings from that file, the pro-
gram opened the file and parsed it manually. Unfortunately, what the authors of
the program failed to take into account was that GetPrivateProfileString
uses a case-insensitive comparison to locate the section. Their version used a
case-sensitive comparison. The result was that the program failed to locate the
[386Enh] section of the conﬁguration file. The fix was to tweak Windows 95
Setup so that it used exactly the capitalization that the library expected.

This wasn't the only program to try its hand at parsing the system. ini file
manually. One card game tried to make changes to the system.ini file but
ended up destroying it. The game read the system.ini file a line at a time
into an 80-character buffer, made any necessary changes, and wrote the result
to a temporary file. If any line contained more than 80 characters, the buffer

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 6 $

6 a THE OLD NEW THING

overflowed and corrupted the next variable on the stack, which happened to
be the name of the temporary file!

Once the changes were made, the program deleted the system. ini file and
renamed the temporary file to system. ini. But the rename operation failed
because the name of the temporary file was corrupted by the extra-long line.
The result: a system with no system configuration file.

In other words, installing this program rendered your system unbootable.

The fix from the operating system side was to go through all the compo-
nents of the system that used the system.ini file and make sure none of
them ever wrote lines longer than 80 characters.

Why was a card game editing the driver configuration file, anyway? It turns
out that the program was installing a 32-bit device driver to play “high-quality
sound out the PC speaker.” Spot the oxymoron. What's more, the driver the
program was installing is one that I recognized as having “correctness issues”
on Windows 95. As one example, the driver manipulates the timer chip on the
motherboard to get the high-resolution timing necessary to do its “high-quality
sound.” But it forgot to set things back the way it found them, so once this game
started, even after you quit the game, system animations and audio playback
(from your actual sound card) were all messed up.

=
Bypassing the operating system altogether

A popULAR vIDEO playback program didn't want the computer to suspend while
a movie was playing, so the program issues an int 15h call into the BIOS to
disable Advanced Power Management (APM) and issues a matching enable
call when the movie is finished. This, despite the power management messages
that already existed, such as the wM_POWER message, which allows an applica-
tion to veto a suspend.

Notice that the program ignores whether APM was already disabled when
it comes time to reenable power management. As a result, this code was
designed to override the user’s decision whether or not to enable power man-
agement. Even if APM were turned off before movie playback, the program
turns it back on afterward.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 7 $

Tales of Application Compatibility = 7

If you dig into the APM documentation, it states that you are not allowed
to issue the “disable” call until you have first issued the “connect” call. This
program never issues a ‘connect.” And this bug actually saves them, for when
the program is run on Windows 3.1, all the calls to enable and disable merely
fail with the error “not connected.” The feature never worked.

But on Windows 95, the program crashes because Windows 95 comes with
native support for APM. The power management driver connects to the
APM BIOS in 32-bit mode at startup. This time, when the program issues
its “disable” call, this does not result in a “not connected” error, because APM
is indeed connected. It's not connected to the program, though; it's connected
to the power management driver, but the BIOS has no way of knowing who
is issuing the request.

And it so happens that some BIOSes get confused when 16-bit code issues an
APM call when APM is connected to a 32-bit client—so confused that they
hang the machine hard. The bug was not in Windows 95, but rather in the inter-
action between two other components; Windows 95 served merely as the catalyst.

—

=~
Further adventures in overﬂowing buffers

MutrtipLE PROGRAMS FROM a leading productivity application vendor were
discovered to pass a buffer size of 198 whenever they called the Loadstring
function, regardless of the actual buffer size, even for buffers only 4 or 8 char-
acters in size. Luckily for these programs, they always allocated just enough
space for the actual string they wanted.

The Windows 95 team members discovered this problem after they made
some changes to the LoadString function, part of which involved using the
“unused” parts of the buffer. They were forced to tweak their changes so as not
to trust the buffer size if the “expected OS version” of the application was
less than 4.0.

The “erroneously sized buffer” problem is quite common. Programs would
pass a buffer of a particular size, but specify that the size was some other
(larger) size, and they would get away with it because the result did fit in the
buffer. But when the system decided to use the full buffer temporarily (say, to

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 8 CE

8 /sj THE OLD NEW THING

build a result, and then chop it back down to size before returning it), the
programs crashed because they overreported the buffer size.

Another program tried to read the name of the current screen saver from
the system. ini file, but if the screen saver’s name was more than twelve char-
acters long (i.e., longer than 8.3 format), the buffer overflowed. This is why all
the system screen savers in Windows 95 have short filenames.

Another category of problem is reading past the end of a buffer. A crash in
a shell extension for a portable music player was traced to computing the cor-
rect buffer length and then willfully overflowing it. When the shell connects
to the shell extension, one of the parameters is a data structure that describes
the location of the shell extension in the namespace. This particular shell
extension wants to make a copy of this data structure for safekeeping. It so
happens that the data structure is in the form of a packed array of variable-
length structures: Each structure comes with a size prefix, and the array ends
with an element whose length is zero. (Those familiar with shell programming
will recognize this as an item ID list.)

The function that copies the data structure goes something like this (the
names have been changed, of course):

LPITEMIDLIST CopyIDList (IMalloc *pmalloc, LPITEMIDLIST pidlIn)
{

DWORD cbPidl = GetIDListSizeWithExtra (pidlIn) ;

LPITEMIDLIST pidlNew = pmalloc->Alloc(cbPidl) ;

if (pidlNew) memcpy (pidlNew, pidlIn, cbPidl);

return pidlNew;

}

This seems a perfectly reasonable way of copying a Variable—length structure.
You compute its length, allocate some memory to accommodate its size, and
then copy ... wait a minute! What is this “with extra”?

DWORD GetIDListLengthWithExtra (LPITEMIDLIST pidl)
{
DWORD cb =0;
if (pidl) {
/* this code is correct, with one exception noted below */
while (pidl-s>mkid.cb)
cb += pidl->mkid.cb; // add the size of this element

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 9 $

Tales of Application Compatibility = 9

// move to next element
pidl = (LPITEMIDLIST) ((LPBYTE)pidl + pidl-smkid.cb);

}

cb += 3; // Here’'s the extra!

}

return cb;

}

Let’s look at those three extra bytes. Two of the bytes are expected; they are
the size of the zero-terminator itself. But that third extra byte is gratuitous.
As a result, the copyIDList function allocates one extra byte and copies one
extra byte. Copying one extra byte means running off the end of the buffer,
and if you are sufficiently unlucky, that extra byte will cross a page boundary
and the shell extension will crash.

In other words, the copyIDList function is the moral equivalent of this
incorrect string-duplication function:

LPSTR BadStrDup (LPCSTR pszSource)

{

DWORD length = strlen(pszSource) + 2;

PSTR pszResult = malloc(length) ;

if (pszResult) memcpy (pszResult, pszSource, length);
return pszResult;

}

Adding one to the return value of the strlen function is expected, since
that accounts for the null terminator. But adding two? That just causes a
buffer overrun during the memcpy.

—

)
When the operating system version
number changes

THERE ARE MANY hazards to changing the reported operating system version
number. We'll start with some examples. Time and again, we found programs
that checked the Windows version number like this:

UINT Ver = GetVersion() ;
UINT MajorVersion = LOBYTE (uVer) ;

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1(¢

10 % THE OLD NEW THING

UINT MinorVersion = HIBYTE (uVer) ;
if (MajorVersion < 3 || MinorVersion < 10) ({
Error ("This program requires Windows 3.1");

}

Now consider what happens when the version number is reported as 4.0.
The major version check passes, but the minor version check fails, because 0
is less than 10.

It would be one thing if the program merely displayed an error and exited.
But some programs crashed so badly that it's clear that the code path was
never even tested. Here's one example from a leading disk utility program:

int MainProgram()

{

HINSTANCE hinstD111, hinstD112;

if (CheckWindowsVersion()) {
hinstDl1l1 LoadLibrary ("DLL1") ;
hinstD112 = LoadLibrary ("DLL2") ;
normal program operation
} else {
display error message
}

if (hinstDl112) FreelLibrary(hinstD1l12);
if (hinstDl11l) FreelLibrary(hinstD111) ;
return O0;

If this program decides that it doesn't like the Windows version, it crashes
instead of exiting cleanly. If you run it under the checked build of Windows,
you get the ominous message

fatl K16 GlobalFree of SS. This call won’t return.

before the program finally explodes. The reason, as you may have noticed, is
that wherever the Windows version check fails, two uninitialized variables are
passed to the FreeLibrary function. But the value was uninitialized in a con-
sistent manner: The code that calls the MainProgram function also does other
preparatory work and the memory that would become the hinstp111 vari-
able has been used previously to hold a value corresponding to the program’s

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1 $

Tales of Application Compatibility = 11

own stack. In other words, this program was doomed from the start; the code
in the "else"” branch had never been tested.

As we saw in Chapter 13, this type of bug was so prevalent that we gave up
trying to identify every program that had the problem and just decided, “Fine.
If anybody asks, say that the Windows version is 3.95.

MS-DOS applications had their own problems with changing version
numbers. Such problems are surprising, considering that MS-DOS went
through several major versions before it was finally retired. For example, one
home productivity suite used the MS-DOS major version number to index a
jump table but never did a range check on the version. The table went up to
five. When the program was run under MS-DOS 6.0, it jumped to a random
address and crashed.

Fortunately, MS-DOS had a utility known as SETVER, which could be
used to instruct the operating system to report a false version number to
particular programs, so it was a simple matter of adding the program to the
list. The hard part is finding all those programs ourselves so that our cus-
tomers wouldn't have to. The development team knows how to read assembly
language and debug applications to determine where the compatibility problem
lies and determine the appropriate course of action to get the application back
on its feet. Your typical end users do not have this skill and have no interest in
learning it. They just want to get their work done.

Changing the reported operating system version number is always a very
tense but necessary step in shipping a new operating system. You throw the
switch, knowing full well that hundreds of applications that had been running
just fine will start to fall over, and you've just signed up the product team for
thousands more hours in the application compatibility labs.

=
On the importance of bug-for-bug
compatibility
WHEN YOU CHANGED the size of various window elements, the Windows 3.1
Control Panel broadcast the expected wM_WININICHANGE message but also

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1%

12 /f:,ﬁ THE OLD NEW THING

mistakenly sent out a spurious WM_SYSCOLORCHANGE message (which normally
is sent to indicate that the user changed the colors of window elements), even
though no colors changed. The Windows 95 Display Control Panel fixed this
bug, only for us to find that a top-selling productivity application was relying on
the old buggy behavior. The program ignored the WM_WININICHANGE message
entirely, keying off the spurious wM_SYSCOLORCHANGE message to know when
system metrics had changed.

Once this was discovered, the Windows 95 Display Control Panel had to add
the extra unnecessary WM_SYSCOLORCHANGE broadcast to remain bug-for-bug
compatible with Windows 3.1.

—

)
“Out of memory” is the generic
error message

ONE oF THE common threads we've seen in application compatibility work is that
if a program doesn’t know what went wrong, it just assumes it's out of memory.
For example, one company’s productivity suite puts up “Out of memory” errors
if you don't have a printer installed. But the strangest example of an unexpected
“Out of memory” message I can think of is a handful of programs that display
an“Out of memory” error because your scroll bars are too small.

Why did too-small scroll bars generate an “Out of memory” message? These
programs have their own custom scroll bar window classes but choose the size
of their custom scroll bars to match the system scroll bars. The reason that
these programs use a custom scroll bar window class is that their developers
enhanced the scroll bars with additional buttons that go next to the up and down
arrows, and the images that go on these buttons are stored as resources at a vari-
ety of sizes. To load the correct-sized bitmap, the developers take the scroll bar
size, do some math to convert it to a resource identifier, and load the appropriate
bitmap. If your scroll bars are too narrow, then the result of the computation is
a value that doesn't exist in the resources, and the call to LoadBitmap fails. The
program interprets this failure as a Iow—memory condition, unaware that the real
reason was that it passed a resource identifier that simply doesn't exist.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1 EE

Tales of Application Compatibility = 13

The fix: Change the Windows 95 Display Control Panel so that it doesn't
let you set your scroll bar width so narrow that programs would encounter
this problem.

Another example of “Out of memory” being used as a generic error mes-
sage was found in another program from that same productivity suite. The
program tries to read the name of a helper DLL from the registry, but if you
choose a typical installation, this helper DLL is not installed. The program
forgets to check the error code, though, and assumes the function succeeded.
It then appends “32.DLL’ to the end of what it thought was the string it
retrieved from the registry but which is in reality just stack garbage, resulting
in something like y*ADP°32.DLL. (Lucky for the developers, there is a
garbage zero so that appending the string doesn't overflow the buffer.) The
program then takes this garbage string and passes it to the LoadLibrary
function, which rightfuﬂy fails.

You can see where this is headed. The program checks the error code set by
the LoadLibrary function to see if it's on a list of “approved” errors; if not,
the program changes it to ERROR_NOT ENOUGH_MEMORY. Because “Out of
memory” is the generic error message.

—

)
Misusing file format documentation

DuriNG THE DEVELOPMENT of Windows 95, we discovered many programs
whose developers confused the file format documentation with the interface
documentation and decided that the best way to install programs into
Program Manager was not to use the formal interface, but rather to manipu-
late the contents of the ProGMAN.INI file and GrP files directly,. When
Windows 95 replaced Program Manager with Explorer, these programs
found themselves modifying the internal data structures of a program that no
longer was running, If the programs had used the documented interface, they
would have worked with Explorer just fine.

One program tried to use the documented interface, but didn't quite follow
the protocol properly. The interface for creating items in Program Manager,

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1%

14 /’/‘\ﬁ THE OLD NEW THING

known as Dynamic Data Exchange, begins with a search for available providers,
but the program decided that going through that process was too much work.
Instead, it performed a Findwindow looking for Program Manager and assumed
that that window was the provider. In Windows 95, there was no Program
Manager anymore; the provider was Explorer. The developer who was responsi-
ble for implementing the Program Manager interface in Explorer summed it up
in one sentence: “These people should not be allowed to write code.”

To work around these problems with programs hard-coding Program
Manager, another decoy was created: Explorer named its desktop window
“Program Manager” so that it could act as the decoy for all these programs
that really wanted to talk to Program Manager. This decoy quacked just
enough like Program Manager to keep those programs happy.

But sometimes programs would go too far. One such program would locate
the Program Manager window and minimize it. But when the desktop is
standing in as a decoy for Program Manager, the program ends up minimiz-
ing the desktop, which is kind of exciting, (The fix was to add code to the

desktop so that it ignores attempts to minimize it.)

=
Bypassing the operating system
for no apparent reason

WE FOUND SEVERAL programs that groveled directly into the win.In1 file
looking for fonts, and if they couldn't find their font, they died. The thing is,
the use of the wIN. INT file to record the list of installed fonts is an implemen-
tation detail. If you want to look for fonts, just use the EnumFonts function.

Hunting around in the wiN.INI file has another downside: Thats not
where font list was stored anymore! In Windows 95, this information migrated
to the registry, so programs that went spelunking in wIN.INT found nothing.
To keep those programs happy, Windows 95 detects that a program is trying
to get font information the wrong way and converts it to the right way. One
program even insisted that TrueType fonts be reported as .FoN files even
though nearly all of them had shifted to . TTF, so the compatibility hack also

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1%

Tales of Application Compatibility = 15

changes the names of the files as reported to the program. The program doesn't
want to access the file; it just wants to check that the font it wants exists, but
it checks with a hard-coded filename instead of using the face name.

Of course, the desire to bypass the operating system interface extends well
past Windows 95. In Windows N'T, we found a program whose menus appeared
in an unreadably small font. The reason was that the program wanted to use
the system menu font, but instead of using SystemParametersInfo with the
SPI_GETNONCLIENTMETRICS flag to obtain that font, it went straight to the reg-
istry and read the binary data. What the program didn't realize was that
Windows 95 and Windows NT store the information in different formats. It
read the value from the registry and interpreted the value according to the
Windows 95 format, unaware that Windows N'T uses a different format.

—

=
Violating generally accepted
laws of causality

SOMETIMES YOU RUN into a compatibility issue so awful you consider it a
miracle that any programs run at all.

The setup for a major software productivity suite attempts to replace a
system file with the version from the CD-ROM, even though the CD version
is older than the version already on the system. The setup program doesn't
bother checking whether the existing version is newer. Fine, Windows file
protection is already on the lookout for programs that do this, and it'll restore
the good copy of the file once the setup program finishes. That’s not the bug.

If the file the program wants to replace is in use, then the program goes into
an alternate installation mode, using the MOVEFILE_DELAY UNTIL_REBOOT
option to the MoveFileEx function so that the file will be replaced at the next

restart Of the system:

// Simplified for expository purposes
MoveFileEx ("sysfile.new", "sysfile.dll", MOVEFILE DELAY UNTIL REBOOT) ;
CopyFile ("D:\\CDROM\\INSTALL\\sysfile.dll", "sysfile.new");

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1%

16 /:j THE OLD NEW THING

That's right; the program tries to move a file that doesn't exist yet. This
actually worked on Windows NT because Windows NT’s MoveFileEx
function did not validate the existence of the source file if you passed the
MOVEFILE_DELAY_ UNTIL_REBOOT flag. The call failed on beta versions of
Windows 2000 because of tighter parameter validation, and the program
treated the failure of MoveFileEx as fatal and aborted the install.

The Windows 2000 version of MoveFileEx had to make a special exemption
for delayed-moves of files that didn't exist. It allows them to succeed, in the
hope that by the time the system reboots, the file will actually exist.

=
The strangest way of checking for success

I'm Not QurITE sure what the developers were thinking, but there was a multi-
media title that failed to run because of the way the program checked whether
its calls succeeded: Instead of testing the MMRESULT against MMSYSERR_
NOERROR, it asked the multimedia system to convert the error number to a
readable text string and compared the string against “The specified command
complete successfuliyf' Well, actually, it only checked whether the first sixteen
characters were “The specified co”—1I guess somebody doing a code review
decided to do some performance optimization.

Of course, this technique doesn't work very well if the system changes the
precise wording of its error messages or if the end user is running a non-English
version of Windows.

—

-, :
An even stranger—than—strangest way
of checking for success
Okay, I viep. There’s an even stranger way of checking for success. At least

the program that converted the error code to text checked the error code.
Another program used the Media Control Interface (MCI) to play videos and

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 17$

Tales of Application Compatibility = 17

tested for success by ignoring the return value entirely. Instead of checking
the result of the McIWwndopen call, the program retrieved the window text
of the MCI window and compared it against the string “No Device” to
determine whether the operation succeeded.

In Windows 95, the title of the window changed at a different point in the
initialization of the MCI window, and that program found itself unable to
open any files because it checked the title too soon.

P—

=~
Sometimes you're better off not
checking for success

MEANWHILE, THERE WAS a4 bug reported against a multimedia travel title. If
you navigated through the program and asked to see a video of a particular
point of interest, nothing happened.

Upon closer investigation, the reason was very simple: The vendor forgot to
include the video on the CD.

I'm not sure why multimedia titles seem to be the class of programs that
has the most problems with error checking.

—

)
How you can take a one-line function
and break it

ONE DAY, oNE of my colleagues came into my office and said, “Hey, you want
a sound card?” My computer didn’t have a sound card, so I accepted his offer.

Turns out that it was a trick question. He gave me the sound card because
he couldn't get it to work with Windows 95. Now I was the sucker with the
broken sound card. It wasn't long before I saw why he wanted to be rid of it:
It crashed the system randomly. Luckily, my computer ran the debugging ver-
sion of Windows, so at least I had the proper setup to try to track down the

problem.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 1%#:

18 ’:ﬁ THE OLD NEW THING

The sound card driver took a one-line function that ships in the Device
Driver Kit (DDK) and somehow managed to break it. The original function,
called at hardware interrupt time, looks like this in the DDK:

void FAR PASCAL midiCallback (NPPORTALLOC pPortAlloc, WORD msg,
DWORD dwParaml, DWORD dwParm2) {
if (pPostAlloc->dwCallback)
DriverCallBack (pPortalloc->dwCallback, HIWORD (pPortalloc->dwFlags),
pPortalloc->hMidi, msg, dwParaml, dwParam2) ;

Their version of the function looked like this:

void FAR PASCAL midiCallback (NPPORTALLOC pPortAlloc, WORD msg,
DWORD dwParaml, DWORD dwParm2) {
char szBuf [80] ;
if (pPostAlloc->dwCallback) {
wsprintf (szBuf, " Dc(hMidi=%X,wMsg=%X)", pPortalloc->hMidi, msg);
#ifdef DEBUG
OutputDebugString (szBuf) ;
#endif
DriverCallBack (pPortalloc->dwCallback, HIWORD (pPortalloc->dwFlags),
pPortalloc->hMidi, msg, dwParaml, dwParam2) ;

Not only is there leftover debug stuff in retail code, but it is calling a non-
interrupt—safe function at hardware interrupt time. If the wsprintf function
ever gets discarded, the system will take a segment-not-present fault inside a
hardware interrupt, which leads to a pretty quick death. Even when you get
lucky, the function modifies the high word of extended registers, whereas the
hardware interrupt handler saved only the low word. Doing this across a
hardware interrupt means that whatever code was interrupted is in for a rude
awakening when the hardware interrupt returns. (The fix for this driver was
to patch out the call to wsprintf£.)

And somehow this sound card managed to receive an award from a major
PC magazine.

What's worse, the vendor of the sound card wanted to have its updated
drivers included with Windows 95. When we received the drivers from the

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 19$

Tales of Application Compatibility = 19

vendor, they still had that crashing bug, the very bug we had persuaded the
vendor’s engineers to acknowledge months earlier when they granted permis-
sion to patch their driver. As you might suspect, we rejected the “updated”
drivers.

—

=~
The intimate parasite

of Sound Recorder

Tue murTiMEDIA TEAM found a“Learn to speak English” program for native
speakers of another language, let’s say, Italian. The program was a very inti-
mate parasite of 16-bit Sound Recorder. The more you studied it, the deeper
the problem went.

The first problem was relatively straightforward: The program wants to
launch Sound Recorder and uses the 16-bit filename, SOUNDREC.EXE.
Windows 95 converted the Sound Recorder to a 32-bit program and corre-
spondingly renamed it to SNDREC32 . EXE to be consistent with Windows N'T.
A simple matter of renaming the binary back to its 16-bit name took care of
this. One layer of the onion has been peeled.

After fixing that first problem, the program still didn't work. After launch-
ing Sound Recorder, the program goes looking for the window by its caption.
First, it tries the English title (in case youre running English Windows), then
the Italian title (since most of their customers are running Italian Windows).
Hey, at least the program doesn't assume English exclusively. Of course, native
Italian speakers who live in France and wish to learn English are out of luck,
but that's not our problem. Windows 95 changed the window caption to
include the name of the file being recorded—this change made the program
unable to find the copy of Sound Recorder it had just launched.

We changed the 16-bit Sound Recorder so that its window caption exact-
ly matches the name it had in Windows 3.1, and the program ﬁnally manages
to run. And then we found that the program never even uses Sound Recorder.

If it never uses Sound Recorder, why does it care so much about it?

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page Z(EE

20 /’/‘\ﬁ THE OLD NEW THING

Well, it does use Sound Recorder, but only under certain conditions. For
normal usage, it uses a custom control to play sounds, but if you don’t have a
sound card, it ships the sPEAKER . DRV driver, which plays sound out the tinny
PC speaker. This is a synchronous driver, and the program’s custom control
doesn't support synchronous drivers, so the programmers hunted around for
something that does, and they found Sound Recorder. Send some keystrokes
to Sound Recorder to control playback, and there you have your synchronous
playback control.

But if you watch carefully, you can see a copy of Sound Recorder flash onto
the screen for a split second, and then it turns into a sliver at the left-hand side
of the screen. What's going on?

The programmers didn’t want that copy of Sound Recorder to be visible.
But because they didn't know how to hide a window, they did the next best
thingz They moved it off the screen. Well, mostly off the screen. Because say-
ing that it “moves it off the screen” gives the program too much credit. What
the programmers actually did was simulate mouse clicks and mouse motion
in order to drag the Sound Recorder window across the screen until it has
gone as far to the left as it can, at which point they figure,“Well, it's off to the
side. Hopefully, nobody will notice.”

=
One way to make sure users follow
the instructions

THE ROOMMATE OF one of our developers bought a productivity application
that kept crashing when he launched it. The developer and his colleagues
went through some of the standard troubleshooting steps—changing video
drivers, trying it on another machine—but nothing worked. I—Iaving run out
of ideas, they called the vendor, and they got an explanation.

The vendor’s product support told him that if you don't fill in all three
fields in the setup program (name, organization, and serial number), the setup
completes fine, but the program crashes when you try to run it. And this is
not by design as a form of copy protection. It's a known bug.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2$

Tales of Application Compatibility =

=
Masking a bug by introducing

an even worse bug

A LARGE, WELL-KNOWN company wrote a program that it sends to its major
customers so that the customers can place orders and track the status of the
order by dialing into one of the company’s mainframes scattered throughout
the country. (This was in the pre-Internet days, of course.) The company’s
version 1.00 had a serious bug: The programmers forgot to disable the ninety-
day time bomb. After ninety days, the program didn’t simply stop working,
though. It intentionally crashed your entire machine. Version 1.01 came out
shortly thereafter.

A beta site reported that when it ran the program, the Windows 95
machine died horribly if the testers placed a certain type of complicated order.
The first step was getting the company to send the application compatibility
team a copy of the program and an account number so that the program can
be put through its paces. Somehow, a key piece of information was lost in this
process: Unknown to the development team, the account number the vendor
sent was not a test account but a real live account! It took two weeks to
straighten that one out, and a lot of people doubtless gained a few extra gray
hairs in the process.

Anyway, back to the bug. Sure enough, the problem was reproduced in our
compatibility labs. But in fact, the problem occurred even with Windows 3.1.
So it wasn't a Windows 95 compatibility bug.

Still, you're probably wondering what the problem was. It so happened that
when you placed that special type of complicated order, the window focus
ended up in a different location from where it normally would be, but the pro-
gram assumed that this focus was always on the list of unprocessed selections.
As a result, the program crashed with a null pointer access.

Okay, but why did that crash the entire machine? Well, whoever wrote the
program saw that the program was crashing a lot and couldn't figure out why,
so the person installed a systemwide fault hook to mask the problem.
(Sixteen-bit Windows did not have structured exception handling, If you

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2%

22 /’/‘\ﬁ THE OLD NEW THING

wanted to trap faults, you had to install a systemwide fault hook and then, in
the hook, decide whether the particular fault is the one youre interested in.)
The programmer set a flag at the beginning of the function that tended to crash
a lot and cleared it when the function exited. The fault handler checks the flag,
and if set, it performs the equivalent of a longjmp back to the function. The
function tries to clean up from the mess; it misses a few places, so there’s a small
memory leak, but at least it doesn'’t look like the program crashed.

But what if the flag isn't set? If a fault happens anywhere outside that func-
tion, the fault handler tries to clean up anyway by freeing all the libraries that
the program uses. There's a bit of a problem, though. System fault hooks need to
be written in assembly language because the parameters are passed to them in
a very unusual way. Too bad the programmer wrote it in C++, indeed, not
just C++ but C++ in an application framework. The framework “helpfully”
made the function a 16-bit DLL callback function, which means that it loads
the Ds register (which points to the data the program was accessing when the
fault occurred) on entry and restores it on exit.

That's where the problem lies. The fault handler frees all the libraries
that the program was using; if the fault happened inside the program, then
on entry to the fault handler, the Ds register points to the program’s data.
After the fault handler frees all the libraries that the program was using, it
restores the Ds register as part of the function exit. But we freed the pro-
gram’s data; the attempt to restore the DS register raises a nested fault. This
invokes the fault handler, and the nightmare starts all over again.

But wait, it gets even better (or worse, depending on your point of View)’
In addition to unloading the libraries that the program was using, it also
unloaded USER, KERNEL, and GDI, the three modules central to 16-bit
Windows. As a result, each time through the recursion, the reference count on
each of those modules decrements, and eventually they are freed one by one.
Ultimately, the recursive death gets so bad that kernel is forced to step in and
display a fatal error message. But it can't, because the fatal error message is in
USER, which itself already got unloaded. Now in a horrific panic, Windows
finally puts up a blue screen error and forces a reboot.

One of those cases where the remedy is far worse than the original problem.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2 EE

Tales of Application Compatibility = 23

(As a final remark: If you call the company’s product support and describe
a problem you've encountered with the program, the response is always,“Yeah,
we're really sorry about that bug”)

—

=
If you don't have the right object,

just cast it

ONE proGrRAM was kind of confused. It wanted to extend a shell property
sheet, so it installed a shell extension. A shell extension adds a property sheet
page by creating the page with the createPropertySheetPage function and
passing the resulting HPROPSHEETPAGE to the callback function provided by
the IShellPropSheetExt: :AddPages method. At least that's the theory.

This particular shell extension must have missed that little detail of how
to create property sheet pages, so instead of calling the createproperty-
SheetPage function, it just took a PROPSHEETPAGE structure and cast it to
a HPROPSHEETPAGE. By an amazing stroke of luck, the program actually ran
on Windows 95 because the internal layout of an HPROPSHEETPAGE happens
to be 95% compatible with that of a PROPSHEETPAGE; the remaining 5%
resulted in error messages in the debugging version of Windows, which the
authors of this program no doubt ignored.

On Windows NT and Internet Explorer 5, the structures are signiﬁcantly
different, and the difference caused the program to crash. As a result, the com-
mon controls library that comes with Internet Explorer 5 contains a special
check to see whether the HPROPSHEETPAGE it was passed really is an HPROP-
SHEETPAGE. If it turns out to be one of these PROPSHEETPAGES masquerading
as an HPROPSHEETPAGE, the common controls library converts it to a genuine
HPROPSHEETPAGE by calling the createPropsheetPpage function—the very
function the program was supposed to have called in the first place.

But wait. If this method didn’t work on Windows N'T, how did the program
ever ship in the first place? Simple. If you try to install this program on
Windows N'T, an error message pops up that reads,” Your version of Windows

does not have the Explorer shell supported by Program X. Program X cannot

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page ngt

24 /"Aﬁ THE OLD NEW THING

be installed.” In other words, the program never supported Windows NT and
didn't even try.
So much for convergence.

—

fvj
Locating items by blind counting

A prOBLEM was reported on a program that tries to be an Explorer clone
with a tree view on the left-hand side showing the folders in the system and a
content viewer on the right-hand side. In the program’s toolbar are buttons
that quickly move you to each of the drives in the system. But when you run
the program under Windows 2000, the buttons take you to random folders
instead of to the root of the corresponding drive. What is happening?

Let’s say you clicked on the button that says “Go to the C: drive.” The pro-
gram responds by starting at the Desktop folder, navigating to the first item
under the desktop, which it “knows” is the My Computer icon, then navigat-
ing to the third item under My Computer, which it “knows” is your C: drive.

Except that starting in Windows 2000, the order of the icons on the desk-
top changed. My Documents is the first icon on the desktop, and My
Computer moved to the second position. Now, the program goes to the first
item under the Desktop folder and finds My Documents instead of My
Computer. Undaunted, it continues to the third child under My Documents
and concludes that this is your C: drive.

The fix for this was to add an application compatibility flag that forced the
order of items on the Desktop folder to place My Computer first.

—

D)
Passing the wrong “this” pointer

DurinG THE DEVELOPMENT of Windows 2000, we found a program that passed
the wrong this pointer to the TUnknown: : Release method. It turns out that
you have to do quite a bit of work to get this wrong, The C++ language
passes the this parameter automatically, which removes the opportunity to

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2%

Tales of Application Compatibility = 25

get it wrong. The program must have been written in C, and the authors must

have avoided the interface helper macro IShellFolder Release, because
P _

that macro also passes the correct this parameter automatically:

#define IShellFolder Release (This) \
(This) ->1pVtbl -> Release(This)

No, the program must have written out the Release call manually:

IShellFolder *psfDesktop;
IShellFolder *psfMyComputer;

psfDesktop->1pVtbl->Release (psfMyComputer) ; // oops

Notice that it calls the Release method on the Desktop folder, but passes a
pointer to the My Computer folder as the this pointer. There lies madness.
(Maybe they thought it would release both objects with a single call?)

A’signature” field was added to the Desktop folder, and a special check was
added to the Release method to check the signature to ensure that the this
pointer really is the Desktop folder. If the signature is missing, then the call is
ignored. So not only does the program no longer crash, it actually runs better
than it did before! (Before, it just corrupted some memory.)

—

)
Success through sheer luck

ONE oF THE optional fields in a PROPSHEETPAGE structure is the pfncallback,
which provides a function that the property sheet manager will call at various
stages in the property sheet lifetime. Originally, the only two messages were
PSPCB_CREATE and PSPCB_RELEASE. In Windows 2000, a new message,
PSPCB_ADDREF, was added.

When we added the PsPcB_ADDREF message, we found that a very popu-
lar server program crashed. On closer inspection, we found that its callback
function went like this:

UINT CALLBACK PropSheetPageProc (HWND hwnd, UINT uMsg, LPPROPSHEETPAGE
ppsp)
{

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2%

26 a THE OLD NEW THING

DoSomething () ;
return O;

}

Notice that the function completely ignores the message number! In fact,
the developers were only interested in PSPCB_CREATE, but they did it on the
release, too. So how did this ever work? Why did sending the PSPCB_ADDREF
message put it over the edge?

It so happens that what the callback function did in the Dosomething ()
function was install a thread hook. Even before the addition of the
PSPCB_ADDREF message, the callback installed two thread hooks by mistake.
When the property sheet is closed, the program cleans up one hook but
leaves the second (mistaken) one installed. Luckily for the program, it also
exits the thread immediately afterward. As a result, the leaked hook applies to
a thread that no longer exists and therefore never fires. The program got lucky.

But this doesn't explain why it crashes once we add the pspcB_ADDREF
message. All you would expect is that the program would install three hooks
(two inadvertently), but that the second accidental hook would be leaked just
like the first one. Why the crash?

The answer is that the program creates its property sheet pages on one
thread but displays them on another. The PSPCB_ADDREF message is sent
when the property sheet page is created (and therefore sent on the thread that
called createPropertySheetPage), as opposed to the other two, which are
called on the thread that is displaying the property sheet (one when the dia-
log is created and the other when the page is destroyed). And that’s the key.
The thread that creates the property sheet page is a persistent thread, not a
temporary one. Therefore, the hook that was inadvertently installed by the
program when it received the PSPCB_ADDREF message refers to a thread that
is still alive. Once that thread does something that triggers the hook, the pro-
gram crashes.

The fix is to send the PSPCB_ADDREF message only if the dwsize member
of the PROPSHEETPAGE structure is greater than or equal to PROPSHEET-
PAGE_V2_SIZE, thereby indicating that the program was specifically designed
for the Windows 2000 property sheet manager and therefore will not do
something stupid in response to the new PSPCB_ADDREF message.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 27$

Tales of Application Compatibility = 27

P—

=~
Getting away with a corrupted stack

THE CREATORS OF one program decided that creating a shortcut on the desktop
wasn't annoying enough. Instead, they created a shell namespace extension on
the desktop. But not a full shell namespace extension. Rather, the icon on the
desktop implements just barely enough of the shell namespace requirements
that double-clicking the icon launches the associated program. On Windows
2000, double-clicking the icon caused Explorer to crash. The reason was that
the shell extension implemented the IShellFolder: :CreateviewObject
method with the wrong function signature. The declaration should have been

STDAPI CShellFolder::CreateViewObject (
HWND hwnd, REFIID riid, void **ppv)

but instead, the programmers responsible for this shell extension wrote

STDAPI CShellFolder::CreateViewObject (HWND hwnd)

{

return S_OK;

}

Observe first that the function returns success without returning an output
pointer in the *ppv parameter, which means that the caller thinks the call suc-
ceeded yet received garbage as the result. But that's assuming the caller even
gets that far. Since the parameter lists don't match, the function returns to the
caller with a corrupted stack.

The incorrect implementation of the IShellFolder: :CreateViewObject
method was masked in earlier versions of the shell because the shell had been
compiled with frame pointers. Frame pointers are a redundant technique for
keeping track of where a function’s parameters are, but it was used in the shell
because it made debugging much easier. Debuggers back in 1993 were not as
sophisticated as they are now. Nowadays, frame pointer omission doesn't give
debuggers much of a hiccup at all. When the shell was compiled with frame
pointers, the safety net of the frame pointer forgave limited classes of stack
corruption, this being one of them.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 2%#:

28 /N/—\j THE OLD NEW THING

In Windows 2000, the frame pointer omission optimization was enabled in
the shell, and this shell extension ended up crashing Explorer because the
frame pointer that covered the mistake no longer existed. The fix was to
change the way the shell called the IshellFolder: :Createviewobject
method. Instead of just calling it as a normal method call

hr = psf->CreateViewObject (hwnd, IID IShellView, (void**)&psv);

the call was wrapped inside a helper function:

hr = SafeCreateViewObject (psf, hwnd, IID IShellView, (void**)é&psv);

STDAPI SafeCreateViewObject (IShellFolder *psf, HWND hwnd,
REFIID riid, void **ppv)
{

*ppv = NULL; // in case shell extension forgets

_asm mov ebx, esp // protect against wrong calling convention
HRESULT hr = psf->CreateViewObject (hwnd, riid, ppv);

_asm mov esp, ebx // restore stack pointer

// cover for shell extensions that return S _OK but *ppv == NULL
if (SUCCEEDED (hr) && *ppv == NULL) hr = E NOINTERFACE;

return hr;

}

This helper function keeps an eye out for three different bugs common in
shell extensions. First, it sets the output pointer to NULL before even calling
the IShellFolder: :CreateViewObject method because, as we just saw,
the shell extension that corrupted the stack forgot to initialize it to anything.
Second, the function uses inline assembly to recover from the stack corruption
caused by shell extensions that misdeclared the function prototype for the
IShellFolder: :CreateViewObject method. And third, it covers for shell
extensions that return success without returning an interface pointer, turning
the success back into the failure code it should have been.

But why did this program install a shell namespace extension when a desktop
shortcut would have done just as well? My only guess as to why programmers
went to all this trouble was that on eatlier versions of Windows, deleting name-
space items from the desktop was harder than just deleting a file. In other words,
this program just wanted to be extra annoying,

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 29$

Tales of Application Compatibility = 29

P—

=~
Relying on spurious or obsolete messages

You micHT NoTicE that you will often get WM_PAINT messages where the
rcPaint is empty. In other words, youre being asked to paint nothing. Why
does the window manager send you meaningless messages?

Because oodles of programs rely on these meaningless messages. Earlier
versions of Windows sent paint messages at particular points during the
program’s execution, but which as the result of changes to the window man-
ager no longer require painting. Programs designed for earlier versions of
Windows relied on those messages—if they didn't get the messages, the
programs produced incorrect output or even crashed, because they were
counting on the messages to tell them when it’s time to initialize a variable or
allocate an object. Suppress the message because it's no longer needed (from
the window manager’s point of view), and these programs end up using
something before it's been created, dividing by zero, or positioning their
screen elements incorrectly. For example, if you launched one of these pro-
grams as a minimized window, then right—clicked on its taskbar, the program
might crash because its system menu handler divided by a global variable
whose default value is zero, but which gets set to a nonzero value during
WM_PAINT handling. To avoid this probiem, the window manager sends these
messages to windows even though they appear to accomplish nothing.

Other examples of spurious messages that are nevertheless sent for com-
patibility reasons are the messages related to the appearance of minimized
windows in Windows 3.1 and earlier. In earlier versions of Windows, there
was no taskbar. Instead, minimized programs appeared as an icon on the
desktop, and programs received special messages like WM_ICONERASEBKGND
and wM_PAINTICON, which allowed them to customize the appearance of
their minimized icons. Windows 95 continued to send these messages to pro-
grams designed for earlier versions of Windows, even though there was noth-
ing to erase or paint, because many programs (some by major manufacturers)
relied on those messages to trigger essential program functionality.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3(¢

30 /% THE OLD NEW THING

Identifying dependencies on message ordering is probably the hardest part
of maintaining compatibility when making changes to the window manager.
Thousands of messages are sent during the lifetime of a program, and any of
them can cause the program to keel over if you send it at precisely the wrong
time, send it out of order, or fail to send it at all.

—_

=
Using the order in which items paint
to mask your bugs

Tue REBAR CcONTROL is a comparatively little-known control that acts as a
container for toolbars or similar controls and allows the user to use drag-
and‘drop to rearrange them. Windows XP uses it, for example, in Exploter's
toolbar, where the Rebar control contains a menu band, the forward and back
buttons, and the address bar, all of which can be moved and resized. In Windows
2000, we added a call to the Updatewindow function to the Rebar control after
it repositioned the children so that the pixels were nice and fresh as you fiddled the
size. This made resizing look snappier and more responsive. But unfortunately,
it also created problems.

There were many programs that used a Rebar control but forgot to set
the WS_CLIPCHILDREN style on the Rebar’s parent window. Omitting the
WS_CLIPCHILDREN style means that the parent can paint over its children,
and that's what these programs did, entirely inadvertently. During a resize, the
Rebar would repaint itself with the new configuration, and then the parent
window would erase its background, thereby erasing the Rebar that had just
been resized. Result: a blank window. Without the call to Updatewindow, the
parent window would erase its background first (corrupting the Rebar), and
then the Rebar would get its wM_PAINT message and paint itself properly.

The fix was to remove the call to the Updatewindow function, returning
the Rebar to its previous behavior. Though the result wasn't as snappy as it
could be, that's the price you pay for compatibility.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3$

Tales of Application Compatibility = 31

P—

=
Accidentally freeing yourself

A MAJOR NETWORKING provider wrote a shell extension that it attaches to
the property sheet of network drives so that the provider can display addi-
tional information about the server. And starting with Windows 2000,
Explorer crashed as soon as you dismissed the property sheet. Here's why:
The provider's shell extension class went something like this:

ShellExtension: :~ShellExtension/()

{
--g_cObjects;
CoFreeUnusedLibraries () ;

}

Ignore the multithreaded race condition in the --g_cobjects for now.
The reason for the crash is that the extension calls coFreeUnusedLibraries
in its destructor. When the last shell extension is destroyed, the call to
CoFreeUnusedLibraries will call the DLIs D11canUnloadNow, which will
return S_OK because the DLL object count is now zero. OLE will then pro-
ceed to unload the DLL, and when the call to CoFreeUnusedLibraries
returns, you find yourself trying to execute code from a DLL that is no longer
loaded, which crashes. In other words, this code was fatally flawed in its
design—the code is intentionally trying to crash itself. Yet this code ran fine
on Windows 95 and Windows N'T. How is that?

Recall that the shell in Windows 95 and Windows N'T used “mini-COM”
rather than the real COM. Consequently, the load of the shell extension was
done by mini-COM, and the call to coFreeUnusedLibraries did not
unload the shell extension DLL, because COM didn't know about it. But the
shell's mini-COM was discarded starting in Windows 2000; the shell used
real COM exclusively. As a result, when this shell extension called
CoFreeUnusedLibraries, it ended up freeing itself.

The fix was to teach the shell to recognize this particular shell extension, and
when the shell creates the extension, it does an extra LoadLibrary on the DLL,
so that when COM unloads it in response to CoFreeUnusedLibraries, the

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3%

32 /’/‘\ﬁ THE OLD NEW THING

DLL stays in memory. Yes, it means that the DLL, once loaded, will never be
unloaded, but it’s better than crashing.

This is why the documentation for the CoFreeunusedLibraries points
out that applications—and not extensions—call this function, because the
EXE of a running program will not be unloaded.

—_

)
Relying on a function that does not
modify unused output parameters

THE FIRST EXAMPLE in this category comes from a program that passed the
wrong flags and worked by mistake. In fact, it did so many things wrong, it's
amazing that the program ever worked! The program starts by requesting the
icons for various items in the shell so that it can use them in its tree view.

SHFILEINFO sfi;

// assume that the program has already used the SHGetFileInfo

// function

// to obtain the folder icon in sfi.iIcon

LPITEMIDLIST pidl;

SHGetFileInfo("x", FILE ATTRIBUTE DIRECTORY, &sfi, sizeof (sfi),
SHGFI_ USEFILEATTRIBUTES | SHGFI_OPENICON | SHGFI_ICON) ;

OpenIcon = sfi.ilIcon;

The program asks for an open folder, but passes the suGF1_1con flag instead
of the sHGFI_sYsICONINDEX flag. As a result, the sHGetFileInfo function
returns an HICON in the hIcon member rather than the system image list
index in the iIcon member, and by a stroke of good fortune on the part of
this program, the sHGetFileInfo function does not modify the iIcon mem-
ber. Consequently, the value that was left over from a previous call to the
SHGetFileInfo function remains there, and the program ends up using
the folder icon when it really wanted the open folder icon. This bug can even
be seen in the product’s advertising screen shot! The screen shot shows a tree
view with a folder node selected and expanded, but the icon for the expanded
folder shows a closed folder rather than an open one. The bug was staring
them in the face the whole time, and no one noticed.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3 EE

Tales of Application Compatibility = 33

This program ran great on Windows 95 but displayed garbage on
Windows N'T. Why was that?

On Windows 95, the sHGetFileInfo function is implemented as an
ANSI function, and the result of the function call was stored directly into the
buffer provided by the caller. On Windows N'T, however, the SHGetFile-
Info function is implemented as a Unicode function, and the ANSI version
is merely a thin wrapper. This wrapper converts the filename from ANSI to
Unicode and then calls the Unicode sHGetFileInfo function with a temporary
Unicode sHFILEINFO structure. When the Unicode function returns, the
ANSI version of sHGetFileInfo converts the temporary Unicode SHFILE-
INFO structure back to ANSI, putting the result in the buffer provided by the
caller. This is a standard pattern for many ANSI wrapper functions: Convert
the incoming parameters to Unicode, call the Unicode function, then convert
the Unicode result back to ANSI.

Perhaps you can now figure out why the program got a garbage icon on
Windows NT. The temporary Unicode SHFILEINFO structure was not ini-
tialized, since the SHFILEINFO is an output-only structure. (Starting in
Windows 2000, the SHFILEINFO structure actually is an in/out parameter if
you pass the SHGFI_ATTR_SPECIFIED flag, but this story takes place in the
Windows NT era, when the structure was indeed output-only.) After the
function returned, the wrapper function copied the Unicode SHFILEINFO
structure to the ANSI structure, including the garbage values that the func-
tion didn't set, because the caller didn't ask for them to be set to anything in
particular. As a result, the i Tcon received by the program is stack garbage.

The fix is to modify the wrapper so it copies the caller’s i Icon member to
the temporary Unicode SHFILEINFO structure, so that when it is copied back,
the original value is restored if the SHGetFileInfo function didn't change it.

(Those with more experience with the sHGetFileInfo function may have
noticed another bug: Since the program inadvertently requested an HICON
instead of a system image list index, it neglected to destroy the returned icon,

thereby leaking it.)

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3%

34 4= THE OLD NEW THING

P—

=~
Failing to set all your output parameters

Tue IDaTaOBjECcT::GETDATA method returns the requested data in a struc-
ture known as STGMEDIUM. One of the members of that structure is called
pUnkForRelease, which describes how the memory described by the
sTGMEDIUM structure should be freed. The full details of how this member
works aren't important; what's important here is that in the case where the
STGMEDIUM represents a block of memory, the punkForRelease member can
be set to a non-NULL value, in which case the STGMEDIUM is freed by releasing
that pointer. If the member is NULL, then the STGMEDIUM is freed by freeing
the underlying memory directly. (This is all handled automatically by the
ReleaseStgMedium function.)

One shell extension provided a data object which failed to set the
pUnkForRelease member to any particular value; as a result, the value of
the member upon return was garbage, and when the shell wanted to free the
memory in the STGMEDIUM, it tried to call Tunknown: :Release on a garbage
pointer and crashed. The shell extension presumably worked in the past only
because the memory that was being used for the punkForRelease member
was zero by sheer luck. Perturb the system in the slightest manner, and
uninitialized stack garbage changes, resulting in the return of a nonzero
garbage value in the punkForrelease.

The fix for the shell is to set the punkForRelease explicitly to NULL before
calling the IDataobject: :GetData method. That way, when a shell exten-
sion forgets to set the member to any particular value, the value that is
returned ends up being NULL, which is what the shell extension probably
wanted in the first place.

—_

=
Passing garbage to a function and expecting
something reasonable to happen

Tue SHGeTParuFroMIDLisT function takes what is known as an absolute
pidl. A pidl (pronounced “piddle”) is a data structure used to describe an object

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3%

Tales of Application Compatibility = 35

in the shell namespace. My Computer has a pidl, as does the Control Panel,
as does every file on your machine. You can think of a pidl as a sort of filename,
but one that can be used to describe things that aren't files. As with filenames,
there are two types of pidls: relative and absolute. Relative pidls describe a
shell object relative to a folder in the same way that a relative filename
describes a file relative to a current directory. Absolute pidls describe a shell
object relative to the desktop, which acts as the root of the shell namespace.

It so happens that one shell extension didn't quite understand the distinc-
tion between relative and absolute pidls, because it passed pidls relative to the
shell extension’s root folder (rather than relative to the desktop) to the
SHGetPathFromIDList function. It's as if you asked somebody, “How do I
get from City Hall to your house?” and the person gave you directions start-
ing at the town library instead. “Go one block south, turn left, go straight, turn
right at the donut shop, go to the third house on the right." The
SHGetPathFromIDList tried to interpret the block of memory as if it were
an absolute pidl, but because of the faulty “directions,” it wound up at the
completely wrong place. But by some miracle, there was still a house there,
and SHGetPathFromIDList returned a path to what it found. The result was
garbage, of course, since the directions had the wrong starting point, but it
turns out that it was always the same garbage, and the program relied on the
fact that the garbage contained a particular character. (Indeed, all the program
cared about was that the garbage returned by the function contained that one
character! It didn't use the return value for anything else.)

In Windows 2000, the SHGetPathFromIDList function noticed that the
directions it got were nonsense. “Theres no donut shop at the corner.
Something’s wrong.” As a result, it returned failure. Unfortunately, the shell
extension responded to the inability to get a path to garbage by failing to ini-
tialize itself. The fix was to detect the specific pidl that the program passed
and return the same garbage that previous versions of Windows did.

A different program passed a malformed pidl to the sHGetPathFromID-
List function. Instead of passing an absolute pidl, it passed two absolute pidls
glued together. It's as if the same person who was asked for directions gave the
directions and then repeated them: “Go one block south, turn left, go straight,
turn right at the donut shop, go to the third house on the right, go one block

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3%

36 = THE OLD NEW THING

south, turn left, go straight, turn right at the donut shop, go to the third house
on the right." Again, the program managed to work in earlier versions of
Windows because by some miracle, there was actually a house there when this
confused set of directions was followed to completion, and whats more, the
house that it found looked similar enough to the house it wanted that the pro-
gram was satisfied with the result! However, it so happens that the shell would
crash if you passed a speciﬁc type of invalid “double-directions,” so in Windows
2000, the crashing bug was fixed so that the shell would detect the invalid
directions and return failure. Which, of course, led to the programs crashing.

In other words, the program was relying on a crashing bug in the shell.

Again, the fix was to detect this program and reintroduce the behavior it
was relying on (without the crash) just so it could get what it wants.

—

)
Shell extensions that mess up
IClassFactory::CreateInstance

Tue ICrassFactory::CreaTEINsTANCE method is called to create an
object; youd think this would be a relatively straightforward process, but it’s
disappointing how often people get it wrong.

The final two parameters to the IClassFactory: :CreateInstance
method are the interface being requested and an output pointer. The interface
parameter specifies the interface that the caller will use to communicate with the
created object but does not have any effect on the object itself. In other words,

IInterface *p = NULL;
hr = pFactory->CreatelInstance (NULL, IID IInterface, &p);

is equivalent to

IInterface *p = NULL;
IUnknown *punk;
hr = pFactory->CreatelInstance (NULL, IID IUnknown, &punk);
if (SUCCEEDED (hr)) {
hr = punk->QueryInterface(IID IInterface, &p);
punk->Release() ;

}

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 37$

Tales of Application Compatibility = 37

Put another way, when you create an object and specify an interface, it's the
same as creating the object with a generic interface (Iunknown) and then ask-
ing the object for the specified interface.

In theory, the IClassFactory: :CreateInstance method could have
hard-coded the interface ID to IID_IUnknown, but the interface is passed to
permit two optimizations:

+ It cuts the number of calls to the class factory in half. This is a per-
formance win if the class factory is slow to access. For example, it
may reside in a different apartment, in another process, or even on a

different computer entirely.

+ It permits the class factory itself to reject the creation of an object if an
unsupported interface is requested. This is a performance win if the
object takes a long time to create. If the caller is asking for an interface
that the object doesn't support anyway, there’s no point in creating the
Object, only to have the call to TUnknown: :QueryInterface fail.

One shell extension didnt quite understand the equivalence of these
two forms of call to IClassFactory: :CreatelInstance. If you called
the shell extension to create an object and asked for the IShellFolder
interface,

IShellFolder *psf;
hr = CoCreateInstance (clsidExtension, NULL, CLSCTX INPROC,
IID IShellFolder, (void**)g&psf);

then the object was created and the Ishel1Folder interface returned. However,
if you changed IshellFolder to any other interface, the call not only failed, but
also crashed Explorer by raising a debugging exception.

The first attempt to fix this problem was to change the way the shell cre-
ates shell namespace extensions. Instead of passing the desired interface, it
always creates them with the IshellFolder interface and manually converts
them to the actual interface desired with a separate call to IUnknown: :

QueryInterface:

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 3%#:

38 = THE OLD NEW THING

HRESULT SHCreateNamespaceExtension (REFCLSID rclsid, REFIID riid,
void **ppv)
{
IShellFolder *psf;
HRESULT hr = CoCreatelInstance(rclsid, NULL, CLSCTX INPROC,
IID IShellFolder, (void**)g&psf);
if (SUCCEEDED (hr)) {
hr = psf->QueryInterface(riid, ppv);
psf->Release() ;
} else {
*ppv = NULL;
}

return hr;

}

In other words, the function undoes the optimization that was the whole
point of passing the interface as an explicit parameter.

While this fix did avoid the crash, the performance of the shell extension
became insufferable because creating the object was indeed a very expensive
operation. Opening the shell extension slowed performance from two seconds
to thirty seconds because the shell was querying for interfaces other than
IshellFolder rather often. As a result, the many copies of the underlying
object were being created and immediately thrown away.

Thus, a second round of fixes was required. An application compatibility ﬂag
was invented just for this shell extension to tell the shell that the object supports
only IShellFolder, and that if the shell wanted anything other than
IShellFolder, it should just fail immediately instead of creating the object and
waiting for the failure to come out of the TUnknown : : QueryInterface method.

There was another program whose implementation of IClassFactory: :
CreateInstance created an instance of the folder if the requested inter-
face was IShellFolder. But if the caller asked for any other interface, it
returned S_oK and a NULL pointer. That is, the shell extension flat-out lied.
The status code said,“Yes, I created your object,” but the resulting pointer was
invalid. Explorer now checks both that the call to 1classFactory::
CreateInstance succeeded and that the returned pointer is non-NULL.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 39$

Tales of Application Compatibility = 39

P—

=
Who would host a shell extension other
than Explorer?

MOoRE THAN ONCE we've run across shell namespace extensions that assumed
that they were hosted in Explorer. While Explorer is the most common host
for shell namespace extensions, it is hardly the only one. The common file
open and save dialogs host the shell namespace, and any application can use
the shell namespace directly if it so chooses.

One of the methods that a shell namespace extension implements is the
IShellFolder: : EnumObjects method. This method is called to enumerate
the contents of a folder, and one of the parameters to this method is a window
handle the method can use if it needs to interact with the user, for example, if
it needs to prompt for a password.

One shell extension took this window handle and used it as the starting
point for a search through the window hierarchy looking for a Rebar control.
Once the shell extension found one, it reached inside, grabbed what it thought
was the Address bar control, and hid the control.

The authors of this shell extension didn't realize that the window handle
that is passed to the IShellFolder: : EnumObjects method can be NULL to
indicate that any user interaction should be suppressed. One of the functions
that the shell extension used to hunt through the window hierarchy was
FindWindowEx. As luck would have it, if you ask FindwindowEx to search
starting from NULL, it searches through all the top-level windows in the sys-
tem. As a result, the shell extension would sometimes stumble across the
Rebar control that belonged to a completely unrelated window and try to hide
the Address bar in the other process! It did this by sending Rebar control
messages across processes. Since different processes have separate address
spaces, the pointers in the message end up being garbage in the destination
process. The result is that whenever the shell asked the shell extension to enu-
merate its contents silently (for example, when the shell wants to populate an
auto-complete dropdown list), a random program in the system crashed.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4(¢

40 2\ THE OLD NEW THING

The fix was to detect this shell extension and make sure never to pass it
NULL as the window handle for enumeration.

But why did this shell extension want to hide its Address bar, anyway? It so
happens that the authors of the shell extension didn’t implement the T1she11-
Folder: : ParseDisplayName method. Among the things this method can
be called on to do is taking something the user has typed into the Address bar
and producing the object with that name. Since the shell extension didn't
implement this method, the authors didn't want the user to be able to type
anything into the Address bar (thereby exposing their incomplete shell folder
implementation). They figured it was easier to write code to hunt for and hide
the Address bar than to implement the method in the first place.

Another program took the window handle passed to the TcontextMenu: :
InvokeCommand method (which is used to execute commands on context
menus) and assumed that it was always the main Explorer window. It groveled
into undocumented data associated with the window, treated what it found as
a pointer, and dereferenced it. The authors of this program apparently never
tried right-clicking an item in the folder tree and choosing a command from
that popup menu, because if they did, they would have found that their shell

extension crashed instandy’

—

=
Punishing users who aren’t administrators

It 1s werL known that many poorly written programs require administrator
privileges for no good reason outside of laziness on the part of the program-
mer. Typically, however, most programs will at least report the problem before
anything bad happens. But not all programs.

One program requires write access to a registry key in the local machine
section of the registry, a key that requires administrator privileges to modify
it. If the program fails to get write access to that key, it doesn't display any
error message. It just runs normally, but if you try save your work, the program
actually deletes the file!

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4 $

Tales of Application Compatibility = 41

P—

=
Implementing only part of an interface
and ensuring nobody tries anything more

WHEN vou usk drag-and-drop to copy a nonfile object to the desktop or to
a file folder, the shell follows the standard OLE protocol of using the IData-
Object interface to mediate the data transfer. Programs that offer objects for
drag-and-drop have a variety of options available to them for how they wish
to offer the data. One of the mechanisms available is the 1Stream interface,
which exposes a block of bytes that the consumer can either Istream: :Read
from or IStream::Write to. Of course, when an object is dropped onto
Explorer, Explorer is not going to use the IStream: :Write method, because
it wants to make a copy of the file being dragged, not modify it.

As an optimization, Windows 95 used one of the other methods of the
IStream interface known as IStream: : CopyTo. This method allows a stream
to take over the job of copying itself to another location, in case there were
some special optimizations the stream could perform to make the copy go
faster. For example, the stream knows the ideal buffer size that should be
used, and it can use its internal buffers directly to avoid transferring the data
through a temporary buffer that a typical read/write loop would require.

In Windows 2000, the code in the shell that handled items that were
dropped onto Explorer folders changed from the 1Stream: : CopyTo method
to a read/write loop. The code read from the stream with Istream: :Read
and wrote to the destination (usually a file) with Istream: :write. The rea-
son for this was multifold. First, by controlling the copy loop, it became pos-
sible to use the expected size of the stream to provide feedback about how
many bytes had been copied and approximately when the copy would be
done. But the more important reason for controlling the read/write loop
directly was that it allowed the copy operation to be canceled, because the
shell would check whether the Cancel button was pressed between each
chunk of data copied‘ By comparison, the IStream: : CopyTo method provided
no way to cancel the operation.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4%

42 /"Aﬁ THE OLD NEW THING

One program decided to cut a few corners in its IStream implementation.
Since it knew that the shell used the 1Stream: : CopyTo method to copy the
stream, it implemented only that method and failed all the others. Well, not
quite. It did implement IStream: :Read, but the implementation was simply
to hang and never complete the operation. As a result, when this program was
run on Windows 2000, attempting to drag an object out of the program and
drop it onto an Explorer folder locked up both the program (which was hung
in its IStream: :Read method) as well as the folder you dropped the object
onto (since it was waiting for the IStream: :Read to complete).

Fixing this problem was tricky, because the shell needed to predict the
future! It needed to know whether calling 1St ream: :Read was going to hang
and therefore should switch to 1stream: : copyTo. The program itself didn't
help any. Its data object didn't support the Ipersist interface, which is a
common way for objects to identify themselves. The shell was forced to rely
on circumstantial evidence: The data object the program provided did not
specify in its object descriptor the number of bytes in the stream, nor did the
program implement the Istream: : Stat method, which would normally also
provide that same information. If the data object was that lacking in helpful
information, the shell looked around to see whether that particular program
was running, and if so, the shell played it safe and assumed that the data object
might have a faulty IStream::Read and switched to the old Istream::
CopyTo method.

As a result, if you had this program running and you used drag-and-drop
to drag an object out of some other program onto an Explorer window, there
was a chance that Explorer would neither let you cancel the operation nor give
you any copy progress out of fear that the object came from the buggy program.
That program has shipped two new major versions since the application com-
patibility workaround was added to the shell. I doubt that many people are
using the older version of the program, but the compatibility workaround
remains in the system just in case.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4%?:

Tales of Application Compatibility = 43

P—

=
Calling unimplemented functions
and expecting them to fail

WE RECEIVED A report that a program was stuck in an infinite loop trying to
enumerate the contents of the desktop in order to populate its tree view. The
loop went like this:

IEnumIDList *penum; // assume initialized
LPITEMIDLIST pidl;
ULONG ulFetched;

int count = 0;
// keep fetching items
while (penum-s>Next (1, &pidl, &ulFetched) == NULL) {
do stuff...
pMalloc->Free(pidl); // free the item we enumerated
penum->Reset () ; // restart the enumeration
penum->Skip (++count) ; // skip over ++count items

}

This program decided to take what would normally be a simple O(n) enumer-
ation and turn it into an O(n®) enumeration by restarting the enumeration.
It's like counting the number of people waiting in line by starting at the head
and counting “one.’ Then returning to the head and counting “one, two.” Then
returning to the head and counting “one, two three,” and so on, each time
counting one more item than last time, until you ﬁnally reach the end of the line.

Yet it managed to work okay on Windows 95 because the shell in Windows 95
did not implement the IEnumIDList: :Reset or IEnumIDList: : Skip meth-
ods; calling either method got you E_NoTIMPL back. As a result, the program
got its O(n) behavior after all, because the attempts to go back to the start of
the line and then walk forward both failed.

Windows 2000 added support for the IEnumIDList::Reset method
(though not for TEnumIDList : : Skip), which sent this code into an infinite
loop because it would enumerate an item, rewind to the beginning of the list,
attempt to skip over the item (which failed), then repeat. As a result of the
rewind, it ended up enumerating the first item over and over again.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4%#:

44 = THE OLD NEW THING

A special workaround was added to detect this application and return the
IEnumIDList: :Reset method to its E_NOTIMPL status. This keeps the pro-
gram happy with respect to the file system enumerator, but it remains at the
mercy of third—party shell namespace extensions, which might or might not
implement various optional portions of the IEnumIDList interface. (But at
least Windows 2000 didn't make it any worse; the program had problems
with those shell namespace extensions on Windows 95, too.)

—

=~
Mishandling integer ordinal classes

COMPUTER VENDORS TYPICALLY include on their computers several prein-
stalled programs. One of these programs caused Explorer to start crashing on
Windows XP seemingly at random. (This program is so awful, the vendor
even includes instructions on how to uninstall it in the company’s online
knowledge base.) The reason for this behavior is that the program simply
doesn't know what to do with integer ordinal window classes. The program
installs a system hook that is triggered whenever a window is created, and the

hook goes roughly like this:

case HCBT CREATEWND: // a window has been created
CBT_CREATEWND *pccw = (CBT_CREATEWND *) 1Param;

// get the class name

LPSTR pszClassName = pccw->lpcs->lpszClassName;

// Hey, let’'s spew debug information even in the release version!
OutputDebugString (pszClassName) ;

if (IS_INTRESOURCE (pszClassName)) { // if it is a MAKEINTRESOURCE (n)
char szBuf [256];
GetClassName ((HWND) 1Param, szBuf, 100); // get its name

if (strcmp(szBuf, "#32770")) ... // dialog box
}
if (lstrcmpi (pszClassName, "CabinetWClass") == 0)
if (lstrcmpi (pszClassName, "InternetConnectionWizardWClass") == 0)
etc...

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4%

Tales of Application Compatibility = 45

The program wants to take action for particular window classes (for what
reason, I don't know and I'm afraid to find out). The authors of the program
noticed that sometimes the class name is not a string but is rather an ordi-
nal, so they convert it to a string by fetching the class name from the window
handle. This is a valid technique, although rather inefficient, for one could
simplify the test to

if (IS _INTRESOURCE (pszClassName)) {
if (pszClassName == WC DIALOG)

}

thereby avoiding the calls to GetclassName and stremp and taking a large
buffer off the stack. But that’s not a bug, just an inefficiency.

The bug is that the authors forgot to wrap the second half of the function
inside an "else" block. If some other ordinal class name is used, the test
against the dialog class fails and control falls through to the string compar-
isons, resulting in a crash when a nondialog ordinal window class appears. It
so happens that Windows XP uses a few more ordinal window classes inter-
nally to manage the appearance of unresponsive windows. As a result, when a
window stops processing messages and Windows displays “Not responding”
in the title bar, it creates one of these helper windows with an ordinal window
class, and the program’s hook crashes Explorer.

—

=
Being content to look good

AFTER INSTALLING A particular program, users found that double-clicking a
folder made the “Open With” dialog appear rather than the folder open. The
reason is that the authors of the program didn't quite understand what it
meant when the registry editor program said

(default) REG_SZ (value not set)
Now, you and I know that this means that the default value for the key does

not have a value. But the authors of the program thought it meant that they
should set the default value to the string (value not set).As aresult, they

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4%

46 = THE OLD NEW THING

wrote (value not set) to HKEY CLASSES ROOT\Folder\Shell in a failed
attempt to let the system choose the default operation for double-clicking a

folder.
=
You're always a day away

AFTER YOU INSTALL one particular program, it becomes impossible to
upgrade to Windows XP. Instead, Windows XP Setup keeps reporting that
existing software is not fully installed and that you have to restart the com-
puter to allow it to finish installing. Yet no matter how many times you restart
the computer, the message never goes away.

The reason for the false report is that the program writes itself into the
RunOnce key. Each time it runs, it re-adds itself to the Runonce key. So it
doesn't really run once; rather, it runs all the time, but one run at a time. Since
the Runonce key is used for programs to finalize their installation, the contin-
uous presence of an entry in the Runonce key causes Windows XP Setup to
conclude that it was put there by a Setup application that needs to do“one last
thing” to complete the install.

The solution was to teach Windows XP Setup to ignore this particular
program if it appears in the Runonce key.

—_

=
Memory will always be there
when you need it

THERE ARE MANY examples of programs using memory after freeing it, but
programs that use memory without even allocating it take the issue to a new
level.

A DLL that offers COM objects exports a function called D11Getclass-
Object. Because a DLL can typically provide multiple types of objects, one of
the parameters to the D11GetClassoObject function is the CLSID that COM
is interested in. Many DLLs cache the CLSID so that they can remember

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 47$

Tales of Application Compatibility = 47

what object they are creating. That’s not particularly unreasonable. However,
we found a DLL that didn't so much cache the CLSID as it did cache the
pointer to the CLSID. In other words, it was using memory beyond the life-
time of the function call. Normally, of course, in the absence of indications to
the contrary, the parameters of a function are guaranteed valid only for the
lifetime of that function call. Once the call returns, the caller can use the
memory for something else.

Yet this particular shell extension managed to survive because when it used
that cached pointer, the memory still contained its original value. The caller
hadn't used it for anything else yet.

When support for COM+ was added, COM changed the way the memory
for the CLSID parameter was allocated as well as its lifetime. As a result, the
shell extension discovered that by the time it went to check that cached
pointer, the memory contained a value different from what it had when the
D11lGetClassObject function was called, and the shell extension treated
this as a fatal error.

Sometimes a program shoots itself in the foot. One game parsed its com-
mand line into buffers it allocated on the stack and then used those buffers
long after the function that did the parsing returned. And yet the program
managed to survive, using pointers into freed stack memory, because none of
the functions it called in the interim used very much stack—until Windows
XP added support for side-by-side assemblies to the LoadLibrary function.
The new LoadLibrary function uses more stack and eventually spills into the
space that the program had been using on borrowed time. When the program
then goes to look at its command line, it gets garbage.

=
If it has eight bytes, it must be
a dialog box

A series of Explorer crashes was eventually traced back to a popular pro-
gram that assumes that any window with eight bytes must be a dialog box.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 4%

48 = THE OLD NEW THING

hwnd = GetForegroundWindow () ;

if (GetWindowLong (hwnd, DWL _ DLGPROC)) {
SetWindowLong (hwnd, DWL DLGPROC, MyDialogProc) ;
} else {
SetWindowLong (hwnd, GWL WNDPROC, MyWndProc) ;
}

The program wanted to subclass the foreground window and do it differ-
ently, depending on whether the window was a dialog box or a plain window.
It's not clear to me why the authors cared about the difference, because a dia-
log box is a special case of a plain window; whatever programmers do for plain
windows should work for dialog boxes, too. Plus, there is the very dodgy
assumption that you can just grab a random window (which possibly belongs
to another process!) and subclass it.

The program doesn't bother checking that the window is a dialog box
before trying to read the DWL DLGPROC from the windows; it just assumes that
if it can read the DWL_DLGPROC, then the window must be a dialog box. Since
DWL_DLGPROC has the numeric value of 4 (on 32-bit Windows), an attempt to
read the DWL_DLGPROC long will succeed for any window with eight or more
window bytes, whether it is a dialog box or not. As a result, if the window that
the program stumbles across happens to have eight or more window bytes, the
program assumes it's a dialog box, even though it isn't.

Explorer had to work around this by making sure all its windows had fewer
than eight window bytes.

—

=
Programs that rely on bugs in
the operating system

This 15 A tricky one. If you have a bug that a program depends on, is it still a bug?

The status bar painting bug

The status bar control has two modes, simple mode and complex mode.
Complex mode is the one you see most of the time, where the status bar is

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 49$

Tales of Application Compatibility = 49

broken into sections, each of which can display a different message. A status
bar in simple mode, by comparison, displays a single line of text. Simple mode
is typically used only temporarily, for example, to display brief help messages
as you browse a program’s menu.

It turns out that the status bar control had a cosmetic bug: If you changed
the simple text while the status bar was in complex mode, the simple text
would be drawn on the screen briefly. It would get cleaned up at the next paint
cycle, but until then you had the wrong text on the status bar. Fixing this bug
was a simple matter, but it didn’t take long for the consequences of even the
simplest bug fix to become apparent.

The status bar of a program from a major software publisher stopped working,
This program changes its status bar text by changing the simple text, even if
the status bar is in complex mode. The programmers must have noticed that
the effect lasted only until the next paint cycle, so they applied a workaround,
which was something equivalent to the following:

BOOL CWinApp::0nIdle ()

{

SendMessage (hwndStatus, SB_SETTEXT, SB_NOBORDERS | SB_POPOUT |
SB_SIMPLEID, szStatusBarText) ;

return O;

}

In other words, the programmers made sure that the program set the
status bar text at every idle opportunity. That way, after the status bar
“corrupted” their simple text (by painting the correct complex text), the
program would set it back and the bug would paint the text for them.

The fix had to be undone, and the original bug restored. The ﬂickering of

the status bar is now a feature.

The folder leak

Another example of a program’s reliance on a bug is a shell extension that
relied on a memory leak in Explorer. In Windows 98, the internal cache used
by the tree view in the left-hand side of the Explorer window was changed to
avoid various multithreading race conditions that plagued the original

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page S(EE

50 2\3 THE OLD NEW THING

Windows 95 version. However, the cache was a bit too greedy and often held
on to folders forever instead of releasing them when they hadn't been used in
a while. The bug was subsequently fixed in Windows 2000.

Surprisingly, a program that won a“Best Internet Utility” award installed a
shell namespace extension that relied on this memory leak. After ﬁxing the
leak, the namespace extension failed to update itself correctly, because it was
relying on those leaked folders to do some of the state management. The fix
in this case was to keep track of which folders in the folder cache came from
this program’s shell extension and to continue to leak them.

The incorrect daylight saving time computation

You may not remember it, but a bug fix was issued for the Microsoft C run-
time library that would incorrectly determine the start date of daylight saving
time by a week. The first year affected by this bug was 2001, wherein the
cvtdate function erroneously started daylight saving time on April 8 rather
than April 1. A corrected version of the C runtime was distributed, and the
application compatibility bug reports weren't far behind.

A shell namespace extension that was declared “one of the best products of
the year” by a major computer magazine suddenly stopped working. There
was no crash, no error message, but clicking the icon in Explorer did nothing.
Upon closer investigation, the namespace extension’s CreateInstance
method had an uninitialized variable bug three levels deep in its object cre-
ation. The variable happened to be an HRESULT whose value was consistently
0xFFFFFFFF, stack garbage left over from a previous function call into the C
runtime library. Since this value had the high bit set, it was treated as a COM
failure code, and the error propagated back to the createInstance function,
which returned the failure back to OLE and ultimately to Explorer.

As a result of the changes to the cvtdate function, a particular local vari-
able had the value -1 when the function exited rather than the value of 0,
which it did previously. The stack space previously used by that local variable
was subsequently used (without ever being initialized) by the shell extension.

Unfortunately, not much could be done for this application. Fixing the bug
would mean rolling back the fix to daylight saving time.

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 5 $

Tales of Application Compatibility = 51

The accidental bind

One popular productivity suite was found to have arrows on all the icons in
its quick‘launch—type window. Upon closer investigation, the reason was that
the program obtained the icons from the shell namespace in a manner similar
to the following:

pidlShortcut = the full pidl to the shortcut;
pidlShortcutTarget = the full pidl to the shortcut target;

IShellFolder *psf;
if (psfDesktop->BindToObject (pidlShortcutTarget,
NULL, IID IShellFolder, &psf)) {
GetIconFrom(pidlShortcutTarget) ;
psf->Release() ;
} else {
GetIconFrom(pidlShortcut) ;

The call to the BindToobject method asks the shell namespace to pro-
duce a folder object for the item specified by the pidlshortcutTarget. In
other words, it asks for the folder object corresponding to the target of the
shortcut. In the case of a shortcut to an executable, the shortcut is something
like "Program.1nk” and the target is "Program.exe’. Windows 2000 had a
bug in which asking for the folder object that corresponded to an executable
actually succeeded. The result wasn't particularly useful, because the object is
not actually a folder; most subsequent method calls would just fail with errors
like “path not found,” but the bind nevertheless succeeded. Windows XP
fixed this bug so that attempting to bind to an executable as a folder failed.

With this change in behavior, the program ends up going down the "e1se"
branch and gets the icon from the shortcut. And the icon for the shortcut
contains an arrow.

The program seemed to want to do something special for shortcuts to fold-
ers, but it could have tested for folder-ness in a much simpler way, namely, by
calling the IShel1Folder: :GetAttributesof method and checking for the
SFGAO_FOLDER attribute.

—

=D

Chen Rev Appendix A.gxp 12/6/06 11:10 AM Page 5%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

