

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries and is used under license from Microsoft.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse-
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Duffy, Joe, 1980-
Concurrent programming on Windows / Joe Duffy.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-43482-1 (pbk. : alk. paper) 1. Parallel programming (Computer science)

2. Electronic data processing—Distributed processing. 3. Multitasking (Computer science)
4. Microsoft Windows (Computer file) I. Title.

QA76.642D84 2008
005.2'75—dc22

2008033911

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-43482-1
ISBN-10: 0-321-43482-X
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, October 2008

Foreword

T H E C O M P U T E R I N D U S T RY is once again at a crossroads. Hardware con-
currency, in the form of new manycore processors, together with growing soft-
ware complexity, will require that the technology industry fundamentally
rethink both the architecture of modern computers and the resulting soft-
ware development paradigms.

For the past few decades, the computer has progressed comfortably
along the path of exponential performance and capacity growth without
any fundamental changes in the underlying computation model. Hardware
followed Moore’s Law, clock rates increased, and software was written to
exploit this relentless growth in performance, often ahead of the hardware
curve. That symbiotic hardware–software relationship continued unabated
until very recently. Moore’s Law is still in effect, but gone is the unnamed
law that said clock rates would continue to increase commensurately.

The reasons for this change in hardware direction can be summarized
by a simple equation, formulated by David Patterson of the University of
California at Berkeley:

Power Wall + Memory Wall + ILP Wall = A Brick Wall for Serial Performance

Power dissipation in the CPU increases proportionally with clock
frequency, imposing a practical limit on clock rates. Today, the ability to
dissipate heat has reached a practical physical limit. As a result, a significant

xix

increase in clock speed without heroic (and expensive) cooling (or materi-
als technology breakthroughs) is not possible. This is the “Power Wall” part
of the equation. Improvements in memory performance increasingly lag
behind gains in processor performance, causing the number of CPU cycles
required to access main memory to grow continuously. This is the “Mem-
ory Wall.” Finally, hardware engineers have improved the performance of
sequential software by speculatively executing instructions before the
results of current instructions are known, a technique called instruction level
parallelism (ILP). ILP improvements are difficult to forecast, and their com-
plexity raises power consumption. As a result, ILP improvements have also
stalled, resulting in the “ILP Wall.”

We have, therefore, arrived at an inflection point. The software ecosys-
tem must evolve to better support manycore systems, and this evolution
will take time. To benefit from rapidly improving computer performance
and to retain the “write once, run faster on new hardware” paradigm, the
programming community must learn to construct concurrent applications.
Broader adoption of concurrency will also enable Software + Services
through asynchrony and loose-coupling, client-side parallelism, and
server-side cloud computing.

The Windows and .NET Framework platforms offer rich support for
concurrency. This support has evolved over more than a decade, since the
introduction of multiprocessor support in Windows NT. Continued
improvements in thread scheduling performance, synchronization APIs,
and memory hierarchy awareness—particularly those added in Windows
Vista—make Windows the operating system of choice for maximizing the
use of hardware concurrency. This book covers all of these areas. When you
begin using multithreading throughout an application, the importance of
clean architecture and design is critical to reducing software complexity
and improving maintainability. This places an emphasis on understanding
not only the platform’s capabilities but also emerging best practices. Joe
does a great job interspersing best practice alongside mechanism through-
out this book.

Manycore provides improved performance for the kinds of applications
we already create. But it also offers an opportunity to think completely
differently about what computers should be able to do for people. The

Forewordxx

continued increase in compute power will qualitatively change the
applications that we can create in ways that make them a lot more inte-
resting and helpful to people, and able to do new things that have never
been possible in the past. Through this evolution, software will enable more
personalized and humanistic ways for us to interact with computers. So
enjoy this book. It offers a lot of great information that will guide you as
you take your first steps toward writing concurrent, manycore aware soft-
ware on the Windows platform.

Craig Mundie
Chief Research and Strategy Officer
Microsoft Corporation
June 2008

Foreword xxi

Preface

I B E G A N W R I T I N G this book toward the end of 2005. At the time, dual-core
processors were becoming standard on the mainstream PCs that ordinary
(nonprogrammer) consumers were buying, and a small number of people
in industry had begun to make noise about the impending concurrency
problem. (Herb Sutter’s, The Free Lunch is Over, paper immediately comes
to mind.) The problem people were worried about, of course, was that the
software of the past was not written in a way that would allow it to natu-
rally exploit that additional compute power. Contrast that with the never-
ending increase in clock speeds. No more free lunch, indeed.

It seemed to me that concurrency was going to eventually be an impor-
tant part of every software developer’s job and that a book such as this one
would be important and useful. Just two years later, the impact is beginning
to ripple up from the OS, through the libraries, and on up to applications
themselves.

This was about the same time I had just wrapped up prototyping a small
side project I had been working on for six months, called Parallel Language
Integrated Query (PLINQ). The PLINQ project was a conduit for me to
explore the intricacies of concurrency, multicore, and specifically how par-
allelism might be used in real-world, everyday programs. I used it as a tool
to figure out where the platform was lacking. This was in addition to
spending my day job at Microsoft focused on software transactional mem-
ory (STM), a technology that in the intervening two years has become
somewhat of an industry buzzword. Needless to say, I had become pretty

xxiii

entrenched in all topics concurrency. What better way to get entrenched
even further than to write a book on the subject?

As I worked on all of these projects, and eventually PLINQ grew into the
Parallel Extensions to the .NET Framework technology, I was amazed at
how few good books on Windows concurrency were available. I remember
time and time again being astonished or amazed at some intricate and eso-
teric bit of concurrency-related information, jotting it down, and earmark-
ing it for inclusion in this book. I only wished somebody had written it
down before me, so that I didn’t need to scour it from numerous sources:
hallway conversations, long nights of pouring over Windows and CLR
source code, and reading and rereading countless Microsoft employee
blogs. But the best books on the topic dated back to the early ’90s and, while
still really good, focused too much on the mechanics and not enough on
how to structure parallel programs, implement parallel algorithms, deal
with concurrency hazards, and all those important concepts. Everything
else targeted academics and researchers, rather than application, system,
and library developers.

I set out to write a book that I’d have found fascinating and a useful way
to shortcut all of the random bits of information I had to learn throughout.
Although it took me a surprisingly long two-and-a-half years to finish this
book, the state of the art has evolved slowly, and the state of good books
on the topic hasn’t changed much either. The result of my efforts, I hope, is
a new book that is down to earth and useful, but still full of very deep tech-
nical information. It is for any Windows or .NET developer who believes
that concurrency is going to be a fundamental requirement of all software
somewhere down the road, as all industry trends seem to imply.

I look forward to kicking back and enjoying this book. And I sincerely
hope you do too.

Book Structure
I’ve structured the book into four major sections. The first, Concepts, intro-
duces concurrency at a high level without going too deep into any one topic.
The next section, Mechanisms, focuses squarely on the fundamental plat-
form features, inner workings, and API details. After that, the Techniques

Prefacexxiv

section describes common patterns, best practices, algorithms, and data
structures that emerge while writing concurrent software. The fourth sec-
tion, Systems, covers many of the system-wide architectural and process
concerns that frequently arise. There is a progression here. Concepts is first
because it develops a basic understanding of concurrency in general. Under-
standing the content in Techniques would be difficult without a solid under-
standing of the Mechanisms, and similarly, building real Systems would be
impossible without understanding the rest. There are also two appendices
at the end.

Code Requirements
To run code found in this book, you’ll need to download some free pieces
of software.

• Microsoft Windows SDK. This includes the Microsoft C++ compiler
and relevant platform headers and libraries. The latest versions as
of this writing are the Windows Vista and Server 2008 SDKs.

• Microsoft .NET Framework SDK. This includes the Microsoft C#
and Visual Basic compilers, and relevant framework libraries. The
latest version as of this writing is the .NET Framework 3.5 SDK.

Both can be found on MSDN: http://msdn.microsoft.com.
In addition, it’s highly recommended that you consider using Visual

Studio. This is not required—and in fact, much of the code in this book was
written in emacs—but provides for a more seamless development and
debugging experience. Visual Studio 2008 Express Edition can be down-
loaded for free, although it lacks many useful capabilities such as perform-
ance profiling.

Finally, the debugging tools for Windows package, which includes
the popular WINDBG debugging utility—can also come in handy, partic-
ularly if you don’t have Visual Studio. It is freely downloadable from
http://www.microsoft.com. Similarly, the Sysinternals utilities available
from http://technet.microsoft.com/sysinternals are quite useful for
inspecting aspects of the Windows OS.

Preface xxv

http://www.microsoft.com
http://msdn.microsoft.com
http://technet.microsoft.com/sysinternals

A companion website is available at:
http://www.bluebytesoftware.com/books

Joe Duffy
June 2008

joe@bluebytesoftware.com
http://www.bluebytesoftware.com

Prefacexxvi

http://www.bluebytesoftware.com/books
http://www.bluebytesoftware.com

2
Synchronization and Time

STAT E I S A N important part of any computer system. This point seems so
obvious that it sounds silly to say it explicitly. But state within even a sin-

gle computer program is seldom a simple thing, and, in fact, is often scattered
throughout the program, involving complex interrelationships and different
components responsible for managing state transitions, persistence, and so
on. Some of this state may reside inside a process’s memory—whether that
means memory allocated dynamically in the heap (e.g., objects) or on thread
stacks—as well as files on-disk, data stored remotely in database systems,
spread across one or more remote systems accessed over a network, and so
on. The relationships between related parts may be protected by transactions,
handcrafted semitransactional systems, or nothing at all.

The broad problems associated with state management, such as keeping
all sources of state in-synch, and architecting consistency and recoverabil-
ity plans all grow in complexity as the system itself grows and are all
traditionally very tricky problems. If one part of the system fails, either
state must have been protected so as to avoid corruption entirely (which is
generally not possible) or some means of recovering from a known safe
point must be put into place.

While state management is primarily outside of the scope of this book,
state “in-the-small” is fundamental to building concurrent programs. Most
Windows systems are built with a strong dependency on shared memory due
to the way in which many threads inside a process share access to the same

13

virtual memory address space. The introduction of concurrent access to
such state introduces some tough challenges. With concurrency, many parts
of the program may simultaneously try to read or write to the same shared
memory locations, which, if left uncontrolled, will quickly wreak havoc.
This is due to a fundamental concurrency problem called a data race or often
just race condition. Because such things manifest only during certain inter-
actions between concurrent parts of the system, it’s all too easy to be given
a false sense of security—that the possibility of havoc does not exist.

In this chapter, we’ll take a look at state and synchronization at a fairly
high level. We’ll review the three general approaches to managing state in
a concurrent system:

1. Isolation, ensuring each concurrent part of the system has its own
copy of state.

2. Immutability, meaning that shared state is read-only and never
modified, and

3. Synchronization, which ensures multiple concurrent parts that wish
to access the same shared state simultaneously cooperate to do so in
a safe way.

We won’t explore the real mechanisms offered by Windows and the
.NET Framework yet. The aim is to understand the fundamental principles
first, leaving many important details for subsequent chapters, though
pseudo-code will be used often for illustration.

We also will look at the relationship between state, control flow, and the
impact on coordination among concurrent threads in this chapter. This
brings about a different kind of synchronization that helps to coordinate
state dependencies between threads. This usually requires some form of
waiting and notification. We use the term control synchronization to dif-
ferentiate this from the kind of synchronization described above, which we
will term data synchronization.

Managing Program State

Before discussing the three techniques mentioned above, let’s first be very
precise about what the terminology shared state means. In short, it’s any

Chapter 2: Synchronization and Time14

state that is accessible by more than one thread at a time. It’s surprisingly
difficult to pin down more precisely, and the programming languages
commonly in use on the platform are not of help.

Identifying Shared vs. Private State
In object oriented systems, state in the system is primarily instance and
static (a.k.a. class) fields. In procedural systems, or in languages like C++
that support a mixture of object oriented and procedural constructs, state
is also held in global variables. In thread based programming systems, state
may also take the form of local variables and arguments on thread stacks
used during the execution and invocation of functions. There are also sev-
eral other subtle sources of state distributed throughout many layers in the
overall infrastructure: code, DLLs, thread local storage (TLS), runtime and
OS resources, and even state that spans multiple processes (such as mem-
ory mapped files and even many OS resources).

Now the question is “What constitutes ‘shared state’ versus ‘private
state?’” The answer depends on the precise mechanisms you are using to
introduce concurrency into the system. Stated generally, shared state is any
state that may, at any point in time, be accessed by multiple threads con-
currently. In the systems we care about, that means:

• All state pointed to by a global or static field is shared.

• Any state passed during thread creation (from creator to createe) is
shared.

• Any state reachable through references in said state is also shared,
transitively.

As a programmer, it’s important to be very conscious of these points,
particularly the last. The transitive nature of sharing and the fact that, given
any arbitrary pointer, you cannot tell whether the state it refers to has been
shared or not, cause tremendous difficulty in building concurrent systems
on Windows. Once something becomes shared, it can be difficult to track its
ownership in the system, particularly to determine precisely at what point
it becomes shared and at what point it becomes unshared in the future (if
at all). These can be referred to as data publication and privatization,

Managing Program State 15

respectively. Certain programming patterns such as producer/consumer
use consistent sharing and transfer of ownership patterns, making the
points of publication and privatization more apparent. Even then it’s easy
to trip up and make a mistake, such as treating something private although
it is still shared, causing race conditions.

It’s also important to note that the above definitions depend to some
degree on modern type safety. In the .NET Framework this is generally not
negotiable, whereas in systems like C++ it is highly encouraged but can be
circumvented. When any part of the program can manufacture a pointer to
any arbitrary address in the process’s address space, all data in the entire
address space is shared state. We will ignore this loophole. But when
pointer arithmetic is involved in your system, know that many of the same
problems we’ll look at in this chapter can manifest. They can be even more
nondeterministic and hard to debug, however.

To illustrate some of the challenges in identifying shared state, here’s a
class definition in C++. It has one simple method, f, and two fields, one
static (s_f) and the other instance (m_f). Despite the use of C++ here, the
same principles clearly apply to managed code too.

class C
{

static int s_f;
int m_f;

public:
void f(int * py)
{

int x;
x++; // local variable
s_f++; // static class member
m_f++; // class member
(*py)++; // pointer to something

}
};

The method contains four read/increment/write operations (via C++’s
++ unary operator). In a concurrent system, it is possible that multiple
threads could be invoking f on the same instance of C concurrently with
one another. Some of these increments will be safe to perform while others
are not. Others still might only be safe if f is called in certain ways. We’ll see
many detailed examples of what can go wrong with this example. Simply

Chapter 2: Synchronization and Time16

put, any increments of shared data are problematic. This is not strictly true
because higher level programming conventions and constructs may actu-
ally prevent problematic shared interactions, but given the information
above, we have no choice but to assume the worst.

By simply looking at the class definition above, how do we determine
what state is shared? Unfortunately we can’t. We need more information.
The answer to this question depends on how instances of C are used in
addition to where the py pointer came from.

We can quickly label the operations that do not act on shared state because
there are so few (just one). The only memory location not shared with other
threads is the x variable, so the x++ statement doesn’t modify shared state.
(Similar to the statement above about type safety, we are relying on the fact
that we haven’t previously shared the address of x on the thread’s stack with
another thread. Of course, another thread might have found an address to the
stack through some other means and could perform address arithmetic to
access x indirectly, but this is a remote possibility. Again, we will assume
some reasonable degree of type safety.) Though it doesn’t appear in this
example, if there was a statement to increment the value of py, i.e., py++, it
would not affect shared state because py is passed by value.

The s_f++ statement affects shared state because, by the definition of
static variables, the class’s static memory is visible to multiple threads run-
ning at once. Had we used a static local variable in f in the above example,
it would fall into this category too.

Here’s where it becomes complicated. The m_f++ line might, at first
glance, appear to act on private memory, but we don’t have enough infor-
mation to know. Whether it modifies shared state or not depends on if the
caller has shared the instance of C across multiple threads (or itself received
the pointer from a caller that has shared the instance). Remember, m_f++ is
a pointer dereference internally, (this->m_f)++. The this pointer might
refer to an object allocated on the current thread’s stack or allocated dynam-
ically on the heap and may or may not be shared among threads in
either case.

class D
{

static C s_c; // initialized elsewhere...
C m_c; // also initialized elsewhere...

Managing Program State 17

void g()
{

int x = 0;

C c1(); // stack-alloc
c1.f(&x);

C c2 = new C(); // heap-alloc
c2.f(&x);
s_c.f(&x);
m_c.f(&x);

}
}

In the case of the c1.f(&x) function call, the object is private because it
was allocated on the stack. Similarly, with c2.f(&x) the object is probably
private because, although allocated on the heap, the instance is not shared
with other threads. (Neither case is simple: C’s constructor could publish a
reference to itself to a shared location, making the object shared before the
call to f happens.) When called through s_c, clearly the object is shared
because it is stored in a shared static variable. And the answer for the call
through m_c is “it depends.” What does it depend on? It depends on the allo-
cation of the instance of D through which g has being invoked. Is it referred
to by a static variable elsewhere, another shared object, and so forth? This
illustrates how quickly the process of identifying shared state is transitive
and often depends on complex, dynamically composed object graphs.

Because the member variable and explicit pointer dereference are simi-
lar in nature, you can probably guess why “it depends” for (*py)++ too.
The caller of f might be passing a pointer to a private or shared piece of
memory. We really have no way of telling.

Determining all of this statically is impossible without some form of
type system support (which is not offered by VC++ or any mainstream
.NET languages). The process of calculating the set of shared objects
dynamically also is even difficult but possible. The process can be modeled
much in the same way garbage collection works: by defining the set of
shared roots as those objects referenced directly by static variables, we
could then traverse the entire reachable set of objects beginning with only
those roots, marking all objects as we encounter them (avoiding cycles). At
the end, we know that all marked objects are shared. But this approach is

Chapter 2: Synchronization and Time18

too naïve. An object can also become shared at thread creation time by
passing a pointer to it as an argument to thread creation routines. The same
goes for thread pool APIs, among others. Some objects are special, such as
the one global shared OutOfMemoryException object that the CLR throws
when memory is very low. Some degree of compiler analysis could help.
A technique called escape analysis determines when private memory
“escapes” into the shared memory space, but its application is limited
mostly to academic papers (see Further Reading, Choi, Gupta, Serrano,
Sreedhar, Midkiff). In practice, complications, such as late bound method
calls, pointer aliasing, and hidden sources of cross-thread sharing, make
static analysis generally infeasible and subject to false negatives without
restrictions in the programming model. There is research exploring such
ideas, such as ownership types, but it is probably years from mainstream
use (see Further Reading, Boyapati, Liskov, Shrira).

In the end, logically separating memory that is shared from memory
that is private is of utmost importance. This is perhaps the most funda-
mental and crucial skill to develop when building concurrent systems in
modern programming environments: accurately identifying and properly
managing shared state. And, more often than not, shared state must be
managed carefully and with a great eye for detail. This is also why under-
standing and debugging concurrent code that someone else wrote is often
very difficult.

State Machines and Time
All programs are state machines. Not all people think of their programs this
way, but it turns out to be a convenient mental model for concurrent pro-
grams. Even if you don’t think about your program as a state machine
proper, you probably at least think about your program in terms of time
and the sequence of program events on a sequential timeline: the order in
which reads from and writes to variables occur, the time distance between
two such events, and so on. A unique problem with concurrency thus
arises. We are accustomed to reasoning about the code we write on the
screen in sequential order, which is necessarily written in a sequential lay-
out. We form mental models and conclusions about the state transitions
possible with these assumptions firmly in mind. However, concurrency
invalidates many such assumptions.

Managing Program State 19

When state is shared, multiple concurrent threads, each of which may
have been constructed with a set of sequential execution assumptions, may
end up overlapping in time. And when they overlap in time, their opera-
tions become interleaved. If these operations access common memory
locations, they may possibly violate the legal set of state transitions that the
program’s state machine was planned and written to accommodate. Once
this happens, the program may veer wildly off course, doing strange and
inexplicable things that the author never intended, including performing
bogus operations, corrupting memory, or crashing.

Broken Invariants and Invalid States

As an illustration, let’s say on your first day at a new programming job you
were assigned the task of implementing a reusable, dynamically resizing
queue data structure. You’d probably start out with a sketch of the algo-
rithms and outline some storage alternatives. You’d end up with some fields
and methods and some basic decisions having been made, perhaps such as
using an array to store elements versus a linked list. If you’re really method-
ical, you might write down the state invariants and transitions and write
them down as asserts in the code or even use a formal specification system
to capture (and later verify) them. But even if you didn’t go to these lengths,
those invariants still exist. Break any one of them during development, or
worse after code has been embedded into a system, and you’ve got a bug.

Let’s consider a really simple invariant. The count of the queue must be
less than or equal to the length of the array used to store the individual ele-
ments. (There are of course several others: the head and tail indices must be
within the legal range, and so on.) If this queue was meant only to be used
by sequential programs, then preserving the invariant at the entrance and
exit of all public methods would be sufficient as a correctness condition. It
would be trivial: only those methods that modify the fields need to be writ-
ten to carefully respect the invariant. The most difficult aspect of attaining
this would be dealing with failures, such as an inability to allocate mem-
ory when needed.

Things become much more difficult as soon as concurrency is added to
the system. Unless another approach is used, you would have to ensure
invariants held at every single line of code in your implementation. And

Chapter 2: Synchronization and Time20

even that might not be sufficient if some lines of code (in whatever higher
level language you are programming in) were compiled into multiple
instructions in the machine language. Moreover, this task becomes impos-
sible when there are multiple variables involved in the operation (as is
probably the case with our queue), leading to the requirement of some extra
form of state management: i.e., isolation, immutability, or synchronization.

The fact is that it’s very easy to accidentally expose invalid program
states as a result of subtle interactions between threads. These states might
not exist on any legal state machine diagram we would have drawn for our
data structure, but interleaving can cause them. Such problems frequently
differ in symptom from one execution of your code to the next—causing
new exceptions, data corruption, and so forth and depend on timing in
order to manifest. The constant change in symptom and dependence on
timing makes it difficult to anticipate the types of failures you will experi-
ence when more concurrency is added to the system and makes such
failures incredibly hard to debug and fix.

The various solutions hinted at above can solve this problem. The sim-
plest solutions are to avoid sharing data or to avoid updating data
completely. Unfortunately, taking such an approach does not completely
eliminate the need to synchronize. For instance, you must keep intermedi-
ate state changes confined within one thread until they are all complete and
then, once the changes are suitable to become visible, you must use some
mechanism to publish state updates to the globally visible set of memory as
a single, indivisible operation (i.e., atomic operation). All other threads
must cooperate by reading such state from the global memory space as a
single, indivisible atomic operation.

This is not simple to achieve. Because reading and writing an arbitrary
number of memory locations atomically at once are not supported by cur-
rent hardware, software must simulate this effect using critical regions.
A critical region ensures that only one thread executes a certain piece of
code at once, eliminating problematic interleaved operations and forcing
one after the other timing. This implies some threads in the system will
have to wait for others to finish work before doing their own. We will
discuss critical regions later. But first, let’s look at a motivating example
where data synchronization is direly needed.

Managing Program State 21

A Simple Data Race

Consider this deceivingly simple program statement.

int * a = ...;
(*a)++;

(Forgive the C++-isms for those managed programmers reading this.
(*a)++ is used instead of a++, just to make it obvious that a points to some
shared memory location.)

When translated into machine code by the compiler this seemingly
simple, high-level, single-line statement involves multiple machine
instructions:

MOV EAX, [a]
INC EAX
MOV [a], EAX

Notice that, as a first step, the machine code dereferences a to get some
virtual memory address and copies 4 bytes’ worth of memory starting at
that address into the processor local EAX register. The code then incre-
ments the value of its private copy in EAX, and, lastly, makes yet another
copy of the value, this time to copy the incremented value held in its private
register back to the shared memory location referred to by a.

The multiple steps and copies involved in the ++ operator weren’t
apparent in the source file at all. If you were manipulating multiple vari-
ables explicitly, the fact that there are multiple steps would be a little more
apparent. In fact, it’s as though we had written:

int * a = ...;
int tmp = *a;
tmp++;
*a = tmp;

Any software operation that requires multiple hardware instructions is
nonatomic. And thus we’ve now established that ++ is nonatomic (as is ----),
meaning we will have to take extra steps to ensure concurrency safety. There
are some other nonobvious sources of nonatomic operations. Modern proces-
sors guarantee that single reads from and writes to memory in increments of
the natural word size of the machine will be carried out atomically covering
32-bit values on 32-bit machines and 64-bit values on 64-bit machines.

Chapter 2: Synchronization and Time22

Conversely, reading or writing data with a size larger than the addressable
unit of memory on your CPU is nonatomic. For instance, if you wrote a 64-bit
value on a 32-bit machine, it will entail two move instructions from processor
private to shared memory, each to copy a 4-byte segment. Similarly, reading
from or writing to unaligned addresses (i.e., address ranges that span an
addressable unit of memory) also require multiple memory operations in
addition to some bit masking and shifting, even if the size of the value is less
than or equal to the machine’s addressable memory size. Alignment is a tricky
subject and is discussed in much more detail in Chapter 10, Memory Models
and Lock Freedom.

So why is all of this a problem?
An increment statement is meant to monotonically increase the value

held in some memory location by a delta of 1. If three increments were
made to a counter with an original value 0, you’d expect the final result to
be 3. It should never be possible (overflow aside) for the value of the
counter to decrease from one read to the next; therefore, if a thread executes
two (*a)++ operations, one after the other, you would expect that the sec-
ond update always yields a higher value than the first. These are some very
basic correctness conditions for our simple (*a)++ program. (Note: You
shouldn’t be expecting that the two values will differ by precisely 1, how-
ever, since another thread might have snuck in and run between them.)

There’s a problem. While the actual loads and stores execute atomically
by themselves, the three operation sequence of load, increment, and store is
nonatomic, as we’ve already established. Imagine three threads, t1, t2, and
t3, are running the compiled program instructions simultaneously.

t1 t2 t3
t1(0): MOV EAX,[a] t2(0): MOV EAX,[a] t3(0): MOV EAX,[a]
t1(1): INC,EAX t2(1): INC,EAX t3(1): INC,EAX
t1(2): MOV [a],EAX t2(2): MOV [a],EAX t3(2): MOV [a],EAX

Each thread is running on a separate processor. Of course, this means
that each processor has its own private EAX register, but all threads see the
same value in a and therefore access the same shared memory. This is
where time becomes a very useful tool for explaining the behavior of our
concurrent programs. Each of these steps won’t really happen “simultane-
ously.” Although separate processors can certainly execute instructions

Managing Program State 23

simultaneously, there is only one central, shared memory system with a
cache coherency system that ensures a globally consistent view of memory.
We can therefore describe the execution history of our program in terms of
a simple, sequential time scale.

In the following time scale, the y-axis (labeled T) represents time, and
the abscissa, in addition to a label of the form thread (sequence#) and the
instruction itself, depicts a value in the form #n, where n is the value in the
memory target of the move after the instruction has been executed.

T t1 t2 t3
0 t1(0): MOV EAX,[a] #0
1 t1(1): INC,EAX #1
2 t1(2): MOV [a],EAX #1
3 t2(0): MOV EAX,[a] #1
4 t2(1): INC,EAX #2
5 t2(2): MOV [a],EAX #2
6 t3(0): MOV EAX,[a] #2
7 t3(1): INC,EAX #3
8 t3(2): MOV [a],EAX #3

If a is an integer that begins with a value of 0 at time step 0, then after
three (*a)++ operations have executed, we expect the value to be 0 + 3 = 3.
Indeed, we see that this is true for this particular history: t1 runs to com-
pletion, leaving value 1 in *a, and then t2, leaving value 2, and finally, after
executing the instruction at time 8 in our timeline, t3 has finished and *a
contains the expected value 3.

We can compress program histories into more concise representations so
that they fit on one line instead of needing a table like this. Because only one
instruction executes at any time step, this is simple to accomplish. We’ll
write each event in sequence, each with a thread (sequence#) label, using
the notation a —> b to denote that event a happens before b. A sequence of
operations is written from left to right, with the time advancing as we move
from one operation to the next. Using this scheme, the above history could
be written instead as follows.

t1(0)->t1(1)->t1(2)->t2(0)->t2(1)->t2(2)->t3(0)->t3(1)->t3(2)

We’ll use one form or the other depending on the level of scrutiny in
which we’re interested for that particular example. The longhand form is

Chapter 2: Synchronization and Time24

often clearer to illustrate specific values and is better at visualizing subtle
timing issues, particularly for larger numbers of threads.

No matter the notation, examining timing like this is a great way of
reasoning about the execution of concurrent programs. Programmers are
accustomed to thinking about programs as a sequence of individual steps.
As you develop your own algorithms, writing out the concurrent threads
and exploring various legal interleavings and what they mean to the state
of your program, it is imperative to understanding the behavior of your
concurrent programs. When you think you might have a problematic tim-
ing issue, going to the whiteboard and trying to devise some problematic
history, perhaps in front of a colleague, is often an effective way to uncover
concurrency hazards (or determine their absence).

Simple, noninterleaved histories pose no problems for our example. The
following histories are also safe with our algorithm as written.

t1(0)->t1(1)->t1(2)->t3(0)->t3(1)->t3(2)->t2(0)->t2(1)->t2(2)
t2(0)->t2(1)->t2(2)->t1(0)->t1(1)->t1(2)->t3(0)->t3(1)->t3(2)
t2(0)->t2(1)->t2(2)->t3(0)->t3(1)->t3(2)->t1(0)->t1(1)->t1(2)
t3(0)->t3(1)->t3(2)->t1(0)->t1(1)->t1(2)->t2(0)->t2(1)->t2(2)
t3(0)->t3(1)->t3(2)->t2(0)->t2(1)->t2(2)->t1(0)->t1(1)->t1(2)

These histories yield correct results because none results in one thread’s
statements interleaving amongst another’s. In each scenario, the first thread
runs to completion, then another, and then the last one. In these histories,
the threads are serialized with respect to one another (or the history is
serializable).

But this example is working properly by virtue of sheer luck. There is
nothing to prevent the other interleaved histories from occurring at run-
time, where two (or more) threads overlap in time, leading to an inter-
leaved timing and resulting race conditions. Omitting t3 from the example
for a moment, consider this simple timing, written out longhand so we can
emphasize the state transitions from one time step to the next.

T t1 t2
0 t1(0): MOV EAX,[a] #0
1 t2(0): MOV EAX,[a] #0
2 t2(1): INC,EAX #1
3 t2(2): MOV [a],EAX #1
4 t1(1): INC,EAX #1
5 t1(2): MOV [a],EAX #1

Managing Program State 25

The value of *a starts at 0. Because two increments happen, we would
expect the resulting value to be 0 + 2 = 2. However, *a ends up at 1. This
clearly violates the first correctness condition of our algorithm as stated ini-
tially: for each thread that invokes the increment operator, the global
counter increments by exactly 1.

This is a classic race condition, or more precisely, a data race, because,
in this case, our problems are caused by a lack of data synchronization. It
is called a “race” because the correctness of our code depends squarely on
the outcome of multiple threads racing with one another. It’s as if each is
trying to get to the finish line first, and, depending on which gets there first,
the program will yield different results, sometimes correct and sometimes
not. Races are just one of many issues that can arise when shared state is
involved and can be a serious threat to program correctness. A thorough
exploration of concurrency hazards, including races, is presented in
Chapter 11, Concurrency Hazards.

Why did this race manifest? It happened because t1 and t2 each made a
copy of the shared memory value in their own processor local register, one
after the other, both observing the same value of 0, and then incremented
their own private copies. Then both copied their new values back into the
shared memory without any validation or synchronization that would pre-
vent one from overwriting the other’s value. Both threads calculate the
value 1 in their private registers, without knowledge of each other, and, in
this particular case, t1 just overwrites t2’s earlier write of 1 to the shared
location with the same value.

One might question how likely this is to occur. (Note that the likelihood
matters very little. The mere fact that it can occur means that it is a very
serious bug. Depending on the statistical improbability of such things is
seriously discouraged. A program is not correct unless all possible sources
of data races have been eliminated.) This interleaved history can happen
quite easily, for obvious reasons, if t1 and t2 were running on separate
processors. The frequency depends on the frequency with which the rou-
tine is accessed, among other things. This problem can also arise on a single
processor machine, if a context switch occurred—because t1’s quantum had
expired, because t2 was running at a higher priority, and so forth—right
after t1 had moved the contents of a into its EAX register or after it had

Chapter 2: Synchronization and Time26

incremented its private value. The probability of this happening is higher
on a machine with multiple processors, but just having multiple threads
running on a single processor machine is enough. The only way this may be
impossible is if code accessing the same shared state is never called from
multiple threads simultaneously.

Other execution histories exhibit the same problem.

t1(0)->t2(0)->t1(1)->t1(2)->t2(1)->t2(2)
t1(0)->t1(1)->t2(0)->t1(2)->t2(1)->t2(2)
t2(0)->t1(0)->t1(1)->t1(2)->t2(1)->t2(2)
...and so on

If we add the t3 thread back into the picture, we can violate the second
correctness condition of our simple increment statement, in addition to the
first, all at once.

T t1 t2 t3
0 t3(0): MOV EAX,[a] #0
1 t1(0): MOV EAX,[a] #0
2 t1(1): INC,EAX #1
3 t1(2): MOV [a],EAX #1
4 t2(0): MOV EAX,[a] #1
5 t2(1): INC,EAX #2
6 t2(2): MOV [a],EAX #2
7 t3(1): INC,EAX #1
8 t3(2): MOV [a],EAX #1

In this program history, the global counter is updated to 1 by t1, and
then to 2 by t2. Everything looks fine from the perspective of other
threads in the system at this point in time. But as soon as t3 resumes, it
wipes out t1’s and t2’s updates, “losing” two values from the counter and
going backward to a value of 1. This is because t3 made its private copy of
the shared value of *a before t1 and t2 even ran. The second correctness
condition was that the value only ever increases; but if t2 runs again, it
will see a value smaller than the one it previously published. This
is clearly a problem that is apt to break whatever algorithm is involved.
As we add more and more threads that are frequently running close
together in time, we increase the probability of such problematic timings
accordingly.

Managing Program State 27

All of these histories demonstrate different kinds of hazards.

• Read/write hazard. A thread, t1, reads from a location, t2, then writes
to that location, and t1 subsequently makes a decision based on its
(now invalid) read of t1. This also can be referred to as a stale read.

• Write/write hazard. A thread, t1, writes to the same location as t2 in
a concurrency unsafe way, leading to lost updates, as in the example
given above.

• Write/read hazard. A thread, t1, writes to a location and then t2
reads from it before it is safe to do so. In some cases, t1 may decide
to undo its partial update to state due to a subsequent failure, lead-
ing t2 to make decisions on an invalid snapshot of state that should
have never been witnessed. This also can be referred to as an
unrepeatable read.

• Read/read hazard. There is no problem with multiple concurrent
threads reading the same shared data simultaneously. This property
can be exploited to build a critical region variant called a reader/ writer
lock to provide better performance for read/read conflicts; this idea is
explored more in Chapter 6, Data and Control Synchronization.

(This last point is a simplification. Normally read/read conflicts are safe
in the case of simple shared memory, but there are some cases in which they
are not: when a read has a side effect, like reading a stack’s guard page, or
when reading some data associated with a physical device, it may be nec-
essary to ensure no two threads try to do it concurrently.)

Very little of this discussion is specific to the ++ operator itself. It just
turns out to be a convenient example because it intrinsically exhibits all of
the problematic conditions that lead to these timing issues.

1. Multiple threads make private copies of data from a shared location.

2. Threads publish results back to shared memory, overwriting existing
values.

3. Compound updates may be made with the intent of establishing or
preserving invariants between multiple independent shared locations.

4. Threads run concurrently such that their timing overlaps and opera-
tions interleave.

Chapter 2: Synchronization and Time28

There is no greater skill that differentiates great concurrent programmers
from the rest than the ability to innately predict and consider various tim-
ings to some reasonable depth of complexity. With experience comes the
ability to see several steps ahead and proactively identify the timings that
can lead to race conditions and other hazards. This is especially important
when writing sophisticated lock free algorithms, which eschew isolation,
immutability, and synchronization in favor of strict discipline and reliance
on hardware guarantees, which we’ll review in Chapter 10, Memory Mod-
els and Lock Freedom.

On Atomicity, Serializability, and Linearizability

A fundamental problem is that many program operations are not truly
atomic because an operation consists of multiple logical steps, a certain
logical step is comprised of many physical steps, or both. Atomicity,
quite simply, is the property that a single operation or set of operations
appear as if they happened at once. Any state modifications and side
effects performed are completely instantaneous, and no other thread in
the system can observe intermediary (and invalid) states that occur in the
midst of such an atomic operation. Similarly, the atomic operation must
not be permitted to fail part way through the update, or if it does so,
there must be a corresponding roll back of state updates to the previous
state.

By this definition, atomicity would seldom be practical to achieve, at
least physically. Although processors guarantee single writes to aligned
words of memory are truly atomic, higher level logical operations—like
the execution of a single method call on an object, consisting of several
statements, function calls, and reads and writes—are not so simple. In
fact, sometimes the operations we’d like to make atomic can even span
physical machines, perhaps interacting with a Web service or database,
at which point the difficulty of ensuring atomicity is greater. System wide
control mechanisms must be used to achieve atomicity except for very
simple read and write operations. As already noted, critical regions can
simulate atomicity for in-memory updates. Transactions, of the ilk found
in databases, COM+, and the System.Transactions namespace in .NET,
are also attractive solutions when multiple or persistent durable resources
are involved.

Managing Program State 29

When two operations are atomic, they do not appear to overlap in time.
If we were to plot several atomic operations on a timeline, then we could
place one before or after the other without worrying about having to inter-
leave them. We did this earlier for individual reads and writes, and it was
possible because of the guarantees made by the hardware that they are
atomic. Object oriented programs are typically built from higher level
atomic methods, however, and reasoning about concurrency at this level
(like “puts an element in the queue,” “writes data to disk,” and so forth),
and not about the individual memory reads and writes involved, is often
more useful.

Serializability is when two operations happen one after the other; if a
happens before b, then a serializes before b. Building your program out of
atomic operations achieves serializability. It’s as though your program was
executed sequentially, by a single processor, by executing each atomic oper-
ation in the sequence as it appeared in the resulting serializable order. But
serializability on its own is insufficient for correctness; and it’s often in the
eye of the beholder—remember that even individual reads and writes are
themselves atomic. For a concurrent program to be correct, all possible seri-
alization orders must be legal. Techniques like critical regions can be used
to constrain legal serialization orders.

Linearizability is a property related to serializability and also is used
to describe correctness of atomic operations (see Further Reading, Herlihy,
Wing): a linearization point is a place when a batch of atomic updates
becomes visible to other threads. This commonly corresponds to exiting a
critical region where the updates made within suddenly become visible. It
is typically easier to reason about linearization points instead of the more
abstract serialization property.

Atomic operations also must be reorderable, such that having one start
completely before the other still leads to a correct program schedule. That’s
not to say that subsequently initiated operations will not change behavior
based on the changed order of commutative operations, due to causality,
but this reordering should not fundamentally alter the correctness of a
program.

As software developers, we like to think of serializable schedules and
atomic operations. But we’d also like to use concurrency for the reasons

Chapter 2: Synchronization and Time30

identified earlier in this book, for performance, responsiveness, and so on.
For this reason, the Win32 and .NET Framework platforms give you a set of
tools to achieve atomicity via data synchronization constructs, as implied
earlier. Those familiar with relational databases will recognize a similarity:
databases employ transactions to achieve serializable operations, giving the
programmer an interface with atomicity, consistency, isolation, and dura-
bility (a.k.a. ACID). You will notice many similarities, but you will also
notice that these properties must be achieved “by hand” in general purpose
concurrent programming environments.

Isolation
An obvious approach to eliminating problematic shared state interactions
is to avoid sharing state in the first place. We described how concurrent
systems are typically formed out of higher level components that eschew
sharing in favor of isolation, and that lower level components typically do
share data for purposes of fine-grained, performance sensitive operations.
This is a middle ground, but the two extremes are certainly possible: on
one hand, all components in the system may share state, while, on the
other hand, no components share state and instead communicate only via
loosely coupled messages. And there are certainly situations in which the
architecture is less clearly defined: i.e., some lower level components will
use isolation, while some higher level components will share state for effi-
ciency reasons.

When it comes to employing isolation, there are three basic techniques
from which to choose.

• Process isolation. Each Windows process has a separate memory
address space, ensuring that one process cannot read or write mem-
ory used by another. Hardware protection is used to absolutely
guarantee that there is no chance of accidental sharing by bleeding
memory references. Note that processes do share some things, like
machine-wide kernel objects, the file system, memory mapped files,
and so on, so even rigid process isolation can be broken. An even
more extreme technique is isolating components on separate
machines or inside virtualized partitions on a single machine.

Managing Program State 31

• Intraprocess isolation. If you are using managed code, CLR
Application Domains (AppDomains) can be used to isolate objects
so that code running in one AppDomain cannot read or write an
object running in another AppDomain. While hardware protection is
not used to enforce this isolation, the verifiable type safety employed
by the CLR ensures that no sharing will occur. There are some spe-
cific ways to circumvent this broadly stated policy, but they are gen-
erally opt-in and rare.

• By convention. When some code allocates a piece of memory or an
object, either dynamically from the heap or on the stack, this data
begins life as unshared, and, hence, is in effect isolated. This data
remains isolated so long as care is taken to not share the data (as
described previously), that is, by not storing a reference to the data
in a shared location (like a static variable or object reachable through
a static variable). This is the trickiest of the three approaches to
implement safely because it is entirely based on programming con-
vention and care, is not checkable in any way and has no infrastruc-
ture regulated support such as hardware isolation or type system
verification.

It’s common to use isolated state as a form of cache. In other words,
though some state is physically isolated, it is merely a copy of some mas-
ter copy that is not isolated. Such designs require that the master copy is
periodically refreshed (if updates are made to the cache) and that caches are
refreshed as the master copy changes. Depending on the requirements, a
more sophisticated cache coherency mechanism may be needed, to guar-
antee that refreshes happen in a safe and serializable way, requiring a com-
bination of isolation and synchronization techniques.

The last mechanism, enforcement by convention, requires that programs
follow some strict disciplines, each of which is cause for concern because
they are informal and inherently brittle. It can be useful to think of state in
terms of being “owned” by particular “agents” at any point in time. Think-
ing this way allows you to very clearly articulate where ownership changes
for a particular piece of data, including at what point data transitions
between isolated and shared.

Chapter 2: Synchronization and Time32

Data Ownership

At any point in time, a particular piece of isolated data can be said to be
owned by one agent in the system. Ownership is used in this context to
mean that the agent understands what other components or agents may
concurrently access that piece of data, and what this means for the read and
write safety of its own operations. If, at any time, multiple agents believe
they own the same piece of data, it is likely that the data is no longer truly
isolated. Clearly there are many kinds of ownership patterns a system
might employ, including shared ownership, but let’s stick to the idea of
single agent ownership for a moment.

An agent may transfer ownership, but it must do so with care. For exam-
ple, some agent may allocate and initialize some interesting object, but then
insert it into a global shared list. This is called publication. Publication
transfers ownership from the initializing agent to the global namespace; at
some point in the future, an agent may remove the data from the shared list,
at which point the ownership transfers from the global namespace to that
agent. This is called privatization. Publication must be done such that the
agent doing the transferring no longer tries to access the state as though it
is the sole owner: the data is no longer confined (or isolated) within the
agent. Similarly, privatization must be done such that other agents do not
subsequently try to access the privatized data.

One of the more difficult aspects of ownership is that a piece of data may
move between isolation and shared status over the course of its life. These
publication and privatization points must be managed with care. A slight
misstep, such as erroneously believing an object is private and no longer
shared when in reality other threads still have outstanding references to it
that they might use, can introduce all of the same kinds of race condition
problems noted earlier.

Another challenge with isolation is determining where the points of
escape in the program might be. Publication is not always such a clear-cut
point in the program’s execution. This requires that agents attempting to
control ownership of data only ever share references to this data with
trusted agents. The agent is trusting that the other agents will not pub-
lish the reference so that the data becomes shared, either directly or indi-
rectly (e.g., by passing the reference along to another untrusted agent).

Managing Program State 33

Similarly, an agent that receives a reference to data from an outside source
must assume the worst—that the data is shared—unless an alternative
arrangement is known, such as only ever being called by an agent that
guarantees the data is isolated. Again, the lack of type system and verifi-
cation support makes this convention notoriously tricky to implement
and manage in real programs, particularly when multiple developers are
involved.

Immutability
As noted earlier, read/read “hazards” are not really hazardous at all. Many
threads can safely read from some shared memory location concurrently
without cause for concern. Therefore, if some piece of shared state is guar-
anteed to be immutable—that is, read-only—then accessing it from many
threads inside a concurrent system will be safe.

Proving that a piece of complex data is immutable is not terribly difficult
with some discipline. Both C++ and .NET offer constructs to help make
immutable types. If each of an object’s fields never changes during its life-
time, it is shallow immutable. If the object’s fields also only refer to objects
whose state does not change over time, the object is deeply immutable. An
entire object graph can be transitively immutable if all objects within it are
themselves deeply immutable.

In the case that data transitions between private and shared throughout
its lifetime, as discussed above in the context of isolation, it is sometimes
useful to have a conditionally-immutable type, in which it remains
immutable so long as it is shared but can be mutated while private. So, for
example, a thread may remove a piece of shared state from public view,
making it temporarily private, mutate it, and then later share the state again
to public view.

Single Assignment

A popular technique for enforcing the immutability of data is to use single
assignment variables. Many programming systems offer static verification
that certain data is indeed assigned a value only once, leading to the term
static single assignment, or SSA.

The CLR offers limited support for single assignment variables in
its common type system through the initonly field modifier, surfaced in C#

Chapter 2: Synchronization and Time34

through the readonly keyword. And C++ offers the const modifier to
achieve a similar effect, though it is far more powerful: pointers may be
marked as being const, ensuring (statically) that the instance referred to is
not modified by the user of such a pointer (though unlike readonlyC++ pro-
grammers can explicitly “cast away the const-ness” of a reference, bypass-
ing the safety guarantees). Using these constructs can be tremendously
useful because it avoids having to depend on brittle and subtle program-
ming convention and rules. Let’s look at each briefly.

CLR initonly Fields (a.k.a. C# readonly Fields). When you mark a field
as readonly in C#, the compiler emits a field with the initonly modifier in
the resulting IL. The only writes to such variables that will pass the type
system’s verification process are those that occur inside that type’s
constructor or field initializers. This ensures that the value of such a field
cannot change after the object has been constructed. While it is not a true
single assignment variable, as it can be written multiple times during
initialization, it is similar in spirit.

Another subtle issue can arise if a reference to an object with readonly
fields escapes from its constructor. Fields are not guaranteed to have been
initialized with the permanent immutable values until after the constructor
has finished running and could be assigned multiple values during the con-
struction process. If an object’s constructor shares itself before finishing ini-
tialization, then other concurrent threads in the system cannot safely depend
on the readonly nature of the fields. Letting the object’s this reference
escape before the object is fully constructed like this is a bad practice any-
way, and is easily avoided. When a field is marked readonly, it simply
means the field’s value cannot change. In other words, a type with only
readonly fields is shallow immutable but not necessarily deeply immutable.
If an object depends on the state of the objects it references, then those
objects should be immutable also. Unfortunately, the CLR offers no type
system support for building deeply immutable types. Of course they may
be immutable by convention, readonly fields, or a combination of both.

There are some cases where the mutability of referenced objects does not
matter. For example, if we had an immutable pair class that refers to two
mutable objects but never accesses the state of those objects, then is the pair
itself immutable?

Managing Program State 35

class ImmutablePair<T, U>
{

private readonly T m_first;
private readonly U m_second;

public ImmutablePair(T first, U second)
{

m_first = first;
m_second = second;

}

public T First { get { return m_first; } }
public U Second { get { return m_second; } }

}

From one perspective, the answer is yes. The ImmutablePair<T, U> imple-
mentation itself cannot tell whether the m_firstor m_secondobjects have been
mutated, since it never accesses their internal state. If it relied on a stable
ToString value, then it might matter. Those who instantiate Immutable-
Pair<T, U> may or may not care about deep immutability, depending on
whether they access the pair’s fields; they control this by the arguments they
supply for T and U. So it seems shallow immutability here is sufficient. That
said, if a developer desires deep immutability, they need only supply
immutable types for T and U.

C++ Const. C++ const is a very powerful and feature rich-programming
language construct, extending well beyond simple single assignment vari-
able capabilities, and encompassing variables, pointers, and class members.
A complete overview of the feature is outside of the scope of this book.
Please refer instead to a book such as The C++ Programming Language, Third
Edition (see Further Reading, Stroustrup), for a detailed overview.

Briefly, the const modifier can be a useful and effective way of relying
on the C++ compiler to guarantee a certain level of immutability in your
data structures, including single assignment variables. In summary:

• Class fields may be marked const, which enforces that their value is
assigned at initialization time in the constructor’s field initialization
list and may not subsequently change. This effectively turns a field
into a single assignment variable, though it may still be modified by
a pointer that has been cast a certain way (as we’ll see soon).

Chapter 2: Synchronization and Time36

The value of static const fields cannot depend on runtime
evaluation, unlike class member fields that can involve arbitrary
runtime computation to generate a value, much like CLR initonly
fields. This means they are limited to compiler constants, statically
known addresses, and inline allocated arrays of such things.

• Member functions may be marked const, which means that the
function body must not modify any fields and ensures that other
non-const member functions cannot be invoked (since they may
modify fields).

• Pointers can be marked as “pointing to a constant,” via the prefix const
modifier. For instance, the following declaration states that d points to a
constant object of type C: const C * d. When a pointer refers to a con-
stant, only const member functions may be called on it, and the pointer
may not be passed where an ordinary non-const pointer is expected.
A const pointer to an integral type cannot be written through. A non-
const pointer can be supplied where a const is expected. Constant
references are also possible.

As noted earlier, a pointer to a constant can be cast to a non-const
pointer, which violates most of what was mentioned above. For example,
the C++ compiler enforces that a pointer to a const member field also must
be a pointer to const; but you can cast this to a non-const pointer and
completely subvert the const guarantees protecting the field. For example,
given the following class declaration, pointers may be manufactured and
used in certain ways.

class C
{
public:

const int d;
C(int x) : d(x) {}

};

// ... elsewhere ...

C * pC = ...;
const int * pCd1 = &pC->d; // ok!
*pC->d = 42; // compiler error: cannot write to const
int * pCd2 = &pC->d; // compiler error: non-const pointer to const field
int * pCd3 = const_cast<int *>(&pC->d); // succeeds!

Managing Program State 37

Casting away const is a generally frowned upon practice, but is some-
times necessary. And, a const member function can actually modify state,
but only if those fields have been marked with the mutable modifier. Using
this modifier is favored over casting. Despite these limitations, liberal and
structured use of const can help build up a stronger and more formally
checked notion of immutability in your programs. Some of the best code
bases I have ever worked on have used const pervasively, and in each case,
I have found it to help tremendously with the maintainability of the system,
even with concurrency set aside.

Dynamic Single Assignment Verification. In most concurrent systems,
single assignment has been statically enforced, and C# and C++ have both
taken similar approaches. It’s possible to dynamically enforce single assign-
ment too. You would just have to reject all subsequent attempts to set
the variable after the first (perhaps via an exception), and handle the case
where threads attempt to use an uninitialized variable. Implementing this
does require some understanding of the synchronization topics about to be
discussed, particularly if you wish the end result to be efficient; some
sample implementation approaches can be found in research papers (see
Further Reading, Drejhammar, Schulte).

Synchronization: Kinds and Techniques

When shared mutable state is present, synchronization is the only remaining
technique for ensuring correctness. As you might guess, given that there’s an
entire chapter in this book dedicated to this topic—Chapter 11, Concurrency
Hazards—implementing a properly synchronized system is complicated. In
addition to ensuring correctness, synchronization often is necessary for
behavioral reasons: threads in a concurrent system often depend on or com-
municate with other threads in order to accomplish useful functionality.

The term synchronization is admittedly overloaded and too vague on its
own to be very useful. Let’s be careful to distinguish between two different, but
closely related, categories of synchronization, which we’ll explore in this book:

1. Data synchronization. Shared resources, including memory, must
be protected so that threads using the same resource in parallel do

Chapter 2: Synchronization and Time38

not interfere with one another. Such interference could cause
problems ranging from crashes to data corruption, and worse,
could occur seemingly at random: the program might produce
correct results one time but not the next. A piece of code meant
to move money from one bank account to another, written with
the assumption of sequential execution, for instance, would
likely fail if concurrency were naively added. This includes the
possibility of reaching a state in which the transferred money is
in neither account! Fixing this problem often requires using
mutual exclusion to ensure no two threads access data at the
same time.

2. Control synchronization. Threads can depend on each others’
traversal through the program’s flow of control and state space.
One thread often needs to wait until another thread or set of
threads have reached a specific point in the program’s execution,
perhaps to rendezvous and exchange data after finishing one step
in a cooperative algorithm, or maybe because one thread has
assumed the role of orchestrating a set of other threads and they
need to be told what to do next. In either case, this is called control
synchronization.

The two techniques are not mutually exclusive, and it is quite common
to use a combination of the two. For instance, we might want a producer
thread to notify a consumer that some data has been made available in a
shared buffer, with control synchronization, but we also have to make
sure both the producer and consumer access the data safely, using data
synchronization.

Although all synchronization can be logically placed into the two
general categories mentioned previously, the reality is that there are
many ways to implement data and control synchronization in your
programs on Windows and the .NET Framework. The choice is often
fundamental to your success with concurrency, mostly because of per-
formance. Many design forces come into play during this choice: from
correctness—that is, whether the choice leads to correct code—to
performance—that is, the impact to the sequential performance of your
algorithm—to liveness and scalability—that is, the ability of your program

Synchronization: Kinds and Techniques 39

to ensure that, given the addition of more and more processors, the
throughput of the system improves commensurately (or at least doesn’t
do the inverse of this).

Because these are such large topics, we will tease them apart and
review them in several subsequent chapters. In this chapter, we stick to
the general ideas, providing motivating examples as we go. In Chapter 5,
Windows Kernel Synchronization, we look at the foundational Windows
kernel support used for synchronization, and then in Chapter 6, Data
and Control Synchronization, we will explore higher level primitives
available in Win32 and the .NET Framework. We won’t discuss per-
formance and scalability in great depth until Chapter 14, Performance
and Scalability, although it’s a recurring theme throughout the entire
book.

Data Synchronization
The solution to the general problem of data races is to serialize concurrent
access to shared state. Mutual exclusion is the most popular technique used
to guarantee no two threads can be executing the sensitive region of
instructions concurrently. The sequence of operations that must be serial-
ized with respect to all other concurrent executions of that same sequence
of operations is called a critical region.

Critical regions can be denoted using many mechanisms in today’s sys-
tems, ranging from language keywords to API calls, and involving such ter-
minology as locks, mutexes, critical sections, monitors, binary semaphores, and,
recently, transactions (see Further Reading, Shavit, Touitou). Each has its
own subtle semantic differences. The desired effect, however, is usually
roughly the same. So long as all threads use critical regions consistently to
access certain data, they can be used to avoid data races.

Some regions support shared modes, for example reader/writer
locks, when it is safe for many threads to be reading shared data con-
currently. We’ll look at examples of this in Chapter 6, Data and Control
Synchronization. We will assume strict mutual exclusion for the
discussion below.

What happens if multiple threads attempt to enter the same critical
region at once? If one thread wants to enter the critical region while another

Chapter 2: Synchronization and Time40

is already executing code inside, it must either wait until the thread leaves
or it must occupy itself elsewhere in the meantime, perhaps checking back
again sometime later to see if the critical region has become available. The
kind of waiting used differs from one implementation to the next, ranging
from busy waiting to relying on Windows’ support for waiting and signal-
ing. We will return to this topic later.

Let’s take a brief example. Given some statement or compound state-
ment of code, S, that depends on shared state and may run concurrently on
separate threads, we can make use of a critical region to eliminate the pos-
sibility of data races.

EnterCriticalRegion();
S;
LeaveCriticalRegion();

(Note that these APIs are completely fake and simply used for illustration.)
The semantics of the faux EnterCriticalRegion API are rather simple:

only one thread may enter the region at a time and must otherwise wait for
the thread currently inside the region to issue a call to LeaveCritical-
Region. This ensures that only one thread may be executing the statement
S at once in the entire process and, hence, serializes all executions. It
appears as if all executions of S happen atomically—provided there is no
possibility of concurrent access to the state accessed in S outside of critical
regions, and that S may not fail part-way through—although clearly S is not
really atomic in the most literal sense of the word.

Using critical regions can solve both data invariant violations illustrated
earlier, that is when S is (*a)++, as shown earlier. Here is the first problem-
atic interleaving we saw, with critical regions added into the picture.

T t1 t2
0 t1(E): EnterCriticalRegion();
1 t1(0): MOV EAX,[a] #0
2 t2(0): EnterCriticalRegion();
3 t1(1): INC,EAX #1
4 t1(2): MOV [a],EAX #1
5 t1(L): LeaveCriticalRegion();
6 t2(0): MOV EAX,[a] #1
7 t2(1): INC,EAX #2
8 t2(2): MOV [a],EAX #3
9 t2(L): LeaveCriticalRegion();

Synchronization: Kinds and Techniques 41

In this example, t2 attempts to enter the critical region at time 2. But the
thread is not permitted to proceed because t1 is already inside the region
and it must wait until time 5 when t1 leaves. The result is that no two
threads may be operating on a simultaneously.

As alluded to earlier, any other accesses to a in the program must also be
done under the protection of a critical region to preserve atomicity and cor-
rectness across the whole program. Should one thread forget to enter the
critical region before writing to a, shared state can become corrupted, caus-
ing cascading failures throughout the program. For better or for worse, crit-
ical regions in today’s programming systems are very code-centric rather
than being associated with the data accessed inside those regions.

A Generalization of the Idea: Semaphores

The semaphore was invented by E. W. Dijkstra in 1965 as a generalization
of the general critical region idea. It permits more sophisticated patterns of
data synchronization in which a fixed number of threads are permitted to
be inside the critical region simultaneously.

The concept is simple. A semaphore is assigned an initial count when
created, and, so long as the count remains above 0, threads may continue
to decrement the count without waiting. Once the count reaches 0, how-
ever, any threads that attempt to decrement the semaphore further must
wait until another thread releases the semaphore, increasing the count back
above 0. The names Dijkstra invented for these operations are P, for the fic-
titious word prolaag, meaning to try to take, and V, for the Dutch word ver-
hoog, meaning to increase. Since these words are meaningless to those of us
who don’t speak Dutch, we’ll refer to these activities as taking and releas-
ing, respectively.

A critical region (a.k.a. mutex) is therefore just a specialization of the
semaphore in which its current count is always either 0 or 1, which is also
why critical regions are often called binary semaphores. Semaphores with
maximum counts of more than 1 are typically called counting sema-
phores. Windows and .NET both offer intrinsic support for semaphore
objects. We will explore this support further in Chapter 6, Data and
Control Synchronization.

Chapter 2: Synchronization and Time42

Patterns of Critical Region Usage

The faux syntax shown earlier for entering and leaving critical regions
maps closely to real primitives and syntax. We’ll generally interchange
the terminology enter/leave, enter/exit, acquire/release, and begin/end
to mean the same thing. In any case, there is a pair of operations for the
critical region: one to enter and one to exit. This syntax might appear to
suggest there is only one critical region for the entire program, which is
almost never true. In real programs, we will deal with multiple critical
regions, protecting different disjoint sets of data, and therefore, we often
will have to instantiate, manage, and enter and leave specific critical
regions, either by name, object reference, or some combination of both,
during execution.

A thread wishing to enter some region 1 does not interfere with a sepa-
rate region 2 and vice versa. Therefore, we must ensure that all threads
consistently enter the correct region when accessing certain data. As an
illustration, imagine we have two separate CriticalRegion objects, each
with Enter and Leave methods. If two threads tried to increment a shared
variable s_a, they must acquire the same CriticalRegion first. If they
acquire separate regions, mutual exclusion is not guaranteed and the pro-
gram has a race.

Here is an example of such a broken program.

static int a;
static CriticalRegion cr1, cr2; // initialized elsewhere
void f() { cr1.Enter(); s_a++; cr1.Leave(); }
void g() { cr2.Enter(); s_a++; cr2.Leave(); }

This example is flawed because f acquires critical region cr1 and g

acquires critical region cr2. But there are no mutual exclusion guarantees
between these separate regions. If one thread runs f concurrently with
another thread that is running g, we will see data races.

Critical regions are most often—but not always—associated with some
static lexical scope, in the programming language sense, as shown above.
The program enters the region, performs the critical operation, and exits, all
occurring on the same stack frame, much like a block scope in C based
languages. Keep in mind that this is just a common way to group

Synchronization: Kinds and Techniques 43

synchronization sensitive operations under the protection of a critical
region and not necessarily a restriction imposed by the mechanisms you
will be using. (Many encourage it, however, like C# and VB, which offer
keyword support.) It’s possible, although often more difficult and much
more error prone, to write a critical region that is more dynamic about
entering and leaving regions.

BOOL f()
{

if (...)
{

EnterCriticalRegion();
S0; // some critical work
return TRUE;

}
return FALSE;

}

void g()
{

if (f())
{

S1; // more critical work
LeaveCriticalRegion();

}
}

This style of critical region use is more difficult for a number of reasons,
some of which are subtle. First, it is important to write programs that spend
as little time as possible in critical regions, for performance reasons. This
example inserts some unknown length of instructions into the region (i.e.,
the function return epilogue of f and whatever the caller decides to do
before leaving). Synchronization is also difficult enough, and spreading a
single region out over multiple functional units adds difficulty where it is
not needed.

But perhaps the most notable problem with the more dynamic approach
is reacting to an exception from within the region. Normally, programs will
want to guarantee the critical region is exited, even if the region is termi-
nated under exceptional circumstances (although not always, as this failure
can indicate data corruption). Using a statically scoped block allows you to
use things like try/catch blocks to ensure this.

Chapter 2: Synchronization and Time44

EnterCriticalRegion();
__try
{

S0; S1; // critical work
}
__finally
{

LeaveCriticalRegion();
}

Achieving this control flow for failure and success becomes more diffi-
cult with more dynamism. Why might we care so much about guarantee-
ing release? Well, if we don’t always guarantee the lock is released, another
thread may subsequently attempt to enter the region and wait indefinitely.
This is called an orphaned lock and leads to deadlock.

Simply releasing the lock in the face of failure is seldom sufficient, how-
ever. Recall that our definition of atomicity specifies two things: that the
effects appear instantaneously and that they happen either completely or
not at all. If we release the lock immediately when a failure occurs, we may
be opening up data corruption to the rest of the program. For example, say
we had two shared variables x and y with some known relationship based
invariant; if a region modified x but failed before it had a chance to mod-
ify y, releasing the region would expose the corrupt data and likely lead to
additional failure in other parts of the program. Deadlock is generally more
debuggable than data corruption, so if the code cannot be written to revert
the update to x in the face of such a failure, it’s often a better idea to leave
the region in an acquired state. That said we will use a try/finally type of
scheme in examples to ensure the region is exited properly.

Coarse- vs. Fine-Grained Regions

When using a critical region, you must decide what data is to be protected
by which critical regions. Coarse- and fine-grained regions are two extreme
ends of the spectrum. At one extreme, a single critical region could be used
to protect all data in the program; this would force the program to run
single-threaded because only one thread could make forward progress at
once. At the other extreme, every byte in the heap could be protected by its
own critical region; this might alleviate scalability bottlenecks, but would
be ridiculously expensive to implement, not to mention impossible to

Synchronization: Kinds and Techniques 45

understand, ensure deadlock freedom, and so on. Most systems must strike
a careful balance between these two extremes.

The critical region mechanisms available today are defined by regions of
program statements in which mutual exclusion is in effect, as shown above,
rather than being defined by the data accessed within such regions. The
data accessed is closely related to the program logic, but not directly: any
given data can be manipulated by many regions of the program and simi-
larly any given region of the program is apt to manipulate different data.
This requires many design decisions and tradeoffs to be made around the
organization of critical regions.

Programs are often organized as a collection subsystems and composite
data structures whose state may be accessed concurrently by many threads
at once. Two reasonable and useful approaches to organizing critical regions
are as follows:

• Coarse-grained. A single lock is used to protect all constituent parts
of some subsystem or composite data structure. This is the simplest
scheme to get right. There is only one lock to manage and one lock
to acquire and release: this reduces the space and time spent on syn-
chronization, and the decision of what comprises a critical region is
driven entirely by the need of threads to access some large, easy to
identify thing. Much less work is required to ensure safety. This over
conservative approach may have a negative impact to scalability
due to false sharing, however. False sharing prevents concurrent
access to some data unnecessarily, that is it is not necessary to guard
access to ensure correctness.

• Fine-grained. As a way of improving scalability, we can use a
unique lock per constituent piece of data (or some groupings of
data), enabling many threads to access disjoint data objects simulta-
neously. This reduces or eliminates false sharing, allowing threads to
achieve greater degrees of concurrency and, hence, better liveness
and scalability. The down side to this approach is the increase of
number of locks to manage and potentially multiple lock acquisi-
tions needed if more than one data structure must be accessed at
once, both of which are bad for space and time complexity. This

Chapter 2: Synchronization and Time46

strategy also can lead to deadlocks if not used carefully. If there are
complex invariant relationships between multiple data structures, it
can also become more difficult to eliminate data races.

No single approach will be best for all scenarios. Programs will use a
combination of techniques on this spectrum. But as a general rule of thumb,
starting with coarse-grained locking to ensure correctness first and fine-
tuning the approach to successively use finer-grained regions as scalabil-
ity requirements demand is an approach that typically leads to a more
maintainable, understandable, and bug-free program.

How Critical Regions Are Implemented

Before moving on, let’s briefly explore how critical regions might be imple-
mented. There are a series of requirements for any good critical region
implementation.

1. The mutual exclusion property holds. That is, there can never be a
circumstance in which more than one thread enters the critical
region at once.

2. Liveness of entrance and exit of the region is guaranteed. The sys-
tem as a whole will continue to make forward progress, meaning
that the algorithm can cause neither deadlock nor livelock. More for-
mally, given an infinite amount of time, each thread that arrives at
the region is guaranteed to eventually enter the region, provided
that no thread stays in the region indefinitely.

3. Some reasonable degree of fairness, such that a thread’s arrival time
at the region somehow gives it (statistical) preference over other
threads, is desirable though not strictly required. This does not nec-
essarily dictate that there is a deterministic fairness guarantee—such
as first-in, first-out—but often regions strive to be reasonably fair,
probabilistically speaking.

4. Low cost is yet another subjective criterion. It is important that
entering and leaving the critical region be very inexpensive. Critical
regions are often used pervasively in low-level systems software,

Synchronization: Kinds and Techniques 47

such as operating systems, and thus, there is a lot of pressure on the
efficiency of the implementation.

As we’ll see, there is a progression of approaches that can be taken. In
the end, however, we’ll see that all modern mutual exclusion mechanisms
rely on a combination of atomic compare and swap (CAS) hardware
instructions and operating system support. But before exploring that, let’s
see why hardware support is even necessary. In other words, shouldn’t it
be easy to implement EnterCriticalRegion and LeaveCriticalRegion

using familiar sequential programming constructs?
The simplest, overly naïve approach won’t work at all. We could have

a single flag variable, initially 0, which is set to 1 when a thread enters the
region and 0 when it leaves. Each thread attempting to enter the region first
checks the flag and then, once it sees the flag at 0, sets it to 1.

int taken = 0;

void EnterCriticalRegion()
{

while (taken != 0) /* busy wait */ ;
taken = 1; // Mark the region as taken.

}

void LeaveCriticalRegion()
{

taken = 0; // Mark the region as available.
}

This is fundamentally very broken. The reason is that the algorithm uses
a sequence of reads and writes that aren’t atomic. Imagine if two threads
read taken as 0 and, based on this information, both decide to write 1 into
it. Multiple threads would each think it owned the critical region, but both
would be running code inside the critical region at once. This is precisely the
thing we’re trying to avoid with the use of critical regions in the first place!

Before reviewing the state of the art—that is, the techniques all modern
critical regions use—we’ll take a bit of a historical detour in order to better
understand the evolution of solutions to mutual exclusion during the past
40+ years.

Chapter 2: Synchronization and Time48

Strict Alternation. We might first try to solve this problem with a
technique called strict alternation, granting ownership to thread 0, which
then grants ownership to thread 1 when it is done, which then grants
ownership to 2 when it is done, and so on, for N threads, finally returning
ownership back to 0 after thread N – 1 has been given ownership and fin-
ished running inside the region. This might be implemented in the form of
the following code snippet:

const int N = ...; // # of threads in the system.
int turn = 0; // Thread 0 gets its turn first.

void EnterCriticalRegion(int i)
{

while (turn != i) /* busy wait */ ;
// Someone gave us the turn... we own the region.

}

void LeaveCriticalRegion(int i)
{

// Give the turn to the next thread (possibly wrapping to 0).
turn = (i + 1) % N;

}

This algorithm ensures mutual exclusion inside the critical region for
precisely N concurrent threads. In this scheme, each thread is given a
unique identifier in the range [0 . . . N), which is passed as the argument i
to EnterCriticalRegion. The turn variable indicates which thread is cur-
rently permitted to run inside the critical region, and when a thread tries
to enter the critical region, it must wait for its turn to be granted by another
thread, in this particular example by busy spinning. With this algorithm,
we have to choose someone to be first, so we somewhat arbitrarily decide
to give thread 0 its turn first by initializing turn to 0 at the outset. Upon
leaving the region, each thread simply notifies the next thread that its turn
has come up: it does this notification by setting turn, either wrapping it
back around to 0, if we’ve reached the maximum number of threads, or by
incrementing it by one otherwise.

There is one huge deal breaker with strict alternation: the decision to
grant a thread entry to the critical region is not based in any part on the
arrival of threads to the region. Instead, there is a predefined ordering: 0,

Synchronization: Kinds and Techniques 49

then 1, then . . ., then N – 1, then 0, and so on, which is nonnegotiable and
always fixed. This is hardly fair and effectively means a thread that isn’t
currently in the critical region holds another thread from entering it. This
can threaten the liveness of the system because threads must wait to enter
the critical region even when there is no thread currently inside of it. This
kind of “false contention” isn’t a correctness problem per se, but reduces
the performance and scalability of any use of it. This algorithm also only
works if threads regularly enter and exit the region, since that’s the only
way to pass on the turn. Another problem, which we won’t get to solving
for another few pages, is that the critical region cannot accommodate a
varying number of threads. It’s quite rare to know a priori the number of
threads a given region must serve, and even rarer for this number to stay
fixed for the duration of a process’s lifetime.

Dekker’s and Dijkstra’s Algorithms (1965). The first widely publicized
general solution to the mutual exclusion problem, which did not require
strict alternation, was a response submitted by a reader of a 1965 paper by
E. W. Dijkstra in which he identified the mutual exclusion problem and
called for solutions (see Further Reading, Dijkstra, 1965, Co-operating
sequential processes). One particular reader, T. Dekker, submitted a
response that met Dijkstra’s criteria but that works only for two concurrent
threads. It’s referred to as “Dekker’s algorithm” and was subsequently gen-
eralized in a paper by Dijkstra, also in 1965 (see Further Reading, Dijkstra,
1965, Solution of a problem in concurrent programming control), to accom-
modate N threads.

Dekker’s solution works similar to strict alternation, in which turns are
assigned, but extends this with the capability for each thread to note an
interest in taking the critical region. If a thread desires the region but yet it
isn’t its turn to enter, it may “steal” the turn if the other thread has not also
noted interest (i.e., isn’t in the region).

In our sample implementation, we have a shared 2-element array of
Booleans, flags, initialized to contain false values. A thread stores true
into its respective element (index 0 for thread 0, 1 for thread 1) when it
wishes to enter the region, and false as it exits. So long as only one thread
wants to enter the region, it is permitted to do so. This works because a
thread first writes into the shared flags array and then checks whether the

Chapter 2: Synchronization and Time50

other thread has also stored into the flags array. We can be assured that if
we write true into flags and then read false from the other thread’s ele-
ment that the other thread will see our true value. (Note that modern
processors perform out of order reads and writes that actually break this
assumption. We’ll return to this topic later.)

We must deal with the case of both threads entering simultaneously. The
tie is broken by using a shared turn variable, much like we saw earlier. Just
as with strict alternation, when both threads wish to enter, a thread may
only enter the critical region when it sees turn equal to its own index and
that the other thread is no longer interested (i.e., its flags element is false).
If a thread finds that both threads wish to enter but it’s not its turn, the
thread will “back off” and wait by setting its flags element to false and
waiting for the turn to change. This lets the other thread enter the region.
When a thread leaves the critical region, it just resets its flags element to
false and changes the turn.

This entire algorithm is depicted in the following snippet.

static bool[] flags = new bool[2];
static int turn = 0;

void EnterCriticalRegion(int i) // i will only ever be 0 or 1
{

int j = 1 - i; // the other thread's index
flags[i] = true; // note our interest
while (flags[j]) // wait until the other is not interested
{

if (turn == j) // not our turn, we must back off and wait
{

flags[i] = false;
while (turn == j) /* busy wait */;
flags[i] = true;

}
}

}

void LeaveCriticalRegion(int i)
{

turn = 1 - i; // give away the turn
flags[i] = false; // and exit the region

}

Dijkstra’s modification to this algorithm supports N threads. While it
still requires N to be determined a priori, it does accommodate systems in

Synchronization: Kinds and Techniques 51

which fewer than N threads are active at any moment, which admittedly
makes it much more practical.

The implementation is slightly different than Dekker’s algorithm. We
have a flags array of size N, but instead of Booleans it contains a tri-value.
Each element can take on one of three values, and in our example, we will
use an enumeration: passive, meaning the thread is uninterested in the
region at this time; requesting, meaning the thread is attempting to enter
the region; and active, which means the thread is currently executing inside
of the region.

A thread, upon arriving at the region, notes interest by setting its flag
to requesting. It then attempts to “steal” the current turn: if the current
turn is assigned to a thread that isn’t interested in the region, the arriv-
ing thread will set turn to its own index. Once the thread has stolen the
turn, it notes that it is actively in the region. Before actually moving on,
however, the thread must verify that no other thread has stolen the turn
in the meantime and possibly already entered the region, or we could
break mutual exclusion. This is verified by ensuring that no other thread’s
flag is active. If another active thread is found, the arriving thread will
back off and go back to a requesting state, continuing the process until it
is able to enter the region. When a thread leaves the region, it simply sets
its flag to passive.

Here is a sample implementation in C#.

const int N = ...; // # of threads that can enter the region.

enum F : int
{

Passive,
Requesting,
Active

}

F[] flags = new F[N]; // all initialized to passive
int turn = 0;

void EnterCriticalRegion(int i)
{

int j;
do
{

Chapter 2: Synchronization and Time52

flags[i] = F.Requesting; // note our interest

while (turn != i) // spin until it's our turn
if (flags[turn] == F.Passive)

turn = i; // steal the turn

flags[i] = F.Active; // announce we're entering

// Verify that no other thread has entered the region.
for (j = 0;

j < N && (j == i || flags[j] != F.Active);
j++);

}
while (j < N);

}

void LeaveCriticalRegion(int i)
{

flags[i] = F.Passive; // just note we've left
}

Note that just as with Dekker’s algorithm as written above this code
will not work as written on modern compilers and processors due to the
high likelihood of out of order execution. This code is meant to illustrate the
logical sequence of steps only.

Peterson’s Algorithm (1981). Some 16 years after the original Dekker algo-
rithm was published, a simplified algorithm was developed by G. L. Peterson
and detailed in his provocatively titled paper, “Myths about the Mutual Exclu-
sion” (see Further Reading, Peterson). It is simply referred to as Peterson’s
algorithm. In fewer than two pages, he showed a two thread algorithm along-
side a slightly more complicated N thread version of his algorithm, both of
which were simpler than the 15 years of previous efforts to simplify Dekker
and Dijkstra’s original proposals.

For brevity’s sake, we review just the two thread version here. The
shared variables are the same, that is, a flags array and a turn variable, as
in Dekker’s algorithm. Unlike Dekker’s algorithm, however, a requesting
thread immediately gives away the turn to the other thread after setting its
flags element to true. The requesting thread then waits until either the
other thread is not in its critical region or until the turn has been given back
to the requesting thread.

Synchronization: Kinds and Techniques 53

bool[] flags = new bool[2];
int turn = 0;

void EnterCriticalRegion(int i)
{

flags[i] = true; // note our interest in the region
turn = 1 - i; // give the turn away

// Wait until the region is available or it's our turn.
while (flags[1 - i] && turn != i) /* busy wait */ ;

}

void LeaveCriticalRegion(int i)
{

flags[i] = false; // just exit the region
}

Peterson’s algorithm, just like Dekker’s, also satisfies all of the basic
mutual exclusion, fairness, and liveness properties outlined above. It is also
much simpler, and so it tends to be used more frequently over Dekker’s
algorithm to teach mutual exclusion.

Lamport’s Bakery Algorithm (1974). L. Lamport also proposed an alter-
native algorithm, and called it the Baker’s algorithm (see Further Reading,
Lamport, 1974). This algorithm nicely accommodates varying numbers of
threads, but has the added benefit that the failure of one thread midway
through executing the critical region entrance or exit code does not destroy
liveness of the system, as is the case with the other algorithms seen so far.
All that is required is the thread must reset its ticket number to 0 and move
to its noncritical region. Lamport was interested in applying his algorithm
to distributed systems in which such fault tolerance was obviously a criti-
cal component of any viable algorithm.

The algorithm is called the “bakery” algorithm because it works a bit
like your neighborhood bakery. When a thread arrives, it takes a ticket
number, and only when its ticket number is called (or more precisely, those
threads with lower ticket numbers have been serviced) will it be permitted
to enter the critical region. The implementation properly deals with the
edge case in which multiple threads happen to be assigned the same ticket
number by using an ordering among the threads themselves—for example,
a unique thread identifier, name, or some other comparable property—to
break the tie. Here is a sample implementation.

Chapter 2: Synchronization and Time54

const int N = ...; // # of threads that can enter the region.
int[] choosing = new int[N];
int[] number = new int[N];

void EnterCriticalRegion(int i)
{

// Let others know we are choosing a ticket number.
// Then find the max current ticket number and add one.
choosing[i] = 1;
int m = 0;
for (int j = 0; j < N; j++)
{

int jn = number[j];
m = jn > m ? jn : m;

}
number[i] = 1 + m;
choosing[i] = 0;

for (int j = 0; j < N; j++)
{

// Wait for threads to finish choosing.
while (choosing[j] != 0) /* busy wait */ ;

// Wait for those with lower tickets to finish. If we took
// the same ticket number as another thread, the one with the
// lowest ID gets to go first instead.
int jn;
while ((jn = number[j]) != 0 &&

(jn < number[i] || (jn == number[i] && j < i)))
/* busy wait */ ;

}

// Our ticket was called. Proceed to our region...
}

void LeaveCriticalRegion(int i)
{

number[i] = 0;
}

This algorithm is also unique when compared to previous efforts
because threads are truly granted fair entrance into the region. Tickets are
assigned on a first-come, first-served basis (FIFO), and this corresponds
directly to the order in which threads enter the region.

Hardware Compare and Swap Instructions (Fast Forward to Present Day).
Mutual exclusion has been the subject of quite a bit of research. It’s easy to

Synchronization: Kinds and Techniques 55

take it all for granted given how ubiquitous and fundamental synchro-
nization has become, but nevertheless you may be interested in some of the
references to learn more than what’s possible to describe in just a few pages
(see Further Reading, Raynal).

Most of the techniques shown also share one thing in common. Aside
from the bakery algorithm, each relies on the fact that reads and writes from
and to natural word-sized locations in memory are atomic on all modern
processors. But they specifically do not require atomic sequences of instruc-
tions in the hardware. These are truly “lock free” in the most literal sense
of the phrase. However, most modern critical regions are not implemented
using any of these techniques. Instead, they use intrinsic support supplied
by the hardware.

One additional drawback of many of these software only algorithms is
that one must know N in advance and that the space and time complexity
of each algorithm depends on N. This can pose serious challenges in a sys-
tem where any number of threads—a number that may only be known at
runtime and may change over time—may try to enter the critical region.
Windows and the CLR assign unique identifiers to all threads, but unfor-
tunately these identifiers span the entire range of a 4-byte integer. Making
N equal to 2^32 would be rather absurd.

Modern hardware supports atomic compare and swap (CAS) instruc-
tions. These are supported in Win32 and the .NET Framework where they
are called interlocked operations. (There are many related atomic instruc-
tions supported by the hardware. This includes an atomic bit-test-and-set
instruction, for example, which can also be used to build critical regions.
We’ll explore these in more detail in Chapter 10, Memory Models and Lock
Freedom.) Using a CAS instruction, software can load, compare, and con-
ditionally store a value, all in one atomic, uninterruptible operation. This
is supported in the hardware via a combination of CPU and memory sub-
system support, differing in performance and complexity across different
architectures.

Imagine we have a CAS API that takes three arguments: (1) a pointer
to the address we are going to read and write, (2) the value we wish to
place into this location, and (3) the value that must be in the location in

Chapter 2: Synchronization and Time56

order for the operation to succeed. It returns true if the comparison
succeeded—that is, if the value specified in (3) was found in location (1),
and therefore the write of (2) succeeded—or false if the operation failed,
meaning that the comparison revealed that the value in location (1) was
not equal to (3). With such a CAS instruction in hand, we can use an algo-
rithm similar to the first intuitive guess we gave at the beginning of this
section:

int taken = 0;

void EnterCriticalRegion()
{

// Mark the region as taken.
while (!CAS(&taken, 1, 0)) /* busy wait */ ;

}

void LeaveCriticalRegion()
{

taken = 0; // Mark the region as available.
}

A thread trying to enter the critical region continuously tries to write 1
into the taken variable, but only if it reads it as 0 first, atomically. Eventu-
ally the region will become free and the thread will succeed in writing the
value. Only one thread can enter the region because the CAS operation
guarantees that the load, compare, and store sequence is done completely
atomically.

This implementation gives us a much simpler algorithm that happens to
accommodate an unbounded number of threads, and does not require any
form of alternation. It does not give any fairness guarantee or preference
as to which thread is given the region next, although it could clearly be
extended to do so. In fact, busy waiting indefinitely as shown here is usu-
ally a bad idea, and instead, true critical region primitives are often built
on top of OS support for waiting, which does have some notion of fairness
built in.

Most modern primitive synchronization primitives are built on top of
CAS operations. Many other useful algorithms also can be built on top of
CAS. For instance, returning to our earlier motivating data race, (*a)++, we

Synchronization: Kinds and Techniques 57

can use CAS to achieve a race-free and serializable program rather than
using a first class critical region. For example:

void AtomicIncrement(int * p)
{

int seen;
do
{

seen = *p;
}
while (!CAS(p, seen + 1, seen));

}

// ... elsewhere ...

int a = 0;
AtomicIncrement(&a);

If another thread changes the value in location p in between the reading of
it into the seen variable, the CAS operation will fail. The function responds to
this failed CAS by just looping around and trying the increment again until
the CAS succeeds. Just as with the lock above, there are no fairness guaran-
tees. The thread trying to perform an increment can fail any number of times,
but probabilistically it will eventually make forward progress.

The Harsh Reality of Reordering, Memory Models. The discussion lead-
ing up to this point has been fairly naïve. With all of the software-only
examples of mutual exclusion algorithms above, there is a fundamental
problem lurking within. Modern processors execute instructions out of
order and modern compilers perform sophisticated optimizations that can
introduce, delete, or reorder reads and writes. Reference has already been
made to this point. But if you try to write and use a critical region as I’ve
shown, it will likely not work as expected. The hardware-based version
(with CAS instructions) will typically work on modern processors because
CAS guarantees a certain level of read and write reordering safety.

Here are a few concrete examples where the other algorithms can go
wrong.

• In the original strict alternation algorithm, we use a loop that contin-
ually rereads turn, waiting for it to become equal to the thread’s

Chapter 2: Synchronization and Time58

index i. Because turn is not written in the body of the loop, a
compiler may conclude that turn is loop invariant and thus hoist the
read into a temporary variable before the loop even begins. This will
lead to an infinite loop for threads trying to enter a busy critical
region. Moreover, a compiler may only do this under some condi-
tions, like when non debug optimizations are enabled. This same
problem is present in each of the algorithms shown.

• Dekker’s algorithm fundamentally demands that a thread’s write to
its flags entry happens before the read of its partner’s flags variable.
If this were not the case, both could read each other’s flags variable
as false and proceed into the critical region, breaking the mutual
exclusion guarantee. This reordering is legal and quite common on
all modern processors, rendering this algorithm invalid. Similar
requirements are present for many of the reads and writes within the
body of the critical region acquisition sequence.

• Critical regions typically have the effect of communicating data writ-
ten inside the critical region to other threads that will subsequently
read the data from inside the critical region. For instance, our earlier
example showed each thread executing a++. We assumed that sur-
rounding this with a critical region meant that a thread, t2, running
later in time than another thread, t1, would always read the value
written by t1, resulting in the correct final value. But it’s legal for
code motion optimizations in the compiler to move reads and writes
outside of the critical regions shown above. This breaks concurrency
safety and exposes the data race once again. Similarly, modern
processors can execute individual reads and writes out of order, and
modern cache systems can give the appearance that reads and writes
occurred out of order (based on what memory operations are satis-
fied by what level of the cache).

Each of these issues invalidates one or more of the requirements we
sought to achieve at the outset. All modern processors, compilers, and run-
times specify which of these optimizations and reorderings are legal and,
most importantly, which are not, through a memory model. These guaran-
tees can, in principal, then be relied on to write a correct implementation

Synchronization: Kinds and Techniques 59

of a critical region, though it’s highly unlikely anybody reading this book
will have to take on such a thread. The guarantees vary from compiler to
compiler and from one processor to the next (when the compiler’s guaran-
tees are weaker than the processor’s guarantees), making it extraordinar-
ily difficult to write correct code that runs everywhere.

Using one of the synchronization primitives from Win32 or the .NET
Framework alleviates all need to understand memory models. Those primi-
tives should be sufficient for 99.9 percent (or more) of the scenarios most
programmers face. For the cases in which these primitives are not up to the
thread—which is rare, but can be the case for efficiency reasons—or if you’re
simply fascinated by the topic, we will explore memory models and some lock
free techniques in Chapter 10, Memory Models and Lock Freedom. If you
thought that reasoning about program correctness and timings was tricky, just
imagine if any of the reads and writes could happen in a randomized order
and didn’t correspond at all to the order in the program’s source.

Coordination and Control Synchronization
If it’s not obvious yet, interactions between components change substan-
tially in a concurrent system. Once you have multiple things happening
simultaneously, you will eventually need a way for those things to collab-
orate, either via centrally managed orchestration or autonomous and dis-
tributed interactions. In the simplest form, one thread might have to notify
another when an important operation has just finished, such as a producer
thread placing a new item into a shared buffer for which a consumer thread
is waiting. More complicated examples are certainly commonplace, such
as when a single thread must orchestrate the work of many subservient
threads, feeding them data and instructions to make forward progress on
a larger shared problem.

Unlike sequential programs, state transitions happen in parallel in con-
current programs and are thus more difficult to reason. It’s not necessarily
the fact that things are happening at once that makes concurrency difficult
so much as getting the interactions between threads correct. Leslie Lamport
said it very well:

We thought that concurrent systems needed new approaches because
many things were happening at once. We have learned instead that . . . the

Chapter 2: Synchronization and Time60

real leap is from functional to reactive systems. A functional system is one
that can be thought of as mapping an input to an output. . . . A (reactive)
system is one that interacts in more complex ways with its environment
(see Further Reading, Lamport, 1993).

Earlier in this chapter, we saw how state can be shared in order to speed
up communication between threads and the burden that implies. The pat-
terns of communication present in real systems often build directly on top
of such sharing. In the scenario with a producer thread and a consumer
thread mentioned earlier, the consumer may have to wait for the producer
to generate an item of interest. Once an item is available, it could be writ-
ten to a shared memory location that the consumer directly accesses, using
appropriate data synchronization to eliminate a class of concurrency haz-
ards. But how does one go about orchestrating the more complex part:
waiting, in the case that a consumer arrives before the producer has some-
thing of interest, and notification, in the case that a consumer has begun
waiting by the time the producer creates that thing of interest? And how
does one architect the system of interactions in the most efficient way?
These are some topics we will touch on in this section.

Because thread coordination can take on many diverse forms and spans
many specific implementation techniques, there are many details to
address. As noted in the first chapter, there isn’t any “one” correct way to
write a concurrent program; instead, there are certain ways of structuring
and writing programs that make one approach more appropriate than
another. There are quite a few primitives in Win32 and the .NET Frame-
work and design techniques from which to choose. For now we will focus
on building a conceptual understanding of the approaches.

State Dependence Among Threads

As we described earlier, programs are comprised of big state machines that
are traversed during execution. Threads themselves also are composed of
smaller state machines that contribute to the overall state of the program
itself. Each carries around some interesting data and performs some num-
ber of activities. An activity is just some abstract operation that possibly
reads and writes the data and, in doing so, also possibly transitions
between states, both local to the thread and global to the program. As we

Synchronization: Kinds and Techniques 61

already saw, some level of data synchronization often is needed to ensure
invalid states are not reached during the execution of such activities.

It is also worth differentiating between internal and external states, for
example, those that are just implementation details of the thread itself
versus those that are meant to be observed by other threads running in a
system, respectively.

Threads frequently have to interact with other threads running concur-
rently in the system to accomplish some work, forming a dependency. Once
such a dependency exists, a dependent thread will typically have some
knowledge of the (externally visible) states the depended-upon thread may
transition between. It’s even common for a thread to require that another
thread is in a specific state before proceeding with an operation. A thread
might only transition into such a state with the passing of time, as a result
of external stimuli (like a GUI event or incoming network message), via
some third thread running concurrently in the system producing some
interesting state itself, or some combination of these. When one thread
depends on another and is affected by its state changes (such as by reading
memory that it has written), the thread is said to be causally dependent on
the other.

Thinking about control synchronization in abstract terms is often help-
ful, even if the actual mechanism used is less formally defined. As an exam-
ple, imagine that there is some set of states SP in which the predicate P will
evaluate to true. A thread that requires P to be true before it proceeds is
actually just waiting for any of the states in SP to arise. Evaluating the
predicate P is really asking the question, “Is the program currently in any
such state?” And if the answer is no, then the thread must do one of three
things: (1) perform some set of reads and writes to transition the program
from its current state to one of those in SP, (2) wait for another concurrent
thread in the system to perform this activity’ or (3) forget about the require-
ment and do something else instead.

The one example of waiting we’ve seen so far is that of a critical region.
In the CAS based examples, a thread must wait for any state in which the
taken variable is false to arise before proceeding to the critical region. Either
it is already the case, or the thread trying to enter the region must wait for
(2), another thread in the system to enable the state, via leaving the region.

Chapter 2: Synchronization and Time62

Waiting for Something to Happen

We’ve encountered the topic of waiting a few times now. As just mentioned,
a thread trying to enter a critical region that another thread is already
actively running within must wait for it to leave. Many threads may simul-
taneously try to enter a busy critical region, but only one of them will be
permitted to enter at a time. Similarly, control synchronization mechanisms
require waiting, for example for an occurrence of an arbitrary event, some
data of interest to become available, and so forth. Before moving on to the
actual coordination techniques popular in the implementation of control
synchronization, let’s discuss how it works for a moment.

Busy Spin Waiting. Until now we’ve shown nothing but busy waiting (a.k.a.
spin waiting). This is the simplest (and most inefficient) way to “wait” for
some condition to become true, particularly in shared memory systems. With
busy waiting, the thread simply sits in a loop reevaluating the predicate until
it yields the desired answer, continuously rereading shared memory locations.

For instance, if P is some arbitrary Boolean predicate statement and S is
some statement that must not execute until P is true, we might do this:

while (!P) /* busy wait */ ;
S;

We say that statement S is guarded by the predicate P. This is an
extremely common pattern in control synchronization. Elsewhere there will
be a concurrent thread that makes P evaluate to true through a series of
writes to shared memory.

Although this simple spin wait is sufficient to illustrate the behavior of
our guarded region—allowing many code illustrations in this chapter that
would have otherwise required an up-front overview of various other plat-
form features—it has some serious problems.

Spinning consumes CPU cycles, meaning that the thread spinning
will remain scheduled on the processor until its quantum expires or until
some other thread preempts it. On a single processor machine, this is a
complete waste because the thread that will make P true can’t be run
until the spinning thread is switched out. Even on a multiprocessor
machine, spinning can lead to noticeable CPU spikes, in which it appears

Synchronization: Kinds and Techniques 63

as if some thread is doing real work and making forward progress, but
the utilization is just caused by one thread waiting for another thread to
run. And the thread remains runnable during the entire wait, meaning
that other threads waiting to be scheduled (to perform real work) will
have to wait in line behind the waiting thread, which is really not doing
anything useful. Last, if evaluating P touches shared memory that is fre-
quently accessed concurrently, continuously re-evaluating the predicate
so often will have a negative effect on the performance of the memory
system, both for the processor that is actually spinning and also for those
doing useful work.

Not only is spin waiting inefficient, but the aggressive use of CPU
cycles, memory accesses, and frequent bus communications all consume
considerable amounts of power. On battery-powered devices, embedded
electronics, and in other power constrained circumstances, a large amount
of spinning can be downright annoying, reducing battery time to a fraction
of its normal expected range, and it can waste money. Spinning can also
increase heat in data centers, increasing air conditioning costs, making it
attractive to keep CPU utilization far below 100 percent.

As a simple example of a problem with spinning, I’m sitting on an air-
plane as I write this paragraph. Moments ago, I was experimenting with
various mutual exclusion algorithms that use busy waiting, of the kind we
looked at above, when I noticed my battery had drained much more
quickly than usual. Why was this so? I was continuously running test case
after test case that made use of many threads using busy waits concur-
rently. At least I was able to preempt this problem. I just stopped running
my test cases. But if the developers who created my word processor of
choice had chosen to use a plethora of busy waits in the background
spellchecking algorithm, it’s probable that this particular word processor
wouldn’t be popular among those who write when traveling. Thankfully
that doesn’t appear to be the case.

Needless to say, we can do much better.

Real Waiting in the Operating System’s Kernel. The Windows OS offers
support for true waiting in the form of various kernel objects. There are two
kinds of event objects, for example, that allow one thread to wait and have
some other thread signal the event (waking the waiter[s]) at some point in

Chapter 2: Synchronization and Time64

the future. There are other kinds of kernel objects, and they are used in the
implementation of various other higher-level waiting primitives in Win32
and the .NET Framework. They are all described in Chapter 5, Windows
Kernel Synchronization.

When a thread waits, it is put into a wait state (versus a runnable state),
which triggers a context switch to remove it from the processor immedi-
ately, and ensures that the Windows thread scheduler will subsequently
ignore it when considering which thread to run next. This avoids wasting
CPU availability and power and permits other threads in the system to
make forward progress. Imagine a fictional API WaitSysCall that allows
threads to wait. Our busy wait loop from earlier might become something
like this:

if (!P)
WaitSysCall();

S;

Now instead of other threads simply making P true, the thread that
makes P true must now take into consideration that other threads might be
waiting. It then wakes them with a corresponding call to WakeSysCall.

Enable(P); // ... make P true ...
WakeSysCall();

You probably have picked up a negative outlook on busy waiting alto-
gether. Busy waiting can be used (with care) to improve performance and
scalability on multiprocessor machines, particularly for fine-grained
concurrency. The reason is subtle, having to do with the cost of context
switching, waiting, and waking. Getting it correct requires an intelligent
combination of both spinning and true waiting. There are also some archi-
tecture specific considerations that you will need to make. (If it’s not obvi-
ous by now, the spin wait as written above is apt to cause you many
problems, so please don’t try to use it.) We will explore this topic in
Chapter 14, Performance and Scalability.

Continuation Passing as an Alternative to Waiting. Sometimes it’s
advantageous to avoid waiting altogether. This is for a number of reasons,
including avoiding the costs associated with blocking a Windows thread.

Synchronization: Kinds and Techniques 65

But perhaps more fundamentally, waiting can present scheduling chal-
lenges. If many threads wait and are awoken nearly simultaneously, they
will contend for resources. The details depend heavily on the way in which
threads are mapped to threads in your system of choice.

As an alternative to waiting, it is often possible to use continuation pass-
ing style (CPS), a popular technique in functional programming environ-
ments (see Further Reading, Hoare, 1974). A continuation is an executable
closure that represents “the rest” of the computation. Instead of waiting for
an event to happen, it is sometimes possible to package up the response to
that computation in the form of a closure and to pass it to some API that
then assumes responsibility for scheduling the continuation again when the
wait condition has been satisfied.

Because neither Windows nor the CLR offers first-class support for
continuations, CPS can be difficult to achieve in practice. As we’ll see in
Chapter 8, Asynchronous Programming Models, the .NET Framework’s
asynchronous programming model offers a way to pass a delegate to be
scheduled in response to an activity completing, as do the Windows and
CLR thread pools and various other components. In each case, it’s the
responsibility of the user of the API to deal with the fact that the remain-
der of the computation involves a possibly deep callstack at the time of the
call. Transforming “the rest” of the computation is, therefore, difficult to do
and is ordinarily only a reasonable strategy for applications level pro-
gramming where components are not reused in various settings.

A Simple Wait Abstraction: Events

The most basic control synchronization primitive is the event, also some-
times referred to as a latch, which is a concrete reification of our fictional
WaitSysCall and WakeSysCall functions shown above. Events are a flexible
waiting and notification mechanism that threads can use to coordinate
among one another in a less-structured and free-form manner when com-
pared to critical regions and semaphores. Additionally, there can be many
such events in a program to wait and signal different interesting circum-
stances, much like there can be multiple critical regions to protect different
portions of shared state.

Chapter 2: Synchronization and Time66

An event can be in one of two states at a given time: signaled or
nonsignaled. If a thread waits on a nonsignaled event, it does not proceed
until the event becomes signaled; otherwise, the thread proceeds right
away. Various kinds of events are commonplace, including those that stay
signaled permanently (until manually reset to nonsignaled), those that
automatically reset back to the nonsignaled state after a single thread waits
on it, and so on. In subsequent chapters, we will look at the actual event
primitives available to you.

To continue with the previous example of guarding a region of code
by some arbitrary predicate P, imagine we have a thread that checks P
and, if it is not true, wishes to wait. We can use an event E that is signaled
when P is enabled and nonsignaled when it is not. That event internally
uses whatever waiting mechanism is most appropriate, most likely
involving some amount of spinning plus true OS waiting. Threads
enabling and disabling P must take care to ensure that E’s state mirrors
P correctly.

// Consuming thread:
if (!P)

E.Wait();
S;

// Enabling thread:
Enable(P); // ... make P true ...
E.Set();

If it is possible for P to subsequently become false in this example and
the event is not automatically reset, we must also allow a thread to reset the
event.

E.Reset();
Disable(P); // ... make P false ...

Each kind of event may reasonably implement different policies for
waiting and signaling. One event may decide to wake all waiting threads,
while another might decide to wake one and automatically put the event
back into a nonsignaled state afterward. Yet another technique may wait for
a certain number of calls to Set before waking up any waiters.

Synchronization: Kinds and Techniques 67

As we’ll see, there are some tricky race conditions in all of these
examples that we will have to address. For events that stay signaled or have
some degree of synchronization built in, you can get away without extra
data synchronization, but most control synchronization situations are not
quite so simple.

One Step Further: Monitors and Condition Variables

Although events are a general purpose and flexible construct, the pattern of
usage shown here is very common, for example to implement guarded
regions. In other words, some event E being signaled represents some inter-
esting program condition, namely some related predicate P being true, and
thus the event state mirrors P’s state accordingly. To accomplish this
reliably, data and control synchronization often are needed together. For
instance, the evaluation of the predicate P may depend on shared state, in
which case data synchronization is required during its evaluation to ensure
safety. Moreover, there are data races, mentioned earlier, that we need to
handle. Imagine we support setting and resetting; we must avoid the
problematic timing of:

t1: Enable(P) -> t2: E.Reset() -> t2: Disable(P) -> t1: E.Set()

In this example, t1 enables the predicate P, but before it has a chance to
set the event, t2 comes along and disables P. The result is that we wake up
waiting threads although P is no longer true. These threads must take care
to re-evaluate P after being awakened to avoid proceeding blindly. But
unless they use additional data synchronization, this is impossible.

A nice codification of this relationship between state transitions and
data and control synchronization was invented in the 1970s (see Further
Reading, Hansen; Hoare, 1974) and is called monitors. Each monitor
implicitly has a critical region and may have one or more condition vari-
ables associated with it, each representing some condition (like P evaluat-
ing to true) for which threads may wish to wait. In this sense, a condition
variable is just a fancy kind of event.

All waiting and signaling of a monitor’s condition variables must occur
within the critical region of the monitor itself, ensuring data race protection.
When a thread decides to wait on a condition variable, it implicitly releases

Chapter 2: Synchronization and Time68

ownership of the monitor (i.e., leaves the critical region), waits, and then
reacquires it immediately after being woken up by another thread. This
release-wait sequence is done such that other threads entering the monitor
are not permitted to enter until the releaser has made it known that it is
waiting (avoiding the aforementioned data races). There are also usually
mechanisms offered to either wake just one waiting thread or all waiting
threads when signaling a condition variable.

Keeping with our earlier example, we may wish to enable threads to
wait for some arbitrary predicate P to become true. We could represent this
with some monitor M (with methods Enter and Leave) and a condition
variable CV (with methods Wait and Set) to represent the condition in
which a state transition is made that enables P. (We could have any num-
ber of predicates and associated condition variables for M, but our example
happens to use only one.) Our example above, which used events, now
may look something like this:

// Consuming thread:
M.Enter();
while (!P)

CV.Wait();
M.Leave();
S; // (or inside the monitor, depending on its contents)

// Enabling thread:
M.Enter();
Enable(P);
CV.Set();
M.Leave();

// Disabling thread:
M.Enter();
Disable(P);
M.Leave();

Notice in this example that the thread that disables P has no additional
requirements because it does so within the critical region. The next thread
that is granted access to the monitor will re-evaluate P and notice that it has
become false, causing it to wait on CV. There is something subtle in this pro-
gram. The consuming thread continually re-evaluates P in a while loop,
waiting whenever it sees that it is false. This re-evaluation is necessary to

Synchronization: Kinds and Techniques 69

avoid the case where a thread enables P, setting CV, but where another
thread “sneaks in” and disables P before the consuming thread has a chance
to enter the monitor. There is generally no guarantee, just because the con-
dition variable on which a thread was waiting has become signaled, that
such a thread is the next one to enter the monitor’s critical region.

Structured Parallelism

Some parallel constructs hide concurrency coordination altogether, so that
programs that use them do not need to concern themselves with the low-
level events, condition variables, and associated coordination challenges.
The most compelling example is data parallelism, where partitioning of the
work is driven completely by data layout. The term structured parallelism
is used to refer to such parallelism, which typically has well-defined begin
and end points.

Some examples of structured parallel constructs follow.

• Cobegin, normally takes the form of a block in which each of the
contained program statements may execute concurrently. An alter-
native is an API that accepts an array of function pointers or dele-
gates. The cobegin statement spawns threads to run statements in
parallel and returns only once all of these threads have finished,
hiding all coordination behind a clean abstraction.

• Forall, a.k.a. parallel do loops, in which all iterations of a loop body
can run concurrently with one another on separate threads. The
statement following the loop itself runs only once all concurrent iter-
ations have finished executing.

• Futures, in which some value is bound to a computation that may
happen at an unspecified point in the future. The computation may
run concurrently, and consumers of the future’s value can choose to
wait for the value to be computed, without having to know that
waiting and control synchronization is involved.

The languages on Windows and the .NET Framework currently do not
offer direct support for these constructs, but we will build up a library of
them in Chapters 12, Parallel Containers and 13, Data and Task Parallelism.

Chapter 2: Synchronization and Time70

This library enables higher level concurrent programs to be built with more
ease. Appendix B, Parallel Extensions to .NET, also takes a look at the future
of concurrency APIs on .NET which contains similar constructs.

Message Passing

In shared memory systems—the dominant concurrent programming
model on Microsoft’s development platform (including native Win32 and
the CLR)—there is no apparent distinction in the programming interface
between state that is used to communicate between threads and state that
is thread local. The language and library constructs to work with these two
very different categories of memory are identical. At the same time, reads
from and writes to shared state usually mean very different things than
those that work with thread-private state: they are usually meant to instruct
concurrent threads about the state of the system so they can react to the
state change. The fact that it is difficult to identify operations that work
with this special case also makes it difficult to identify where synchroniza-
tion is required and, hence, to reason about the subtle interactions among
concurrent threads.

In message passing systems, all interthread state sharing is encapsulated
within the messages sent between threads. This typically requires that state
is copied when messages are sent and normally implies handing off own-
ership of state at the messaging boundary. Logically, at least, this is the
same as performing atomic updates in a shared memory system, but is
physically quite different. (In fact, using shared memory could be viewed
as an optimization for message passing, when it can be proven safe to turn
message sends into writes to shared memory. Recent research in operating
system design in fact has explored using such techniques [see Further
Reading, Aiken, Fahndrich, Hawblitzel, Hunt, Larus].) Due to the copying,
message passing in most implementations is less efficient from a perform-
ance standpoint. But the overall thread of state management is usually
simplified.

The first popular message passing system was proposed by C. A. R. Hoare
as his Communicating Sequential Processes (CSP) research (see Further
Reading, Hoare, 1978, 1985). In a CSP system, all concurrency is achieved by
having independent processes running asynchronously. As they must

Synchronization: Kinds and Techniques 71

interact, they send messages to one another, to request or to provide
information to one another. Various primitives are supplied to encourage
certain communication constructs and patterns, such as interleaving results
among many processes, waiting for one of many to produce data of interest,
and so on. Using a system like CSP appreciably raises the level of abstraction
from thinking about shared memory and informal state transitions to
independent actors that communicate through well-defined interfaces.

The CSP idea has shown up in many subsequent systems. In the 1980s,
actor languages evolved the ideas from CSP, mostly in the context of LISP
and Scheme, for the purpose of supporting richer AI programming such as
in the Act1 and Act2 systems (see Further Reading, Lieberman). It turns out
that modeling agents in an AI system as independent processes that com-
municate through messages is not only a convenient way of implementing
a system, but also leads to increased parallelism that is bounded only by the
number of independent agents running at once and their communication
dependencies. Actors in such a system also sometimes are called “active
objects” because they are usually ordinary objects but use CSP-like tech-
niques transparently for function calls. The futures abstraction mentioned
earlier is also typically used pervasively. Over time, programming systems
like Ada and Erlang (see Further Reading, Armstrong) have pushed the
envelope of message passing, incrementally pushing more and more usage
from academia into industry.

Many CSP-like concurrency facilities have been modeled mathematically.
This has subsequently led to the development of the pi-calculus, among oth-
ers, to formalize the notion of independently communicating agents. This has
taken the form of a calculus, which has had recent uses outside of the domain
of computer science (see Further Reading, Sangiorgi, Walker).

Windows and the .NET Framework offer only limited support for fine-
grained message passing. CLR AppDomains can be used for fine-grained
isolation, possibly using CLR Remoting to communicate between objects in
separate domains. But the programming model is not nearly as nice as the
aforementioned systems in which message passing is first class. Distributed
programming systems such as Windows Communication Foundation
(WCF) offer message passing support, but are more broadly used for
coarse-grained parallel communication. The Coordination and Concurrency

Chapter 2: Synchronization and Time72

Runtime (CCR), downloadable as part of Microsoft’s Robotics SDK
(available on MSDN), offers fine-grained message as a first-class construct
in the programming model.

As noted in Chapter 1, Introduction, the ideal architecture for building
concurrent systems demands a hybrid approach. At a coarse-grain, asyn-
chronous agents are isolated and communicate in a mostly loosely coupled
fashion; message passing is great for this. Then at a fine-grain, parallel com-
putations share memory and use data and task parallel techniques.

Where Are We?

In this chapter, we’ve covered a fair bit of material. We first built up a good
understanding of synchronization and time as they relate to concurrent
programming and many related topics. Synchronization is important and
relevant to all kinds of concurrent programming, no matter whether it is
performance or responsiveness motivated, in the form of fine- or coarse-
grained concurrency, shared-memory or message-passing based, written in
native or managed code, and so on.

Although we haven’t yet experimented with enough real mechanisms
to build a concurrent program, we’re well on our way. The following sec-
tion, Mechanisms, spans seven chapters and focuses on the building blocks
you’ll use to build native and managed concurrent Windows programs.
We’ll start with the schedulable unit of concurrency on Windows: threads.

FURTHER READING

M. Aiken, M. Fahndrich, C. Hawblitzel, G. Hunt, J. R. Larus. Deconstructing
Process Isolation. Microsoft Research Technical Report, MSR-TR-2006-43 (2006).

J. Armstrong. Programming Erlang: Software for a Concurrent World (The Pragmatic
Programmers, 2007).

C. Boyapati, B. Liskov, L. Shrira. Ownership Types for Object Encapsulation. In
ACM Symposium on Principles of Programming Languages (POPL) (2003).

P. Brinch Hansen. Structured Multiprogramming. Communications of the ACM,
Vol. 15, No. 7 (1972).

Further Reading 73

J. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, S. Midkiff. Escape Analysis for Java.
In Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (1999).

E. W. Dijkstra. Co-operating Sequential Processes. In Programming Languages
(Academic Press, 1965).

E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control.
Communications of the ACM, Vol. 8, No. 9 (1965).

F. Drejhammar, C. Schulte. Implementation Strategies for Single Assignment
Variables. Colloquium on Implementation of Constraint and Logic Programming
Systems (CICLOPS) (2004).

R. H. Halstead, Jr. MULTILISP: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 7, Issue 4
(1985).

M. Herlihy and J. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. In ACM Transactions on Programming Languages and Systems, 12 (3)
(1990).

R. Hieb, R. Kent Dybvig. Continuations and Concurrency. In Proceedings of the
Second ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (1990).

C. A. R. Hoare. Monitors: An Operating System Structuring Concept.
Communications of the ACM, Vol. 17, No. 10 (1974).

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
Vol. 21, No. 8 (1978).

C. A. R. Hoare. Communicating Sequential Processes (Prentice Hall, 1985).

C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr., M. E. Zosel. The High
Performance FORTRAN Handbook (MIT Press, 1994).

L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem.
Communications of the ACM, Vol. 17, No. 8 (1974).

L. Lamport. Verification and Specification of Concurrent Programs. A Decade of
Concurrency: Reflections and Perspectives, Lecture Notes in Computer Science,
Number 803 (1993).

H. Lieberman. Concurrent Object-oriented Programming in Act 1. Object-oriented
Concurrent Programming (MIT Press, 1987).

Chapter 2: Synchronization and Time74

G. L. Peterson. Myths About the Mutual Exclusion Problem. Inf. Proc. Lett., 12,
115–116 (1981).

M. Raynal. Algorithms for Mutual Exclusion (MIT Press, 1986).

D. Sangiorgi, D. Walker. The Pi-Calculus: A Theory of Mobile Processes (Cambridge
University Press, 2003).

N. Shavit, D. Touitou. Software Transactional Memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (1995).

B. Stroustrup. The C++ Programming Language, Third Edition (Addison-Wesley, 1997).

Further Reading 75

This page intentionally left blank

PART II
Mechanisms

77

This page intentionally left blank

3
Threads

IN D I V I D UA L P R O C E S S E S O N Windows are sequential by default. Even
on a multiprocessor machine, a program (by default) will only use one of

them at a time. Running multiple processes at once creates concurrency at
a very coarse level. Microsoft Word could be repaginating a document on
one processor, while Internet Explorer downloads and renders a Web page
on another, all while Windows Indexer is rebuilding search indexes on a
third processor. This happens because each application is run inside its own
distinct process with (one hopes) little interference between the two (again,
one hopes), yielding better responsiveness and overall performance by
virtue of running completely concurrently with one another.

The programs running inside of each process, however, are free to intro-
duce additional concurrency. This is done by creating threads to run differ-
ent parts of the program running inside a single program at once. Each
Windows process is actually comprised of a single thread by default, but
creating more than one in a program enables the OS to schedule many onto
separate processors simultaneously. Coincidently, each .NET program is
actually multithreaded from the start because the CLR garbage collector
uses a separate finalizer thread to reclaim resources. As a developer, you are
free to create as many additional threads as you want.

Using multiple threads for a single program can be done to run entirely
independent parts of a program at once. This is classic agents style
concurrency and, historically, has been used frequently in server-side

79

programs. Or, you can use threads to break one big task into multiple
smaller pieces that can execute concurrently. This is parallelism and is
increasingly important as commodity hardware continues to increase the
number of available processors. Refer back to Chapter 1, Introduction, for a
detailed explanation of this taxonomy.

Threads are the fundamental units of schedulable concurrency on the
Windows platform and are available to native and managed code alike.
This chapter takes a look at the essentials of scheduling and managing con-
currency on Windows using threads. The APIs used to access threading in
native and managed code are slightly different, but the fundamental archi-
tecture and OS support are the same. But before we go into the details, let’s
precisely define what a thread is and of what it consists. After that, we’ll
move on to how programs use them.

Threading from 10,001 Feet

A thread is in some sense just a virtual processor. Each runs some pro-
gram’s code as though it were independent from all other virtual proces-
sors in the system. There can be fewer, equal, or more threads than real
processors on a system at any given moment due (in part) to the multi-
tasking nature of Windows, wherein a user can run many programs at once,
and the OS ensures that all such threads get a fair chance at running on the
available hardware.

Given that this could be as much a simple definition of an OS process
as a thread, clearly there has to be some interesting difference. And there is
(on Windows, at least). Processes are the fundamental unit of concurrency
on many UNIX OSs because they are generally lighter-weight than Win-
dows processes. A Windows process always consists of at least one thread
that runs the program code itself. But one process also may execute multi-
ple threads during the course of its lifetime, each of which shares access to
a set of process-wide resources. In short, having many threads in a single
process allows one process to do many things at once. The resources shared
among threads include a single virtual memory address space, permitting
threads to share data and communicate easily by reading from and writing
to common addresses and objects in memory. Shared resources also include

Chapter 3: Threads80

things associated with the Windows process, such as the handle table and
security token information.

Most people get their first taste of threading by accident. Developers
use a framework such as ASP.NET that calls their code on multiple threads
simultaneously or write some GUI event code in Windows Forms, MFC, or
Windows Presentation Foundation, in which there is a strong notion of
particular data structures belonging to particular threads. (We discuss this
fact and its implications in Chapter 16, Graphical User Interfaces.) These
developers often learn about concurrency “the hard way” by accidentally
writing unreliable code that crashes or by creating an unresponsive GUI
by doing I/O on the GUI thread. Faced with such a situation, people are
quick to learn some basic rules of thumb, often without deeply under-
standing the reasons behind them. This can give people a bad first impres-
sion of threads. But while concurrency is certainly difficult, threads are the
key to exploiting new hardware, and so it’s important to develop a deeper
understanding.

What Is a Windows Thread?
We already discussed threads at a high level in previous chapters, but let’s
begin painting a more detailed picture.

Conceptually speaking, a thread is an execution context that represents
in-progress work being performed by a program. A thread isn’t a simple,
physical thing. Windows must allocate and maintain a kernel object for
each thread, along with a set of auxiliary data structures. But as a thread
executes, some portion of its logical state is also comprised of hardware
state, such as data in the processor’s registers. A thread’s state is, therefore,
distributed among software and hardware, at least when it’s running.
Given a thread that is running, a processor can continue running it, and
given a thread that is not running, the OS has all the information it needs so
that it can schedule the thread to run on the hardware again.

Each thread is mapped onto a processor by the Windows thread sched-
uler, enabling the in-progress work to actually execute. Each thread has an
instruction pointer (IP) that refers to the current executing instruction.
“Execution” consists of the processor fetching the next instruction, decod-
ing it, and issuing it, one instruction after another, from the thread’s code,

Threading from 10,001 Feet 81

incrementing the IP after ordinary instructions or adjusting it in other ways
as branches and function calls occur. During the execution of some com-
piled code, program data will be routinely moved into and out of registers
from the attached main memory. While these registers physically reside on
the processor, some of this volatile state also abstractly belongs to the
thread too. If the thread must be paused for any reason, this state will be
captured and saved in memory so it can be later restored. Doing this
enables the same IP fetch, decode, and issue process to proceed for the
thread later as though it were never interrupted. The process of saving or
restoring this state from and to the hardware is called a context switch.

During a context switch, the volatile processor state, which logically
belongs to the thread, is saved in something called a context. The context
switching behavior is performed entirely by the OS kernel, although the
context data structure is available to user-mode in the form of a CONTEXT
structure. Similarly, when the thread is rescheduled onto a processor, this
state must be restored so the processor can begin fetching and executing the
thread’s instructions again. We’ll look at this process in more detail later.
Note that contexts arise in a few other places too. For example, when an
exception occurs, the OS takes a snapshot of the current context so that
exception handling code can inspect the IP and other state when deter-
mining how to react. Contexts are also useful when writing debugging and
diagnostics tools.

As the processor invokes various function call instructions, a region of
memory called the stack is used to pass arguments from the caller to the
callee (i.e., the function being called), to allocate local variables, to save reg-
ister values, and to capture return addresses and values. Code on a thread
can allocate and store arbitrary data on the stack too. Each thread, therefore,
has its own region of stack memory in the process’s virtual address space.
In truth, each thread actually has two stacks: a user-mode and a kernel-
mode stack. Which gets used depends on whether the thread is actively
running code in user- or kernel-mode, respectively. Each thread has a well-
defined lifetime. When a new process is created, Windows also creates a
thread that begins executing that process’s entry-point code. A process
doesn’t execute anything, its threads do. After the magic of a process’s first
thread being created—handled by the OS’s process creation routine—any

Chapter 3: Threads82

code inside that process can go ahead and create additional threads.
Various system services create threads without you being involved, such as
the CLR’s garbage collector. When a new thread is created, the OS is told
what code to begin executing and away it goes: it handles the bookkeeping,
setting the processor’s IP, and the code is then subsequently free to create
additional threads, and so on.

Eventually a thread will exit. This can happen in a variety of ways—all
of which we’ll examine soon—including simply returning from the entry-
point used to begin the thread’s life an unhandled exception, or directly
calling one of the platform’s thread termination APIs.

The Windows thread scheduler takes care of tracking all of the threads
in the system and working with the processor(s) to schedule execution of
them. Once a thread has been created, it is placed into a queue of runnable
threads and the scheduler will eventually let it run, though perhaps not
right away, depending on system load. Windows uses preemptive sched-
uling for threads, which allows it to forcibly stop a thread from running on
a certain processor in order to run some other code when appropriate. Pre-
emption causes a context switch, as explained previously. This happens
when a higher priority thread becomes runnable or after a certain period
of time (called a quantum or a timeslice) has elapsed. In either case, the
switch only occurs if there aren’t enough processors to accommodate both
threads in question running simultaneously; the scheduler will always pre-
fer to fully utilize the processors available.

Threads can block for a number of reasons: explicit I/O, a hard page
fault (i.e., caused by reading or writing virtual memory that has been paged
out to disk by the OS), or by using one of the many synchronization prim-
itives detailed in Chapters 5, Windows Kernel Synchronization and 6, Data
and Control Synchronization. While a thread blocks, it consumes no proces-
sor time or power, allowing other runnable threads to make forward
progress in its stead. The act of blocking, as you might imagine, modifies
the thread data structure so that the OS thread scheduler knows it has
become ineligible for execution and then triggers a context switch. When
the condition that unblocks the thread arises, it becomes eligible for execu-
tion again, which places it back into the queue of runnable threads, and the
scheduler will later schedule it to run using its ordinary thread scheduling

Threading from 10,001 Feet 83

algorithms. Sometimes awakened threads are given priority to run again,
something called a priority boost, particularly if the thread has awakened
in response to a GUI event such as a button click. This topic will come up
again later.

There are five basic mechanisms in Windows that routinely cause non-
local transfer of control to occur. That is to say, a processor’s IP jumps some-
where very different from what the program code would suggest should
happen. The first is a context switch, which we’ve already seen. The sec-
ond is exception handling. An exception causes the OS to run various
exception filters and handlers in the context of the current executing thread,
and, if a handler is found, the IP ends up inside of it.

The next mechanism that causes nonlocal transfer of control is the hard-
ware interrupt. An interrupt occurs when a significant hardware event of
interest occurs, like some device I/O completing, a timer expiring, etc., and
provides an interrupt dispatch routine the chance to respond. In fact, we’ve
already seen an example of this: preemption based context switches are
initiated from a timer based interrupt. While an interrupt borrows the cur-
rently executing thread’s kernel-mode stack, this is usually not noticeable:
the code that runs typically does a small amount of work very quickly and
won’t run user-mode code at all.

(For what it’s worth, in the initial SMP versions of Windows NT, all
interrupts ran on processor number 0 instead of on the processor execut-
ing the affected thread. This was obviously a scalability bottleneck and
required large amounts of interprocessor communication and was reme-
died for Windows 2000. But I’ve been surprised by how many people still
believe this is how interrupt handling on Windows works, which is why
I mention it here.)

Software based interrupts are commonly used in kernel and system
code too, bringing us to the fourth and fifth methods: deferred procedure
calls (DPCs) and asynchronous procedure calls (APCs). A DPC is just some
callback that the OS kernel queues to run later on. DPCs run at a higher
Interrupt Request Level (IRQL) than hardware interrupts, which simply
means they do not hold up the execution of other higher priority hardware
based interrupts should one happen in the middle of the DPC running. If
anything meaty has to occur during a hardware interrupt, it usually gets

Chapter 3: Threads84

done by the interrupt handler queuing a DPC to execute the hard work,
which is guaranteed to run before the thread returns back to user-mode. In
fact, this is how preemption based context switches occur. An APC is sim-
ilar, but can execute user-mode callbacks and only run when the thread has
no other useful work to do, indicated by the thread entering something
called an alertable wait. When, specifically, the thread will perform an
alertable wait is unknowable, and it may never occur. Therefore, APCs are
normally used for less critical and less time sensitive work, or for cases in
which performing an alertable wait is a necessary part of the programming
model that users program against. Since APCs also can be queued pro-
grammatically from user-mode, we’ll return to this topic in Chapter 5, Win-
dows Kernel Synchronization. Both DPCs and APCs can be scheduled
across processors to run asynchronously and always run in the context of
whatever the thread is doing at the time they execute.

Threads have a plethora of other interesting aspects that we’ll examine
throughout this chapter and the rest of the book, such as priorities, thread
local storage, and a lot of API surface area. Each thread belongs to a sin-
gle process that has other interesting and relevant data shared among all
of its threads—such as the handle table and a virtual memory page table—
but the above definition gives us a good roadmap for exploring at a deeper
level.

Before all of that, let’s review what makes a managed CLR thread
different from a native thread. It’s a question that comes up time and
time again.

What Is a CLR Thread?
A CLR thread is the same thing as a Windows thread—usually. Why, then,
is it popular to refer to CLR threads as “managed threads,” a very official
term that makes them sound entirely different from Windows threads? The
answer is somewhat complicated. At the simplest level, it effectively
changes nothing for developers writing concurrent software that will run
on the CLR. You can think of a thread running managed code as precisely
the same thing as a thread running native code, as described above. They
really aren’t fundamentally different except for some esoteric and exotic
situations that are more theoretical than practical.

Threading from 10,001 Feet 85

First, the pragmatic difference: the CLR needs to track each thread that
has ever run managed code in order for the CLR to do certain important
jobs. The state associated with a Windows thread isn’t sufficient. For exam-
ple, the CLR needs to know about the object references that are live so that
the garbage collector can determine which objects in the heap are still live.
It does this in part by storing additional per-thread information such as
how to find arguments and local variables on the stack. The CLR keeps
other information on each managed thread, like event kernel objects that it
uses for its own internal synchronization purposes, security, and execution
context information, etc. All of these are simply implementation details.

Since the OS doesn’t know anything about managed threads, the CLR
has to convert OS threads to managed threads, which really just populates
the thread’s CLR-specific information. This happens in two places. When
a new thread is created inside a managed program, it begins life as a man-
aged thread (i.e., CLR-specific state is associated before it is even started).
This is easy. If a thread already exists, however—that is it was created in
native code and native-managed interoperability is being used—then the
first time the thread runs managed code, the CLR will perform this con-
version on-demand at the interoperability boundary.

Just to reiterate, all of this is transparent to you as a developer, so these
points should make little difference. Knowing about them can come in
useful, however, when understanding the CLR architecture and when
debugging your programs.

Aside from that very down-to-earth explanation, the CLR has also
decoupled itself from Windows threads from day one because there has
always been the goal of allowing CLR hosts to override the default map-
ping of CLR threads directly to Windows threads. A CLR host, like SQL
Server or ASP.NET, implements a set of interfaces, allowing it to override
various policies, such as memory management, unhandled exception han-
dling, reliability events of interest, and so on. (See Further Reading,
Pratschner, for a more detailed overview of these capabilities.) One such
overridable policy is the implementation of managed threads. When the
CLR 2.0 was being developed, in fact, SQL Server 2005 experimented very
seriously with mapping CLR threads to Windows fibers instead of threads,
something they called fiber-mode. We’ll explore in Chapter 9, Fibers, the

Chapter 3: Threads86

advantages fibers offer over threads, and how the CLR intended to support
them. SQL Server has had a lot of experience in the past employing fiber
based user-mode scheduling. We will also discuss We will also discuss a
problem called thread affinity, which is related to all of this: a piece of work
can take a dependency on the identity of the physical OS thread or can cre-
ate a dependency between the thread and the work itself, which inhibits the
platform’s ability to decouple the CLR and Windows threads.

Just before shipping the CLR 2.0, the CLR and SQL Server teams
decided to eliminate fiber-mode completely, so this whole explanation now
has little practical significance other than as a possibly interesting historical
account. But, of course, who knows what the future holds? User-mode
scheduling offers some promising opportunities for building massively
concurrent programs for massively parallel hardware, so the distinction
between a CLR thread and a Windows thread may prove to be a useful one.
That’s really the only reason you might care about the distinction and why
I labeled the concern “theoretical” at the outset.

Unless explicitly stated otherwise in the pages to follow, all of the dis-
cussions in this chapter pertain to behavior when run normally (i.e., no
host) or inside a host that doesn’t override the threading behavior. Trying
to explain the myriad of possibilities simultaneously would be nearly
impossible because the hosting APIs truly enable a large amount of the
CLR’s behavior to be extended and customized by a host.

Explicit Threading and Alternatives
We’ll start our discussion about concurrency mechanisms at the bottom of
the architectural stack with the Windows thread management facilities in
Win32 and in the .NET Framework. This is called explicit threading in this
book because you must be explicit about the creation and use of threads.
This is a very low-level way to write concurrent software. Sometimes think-
ing at this low level is unavoidable, particularly for systems-level pro-
gramming and, sometimes, also in application and library. Thinking about
and managing threads is tricky and can quickly steal the focus from solv-
ing real algorithmic domain and business problems. You’ll find that explicit
threading quickly can become intrusive and pervasive in your program’s
architecture and implementation. Alternatives exist.

Threading from 10,001 Feet 87

Index

931

A
ABA problem, 536–537
Abandoned mutexes, 217–219
AbandonedMutexException, 205
Abort API, 109–110
Aborts, thread, 109–113
Account identifiers, lock levels, 583–584
Acquire fence, 512
AcquireReaderLock, 300
AcquireSRWLockExclusive, 290
AcquireSRWLockShared, 290
AcquireWriterLock, 300
Actions, TPL, 890
Actual concurrency, 5
Add method, dictionary, 631
AddOnPrerenderCompleteAsync, 420–421
Affinity. See CPU affinity
Affinity masks, 172–173, 176–178
Agents

concurrent program structure, 6
data ownership and, 33–34
style concurrency, 79–80

AggregateException class, TPL, 893–895
Aggregating multiple exceptions, 724–729
Alertable waits

asynchronous procedure calls and, 209
defined, 85
kernel objects and, 188
overview of, 193–195

Algorithms
cooperative and speculative, 719
dataflow, 689

natural scalability of, 760–761
recursive, 702–703
scalability of parallel, 666
search, 718–719
sorting, 681

Alignment
load/store atomicity and, 487–492
reading from or writing to unaligned

addresses, 23
_alloc function, 141
AllocateDataSlot, 123
AllocateNamedDataSlot, 123
AMD64 architecture, 509–511
Amdahlís Law, 762–764
Antidependence, 486
Apartment threading model, COM, 197
APC callback, 806–808
APCs (asynchronous procedure calls)

kernel synchronization and, 208–210
lock reliability in managed code and, 878
overview of, 84–85

APM (asynchronous programming model),
400–419

ASP.NET asynchronous pages and,
420–421

callbacks, 412–413
calling AsyncWaitHandle WaitOne, 407–410
calling EndFoo directly, 405–407
defined, 399
designing reusable libraries with, 884–885
implementing IAsyncResult, 413–418
overview of, 400–403
polling IsCompleted flag, 411

APM (asynchronous programming
model), continued

rendezvousing 4 ways, 403–405
using in .NET Framework, 418–419

AppDomain.ProcessExit event, 116
AppDomains

designing library locks, 870, 873–874
fine-grained message passing support, 72
intraprocess isolation, 32
locking on agile objects, 278–281
safety of thread aborts, 111
using kernel objects for synchronization, 188

AppDomainUnloadedException, 104, 111
Application bugs, 140–141
ApplicationException, 301–302
Architecture, concurrent program, 6–8
Arrays, fine-grained locking, 616
_asm keyword, 148
AsOrdered, PLINQ, 914
ASP.NET asynchronous pages, 420–421
Assemblies, and lock orderings, 584
AsUnordered, PLINQ, 914–915
Async prefix, 400, 421–422
AsyncCompletedEventArgs class, 423
AsyncCompletedEventHandler event, 423
Asynchronous aborts, 109, 112–113
Asynchronous exceptions, 281–282, 298–299
Asynchronous I/O. See also Overlapped I/O

.NET Framework. See .NET Framework
asynchronous I/O

benefits of, 787
cancellation, 822–826
Win32. See Win32 asynchronous I/O

Asynchronous operations
.NET Framework, 855–856
concurrent programs, 6

Asynchronous pages, ASP.NET, 420–421
Asynchronous procedure calls. See APCs

(asynchronous procedure calls)
Asynchronous programming models

APM. See APM (asynchronous
programming model)

ASP.NET asynchronous pages, 420–421
event-based asynchronous pattern, 421–427
overview of, 399–400

AsynchronousOperationManager, 830, 837
AsyncOperationManager, 855–856
AsyncWaitHandle, APM, 404, 407–410, 416
atexit/_oneexit function, 113
Atomic loads, 487–492, 499–500
Atomic stores, 487–492, 499–500

Atomicity, managing state with, 29–30
Auto-reset events, 226–234

creating and opening, 228–230
implementing queue with, 244–245
overview of, 226–227
priority boosts and, 232–234
setting and resetting, 230–231
signaled/nonsignaled state transition, 186
WAIT_ALL and, 231–232

AutoBuffered merge, PLINQ, 913–914
AutoResetEvent, 228–229

B
Background threads, 103
BackGroundWorker, 400, 426, 856–860
Bakery algorithm, 54–55
Balance set manager, 165, 609
bAlertable argument, 209
Barriers, phased computations, 650–654
Batcherís bitonic sort, 681
Begin prefix, APM, 399
BeginFoo method, APM, 401–402, 405–407
BeginInvoke, 838–839
_beginthread, 96–98, 107, 132
BeginThreadAffinity, 880
_beginthreadex, 96–98, 103, 132
Benign race conditions, 549, 553–555, 621
Binary semaphores, 42
BindHandle method, I/O completion ports,

369–370
BindIoCompletionCallback routine, I/O

completion ports, 359–360
bInheritHandle parameter, CreateThread, 95
Bit-masks, 172
Bit-test-and-reset (BTR), 502–503
Bit-test-and-set (BTS), 502–503
Bitness, load/store atomicity, 487
Block routine, UMS, 461–463
Blocking queues

with condition variables, 307–309,
644–646

with events, 243–244
with monitors, 310–311, 642–644, 646–650
mutex/semaphore example, 224–226
producer/consumer data structures, 641
using BlockingCollection<T>, 925–928

BlockingCollection<T>, 925–928
Blocks, thread

building UMS and, 461–463
canceling calls, 730

Index932

CLR locks avoiding, 275–277
critical sections avoiding, 263–266
data parallelism and, 665
dataflow parallelism avoiding, 695–698
designing reusable libraries, 884–885
disadvantages of fibers, 433–434
existing APIs for, 885
lock free algorithms, 519
producer/consumer data structures, 642
reasons for, 83
spin waiting and, 767
stack vs. stackless, 472–473

body delegate, 662, 757
BOOL bAlertable parameter, alertable waits,

193–195
Bounded buffer, 641
Bounded queues

overview of, 646–650
using BlockingCollection<T>, 925–928

Bounding, 642
BTR (bit-test-and-reset), 502–503
BTS (bit-test-and-set), 502–503
Buffering, in PLINQ, 912–914
Busy spin waiting, 63–64, 65
BWaitAll argument, 191
bWaitAll argument, 202

C
C++ Programming Language, Third Edition, 36
C programs

coordination containers, 646–650
creating threads in, 90, 96–98
creating threads in .NET Framework,

100–101
DllMain function in, 116–117
terminating threads. See Threads,

termination methods
C Runtime Library (CRT), 90, 96–98
Cache coherency, 479
Cache, using isolated state as, 32
CallbackMayRunLong, 349
Callbacks

fiber local storage and, 446
implementing IAsyncResult, 416
rendezvous technique, 412–413
Vista thread pool, 334–336, 347–351

Cancel function, TPL, 897
CancelAndWait function, TPL, 897
CancelAsync method, 425

Cancellation
asynchronous I/O, 822–826
asynchronous operations, 729–731
event-based asynchronous pattern, 425
task parallel library, 897

CancelWaitableTimer, 236
CAS (compare and swap) hardware

ABA problem and, 536–537
implementing, 496–499
lock free FIFO queue and, 635–636
modifying memory location atomically in,

492
Casual dependence, among threads, 62
CCR (Coordination and Concurrency

Runtime)
fine-grained message passing, 73
message-based parallelism, 719
stackless and nonblocking programs, 473

Change methods, CLR, 373–374
CheckForSufficientStack, 149–151
Children, task parallel library, 895–897
Circular waits, 575, 577
Cleanup groups, Vista, 343, 345–347
CloseHandle API, CreateMutex, 214–215
CloseThreadPool, Vista, 344
CloseThreadPoolCleanupGroup, Vista, 347
CloseThreadPoolCleanupGroupMembers,

Vista, 346–347
CloseThreadpoolIo, Vista, 336
CloseThreadpoolTimer, Vista, 333
CloseThreadpoolWait, Vista, 339–340,

341–342
CloseThreadpoolWork, Vista, 327, 329
CLR. See also managed code

.NET memory models, 517
avoiding locks, 873
fibers and, 449–453
garbage collection, 766
lazy initialization in .NET and, 521–526
locks. See Locks, CLR
process shutdown, 116, 569–571
reaction to stack overflow, 141–142
reader/writer locks, 254–255, 300–304
single assignment variables, 35–36
threads, 85–87
unhandled exceptions in, 104
waiting for managed code, 206–208

CLR thread pool, 364–391
case study, 387–391
debugging, 386–387

Index 933

CLR thread pool, continued
fine-grained concurrency with, 884
I/O completion ports, 368–371
no ownership of threads in, 377
overview of, 317–319, 364
performance of, 391–397
registered waits, 374–377
thread management in, 377–386
timers, 371–374
work items, 364–368

CMPXCHG variant, 496–499, 500–502
Coarse-grained critical regions, 45–47, 550–553
Coarse-grained locks, 256–257, 583, 614
cobegin statement, structured parallelism, 70
Code motion, 478–479
Coffman conditions, 576–577
COM

APIs for waiting, 186
how CLR waits for managed code, 207
message pumping, 195–201, 202–204
Single Threaded Apartments, 833–834
using kernel objects, 188

CoMarshalInterface API, 197
Commit size, thread stacks

memory layout, 138
overflow, 140–145
overview of, 130–133

Communicating Sequential Processes
(CSP), 71–72

Compare and exchange, 496–499
Compare and swap. See CAS (compare and

swap) hardware
Compiler

.NET Framework memory models, 517
creating fences in VC++ at level of,

514–515
load/store atomicity and, 490–492

CompilerServices, 274–275
Completed suffix, 422
CompletedSynchronously, APM, 417
Composite actions, 550–553
Concurrency, 3–12

agents-style, 80
hazards. See Correctness hazards; Liveness

hazards
importance of, 3–5
layers of parallelism, 8–10
limitations of, 10–11
of parallel containers, 614
program architecture and, 6–8

unstructured, 896–897
of Vista thread pool, 348

Concurrent collections
BlockingCollection<T>, 925–928
ConcurrentQueue<T>, 928–929
ConcurrentStack<T>, 929
defined, 924

Concurrent exceptions, 721–729
aggregating multiple exceptions, 724–729
marshaling exceptions across threads,

721–724
overview of, 721

ConcurrentQueue<T>, 928–929
ConcurrentStack<T>, 929
Condition variables

.NET Framework monitors, 68–70, 309–312
C++ blocking queue with, 644–646
CLR monitors, 272
defined, 255
overview of, 304
Windows Vista, 304–309

const modifier, single assignment, 35–38
CONTEXT data structure, 151–152, 437, 440–441
Context, defined, 82
Context switches

defined, 82
expense of, 768, 884
fibers reducing cost of, 431
I/O operations and, 785, 787, 810, 824
spin locks and, 769–770

ContextSwitch, building UMS
dispatching work, 461–463
overview of, 464–470
queueing work, 464–470

ContextSwitchDeadlock, 575
Continuation passing style (CPS), 65–66,

412–413
Continuations, task parallel library,

900–902
ContinueWith methods, TPL, 900–902
Continuous iterations, 663–667
Control flow invariants, 548
Control synchronization, 60–73

condition variables and. See Condition
variables

coordination and, 60–61
defined, 14
events and, 66–68
message passing, 71–73
monitors and, 68–70

Index934

primitives and, 255
state dependence among threads, 61–62
structured parallelism and, 70–71
waiting for something to happen, 63–66

Convention, enforcing isolation, 32
ConvertFiberToThread, 442
ConvertThreadToFiber(Ex), 438–439,

442–444
Convoys, lock, 603–605
Cooperative search algorithms, 719
Coordination. See Control synchronization
Coordination and Concurrency Runtime. See

CCR (Coordination and Concurrency
Runtime)

Coordination containers, 640–650
C# blocking/bounded queue with multiple

monitors, 646–650
producer/consumer data structures,

641–642
simple C# blocking queue with critical

sections and condition variables,
644–646

simple C# blocking queue with monitors,
642–644

Correctness hazards
overview of, 546
recursion and reentrancy, 555–561

Correctness hazards, data races, 546–555
benign, 553–555
composite actions, 550–553
inconsistent synchronization, 549–550
overview of, 546–549

Correctness hazards, locks and process
shutdown, 561–571

managed code and shutdown, 569–571
overview of, 561–563
Win32: weakening and termination,

563–568
CountdownEvent, 915–917
Counting semaphores, 42
CoWaitForMultipleHandles API, 186,

202–204, 207
CPS (continuation passing style), 65–66,

412–413
CPU affinity

assigning affinity, 173–176
microprocessor architecture and, 178–179
overview of, 171–173
round robin affinitization, 176–178

CreateEvent(Ex), 228–230

CreateFiber(Ex), 435–436
CreateMutex(Ex), 212–216
CreateRemoteThread, 95–96
CreateSemaphore(ex) APIs, 220–222
CREATE_SUSPENDED flag, 153, 169
CreateThread

C programs, 96–98
creating threads in .NET, 99
creating threads in Win32, 90
example of, 92–94
failure of, 92
parameters, 90–92
specifying stack changes, 132
thread suspension, 169
triggering thread exit, 103

CreateThreadPool, Vista, 344
CreateThreadPoolCleanupGroup, Vista, 345–347
CreateThreadpoolIo, Vista, 334–335
CreateThreadpoolTimer, Vista, 330–331, 333
CreateThreadpoolWait, Vista, 336–337
CreateThreadpoolWork, Vista, 326–327,

329–330
CreateTimerQueueTimer, legacy thread pool,

356–358
CreateWaitableTimer(Ex), 235–236
CreateWindow(Ex), 195
Critical finalizers, 300
Critical paths, speedup and, 764–765
Critical regions

avoiding deadlocks with, 576
as binary semaphores, 42
coarse vs. fine-grained, 45–47
correctly built, 478
correctness hazards, 551
defined, 21, 40
eliminating data races with, 40–42
failure of in modern processors, 59
as fences, 484–485
implementing, 47–48
implementing with critical sections. See

Critical sections, Win32
patterns of usage, 43–45

Critical sections, C++ blocking queue
with, 644–646

Critical sections, CLR monitors, 272
Critical sections, Win32, 256–271

allocating, 256–257
debugging ownership information, 270–271
defining, 254
entering and leaving, 260–266

Index 935

Critical sections, Win32, continued
fibers and, 448–449
implementing critical regions, 256
initialization and deletion, 257–259
integration with Windows Vista condition

variables, 304–309
low resource conditions, 266–270
overview of, 256
process shutdown and, 563–568
Vista thread pool completion tasks, 350

CRITICAL_SECTION. See Critical sections,
Win32

CRT (C Runtime Library), 90, 96–98
CSP (Communicating Sequential Processes)

systems, 71–72
Current.ManagedThreadId, 879
CurrentThread, 101

D
Data access patterns, 677–678
Data dependencies, 485–486
Data ownership, 33–34
Data parallelism, 659–684

concurrent program structure, 6–7
continuous iterations, 663–667
defined, 657–658
dynamic decomposition, 669–675
loops and iteration, 660–661
mapping over input data as parallel

loops, 675–676
nesting loops and data access patterns,

677–678
overview of, 659–660
prerequisites for loops, 662
reductions and scans, 678–681
sorting, 681–684
static decomposition, 662–663
striped iterations, 667–669

Data publication, 15–16
Data races. See Race conditions (data races)
Data synchronization, 40–60

coarse vs. fine-grained regions, 45–47
defined, 14, 38–40
Dekker’s and Dijkstra’s algorithm, 50–53
general approaches to, 14
hardware compare and swap instructions,

55–58
implementing critical regions, 47–48
Lamport’s bakery algorithm, 54–55

mutual exclusion. See Critical sections,
Win32; Locks, CLR

overview of, 40–42
patterns of critical region usage, 43–45
Peterson’s algorithm, 53–54
primitives, 254–255
reader writer locks. See RWLs

(reader/writer locks)
reordering, memory models and, 58–60
semaphores, 42
strict alternation, 49–50

Dataflow parallelism
futures, 689–692
overview of, 689
promises of, 693–695
resolving events to avoid blocking, 695–698

Deadlock
concurrency causing, 10–11
examples of, 572–575
fine-grained locking for FIFO queues

and, 617–621
implementing critical regions without, 47
in library code, 874–875
livelock vs., 601–603
from low maximum threads, 382–385
onAppDomain agile objects, 279–281
overview of, 572
ReaderWriterLockSlim and, 298

Deadlock, avoiding, 575–589
apartment threading model, 197–198
The Banker’s Algorithm, 577–582
with DllMain routine, 116–117
with lock leveling, 581–589, 875–876
overview of, 575–577

Deadlock, detecting, 589–597
overview of, 589–590
with timeouts, 594
with Vista WCT, 594–597
with Wait Graph Algorithm, 590–594

Deadly embrace. See Deadlock
DeallocationStack field, TEB, 149
Debugging

CLR monitor ownership, 285–287
CLR thread pool, 386–387
as concurrency problem, 11
critical sections, 270–271
fibers, 433–434
kernel objects, 250–251
legacy RWL ownership, 303–304
SRWLs, 293

Index936

symbols, 139
thread suspension in, 170
user-mode thread stacks, 127–130
using CLR managed assistant for, 575
Vista thread pool, 353

Declarative, LINQ as, 910
Deeply immutable objects, 34
Dekker’s algorithm

antipattern in, 540–541
Dijkstra’s algorithm vs., 51–53
failure of in modern processors, 59
overview of, 50–51
Peterson’s algorithm vs., 53–54

Delay-abort regions, 110–111
Delays, from low maximum threads, 385–386
Delegate types, 418
Deletion

of critical sections, 257–259
of fibers, 441–442
of legacy thread pool timer threads,

358–359
Dependency, among threads, 61–62
DestroyThreadpoolEnvironment, Vista, 343
Dictionary (hashtable), building, 626–631
Dijkstra, Edsger

algorithm of, 51–53
The Banker’s Algorithm, 577–581
dining philosophers problem, 573–574

Dijkstra’s algorithm, 51–53
Dining philosophers problem, 573–574
DisassociateCurrentThreadFromCallback,

Vista, 347
DispatcherObject, 840–846
Dispose overload, CLR, 374
DllMain function

creating threads, 153
initialization/deletion of critical regions,

259
overview of, 115–117
performing TLS functions, 119

DLL_PROCESS_ATTACH, 115, 119–120, 153
DLL_PROCESS_DETACH, 115, 119–120
DLL_THREAD_ATTACH, 115–116, 119–120, 153
DLL_THREAD_DETACH, 116, 119–120, 154
DNS resolution, 419
Document matching, 718
Documentation

on blocking, 884
on library locking model, 870

DocumentPaginator, 427

Domain parallelism, 8–9
DoNotLockOnObjectsWithWeakIdentity, 281
DoSingleWait function, 194–195
Double-checked locking

lazy initialization in .NET, 521–527
lazy initialization in VC++, 528–536
overview of, 520

DPCs (deferred procedure calls), 84–85
DuplicateHandle, 94
dwDesiredAccess, 213
dwFlags argument, 199–201, 437, 439
dwStackSize parameter, CreateThread

API, 91, 132
dwTimeout, 190
dwWakeMask argument, 199
Dynamic composition, recursive locks, 559
Dynamic (on demand) decomposition,

669–675
defined, 663
for known size iteration spaces, 669–672
overview of, 669
for unknown size iteration spaces, 669–672

Dynamic TLS, 118–120, 122–123

E
ECMA Common Language Infrastructure,

516–518
EDITBIN.EXE command, 132
Efficiency

measuring, 761–762
natural scalability vs. speedups, 760–761
performance improvements due to, 756

End method, APM, 416
End prefix, APM, 399
EndFoo, APM, 401–407
EndInvoke, 838–839
_endthread, 107
EndThreadAffinity, 880
_endthreadex, 107
EnterCriticalSection

ensuring thread always leaves critical
section, 262

entering critical section, 260–261
fibers and critical sections, 448–449
leaving unowned critical section, 261
low resource conditions and, 267–268
process shutdown, 563–564
setting spin count, 264

Entry, APC, 208

Index 937

Environment.Exit, CLR, 113–114, 569–571
Environment.FailFast, CLR, 114, 141–142
Environments, Vista thread pool, 342–347
Erlang language, 720
ERROR_ALREADY_EXISTS, 213, 222
ERROR_ALREADY_FIBER, 439
ERROR_FILE_NOT_FOUND, 215
ERROR_OUT_OF_MEMORY, 258, 260, 266
ERROR_STACK_OVERFLOW, 134
Escape analysis, 19
Essential COM (Box), 198
ETHREAD, 145–146, 152
Event-based asynchronous pattern, 421–427

in .NET Framework, 426–427
basics, 421–424
cancellation, 425
defined, 400
progress reporting/incremental results,

425–426
Event handlers, asynchronous I/O

completion, 802–805
Event signals, missed wake-ups and, 600–601
Events

blocking queue data structure with,
243–244

completing asynchronous operations
with, 422

control synchronization and, 66–68
EventWaitHandle, 231
Exception handling

with contexts, 152
parallelism and, 721–729

EXCEPTION_CONTINUE_SEARCH, 106
EXCEPTION_EXECUTE_HANDLER, 106
Exceptions, 721–729

aggregating multiple, 724–729
lock reliability and, 875
marshaling across threads, 721–724
overview of, 721

Exchange
128-bit compare, 500–502
compare and, 496–499
interlocked operations, 493–496

executeOnlyOnce, CLR thread pool, 375–376
Execution order, 480–484
Execution, Windows threads, 81–82
ExecutionContext, 839
exit/_exit function, 113
ExitProcess

hazards of using, 563

terminating threads in Win32, 113
unhandled exceptions and, 104

ExitThread
defined, 103
overview of, 107–109
specifying return code at termination, 94

Explicit threading, 87–88
Exponential backoff, in spin waiting, 770

F
/F switch, PE stack sizes, 132
Facial recognition, 718
FailFast, 114
Fair locks

exacerbating convoys, 604
FIFO data structure, 185, 605
in newer OSs, 217, 605

Fairness, in critical regions, 47
False contention, 615
Fences. See Memory fences
Fiber local storage (FLS), 430, 445–447
Fiber-mode, CLR and SQL Server, 86–87
Fiber user-mode stacks, 130
FiberBlockingInfo, UMS, 455–459
FiberPool

building UMS. See UMS (user-mode
scheduler)

data structures, 455–459
dispatching work, 461
thread and fiber routines, 459–460

~FiberPool destructor, 470–472
Fibers, 429–474. See also UMS (user-mode

scheduler), building
advantages of, 431–433
CLR and, 449–453
converting threads into, 438–439
creating new, 435–438
deleting, 441–442
determining whether threads are, 439–440
disadvantages of, 433–435
fiber local storage (FLS), 445–447
overview of, 429–431
routines, user-mode scheduler, 460
switching between, 440–445
thread affinity and, 447–449

FiberState
building user-mode scheduler, 455–459
ContextSwitch and, 464–465
dispatching work, 461

Index938

FiberWorkRoutine method, 460, 461
FIFO queues

alertable waits, 195
fine-grained locking for, 617–621
general-purpose lock free, 632–636
managing wait lists, 185
waiting in Win32, 192

FILETIMEs, 237–241
Finalizer thread, 79
Fine-grained critical regions, 45–47,

550–553
Fine-grained locking, 616–632

arrays, 616
dictionary (hashtable), 626–632
FIFO queue, 617–621
introducing with CLR thread pool, 884
linked lists, 621–626
lock leveling and, 583
overview of, 614

FineGrainedHashTable, 628–630
Fire and forget, 893
Flags

legacy thread pool thread management, 363
legacy thread pool work items, 354–355
wait registrations, legacy thread pool,

361–362
FLS (fiber local storage), 430, 445–447
FlsAlloc function, 445
for loops, 658–660, 757
For method, Parallel class, 904–908
forall statement, 70
foreach loops, 658–660
ForEach method, Parallel class, 904–908
Fork/join parallelism, 685–688, 915–917
FreeLibraryWhenCallbackReturns, Vista

thread pool, 350
Freeze threads, 170
FS Register, accessing TEB via, 147–148
Full fence (MFENCE), 512–515
FullyBuffered merge, PLINQ, 913–914
Functional systems, 61
Futures

building dataflow systems, 689–692
pipelining output of, 698–702
promises compared with, 693
structured parallel construct, 70
task parallel library, 898–900

Future<T> class
ContinueWith methods, 900–902
overview of, 898–900

G
Game simulation, and parallelism, 718
Garbage collection (GC), 79, 766–767
General-purpose lock free FIFO queue,

632–636
GetAvailableThreads, Vista thread

pool, 381
GetBucketAndLockNo, dictionary, 630–631
GetCurrentFiber macro, 439–440
GetCurrentThread, 94
GetCurrentThreadId, 93, 444
GetData, TLS, 123
GetExitCodeThread, 94
GetFiberData macro, 437, 440
GetLastError
CreateThread, 92
mutexes, 213, 215
semaphores, 222

GetMaxThreads, Vista thread pool, 380–381
GetMessage, 198
GetMinThreads, Vista thread pool, 380–381
GetOverlappedResult, asynchronous

I/O, 798–800
GetProcessAffinityMask, CPU, 173–174
GetThreadContext, 151
GetThreadPriority, 160, 162
GetThreadWaitChain, WCT, 595–596
GetUserContext, threads, 153
GetWindowThreadProcessId method, 839
Global store ordering, 511
Graphical user interfaces. See GUI (graphical

user interfaces)
Guard page

creating stack overflow, 140–145
example of, 137
guaranteeing committed guard space,

134–135
overview of, 133–134
resetting after stack overflow, 143

Guarded regions, 311–312
GUI (graphical user interfaces), 829–861

.NET Framework. See .NET Framework
Asynchronous GUI

cancellation from, 730
message-based parallelism and, 720
overview of, 829–830
responsiveness, 836
Single Threaded Apartments, 833–836
threading models, 830–833

Index 939

GUI message pumping
CLR waits for managed code, 207
CoWaitForMultipleHandles, 202–203
deciding when, 203–204
MsgWaitForMultipleObjects(Ex), 198–201
overview of, 195–198
using kernel objects, 188

Gustafsonís Law, 764

H
Hand over hand locking, 621–625
handle (!) command, 250–251
Happens-before mechanism, 509–510
Hardware

architecture. See Parallel hardware
architecture

concurrency, 4
for critical regions, 48
interrupts, 84
memory models, 509–511

Hardware atomicity, 486–506
interlocked operations. See Interlocked

operations
of ordinary of loads and stores, 487–492
overview of, 486

Hardware CAS (compare and swap)
implementing critical regions with, 47
instructions, 55–58
reality of reordering, memory models, 58–60

Hashtable based dictionary, 626–631
Hashtable type, .NET, 627–631
Hierarchy, concurrent programs, 6–7
Holder types, C++, 262–263
Homogeneous exceptions, collasping,

728–729
Hosts, CLR, 86, 298–299
HT (HyperThreading) processor, 178, 277
httpRuntime, Vista thread pool, 381

I
I/O completion packets, 808
I/O completion ports

CLR thread pool, 368–371
creating, 810–811
legacy Win32 thread pool, 359–360
overview of, 809–810
as rendezvous method, 808–809
thread pools and, 319–321

tricky synchronization with, 341–342
and Vista thread pool, 334–336
waiting for completion packets, 811–813

I/O (Input/Output), 785–827
.NET Framework asynchronous I/O, 817
APC callback completion method, 806–808
asynchronous device/file I/O, 817–819
asynchronous I/O cancellation, 822–826
asynchronous sockets I/O, 814–817,

820–822
blocking calls, 730
completing asynchronous I/O, 796
event handler completion method, 802–805
I/O completion ports completion method,

808–813
initiating asynchronous I/O, 792–796
overlapped I/O, 786–788
overlapped objects, 788–792
polling completion method, 798–800
synchronous completion method, 797–798
synchronous vs. asynchronous, 785–786
wait APIs completion method, 800–802
Win32 asynchronous I/O, 792

I/O prioritization, 162
IA64 architecture

.NET Framework memory models,
516–517

hardware memory models, 509–511
memory fences, 512

IAsyncResult interface, APM
defined, 399
implementing APM with, 413–418
overview of, 401–403
rendezvousing with, 403–411

IComponent interface, 422–423
Ideal processor, 170, 179–180
IdealProcessors, TaskManagerPolicy, 903
IdealThreadsPerProcessor,

TaskManagerPolicy, 903
IDisposable, mutexes, 215
ILP (instruction level parallelism), 479
Immutability

managing state with, 14
overview of, 34
protecting library using, 869
single assignment enforcing, 34–38

Increment statements, 23
Incremental results, 425–426
Infinite recursion, 140–141
Initial count, semaphores, 42, 222

Index940

Initialization
condition variables, 305
critical sections, 257–258
lazy. See Lazy initialization
slim reader/writer locks, 290
Windows Vista one-time, 529–534

InitializeCriticalSection, 258–259
InitializeCriticalSectionAndSpinCount,

258, 264–265, 267–268
InitializeCriticalSectionEx, 258–259,

264–266
Initialized thread state, 155
InitializeThreadpoolEnvironment, Vista,

343
initiallyOwned flag, mutexes, 214
Initiating asynchronous I/O, 792–796
InitiOnceBeginInitialize, Vista, 531
InitiOnceComplete, Vista, 531
InitiOnceExecuteOnce, Vista, 529–534
INIT_ONCE, 529–534
INIT_ONCE-ASYNC, 532
Inline, 892
Input data, data parallelism, 657
Input/Output. See I/O (Input/Output)
Instant state, library, 868–869
Instruction level parallelism (ILP), 479
Instruction pointer (IP), 81–82
Instruction reordering, 479–480, 481–484
int value, WaitHandle, 206
Intel64 architecture, 509–511
Interlocked class, 494
Interlocked operations, 492–506

128-bit compare exchanges, 500–502
atomic loads and stores of 64-bit

values, 499–500
bit-test-and-set/bit-test-and-reset, 502–503
compare and exchange, 496–499
controlling execution orders, 484
exchange, 493–496
other kinds of, 504–506
overview of, 56, 492–493

Interlocked singly-linked lists (SLists),
538–540

Interlocked.CompareExchange
examples of low-block code, 535–536
implementing 128-bit compare exchanges,

500–501
implementing compare and exchange,

497–498
lazy initialization in .NET, 526–527

_InterlockedExchange, 493
InterlockedExchange64, 499
InterlockedExchangePointer, 495
Internal data structures, threads, 145–151

checking available stack space, 148–151
overview of, 145–146
programmatically creating TEB, 146–148

Interprocess synchronization, 188
Interrupt instance method, 207
Interrupt Request Level (IRQL), DPCs, 84–85
Interrupts

hardware, 84
quantum accounting, 163–164
software, 84–85
waiting or sleeping threads, 207–208

IntPtrs, 90
Intraprocess isolation, 32
Invalid states, 20–21
InvalidWaitHandle, CLR thread pool, 374,

377
Invariants

invalid states and broken, 20–21
lock reliability and security, 876–877
overview of, 547–548
rules for recursion, 558
static state access for libraries, 868

Invoke method, Parallel class, 904–909
IOCompletionCallback, 370
IP (instruction pointer), 81–82
IRQL (Interrupt Request Level), DPCs, 84–85
IsCompleted flag, APM, 404, 411, 416
ISO Common Language Infrastructure,

516–518
Isolation

custom thread pools with, 387–391
data ownership with, 33–34
employing, 31–34
managing state with, 14
protecting library with, 869

ISupportsCancelation, 915
ISynchronizeInvoke, 838–839
Iterations

continuous, 663–667
data parallelism and, 659–661
deciding to ìgo parallelî and, 756–757
dynamic (on demand) decomposition,

669–675
static decomposition and, 662–663
striped, 667–669

itonly field modifier, 34–35

Index 941

J
Java

exiting and entering CLR locks, 274–275
JSR133 memory model specification,

509–510

K
KD.EXE (Kernel Debugger), 251
Kernel

fibers and, 430
overview of, 183–184
reasons to use for synchronization, 186–189
support for true waiting in, 64–65
synchronization-specific, 184

Kernel Debugger (KD.EXE), 251
Kernel-mode APCs, 208–209
Kernel-mode stacks, 82
Kernel synchronization

asynchronous procedure calls, 208–210
auto-reset and manual-reset events. See

Auto-reset events; Manual-reset events
debugging kernel objects, 250–251
in managed code, 204–208
mutex/semaphore example, 224–226
overview of, 183–184
using mutexes, 211–219
using semaphores, 219–224
using sparingly, 253
waitable timers. See Waitable timers

Kernel synchronization, signals and waiting,
184–204, 241–250

with auto-reset events, 244–248
CoWaitForMultipleHandles, 202–203
example of, 243–244
with manual-reset events, 248–250
message waits, 195–198
MsgWaitForMultipleObjects(Ex), 198–202
overview of, 184–186, 241–243
reasons to use kernel objects, 186–189
waiting in native code, 189–195
when to pump messages, 203–204

Keyed events, 268–270, 289
KTHREAD, 145–146, 152

L
Lack of preemption, 576, 577
Lamport’s bakery algorithm, 54–55
Latch, 66

Latent concurrency, 5, 867
Layers, parallelism, 8–10
Layout, stack memory. See Stack memory

layout
lazy allocation, 267–268
Lazy futures, 689
Lazy initialization

in .NET, 520–527
in VC++, 528–534

LazyInit<T>, 917–919
LeaveCriticalSection

ensuring thread always leaves, 261–263
fibers and, 449
leaving critical section, 260–261
leaving unowned critical section, 261
low resource conditions and, 267–268
process shutdown, 563–564

LeaveCriticalSectionWhenCallbackReturns,
350–351

Leveled locks. See Lock leveling
LFENCE (Load fence), 512
Libraries, designing reusable, 865–886

blocking, 884–885
further reading, 885
locking models, 867–870
major themes, 866–867
reliability, 875–879
scalability and performance, 881–884
scheduling and threads, 879–881
using locks, 870–875

Linear pipelines, 711
Linear speedups, 758–760
Linearizability, managing state with, 30–31
Linearization point, 30, 520
lInitialCount parameter, 222
Linked lists, 617–620, 621–626
LINQ. See PLINQ (Parallel LINQ)
LIST_HEADER data structure, 538–540
Livelocks

concurrency causing, 11
implementing critical regions without, 47
overview of, 601–603

Liveness hazards, 572–609
defined, 545
livelocks, 601–603
lock convoys, 603–605
missed wake-ups, 597–601
priority inversion and starvation, 608–609
stampedes, 605–606
two-step dance, 606–608

Index942

Liveness hazards, deadlock, 572–597
avoiding, 575–577
avoiding with lock leveling, 581–589
avoiding with The Banker’s Algorithm,

577–582
detecting, 589–590
detecting with timeouts, 594
detecting with Vista WCT, 594–597
detecting with Wait Graph Algorithm,

590–594
examples of, 572–575

lMaximumCount parameter, CreateSemaphore,
222

Load-after-store dependence, 485
Load balanced pipelines, 716–717
Load fence (LFENCE), 512
Loader lock, 116
Loads

.NET memory models and, 516–518
atomic, 487–492, 499–500
hardware memory models and, 511
imbalances, and speed-up, 765–766

LocalDataStoreSlot, TLS, 123
LocalPop, work stealing queue, 637
LocalPush, work stealing queue, 637, 640
Lock convoys, 165, 289, 603–605
Lock free algorithms, 28
Lock-free data structures, 632–640

general-purpose lock free FIFO queue,
632–636

parallel containers and, 615
work stealing queue, 636–640

Lock free FIFO queue, 632–636
Lock free programming

defined, 477
designing reusable libraries, 882
overview of, 517–520

Lock free reading, dictionary (hashtable),
627–631

Lock freedom, 518–519. See also Memory
models and lock freedom

Lock hierarchies. See Lock leveling
Lock leveling

avoiding deadlock with, 875–876
examples of using, 582–584
inconvenience of, 582
LOCK_TRACING symbol in, 589
overview of, 581
sample implementation in .NET, 584–589

Lock ordering. See Lock leveling

Lock ranking. See Lock leveling
lock statement, 870
LockFreeQueue<T> class, 632–636
Locking models, libraries, 867–870

documenting, 870
protecting instant state, 868–869
protecting static state, 867–868
using isolation and immutability, 869–870

LockRecursionPolicy,
ReaderWriterLockSlim, 294

Locks. See also Interlocked operations
as concurrency problem, 10
deadlocks without, 574–575
Mellor-Crummey-Scott (MSC), 778–781
and process shutdown. See Process

shutdown, locks and in reusable
libraries, 870–875

simultaneous multilock acquisition,
578–581

spin only, 772–778
two-phase protocols for, 767–769
as unfair in newer OSs, 217

Locks, CLR, 272–287
debugging monitor ownership, 285–287
defining, 254
entering and leaving, 272–281
monitor implementation, 283–285
overview of, 272
reliability and monitors, 281–283

locks command (!), 271
LOCK_TRACING symbol, lock leveling, 589
Loop blocking, 678
Loops

data parallelism and, 659–661
deciding to ìgo parallelî and, 756–757
loop blocking, 678
mapping over input data as application of

parallel loops, 675–676
Nesting loops, 677–678
prerequisites for parallelizing, 662
reductions and scans with, 678–681

Low-cost, implementing critical regions
with, 47

Low-lock code examples, 520–541
Decker’s algorithm, 540–541
lazy initialization, 520–527, 528–534
nonblocking stack and ABA problem,

534–537
Win32 singly linked lists (Slists), 538–540

Low resource conditions, 266–270, 290–291

Index 943

lpName argument, mutex, 213
lpParameter argument

converting threads into fibers, 438–439
CreateFiber(Ex), 435–437
CreateThread, 91

lpPreviousCount, ReleaseSemaphore,
223–224

lpStartAddress, CreateThread, 91
lpThreadAttributes, CreateThread, 90
lpThreadId parameter, CreateThread API,

92–93
LPVOID parameter

converting threads into fibers, 438
CreateFiber(Ex), 436
CreateThread API, 91

LPVOID value, TLS, 118–119
lReleaseCount, ReleaseSemaphore, 223–224

M
Managed code. See also CLR

aborting threads, 109–113
APCs and lock reliability in, 878
fiber support not available for, 429, 433
kernel synchronization in, 204–208
overview of, 85–87
process shutdown, 569–571
thread local storage, 121–124
triggering thread exit, 103
using CLR thread pool in. See CLR

thread pool
Managed debugging assistant (MDA), 575
ManagedThreadId property, 101
Manual-reset events, 226–234

creating and opening events, 228–230
events and priority boosts, 232–234
implementing queue with, 248–250
overview of, 226–227
setting and resetting events, 230–231

ManualResetEventSlim, 919–920
Map/reduce paradigm, 658
Mapping over input data, 675–676
Marshal-by-bleed, 279
MarshalByRefObject, 279
Marshal.GetLastWin32Error, 881
Maximum count, semaphores, 222
Maximum threads

CLR thread pool, 379–382
deadlocks from low, 382–385
Vista thread pool, 344, 348, 353

MAXIMUM_WAIT_OBJECTS
blocking and pumping messages, 202
registering wait callbacks in thread pools,

322–323
waiting in Win32, 190

MaxStackSize
creating threads in .NET, 99
specifying stack changes, 132
TaskManagerPolicy, 903

MDA (managed debugging assistant), 575
Measuring, speedup efficiency, 761–762
Mellor-Crummey-Scott (MSC) locks, 778–781
Memory

slim reader/writer locks and, 289
stack layout. See Stack memory layout
stack reserve/commit sizes and, 130–133

Memory consistency models, 506–520
.NET memory models, 516–518
hardware memory models, 509–511
lock free programming, 518–520
memory fences, 511–515
overview of, 506–508

Memory fences, 511–515
creating in programs, 513–515
double-checked locking in VC++ and, 528
hardware memory models and, 510
interlocked operations implying, 492
overview of, 511
release-followed-by-acquire-fence hazard,

515
types of, 511–513

Memory load and store reordering, 478–486
critical regions as fences, 484–485
impact of data dependence on, 485–486
overview of, 478–480
what can go wrong, 481–484

Memory models and lock freedom, 506–543
.NET memory models, 516–518
defining, 59–60
hardware atomicity. See Hardware

atomicity
hardware memory models, 509–511
lock free programming, 518–520
low-lock code examples. See Low-lock code

examples
memory fences, 511–515
memory load and store reordering, 478–486
overview of, 477–478

Merging, PLINQ, 912–914
Message-based parallelism, 658, 719–720

Index944

Message loops. See Message pumps
Message passing, 71–73
Message Passing Interface (MPI), 720
Message pumps

GUI and COM, 195–198
overview of, 830–833

MFENCE (full fence), 512–515
m_head, 535, 537
Microprocessor architectures, 178–179
Microsoft kernel debuggers, 271
Microsoft SQL Server, 433
Microsoft Windows Internals (Russinovich and

Solomon), 145, 154
minFreeThreads element, httpRuntime,

384–385
Minimum threads

CLR thread pool, 379–382
delays from low, 385–386
Vista thread pool, 344, 348, 353

MinProcessors, TaskManagerPolicy, 903
Missed pulses, 597–601
Missed wake-ups, 597–601
MMCSS (multimedia class scheduler

service), 167
Modal loop, GUIs, 198
Modeling, 4
Monitor, creating fences, 514
Monitor.Enter method

avoiding blocking, 275–277
CLR locks, 272–273
ensuring thread always leaves

monitor, 273–275
locking onAppDomain agile objects, 279
reliability and CLR monitors, 281–283
using value types, 277–278

Monitor.Exit method
avoiding blocking, 275–277
CLR locks, 272–273
ensuring thread always leaves monitor,

273–275
using value types, 277–278

Monitors, CLR
avoiding blocking, 275–276
exiting and entering, 272–275
implementing, 283–285
overview of, 272
reliability and, 281–283
using value types, 277–278

Monitors, .NET Framework, 68–70, 309–312
MPI (Message Passing Interface), 720

MSC (Mellor-Crummey-Scott) locks, 778–781
MSDN Magazine, 590
MsgWaitForMultipleObjects(Ex) API

kernel synchronization, 198–202
motivation for using, 833
waiting for managed code, 207

MTAs (multithreaded apartments), 575,
834–835

MTAThreadAttribute, 835
MultiLockHelper.Enter, 578
Multimedia class scheduler service

(MMCSS), 167
Mutants. See Mutexes
Mutexes, 211–219

abandoned, 217–219
acquiring and releasing, 216–217
avoiding registering waits for, 376
care when using APCs with, 210
creating and opening, 212–216
defined, 42
designing library locks, 874
example of semaphores and, 224–226
overview of, 211–212
process shutdown and, 564, 568, 571
signaled/nonsignaled state transition, 186
Vista thread pool completion tasks,

350–351
mutexSecurity argument, 214
Mutual exclusion mechanisms

avoiding deadlocks with, 576
causing deadlocks, 575
data synchronization. See Critical sections,

Win32; Locks, CLR
Dekker’s and Dijkstra’s algorithm, 50–53
executing interlocked operations, 492–493
hardware CAS instructions, 55–58
implementing critical regions, 47–48
Lamport’s bakery algorithm, 54–55
Peterson’s algorithm, 53–54
strict alternation, 49–50

m_value class, 521–527
MWMO-WAITALL value, 202
“Myths about the Mutual Exclusion”,

Peterson, 53

N
NA (neutral apartments), 834–835
Natural scalability, of algorithms, 760–761
Nested parallelism, 757

Index 945

Nesting loops, data parallelism and, 677–678
.NET Framework

avoiding building locks, 873
creating fences, 98–101, 514
creating threads, 152–153
dictionary (hashtable), 626–631
event-based asynchronous pattern in,

426–427
legacy reader/writer lock, 300–304
memory models, 516–518
monitors, 309–312
slim reader/writer lock (3.5), 293–300
synchronization contexts, 853–854
terminating threads. See Threads,

termination methods
timers, 373
using APM in, 418–419

.NET Framework Asynchronous GUI
asynchronous operations, 855–856
BackGroundWorker package, 856–860
overview of, 837
synchronization contexts, 847–854
Windows Forms, 837–840
Windows Presentation Foundation,

840–846
.NET Framework asynchronous I/O

asynchronous device/file I/O, 817–819
asynchronous sockets I/O, 820–822
I/O cancellation, 823
overview of, 817

Neutral Apartments (NA), 834–835
new Singleton() statement, 521, 524
NodeInfoArray, WCT, 596
Non-const pointer, 36–38
Non-Uniform Memory Access (NUMA)

machines, 178–179
Nonatomic software, 22
Nonblocking programming. See also Lock-

free data structures
ABA problem, 536–537
defined, 477
implementing custom nonblocking stack,

534–536
parallel containers and, 615
Win32 singly linked lists, 538–540

Nonlinear pipelines, 711
Nonlocal transfer of control, in Windows, 84
Nonsignaled events, 67
NotBuffered merge, PLINQ, 913
NP-hard problems, parallelism, 718

_NT_TIB, 146–148
NULL value, CreateThread failure, 92
NUMA (Non-Uniform Memory Access)

machines, 178–179

O
Object header inflation, 284–285
Object headers, CLR objects, 283–285
Object invariants, 548
object state argument, TPL, 890
Objects, overlapped, 788–792
Obstruction freedom, 518
128-bit interlocked operations, 500–502
Online debugging symbols, 139
OpenEvent(Ex) APIs, 228–230
OpenExisting method

closing mutexes, 215–216
opening events, 230
opening existing semaphore, 221

OpenSemaphore, 220–222
OpenThread, 95
OpenThreadWaitChainSession, WCT,

595–596
Optimistic concurrency, 625–626
Order preservation, PLINQ, 914–915
Orderly shutdown, 569–570
Orphaned locks, 45, 561–562
Orphaning, abandoned mutexes and, 218
OS threads, 879–880
OutofMemoryException, 143
Output dependence, 485–486
Overflow, stack, 140–145
Overlapped class, 369–370

CLR thread pool I/O completion
ports, 369–371

Overlapped I/O. See also Asynchronous I/O
overlapped objects, 788–792
overview of, 786–788

Overtaking race, 654
Ownership

asserting lock, 872
CLR thread pool and, 377
debugging CLR monitor ownership,

285–287
debugging legacy RWLs, 303–304
defined, 32
mutex, 211–212
overview of, 33–34
Vista thread pool, 352–353

Index946

P
P/Invoking, 881
P (taking), semaphores, 42
Pack method, CLR thread pool, 370
PAGE_GUARD attribute, 134, 137
Parallel class, TPL, 904–908
Parallel containers, 613–655

approaches to, 614–616
coordination containers, 640–650
fine-grained locking, 616–632
lock-free data structures, 632–640
phased computations with barriers,

650–654
sequential containers vs., 613–614

Parallel execution
cancellation, 729–731
concurrent exceptions, 721–729
data parallelism. See data parallelism
message-based parallelism, 719–720
overview of, 657–659
task parallelism. See Task parallelism

Parallel extensions to .NET, 887–930
concurrent collections, 924–929
further reading, 930
overview of, 887–888
parallel LINQ, 910–915
synchronization primitives. See

Synchronization primitives
TPL. See TPL (task parallel library)

Parallel hardware architecture, 736–756
cache coherence, 742–750
cache layouts, 740–742
locality, 750–751
memory hierarchy, 739
overview of, 736
profiling in Visual Studio, 754–756
sharing access to locations, 751–754
SMP, CMP, and HT, 736–738
superscalar execution, 738–739
UMA vs. NUMA, 740

Parallel LINQ. See PLINQ (Parallel LINQ)
Parallel merge-sort, 681–684
Parallel quick-sort, 681
Parallel traversal, 613
ParallelEnumerable class, PLINQ, 910–912
Parallelism

deciding to ìgo parallelî, 756–758
defined, 80
designing reusable libraries, 866–867

layers of, 8–10
measuring improvement due to, 758
overview of, 5
structured, 70–71

ParameterizedThreadStart, 99
Parents, task parallel library, 895–897
Partitioning, 912
PE (portable executable) image, 131–132
peb (!) command, 146
PEB (process environment block), within

TEB, 145
PeekMessage, 198–200
Performance

Amdahlís Law, 762–764
critical paths, 764–765
deciding to ìgo parallelî, 756–758
designing reusable libraries, 881–884
garbage collection and scalability, 766–767
Gustafsonís Law, 764
interlocked operations, 493, 505–506
load imbalances and, 765–766
measuring improvement due to

parallelism, 758
measuring speedups and efficiency,

760–762
Mellor-Crummey-Scott (MSC) locks,

778–781
natural scalability vs. speedups, 760–761
overview of, 735–736
parallel hardware architecture. See Parallel

hardware architecture
ReaderWriterLockSlim, 299
recursive lock acquires, 872
speedups and efficiencies and, 756
spin-only locks, 772–778
spin waiting and, 766–772
tuning quantum settings, 163
types of speedups, 758–760

Performance counters, querying thread state,
156–157

Periodic polling, 730
Persistent threads, Vista thread pool,

352–353
Pervasive concurrency, 865
Peterson’s algorithm, 53–54
Phased computations with barriers, 650–654
Pi-calculus, 72
Pipelines

defined, 541
generalized data structure, 712–716

Index 947

Pipelines, continued
load balanced, 716–717
overview of, 709–712
pipelining output of futures or promises,

698–702
PLINQ (Parallel LINQ)

buffering and merging, 912–914
defined, 887
order preservation, 914–915
overview of, 910–912

Pointer size values, store atomicity and, 487
Polling

asynchronous I/O completion, 798–800
canceling periodic, 730

Pollution, thread, 352, 377
Portable executable (PE) image, 131–132
Postconditions, as invariants, 548
Preconditions, as invariants, 547
Predictability, GUI, 836
Predictability, of responsive GUIs, 836
Preemptive scheduling, 83, 154–155
Prerender event, ASP.NET, 421
Priorities

custom thread pool with, 387–391
lock reliability and, 878
quantum adjustments and, 164–167
thread scheduling, 159–163

Priority boosts, 84, 232–234
Priority class, 159–160
Priority inheritance, 609
Priority inversion, 608–609, 610, 878
Priority level, 159
Priority, Thread class, 160
PriorityClass, Process, 159
PriorityLevel, ProcessThread, 160–161
Private state, shared state vs., 15–19
Privatization, 15–16, 33
ProbeForStackSpace method, 145
ProbeForSufficientStack, 144, 149
Probes, stack, 143–145
Process affinity masks, CPU affinity, 173–174
Process class, 159, 175
Process environment block (PEB), 145
Process exit, threads, 113–115
Process isolation, 31
Process shutdown, locks and, 561–571

managed code, 568
managed code and, 569–571
overview of, 561–563
Win32: weakening and termination,

563–568

Processes
assigning CPU affinity to, 171–175
Windows vs. UNIX, 80–81

ProcessExit event, CLR, 569–570
ProcessorAffinity, CPU affinity, 175
Processors

concurrency in modern, 5
creating fences at level of, 512–515
relationship between fibers, threads and,

438
ProcessPriorityClass, 159
ProcessThread class, 98, 160–161
Producer/consumer containers, 614
Producer/consumer relationship,

641–642
Profilers, thread suspension in, 170
Program order, 480–484
Programming Windows (Petzold), 198
Programs, naturally scalable, 5
Progress reporting, 425–426
ProgressChangedEventHandler, 426
Promise style future, 900
Promises

building dataflow systems, 693–695
pipelining output of, 698–702

Properties, ReaderWriterLockSlim, 295
Pseudo-handles, CreateThread, 94–95
PTEB structure, 146
Publication, data ownership and, 33
Pulse

.NET Framework monitors, 310
missed wake-ups, 598–601
two-step dance problems, 608

PulseAll
.NET Framework monitors, 310
missed wake-ups, 598–601
two–step dance problems, 608

PulseEvent API, 231
Pulsing, .NET Framework monitors, 310
Pump messages, GUI and COM, 195–204
CoWaitForMultipleHandles API, 202–203
deciding when to pump messages, 203–204
MsgWaitForMultipleObjects(Ex), 198–201
overview of, 195–198

Q
Quantums, 83, 163–167
QueueUserWorkItem

APM, 402–403
CLR thread pool, 371

Index948

legacy thread pool, 354–356, 363
ThreadPool class, 364–366

QueueWork functions, user-mode scheduler,
463–464

R
Race conditions (data races), 546–555

benign, 553–555
composite actions and, 550–553
concurrency causing, 10
eliminating with critical regions, 40
famous bugs due to, 610
inconsistent synchronization and, 26,

549–550
invariants and, 548
in library code, 874–875
overview of, 546–549
patterns of critical region usage, 43–45
reasons for, 26–27
two-step dance problems due to, 607–608

Radix sort, algorithms, 681
Random access, linked lists, 621
Randomized backoff, 602–603
RCWs (runtime callable wrappers), 575
Reactive systems, 61
Read-only synchronization, 881–882
Read/read hazards, 28, 34
Read/write hazards, 28
_ReadBarrier, 529
Reader/writer locks. See RWLs

(reader/writer locks)
ReaderWriterLock

as legacy version, 300–304
motivating development of new lock,

299–300
overview of, 293–294
for read-only synchronization, 881–882
reliability limitation, 298

ReaderWriterLockSlim
creating fences using, 514
motivation for, 299–300
overview of, 293–294
process shutdown, 565
recursive acquires, 297–298
reliability limitation, 298–299
three modes of, 294–295
upgrading, 296–297

ReadFile, 792
readonly fields, single assignment, 35–36

readonly keyword, single assignment, 35
Ready thread state, 155
Recursion

avoiding lock, 872
detecting in spin waiting, 773–775, 777
reentrancy and, 555–558
rules controlling, 558
task parallelism and, 702–709

Recursive acquires
avoiding lock, 872
example of, 557–558
mutex support for, 217
overview of, 556–557
ReaderWriterLockSlim, 297–298
SRWLs non-support for, 292–293
using, 558–561

Recursive algorithms, 558–559
Recursive locks, 556
RecursiveReadCount, ReaderWriterLockSlim,

295
RecursiveUpgradeCount,

ReaderWriterLockSlim, 295
RecursiveWriteCount,

ReaderWriterLockSlim, 295
Reduction, in data parallelism, 678–681
Reentrancy

caused by pumping, 203
concurrency causing, 11
lock reliability and, 877–878
overview of, 555–556
system introduced, 559–561

Registered waits
CLR thread pool, 374–377
legacy Win32 thread pool, 360–363
thread pools and, 322–323
Vista thread pool, 336–341

RegisteredWaitHandle, CLR, 376
RegisterWaitForSingleObject

building user-mode scheduler,
466–467

CLR thread pool, 375
legacy thread pool, 360–361

Relative priority, individual threads, 159
Release fence, 512
Release-followed-by-acquire-fence

hazard, 515
releaseCount argument, 224
ReleaseLock, legacy RWLs, 301
ReleaseMutex, 215–216
ReleaseMutexWhenCallbackReturns, 350
ReleaseSemaphore, 223–224

Index 949

ReleaseSemaphoreWhenCallbackReturns,
351

ReleaseSRWLockExclusive, 290, 293
ReleaseSRWLockShared, 290, 293
Reliability

designing library locks, 875–879
designing reusable libraries, 875–879
lock freedom and, 519–520

Remove, dictionary, 631
Rendezvous methods, asynchronous I/O

APC callback, 806–808
event handler, 802–805
I/O completion ports, 808–813
overview of, 792, 796
polling, 798–800
synchronous, 797–798
wait APIs, 800–802

Rendezvous patterns, ATM, 403–405
Reserve size, threads

creating stack overflow, 140–145
overview of, 130–133
stack memory layout, 138

ReSetEvent, 230
_resetstkoflw, 143
Responsiveness, GUI, 834–836
RestoreLock, legacy RWLs, 301
Resume, Thread class, 140
ResumeThread, 91
ResumeThreat, 169
retirement algorithm, 378–379
Rude shutdowns, 563
Rude thread aborts, 112
Run method, 831
RunClass Constructor, 877–878
Running state, threads, 155, 158–159
Runtime callable wrappers (RCWs), 575
Runtime, fibers and CLR, 450–453
RuntimeHelpers.ProbeForSufficientStack,

144, 149
RuntimeHelpers.RunClass Constructor,

877–878
RWLs (reader/writer locks), 287–304

.NET Framework legacy, 300–304

.NET Framework slim, 293–300
defined, 28
defining, 254–255
overview of, 287–289
read-only synchronization using,

881–882
Windows Vista SRWL, 288, 289–293

S
SafeHandles, 90
Scalability

asynchronous I/O and, 787–788
designing reusable libraries for, 881–884
garbage collection and, 766–767
of parallel algorithms, 666
speedups vs. natural, 760–761

Scalable access, of parallel containers, 613
Scans, and data parallelism, 681
Schedules, thread, 878–879
Scheduling, 879–881. See also Thread

scheduler, Windows; Thread scheduling
Search algorithms, 718–719, 730
Security

creating threads in .NET, 99
creating threads in Win32, 90
using kernel objects, 188

SEH (structured exception handling),
104–106, 721

Self-replication, TPL, 909–910
Semaphores, 219–226

creating and opening, 220–222
designing library locks, 874
mutex/semaphore example, 224–226
overview of, 42, 219–220
signaled/nonsignaled state transition,

186
taking and releasing, 223–224
Vista thread pool completion tasks, 351
waiting and, 185

SemaphoreSlim, 920–921
Sense-reversing barriers, 650
Sentinel nodes, FIFO queues, 617–618
Sequential programming, 727–728
Serializability, 30
Serializable history, 25
Serialized threads, 25
Servers, garbage collection, 766–767
SetCriticalSectionSpinCount, 264–265
SetData, TLS, 123
SetErrorMode, 105
SetEvent, 230
SetMaxThreads, Vista, 381
SetPriorityClass, 159
SetProcessAffinityMask, CPU affinity,

173–175
SetThreadAffinityMask, CPU affinity, 174
SetThreadContext, 151

Index950

SetThreadpoolCallbackRunLong, Vista,
349–350

SetThreadPoolMaximum, legacy, 363
SetThreadPoolMaximum, Vista, 344, 348, 353
SetThreadPoolMinimum, Vista, 344–345, 348,

353
SetThreadpoolTimer, Vista, 330–333
SetThreadpoolWait, Vista, 337–338, 340
SetThreadPriority, 160, 162, 352
SetThreadPriorityBoost, 165
SetThreadStackGuarantee, 134–135, 136–137,

142
SetWaitableTimer, 236–237
SFENCE (store fence), 512
Shallow immutable objects, 34
Shared mode, ReaderWriterLockSlim,

294–295
Shared resources, among threads, 80–81
Shared state, 14–19
SharedReaderLock method, 300
SharedWriterLock method, 300
Shutdown, building UMS, 470–472
Shutdown method, 470–471
Signaled events, 67
Signaled, vs. nonsignaled kernel objects,

184–185
SignalObjectAndWait

blocking queue data structure with auto-
reset, 244–248

blocking queue data structure with events,
243–244

overview of, 241–243
SimpleAsyncResult class, APM, 413–418
Simultaneous multilock acquisition, 578–581
Single assignment, 34–38
Single threaded apartments. See STAs (single

threaded apartments)
Singleton class, 521–523
64-bit Values, 499–500
Sleep API, 168
SleepConditionVariableCS, 305–306
SleepConditionVariableSRW, 305–306
SleepEx API, 168
Sleeping

condition variables and, 305–307
thread scheduling and, 167–168

Slim reader/writer locks. See SRWLs (slim
reader/writer locks)

SLIST_ENTRY data structure, 538–540
SLists (singly linked lists), 538–540

Socket class, APM, 419
Sockets

asynchronous sockets I/O in .NET, 820–822
asynchronous sockets I/O in Win32,

814–817
Software interrupts, 84–85
someLock, 598–601
Sort key, simultaneous multilock acquisition,

579–581
Sorting, 681–684
SOS debugging extensions, 285–287, 386–387
SoundPlayer, System.dll assembly, 427
Speculative search algorithms, 719
Speedup

Amdahlís Law, 762–764
critical paths, 764–765
deciding to ìgo parallelî, 756–758
garbage collection and scalability, 766–767
Gustafsonís Law, 764
load imbalances and, 765–766
measuring, 758, 761–762
natural scalability vs., 760–761
overview of, 756
types of, 758–760

Spin locks
building, 921–923
difficulty of implementing, 769
Mellor-Crummey-Scott, 778–781
for performance scalability, 873, 883
on Windows, 769–772

Spin-only locks, 772–778
Spin waiting

avoiding blocking in CLR locks, 276–277
avoiding blocking in critical sections,

264–266
avoiding hand coding, 882
defining, 63–64
Mellor-Crummey-Scott (MSC) locks,

778–781
overview of, 767–769
spin-only locks and, 772–778
SRWLs, 290
Windows OSs and, 769–772

SpinLock, 921–923
SpinWait, 923–924
Spurious wake-ups, 311–312, 598
SQL Server, fiber-based UMS, 86–87
SqlCommand type, APM, 419
SRWLOCK, 290–292
SRWLock, 565–567

Index 951

SRWLs (slim reader/writer locks)
.NET Framework, 293–300
integration with Windows Vista condition

variables, 304–309
Windows Vista, 288, 289–293

SSA (static single assignment), 34–38
Stack limit, 133, 135–138
Stack memory layout, 133–140

example of, 135–138
guaranteeing committed guard space,

134–135
overview of, 133–134
stack traces, 138–140

Stack space, 133, 135–138
/STACK switch, 132
Stack traces, 138–140
stackalloc keyword, 141
StackBase field, TEB, 147, 149
StackLimit field, TEB, 147, 149
StackOverflowException, 142
Stacks

ABA problem and, 536–537
creating new fibers, 436
implementing custom nonblocking,

534–536
overflow, 140–145
overview of, 82–83
reservation and commit sizes, 130–133
user-mode, 127–130

StackTrace class, 140
Stale read, 28
Stampedes, 605–606
Standby thread state, 155–156
START command, CPU affinity, 175
Start method, Thread class, 99
StartNew methods, TPL, 890
StartThreadpoolIo function, Vista, 335–336
Starvation, 608–609, 878
STAs (single threaded apartments)

deadlocks and, 574–575
overview of, 833–836
system introduced reentrancy and, 560–561

State, 14–38
atomicity, 29–30
broken invariants and invalid states, 20–21
in concurrent programs, 6–8
dependency, 61–62
fiber execution and, 430–431
general approaches to, 14
identifying shared vs. private, 15–19

immutability, 34–38
isolation, 31–34
linearizability, 30–31
overview of, 14–15
serializability, 30
simple data race, 22–29
state machines and time, 19–20
thread. See Thread state

STAThreadAttribute, 835
Static decomposition

continuous iterations and, 663
data parallelism and, 662–663
flaws in, 666

static methods, BlockingCollection<T>,
927–928

Static single assignment (SSA), 34–38
Static TLS, 118, 120–122
static variables, 867–868
STATUS_GUARD_PAGE_VIOLATION exception,

134
std::iterator objects (C++), 672
stopped state, threads, 158
Store-after-load dependence, 486
Store-after-store dependence, 485–486
Store atomicity, 487–492
Store fence (SFENCE), 512
Stores

.NET Framework memory models, 516–518
of 64-bit values, 499–500
atomic, 487–492, 499–500
hardware memory models and, 510

Stream class, APM, 419
Strict alternation

Dekker’s algorithm vs., 50–51
failure of in modern processors, 58–59
overview of, 49–50

Striped iterations, 667–669
Striping, 614–615
strtok function, 96
Structured exception handling (SEH),

104–106, 721
Structured fork/join, 687
Structured parallelism, 70–71
Structured tasks, 896
Sublinear speedups, 758–760
SubmitThreadpoolWork API, Vista, 326–330
Superlinear speedups, 719, 758–760
Suspend, Thread class, 140
Suspended state, threads, 158–159
SuspendThreat, 169

Index952

Suspension, thread
overview of, 91
stack trace and, 140
using in scheduling, 168–170

Swallowing exceptions, CLR, 105
SwitchToFiber, 440–441, 443–445, 466
SwitchToThread API, 168
Sychronizes-with mechanism, 509–510
Synchronization

inconsistent, 549–550
lock free vs. lock-based algorithm and, 519
never using thread suspension for, 170
synchronization contexts in .NET, 853–854
synchronization contexts in Windows,

847–853
torn reads from flawed, 490
two-phase locking protocols, 767–769
Vista thread pool, 341–342
Windows kernel. See Kernel

synchronization
Synchronization and time, 13–75

control. See Control synchronization
data. See Data synchronization
managing program state. See State
overview of, 13–14, 38–40

Synchronization burden, 7–8
Synchronization primitives, 915–924
CountdownEvent, 915–917
ISupportsCancelation, 915
LazyInit<T>, 917–919
ManualResetEventSlim, 919–920
SemaphoreSlim, 920–921
SpinLock, 921–923
SpinWait, 923–924

SynchronizationContext, 830, 837, 847–854
Synchronous aborts, 109, 111
Synchronous completion method, 797–798
Synchronous I/O, asynchronous I/O vs., 795
Synchronous I/O cancellation, 823, 824–825
SyncLock, 607
Synclock keyword, 274, 277–278
System affinity mask, 172–173
System introduced reentrancy, 559
System registry key, 163

T
targetLock, 592
Task parallel library. See TPL (task parallel

library)

Task parallelism, 684–719
dataflow parallelism, 689
defined, 658
fork/join parallelism, 685–688
futures used to build dataflow systems,

689–692
generalized pipeline data structure,

712–716
load balanced pipelines, 716–717
overview of, 684–685
pipelines, 709–712
pipelining output of futures or promises,

698–702
promises, 693–695
recursion, 702–709
resolving events to avoid blocking, 695–698
search algorithms and, 718–719

TaskCreationOptions enum, 891
TaskManagerPolicy, TPL, 902–904
TaskManagers, TPL

defined, 890
overview of, 902–904

TATAS locks, 778
Taxonomy

concurrent program structure, 6–8
parallelism, 9

TEB address, 121
TEB (thread environment block)

checking available stack space, 148–150
as internal data structure, 145–146
printing out information, 146
programmatically accessing, 146–148
stack memory layout, 135–138
thread creation details, 152
thread scheduling and, 881
thread state and, 127

Temporary boosting, 164–167
Terminated thread state, 156
TerminateProcess API

shutting down thread with brute force, 103
terminating process with, 563
terminating threads in Win32, 113
Windows Vista shutdown, 564

TerminateThread API
abrupt termination with, 113–114, 153–154
overview of, 107–109
specifying return code at termination, 94

Termination, thread. See Threads,
termination methods

Testing, wait condition inside locks, 878–879

Index 953

The Banker’s Algorithm, 577–581
Thin lock, 284
Third party in-process add-ins, 563
Third party locks, 873
Thread affinity

defined, 87
designing reusable libraries, 866
fibers and, 433, 447–449
fibers and CLR, 452–453

Thread blocks. See Blocks, thread
Thread class, 98–101, 132, 160
Thread coordination, 60–73

control synchronization and, 60–62
events, 66–68
message passing, 71–73
monitors and condition variables, 68–70
state dependence among threads, 61–62
structured parallelism, 70–71
waiting for something to happen, 63–66

Thread environment block. See TEB (thread
environment block)

Thread information block (TIB), 145
Thread injection, 378–379
Thread local storage. See TLS (thread local

storage)
Thread management

legacy Win32 thread pool, 363–364
Vista thread pool, 347–350

Thread management, CLR thread pool,
377–386

deadlocks from low maximum, 382–385
delays from low minimum, 385–386
minimum and maximum threads, 379–382
thread injection and retirement algorithm,

378–379
Thread pools, 315–398

CLR. See CLR thread pool
I/O callbacks, 319–321
introduction to, 316–317
legacy Win32. See Win32 legacy thread pool
overview of, 315–316
performance improvements of, 391–397
registered waits, 322–323
timers, 321–322
UMS scheduler vs., 454
using explicit threading vs., 88
Windows Vista. See Windows Vista thread

pool
work callbacks, 319
writing own, 318–319

Thread safety, 662
Thread scheduler, Windows

advantages of fibers, 432
blocks and, 83–84
CPU affinity, 170–179
defined, 81–82
disadvantages of fibers, 433–434
functions of, 83
ideal processor, 179–180
priority and quantum adjustments, 164–167
priority based, 155
programmatically creating threads, 89

Thread scheduling, 154–180
advantages of fibers, 432
CPU affinity, 170–179
disadvantages of fibers, 433–434
ideal processor, 179–180
multimedia scheduler, 167
overview of, 154–155
priorities, 159–163
priority and quantum adjustments, 164–167
quantums, 163–164
sleeping and yielding, 167–168
suspension, 168–170
thread states, 155–159

Thread start routine, 89–90, 103
Thread state, 127–145

defined, 158
stack memory layout, 133–140
stack overflow, 140–145
stack reservation and commit sizes,

130–133
thread scheduling and, 155–159
user-mode thread stacks, 127–130

ThreadAbortException, 104
Threading models, GUI

overview of, 830–833
single threaded apartments (STAs), 833–836

ThreadInterruptedException, 208
Thread.Join, 100–101, 885
Thread.MemoryBarrier, 514
!threadpool SOS extension command,

386–387
ThreadPriority, TaskManagerPolicy, 903
Threads, 79–125

asynchronous I/O cancellation for any,
825–826

asynchronous I/O cancellation for current,
823–824

CLR, 85–87

Index954

contexts, 151–152
converting into fibers, 438–439
creating, 152–153
creating and deleting in Vista thread pool,

347–350
designing reusable libraries, 879–881
determining whether fibers are, 439–440
DLLMain function, 115–117
explicit threading and alternatives, 87–88
fibers vs., 430–431
internal data structures, 145–151
local storage, 117–124
marshaling exceptions across, 721–724
overview of, 79–81
programmatically creating, 89–90
programmatically creating in C programs,

96–98
programmatically creating in .NET

Framework, 98–101
programmatically creating in Win32, 90–96
routines, user-mode scheduler, 459–460
scheduling, 154–180
state. See Thread state
synchronous I/O cancellation for, 824–825
terminating, 153–154
Windows, 81–85

Threads, termination methods, 101–114
defined, 83
details of, 153–154
ExitThread and TerminateThread,

107–109
overview of, 101–103
process exit, 113–115
returning from thread start routine, 103
thread aborts for managed code, 109–113
unhandled exceptions, 103–106

Thread.Sleep API, 167–168, 882–883, 885
ThreadState property, 157
ThreadStaticAttribute type, TLS, 121–122
Thread.VolatileRead method, 514
ThreadWorkRoutine method, building UMS,

459–460
Thresholds, stopping parallel recursion, 706
TIB (thread information block), 145
TimeBeginPeriod API, 168
TimeEndPeriod API, 168
Timeouts

.NET Framework monitors, 309–310
calling AsyncWaitHandles’ WaitOne,

407–410

condition variables, 306
detecting deadlocks, 594

Timer class, 371–374
Timer class, CLR thread pool, 372–374
Timer queue, 356–359
TimerCallback, CLR thread pool, 372
Timers. See also Waitable timers

CLR thread pool, 371–374
legacy Win32 thread pool, 356–359
overview of, 321–322
Vista thread pool, 330–334

Timeslice, 83. See also Preemptive scheduling
TimeSpan value, WaitHandle class, 206
Timing, and concurrent programs, 24–29
TLS (thread local storage), 117–124

accessing through .NET Framework, 880
creating threads in C programs, 96
fiber local storage vs., 445–447
managed code, 121–124
overview of, 117
Win32, 118–121

TlsAlloc API, 118–119
TlsFree function, 119
TlsGetValue API, 118–119
TLS_OUT_OF_INDEXES errors, 118–119
TlsSetValue API, 118–119
Torn reads, 487–490, 491–492
TPL (task parallel library), 888–910

cancellation, 897
continuations, 900–902
defined, 887
futures, 898–900
overview of, 888–893
parents and children, 895–897
putting it all together, 904–909
self-replication, 909–910
task managers, 902–904
unhandled exceptions, 893–895

TP_TIMER objects, 330–331
TP_WORK objects, 326–328, 330–334
Traces, stack, 138–140
Transfer, of data ownership, 33–34
Transition thread state, 156
Transitive causality, 483, 511
TreadAbortExceptions, 110
Tread.ResetAbort API, 110
True dependence, 485
True waiting, 64–65
Try/finally block, 273–275
TryAndPerform method, linked lists, 621, 624

Index 955

TryEnter method, CLR locks, 275–276
TryEnterCriticalSection, 263–266
TrySignalAndWait, 653–654
TrySteal, work stealing queue, 637, 639–640
TrySubmitThreadpoolCallback API, Vista

thread pool, 324–328
Two-phase locking protocols, 767
Two-step dance, 606–608
Type objects, 278–281, 873–874
TypeLoadException, 492

U
ULONG, 134
UMS (user-mode scheduler)

advantages of fibers, 431–432
defined, 430

UMS (user-mode scheduler), building,
453–473

context switches, 464–470
cooperative blocking, 461–463
dispatching work, 461
fiber pool data structures, 455–459
overview of, 453–455
queueing work, 463–464
shutdown, 470–472
stack vs. stackless blocking, 472–473
thread and fiber routines, 459–460

Unhandled exceptions
overriding default behavior, 105–106
task parallel library, 893–895
terminating threads, 103–105

UnhandledExceptionsAreFatal flag, TPL, 893
UNIX, 80
UnregisterWait(Ex), 362–363
Unrepeatable reads, 28
UnsafePack, CLR thread pool, 370
UnsafeQueueUserWorkItem, CLR thread pool,

364–366, 371
UnsafeRegisterWaitForSingleObject, CLR

thread pool, 375
Unstarted thread state, 157
Unstructured concurrency, 896–897
Upgrading

legacy RWLs, 302–303
ReaderWriterLockSlim, 294–297

User experience, and concurrency, 4
User-mode APCs, 208, 209–210
User-mode scheduler. See UMS (user-mode

scheduler)

User-mode scheduling, 87
User-mode stacks, 82

allocated when creating new fibers, 436
overview of, 127–130
reservation and commit sizes of, 130–133
thread creation and, 153

V
V (releasing), semaphores, 42
!vadump command, 135–138
VADUMP.EXE, 135
VB SyncLock statement, 870
VC++

creating fences in, 514–515
process shutdown, 565–567

Virtual memory, 130–133
VirtualAlloc function, 138, 143
VirtualQuery Win32 function, 149–151
volatile variable

creating fences, 513–514
interlocked operations, 494
lazy initialization in .NET, 524–525

W
Wait APIs, 800–802
Wait Chain Traversal (WCT), Windows Vista,

590, 594–597
Wait conditions, 878–879
Wait freedom, 518
Wait graphs, 589–594
Wait method, Task class, 892–893
WAIT_ABANDONED value

abandoned mutexes, 218–219
blocking and pumping messages, 199
process shutdown, 564, 568
waiting in Win32, 190–191

Waitable timers, 234–241
creating and opening, 235–236
overview of, 234–235
setting and waiting, 236–237
using FILETIMEs, 237–241

WAIT_ALL flags, 231–232
WaitAll,WaitHandle class, 205–206
WaitAny,WaitHandle class, 205–206
WAIT_FAILED, 190–191, 199
WaitForMultipleObjects(Ex)APIs

acquiring and releasing mutexes, 216
alertable waits, 193–195

Index956

building user-mode scheduler, 466–467
taking and releasing semaphores, 223–224
waiting in Win32, 190–193

WaitForSingleObject(Ex)APIs
abandoned mutexes and, 218
acquiring and releasing mutexes, 216
alertable waits, 193–195
taking and releasing semaphores, 223–224
waiting in Win32, 189–190

WaitForThreadpoolCallbacks, Vista, 328–330
WaitForThreadpoolTimer, Vista, 334
WaitForThreadpoolTimerCallbacks, Vista,

334
WaitForThreadpoolWaitCallbacks, Vista,

339, 341–342, 347
WaitHandle class, 204–206, 374
WaitHandle.WaitAll, 202, 231–232, 885
WaitHandle.WaitAny, 885
WaitHandle.WaitOne, 186
WaitHandle.WaitTimeout, 206
Waiting

.NET Framework monitors, 309–310
avoiding deadlocks with, 576
calling AsyncWaitHandles’ WaitOne

method, 407–410
causing deadlocks, 575
message waits, 195–198
in native code, 189–195
synchronization via kernel objects with,

184–186
using kernel objects, 188

Waiting, in control synchronization
busy spin waiting, 63–64
continuation passing style vs., 65–66
monitors and condition variables, 68–70
real waiting in OS kernel, 64–65
using events, 66–68

Waiting state, threads, 156
WaitingReadCount, ReaderWriterLockSlim,

295
WaitingUpgradeCount,

ReaderWriterLockSlim, 295
WaitingWriteCount, ReaderWriterLockSlim,

295
WAIT_IO_COMPLETION

alertable waits, 193
asynchronous procedure calls and, 209
blocking and pumping messages, 199–201

WAIT_OBJECT_0, 190–191, 199–202
WaitOne method, APM, 407–410, 416

WaitOne method, WaitHandle class, 205–206
WaitOrTimerCallback, CLR thread pool, 375
WaitSleepJoin thread state, 158–159,

207–208
WAIT_TIMEOUT, 190–191, 199–201
Wake-all, stampedes, 605–606
Wake-one, stampedes, 605–606
Waking, condition variables and, 306–307,

309
WCF (Windows Communication

Foundation), 72–73, 719
WCT (Wait Chain Traversal), Windows Vista,

590, 594–597
Weakening the lock, process shutdown,

563–564
WebClient, 427
WebRequest, APM, 419
WF (Workflow Foundation), 719–720
while loops

data parallelism and, 658–659, 661
iteration and, 672

Win32
bit operations in, 502–503
creating threads in, 90–96
critical sections. See Critical sections, Win32
DllMain function in, 115–117
interlocked singly-linked lists, 538–540
process shutdown in, 562, 563–568
slim reader/writer locks. See SRWLs (slim

reader/writer locks)
stack overflow disasters in, 141
terminating threads. See Threads,

termination methods
thread local storage, 118–121
waiting in, 189–195

Win32 asynchronous I/O, 792
APC callback completion method, 806–808
asynchronous sockets I/O, 814–817
completing, 796
event handler completion method, 802–805
I/O completion ports completion method,

808–813
initiating, 792–796
overview of, 792
polling completion method, 798–800
synchronous completion method, 797–798
wait APIs completion method, 800–802

Win32 legacy thread pool, 353–364
I/O completion ports, 359–360
overview of, 317–319

Index 957

Win32 legacy thread pool, continued
performance of, 391–397
registered waits, 360–363
thread management, 363–364
timers, 356–359
understanding, 353–354
work items, 354–356

WinDbg command, 146
Window procedures, 831
Windows

CLR threads vs., 85–87
GUIs on, 831
kernel synchronization. See Kernel

synchronization processes, 80–81
spin waiting, 769–772
stack overflow disasters in, 141
threads, 81–85, 152–153

Windows Communication Foundation
(WCF), 72–73, 719

Windows Forms, 837–840
identifying calls that need marshalling, 839
ISynchronizeInvoke for marshalling calls,

838–839
overview of, 837–838
running message loop mid-stack, 839–840

Windows Performance Monitor
(perfmon.exe), 156–157

Windows Presentation Foundation (WPF),
840–846

Windows Task Manager, 175
Windows Vista

condition variables, 304–309
one-time initialization, 529–534
performance of, 391–397
process shutdown in, 563–568
slim reader/writer lock, 288, 289–293
synchronous I/O cancellation, 823
Wait Chain Traversal, 590

Windows Vista thread pool, 323–353
callback completion tasks, 350–351
creating timers, 330–334
debugging, 353
environments, 342–347
I/O completion ports, 334–336
introduction to, 323–324
no thread ownership and, 352–353
overview of, 317–319
registered waits, 336–341
synchronization with callback completion,

341–342
thread management, 347–350
work items, 324–330

Work callbacks, thread pools and, 319
Work items

CLR thread pool, 364–368
legacy Win32 thread pool, 354–356
thread pool performance and, 391–397
Vista thread pool, 324–330

Work stealing queue, 636–640
WorkCallback, 456–459, 461
Workflow Foundation (WF), 719–720
Workstations (concurrent), garbage

collection, 766
WPF (Windows Presentation Foundation),

840–846
Write/read hazards, 28
Write/write hazards, 28
_WriteBarrier, 529
WriteFile, 792

X
X86 architecture, 509–511, 512
XADD instruction, 504
XCHG primitive, 493–499

Index958

	Foreword
	Preface
	2 Synchronization and Time
	Managing Program State
	Synchronization: Kinds and Techniques
	Where Are We?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

