
DRAFT MANUSCRIPT

Books Available

Spring 2007

This manuscript has been provided by Pearson Education at this
early stage to create awareness for this upcoming book. It has not
been copyedited or proofread yet; we trust that you will judge this
book on technical merit, not on grammatical and punctuation errors

that will be fixed at a later stage.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher.

All Pearson Education books are available at a discount for corporate
bulk purchases. For information on bulk discounts,

please call (800) 428-5531

i

Implementation
Patterns

Kent Beck

Draft copyright (c) 2006, Kent Beck, All rights reserved

ii
Preface v

Introduction 1

Patterns 3

A Theory of Programming 7

Motivation 17

Class 19
Class 20
Simple Superclass Name 21
Qualified Subclass Name 22
Abstract Interface 22
Interface 23
Abstract Class 24
Versioned Interface 25
Value Object 26
Specialization 29
Subclass 29
Implementor 31
Inner Class 32
Instance-specific Behavior 33
Conditional 33
Delegation 35
Pluggable Selector 37
Anonymous Inner Class 38
Library Class 38

State 41
State 42
Access 43
Direct Access 44
Indirect Access 44
Common State 45
Variable State 46
Extrinsic State 47
Variable 48
Local Variable 49
Field 50

iii
Parameter 51
Collecting Parameter 53
Optional Parameter 53
Var Args 54
Parameter Object 54
Constant 55
Role-Suggesting Name 56
Declared Type 57
Initialization 58
Eager Initialization 58
Lazy Initialization 59

Control 61
Control Flow 62
Main Flow 62
Message 62
Choosing Message 63
Double Dispatch 64
Decomposing Message (Sequencing Message) 65
Reversing Message 65
Inviting Message 66
Explaining Message 67
Exceptional Flow 67
Guard Clause 68
Exception 70
Checked Exceptions 70
Exception Propagation 71

Methods 73
Composed Method 75
Intention-Revealing Name 77
Method Visibility 78
Method Object 79
Overridden Method 81
Overloaded Method 81
Method Return Type 82
Method Comment 82
Helper Method 83
Debug Print Method 84
Conversion 84
Conversion Method 85
Conversion Constructor 86
Creation 86

iv
Complete Constructor 87
Factory Method 88
Internal Factory 88
Collection Accessor Method 89
Boolean Setting Method 90
Query Method 91
Equality Method 91
Getting Method 93
Setting Method 93
Safe Copy 94

Collections 97

Evolving Frameworks 115

Bibliography 129

Performance Measurement 133

Chapter 1 Preface

This is a book about programming, specifically about programming so other
people can understand your code. There is no magic to writing code other peo-
ple can read. It’s like all writing—know your audience, have a clear overall
structure in mind, express the details so they contribute to the whole story. Java
offers some good ways to communicate. The implementation patterns here are
Java programming habits that result in readable code.

Another way to look at implementation patterns is as a way of thinking,
“What do I want to say to someone when they read this code?” Programmers
spend so much of their time in their own heads that trying to look at the world
from someone else’s viewpoint is a big shift. Not just, “What will the computer
do with this code?” but, “How can I communicate what I am thinking to
people?” This shift in perspective is healthy and potentially profitable, since so
much software development money is spent on understanding existing code.

There is an American game show called Jeopardy in which the host supplies
answers and the contestants try to guess the questions. “A word describing
being thrown through a window.” “What is ‘defenestration’?” “Correct.”

Java provides answers in the form of its basic constructs. Programmers
usually have to figure out what problem is solved by each language construct.
“Declare a field as a Set.” “How can I tell other programmers that a collection
contains no duplicates?” These implementation patterns provide a catalog of
the common problems in programming and the features of Java that address
those problems.

Scope management is as important in book writing as it is in software
development. Here are some things this book is not. It is not a style guide
because it contains too much explanation and leaves the final decisions up to
the reader. It is not a design book because it is mostly concerned with smaller-
scale decisions, the kind programmers make many times a day. It’s not a
patterns book because the format of the patterns is idiosyncratic and ad hoc
(literally “built for a particular purpose”). It’s not a language book because,
while it covers many Java language features, it assumes readers already know
Java.

Actually this book is built on a rather fragile premise: that good code
matters. I have seen too much ugly code make too much money to believe that
quality of code is either necessary or sufficient for commercial success or
v

vi CHAPTER 1
widespread use. However, I still believe that quality of code matters even if it
doesn’t provide control over the future. Businesses that are able to develop and
release with confidence, shift direction in response to opportunities and
competition, and maintain positive morale through challenges and setbacks will
tend to be more successful than businesses with shoddy, buggy code.

Even if there was no long-term economic impact from careful coding I would
still choose to write the best code I could. A seventy-year lifespan contains just
over two billion seconds. That’s not enough seconds to waste on work I’m not
proud of. Coding well is satisfying, both the act itself and the knowledge that
others will be able to understand, appreciate, use, and extend my work.

In the end, then, this is a book about responsibility. As a programmer you
have been given time, talent, money, and opportunity. What will you do to
make responsible use of these gifts? The pages that follow contain my answer to
this question for me: code for others as well as myself and my buddy the CPU.

Acknowledgements

First, last, and always I would like to thank Cynthia Andres, my partner, editor,
support, and chief butt-kicker. My friend Paul Petralia got this project going
with me and provided encouraging phone calls throughout. My editor Chris
Guzikowski and I learned how to work together over the course of this project.
He gave me the support I needed from the Pearson side to finish the book. My
reviewers provided clear, timely feedback for my drafts: Erich Gamma, Steve
Metsker, Diomidis Spinellis, Tom deMarco, Michael Feathers, Doug Lea, Brad
Abrams, Cliff Click, and Michele Marchesi. My children who remain at home
kept reminding me of why I wanted to be finished: Lincoln, Lindsey, Forrest,
and Joëlle Andres-Beck.

Chapter 1 Control

John Von Neumann contributed one of the primary metaphors of computing—
a sequence of instructions that are executed one by one. This metaphor perme-
ates most programming languages, Java included. The topic of this chapter is
how to express the flow of control in a program. The patterns are:

• Control Flow—Express computations as a sequence of steps.

• Main Flow—Clearly express the main flow of control.

• Message—Express control flow by sending a message.

• Choosing Message—Vary the implementors of a message to express choices.

• Double Dispatch—Vary the implementors of messages along two axes to
express cascading choices.

• Decomposing Message—Break complicated calculations into cohesive
chunks.

• Reversing Message—Make control flows symmetric by sending a sequence
of messages to the same receiver.

• Inviting Message—Invite future variation by sending a message that can be
implemented in different ways.

• Explaining Message—Send a message to explain the purpose of a clump of
logic.

• Exceptional Flow—Express the unusual flows of control as clearly as possi-
ble without interfering with the expression of the main flow.

• Guard Clause—Express local exceptional flows by an early return.

• Exception—Express non-local exceptional flows with exceptions.

• Checked Exception—Ensure that exceptions are caught by declaring them
explicitly.

• Exception Propagation—Propagate exceptions, transforming them as neces-
sary so the information they contain is appropriate to the catcher.
61

62 CHAPTER 1
Control Flow

Why do we have control flow in programs at all? There are languages like Pro-
log that don’t have an explicit notion of a flow of control. Bits of logic float
around in a soup, waiting for the right conditions before becoming active.

Java is a member of the family of languages in which the sequence of control
is a fundamental organizing principle. Adjacent statements execute one after
the other. Conditionals cause code to execute only in certain circumstances.
Loops execute code repeatedly. Messages are sent to activate one of several
subroutines. Exceptions cause control to jump up the stack.

All of these mechanisms add up to a rich medium for expressing
computations. As an author/programmer, you decide whether to express the
flow you have in mind as one main flow with exceptions, multiple alternative
flows each of which is equally important, or some combination. You group bits
of the control flow so they can be understood abstractly at first, for the casual
reader, with greater detail available for those who need to understand them.
Some groupings are routines in a class, some are by delegating control to
another object.

Main Flow

Programmers generally have in mind a main flow of control for their programs.
Processing starts here, ends there. There may be decisions and exceptions along
the way, but the computation has a path to follow. Use your programming lan-
guage to clearly express that flow.

Some programs, particularly those that are designed to work reliably in
hostile circumstances, don’t really have a visible main flow. These programs are
in the minority, however. Using the expressive power of your programming
language to clearly express little-executed, seldom changed, facts about your
program obscures the more highly-leveraged part of your program; the part
that will be read, understood, and changed frequently. It’s not that exceptional
conditions are unimportant, just that focusing on expressing the main flow of
the computation clearly is more valuable.

Therefore, clearly express the main flow of your program. Use exceptions
and guard clauses to express unusual or error conditions.

Message

One of the primary means of expressing logic in Java is the message. Procedural
languages use procedure calls as a information hiding mechanism:

63
compute() {
input();
process();
output();

}

says, “For purposes of understanding this computation all you need to know is
that it consists of these three steps, the details of which are not important at the
moment.” One of the beauties of programming with objects is that the same
procedure also expresses something richer. For every method, there is poten-
tially a whole set of similarly-structured computations whose details differ.
And, as an extra added bonus, you don’t have to nail down the details of all
those future variations when you write the invariant part.

Using messages as the fundamental control flow mechanism acknowledges
that change is the base state of programs. Every message is a potential place
where the receiver of the message can be changed without changing the sender.
Rather than saying, “There is something out there the details of which aren’t
important,” the message-based version of the procedure says, “At this point in
the story something interesting happens around the idea of input. The details
may vary.” Using this flexibility wisely, making clear and direct expressions of
logic where possible and deferring details appropriately, is an important skill if
you want to write programs that communicate effectively.

Choosing Message

Sometimes I send a message to choose an implementation, much as a case state-
ment is used in procedural languages. For example, if I am going to display a
graphic in one of several ways I will send a polymorphic message to communi-
cate that a choice will take place at runtime.

public void displayShape(Shape subject, Brush brush) {
brush.display(subject);

}

The message display() chooses the implementation based on the runtime type
of the brush. Then I am free to implement a variety of brushes: ScreenBrush, Post-
scriptBrush, and so on.

Liberal use of choosing messages leads to code with few explicit
conditionals. Each choosing message is an invitation to later extension. Each
explicit conditional is another point in your program that will require explicit
modification in order to modify the behavior of the whole program.

Reading code that uses lots of choosing messages requires skill to learn. One
of the costs of choosing messages is that a reader may have to look at several

64 CHAPTER 1
classes before understanding the details of a particular path through the
computation. As a writer you can help the reader navigate by giving the
methods intention-revealing names. Also, be aware of when a choosing message
is overkill. If there is no possible variation in a computation, don’t introduce a
method just to provide the possibility of variation.

Double Dispatch

Choosing messages are good for expressing a single dimension of variability. In
the example in Choosing Message, this dimension was the type of medium on
which the shape was to be drawn. If you need to express two independent
dimensions of variability you can cascade two choosing messages.

For example, suppose I wanted to express that a Postscript oval was
computed differently than a screen rectangle. First I would decide where I
wanted the computations to live. The base computations seeem like they belong
in the Brush, so I will send a choosing message first to the Shape, then to the Brush:

displayShape(Shape subject, Brush brush) {
shape.displayWith(brush);

}

Now each Shape has the opportunity to implement displayWith() differently.
Rather than do any detailed work, however, they append their type onto the
message and defer to the Brush:

Oval.displayWith(Brush brush) {
brush.displayOval(this);

}
Rectangle.displayWith(Brush brush) {
brush.displayRectangle(this);

}

Now the different kids of brushes have the information they need to do their
work:

PostscriptBrish.displayRectangle(Rectangle subject) {
writer print(subject.left() +” “ +...+ “ rect);

}

Double dispatch introduces some duplication with a corresponding loss of
flexibility. The type names of the receivers of the first choosing message get
scattered over the methods in the receiver of the second choosing message. In
this example, this means that to add a new Shape, I would have to add methods
to all the Brushes. If one dimension is more likely to change that the other, make
it the receiver of the second choosing message.

65
The computer scientist in me wants to generalize to triple, quadruple,
quintuple dispatch. However, I’ve only ever attempted triple dispatch once and
it didn’t stay for long. I have always found clearer ways to express multi-
dimensional logic.

Decomposing Message (Sequencing Message)

When you have a complicated algorithm composed of many steps, sometimes
you can group related steps and send a message to invoke them. The intended
purpose of the message isn’t to provide a hook for specialization or anything
sophisticated like that. It is just old-fashioned functional decomposition. The
message is there simply to invoke the subsequence of steps in the routine.

Decomposing messages need to be descriptively named. Most readers should
be able to gather what they need to know about the purpose of the subsequence
from the name alone. Only those readers interested in implementation details
should have to read the code invoked by the decomposing message.

Difficultly naming a decomposing message is a tip off that this isn’t the right
pattern to use. Another tip off is long parameter lists. If I see these symptoms, I
inline the method invoked by the decomposing message and apply a different
pattern, like Method Object, to help me communicate the structure of the
program.

Reversing Message

Symmetry can improve the readability of code. Consider the following code:

void compute() {
input();
helper.process(this);
output();

}

While this method is composed of three others, it lacks symmetry. The
readability of the method is improved by introducing a helper method that
reveals the latent symmetry. Now when reading compute() I don’t have to keep
track of who is sent the messages, they all go to this.

void process(Helper helper) {
helper.process(this);

}
void compute() {
input();
process(helper);
output();

66 CHAPTER 1
}

Now the reader can understand how the compute() method is structured by
reading a single class.

Sometimes the helper method invoked by a reversing message becomes
important on its own. Sometimes, overuse of reversing messages can obscure
the need to move functionality. If we had the following code:

void input(Helper helper) {
helper.input(this);

}
void output(Helper helper) {
helper.output(this);

}

it would probably be better structured by moving the whole compute() method to
the Helper class:

compute() {
new Helper(this).compute();

}
Helper.compute() {
input();
process();
output();

}

Sometimes I feel silly introducing methods “just” to satisfy an “aesthetic”
urge like symmetry. Aesthetics go deeper than that. Aesthetics engage more of
your brain than strictly linear logical thought. Once you have cultivated your
sense of the aesthetics of code, the aesthetic impressions you receive of your
code is valuable feedback about the quality of the code. Those feelings that
bubble up from below the surface of symbolic thought can be as valuable as
your explicitly named and justified patterns.

Inviting Message

Sometimes, as you are writing code you expect that people will want to vary a
part of the computation in a subclass. Send an appropriately named message to
communicate the possibility of later refinement. The message invites program-
mers to refine the computation for their own purposes later.

If there is a default implementation of the logic, fill it in in the
implementation of the message. If not, declare the method abstract to make the
invitation more explicit.

67
Explaining Message

The distinction between intention and implementation has always been impor-
tant in software development. It is what allows you to understand a computa-
tion first in essence and later, if necessary, in detail. You can use message to
make this distinction by sending a message named after the problem you are
solving which in turn sends a message named after how the problem is to be
solved.

The first example I saw of this was in Smalltalk. Transliterated, the method
that caught my eye was this:

highlight(Rectangle area) {
reverse(area);

}

I thought, “Why is this useful? Why not just call reverse() directly instead of
calling the intermediate highlight() method?” After some thought, though, I
realized that while highlight() didn’t have a computational purpose, it did serve to
communicate an intention. Calling code could be written in terms of what
problem they were trying to solve, namely highlighting an area of the screen.

Consider introducing an explaining message when you are tempted to
comment a single line of code. When I see:

flags|= LOADED_BIT; // Set the loaded bit

I would rather read:

setLoadedFlag();

Even though the implementation of setLoadedFlag() is trivial. The one-line
method is there to communicate.

void setLoadedFlag() {
flags|= LOADED_BIT;

}

Sometimes the helper methods invoked by explaining messages become
valuable points for further extension. It’s nice to get lucky when you can.
However, my main purpose in invoking an explaining message is to
communicate my intention more clearly.

Exceptional Flow

Just as programs have a main flow, they can also have one or more exceptional
flows. These are paths of computation that are less important to communicate

68 CHAPTER 1
because they are less-frequently executed, less-frequently changed, or conceptu-
ally less important than the main flow. Express these paths as clearly as possible
consistent with expressing the main flow clearly. Guard clause and exceptions
are two ways of expressing exceptional flows.

Programs are easiest to read if the statements execute one after another.
Readers can use comfortable and familiar prose-reading skills to understand the
intent of the program. Sometimes, though, there are multiple paths through a
program. Expressing all paths equally would result in a bowl of worms, with
flags set here and used there and return values with special meanings. Answer-
ing the basic question, “What statements are executed?” becomes an exercise in
a combination of archaeology and logic. Pick the main flow. Express it clearly.
Use exceptions to express other paths.

Guard Clause

While programs have a main flow, some situations require deviations from the
main flow. The guard clause is a way to express simple and local exceptional
situations with purely local consequences. Compare the following:

void initialize() {
if (!isInitialized()) {
...

}
}

with:

void initialize() {
if (!isInitialized())
return;

...
}

When I read the first version, I make a note to look for an else clause while I
am reading the then clause. I mentally put the condition on a stack. All of this is
a distraction while I am reading the body of the then clause. The first two lines
of the second version simply give me a fact to note: the receiver hasn’t been
initialized.

If-then-else expresses alternative, equally important control flows. Guard
clause is appropriate for expressing a different situation, one in which one of
the control flows is more important than the other. In the initialization example
above, the important control flow is what happens when the object is
initialized. Other than that, there is just a simple fact to notice, that even if an

69
object is asked to initialize multiple time it will only execute the initialization
code once.

Back in the old days of programming a commandment was issued: each
routine shall have a single entry and a single exit. This was to prevent the
confusion possible when jumping into and out of many locations in the same
routine. It made good sense when applied to FORTRAN or assembly language
programs written with lots of global data where even understanding which
statements were executed was hard work. In Java, with small methods and
mostly-local data, it is needlessly conservative. However, this bit of
programming folklore, thoughtlessly obeyed, prevents the use of guard clauses.

Guard clauses are particularly useful when there are multiple conditions:

void compute() {
Server server= getServer();
if (server != null) {
Client client= server.getClient();
if (client != null) {
Request current= client.getRequest();
if (current != null)
processRequest(current);

}
}

}
}

Nested conditionals breed defects. The guard clause version of the same code
notes the prerequisites to processing a request without complex control
structures:

void compute() {
Server server= getServer();
if (server == null)
return;

Client client= server.getClient();
if (client == null)
return;

Request current= client.getRequest();
if (current == null)
return;

processRequest(current);
}

A variant of guard clause is the continue statement used in a loop. It says,
“Never mind this element. Go on to the next one.”

while (line = reader.readline()) {
if (line.startsWith('#') || line.isEmpty())
continue;

70 CHAPTER 1
// Normal processing here
}

Again, the intent is to point out the (strictly local) difference between normal
and exceptional processing.

Exception

Exceptions are useful for expressing jumps in program flow that span levels of
function invocation. If you realize many levels up on the stack that a problem
has occurred—a disk is full or a network connection has been lost—you may
only be able to reasonably deal with that fact much lower down on the call
stack. Throwing an exception at the point of discovery and catching at the
point where it can be handled is much better than cluttering all the intervening
code with explicit checks for all the possible exceptional conditions, none of
which can be handled.

Exceptions cost. They are a form of design leakage. The fact that the called
method throws an exception influences the design and implementation of all
possible calling methods until the method is reached that catches the method.
They make it difficult to trace the flow of control, since adjacent statements can
be in different methods, objects, or packages. Code that could be written with
conditionals and messages, but is implemented with exceptions, is fiendishly
difficult to read as you are forever trying to figure out what more is going on
than a simple control structure. In short, express control flows with sequence,
messages, iteration, and conditionals (in that order) wherever possible. Use
exceptions when not doing so would confuse the simply-communicated main
flow.

Checked Exceptions

One of the dangers of expectations is what happens if you throw an exception
but no one catches it. The program terminates, that’s what happens. But you’d
like to control when the program terminates unexpectedly, printing out infor-
mation necessary to diagnose the situation and telling the user what has hap-
pened.

Exceptions that are thrown but not caught is an even bigger risk when
different people write the code that throws the exception and the code that
catches the exception. Any missed communication results in an abrupt and
impolite program termination.

To avoid this situation, Java has checked exceptions. These are declared
explicitly by the programmer and checked by the compiler. Code that is subject

CONCLUSION 71
to having a checked exception thrown at it must either catch the exception or
pass it along.

Checked exceptions come with considerable costs. First is the cost of the
declarations themselves. These can easily add 50% to the length of method
declarations and add one more thing to read and understand along all those
levels between the thrower and catcher. Checked exceptions also make
changing code more difficult. Refactoring code with checked expections is more
difficult and tedious than code without. Modern IDEs reduce the burden, but it
is still there.

Exception Propagation

Exceptions occur at different levels of abstraction. Catching and reporting a
low-level exception can be confusing to some who is not expecting it. When a
web server shows me a page with stack trace headed by a NullPointerExcep-
tion, I’m not sure what I’m supposed to do with the information. There’s noth-
ing I can do about it. I’d rather see a message that said, “The programmer did
not consider the scenario you have just presented.”

Low-level exceptions often contain valuable information for diagnosing a
defect. Wrap the low-level exception in the higher-level exception so that when
the exception is printed, on a log for example, enough information is written to
help find the defect.

Conclusion

Control flows between methods of a program built from objects. The next
chapter describes using methods to express the concepts in a computation.

72 CHAPTER 1

