
Preface

This book is a software developer’s guide to using the Microsoft Tools for
Domain-Specific Languages (“DSL Tools”), which are included in the SDK
(Software Development Kit) for Microsoft Visual Studio 2005.

The software industry is showing considerable interest in using
“domain-specific languages,” an approach to building software that
promises to reduce software development costs, especially in large proj-
ects. A domain-specific language (DSL) is a language specially geared to
working within a particular area of interest: a vertical domain such as
telephone design, or a horizontal one like workflow. It may be a program-
ming language or a specification or design language. It may be textual or
graphical, or a mixture of both. The language is expressed in terms that
are used in a particular domain, such as “connect,” “ringtone,” or “work
item,” uncluttered by the details of how those concepts are implemented.
Software, configuration files, resources, and other documents can be gen-
erated from instances of the language—often many of those artifacts can
be generated from one DSL—or the language may be interpreted directly.
This makes it much easier to discuss the software at the requirements
level, and to make changes in an agile way. In vertical domains, the
accessibility of the language to business users helps when discussing
requirements with them.

DSLs are not a new idea—HTML and SQL are well-known examples of
DSLs. Less widespread, however, is the idea of creating your own DSL for
your own project. The purpose of the Microsoft DSL Tools is to reduce the

xxix



upfront cost of doing so. You can quickly create a range of diagrammatic
languages, such as workflow, class, or entity diagrams, and you can create
tools for generating artifacts from them.

Goals and Scope

This book is for you if you are a software developer or architect using, or
thinking about using, the Microsoft DSL Tools. It explains how to create
and use languages, how to tune them to your needs, and how to employ
them within the context of your project. The book should also be of sig-
nificant value to readers who are interested in the broader general topic of
domain-specific languages, or who wish to compare and contrast different
approaches to model-driven development, or tools that support model-
driven development. Chapters 1 and 11 discuss the more general topic of
domain-specific languages, and how you go about designing one. The
middle chapters focus exclusively on providing a detailed yet readable ref-
erence on building DSLs and code generators using the DSL Tools.

The book’s authors are the main designers of the Microsoft DSL Tools.
They have worked together on the product since its inception, and are
responsible for most of the key design decisions.

Why You Might Want to Use DSL Tools

If you (or your organization) are writing the same or similar code repeat-
edly, whether within a single large project or over the course of multiple
projects, then such code can probably be generated. If this is the case, you
should consider using the DSL Tools as a way to generate this code. This is
especially the case if the code can be generated from structures that can eas-
ily be understood by domain specialists rather than software development
specialists. After reading this book, you should be able to assess the capa-
bilities of the DSL Tools to address problems of this kind, either directly or
after some customization.

Prefacexxx



Organization of This Book

• Chapter 1, Domain-Specific Development, explains the DSL approach,
compares it with similar techniques, and introduces typical scenarios
in which a DSL is used.

• Chapter 2, Creating and Using DSLs, looks at the various parts of the
DSL Tools system, shows how they fit together, and introduces the
main examples that will be used through the remainder of the book.

• Chapter 3, Domain Model Definition, details how to define the concepts
of the language.

• Chapter 4, Presentation, deals with defining the visual appearance of
your language.

• Chapter 5, Creation, Deletion, and Update Behavior, covers these
important aspects of the behavior of your language.

• Chapter 6, Serialization, deals with how models and diagrams in
your language are represented in files.

• Chapter 7, Constraints and Validation, shows you how to ensure that
the users of your language create valid statements.

• Chapter 8, Generating Artifacts, shows you how to use your language
to drive or configure your system by creating configuration files,
program code, resources, and other artifacts.

• Chapter 9, Deploying a DSL, explains how to create an installer that
will install your finished language on multiple computers.

• Chapter 10, Advanced DSL Customization, shows you how to make 
specialized features of your language (or specialized behavior in 
the editor) in addition to those provided by the standard definition
facilities.

• Chapter 11, Designing a DSL, provides a lightweight kit of principles
and procedures for developing and evolving languages within the
context of your project.

Updates and all of the main examples are available for download at the
website www.domainspecificdevelopment.com.

Preface xxxi

www.domainspecificdevelopment.com


What You Need to Use This Book

To get the full value of this book, you need to be reasonably familiar with
the facilities that Visual Studio offers to developers of program code,
including the code editor and XML editor. A basic knowledge of the C#
programming language and the main aspects of the .NET class library are
needed to understand the programming examples.

DSL Tools can be downloaded as part of the Visual Studio SDK and used
with Visual Studio Professional Edition and later. Tools created using the
DSL Tools can be deployed on Visual Studio Standard Edition and later. The
website http://msdn.microsoft.com/vstudio/DSLTools/ is the entry point
to information about the DSL Tools. There you can find links to where the
SDK can be downloaded, a popular online forum with active discussions
about the DSL Tools, weblogs containing discussions about the DSL Tools
by the authors of this book and others, a tool for reporting bugs and mak-
ing suggestions, white papers, chats, and other resources.

Acknowledgments

The authors would like to acknowledge the contributions of the following
people who contributed materially to the design, development, documen-
tation, and testing of the DSL Tools:

Annie Andrews, Steve Antoch, Austin Avrashow, Bhavin Badheka,
Andy Bliven, Anthony Bloesch, Scott Chamberlin, Frank Fan, Jack Green-
field, Howie Hilliker, Ashish Kaila, Jesse Lim, George Mathew, Niall
McDonnell, Blair McGlashan, Grayson Myers, Kirill Osenkov, Duncan
Pocklington, Anatoly Ponomarev, Jochen Seemann, Keith Short, Pedro
Silva, Patrick Tseng, Steven Tung, Dmitriy Vasyura, and Yu Xiao.

We would also like to acknowledge our community of early users,
including participants in the DSL Tools Forum, who have stayed with us
through a sequence of technology previews. The feedback of these early
users has been immeasurably helpful in the process of getting the DSL
Tools completed.

The following reviewers have given us invaluable detailed feedback on
the contents of the book, which has improved it considerably:

Prefacexxxii

http://msdn.microsoft.com/vstudio/DSLTools/


Victor Garcia Aprea, Edward Bakker, Dan Cazzulino, Patrick Cooney,
Dragos Manolescu, Jean-Marc Prieur, Jezz Santos, Gerben van Loon, and
Markus Völter.

Joan Murray and her team at Addison-Wesley kept us going with
patient moral support throughout the writing process.

We would also especially like to thank Bonnie Granat for her accuracy
and responsiveness in making sense of and polishing our prose.

Finally, we thank our partners and families for putting up with the
evenings and weekends when we have been working on the book instead
of spending time with them.

Preface xxxiii




