|

Domain-Specific Development

Introduction

This book describes the Microsoft Domain-Specific Language Tools (the
DSL Tools). The DSL Tools are part of the Visual Studio SDK, and may
be downloaded from http://msdn.microsoft.com/vstudio/DSLTools/.
The DSL Tools extend Microsoft Visual Studio 2005 to support a power-
ful way of developing software called Domain-Specific Development.
Domain-Specific Development is based on the observation that many
software development problems can more easily be solved by designing a
special-purpose language. As a small example, think about the problem of
tinding every occurrence of a particular pattern of characters in a file, and
doing something with each occurrence that you find. The special-purpose
textual language of regular expressions is specifically designed to do this job.
For example, using the .NET class System. Text.RegularExpressions.Regex,
the regular expression (?<user>["@]+)@(?<host>.+) applied to a string of
characters will find email addresses in it, and for each address found, assign
the substring immediately before the @ sign to the user variable, and the sub-
string immediately after the @ sign to the host variable. Without the regular
expression language, a developer would have to write a special program to
recognize the patterns and assign the correct values to the appropriate vari-
ables. This is a significantly more error-prone and heavyweight task.
Domain-Specific Development applies this same approach to a wide
variety of problems, especially those that involve managing the complexity

http://msdn.microsoft.com/vstudio/DSLTools/

2

Chapter 1: Domain-Specific Development

of modern distributed systems such as those that can be developed on the
NET platform. Instead of just using general-purpose programming lan-
guages to solve these problems one at a time, the practitioner of Domain-
Specific Development creates and implements special languages, each of
which efficiently solves a whole class of similar problems.

Domain-Specific Languages can be textual or graphical. Graphical lan-
guages have significant advantages over textual languages for many prob-
lems, because they allow the solution to be visualized very directly as
diagrams. The DSL Tools make it easy to implement graphical DSLs, and
they enable Domain-Specific Development to be applied to a wide range
of problems.

Domain-Specific Development

Domain-Specific Development is a way of solving problems that you can
apply when a particular problem occurs over and over again. Each occur-
rence of the problem has a lot of aspects that are the same, and these parts
can be solved once and for all (see Figure 1-1). The aspects of the problem
that are different each time can be represented by a special language. Each
particular occurrence of the problem can be solved by creating a model or
expression in the special language and plugging this model into the fixed
part of the solution.

Model

Fixed Part

tﬁlntagrate]ﬁ Configure

FIGURE 1-1: Domain-Specific Development

Domain-Specific Development =m

The fixed part of the solution is written using traditional design, coding,
and testing techniques. Depending on the size and shape of the problem,
this fixed part of the solution might be called a framework, a platform, an
interpreter, or an Application Programming Interface (API). The fixed part
captures the architectural patterns that make up the domain and exposes
extension points that enable it to be used in a variety of solutions. What
makes the approach applicable is the fact that you create the variable part
of the solution by using a special-purpose language—a DSL.

As we observed in the introduction, the DSL might be textual or graph-
ical. As the technology for domain-specific development matures, we expect
to see tools that support the development and integration of both textual
and graphical DSLs. People have a range of feelings about which kind of
language they prefer. Many people, for example, prefer textual languages
for input, because they can type fast, but graphical languages for output,
because it is easier to see the “big picture” in a diagram. Textual expressions
make it much easier to compute differences and merges, whereas graphical
expressions make it much easier to see relationships. This chapter discusses
both kinds, but the first version of DSL Tools and hence the remaining chap-
ters of the book focus solely on graphical languages.

To create a working solution to the problem being addressed, the fixed
part of the solution must be integrated with the variable part expressed by
the model. There are two common approaches to this integration. First,
there is an interpretative approach, where the fixed part contains an inter-
preter for the DSL used to express the variable part. Such an approach can
be flexible, but it may have disadvantages of poor performance and diffi-
culty in debugging. Second, the particular expression or diagram may be
fully converted into code that can be compiled together with the remainder
of the solution—a code-generation approach. This is a more complex con-
version procedure, but it provides advantages in extensibility, performance,
and debugging capability.

Graphical DSLs are not just diagrams. If you wanted just to create dia-
grams, you could happily use popular drawing programs such as Microsoft
Visio to achieve a first-class result. Instead, you are actually creating mod-
els that conceptually represent the system you are building, together with
diagrammatic representations of their contents. A given model can be rep-
resented simultaneously by more than one diagram, with each diagram
representing a particular aspect of the model, as shown in Figure 1-2.

3

4

Chapter 1: Domain-Specific Development

FiIGURE 1-2: Two diagrams and one model

Examples

Let’s first have a look at a couple of examples where the DSL Tools have
been applied in practice. The first example comes from an Independent
Software Vendor (ISV) called Himalia. Himalia has created a set of DSLs for
implementing complex graphical user interfaces without doing any coding.
The Himalia Navigation Model, shown in Figure 1-3, defines the navigation
through the user interface.

Use Cases, regarded as heavyweight flows of control consisting of activ-
ities and transitions, are explicitly defined in a state machine view in order
to address their complexity. Use Case states and transitions are related to
Navigation Model elements and actions, respectively. The Use Case Model
is shown in Figure 1-4.

The User Profile Model shown in Figure 1-5 defines user states that
affect the behavior of the user interface.

The complete Himalia system integrates these models with others
into Visual Studio 2005 to implement complete user interfaces based on
Microsoft technology, including Windows Presentation Foundation (WPF).

(€]

Examples m

&

New Payment
Cusstomer
p
@ £ i) S
Payments by customer Prarymnent Today's Payments
Search Custoemer
Irnvoices by Payment
Custdrmers Custores: Headsr Invoaces by Customer Today's Invoices
Edit Customer
€ =) =
Go Back. Orders by Customer
Today's Orders
L. S
Product
FIGURE 1-3: Himalia Navigation Model
Epsilon
l Shopping Cart l
{1s Logged} = Proc...
Is Logged
‘@S"glsr:b»
True
True o
l Check Out Form l
Buy
l Bury Confirmation l
FnaFaill
Continue
®
Successful

FIGURE 1-4: Himalia Use Case Model

The second example is a Systems Integrator (SI) called Ordina that is

based in the Netherlands. Ordina has built a complete model-driven software

5

Chapter 1: Domain-Specific Development

factory within its Microsoft Development Center, called the SMART-Microsoft
Software Factory. This factory uses four connected DSLs. To enable these
DSLs to collaborate, Ordina has created a cross-referencing scheme that
allows elements in one DSL to refer to elements in another DSL.

Not Lggged
Customer Power Customer Admin

FIGURE 1-5: Himalia User Profile Model

The Web Scenario DSL is used to model web pages and user actions, and
to generate ASPNET web pages. An example is shown in Figure 1-6.

Start ¥
. Show CustomerLists]

Selected

Show OrderLists ¥] =

Is Order Open?

O

Yes

Select Product Insert Product [,) Tan——
& Edit Order) ! @

FIGURE 1-6: Ordina Web Scenario DSL

The Data Contract DSL is used to define the data objects that are trans-
ferred between the different layers in the architecture. An example is shown
in Figure 1-7, which illustrates several different kinds of data objects.

Examples m 7

FIGURE 1-7: Ordina Data Contract DSL

The third DSL in the Ordina factory is the Service Model shown in
Figure 1-8, which is used to generate service interfaces and skeletons of the
business processes that implement the services.

FIGURE 1-8: Ordina Service DSL

8

m Chapter 1: Domain-Specific Development

The final DSL in the Ordina factory is the Business Class Model that is
used to generate code for the Business Class and Data layers. This model
is shown in Figure 1-9.

The description property is
used for the tithe of the == = == == ———
book

FIGURE 1-9: Ordina Business Class DSL

These two examples from Himalia and Ordina are for “horizontal”
DSLs, where the intended customer for the resulting software does not
belong to any particular industry. Here are some other more “vertical”
examples of where domain-specific development might be applied.

Software Defined Circuitry

Many electronic products have circuitry that is programmed using soft-
ware. For example, FPGAs (Field Programmable Gate Arrays) are pro-
grammable chips used in areas such as software defined radio, digital
signal processing, medical imaging and speech recognition. Programming
such chips directly in their Hardware Description Language (HDL) is a
very low-level and painstaking task. A Domain-Specific Development
approach can be used to raise the level of abstraction until it represents

Examples ®m

much more directly the domain being implemented; for example, a DSL
approach to software defined radio is discussed in the paper by Bruce Trask
of PrismTech at www.mil-embedded.com/articles/authors/trask/.

Embedded Systems

Many real-time embedded systems can be conceptualized as a set of com-
municating finite state machines. Separating the design of these systems
into explicit state machines, plus a generic platform for executing state
machines, can greatly simplify thinking about such systems. In this case,
the DSL is the language for expressing state machines consisting of states
and the transitions between them, while the execution platform is most
likely built using custom code.

Device Interfaces

Many modern devices, such as mobile phones, HiFi equipment, and so on,
have complex user interfaces. These interfaces are typically organized via
rules that make the interface predictable, such as a rule that pressing a can-
cel button always takes you back to a known state, or inputting text always
follows the same set of predictive rules. A DSL can be created for design-
ing such systems, where the graphical appearance of the language corre-
sponds accurately to the appearance of the actual interface being designed,
and the interaction rules of the interface are captured in the structure of the
language. Good examples of this approach can be found at the Domain-
Specific Modeling Forum website at www.dsmforum.org.

Software Development Process Customization

The example that is used throughout this book to illustrate the DSL Tools
shows how to use DSLs to define aspects of a software development
process, such as the processing of bugs and issues, and how to use the mod-
els to configure the tools used to enact the process.

All of these examples and many others share the same approach: (1) iden-
tifying aspects of the problem that are fixed for all occurrences and capturing
those aspects in a common framework or platform, and (2) identifying the
other aspects that vary between occurrences and designing a Domain-Specific
Language whose expressions or models will specify a solution to the problem.

9

www.mil-embedded.com/articles/authors/trask/
www.dsmforum.org

10 Chapter 1: Domain-Specific Development

Benefits

Now that we’ve looked at some examples, we can see the benefits of
Domain-Specific Development.

* ADSL gives the ability to work in terms of the problem space, with
less scope for making the errors that come from representing it in a
general-purpose language.

* Working in terms of the problem space can make the models more
accessible to people not familiar with the implementation technol-
ogy, including business people.

* Models expressed using DSLs can be validated at the level of
abstraction of the problem space, which means that errors in under-
standing or representation can be picked up much earlier in the
development lifecycle.

* Models can be used to simulate a solution directly, providing imme-
diate feedback on the model’s suitability.

* Models can be used to configure an implementation consisting of
multiple technologies of different types, which can reduce the skill
and effort required to implement a solution using these technologies.

* Models can also be used to generate other models, and to configure
other systems, networks, and products, perhaps in combination with
other enabling technologies such as wizards.

* A domain-specific language provides a domain-specific API for
manipulating its models, thus improving developer productivity.

¢ The artifacts generated from a DSL need not all be technological
implementation artifacts; a suitable model can be used to generate
build scripts, purchase orders, documentation, bills of materials,
plans, or skeletons of legal contracts.

* Once important business knowledge is captured in a model, it
becomes considerably easier to migrate a solution from one technol-
ogy to another, or between versions of the same technology. This can
often be done simply by modest modifications to the generators or
interpreter.

Languages | |

In combination, these factors can offer considerable increased agility.
For example, in the software defined radio domain mentioned earlier,
Bruce Trask reports that “users of the tool report a minimum of 500 percent
increase in productivity.”

Of course these benefits are not free. To get them, you must invest in
designing and building a DSL and integrating it into your overall solution.
This will involve the cost of development—which is considerably reduced
using DSL Tools. But it will also include costs for testing, deployment, doc-
umentation, staff training, development process modifications, and so on.
When setting out to implement a DSL you must balance these costs against
the expected benefits. You'll get the benefits when the costs can be paid off
from the benefits of applying the approach to lots of systems. Hence the
approach is particularly attractive to Systems Integrators, who often have
to carry out many similar software development engagements for one cus-
tomer after another. For a small company that does not specialize in par-
ticular business areas, it may be worth investing in DSLs that describe
technological domains, such as web services and databases; for a larger
company that is vertically organized into industry specializations, it may
also be worth investing in DSLs that describe corresponding business
domains.

Languages

At this point, we offer a definition of Domain-Specific Language:

A Domain-Specific Language is a custom language that targets a small
problem domain, which it describes and validates in terms native to the

domain.

Most computer languages are textual, with their statements and expres-
sions consisting of sequences of characters in a standard character set.
Graphical languages have become increasingly popular in recent years,
particularly with the emergence of the Unified Modeling Language (UML)
as a popular set of standard notational conventions for depicting elements
in an object-oriented software system.

11

12

Chapter 1: Domain-Specific Development

When computer experts talk about languages, they usually mean general-
purpose textual programming languages such as Visual Basic, C#, or Java.
In Domain-Specific Development, our interpretation of the word language
is widened considerably—it includes graphical languages such as UML,
flowcharts, entity-relationship diagrams, state diagrams, Venn diagrams,
and so on. We also include other textual languages such as XML and
domain-specific varieties like SQL and regular expressions. We even think
of tabular and form-based formats such as spreadsheets or the Windows
Forms Designer as being languages. Special languages also exist for
domains such as music notation and direct-manipulation interfaces. With
the power available in modern computers, there is absolutely no need to
be restricted to simple linear textual notations to convey our intentions to
the computer; we want to exploit the power of the computer to provide
means to express the author’s intent as directly as possible, thus increasing
the efficiency of our development. This includes interactive aspects such as
dragging and other gestures, context menus, toolbars, and so on.

There are two main forces at work driving the evolution of languages.
The first of these is the progressive lifting of the level of abstraction at which
we express our intentions about what we want the computer to do. Origi-
nally, programmers had to express their algorithms and data structures in
terms directly accessible to the computer hardware, which was efficient for
the hardware but very tedious and error-prone for the programmer. Subse-
quent developments such as symbolic assemblers, filing systems, third- and
fourth-generation languages, databases, class libraries, and model-driven
development have moved the languages in which developers express their
intentions further from the computer hardware and closer to the problems
they are trying to solve.

The second force driving language evolution is the increasing variety of
available digital media. Originally, computers were used purely to compute
with numbers, then also with symbols and texts, and then with bitmaps and
images. The evolution of computing has reached a point where the limitation
on how we express our intentions is no longer the physical capabilities of the
computer itself but the limits of our understanding of how to construct and
manipulate computer languages. In Domain-Specific Development, instead
of building on a general-purpose language in order to solve a problem, we
use a language that is itself designed to suit the problem being solved.

Languages

Related Work

Domain-Specific Development is not new. In 1976, David Parnas introduced
the concept of families of programs in his paper “On the Design and Devel-
opment of Program Families” and talked about the possibility of using a pro-
gram generator to create the family members. In 1986, Jon Bentley in his
column in the journal Communications of the ACM pointed out that much of
what we do as programmers is the invention of “little languages” that solve
particular problems. Later, in 1994, the popular and seminal book Design
Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm,
Johnson, and Vlissides (also known as the “Gang of Four” book), introduced
the Interpreter pattern. According to the authors, the intent of this pattern is:
“Given a language, define a representation of its grammar along with an
interpreter that uses the representation to interpret sentences in the lan-
guage.” But it is only relatively recently that Domain-Specific Development
has begun to gain widespread acceptance in the IT industry.

Domain-Specific Development is closely related to many emerging ini-
tiatives from other authors and organizations, of which the following is a
partial list.

Model-Driven Development

Many vendors of software development tools are offering Model-Driven
Development tools, which allow users to build a model of their problem,
often using a graphical language such as the Unified Modeling Language
(UML). From these models, a code generator or model compiler is used to
generate some or all of the code for the resulting application. The Object
Management Group has a branded initiative under this heading called
Model Driven Architecture (MDA). We’ll talk more about model-driven
development and MDA later in this chapter.

Language-Oriented Programming

Sergey Dimitriev, co-founder and CEO of JetBrains, uses the term “Language
Oriented Programming” to describe the approach of creating a domain-
specific language to solve a programming problem in his article
“Language-Oriented Programming: The Next Programming Paradigm” at
www.onboard.jetbrains.com/is1/articles/o4/10/lop/.

13

www.onboard.jetbrains.com/is1/articles/04/10/lop/

14

Chapter 1: Domain-Specific Development

Language Workbenches

Martin Fowler, popular industry author and speaker, also refers to Lan-
guage-Oriented Programming and uses the term “Language Workbench”
to refer to the kind of tools required to support Language-Oriented Pro-
gramming and Domain-Specific Development in his article “Language
Workbenches: The Killer App for Domain-Specific Languages?” at http://
martinfowler.com/articles/languageWorkbench.html.

Domain-Specific Modeling

The Domain-Specific Modeling Forum (www.dsmforum.org) is a body that
promotes the idea of specifying domain-specific languages and generating
solutions from them. Their site contains several interesting and compelling
case studies.

Generative Programming

The book Generative Programming: Methods, Tools, and Applications, by
Krzysztof Czarnecki and Ulrich W. Eisenecker, discusses how to automate
the generation of applications, with a particular focus on domain engi-
neering and feature modeling, and presents a detailed discussion of sev-
eral different techniques for program generation. There is a regular
conference called Generative Programming and Component Engineering
(GPCE) dedicated to this topic.

Intentional Software

Intentional Software (www.intentionalsoftware.com) aims to develop an
environment in which all programming is domain-specific. Its Domain
Workbench technology represents programs and models as data, and pro-
vides multiple ways to render and interact with them using domain-specific
textual and graphical syntax.

Software Factories

Software Factories are described in the book Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks, and Tools, by Jack
Greenfield and Keith Short, with Steve Cook and Stuart Kent. Software
Factories are a strategic initiative from Microsoft that proposes to use a
combination of passive content such as patterns, models, DSLs, assemblies,

www.dsmforum.org
www.intentionalsoftware.com
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

Textual DSLs [|

and help files, with dynamic content such a customized tools, tailored
processes, templates, wizards, and tests, all integrated into Visual Studio for
producing a particular type of solution. DSL Tools form an important part of
this initiative.

Textual DSLs

Before talking about graphical DSLs, let’s look briefly at textual DSLs. We’ll
see how Domain-Specific Development involves a particular way of think-
ing about a problem, and we’ll look at how to implement this approach
using textual languages.

Imagine that we are designing a graphical modeling tool and have the
problem of defining a set of shapes that will be displayed on a screen to rep-
resent the various concepts that can be depicted by the tool. One way we
might do this would be to invent a new textual language for defining the
various shapes. A fragment of this language might look like this:

Define AnnotationShape Rectangle

Width=1.5

Height=0.3

FillColor=khaki

OutlineColor=brown

Decorator Comment
Position="Center"

End Comment
End AnnotationShape

In order to process this language, a program must be written to parse and
interpret this text. As a programming exercise from scratch, this is a big job.
But a parser-generator might be used, which itself takes as input a descrip-
tion of the grammar of the new language, such as the following, based on
BNF (the Backus Naur Form, originally developed for defining the Algol

language):
Definitions ::= Definition*
Definition ::= Define Id Shape

Width Eq Number
Height Eq Number

15

16

Chapter 1: Domain-Specific Development

FillColor Eq Color
OutlineColor Eq Color

Decorator*
End Id
Shape ::= Rectangle | RoundedRectangle | Ellipse
Eq ::= "=
Decorator ::= Decorator Id
Position Eq Position
End Id
Position ::= Center|
TopLeft |
TopRight |
BottomLeft |
BottomRight

The definitions for Id, Number, and Color are not included here; it’s
assumed that they are built into the grammar-defining language.

We need an algorithm to convert this BNF into a parser for the language
it describes. We’d either use an existing parser-generator such as Yacc,
Bison, Antlr, or Happy, or an expert might write one by hand in a normal
third-generation programming language such as C# or Java.

Notice that the BNF is itself a DSL. We might “bootstrap” the BNF lan-
guage by describing its grammar in itself, causing it to generate a parser
for itself. Perhaps the hand-written parser will be quite simple, and the
generated parser would handle a more complicated version of BNF. This
pattern of using languages to describe languages, and bootstrapping lan-
guages using themselves, is very common when defining domain-specific
languages.

Implementing a textual DSL by implementing its grammar like this can be
a difficult and error-prone task, requiring significant expertise in language
design and the use of a parser-generator. Implementing a parser-generator is
definitely an expert task, because a grammar might be ambiguous or incon-
sistent, or might require a long look-ahead to decide what to do. Furthermore,
there is more to implementing a language than just implementing a parser.
We’d really like an editor for the language that gives the kinds of facilities we
expect from a programming language editor in a modern development

Textual DSLs [|

environment, like text colorization, real-time syntax checking, and auto-
completion. If you include these facilities, the task of implementing a textual
language can get very large. Happily, there are alternative strategies for
implementing a textual DSL that don’t involve implementing a new grammar.
The first strategy is to use the facilities of a host language to emulate the
capabilities of a domain-specific language. For example, the following C#
code has the effect of defining the same shape as the previous example:

Shape AnnotationShape = new Shape(ShapeKind.Rectangle,
1.5,
0.3,
Color.Khaki,
Color.Brown);
Decorator Comment = new Decorator(Position.Center);
AnnotationShape.AddDecorator(Comment);

This kind of code is often called configuration code, because it uses previ-
ously defined classes and structures to create a specific configuration of
objects and data for the problem that you want to solve. In effect, the defi-
nitions of these classes and structures are creating an embedded DSL, and the
configuration code is using that DSL. The capabilities of modern languages
to define abstractions such as classes, structures, enumerations, and even
configurable syntax make them more amenable to this approach than ear-
lier languages that lacked these facilities.

The second strategy is to use XML—Extensible Markup Language.
There are many ways in which the definition can be expressed using XML.
Here’s a possible approach.

<?xml version="1.0" encoding="utf-8" ?>
<Shapes>
<Shape name="AnnotationShape">
<Kind>Rectangle</Kind>
<Width>1.5</Width>
<FillColor>Khaki</FillColor>
<OutlineColor>Brown</OutlineColor>
<Decorator name="Comment">
<Position>Center</Position>
</Decorator>
</Shape>
</Shapes>

17

18

Chapter 1: Domain-Specific Development

The syntax is obviously limited to what can be done using XML elements
and attributes. Nevertheless, the tags make it obvious what each element
is intended to represent, and the meaning of the document is quite clear.
One great advantage of using XML for this kind of purpose is the wide-
spread availability of tools and libraries for processing XML documents.

If we want to use standard XML tools for processing shape definitions,
the experience will be much improved if we create a schema that allows us
to define rules for how shape definitions are represented in XML docu-
ments. There are several technologies available for defining such rules for
XML documents, including XML Schema from the World Wide Web Con-
sortium (defined at www.w3.org/XML/Schema.html), RELAX NG from
the OASIS consortium (defined at www.relaxng.org) and Schematron,
which has been accepted as a standard by the International Organization
for Standardization (ISO) and is defined at www.schematron.com. Schema-
tron is supported in .NET: A version called Schematron.NET is download-
able from SourceForge, and it is possible to combine the facilities of XML
Schema and Schematron. We'll use here the XML Schema approach, which
is also supported by the .NET framework.

An XML Schema is an XML document written in a special form that
defines a grammar for other XML documents. So, using an appropriate
schema, we can specify exactly which XML documents are valid shape def-
inition documents. Modern XML editors, such as the one in Visual Studio
2005, can use the XML schema to drive the editing experience, providing
the user with real-time checking of document validity, colorization of lan-
guage elements, auto-completion of tags, and tips about the document’s
meaning when you hover above the elements.

Here is one of many possible XML schemas for validating shape defini-
tion documents such as the one presented earlier. Writing such schemas is
something of an art; you'll certainly observe that it is significantly more
complicated than the BNF that we defined earlier, although it expresses
roughly the same set of concepts.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema
xmlns="http://schemas.microsoft.com/dsltools/che1"
attributeFormDefault="unqualified"
elementFormDefault="qualified"

www.w3.org/XML/Schema.html
www.relaxng.org
www.schematron.com

Textual DSLs [|

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.microsoft.com/dsltools/che1">
<xs:element name="Shapes">
<Xs:complexType>
<XS:sequence>
<xs:element maxOccurs="unbounded" name="Shape">
<xs:complexType>
<XS:sequence>
<xs:element name="Kind" type="kind" />
<xs:element name="Width" type="xs:decimal" />
<xs:element name="Height" type="xs:decimal" />
<xs:element name="FillColor" type="xs:string" />
<xs:element name="OutlineColor" type="xs:string" />
<xs:element maxOccurs="unbounded" name="Decorator">
<xs:complexType>
<XS:sequence>
<xs:element name="Position" type="position" />
</Xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</Xs:element>

<xs:simpleType name="position">
<xs:restriction base="xs:string">
<xs:enumeration value="Center" />
<xs:enumeration value="TopLeft" />
<xs:enumeration value="TopRight" />
<xs:enumeration value="BottomLeft" />
<xs:enumeration value="BottomRight" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="kind">
<xs:restriction base="xs:string">
<xs:enumeration value="Rectangle" />
<xs:enumeration value="RoundedRectangle" />
<xs:enumeration value="Ellipse" />
</xs:restriction>
</xs:simpleType>

</xs:schema>

20

Chapter 1: Domain-Specific Development

To summarize, in this section we have looked at three ways of defining a
textual DSL: using a parser-generator, writing configuration code embed-
ded in a host language, and using XML with a schema to help validate your
documents and provide syntax coloring and autocompletion. A further
option would be to define an equivalent to the DSL Tools that targeted tex-
tual languages.

Each of these approaches has its pros and cons, but they all share a com-
mon theme—investing some resources early in order to define a language
that will make it easier to solve specific problems later. This is the basic pat-
tern that also applies to graphical DSLs, as we shall see.

The DSL Tools themselves provide no facilities in version 1 for defining
textual domain-specific languages. The Tools” authors have taken the view
that XML provides a sufficiently good approach to start with, and so they
have designed the DSL Tools to integrate XML-based textual DSLs with
graphical DSLs.

Graphical DSLs

So far we have looked at some of the background behind Domain-Specific
Development and discussed its benefits. We have also looked briefly at
textual DSLs. Let’s start our exploration into graphical DSLs by looking at
an example that captures data for deploying and managing distributed
applications.

Figure 1-10 shows a simple model built using a graphical DSL for
designing logical data centers. This DSL is part of Visual Studio 2005 Team
Architect. The elements of this language include zones, depicted by rectan-
gular areas surrounded by dashed lines; hosts, depicted by rectangular
areas surrounded by solid lines; endpoints, depicted by small shapes
(squares, circles, and hexagons) placed on the edges of hosts; and connec-
tions, depicted by arrows between endpoints. This model corresponds
exactly to an XML file that contains information according to the rules of
the System Definition Model (SDM), which is used for configuring and
managing data centers.

Graphical DSLs m 21

PublicZone SecureZone
&3 SeCUre &j
WebSiteEndpoint 1IS¥WebServerl

™ IIS'WebServer -
i DatabaseserverEndpoink

DatabaseServerl
I DatabaseServer
d

FIGURE 1-10: Data center design

System Definition Model

SDM was created as part of Microsoft’s Dynamic Systems Initiative, which
promises to deliver self-managing dynamic systems that will result in
reduced operational costs and increased business agility. A later version of
this model, called SML (Service Modeling Language), is being standardized
by industry leaders, which should eventually enable distributed systems
with components from multiple vendors to be managed using these models.

We can build up graphical DSLs like this one from a set of simple dia-
grammatic conventions such as the following. Many of these conventions
are derived from UML, which we discuss in more depth later.

Conventions for Representing Structure
See Figure 1-11 for examples of structural conventions, including:

* Nested rectangle or rounded rectangles, to represent structural
containment

* Rectangles with headers, sections, and compartments, to represent
objects, classes, entities, devices, and so on

* Solid and dashed connectors with multiplicities, names, arrowheads,
and other adornments, to represent relationships, associations,
connections, and dependencies

22 Chapter 1: Domain-Specific Development

* Connectors with large open triangular arrowheads, to represent
generalization, inheritance, and derivation

* Ports on the edges of shapes, to represent connectable endpoints

I:I Header x

-Compartment oo >
[] 1
Containment Compartments Connectors
AN
Generalization Ports

FIGURE 1-11: Structural conventions

Conventions for Representing Behavior
See Figure 1-12 for examples of behavioral conventions, including;:

¢ Lifelines and arrows, to represent sequences of messages or invoca-
tions with a temporal axis

* Rounded rectangles, arrows, swimlanes, diamonds, transition bars,
and so on, to represent activities and flows

* Nested ovals and arrows, to represent states and transitions

¢ Ovals and stick people, to represent use cases and actors

Using the DSL Tools, it is possible to build your own graphical language
that combines conventions like these in a way that matches your particular
problem (although version 1 of the Tools does not fully support all of the con-
ventions listed). You can map them onto the concepts of your own domain
and construct a customized graphical modeling language that solves your
own problem. We saw an example in the data center design language shown
in Figure 1-10, and we’ll see many other examples as we proceed.

Aspects of Graphical DSLs =

lane1 lane2 lane3 | Object1 | | Object2 |
| |
' Call !
|
|
(a4 E
i Retum
Activities and Objects and
Swimlanes Lifelines

Actor

States and Actors and
Transitions Use Cases

FIGURE 1-12: Behavioral conventions

Building your own graphical language on top of a given set of notational
elements and conventions is analogous to building an embedded textual
DSL, where instead of writing type wrappers and methods to make the lan-
guage convenient to your domain, you define a mapping from the notational
elements to your own domain concepts. If you want to define a graphical lan-
guage that uses different notational elements and conventions, you have to
be more expert and know how to create new diagrammatic elements from
lower-level constructs. This is analogous to building your own parser for a
textual DSL.

Aspects of Graphical DSLs

A graphical DSL has several important aspects that must be defined. The
most important of these are its notation, domain model, generation, serial-
ization, and tool integration.

23

24

Chapter 1: Domain-Specific Development

Notation

In the previous section we talked about the notation of the language and
how it can be built by reusing basic elements, often derived from well-
established conventions, particularly those that originate in UML. For the
kinds of graphical DSLs that we support, the basic building blocks are var-
ious kinds of shapes and connectors laid out on a two-dimensional draw-
ing surface. These shapes and connectors contain decorators, which are
used to display additional information such as text and icons attached to
the shapes and connectors in particular places. In Chapter 4 we’ll see full
details of how to define these shapes and connectors and how to associate
them with the other aspects of the language.

Domain Model

The domain model is a model of the concepts described by a language. The
domain model for a graphical language plays a rather similar role in its defi-
nition to that played by a BNF grammar for a textual language. But for graph-
ical languages, the domain model is usually itself represented graphically.

The basic building blocks for a domain model are domain classes and
domain relationships. Each domain class represents a concept from the
domain; each domain relationship represents a relationship between
domain concepts. Typically, domain concepts are mapped to shapes in
order to be represented on diagrams. Domain relationships can be mapped
to connectors between those shapes or to physical relationships between
shapes, such as containment.

Another important aspect of the domain model is the definition of con-
straints, which can be defined to check that diagrams created using the lan-
guage are valid. For example, the class diagram in Figure 1-13 uses the
correct diagrammatical conventions but defines a cyclic class hierarchy that
is semantically invalid. Chapter 7 describes how to define constraints in the
DSL Tools and discusses the differences between hard and soft constraints.

Generation

You define a language because you want to do something useful with it.
Having created some models using the language, you normally want to
generate some artifacts: some code, or data, or a configuration file, or
another diagram, or even a combination of all of these. You'll want to be

Aspects of Graphical DSLs =

Class 1 Class 2

Class 3 Class 4

<

FIGURE 1-13: Invalid class diagram

able to regenerate these artifacts efficiently whenever you change a dia-

gram, causing them to be checked out of source control if necessary.
Chapter 8 explains the DSL Tools generation framework, which enables

the language author to define how to map models into useful artifacts.

Serialization

Having created some models, you’ll want to save them, check them into
source control, and reload them later. The information to save includes
details about the shapes and connectors on the design surface, where they
are positioned, and what color they are, as well as details of the domain
concepts represented by those shapes.

It’s often useful to be able to customize the XML format for saving mod-
els in order to help with integrating these models with other tools. This
flexibility increases interoperability between tools and also makes it pos-
sible to use standard XML tools to manage and make changes to the saved
models. Using an XML format that is easy to read also helps with source
control conflicts. It is relatively straightforward to identify differences in
versions of an artifact using textual differencing tools and to merge
changes to artifacts successfully at the level of the XML files.

Chapter 6 explains how to define and customize the serialization format
for a graphical DSL.

25

26

Chapter 1: Domain-Specific Development

Tool Integration

The next important aspect of a graphical DSL design is to define how it will
show up in the Visual Studio environment. This involves answering ques-
tions such as:

* What file extensions are associated with the language?

* When a file is opened, which windows appear, and what is the scope
within Visual Studio of the information that is represented?

* Does the language have a tree-structured explorer, and if so, what do
the nodes look like—with icons and /or strings—and how are they
organized?

* How do the properties of selected elements appear in the properties
browser?

* Are any custom editors designed for particular language elements?

* What icons appear on the toolbox when the diagram is being edited,
and what happens when they are dragged and dropped?

* Which menu commands are enabled for different elements in the
diagram and the associated windows, and what do they do?

* What happens if you double-click on a shape or connector?

Chapters 4, 5, and 10 describe how to define these behaviors and show
ways of customizing the designer by adding your own code.

Putting It All Together

From the previous sections you can see that there are a lot of aspects to defin-
ing a DSL. This might seem rather daunting. Thankfully, the DSL Tools
make it easier than you might think. Many of the aspects are created for you
automatically, and you only need to worry about them if you want to change
the way that they work. Complete languages are provided as starting points
so that you don’t need to start from scratch. Having defined your DSL, the
DSL Tools are also used to generate code and artifacts that implement, test,
and deploy the DSL as a designer fully integrated into Visual Studio. If you
want to step outside of the set of features easily supported by the DSL Tools,
we’ve provided many code customization options for that purpose.

DSLs in Visual Studio]

The DSL Tools have even been used to define and build themselves. The
DSL designer that is used to define domain models and notations is itself
a DSL. Just like a compiler that can be used to compile itself, the DSL
designer was used to define and generate itself.

DSLs in Visual Studio

Visual Studio 2005 has several graphical domain-specific languages inte-
grated into it. These are the Distributed System Designers, which come
with Visual Studio 2005 Team Edition for Software Architects, and the Class
Designer which comes with Visual Studio 2005 Standard Edition and later.
These designers are built on an earlier version of the DSL Tools; the current
version is based on this earlier version and has evolved separately. The two
versions are incompatible, which means that the DSL Tools cannot be used
to extend the integrated designers.

Nevertheless, these designers illustrate very well some of the motiva-
tions for using domain-specific languages. Let’s look at a simple example,
using the Application Designer. This is a tool for modeling applications in
distributed systems, with a particular emphasis on the endpoints that the
applications implement and use, so that the user can wire the applications
together into more complex systems. Figure 1-14 shows a simple design
consisting of a Windows application, called InvestmentCalculator, that
talks to an endpoint called StockPrices, which is implemented as a web
service by an ASPNET web application called StockPriceApplication. The
StockPrices web service is shown as a provider endpoint on the Stock-
PriceApplication node and is wired to a corresponding consumer endpoint
on the InvestmentCalculator node.

Having created this design and chosen the implementation language,
the Application Designer can generate the skeleton of an implementation
for it using standard code templates installed with Visual Studio. The diagram
context menu item “Implement All Applications ...” causes the generation of
two new projects in the solution, including the files needed to implement the
solution, as shown in Figure 1-15. Implementing the application by generat-
ing these files like this requires much less work than does creating these files
by hand. This is one clear benefit of defining a DSL—we can more quickly
generate code that would be tedious and error-prone to write by hand.

27

28

m Chapter 1: Domain-Specific Development

File Edt View Project Debug Diagam Tock Test Window Community Help

-G a- B Entity [RIRBAED -
=, 5 1% -Lad F
Toalbas = 3 %] lavestmentCakculator.ad [AD] = x| |Selution Explorer - Sohution Diet > 3 %
= Gemeral Designer L)
& Pointer =] Solution DrstbutedSysteml’ [0 propests
®|, Connecticn 4 120 Solution emns
Comment =3 ImvestmentCalculator.ad
Endpoints
& Poirter
GenericEndpoint StockPrices StockPriceApplication
5] WebConteraindpaing o - " o
= SR P ASPNTTWesApplcaticn
- Applications
k Porter

-] GenericApplicaticn
[picTalWebSerice

& EtemaiDssbase = X

h, ExtemaliVebbenvice - T Tee | Psoh... FE05 - [Tl
), b Servic ok [
T OMfcespphcstion Fi -3 x
3 “@"";‘ : InvestmentCalculator —
L eh&pplication DistribnstedSystem] Apphatsan Dugrar +
) ASPMNETWebSenice T WindewsApphcation 2kl
(7] WindewsApphication : 2
" ol B M
B 50Mm
Hie Hame

= | The name of the file.

FIGURE 1-14: An application diagram

It’s interesting to look into this solution and see where the name of the
web service—StockPrices—appears. There are several places, in fact,
including:

1. The name of the file StockPrices.cs.

2. The body of the generated file StockPrices.cs, containing the fol-
lowing code, which mentions StockPrices as the name of the class
in the Name parameter of the WebServiceBinding attribute and in the
Binding parameter of the SoapDocumentMethod attribute.

namespace StockPriceApplication
{
[System.Web.Services.WebServiceBinding(Name = "StockPrices",
ConformsTo = System.Web.Services.WsiProfiles.BasicProfilel_1,
EmitConformanceClaims = true),
System.Web.Services.Protocols.SoapDocumentService()]
public class StockPrices : System.Web.Services.WebService
{
[System.Web.Services.WebMethod(),
System.Web.Services.Protocols.SoapDocumentMethod(Binding="StockPrices")]

DSLs in Visual Studio]

public string GetPrice(string Symbol)
{

throw new System.NotImplementedException();

}
}
}

. The name of the file StockPrices.asmx.

4. The body of the file StockPrices.asmx, containing the following tem-

plate, which mentions StockPrices as a class name and a file name.

<%@ webservice class="StockPriceApplication.StockPrices"
language="c#"
codebehind="~/App_Code/StockPrices.cs" %>

. The two SDM (System Definition Model) files. These are XML files
that describe operational requirements for the applications and can
be used to match these requirements against the operational facili-
ties provided by a data center. This is not the place to go into the
details of these files; suffice it to say that they both contain references
to the service called StockPrices.

. The web reference in the InvestmentCalculator application, which con-
tains a URL such as http:/ /localhost:2523 /StockPriceApplication/
StockPrices.asmx?wsdl.

. The app. config file for the InvestmentCalculator application, contain-
ing the following section, which includes a reference to the filename
StockPrices.asmx as well as the name StockPrices embedded in the
longer name for the setting.

<applicationSettings>
<InvestmentCalculator.Properties.Settings>
<setting name="InvestmentCalculator_localhost_StockPrices"
serializeAs="String">
<value>
http://localhost:2523/StockPriceApplication/StockPrices.asmx
</value>
</setting>
</InvestmentCalculator.Properties.Settings>
</applicationSettings>

29

30

Chapter 1: Domain-Specific Development

Solution Explorer - C:\. \StockPricefp... » 1 X
2 EEA Be

. E Solution 'D-iétributedSysfeml' .(2 prnjects].
. £ solution Items

i] InvestrmentCalculator.ad

P C\.A\StockPriceApplicationt,

5 [App_Code

.] StockPrices.cs

.ﬂ StockPriceApplication.sdm

#| StockPrices.asmx

i i web.config

A InvestrentCalculator

=d| Properties

i References

_ Web References

: ﬁ; localhost

5% app.config

=| Forml.cs

; =] InvestmentCalculator.sdm
= #] Program.cs

(o Team Expl... l—‘__*gSqution Ex... _75 Class View

FiIGURE 1-15: The generated solution

Now imagine that you want to change the name of the web service.
Instead of StockPrices, you'd prefer to call it StockValues. Working in a
modern coding environment, this should be a simple refactoring operation,
such as the ones available from the “Refactor” menu in the code editor. But
unfortunately, opening the StockPrices.cs file and using the “Refactor”
menu will not have the desired effect, because many of the occurrences of
the name StockPrices are not in code.

However, changing the name from StockPrices to StockValues on the
Application Designer diagram does have the right effect. All of the refer-
ences within the StockPriceApplication project are updated immediately,
including the filenames and all of the references in the list above. At this
point, the consumer endpoint on the InvestmentCalculator project is
marked with a small warning symbol to indicate that it is referring to some-
thing that has changed; the web reference in the InvestmentCalculator
project has been removed, and the app. config file no longer contains any
reference to StockPrices. Selecting the “Implement” option from the con-
text menu on the endpoint causes the web reference, app . config, and SDM

DSLs in Visual Studio]

files to refer to the new name. By using the DSL, the operation of changing
the name has been reduced from a time-consuming and error-prone com-
bination of multiple manual edits to a simple two-step procedure carried
out at the appropriate level of abstraction.

You may ask what happens if you change the name of StockPrices in just
one of these generated artifacts. Well, by doing that you have invalidated
your solution. In general, it is difficult or impossible for a tool to solve all of
the possible round-tripping conundrums that could be created if you allow
complete freedom to edit any artifact at any time. In this particular case, you
are allowed to insert your own code into the body of the GetPrice()
method, and that code will be preserved if the endpoint or operation name
is changed in the model. But if you manually change the name of the class or
method itself in the code, you have effectively broken the relationship
between the code and the model, and future changes will not be synchro-
nized. We return to the general problem of keeping models and artifacts
synchronized in Chapter 8.

We can summarize the qualities of the Application Designer, which are
qualities that any well-designed DSL should possess, as follows:

e Itis a sharply focused tool for a specific task.

* The model corresponds closely to the domain being modeled, and
the transformations required to generate code and other artifacts are
simple.

* Because of these simple transformations, the round-tripping prob-
lem becomes tractable.

¢ The artifacts associated with the language are all files and can be
maintained in a source-control system, and the tool is engineered so
that it works effectively in this environment.

* The interactive user experience on a modern computer is rapid and
intuitive.

¢ The files manipulated by the tool are user-readable text files, using
published formats based on XML.

31

32

Chapter 1: Domain-Specific Development

The Customization Pit

Applying the simple DSL pattern can make it easy to create a solution to
your problem as long as the solution can be expressed fully in the DSL. But
what if you want to create something slightly different? If there are no other
facilities available for modifying the solution, then you have a “customiza-
tion pit” (Figure 1-16)—within the boundaries of what the DSL can express,
things are easy and comfortable, but outside of those boundaries, things are
difficult or impossible.

DSL Area
>

<

FIGURE 1-16: Customization pit

We’d much prefer the situation shown in Figure 1-17, where stepping
out of the area covered by the DSL doesn’t cause you to scale the walls of
a deep pit but simply to step up onto a different plateau where things may
be a little more difficult, but not impossibly hard. Beyond that plateau, there
are further plateaus, each extending your capability to make solutions if
you are willing and able to acquire the extra skills to go there. Alan Kay,
the coinventor of Smalltalk, said, “Simple things should be simple. Com-
plex things should be possible.” We’d like to go a little further than that,
and have difficulty increase only gradually as things get more complex.

There are several techniques that we can employ to achieve this. The
first is to employ multiple DSLs, each one handling a different dimension
of complexity in the problem, as depicted in Figure 1-18.

DSL Area

The Customization Pit

Platform

Expert

Simple

FIGURE 1-17: Customization staircase

Normal

A second technique, and one which we employ extensively in the design

of the DSL Tools themselves, is to generate code that is explicitly designed

to be extended. The C# 2.0 feature of partial classes is particularly helpful

here, because part of a class can be generated while leaving other parts of

the class to be written by hand. In the case of DSL Tools themselves, where

the generated designer is hosted in Visual Studio, these code extensions can

call upon facilities provided by the host, such as the user interface or the

project system.

DSLA1

Fixed Part

Integrate

{

=

Configure

DSL2

?

Integrate

DSL3

=

Configure

Integrate

{

m——

Configure

FIGURE 1-18: Multiple DSLs

33

34

Chapter 1: Domain-Specific Development

A third technique, which you might think of as stepping up onto a
higher-level expert plateau, is to enable the developer to modify the code-
generation mechanisms, thus changing the way that the DSL is integrated
into its environment. This requires yet more skill, because making it work
correctly requires deeper knowledge of the remainder of the code.

The final technique represented by the highest plateau is to alter the
implementation of the supporting platform, because it simply isn’t capa-
ble of supporting the required features.

UML

The Unified Modeling Language, or UML, was first published in 1997 by
the Object Management Group. UML unified three earlier approaches for
graphically depicting software systems: the Booch method, the Object
Modeling Technique, and the Object-Oriented Software Engineering
method. The advantage of the UML was that it provided a standard set of
notational conventions for describing aspects of a software system. Before
the UML was published, different authors used different graphical ele-
ments to mean the same thing. Three examples are shown in Figure 1-19.
The method described in Grady Booch’s 1990 book, Object-Oriented Analy-
sis and Design with Applications, represented a class by a cloud; the OMT
method described in the 1991 book, Object-Oriented Modeling and Design, by
James Rumbaugh and his colleagues, represented a class by a rectangle;
and the 1992 book, Object-Oriented Software Engineering: A Use Case Driven
Approach, by Ivar Jacobson and his colleagues, advocated representing a
class by a little circle and distinguished diagrammatically between entity
classes, controller classes, and interface classes. Many other approaches also
existed at that time. UML succeeded in eliminating this “Tower of Babel”—
almost all competing diagramming approaches vanished rapidly from the
marketplace when UML appeared.

On publication, UML became increasingly popular as a technique for doc-
umenting the early phases of software development, especially those using
object-oriented technologies. Class diagrams, use case diagrams, and
sequence diagrams were especially popular for documenting the results of
object-oriented analysis and object-oriented design.

7 7N\
r)
(Product) Product
\ _ o~ J
Booch OoMT

FIGURE 1-19: Different representations for a class

UML m 35

Product Panel

Product Controller

Product

OOSE

Figures 1-20 through Figure 1-22 show how to use UML to analyze the

operation of a very simplified public library.

Customer\

Library

Borrow Book

Return Book

FIGURE 1-20: Use case diagram for simple library

The meaning of these diagrams is relatively informal. Being an analysis

model, this set of diagrams does not exactly represent anything that hap-

pens in the software system. Instead, it helps the developer to make some

36

Chapter 1: Domain-Specific Development

early decisions about what information will be represented in the software
and how that information may be collected together and flow around when
the system interacts with its environment. Translating the analysis model
into an exact design for the actual software involves working out many
details, such as the design of the database, the design of the classes that rep-
resent the business logic, the mapping between business logic and database
classes, the design of the user interface, the messages that flow between
clients and servers, and so on. Traces of the analysis model will be found
in the design, but the detailed correspondence between the analysis model
and the eventual programs, schemas, and definitions that constitute the
running software will be complex.

1 Library
- 1
1
Customer Title Author
-Name -ISBN * *| -Name
-Address
1
1
Loan Copy
-ExpiryDate 0.1 1

FIGURE 1-21: Class diagram for simple library

When UML emerged during the 1990s, mainstream thinking about
object-oriented development assumed that there would be a relatively sim-
ple continuity between an object-oriented analysis and a corresponding
object-oriented design. Several methodologies proposed that the way to get
from the analysis to the design was simply to add detail while retaining the
basic shape of the analysis. For simple examples, where there is a single
computer implementing a simple non-distributed application, this can
work, especially when no data persistence is involved.

UML |

Borrow

aCustomer| | aLibrary | | aCopy
i Find (Title) E

Found (Copy) |
?I

Borrow

Lent

Return

aCustomer| | aLibrary | | aLoan

Return (Loan) |

1 1

i Complete
—>

><.__

FIGURE 1-22: Sequence diagrams for simple library

The design of UML itself is actually based on this concept of adding
implementation detail. The UML specification defines the ability to express
the kind of detail found in an object-oriented programming language; for
example, class members can be marked with the Java-inspired visibility
values of public, private, protected, or package, and operations can have
detailed signatures and so on. This helps to map a UML model to program
code, especially if the programming language is Java. Note that there are
many inconsistencies between the details of UML and Microsoft’s Common
Language Runtime, which make it more difficult to map UML effectively to
the popular .NET languages Visual Basic and C#. When UML is used for a
more abstract purpose such as analysis, these implementation details have
to be ignored, because they are meaningless.

UML does offer limited extension facilities, called profiles, stereotypes,
tagged values, and constraints. Stereotypes, tagged values, and constraints
are mechanisms that add labels and restrictions to UML models to indicate

37

38

Chapter 1: Domain-Specific Development

that a UML concept is being used to represent something else. So, for exam-
ple, a UML class could be labeled as a «resource», or even as a «<webpage»—
the symbols «» are conventionally used to indicate that a stereotype is being
used. But labeling a UML concept does not change anything else about it—
a class still has attributes and operations, inheritance, and the rest of the built-
in features.

A UML Profile is a packaged set of stereotypes, tagged values, and con-
straints that can be applied to a UML model. A tool can make use of the pro-
file information to filter or hide elements but may not delete unwanted
elements; a profile is effectively a viewing mechanism. These facilities do
allow a limited amount of customization of UML for particular domains,
and of course individual UML tool vendors can go beyond the published
standard to provide increased levels of customization.

However, the world has moved on apace since UML was defined. The
Internet and World Wide Web have matured, most of the computers in the
world are connected together, and a multitude of new standards and tech-
nologies has emerged, especially XML and Web Services. In 2007 and
beyond, the likely platform for implementing a business system will
involve many distributed components executing in different computers.
Logic and data are replicated for scalability and load balancing. Legacy sys-
tems are accessed on mainframes and servers. Firewalls and routers are
configured to maintain security and connectivity. Browsers and smart
clients are distributed to many different devices and appliances. Common
artifacts in this world, such as Web Service Definition Language (WSDL)
or configuration files, have no standard representations in UML. Although
stereotypes and profiles can be used to apply UML in domains for which
it was not designed, such an approach gives cumbersome results. In such
a world, the transformation from a simple object-oriented analysis to a
detailed system design is far too complex to be thought of simply as
“adding detail.” Different approaches are needed.

If UML is not convenient to be used directly, what happens if we open
up the definition of UML, remove all of the parts we don’t need, add new
parts that we do need, and design a language specifically tailored for the
generation task that we want to accomplish? In short, what would happen
if we had an environment for constructing and manipulating graphical

UML |

modeling languages? The answer is that we would eliminate the mis-
matches and conceptual gaps that occur when we use a fixed modeling lan-
guage, and we would make our development process more seamless and
more efficient. That is the approach adopted in DSL Tools.

Instead of thinking about UML as a single language, we prefer to think
of it as a set of reusable diagrammatic conventions, each of which can be
applied to a particular kind of situation that we might encounter during
software development. For example, sequence charts such as those in
Figure 1-22 might be used to describe the flow of messages between appli-
cations in a distributed system, the flow of invocations between objects in
an application, or even information interchange between departments in an
organization. In the first case, the vertical lines on the diagram represent
applications, in the second case they represent objects, and in the third case
they represent departments.

Note also that it is not only end users that benefit from clean domain-
specific abstractions. Developers who build tools that generate code and
other artifacts from models and keep models coordinated with one another,
need to access model data; providing APIs that work directly in terms of the
abstractions of the problem domain is critical to productivity for develop-
ers. Developers want the API for the logical data center to give them direct
access to the properties of an IIS server or a SQL Server database. Similarly,
they want the API for the sequence charts to talk directly about applica-
tions, objects, or departments. They’d like to write strongly typed code,
such as this:

foreach (Department dept in message.Receiver.SubDepartments)

{

// generate some artifacts

}

This contrasts with having to reinterpret a model intended for other
purposes (such as a UML model), which can give rise to code like this:

Lifeline lifeline = message.Receiver;
if (lifeline.Object.Label = "Department")

{
Department receiver = lifeline.Object.Element as Department;
if (receiver != null)
{

foreach (Department dept in receiver.SubDepartments)

39

40 Chapter 1: Domain-Specific Development

{

// generate some artifacts

}
}
}

else

{

// handle errors

}

SUMMARY

In this chapter we introduced Domain-Specific Development and discussed
some examples and benefits of the approach.

We looked at how to define textual domain-specific languages as new
languages or as embedded languages within an existing host language, and
we saw how XML can be used as a simple and cost-effective substrate for
defining textual DSLs. We discussed the different aspects of graphical
DSLs, and saw how these are being implemented in several components of
Visual Studio 2005. We talked about the customization pit and how to over-
come it.

Finally, we discussed UML and saw how it provides a very popular set
of conventions for creating diagrammatic documentation of software and
how a domain-specific approach helps to overcome its disadvantages.

