
CHAPTER 6

Organizing Your Development
Project
All right, guys! It’s time to clean up this town!

—Homer Simpson

In this book we describe how to build applications that are defined by the J2EE
specification. When you build an application, you create one or more projects
that correspond to J2EE modules. You also use these same projects to organize
your development work; that is, you use these projects

❍ to manage the source code and files that make up the application,

❍ to divide the work between the teams, and

❍ to set up an automated process that builds the application, runs tests, and
creates project reports.

This chapter starts with a basic description of the types of applications and
projects that are supported in WTP. We will show you how to create different
kinds of projects to build applications.

In the second part of the chapter, we will describe some of the advanced
project features that are available with WTP. There is very little available in
terms of standards to guide you in the organization of project artifacts and
source code for Web projects. Project best practices achieve a balance between
the concerns that drive a particular development project:

❍ How many teams and developers are there?

❍ What are the subsystems?

❍ What components are tested, and how are they tested?

❍ Who builds the code?

137

For example, in a complete J2EE enterprise application, one project might
consist of a Web application module for the presentation logic while another
would be used to develop the EJB module for the business components. In this
case, the complete application consists of three projects for the modules: one for
the enterprise application, one for the Web application, and one for the EJBs. It
is also possible to split the development of a single module into multiple proj-
ects. For example, a basic module like a Web application might be built from
utility modules built in other projects. You will learn how to organize your proj-
ects and modules using similar patterns later in this chapter.

❍ How is it integrated?

❍ How is it released?

Naturally, each concern is a different dimension of the project. We will use
advanced WTP features to create project templates and apply best practices that are
helpful to organize your development work. We use the generic term Web project to
describe the WTP project types that are provided for J2EE development.

Web Project Types and J2EE Applications

A project is used to develop modules such as J2EE Web applications and
EJBs. Typically, each module is a project, but this is not a strict requirement
(see Figure 6.1).

138 CHAPTER 6 • Organizing Your Development Project

Web Project
leagueplanet.war

Web Project

Common
League

and
Player Managment

Subsystem

Utility Project

News
and

Announcements
Subsystem

Utility Project

Advertising
and

Sponsors
Subsystem

For better manageability, a team can divide a
large Web project into many projects.

Each project is used to develop a subsystem.

Enterprise
Application

Project

Web Project
leagueplanet.war

EJB Project
leagues.jar

An enterprise application project
that contains a Web project and
an EJB project with components

for leagues and players.

Figure 6.1 J2EE Applications and Web Projects

Web Project Types and J2EE Applications 139

Web Projects

Projects organize your source code and modules. WTP provides Web projects that
are sophisticated Eclipse projects that know about J2EE artifacts. In addition to
having basic Java project capabilities, a Web project can be used to organize J2EE
artifacts into buildable, reusable units (see Figure 6.2).

Figure 6.2 Web Projects

Simple Project

Java Project

Webtools
Flexible Project

Organizes resources
Manages source code

Understands java artifacts (.java, .class,. . .)
Has Java builders
Runs on a Java VM

Understands Web artifacts (.jsp, .xml, .html,. . .)
Has Web builders
Understands J2EE Modules and artifacts
Runs on a server

An Eclipse simple project (or general project) provides the basic infra-
structure to organize and build resources. The structure of a general project is
very open; resources such as files and directories can be organized in any
arbitrary form that makes sense for a particular purpose.

A JDT Java project contains Java elements such as packages, types, meth-
ods, fields, and property files for creating Java programs. A Java project knows
how to build and run Java programs. Each Java project has a Java builder that
can incrementally compile Java source files as they are edited.

You can change the properties of a Java project, such as the Java build path.
The build path is the classpath that is used for building the project. There are
alternative ways of structuring the sources in a Java project; examples include
using a single source folder that is the project root or multiple source folders for
organizing complex Java projects.

A WTP Web project has more than just Java code. It contains sources that
are used to build Web applications, EJBs, and enterprise applications. A Web
application can be as simple as a bunch of HTML files, or it can have servlets,

JSPs, tag libraries, and Web services. These artifacts make the Web application.
A Web project knows how to build, publish, and run J2EE modules and artifacts
on application servers.

Web projects have builders, validators, and code generators. Builders produce
standard publishable modules from complex development layouts. Validators
help identify and catch coding errors at development time. J2EE validators are
very valuable, because the sooner you find a problem the easier it is to fix. In
J2EE, there are many deployment descriptors that have references to Java code
and each other. These are interrelated in complex ways. Failure to catch a prob-
lem at development time could lead to a runtime error that might be very difficult
to diagnose and fix. Generators create components from annotations in source
code (for example, using XDoclet or JSR 175).

J2EE Modules

The output of the development activities are discrete J2EE components (EJBs,
servlets, application clients), which are packaged with component-level deploy-
ment descriptors and assembled into J2EE modules. Web application modules, EJB
modules, enterprise application modules, and Java 2 Connector Architecture
(J2CA) resource modules are typical J2EE modules. A module contains code,
resources, and deployment descriptors. A J2EE module forms a stand-alone unit,
which can be deployed and run on a J2EE application server. Figure 6.3 provides
an overview of the J2EE structure associated with common J2EE modules, such as
Web, EJB, and EAR, as described by the specification.

Creating Applications

WTP provides projects and wizards to help you get started quickly with different
types of Web and J2EE applications. You can use these wizards to create most
standard Web and J2EE artifacts. Additional tools will help you create, build,
validate, and run your applications on servers.

To get started, we will review the steps involved in creating different types of
applications. The simple steps provided in this section will help you acquire the
skills you will need to work with the examples in this book. More specifically,
you will learn how to create these types of projects:

❍ Dynamic Web project, where the output artifact is a WAR file

❍ EJB project, where the output artifact is an EJB JAR file

❍ EJB client project, where the output artifact is a JAR file that contains
client-side classes for accessing an EJB module

140 CHAPTER 6 • Organizing Your Development Project

Creating Web Applications

To build a Web application you need a project that contains a Web module.
There are two types of Web projects: static and dynamic.

Static Web projects contain resources that provide static content. You can
use a static Web project to develop Web applications that contain many of the
standard Web resources, such as HTML, images, CSS, and XML, and test them
using a Web browser. These projects can be deployed to a conventional Web
server, such as the Apache HTTP Server, that has no J2EE capabilities.

Dynamic Web projects are for J2EE Web applications that contain servlets,
JSPs, and filters, in addition to static content. A dynamic Web project can be used
as a stand-alone Web application, or it can be combined with other modules to
create a J2EE enterprise application.

The J2EE specification defines a standard for Web application directory
structure. It specifies the location of static Web files, JSPs, Java class files, Java
libraries, deployment descriptors, and supporting metadata. The default
dynamic Web project layout resembles the structure of a J2EE Web application

Web Project Types and J2EE Applications 141

Figure 6.3 J2EE Modules

lib/

images/

classes/
web-inf/

web.xml

struts.jar

logo.gif
index.jsp

web

com...

......

...

Web content

Classes
Libraries
Deployment
 descriptors

com...

ejb-jar.xml

MyBean.class

ejb

...

...
Deployment
 descriptors

Classes

client.jar EJB client.jar

meta-inf...

application.xml

MyBean.class

ear

...

...
Deployment
 descriptors

Classes

league.jar
EJB modules

news.jar

leagueplanet.war

console.war
Web modules

❍ Enterprise application project, where the output artifact is an EAR file
containing Web, EJB, and other modules

module. In the workbench, you can use the New Web Project wizard to create a
new Web project. WTP has support for other types of project layouts and can
automatically build a J2EE Web application archive (WAR) structure defined by
the standard.

When you want to create a dynamic Web project, you will typically do the
following:

1. Invoke the Dynamic Web Project wizard.

2. Provide parameters such as project name and locations for Web artifacts.

3. Choose a target runtime.

4. Choose project facets.

You can try these steps by repeating the following:

1. Switch to the J2EE perspective. In the Project Explorer view, right click, and
invoke the New � Dynamic Web Project menu item (see Figure 6.4).

142 CHAPTER 6 • Organizing Your Development Project

Figure 6.4 Select Wizard

Click Next. The New Dynamic Web Project wizard opens (see Figure 6.5).

Web Project Types and J2EE Applications 143

Figure 6.5 New Dynamic Web Project

2. Enter LeaguePlanetWebProject for the project name. A dynamic Web
project contains J2EE components such as JSPs and servlets. It is necessary
for J2EE APIs to be a part of the project classpath. This is done for you
automatically when you associate a J2EE server runtime with the project.
The runtime provides a set of libraries that will also contain JARs such as
the servlet.jar. If you switch the runtime at a later time, the classpath is
also updated. If your prefer not to use a runtime to provide these libraries,
you can create a folder that contains the J2EE libraries and point to it as
your runtime library. However, this method will require you to obtain
appropriate libraries for the J2EE APIs from

http://java.sun.com

Assuming you have defined a server runtime such as Tomcat, select it as the
target runtime. We will revisit servers and runtimes in other chapters.

Configurations allow you to choose a set of project facets for common
styles of Web projects. For example, if you choose the WebDoclet configu-
ration, WTP will set up the project to enable XDoclet.

http://java.sun.com

144 CHAPTER 6 • Organizing Your Development Project

Figure 6.6 Select Project Facets

3. A project facet describes some runtime aspect of the Web module. For
Tomcat 5.0, you can specify the J2EE version, the Java version, and,
optionally, the XDoclet version. Each server defines a set of supported
facets and their allowed values. WTP configures the Web module and sets
up the classpath for the project so that it matches the specified facets.
Accept the defaults here and click the Next button. The Web Module page
is displayed (see Figure 6.7).

4. The Web Module page lets you specify its context root name and the directo-
ries for its Web and Java resources. The context root is the name that appears
in the URL for the Web application. Specify LeaguePlanetWebProject as the
context root and accept the defaults for the directory names. Click Finish.
WTP creates the project and populates it with configuration files such as the
J2EE Web deployment descriptor, web.xml (see Figure 6.8).

Click the Next button. The Project Facets selection page is displayed
(see Figure 6.6).

Web Project Types and J2EE Applications 145

Figure 6.7 Web Module

You have now created a dynamic Web project named LeaguePlanetWebProject
and targeted it to Tomcat.

The Dynamic Web Project wizard creates folders and files under the project
(see Figure 6.9). Open the project you have just created and browse its contents.
For example, the WebContent folder contains a special folder named WEB-INF,
which holds items that are defined by the J2EE specification and are not accessi-
ble by a Web browser. The WEB-INF/classes folder is where compiled Java code
goes. It also contains a special file, web.xml, which is the J2EE Web deployment
descriptor.

The WebContent folder contains Web resources such as JSP and HTML files, and
other types of supporting resources (see Figure 6.9). The contents of WebContent will
be accessible from the Web application context root.

The following default elements are created with a dynamic Web project:

❍ WebContent/WEB-INF/web.xml: This is the Web deployment descriptor.

❍ src: This is the Java source code for classes, beans, and servlets. The pub-
lisher will copy the compiled class files into the WEB-INF/classes folder of
the final application.

146 CHAPTER 6 • Organizing Your Development Project

Figure 6.8 Dynamic Web Project—LeaguePlanetWebProject

Figure 6.9 Elements of a Dynamic Web Project

WebContent JavaSource

Resourceclasses web.xmllib

Resource ResourceWEB-INF Class

* * *

*

Web Module

Project

❍ WebContent: This is the Web application root. All Web artifacts placed in
this folder will be available to the client. The publisher will copy the com-
plete contents of this folder into the root of the final WAR file. It is possible
to choose a different name for the WebContent folder or rename it.

❍ WebContent/WEB-INF/classes: Sometimes code and libraries will be
delivered to you in the form of class files (in comparison to those that are
provided to you as JAR files, which you would put into the WEB-IF/lib
folder). To add them to the classpath of the final Web application, you can
place them in this folder.

❍ WebContent/WEB-INF/lib: We will place all libraries that are provided to
use in the form of JAR files here. They will be added to the build path of
the project. The publisher will copy them into the WAR file, and they will
be available to the class loader of the Web application.

A dynamic Web project can publish its contents as a Java Web application
archive (WAR) file (see Figure 6.10). Publishers assemble the artifacts in a Web
project, such as Java sources; Web content, such as JSPs, HTML, and images;
and metadata, such as Web deployment descriptors, in a form that can run on a
J2EE application server.

Web Project Types and J2EE Applications 147

Figure 6.10 Publisher

Builders
lib/

images/

classes/

web-inf/

web.xml

struts.jar

logo.gif

leagueplanet.war

com...

...

...

com.../

LeaguePlanetWeb

struts.jar

logo.gif

LeaguePlanetWebProject

...

...

LeaguesAction.java

JavaSource/

WEB-INF/
WebContent/

module

lib/

web.xml

images/

index.jsp index.jsp

...

Development View (WTP) Runtime View (J2EE Spec.)

WTP wizards simplify the tasks involved in creating J2EE modules. We have
just shown how to create a Web module. WTP online documentation at

www.eclipse.org/webtools

provides detailed information about these wizards and the project structure. The
process of creating an EJB application is equally simple. The next section
describes how to create an EJB project that contains an EJB module.

Creating EJB Applications

An EJB project contains an EJB module. This project can be used to assemble
one or more enterprise beans in a single deployable unit. EJBs are deployed in a
standard Java archive (JAR) file. An EJB project can be used to build stand-alone
components, or it can be combined with other modules in a J2EE enterprise
application (EAR).

Recall the structure of an EJB module (see Figure 6.3 earlier). EJB modules
have a simple structure that contains EJB classes and deployment descriptors. In
the workbench, we can use the New EJB Project wizard to create a new EJB proj-
ect with an EJB module in it.

148 CHAPTER 6 • Organizing Your Development Project

Getting an EJB Container
EJB projects require a server runtime environment that supports EJBs.You will need
an application server such as Geronimo, JBoss, or JOnAS to develop EJBs with WTP.
You should obtain the application server first, and use the WTP preferences to define
a new server runtime environment.

You can obtain Geronimo from

http://geronimo.apache.org

or you can download and install it via WTP (see the Installing Third-Party Content
section in Chapter 4). JBoss can be obtained from

http://www.jboss.org

and JOnAS can be obtained from

http://jonas.objectweb.org

You will not be able to use Apache Tomcat for EJB development. Tomcat only sup-
ports J2EE Web modules, not EJBs or enterprise applications.

http://geronimo.apache.org
http://www.jboss.org
http://jonas.objectweb.org
www.eclipse.org/webtools

When you want to create an EJB project, you will typically do the following:

1. Switch to the J2EE perspective. In the Project Explorer view, right click, and
invoke the New � EJB Project menu item (see Figure 6.11).

Web Project Types and J2EE Applications 149

Figure 6.11 Select Wizard

Click Next. The New EJB Project wizard opens (see Figure 6.12). Enter
LeaguePlanetEJB for the project name and select a target runtime that supports
EJBs such as JBoss. We will discuss EJBs in more detail later in Chapter 8.

Configurations allow you to choose a set of project facets for common
styles of EJB projects. For example, if you choose the EJB Project with
XDoclet configuration, WTP will set up the project to enable XDoclet.
Click the Next button to proceed to the Project Facets selections page.

2. Project facets describe aspects of J2EE modules (see Figure 6.13). For an
EJB module, you can specify the J2EE version, the Java version, and,
optionally, the XDoclet version. Each server defines a set of supported
facets and their allowed values. For example, you will not be able to set an

Figure 6.13 EJB Project Facets

Figure 6.12 New EJB Project

150

Web Project Types and J2EE Applications 151

Figure 6.14 EJB Module

EJB facet using a Tomcat server because it does not have an EJB container.
WTP configures the EJB module and sets up the classpath for the project
so that it matches the specified facets. Here, you will use XDoclet to
develop EJBs. Add the XDoclet facet by checking it. Accept the defaults
for the EJB and Java facets and click the Next button to proceed to the EJB
module settings.

3. The EJB Module page (see Figure 6.14) lets you specify the directory for
Java resources. Optionally, you can create a Java utility module that will
contain EJB classes and interfaces, which will be required by EJB clients.
Click Finish.

4. WTP creates the EJB project and populates it with configuration files such
as the EJB deployment descriptor, ejb-jar.xml (see Figure 6.15).

You may notice some errors in the new EJB project. For example, if your EJB
project does not contain any EJB components, this is considered an error according
to the J2EE specification. If you chose the XDoclet facet and an XDoclet runtime is

The ejbModule folder contains Java and EJB resources such as the deploy-
ment descriptor (see Figure 6.16).

Similar to Web application modules, an EJB project has a publisher for EJB
applications (see Figure 6.17). This publisher creates a deployable EJB module
from the contents of the project with all the classes and deployment descriptors.

152 CHAPTER 6 • Organizing Your Development Project

Figure 6.15 Project Explorer—EJB Project

not yet configured, this will show up in the problem markers. These errors are nor-
mal and will be removed when you fix the preferences and add EJBs to the project.

EJB Client Projects
There is another EJB related project type called the EJB Client Project.These projects
are used to share common classes between EJB modules and their clients such as a
Web application.Typical classes that are found in these modules are the EJB interface
types and models. EJB project wizards can create an EJB client project.This option can
be selected only when the EJB module is added to an EAR module. It is also possible
to add the client project to an existing EJB module by using the context menu in the
Project Explorer view.

Web Project Types and J2EE Applications 153

Figure 6.16 Elements of an EJB Project

Project

EJB Module

ejbModule

META-INF

ejb-jar.xml Resource

Resource Class

* *

*

meta-inf/

ejb-jar.xml

LeagueBeans.jar

com...

...

com.../

LeagueBeans

LeaguePlanetEJBProject

...

LeagueBean.java

ejbModule/

META-INF/

module

ejb-jar.xml

Builders

...

Development View (WTP) Runtime View (J2EE Spec.)

PlayerBean.java

...

Figure 6.17 EJB Publisher

This completes the process of creating an EJB project. The next section describes
how to create an enterprise application project that can combine EJB and Web mod-
ules in a J2EE Enterprise Application (EAR) module.

Creating Enterprise Applications

The most interesting J2EE enterprise applications have more than one module.
They have several Web applications and EJB modules. The J2EE specification
provides a basic application packaging structure called an enterprise application.
Enterprise application archives are packaged as Java archives with the .ear suffix.
Therefore, they are also known as EARs. An EAR can contain one or more

❍ EJB modules

❍ Web application modules

❍ J2CA resource adapter modules

❍ Application client modules

An enterprise application project contains the hierarchy of resources that are
required to deploy these modules as a J2EE enterprise application.

An enterprise application module contains a set of references to the other
J2EE modules that are combined to compose an EAR. In addition to the mod-
ules, an enterprise application module also includes a deployment descriptor,
application.xml.

Publishers for enterprise application projects consume the output of the pub-
lishers from their component modules (see Figure 6.18). For example, the builder
of an EAR that contains a Web application module and an EJB module waits until
the builder for the Web and EJB projects creates the deployable structures for
these modules, and then it assembles these artifacts in the EAR.

WTP has wizards and tools to create and edit EARs. They are described in
the following use cases.

Create a New Web or EJB Module in an EAR

When a new J2EE module project is created, such as a dynamic Web project or
an EJB project, it can be associated with an enterprise application project (see
Figure 6.19). The project wizards let you specify a new or existing enterprise
application. You can also choose the project in which you would create the
enterprise application module. Finally, the EAR is updated to include the new
J2EE module in it.

154 CHAPTER 6 • Organizing Your Development Project

Adding Existing Web and EJB Modules to an EAR

In the second scenario there are existing J2EE modules, which are to be added to
a new enterprise application. You create a new EAR project and add your existing
modules to it. The Enterprise Application wizard creates a new project and allows
you to choose the modules to be included in it.

When you want to create an EAR project, you will typically do the following:

1. Switch to the J2EE perspective. In the Project Explorer view, right click, and
invoke the New � Enterprise Application Project menu item (see
Figure 6.20).

2. Click Next. The New Enterprise Application Project wizard opens
(see Figure 6.21).

3. Enter LeaguePlanetEar for the Project name. Click the Next button to pro-
ceed to the Project Facets selection page.

Web Project Types and J2EE Applications 155

Figure 6.18 EAR Publisher

Builders

LeagueApplication

LeagueApplicationProject

META-INF/

module

application.xml

war

Development View (WTP) Runtime View (J2EE Spec.)

LeagueEJBProject

module

LeagueWebProject

module

Builders
jar

Builders

ear

Figure 6.20 Select Wizard

Figure 6.19 Adding a Module to an EAR

156

Web Project Types and J2EE Applications 157

Figure 6.21 New Ear Project

4. Project facets describe aspects of enterprise applications (see Figure 6.22).
For the EAR module, there is only the EAR facet. Each server defines a set
of supported facets and their allowed values. For example, you will not be
able to set an EAR facet using a Tomcat server because it does not support
EARs. Click the Next button to proceed to the EAR module settings.

5. The J2EE Module page (see Figure 6.23) lets you select the modules that will
be included in the application. Select the LeaguePlanetEJB and
LeaguePlanetWebProject modules. Note that you can also make the wiz-
ard generate new empty modules by clicking the New Modules button.
Click Finish.

6. WTP creates the EAR project and its deployment descriptor,
application.xml (see Figure 6.24).

Figure 6.23 J2EE Modules

Figure 6.22 EAR Project Facets

158

Web Project Types and J2EE Applications 159

Editing EARs

In the final scenario, you modify the modules in an EAR. You can add new mod-
ules to an EAR or remove existing ones by using the J2EE Module Dependencies
property page.

When you want to modify an EAR project, you will typically do the following:
In the Project Explorer, highlight the enterprise application LeaguePlanetEar, right
click, and select Properties. As Figure 6.25 shows, you can then choose the modules
to be included in the EAR.

EAR modules have a simple structure. When modules are added or removed
from an EAR, WTP automatically updates the module and the contents of the
EAR deployment descriptor, application.xml, which is stored in the META-INF
directory.

Figure 6.24 Project Explorer—EAR Project

160 CHAPTER 6 • Organizing Your Development Project

Figure 6.25 J2EE Module Dependencies

Advanced Web Projects

The default project types and layouts cover many of the common application
and development needs. Sometimes you need to do more with a Web project;
you can use it to improve your development process, organize your code, and
share your work with other team members.

Here are some development considerations that can determine the organization
of a project:

❍ Project Deliverables: These are the concrete outputs of the development
activities. For example, in a J2EE development project, deliverables are
the standard modules such as Web application archives (WARs), EJB
component archives (JARs), Enterprise application archives (EARs), and
so forth. Architecture also influences the design of deliverables. You may
use a single EAR project if all the containers run on the same application
server. However, it will be better to divide the projects if the Web and
EJB containers are on different servers.

Some projects are simple Web applications while others involve multiple
modules and components. An application may group many Web applica-
tions and EJBs together. The J2EE specification describes a structure for
these deliverables.

Advanced Web Projects 161

❍ Team Organization: Team organization determines who will do what in
the project. A team can be one person or it can have groups of developers.
The structure of the project is a significant factor in determining the pro-
ductivity of the team and the management of the overall software engi-
neering process.

❍ Change Control, Configuration and Release Management: Software can be
viewed in terms of components that are assembled and configured to form
an application. It is important to track the changes to these components
using a version control system. The organization of these components
determines the units that are used to control the changes in the scope of
the project. The configuration and version of components that make an
application are very important to the release process.

❍ Testing: Test plans, test cases, and execution of the tests must be regular
and continuous parts of the development process. Test objectives and
responsibilities are determined based on the modules. Unit and integration
tests are part of the development for each module.

When the WTP project was started, the development team had long discus-
sions on how to extend the basic Java projects to handle different styles of cus-
tom projects. A key requirement for Web projects was to enable the separation
of the two fundamental view points to help manage resources in a project, for
example, the developer view and the runtime view.

The runtime view is defined by the J2EE specification. The developer’s view
is most often modeled using the J2EE specification. Mimicking the structures
defined in the specification creates valid J2EE applications, but this is not
always suitable for all development projects.

In WTP, the developer’s view of a project is captured by a model that maps
the contents of the project to the runtime view. Each WTP Web project has a
structural model that is used to describe how developers lay out the resources.
Publishers and WTP tools use the structural model to create J2EE artifacts. This
mapping gives you flexibility to create projects in ways that you could not do
before. For that reason, WTP developers sometimes also refer to these projects as
flexible projects. We’ll use the term Web project in this book.

Technically speaking, an Eclipse project that has the Module Core Nature is a
Web project. This nature indicates that these projects have a structural model for
the modules and will support WTP tools. We will start with a short description
of this advanced project capability, and then give examples demonstrating its
use. Power users can employ these capabilities to create many different layouts
for their projects.

Modeling the Developer View

The structural model of a Web project tells publishers how to compose a
runtime artifact (see Figure 6.26).

162 CHAPTER 6 • Organizing Your Development Project

This model is defined in an XML component file stored with the other project
settings. The project settings and component files are normally invisible in the Project
Explorer view. However, they are visible in the Eclipse Navigator view that is included
in the Resource perspective. The structural model is stored in a file named

org.eclipse.wst.common.component

inside the .settings folder of any Web project (see Figure 6.27).
The model file listed in Example 6.1 is for a typical dynamic Web application

module. The module is named LeaguePlanetWebProject. The model specifies how
resources in the development view map to resources in the runtime view. Here, you
map the complete contents of the WebContent folder to the module root. The
source-path is relative to the project root and the deploy-path is relative to the
module root at the destination. You can have as many resource mappings as you like
for each module. The module also has type-specific properties such as context root,
which defines the context root of the Web application module. The java-output-
path property tells the publisher where to find the compiled classes.

Example 6.1 Web Module Definition
<?xml version="1.0" encoding="UTF-8"?>
<project-modules id="moduleCoreId" project-version="1.5.0">

<wb-module deploy-name="LeaguePlanetWebProject">

Figure 6.26 Structural Model

Project

module
Deployable

Module
Builder

war

Runtime
module

structural
model

.settings/org.eclipse.wst.
 common.component

<wb-resource source-path="/WebContent" deploy-path="/"/>
<wb-resource source-path="/src" deploy-path="/WEB-INF/classes"/>
<property name="context-root" value="LeaguePlanetWebProject"/>
<property name="java-output-path" value="build/classes"/>

</wb-module>
</project-modules>

Advanced Web Projects 163

Figure 6.27 Structural Model Definition

Another example is the model of an enterprise application (see Example 6.2).
Here the interesting parts are the dependent modules. In this example, the EAR
uses an EJB module and a Web module. A dependent module is referenced using a
handle, which is a module URL. A module URL starts with the prefix module:,
and is followed by a workspace-relative path to determine the project and the
name of the module within that project.

Example 6.2 EAR Module Definition
<?xml version="1.0" encoding="UTF-8"?>
<project-modules id="moduleCoreId" project-version="1.5.0">

<wb-module deploy-name="LeaguePlanetEar">
<wb-resource source-path="/EarContent" deploy-path="/" />
<dependent-module deploy-path="/"

handle="module:/resource/LeaguePlanetEJB/LeaguePlanetEJB">
<dependent-object>EjbModule_1147426182270</dependent-object>

<dependency-type>uses</dependency-type>
</dependent-module>
<dependent-module deploy-path="/"
handle="module:/resource/LeaguePlanetWebProject/LeaguePlanetWebProject">
<dependent-object>WebModule_1147426182290</dependent-object>
<dependency-type>uses</dependency-type>

</dependent-module>
</wb-module>

</project-modules>

The structural model is a mapping for the organization of files that are dis-
tributed over a set of Web projects. A publisher uses this model and can construct
a deployable, runtime Web artifact as described in the J2EE specification.

When you create projects and modules using a project creation wizard,
the model is automatically added to a project. Wizards create a model based
on a default template. However, you can easily modify the default mapping as
shown in the next sections. Some of the common types of artifacts used in
model definitions are resources, modules, and dependent modules.

Resource

A resource is an abstraction of project artifacts such as files, folders, and
libraries. An Eclipse project maintains its resources, ensuring that each resource
is loaded only once within the workspace. Resources are referenced with
resource URIs, which are relative to the projects that contain the resource. WTP
has additional URI converters that can resolve URIs to their underlying physical
resource, such as the module URI we discussed earlier.

Module

A module represents a deployable artifact, such as a WAR, EJB JAR, or EAR.
A WTP project can be associated with only one module, but it can refer to oth-
ers. This makes it possible to distribute the code for a module over a set
of projects.

A J2EE module has a standard layout and is targeted to some J2EE runtime
container. J2EE projects generate archives as JARs or as exploded archives.
These archives must contain compulsory files, such as deployment descriptors,
and must conform to the J2EE specification. There are five core types of J2EE
modules and a general-purpose utility module:

❍ Enterprise application (EAR)

❍ Enterprise application client (JAR)

❍ Enterprise JavaBean (JAR)

❍ Web application (WAR)

164 CHAPTER 6 • Organizing Your Development Project

❍ Resource adapter for J2CA (RAR)

❍ Utility modules (JAR)

Dependent Module

As its name suggests, a dependent module is used to define dependencies between
modules. It can also help define a module with its code split into several projects.
For example, we can maintain the Web applications that are in an enterprise appli-
cation as dependent modules. Another common pattern is to maintain basic utility
JAR modules, which contain the extracted contents of the archive, as separate proj-
ects. The benefit of using extracted modules is that all the artifacts can be modified,
and Web projects assemble them into a deployable form.

Example Projects

It is time to discover how you can create some interesting projects. These best practices
provide different styles of projects for Web and J2EE development. You can extend
and customize these examples to fit your needs. The examples we’ll discuss are a basic
enterprise application, dividing a Web module into multiple projects, and using
Maven for Web application development.

Basic Enterprise Application

Using the J2EE application deployment specification as a template, you will create
an enterprise application with multiple modules. This is recommended if you do
not have a compelling reason to do it another way. These projects map to the J2EE
specification in a straightforward way and can be created using wizard defaults.
Adherence to standards reduces the behavioral discrepancies between the runtime
and the development environments.

In this example, each architectural application layer will correspond to a proj-
ect. For example, the presentation layers will correspond to a dynamic Web project
with a Web application module and the business logic layer to an EJB project with
an EJB module. The enterprise application project will be used to assemble the
modules as a single coherent unit.

To create this structure, you will use a J2EE Enterprise Application Project
(see Figure 6.28). The EAR project has two modules: LeaguePlanetWebProject, a
Web application module; and LeaguePlanetEJBProject, an EJB module. The Web
application module is going to be a dynamic Web project with the same name.
The EJB module is divided into an EJB project and the EJB client project. The
EJB client JAR is a Java utility project named LeaguePlanetEJBClientProject.

Example Projects 165

166 CHAPTER 6 • Organizing Your Development Project

To demonstrate the use of Web application libraries, the Web application will
use the Struts MVC framework. In order to use Struts, all Struts and supporting
libraries, that is, struts*.jar, commons*.jar, jakarta*.jar, log4j.jar, and
antlr.jar, are kept in the WEB-INF/lib directory. The Struts configuration file,
struts-config.xml, is in the WEB-INF directory. The business model for League
Planet is provided by the EJBs. The Web application delegates the business behav-
ior to this layer.

Figure 6.28 Module Dependencies for League Planet Application

com.../

LeaguePlanetWebProject

struts.jar

list.jsp

LeaguePlanetWebProject

...

...

LeaguesAction.java

JavaSource/

WEB-INF/
WebContent/

Web module

lib/

web.xml

leagues/

index.jsp

struts-config.xml

logo.gif
images/

com.../

LeaguePlanetEJBProject

LeaguePlanetEJBProject

...

LeagueBean.java

ejbModule/

META-INF/

ejb-jar.xml

PlayerBean.java
...

LeaguePlanetEar

LeaguePlanetEar

META-INF/

Enterprise application module

application.xml

com.../

LeaguePlanetEJBClientProject

LeaguePlanetEJBClientProject

League.java

ejbModule/

EJB client module

EJB module

Player.java
...Home.java

uses

us
es

us
es

us
es

Clean Workspace
In the first part of this chapter, we described how you can create different types of
projects. In this example we will use the same names. If you have tried the earlier
examples and are using the same workspace, you should delete those projects before
starting this one. If you would like to keep the old work, remember to back up.

Example Projects 167

To create an EAR project with this structure, do the following:

1. Start as we described earlier in this chapter to create a new Enterprise
Application Project. Name it LeaguePlanetEar. Select the default facets,
continue to the J2EE Modules page, and click Finish to create an empty
EAR. In the next steps you will create the Web and EJB projects.

2. Repeat the steps we described earlier in this chapter to create a new Dynamic
Web Project. Name it LeaguePlanetWebProject. Choose the
LeaguePlanetEar as the EAR for the Web project (see Figure 6.29).
Continue to the other pages to select the default facets, and click Finish to
create the Web project. The EAR project will be automatically updated to
reflect the addition of the new Web module.

Figure 6.29 Web Project Added to an EAR

3. To do this step, you must have the Struts framework installed someplace
on your machine. You can obtain Struts from

http://struts.apache.org

http://struts.apache.org

168 CHAPTER 6 • Organizing Your Development Project

Import all the Struts libraries and their supporting libraries into

WebContent/WEB-INF/lib

Refer to the Struts documentation for the exact list of libraries. Once the
JARs are copied into the lib folder, they will be automatically added to the
build path under the Web App Libraries category (see Figure 6.30).

4. Repeat the steps we described earlier in this chapter to create a new
EJB project. Name it LeaguePlanetEJBProject. Choose the
LeaguePlanetEar as the EAR for the EJB project (see Figure 6.31). You can
choose one of the default facet configurations for development, such as the
EJB Project with XDoclet. You do not need to change the default choices. If
you do choose one, you should make sure that your workspace is set up to
use it (that is, the XDoclet settings are valid). Click Next to go to the other
pages to select the default facets. Click Next to go to the EJB Module page.

5. The Web application will be a client of the EJB module. Create an EJB
client module named LeaguePlanetEJBClientProject (see Figure 6.32).
Click Finish to create the EJB and EJB client projects. The EAR project will
be automatically updated to reflect the addition of the two new modules.

Figure 6.30 Web App Library

Figure 6.31 EJB Project Added to an EAR

Figure 6.32 EJB Client Module

169

170 CHAPTER 6 • Organizing Your Development Project

Web Application Module Uses EJB Client
You need to make sure that the dependency between the Web application module
and the EJB client is set.The Web application is a client of the EJB module.You need to
describe this dependency. Remember that you created an EJB client module named
LeaguePlanetEJBClientProject. You will add this module to the J2EE dependen-
cies in the Web project. Select the Web project in the Project Explorer, right click and
invoke the Properties menu item. Select the J2EE Dependencies page. In this tab,
select LeaguePlanetEJBClient from the list (see Figure 6.34).

Figure 6.33 Project Explorer—EAR Project

6. WTP updates the EAR project and the deployment descriptor, application.xml
(see Figure 6.33).

To create these projects, you used the same wizards described earlier in this chapter.

Example Projects 171

Figure 6.34 Dependency to EJB Client Module

Later, you can extend this model by adding more Web projects—an adminis-
tration site, for example. The business model can be extended with more EJBs.

Dividing a Web Module into Multiple Projects

Size, structure, and the geographical and sociological aspects of a development
team are significant factors in determining the project layout. When these are
important to a project, they can determine the structure. The key constraints for
this template are the manageability and divisibility of work. Manageability relates
to aspects such as ownership of code, development responsibilities and tasks, con-
figuration and version control, integration, and release management. Divisibility
relates to dividing the work between members of the development team.

In this example, you will extend the project structure described in the previ-
ous example. LeaguePlanetWebProject is a large Web application module. It will

172 CHAPTER 6 • Organizing Your Development Project

contain many large, loosely coupled subsystems. League management, player
management, sponsorship, and advertising are some of these subsystems that will
be developed by different teams. You will divide and manage subsystems as sepa-
rate projects. Each subsystem can be released on different schedules. You will
therefore start by dividing the Web module into two projects (see Figure 6.35).
You can increase the number of subsystems following the same pattern later on.
The dynamic Web project in the previous example contains the Web application
module and will have common Web components such as menus, navigation bars,
and so forth. There is a new subsystem for league management. This is a Java util-
ity project on steroids. The league management module has its own presentation
layer with JSPs and Struts configuration files in addition to its own Java classes.

To create this structure, you will need to create a new basic Java Utility Project
named LeaguePlanetManagementWebProject. Java utility projects can be used to
refactor reusable components of applications into separate projects. J2EE module
dependencies will help assemble these components automatically.

To create the Java Utility Project and divide the module, the following steps
must be performed:

Figure 6.35 Dividing a Web Module into Multiple Projects

LeaguePlanetWebProject

Web module

EAR

module

us
esus

es
us

es

us
es

module

EJB

module

EJB client

module

Web

changed to LeagueManagementSubProject

Team A

Team B

Team C

Team D

Example Projects 173

1. Create a new Java Utility Project using the wizard.

2. Add the Web application libraries to its build path.

3. Add the utility project to the list of J2EE dependencies for the Web project.

4. Create a new WebContent folder in the utility project and add this to the
structural model.

Do the following:

1. In the Project Explorer view, right click and invoke the New � Other � J2EE
menu item (see Figure 6.36). Select Utility Project.

Figure 6.36 Select Wizard

Click Next. The New Java Utility Project wizard opens (see Figure 6.37).

2. Enter LeaguePlanetManagementWebProject for the project name. Use the
same target runtime for all your projects. Use the default configuration.
Click the Next button. The Project Facets selection page is displayed
(see Figure 6.38).

Accept the defaults here and click Finish. WTP creates the empty utility
project.

Figure 6.37 New Java Utility Project

Figure 6.38 Select Project Facets

174

Example Projects 175

Figure 6.39 Web Project Depends on Utility Project

3. You need to add this submodule to the J2EE dependencies of the Web
project. To do this, select LeaguePlanetWebProject in the Project Explorer,
right click, and invoke the Properties menu item. Select the J2EE
Dependencies page. In this page, go the Web Libraries tab and add
LeaguePlanetManagementWebProject from the list (see Figure 6.39).

Managing the Web Application Classpath
When you add a dependency to a utility project, it is automatically added to the final
WAR and to the Web App Libraries section of the build path of the Web project.
However, the reverse is not true. The utility project has no knowledge of the Web
application. If you have dependencies to external libraries, like Struts, in the original
Web module, all JARs that are inside the WEB-INF/lib are available in the class loader
of LeaguePlanetWebProject.

176 CHAPTER 6 • Organizing Your Development Project

4. This is an optional step. The league management module is a part of the
Web module, but it may need some external libraries to be on its build
path. You can do this by adding the external JARs to the build path of the
Java utility project. Select LeaguePlanetManagementWebProject in the
Project Explorer, right click, and invoke the Properties menu item. Select
the Java Build Path page. Click on the Libraries tab. In this tab, click Add
External JARs (see Figure 6.40).

The JAR Selection wizard will open (see Figure 6.41). This wizard allows
you to browse your local file system for JARs.

Select all the same external libraries, like Struts, that you have used for the
Web project here, too. Click Finish. Apply and close the Properties window.

5. Next you will create a new WebContent folder in the league management
project. In the Project Explorer, select LeaguePlanetManagementWebProject,
right click, and invoke the File � New � Folder menu item. The New Folder
wizard will open (see Figure 6.42).

6. Enter WebContent as the folder name. Repeat the same process to create a
new WEB-INF folder inside the WebContent folder.

However, things can get a bit complicated if your new utility project needs classes from
the Web application. For example, you may want to add new Struts actions to the util-
ity project module or use Struts taglibs in the JSP files.

You can try to add LeaguePlanetWebProject to the build path of the utility project but
this would create a circularity, so Eclipse will not allow it.

The best solution is to create other utility projects for common subsystems. These
common utility projects can be added to the build path of the Web application as J2EE
module dependencies and can also be included in the build path of the other utility
projects as Java project dependencies.This approach avoids circularities.

Finally, some development teams prefer to maintain the binaries for external libraries,
such as Struts or Hibernate, in a common folder but not in the Web project. For exam-
ple, some use Maven repositories to maintain project dependencies to these JARs.You
will learn about Maven in the next section.WTP allows you to maintain libraries exter-
nally and automatically assembles them into the final WAR file before publishing it to the
server. If these libraries are added as J2EE dependencies, they are also automatically
added to the build path.You can use the project Properties window and add them as
an external JAR dependency on the J2EE Module Dependencies tab.

Example Projects 177

Figure 6.40 Utility Project Java Build Path

Figure 6.41 Add External JARs Library

178 CHAPTER 6 • Organizing Your Development Project

Figure 6.42 WebContent Folder

7. Next you will link the new WebContent folder to the main Web project and
add it to the structural model so that publishers will assemble the contents
of the WebContent folder from the league management project into the
overall project. In the Project Explorer, select LeaguePlanetWebProject,
right click, and invoke File � New � Folder. The New Folder wizard will
open (see Figure 6.43).

8. Enter Management as the folder name. Click on Link to folder in the file system.
Click Browse to select the WebContent folder created in the previous step.

You will need to specify that the WebContent folder in
LeagueManagementWebProject gets copied into the deployable Web applica-
tion module. Currently, there are no nice graphical tools to map these
resources, so you will need to edit some files. You need to create the link
to the WebContent folder before editing the module definition file. You
already completed this step. Therefore, you can modify the XML compo-
nent file to specify that this content folder is to be published with the Web
module. This involves manually editing the

org.eclipse.wst.common.component

definition in the .settings folder. Edit the file as shown in Example 6.3.

Example Projects 179

Figure 6.43 Link to Management WebContent Folder

Example 6.3 Modified Web Module Definition
<?xml version="1.0" encoding="UTF-8"?>
<project-modules id="moduleCoreId" project-version="1.5.0">

<wb-module deploy-name="LeaguePlanetWebProject">
<wb-resource source-path="/WebContent" deploy-path="/" />
<wb-resource source-path="/Management" deploy-path="/" />
<wb-resource source-path="/src" deploy-path="/WEB-INF/classes" />
<dependent-module deploy-path="/"

handle="module:/resource/LeaguePlanetEJBProject/
LeaguePlanetEJBProject">
<dependency-type>uses</dependency-type>

</dependent-module>
<dependent-module deploy-path="/WEB-INF/lib"

handle="module:/resource/LeaguePlanetManagementWebProject/
LeaguePlanetManagementWebProject">
<dependency-type>uses</dependency-type>

</dependent-module>
<property name="context-root" value="LeaguePlanetWebProject" />
<property name="java-output-path" value="build/classes" />

</wb-module>
</project-modules>

180 CHAPTER 6 • Organizing Your Development Project

You have now split a Web module into multiple projects. The publisher will
add the Java classes developed in the league management project as a JAR in the
WEB-INF/lib folder to the original Web application module.

The publisher will also assemble any JSPs and additional Struts configura-
tion files from the league management module, as well as all the Web content in
this submodule. This content will be deployed with the Web application auto-
matically. After the WAR is created, it will be assembled into the enterprise
application as usual. When you are done, the workbench will have projects that
look like Figure 6.44.

Figure 6.44 Dependent Module in the Project Explorer

Using Maven for Web Application Development

Maven is a software project management and comprehension tool. It started as a
tool developed to build the Turbine project at apache.org and quickly spread to
other Apache projects. Today, it is used as the main build tool for many of the

Example Projects 181

Java projects at Apache. For an in-depth description of how to use Maven on
your project, refer to Maven: A Developer’s Notebook [Massol2005] by Vincent
Massol and Timothy O’Brien.

Maven is more than a Java build tool. It provides capabilities to make your life
easy as a developer. Some of these capabilities are a well-defined project structure, a
well-defined development process to follow, and a coherent body of documentation
that keeps developers and users informed of what’s happening in the project. This is
essential in many team projects where there aren’t enough people dedicated to the
task of building, documenting, and propagating the information about the project.
Maven captures the knowledge embedded in people’s heads to do these tasks. For
example, the development processes of Eclipse and Apache are evolutionary and
resulted from the experiences gained from running many projects. This body of
knowledge is typically captured in the tools that are used in building projects. Maven
provides a standard environment that encourages the use of development and project
best practices, and it disseminates this information to project stakeholders.

Following the success of Maven in Apache projects, many teams adopted
Maven for their own use, including some J2EE projects. There is a set of
J2EE-specific development best practices and processes captured in Maven. The
use of Maven to develop a J2EE project enables the transfer of this knowledge.
When a new J2EE project starts, it can immediately copy the build tasks and
project know-how. The new project reuses the existing tools and conforms to the
established practices. Maven does this by providing a framework and templates.
For example, by having a common directory structure, developers are instantly
familiar with a new project. To quote Aristotle, “We are what we repeatedly do.
Excellence is not an act, but a habit.”

There are other, less well-known approaches, such as JOFFAD, that also
provide generic development frameworks to facilitate, speed up, and normalize
J2EE projects. You can read about JOFFAD at

http://joffad.sourceforge.net/structure.html

In Example 6.4 you will use the advanced WTP Web project features to
develop a Web application using Maven. Maven has a default, but customizable,
process that gets a project started using these J2EE best practices quickly.
Although both are named a project, a Maven project is conceptually very differ-
ent from a WTP project.

Maven and Eclipse have overlapping functionality such as compiling, building,
and testing. However, Eclipse is normally used for developer-centric coding, test-
ing, and debugging activities, whereas Maven is used for team-centric build man-
agement, reporting, and deployment. The primary purpose of Maven is to create a
documented, repeatable, and modeled build process that is inclusive of all these
activities. It complements the development activities in Eclipse.

http://joffad.sourceforge.net/structure.html

182 CHAPTER 6 • Organizing Your Development Project

Example 6.4 Maven Project Layout
/LeaguePlanetWebProject
+- src/
| +- main/
| | +- java/
| | | +- ...[classes and packages]
| | +- resources/
| | +- ...
| | +- webapp/
| | | +- web-inf/
| | | | +- classes/
| | | | +- ...[compiled classes]
| | | | +- lib/
| | | | +- ...[external libraries]
| | | | +- web.xml
| | | | +- ...
| | | +- ...[other web files]
| +- test/
| | +- java/
| | | +- ...[test classes and packages]
| | +- resources/
| | +- ...
| +- site/
| +- xdoc/
| +- ...
+- target/
| +- ...
+- pom.xml

All sources are grouped under the src directory. src/main/java contains
your primary Java classes and packages. src/test/java contains your classes

You will start by defining a new Web project and organizing the resources in
this project according to the best practices suggested by Maven. See

http://maven.apache.org/reference/conventions.html

for a description of Maven conventions. Maven recommends a standard project
directory structure, which is referenced in the Maven Project Object Model
(POM). The directory structure of your project will follow Maven conventions
(see Example 6.4).

Manual Operation
At the time of writing this book, neither WTP nor Maven had tools to create a
Maven-style Web project. Therefore, you will manually prepare the project files to
make WTP work with the resource structure of Maven-style projects.

http://maven.apache.org/reference/conventions.html

Example Projects 183

and packages for unit tests. src/main/webapp, similar to the WTP WebContent
folder, contains your Web content, such as the JSP and HTML files, and their
supporting resources. src/site/xdoc has sources for the project Web site.

To create the Maven project, do the following:

1. Repeat the steps described earlier in this chapter to create a new dynamic
Web project named LeaguePlanetWebProject. Select a target runtime and
default configuration for facets. Click the Next button to proceed to the
Web module settings (see Figure 6.45).

Figure 6.45 Maven Web Module

2. The Web Module page lets you specify the directory for Java resources.
This is where you will define locations for the Java sources and Web con-
tent. Enter src/main/webapp for Content Directory and src/main/java for
Java Source Directory. Click Finish.

3. WTP creates the Web project, configuration files, deployment
descriptor, and so forth.

Once the project is created, the structural model for the Web project is
defined as Example 6.5.

184 CHAPTER 6 • Organizing Your Development Project

Classpath Management with Maven and WTP
WTP requires that the WebContent folder contain the J2EE specification directories
WEB-INF, WEB-INF/classes for the compiled Java classes, and WEB-INF/lib for the
JARs. All JARs inside this folder are automatically added to the classpath of the project
under the Web App Libraries category. WTP manages the build path of the project
automatically based on the contents of the WEB-INF folder.

Maven does not know about your WTP project classpath. It uses dependencies to man-
age external libraries and code that your project needs. Dependencies are defined in the
POM and used to automatically construct a classpath for the Java compiler. Selected
libraries are also included in the WEB-INF/lib folder. Maven encourages the use of
repositories to store and share external libraries, and does not keep them with the proj-
ect. Instead, Maven retrieves them from a repository when needed. Repositories provide
a very consistent and manageable method for maintaining libraries. There is a default
Internet-based central Maven repository that keeps most popular Java libraries, served
from ibiblio.org at

http://www.ibiblio.org/maven/

On the other hand,WTP requires that these libraries be kept inside the WEB-INF/lib
folder. There is code duplication here. In Maven 1.0, dependencies and WTP can
coexist in a number of ways. One such method is to use a mechanism to override
dependencies per project. This allows you to maintain your external libraries inside the
WEB-INF/lib folder and override the JAR dependencies. Maven will then retrieve
these libraries from your project location instead of the repository. In Maven 2.0,
dependencies are always retrieved from a repository.

Example 6.5 Structural Model for Maven-Style Web Project
<?xml version="1.0" encoding="UTF-8"?>
<project-modules id="moduleCoreId" project-version="1.5.0">

<wb-module deploy-name="LeaguePlanetWebProject">
<wb-resource source-path="/src/main/webapp" deploy-path="/" />
<wb-resource source-path="/src/main/java"

deploy-path="/WEB-INF/classes" />
<wb-resource source-path="/src/test/java"

deploy-path="/WEB-INF/classes" />
<property name="context-root" value="LeaguePlanetWebProject" />
<property name="java-output-path" value="build/classes" />

</wb-module>
</project-modules>

Let’s review what you accomplished so far. You have created a dynamic Web
project using the project layout conventions suggested by Maven (see Figure 6.46).

http://www.ibiblio.org/maven/

Example Projects 185

Figure 6.46 Project Explorer—Maven Web Project

Mavenizing the Project

The next step is defining the Maven POM that will automate builds, unit tests,
documentation, project reporting, and so on.

The POM is defined by an XML file named pom.xml (see Example 6.6). This
file tells Maven everything that it needs to know about your project. Maven has
tools that can create skeleton POMs, but we will create the POM from scratch.
The snippet shown in Example 6.6 is the start of a POM for your Web application.

Example 6.6 Content of POM
<?xml version="1.0" encoding="UTF-8"?>
<project>

<modelVersion>4.0.0</modelVersion>
<artifactId>leagueplanet</artifactId>
<groupId>com.leagueplanet</groupId>
<name>LeaguePlanet.com Web Project</name>
<version>1.0-SNAPSHOT</version>
<packaging>war</packaging>
<build>[...]</build>
<dependencies>[...]</dependencies>

</project>

186 CHAPTER 6 • Organizing Your Development Project

The project artifactId corresponds to the Web application module in your
project. Dependencies will define external libraries needed by your Web application.
You will use the Struts framework, so struts*.jar and commons*.jar libraries must
be present in this list. The build section tells Maven how the Java sources and other
resources are organized. Maven project definition allows you to define filters for
including or excluding source files.

The build section is quite simple to set up, as shown in Example 6.7.

Example 6.7 Maven Build Section
<?xml version="1.0" encoding="UTF-8"?>
<project>

[...]
<build>

<finalName>${artifactId}-${version}</finalName>
</build>

</project>

The build section can be used to customize your project. Since you used the
default location, you do not have to modify anything here. The finalName element
automatically constructs the name of the exported WAR from other information
provided in the POM.

The dependency section is probably the longest (see Example 6.8).

Example 6.8 Maven Dependencies Section
<?xml version="1.0" encoding="UTF-8"?>
<project>

[...]
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>struts</groupId>
<artifactId>struts</artifactId>
<version>1.2.7</version>

</dependency>
<dependency>

<groupId>struts</groupId>
<artifactId>struts-el</artifactId>
<version>1.2.7</version>

</dependency>
<dependency>

<groupId>commons-validator</groupId>
<artifactId>commons-validator</artifactId>

<version>1.1.4</version>
</dependency>
<dependency>

<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<version>1.0.3</version>

</dependency>
<dependency>

<groupId>commons-fileupload</groupId>
<artifactId>commons-fileupload</artifactId>
<version>1.0</version>

</dependency>
<dependency>

<groupId>antlr</groupId>
<artifactId>antlr</artifactId>
<version>2.7.5</version>

</dependency>
<dependency>

<groupId>commons-digester</groupId>
<artifactId>commons-digester</artifactId>
<version>1.7</version>

</dependency>
<dependency>

<groupId>commons-beanutils</groupId>
<artifactId>commons-beanutils</artifactId>
<version>1.7.0</version>

</dependency>
<dependency>

<groupId>oro</groupId>
<artifactId>oro</artifactId>
<version>2.0.8</version>

</dependency>
<dependency>

<groupId>servletapi</groupId>
<artifactId>servletapi</artifactId>
<version>2.3</version>
<scope>compile</scope>

</dependency>
</dependencies>

</project>

Each entry corresponds to an external JAR that is needed by your project.
The Struts framework requires a few of these dependencies to be set. Some of
these JARs are needed to compile your code; others, such as JUnit, are for test-
ing. The JARs have a scope tag that defines when they are used. For example, by
default all Struts JARs will be included with the Web application module, but
JUnit has the scope test, so it will not be included.

Remember that Maven gets the libraries defined in the dependencies from a
repository. However, for WTP to function properly, you need to keep a copy of
these libraries inside the src/webapp/WEB_INF/lib folder instead of the repository.
Unfortunately, there is no tool to synchronize the dependencies and libraries.

Example Projects 187

188 CHAPTER 6 • Organizing Your Development Project

You have defined the minimal Maven POM to build your Web application.
Maven is typically run from the command line. Maven commands are also called
goals. Goals are high-level tasks that can include other subtasks. Mevenide is an
Eclipse plug-in for Maven that allows you to run Maven goals from the Eclipse IDE.
Here you will use the command line. You can build a deployable Web module and a
project site by running the maven clean package site goals. The package goal
depends on other goals such as compile and test, so Maven will run them automat-
ically. During the build, Maven creates a folder named target to store the generated
files. The name and location of the generated files can be modified by additional set-
tings. When you run Maven, you will get an output like that shown in Example 6.9.

Example 6.9 Maven Console Output
C:\workspace\LeaguePlanetWebProject>mvn clean package site
[INFO] Scanning for projects...
[INFO] —————————————————————————————————
[INFO] Building LeaguePlanet.com Web Project
[INFO] task-segment: [clean, package]
[INFO] —————————————————————————————————
[INFO] [clean:clean]
[INFO] Deleting directory

C:\workspace\LeaguePlanetWebProject\target
[INFO] Deleting directory

C:\workspace\LeaguePlanetWebProject\target\classes
[INFO] Deleting directory

C:\workspace\LeaguePlanetWebProject\target\test-classes
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[WARNING] While downloading servletapi:servletapi:2.3

This artifact has been relocated to javax.servlet:servlet-api:2.3.

[INFO] [compiler:compile]
Compiling 1 source file to
C:\workspace\LeaguePlanetWebProject\target\classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
Compiling 1 source file to

C:\workspace\LeaguePlanetWebProject\target\test-classes
[INFO] [surefire:test]
[INFO] Setting reports dir:

C:\workspace\LeaguePlanetWebProject\target/surefire-reports

———
T E S T S

———
[surefire] Running com.leagueplanet.tests.LeaguePlanetBVTTest
[surefire] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.01 sec
[INFO] [site:site]
[INFO] Generate "Continuous Integration" report.
[ERROR] VM #displayTree: error : too few arguments to macro. Wanted 2 got 0
[ERROR] VM #menuItem: error : too few arguments to macro. Wanted 1 got 0
[INFO] Generate "Dependencies" report.

Example Projects 189

[INFO] Generate "Issue Tracking" report.
[INFO] Generate "Project License" report.
[INFO] Generate "Mailing Lists" report.
[INFO] Generate "Source Repository" report.
[INFO] Generate "Project Team" report.
[INFO] Generate "Maven Surefire Report" report.
[INFO] Generate an index file for the English version.
[INFO] ——
[INFO] BUILD SUCCESSFUL
[INFO] ——
[INFO] Total time: 11 seconds
[INFO] Finished at: Sat May 13 15:48:09 EEST 2006
[INFO] Final Memory: 9M/17M
[INFO] ——

That is all there is to building a WAR with Maven. You will see from the
log that package is a composite goal. In addition to assembling a Web applica-
tion module using the war goal, it runs the java goal to compile the classes
and the test goal to compile and run the tests. Once the build is complete,
you can browse the results of the build in the target folder (see Figure 6.47).

Figure 6.47 Project Site

190 CHAPTER 6 • Organizing Your Development Project

Figure 6.48 Source Folder for Tests

So far, you could have done most of this using WTP, without the hassle of set-
ting up Maven in the project. Building Web application modules is something
WTP does well, and it does it automatically with minimal effort. But you can get
more out of Maven. The next section shows you how to automate testing and
reporting on the League Planet project using Maven.

Getting More Out of Maven

Now that you can build the Web application module using Maven, you can add tests
and more project information to the POM to find out what more Maven can do.

Unit Tests with Maven
To run unit tests with Maven, you will create JUnit test cases and define required
libraries, including JUnit in the project dependencies. Since you defined the JUnit
dependencies in the previous section, you can start writing a test in the src/tests/
java source folder. In the Project Explorer, select LeaguePlanetWebProject, right
click, and invoke the File � New � Source Folder. The New Source Folder wizard
will open (see Figure 6.48).

Enter src/test/java as the folder name. Click Finish. A new source folder
will be added to the project.

To create a new JUnit test case, invoke the JUnit test case wizard using
File � New � JUnit Test Case, and then enter package and class names, for example,

Example Projects 191

JUnit JAR Is Defined Twice
Remember that Maven does not know about your project classpath. Therefore it
will not know about the JUnit JAR unless it is added to the POM dependencies. You
add JUnit to the dependencies as shown in Example 6.10.

Example 6.10 Maven JUnit Dependency
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

This is inconvenient, but it is something that you will have to live with if you want to
use Maven.

A new test class will be created at the location shown in Example 6.11.

Example 6.11 Maven Test Directory
/LeaguePlanetWebProject
+- src/
| +- test/
| | +- java/
| | | +- com
| | | | +- leagueplanet
| | | | | +- tests
| | | | | | +- LeaguePlanetBVTTests.java
| | | | | | +- [...] other unit tests
| [...]

Execute the Maven package site goals to run the tests. If you want to run
the tests only, you just execute the test goal. Running the Maven test goal cre-
ates output as shown in Example 6.12.

Example 6.12 Maven Test Output
[INFO] Scanning for projects...
[INFO] —————————————————————————————————
[INFO] Building LeaguePlanet.com Web Project
[INFO] task-segment: [test]
[INFO] —————————————————————————————————
[INFO] [resources:resources]

com.leagueplanet.tests and LeaguePlanetBVTTests. Click Finish. The wizard will
prompt you to add junit.jar to the project build path if it is not included there
already. Accept it to add the JAR.

192 CHAPTER 6 • Organizing Your Development Project

[INFO] Using default encoding to copy filtered resources.
[WARNING] While downloading servletapi:servletapi:2.3

This artifact has been relocated to javax.servlet:servlet-api:2.3.

[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [surefire:test]
[INFO] Setting reports dir:

C:\workspace\LeaguePlanetWebProject\target/surefire-reports

———
T E S T S

———
[surefire] Running com.leagueplanet.tests.LeaguePlanetBVTTest
[surefire] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.03 sec
[INFO] ——
[INFO] BUILD SUCCESSFUL
[INFO] ——
[INFO] Total time: 2 seconds
[INFO] Finished at: Sat May 13 15:58:43 EEST 2006
[INFO] Final Memory: 3M/6M
[INFO] ——

You will find the Maven JUnit test reports under the target/surefire-reports
folder. Of course, XML reports can be transformed into a more human-readable
format, but you will see in the next section that Maven also does this for you (see
Figure 6.49).

Project Information and Reports
The Maven project model can also contain information about the developers,
configuration and version control systems, issue tracking, mailing lists, and
other process-related project information. This information is used by Maven
plug-ins to generate project information and reports. The listing shown in
Example 6.13 provides the complete code for a typical Maven project model.

Example Projects 193

Figure 6.49 Maven JUnit Test Reports

Example 6.13 Listing of pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>leagueplanet</artifactId>
<groupId>com.leagueplanet</groupId>
<name>LeaguePlanet.com Web Project</name>
<version>1.0-SNAPSHOT</version>

<packaging>war</packaging>

<organization>
<name>LeaguePlanet.com</name>
<url>http://www.leagueplanet.com/</url>

</organization>

194 CHAPTER 6 • Organizing Your Development Project

<description>
An example project showing how to use eclipse WebTools Platform
and Maven for Java Web Development.

</description>

<licenses>
<license>

<comments>Eclipse Public Licence (EPL)v1.0</comments>
<url>http://www.eclipse.org/legal/epl-v10.html</url>

</license>
</licenses>

<developers>
<developer>

<id>ndai</id>
<name>Naci Dai</name>
<email>naci.dai@eteration.com</email>
<organization>Eteration</organization>

</developer>
<developer>

<id>lmandel</id>
<name>Lawrence Mandel</name>
<email>lmandel@ca.ibm.com</email>
<organization>IBM</organization>

</developer>
<developer>

<id>ryman</id>
<name>Arthur Ryman</name>
<email>ryman@ca.ibm.com</email>
<organization>IBM</organization>

</developer>
</developers>

<build>
<finalName>${artifactId}-${version}</finalName>

</build>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>struts</groupId>
<artifactId>struts</artifactId>
<version>1.2.7</version>

</dependency>
<dependency>

<groupId>struts</groupId>
<artifactId>struts-el</artifactId>
<version>1.2.7</version>

</dependency>
<dependency>

<groupId>commons-validator</groupId>

Example Projects 195

<artifactId>commons-validator</artifactId>
<version>1.1.4</version>

</dependency>
<dependency>

<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<version>1.0.3</version>

</dependency>
<dependency>

<groupId>commons-fileupload</groupId>
<artifactId>commons-fileupload</artifactId>
<version>1.0</version>

</dependency>

<dependency>
<groupId>antlr</groupId>
<artifactId>antlr</artifactId>
<version>2.7.5</version>

</dependency>
<dependency>

<groupId>commons-digester</groupId>
<artifactId>commons-digester</artifactId>
<version>1.7</version>

</dependency>
<dependency>

<groupId>commons-beanutils</groupId>
<artifactId>commons-beanutils</artifactId>
<version>1.7.0</version>

</dependency>
<dependency>

<groupId>oro</groupId>
<artifactId>oro</artifactId>
<version>2.0.8</version>

</dependency>
<dependency>

<groupId>servletapi</groupId>
<artifactId>servletapi</artifactId>
<version>2.3</version>

</dependency>
</dependencies>
<reporting>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>

maven-project-info-reports-plugin
</artifactId>

</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-report-plugin</artifactId>

</plugin>
</plugins>

</reporting>
</project>

196 CHAPTER 6 • Organizing Your Development Project

Figure 6.50 Maven Project Reports

The project reports are generated using the Maven site goal. This goal
builds a local copy of the project site for reports, documentation, and reference.
The result is generated into the target/site directory in the project’s base direc-
tory, which contains an entire Web site of documentation (see Figure 6.50).

Summary

We have described how modules and projects are managed in WTP. You now
should have enough knowledge to start exploring these project styles and cus-
tomizing them as you see fit.

Web projects are very flexible, but they can’t model every style of project that
you can imagine or that is in use somewhere. Our advice to you is to use one of the
more popular templates, such as the default ones created by WTP, or widely pub-
lished conventions such as Maven. You can build on top of existing know-how

and make use of the experience that is readily available. When you are organizing
your development, the last thing you want to be is surprised, so do take advantage
of well-established best practices.

You can now proceed to either Chapter 7, which covers the presentation
layer, or Chapter 8, which covers business logic, depending on the type of devel-
opment you want to start.

Summary 197

