
xxix

Preface

OVER THE PAST nine years I have worked on many user interface (UI) projects
at Microsoft. I have spent time working on Visual Basic 6.0, the version of
Windows Foundation Classes that shipped with Visual J++ 6.0, Windows
Forms for the .NET Framework, internal projects that never saw the light of
day, and now, finally, Windows Presentation Foundation (WPF).

I started working on WPF about 18 months after the team was cre-
ated, joining as an architect in the fall of 2002. At that time, and until late
2005, the team and technology were code-named Avalon. Early in 2003 I
had the privilege of helping to redesign the platform, which we released
as a technology preview for the Professional Developers Conference
(PDC) 2003 in Los Angeles. WPF is the product of almost five years of
work by more than 300 people. Some of the design ideas in WPF date
back to products from as early as 1997 (Application Foundation Classes
for Java was the beginning of some of the ideas for creating components
in WPF).

When I joined the WPF team, it was still very much in research mode.
The project contained many more ideas than could possibly ship in a single
version. The primary goal of WPF—to replace all the existing infrastructure
for building applications on the client with a new integrated platform that
would combine the best of Win32 and the Web—was amazingly ambitious
and blurred the lines between user interface, documents, and media. Over
the years we have made painful cuts, added great features, and listened to a
ton of feedback from customers, but we never lost sight of that vision.

Anderson_pre_i-xl.fm Page xxix Wednesday, March 14, 2007 5:00 PM

Prefacexxx

A Brief History of GUI
Graphical user interfaces (GUIs) started in the early 1980s in the Xerox
PARC laboratory. Since then, Microsoft, Apple, and many other companies
have created many platforms for producing GUI applications. Microsoft’s
GUI platform began with Windows 1.0 but didn’t gain widespread use
until Windows 3.0 was released in 1990. The primary programming model
for building GUI applications consisted of the two dynamic link libraries
(DLLs): User and GDI. In 1991 Microsoft released Visual Basic 1.0, which
was built on top of User and GDI, and offered a much simpler program-
ming model.

Visual Basic’s UI model, internally called Ruby,1 was far simpler to use
than were the raw Windows APIs. This simplicity angered the developers
who felt that programming should be difficult. The early versions of Visual
Basic were significantly limited, however, so most developers building
“real” applications chose to program directly to User and GDI. Over time,
that changed. By the time the Microsoft world moved to 32-bit with the
release of Windows 95 and Visual Basic 4.0, the VB crowd was gaining
significant momentum and was offering a much wider breadth of platform
features.

At about the same time there was another big shift in the market: the
Internet. Microsoft had been working on a replacement for the Visual Basic
UI model that was internally called Forms3. For various reasons, Microsoft
decided to use this model as the basis for an offering in the browser space.
The engine was renamed Trident internally, and today it ships in Windows
as MSHTML.dll. Trident evolved over the years to be an HTML-specific
engine with great text layout, markup, and scripting support.

Also around the same time, another phenomenon appeared on every-
one’s radar: managed code. Visual Basic had been running in a managed
environment for a long time (as had many other languages), but the introduc-
tion of Java by Sun Microsystems in 1994 marked the first time that many
developers were exposed to the notion of a virtual machine. Over the next
several years managed code became a larger and larger force in the market,

1. This code name has no relationship to the Ruby programming language.

Anderson_pre_i-xl.fm Page xxx Wednesday, March 14, 2007 5:00 PM

Preface xxxi

and in 2002 Microsoft released its own general-purpose managed-code
platform: the .NET Framework. Included in the .NET Framework was
Windows Forms, a managed-code API for programming User32 and GDI+
(a successor to GDI32). Windows Forms was intended to replace the old
Ruby forms package in Visual Basic.

As we entered the new millennium, Microsoft had four predominant
UI platforms: User32/GDI32, Ruby, Trident, and Windows Forms. These
technologies solve different sets of problems, have different program-
ming models, and are used by different sets of customers. Graphics sys-
tems had also evolved: In 1995, Microsoft introduced DirectX, a graphics
system that gave the programmer much deeper access to the hardware.
But none of the four main UI technologies used this newfound power in a
meaningful way.

There was a real problem to be solved here. Customers were demand-
ing the richness of modern video games and television productions in their
applications. Media, animation, and rich graphics should be everywhere.
They wanted rich text support because almost every application displayed
some type of text or documentation. They wanted rich widgets for creating
applications, buttons, trees, lists, and text editors—all of which were
needed to build the most basic application.

With these four major platforms a large percentage of the customers’
needs were met, but they were all islands. The ability to mix and match
parts of the platforms was difficult and error-prone. From a purely selfish
point of view, Microsoft management (well, I’ll name names: Bill Gates)
was tired of paying four teams to build largely overlapping technologies.

In 2001, Microsoft formed a new team with a simple-sounding mission:
to build a unified presentation platform that could eventually replace
User32/GDI32, Ruby, Trident, and Windows Forms, while enabling the
new scenarios that customers were demanding in the presentation space.
The people who made up this team came largely from the existing presen-
tation platform teams, and the goal was to produce a best-of-breed
platform that could really be a quantum leap forward.

And so the Avalon team was formed. At PDC 2003, Microsoft
announced Avalon (the code name at the time). Later the project was given
the name Windows Presentation Foundation.

Anderson_pre_i-xl.fm Page xxxi Wednesday, March 14, 2007 5:00 PM

Prefacexxxii

Principles of WPF
WPF has taken a long time to build, but for the entire life of this project,
several guiding principles have remained constant.

Build a Platform for Rich Presentation
In descriptions of new technology, rich is probably one of the most over-
used words. However, I can’t think of a better term to convey the princi-
ple behind WPF. Our goal was to create a superset of features from all
existing presentation technologies—from basic things like vector graph-
ics, gradients, and bitmap effects, to more advanced things like 3D, ani-
mation, media, and typography. The other key part of the principle was
the word platform. The goal was to create not merely a runtime player for
rich content, but rather an application platform that people could use to
build large-scale applications and even extend the platform to do new
things that we never envisioned.

Build a Programmable Platform
Early on, the WPF team decided that both a markup (declarative) and code
(imperative) programming model were needed for the platform. As we
looked around at the time, it became clear that developers were embracing
the new managed-code environments. Quickly, the principle of a program-
mable platform became a principle of a managed programming model.
The goal was to make managed code the native programming model of the
system, not a tacked-on layer.

Build a Declarative Platform
From the perspective of both customers and software developers, it
seemed clear that the industry was moving to a more and more declarative
programming model. We knew that for WPF to be successful, we needed a
rich, consistent, and complete markup-based programming model. Again,
a look at what was going on in the industry made it clear that XML was
becoming the de facto standard for data interchange, so we decided to
build an XML programming model, which became XAML (Extensible
Application Markup Language).

Anderson_pre_i-xl.fm Page xxxii Wednesday, March 14, 2007 5:00 PM

Preface xxxiii

Integrate UI, Documents, and Media
Probably the biggest problem facing customers who were building appli-
cations was the separation of pieces of functionality into isolated islands.
There was one platform for building user interfaces, another for building a
document, and a host of platforms for building media, depending on what
the medium was (3D, 2D, video, animation, etc.). Before embarking on
building a new presentation system, we set a hard-and-fast goal: The inte-
gration of UI, documents, and media would be the top priority for the
entire team.

Incorporate the Best of the Web, and the Best of Windows
The goal here was to take the best features from the last 20 years of
Windows development and the best features from the last 10 years of Web
development and create a new platform. The Web offers a great simple
markup model, deployment model, common frame for applications, and
rich server connectivity. Windows offers a rich client model, simple pro-
gramming model, control over the look and feel of an application, and rich
networking services. The challenge was to blur the line between Web
applications and Windows applications.

Integrate Developers and Designers
As applications become graphically richer and cater more to user experi-
ence, an entirely new community must be integrated into the develop-
ment process. Media companies (print, online, television, etc.) have long
known that a variety of designer roles need to be filled to create a great
experience for customers, and now we are seeing that same requirement
for software applications. Historically the tools that designers used were
completely disconnected from the software construction process: Designers
used tools like Adobe Photoshop or Adobe Illustrator to create rich
designs, only to have developers balk when they tried to implement
them. Creating a unified system that could natively support the features
that designers required, and using a markup format (XAML) that would
allow for seamless interoperability between tools, were two of the outcomes
of this principle.

Anderson_pre_i-xl.fm Page xxxiii Wednesday, March 14, 2007 5:00 PM

Prefacexxxiv

About This Book
Many books on WPF are, and will be, available. When I first thought of
writing a book, I wanted to make sure that mine would offer something
unique. This book is designed for application developers; it is intended as
a conceptual reference book covering most of WPF.

I chose each word in the preceding statement carefully.
This book is about applications. There are really two types of software:

software designed to communicate with people, and software designed to
communicate with software. I use the term application to mean software
written primarily for communication with people. Fundamentally, WPF is
all about communication with people.

This is a book for developers. I wanted to present a very code-centric
view of the platform. I’m a developer first and foremost, and in working as
an architect on the WPF team I have always considered the external devel-
oper as my number one customer. This book focuses on topics primarily
for the application developer. Although a control developer will also find a
lot of useful information in this book, its purpose is not to present a guide
for building custom controls.

This book is about concepts, not just APIs. If you want an API reference,
use Google or MSN search features and browse the MSDN documentation.
I want to raise the abstraction and present the hows and whys of the
platform design and show how the various APIs of the platform work
together to add value to developers.

This book is a reference; it is organized by technical topics so that you
can flip back to a section later or flip forward to a section to answer a
question. You do not need to read the book from cover to cover to gain
value from it.

This book covers most of WPF, not all of it. When I started writing the
book, Chris Sells gave me an important piece of advice: “What you leave
out is as important as what you include.” Because WPF is an immense plat-
form, to present the big picture I had to omit parts of it. This book repre-
sents what I believe are the best landmarks from which to explore the
platform.

My goal with this book is to provide a map of the core concepts, how
they relate to each other, and what motivated their design. I hope you’ll

Anderson_pre_i-xl.fm Page xxxiv Wednesday, March 14, 2007 5:00 PM

Preface xxxv

come away from this book with a broad understanding of WPF and be able
to explore the depth of the platform yourself.

Prerequisites
Before reading this book, you should be familiar with .NET. You don’t
need to be an expert, but you should be familiar with the basics of classes,
methods, and events. The book uses only C# code in its examples. WPF is
equally accessible in any .NET language; however, C# is what I use prima-
rily for my development.

Organization
This book is organized into eight chapters and a three-part appendix. My
goal was to tell the story of the WPF platform in as few chapters as possible.

• Introduction (Chapter 1) briefly introduces the platform and explains
how the seven major components of WPF fit together. This chapter
also serves as a quick start for building applications with WPF, show-
ing how to use the SDK tools and find content in the documentation.

• Applications (Chapter 2) covers the structure of applications built
using WPF, as well as the application services and top-level objects
used by applications.

• Controls (Chapter 3) covers both the major design patterns in WPF
controls and the major control families in WPF. Controls are the fun-
damental building blocks of user interfaces in WPF; if you read only
one chapter in the book, this is the one.

• Layout (Chapter 4) covers the design of the layout system, and an
overview of the six stock layout panels that ship in WPF.

• Visuals (Chapter 5), provides an overview of the huge surface area
that is the WPF visual system. The chapter covers typography, 2D and
3D graphics, animation, video, and audio.

• Data (Chapter 6) covers the basics of data sources, data binding,
resources, and data transfer operations.

• Actions (Chapter 7) provides an overview of how events, commands,
and triggers work to make things happen in your application.

Anderson_pre_i-xl.fm Page xxxv Wednesday, March 14, 2007 5:00 PM

Prefacexxxvi

• Styles (Chapter 8) covers the styling system in WPF. Styling enables
the clean separation of the designer and developer by allowing a loose
coupling between the visual appearance of a UI and the programmatic
structure.

• The appendix, Base Services, drills down into some of the low-level
services in WPF. Topics covered include threading model, the property
and event system, input, composition, and printing.

Acknowledgments
This book has been a massive undertaking for me. I’ve worked on articles,
presentations, and white papers before, but nothing prepared me for the
sheer volume of work it takes to condense a platform the size of WPF into a
relatively short book.

I’ve dedicated this book to my wife, Megan. She has been constantly
supportive of this project (even when I brought a laptop on numerous
vacations!) and everything else I do.

The entire Avalon team has been a huge help in the creation of this book
(and the product!). My manager, Ian Ellison-Taylor, supported my work-
ing on this project. Sam Bent, Jeff Bogdan, Vivek Dalvi, Namita Gupta,
Mike Hillberg, Robert Ingebretsen, David Jenni, Lauren Lavoie, Ashraf
Michail, Kevin Moore, Greg Schechter—the team members who helped are
too many to list. I thoroughly enjoyed working with everyone on the team.

I am grateful to Don Box for pushing me to write the book, and to Chris
Sells for giving me sage advice even while we were creating competing
books.

My developmental editor, Michael Weinhardt, deserves a huge amount
of credit for the quality of this book. Michael read, reread, edited, and
re-edited every section of this book. He pushed me to never accept any-
thing that isn’t great. All the errors and bad transitions in the book are
purely my fault.

Joan Murray, Karen Gettman, Julie Nahil, and the entire staff at Addison-
Wesley, have done an amazing job dealing with me on this book. Stephanie
Hiebert, my copy editor, spent countless hours pouring over my poor
spelling, grammar, and prose, turning my ramblings into the English
language.

Anderson_pre_i-xl.fm Page xxxvi Wednesday, March 14, 2007 5:00 PM

Preface xxxvii

Finally, I want to thank the technical reviewers of this book. Erick Ellis,
Joe Flanigan, Jessica Fosler, Christophe Nasarre, Nick Paldino, Chris Sells,
and a host of others provided great feedback. Jessica gave me some of the
deepest and most constructively critical feedback that I’ve ever received.

I’m sure I’m forgetting many other people, and for that I apologize.

Chris Anderson
November 2006
simplegeek.com

Anderson_pre_i-xl.fm Page xxxvii Wednesday, March 14, 2007 5:00 PM

