
xv

PREFACE

Not long ago, we were reminiscing about a really tough problem we faced at work.
The Quality Assurance team was running stress tests on our product, and every four
or five days, a crash would rear its ugly head. Sure, we had debugged the crash as far
as we thought possible, and we had done extensive code reviews to try to figure it out,
but alas, not enough information could be gained to get to the bottom of it. After sev-
eral weeks of unfruitful attempts, we started looking for alternative approaches.
During a random hallway conversation, someone happened to casually mention a tool
called gflags. Having never heard of this tool before, we set out to do some research
to find out how it could help us get to the bottom of our crash. Unfortunately, the
learning process proved to be somewhat difficult. First, finding information about the
tool proved to be a real challenge. There was a ton of great information in the refer-
ence documentation that came with the tools, but it was hard to figure out how to
actually get started. We quickly realized that without some basic guidance, there was
little hope for us to be able to utilize the tool. Naturally, we decided to ask the per-
son who had happened to mention the tool if he knew of any documentation or point-
ers. He gave us some brief descriptions of the tool and, perhaps more importantly, the
names of other people who had worked with the tool extensively. What followed was
a series of long and instructive conversations, and bit by bit the basic idea behind the
tool started falling into place.

Did we ever get to the bottom of the crash? Yes—we did. As a matter of fact,
enabling the correct tool while running our stress tests pinpointed the problem to
such accuracy that it only took an hour of code reviewing to locate and fix the misbe-
having code. Had we known about this tool and how to use it from the start, we would
have saved several weeks of work. From that point on, we dedicated quite a lot of
time to furthering our understanding of the tools and how they can help while trying
to troubleshoot misbehaving code.

Over the years, the Windows debuggers and tools have matured and grown and
become increasingly powerful. The amount of timesaving features now available is
truly mind-boggling. What is equally mind-boggling is that after several years, the
native debuggers and tools are still relatively unknown to developers. The few devel-
opers who do find out that these tools exist have to go through a similarly painful learn-
ing process as we did years ago. We were fortunate to have the luxury of working with

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xv

engineers at Microsoft (some of whom wrote the tools), but without this luxury, many
hopeful developers end up at a dead end and are never able to reap the benefits of the
tools. This unfortunate problem of a lack of learning material also turned out to be a
great opportunity for a solution, and thus the idea for this book was born. The key to
enable developers to gain the knowledge required is to provide a central repository of
concise information that fully explains the ins and outs of the debugging tools and
processes. The book you are holding serves as that key and is the net result of three
years of writing and over 15 years of collective debugging experience.

We hope that you will enjoy reading this book as much as we enjoyed authoring
it and that it will open up the door to a truly amazing world of highly efficient soft-
ware troubleshooting and debugging. Knowing how to use the tools and techniques
described in this book is a critical part of a computer scientist’s work and can teach
you how to very efficiently troubleshoot some of the toughest problems in software.

Who Is This Book For?

The short answer to this question is anyone who is involved in any facet of software
development and has a strong desire to learn what is actually happening deep inside
Windows. Although the technical nature of the book might make you believe that its
content is only intended for advanced system engineers, this is absolutely not true. One
of the key points of this book is the removing of the magic. For various reasons, a lot of
software engineers believe that there is a magical relationship between the software
they are working on and the operating system. When a problem surfaces that requires
the analysis of operating system components (such as RPC/COM or the Windows heap
manager), this preconceived notion of magic prevents them from venturing inside
Windows to gain more information that can potentially help them solve the problem.
To make effective use of this book, you will have to learn how to remove this precon-
ceived notion and truly be of the mind-set that there is no magic behind-the-scenes.
The core Windows components should be viewed as an extension of your product and
not as a separate and magical layer. After all, it’s all just code—some of which just hap-
pened to be written by other people. If you can adjust your mind-set to accept this, you
will have taken your first steps to mastering the art of Windows debugging.

Software Developers
Anyone from a low-level system developer to a high-level RAD developer will benefit
from reading this book. Whether your preference is writing Windows-based software
in assembly language or by using the .NET framework, there is a ton of useful infor-
mation to be learned about the tools and techniques behind Windows debugging.

xvi Preface

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xvi

Over the years, we’ve had several discussions with higher-level RAD developers who
claim that they really don’t see the need to learn about these low-level topics. After all,
the beauty of writing code at a higher level is that all of the low-level intricacies are
abstracted and hidden away from the developer. We couldn’t agree more. However,
our claim is that although abstractive programming allows the developer not to have
to focus on low-level details, it does not negate the need to know how the abstraction
really works. The substance behind this claim is simple. What you are working with is
really just that—an abstraction. Usage of this abstraction in a design that it was not
suited for can cause serious problems in your software; and, in such a case, without a
solid understanding of how the abstraction works, it can mean the difference between
shipping your product on time and slipping the release date by several months.

Another key factor when considering mastering the Windows debuggers and tools
is related to the debugging of live production servers. While every attempt should be
made to fix bugs before shipping a product, we all know that some bugs might slip
through the cracks. When these bugs do surface post release, it can be a real
headache tracking them down. Customers who encounter the bugs on live produc-
tion servers are typically very sensitive to downtime and configuration changes, mak-
ing it impossible to install a complex debugger package. The Debugging Tools for
Windows, on the other hand, enables live debugging with no server configuration
change and no installation requirements. In short, it enables customers to keep a pris-
tine server during the troubleshooting process.

Quality Assurance Engineers
Just as software developers will find the information in this book useful in their day-to-
day tasks, so will quality assurance engineers. Quality assurance typically runs a battery
of tests on any given component being tested. During this time, any number of bugs
can surface. Whether they are memory corruptions, resource leaks, or hangs, knowing
what extended instrumentation to enable during the test run can dramatically reduce
the time it takes for root cause analysis. For instance, imagine that quality assurance is
tasked with stress testing a credit card authorization service. One of the goals is that
the service must be capable of surviving one week of continuous and simultaneous
hammering by client requests. On day six, the service starts reporting errors for all
client requests. At this point, the developers responsible for the service are called in to
analyze the problem. It doesn’t take long for them to figure out that the server has run
out of memory, presumably due to a small memory leak that accumulates over time.
After six days of accumulated leaks, figuring out the source of the leak, however, is a
much bigger challenge that can take days of debugging and code reviewing. Had the
correct extended instrumentation been enabled while running these tests, the time it
would have taken to analyze the leak could have been greatly reduced.

Preface xvii

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xvii

Product Support Engineers
In much the same way that quality assurance uses the Windows debuggers and tools
to make root cause analysis more efficient, so can the product support engineers.
Product support faces many of the same problems that quality assurance and software
developers face on a day by day basis. The key difference, however, is the environ-
mental constraints that they work under. The constraints can include not having full
access to the server exhibiting the problems, having a limited amount of time avail-
able for troubleshooting the server, having limited access to customer source code,
and other issues.

The information presented in this book will give product support engineers a
great deal of ammunition when tackling these tough problems. Knowing how to
debug customer problems with minimal downtime and minimal system configuration
changes enables product support engineers to much more efficiently and nonintru-
sively gather the required data to get to the bottom of the problem.

Where There Is a Will, There Is a Way

It should come as no surprise that the material presented in this book is highly tech-
nical in nature. We are not going to try and convince you that you don’t need to know
anything about Windows internals to benefit from the book because the simple truth
is that you do. As with any technically oriented book, a certain amount of knowledge
is assumed.

Curiosity and a Will to Learn
While writing this book, we came to the realization that some of the areas of Windows
we were writing about had been taken for granted. Sure, most of the time we knew
that those areas worked a certain way, but we did not know exactly what made them
work that way. We could have simply accepted the fact that they just work, but curios-
ity got the best of us (as it usually does). We spent quite a lot of time researching the
topics and trying to connect the dots. The net result was a more in-depth under-
standing of Windows, which, in turn, allowed us to more efficiently debug problems.

The basic principle behind learning anything is that there must be a will to learn.
Depending on your background, some of the high-level material in the book might
feel intimidating. Embrace this intimidation, and you will be in a stronger position to
fully grasp and understand the contents of this book.

If you possess the will to learn and have a great deal of curiosity, you will be well
on your way to becoming an expert in Windows debugging.

xviii Preface

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xviii

C/C++
All the sample code throughout the book is written in C/C++, and as such a good
understanding of the language as well as its object layout is required. If some of the
language concepts in the book are unfamiliar to you and you want to brush up on your
C/C++ skills, we recommend the following books:

The C++ Programming Language (3rd Edition), by Bjarne Stroustrup,
Boston: Addison-Wesley, 2000.
Inside the C/C++ Object Model, by Stanley B. Lippman, Reading, MA:
Addison-Wesley, 1996.

Windows Internals
This book is about advanced Windows debugging, and as such parts of the book are
dedicated to describing the internals of several integral Windows components (for
example, heap manager, RPC, security subsystem). Our intentions are not to fully
explain all aspects of these components but rather to give a brief but in-depth sum-
mary of how the component functions in relationship to the debugging scenarios
being illustrated. If you want to take your knowledge of the internals of Windows
even further, we strongly recommend reading

Microsoft Windows Internals, Fourth Edition: Microsoft Windows Server
2003, Windows XP, and Windows 2000, by Mark E. Russinovich and David
A. Solomon. Redmond, WA: Microsoft Press, 2004.

Organization

The book consists of three major parts. In this section, we provide a short description
of the contents of each chapter.

Part I: Overview
Part I lays the groundwork. It provides an overview of the tools and debuggers and
lets you familiarize yourself with the fundamentals of the debuggers. Even if you are
already familiar with the Windows debuggers, we strongly encourage you to, at the
very least, skim through these chapters, as they contain a ton of valuable information.

Preface xix

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xix

Chapter 1, “Introduction to the Tools,” provides a high-level introduction to the
tools used throughout the book. Topics such as download locations, installation
instructions, and usage scenarios are detailed.

Chapter 2, “Introduction to the Debuggers,” introduces the reader to the funda-
mentals of the Windows debuggers. Basic concepts such as what debuggers are avail-
able, how to use them, and how to configure them are covered.

Chapter 3, “Debuggers Uncovered,” provides a more in-depth examination of user
mode debuggers. A minimalist implementation of a debugger is provided, as well as
looking at more advanced topics such as how the exception dispatch mechanism works.

Chapter 4, “Managing Symbol and Source Files,” discusses how to maintain two
of the most critical pieces of information during debugging: symbol files and source
files. It gives a brief description of what symbol and source servers are, how to use
them in association with the debuggers, and how to effectively manage them by set-
ting up symbol servers and maintaining source servers for your organization.

Part II: Applied Debugging
The focus of Part II is to provide the reader with the opportunity to analyze common
programming mistakes using the Windows debuggers. Each of the chapters in this
section is focused on a particular category of problems, such as memory corruption,
memory leaks, and RPC/COM. Each chapter begins with an overview of the
Windows component(s) involved followed by one or more scenarios that illustrate
common programming mistakes in that area.

With the exception of Chapters 5 and 6, the chapters in Part II are standalone and
can be read in any order.

Chapter 5, “Memory Corruption Part I—Stacks,” and 6,” Memory Corruption
Part II—Heaps,” take a close look at a very common problem that plagues develop-
ers on a daily basis: memory corruptions. Chapter 5 focuses on stack corruptions, and
Chapter 6 on heap corruptions. Each chapter begins by explaining the overall con-
cept behind the type of memory being examined (stack and heap) and is followed by
a number of common scenarios under which the corruption can occur. Each scenario
has associated sample code and a walk-through of the process that is used during
debugging and root cause analysis.

Chapter 7, “Security,” discusses common security-related problems that often
surface during development. Quite often, developers face situations in which an API
returns an access denied error code without any more in-depth information, making
it hard to understand or track down where the error is coming from. This chapter will
show several security-related examples of code and how to use the debuggers and
appropriate tools to get to the bottom of the issue.

xx Preface

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xx

Chapter 8, “Interprocess Communication,” focuses solely on interprocess com-
munication debugging. Arguably perhaps the most used interprocess communication
protocol in Windows but also the most magical is RPC/LPC. Knowing how to trou-
bleshoot this important component is paramount when working with most applica-
tions. Using the debuggers, this chapter will show how you can track identity, analyze
RPC failures, and much more.

Chapter 9, “Resource Leaks,” details a very common problem with software
today: resource leaks. The most common form of resource leaks is related to memo-
ry but not limited to it. Other examples includes registry keys, file handles, and so on.
This chapter takes a look at the resource leak problem by showing a number of sce-
narios and associated sample code, as well as how to use the debuggers and tools to
efficiently track them down.

Chapter 10, “Synchronization,” discusses the topic of application hangs and how
to most efficiently make use of the debuggers to track down synchronization prob-
lems such as deadlocks and lock contentions. A number of different synchronization
scenarios are examined with associated debug sessions that give an in-depth view of
the analysis process.

Part III: Advanced Topics
Part III is an advanced section that consists of chapters that discuss topics such as
postmortem debugging 64-bit debugging, Windows Vista fundamentals, and much
more. The goal of these chapters is not to provide an exhaustive examination of each
area, but rather provide just enough fundamentals for the reader to get started in the
topic explained.

Chapter 11, “Writing Custom Debugger Extensions,” talks about custom debug-
ger extensions. Even though the Windows debuggers pack an extremely powerful set
of commands and tools, there are times when you want to automate certain aspects
of your own application debugging sessions. This chapter details how the extensibili-
ty model of the debuggers works and describes an example of a sample custom
debugger extension.

Chapter 12, “64-Bit Debugging,” introduces the basic concepts of debugging 64-
bit architectures. Basic concepts such as stack traces, function calls, and parameter
passing are discussed to enable the reader to get started on debugging these power-
ful architectures.

Chapter 13, “Postmortem Debugging,” discusses postmortem debugging, which
is an incredibly useful way of troubleshooting problems when there is no means of
debugging a problem at the point of occurrence. This is a very common form of
debugging once the product has shipped and problems surface on the customer site.

Preface xxi

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xxi

Chapter 14, “Power Tools,” discusses two powerful tools that can be used to auto-
mate the debugging process. The first tool is called DebugDiag, and it provides an
excellent way of automating resource leak debugging. The other tool is a command
called analyze, which automates the initial fault analysis process.

Chapter 15, “Windows Vista Fundamentals,” details some of the fundamentals
behind Windows Vista. With the introduction of the new generation Windows plat-
form, certain aspects of the operating system have changed dramatically, and some of
the key changes are outlined in this chapter.

Required Tools

All the tools required to make full use of this book are available as downloads free of
charge. The new Windows Drivers Kit contains a complete command-line C/C++
development environment and a great set of associated development tools.

Sample Code

As software engineers, we spend a great deal of our time hunting for the ultimate
treasure of writing perfect code. While writing this book, we were faced with quite
the opposite chore—the need to write not-so-perfect code to illustrate common pro-
gramming mistakes.

The sample code is structured to achieve one goal: present examples of common
programming mistakes in the shortest and most concise fashion as to not pollute the
basic principle of the programming mistake being examined. To satisfy the goal of
short and concise examples, we had to, at times, concoct examples rather than use
real-life examples. Even though the sample code is “made up,” it serves to simulate
real-life examples, and every effort was made to ensure that the example stays true to
the problem being examined.

All sample code is written in C/C++. We chose this language for two simple reasons:

■ C/C++ is predominantly used in Windows development.
■ In order not to obscure the debugging concepts discussed with higher-level

abstractions, we chose the language that is most commonly used and also clos-
est to the core.

xxii Preface

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xxii

All sample code is compiled and tested using the Windows Drivers Kit. The WDK
was chosen so that readers would be able to enjoy learning the art of Windows debug-
ging without being required to purchase a complete developer suite.

The source code assumes a Unicode environment, and as such Win32 API calls,
as seen in the debugger, will be illustrated using the Unicode version of the API. For
example, the sample code might show a call to the CreateProcess API, but when
working in the debugger, the CreateProcessW API will be utilized. The API shown
in the debugger is prefixed by the module name implementing the API. One exam-
ple is the CreateProcessW API, which is implemented in kernel32.dll. It is often
required to specify both the module name and the API name separated by the (!)
character (kernel32!CreateProcessW).

All sample code and binaries are available on the book’s Web site
(http://www.advancedwindowsdebugging.com). In addition to source code and bina-
ries being available, the site acts as a symbol and source code server for the book’s
binaries. When you try out the debugging sessions illustrated in the book, there is no
need to download all the symbols for the binaries; rather, point your debuggers sym-
bol path directly to the book’s symbol server, and you can debug with remote symbols.
The sources are also retrieved by the source servers from the book’s Web site.

To provide a consistent learning experience, the binaries on the book’s Web site
have been built as nonoptimized and checked releases for the x86 architecture using
the Windows XP platform. We chose to use Windows XP as the common denomina-
tor due to its widespread usage. If you choose to build the samples on your own using
a different target platform, there might be minor variations in the debug output.

To build the samples on your own, simply open a WDK build window and type
build /ZCc from the directory containing the makefile. If the source code being
compiled requires additional steps, those steps will be spelled out in the chapter dis-
cussing the sample code.

Throughout the book, it is assumed that all binaries have been downloaded from
the Web site and copied to the local hard drive (keeping the folder structure intact)
to the following location: C:\AWDBIN, and the sources have been downloaded to the
C:\AWD folder.

Conventions

Code, command-line activity, and syntax descriptions appear in the book in a mono-
spaced font. Many of the examples and walk-throughs in this book show a great deal
of what is known as debug spew. Debug spew simply refers to the output that the

Preface xxiii

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xxiii

debugger displays as a result of some action that the user takes. Typically, this debug
spew consists of information shown in a very compact and concise form. In order to
effectively reference bits and pieces of this data and make it easy for you to follow,
the boldface and italic types are used. Additionally, anything with the boldface type
in the debug spew indicates commands that you will be entering. The following exam-
ple illustrates the mechanism.

0:000> ~*kb

. 0 Id: 924.a18 Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr Args to Child

0007fb1c 7c93edc0 7ffdf000 7ffd4000 00000000 ntdll!DbgBreakPoint

0007fc94 7c921639 0007fd30 7c900000 0007fce0 ntdll!LdrpInitializeProcess+0xffa

0007fd1c 7c90eac7 0007fd30 7c900000 00000000 ntdll!_LdrpInitialize+0x183

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

0:000> dd 0007fd30

0007fd30 00010017 00000000 00000000 00000000

0007fd40 00000000 00000000 00000000 ffffffff

0007fd50 ffffffff f735533e f7368528 ffffffff

0007fd60 f73754c8 804eddf9 8674f020 85252550

0007fd70 86770f38 f73f4459 b2f3fad0 804eddf9

0007fd80 b30dccd1 852526bc b30e81c1 855be944

0007fd90 85252560 85668400 85116538 852526bc

0007fda0 852526bc 00000000 00000000 00000000

In this example, you are expected to type ~*kb in the debug session. The result of
entering that command shows several lines, with the most critical piece of informa-
tion being 0007fd30. Next, you should enter the dd 0007fd30 command illustrat-
ed to glean more information about the previously highlighted number 0007fd30.

All tools used in this book are assumed to be launched from their installation fold-
er. For example, if the Windows debuggers are installed in the C:\Program Files\
Debugging Tools for Windows folder, the command line for launching windbg.exe
will be shown as

C:\>windbg

xxiv Preface

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xxiv

Supported Windows Versions

Windows XP or higher is required to fully make use of this book. All sample code and
debugging scenarios have been run on Windows XP SP2 or Windows Server 2003
SP1, depending on the requirements of the specific scenario. Please note that service
packs or even specific patches can change the result of various commands, although
these changes will not affect the overall outcome of what is being illustrated with the
debug session.

Chapter 15, “Windows Vista Fundamentals,” covers the most important changes
made in Windows Vista and includes debug sessions that must be run on a machine
running Windows Vista.

Furthermore, all samples and debug sessions were run using the 32-bit version of
Windows. Samples used in Chapter 12, “64-Bit Debugging,” were run using the 64-
bit version of Windows XP.

Support

While every attempt has been made to make this book 100% accurate, without a
doubt errors will be found. If you encounter an error in this book, feel free to contact
us using any of the following resources:

Email: marioh@advancedwindowsdebugging.com or
daniel@advancedwindowsdebugging.com.

Alternatively, the book discussion forum at http://www.advancedwindowsdebugging.com
is monitored and can be used to report erroneous information. As corrections are made,
they will be posted to the errata section of the Web site.

Preface xxv

00_0321374460_fm.qxd 10/4/07 10:56 AM Page xxv

