

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

Excerpts from the Tcl/Tk reference documentation are used under the terms of the Tcl/Tk license
(http://www.tcl.tk/software/tcltk/license.html).

The open source icon set used in Figures 22-1, 22-2, and 22-3 are from the Tango Desktop Project
(http://tango.freedesktop.org/Tango_Desktop_Project).

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Ousterhout, John K.

Tcl and the Tk toolkit / John Ousterhout, Ken Jones ; with contributions by
Eric Foster-Johnson . . . [et al.]. — 2nd ed.

p. cm.
Includes index.
ISBN 978-0-321-33633-0 (pbk. : alk. paper)

1. Tcl (Computer program language) 2. Tk toolkit. I. Jones, Ken. II. Title.
QA76.73.T44O97 2009
005.13'3—dc22

2009022005

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-33633-0
ISBN-10: 0-321-33633-X
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, August 2009

http://www.tcl.tk/software/tcltk/license.html
http://tango.freedesktop.org/Tango_Desktop_Project

xxv

Preface

Tcl and Tk have evolved tremendously since John wrote the first edition of this
book. In a “History of Tcl” that John wrote several years ago (http://www.tcl.tk/
about/history.html), he documented several significant enhancements that
occurred:

I joined Sun in May of 1994 and began building a team of Tcl developers . . . The
additional resources provided by Sun allowed us to make major improvements to
Tcl and Tk. Scott Stanton and Ray Johnson ported Tcl and Tk to Windows and the
Macintosh, so that Tcl became an outstanding cross-platform development envi-
ronment . . . Jacob Levy and Scott Stanton overhauled the I/O system and added
socket support, so that Tcl could easily be used for a variety of network applica-
tions. Brian Lewis built a bytecode compiler for Tcl scripts, which provided speed-
ups of as much as a factor of 10x. Jacob Levy implemented Safe-Tcl, a powerful
security model that allows untrusted scripts to be evaluated safely. Jacob Levy
and Laurent Demailly built a Tcl plugin, so that Tcl scripts can be evaluated in a
web browser, and we created Jacl and TclBlend, which allow Tcl and Java to work
closely together. We added many other smaller improvements, such as dynamic
loading, namespaces, time and date support, binary I/O, additional file manipula-
tion commands, and an improved font mechanism.

John went on to found the company Scriptics in 1997 to create development tools
and provide training and support for Tcl on a commercial basis. I joined Scriptics
shortly after its founding and had the pleasure of working with John and many
other talented people responsible for the success of Tcl and Tk. During that time,
Tcl became the first dynamic language with native Unicode support (for interna-

http://www.tcl.tk/about/history.html
http://www.tcl.tk/about/history.html

xxvi Preface

tionalization), thread safety (for multithreaded applications), and an all-new regular
expression package by Henry Spencer that included many new features as well as
Unicode support. In 1998, John was recognized for his work on Tcl/Tk with the
ACM Software System Award, conferred each year for “a software system that has
had a lasting influence.”

After many years of serving as the “benevolent dictator” of Tcl/Tk development,
John was ready to focus on other ventures. In 2000, he turned control of Tcl/Tk over
to the Tcl Core Team (TCT), a group of Tcl experts who collectively manage the
development of Tcl/Tk. The TCT organizes its activities with Tcl Improvement Pro-
posals (TIPs). Each TIP is a short document that describes a particular project,
activity, or process. Anyone can write a TIP; the TIP then gets circulated among the
Tcl Core Team for discussion and approval. You can learn more about the process at
http://www.tcl.tk/community/coreteam. The TCT welcomes community
involvement in shaping the future of Tcl/Tk.

One of the most exciting developments in recent years is a technology supporting
single-file distribution of Tcl runtime environments and Tcl/Tk-based applications
through Starkits and Starpacks; Chapter 14 shows you how to take advantage of
this method of distributing your applications. Starkits are based on another power-
ful innovation, virtual file systems, which allows your applications to treat such
entities as ZIP archives, FTP sites, HTTP sites, and WebDAV shares as mountable
file systems; Chapter 11 describes using this technology. And Tk 8.5 introduced a
new set of themed widgets, which provide a more modern appearance and consis-
tent look and feel than the classic Tk widgets; Chapter 19 introduces the capabili-
ties of the new themed widgets.

In addition to my coauthors, many other people have contributed to the success
of this second edition. Clif Flynt, Jeff Hobbs, Brian Kernighan, Steve Landers, and
Mark Roseman all spent significant time and effort on critiquing and improving the
technical content. Joe English, Jeff Hobbs, and Don Porter provided valuable insight
into several nooks and crannies of Tcl and Tk. Mark Roseman and his TkDocs site
(http://www.tkdocs.com) provided invaluable insight into themed widgets,
styles, and themes. Cameron Laird served as a sounding board for the initial shap-
ing and restructuring of the second edition. At Addison-Wesley, long-suffering Mark
Taub and Debra Williams Cauley kept working with me to bring this book to publi-
cation, and Michael Thurston helped make my inconsistencies more consistent.
Finally, Dean Akamine spent many a long hour on the thankless job of converting
files from format to format and helping me to tame FrameMaker. To them and all
the others I’ve negligently forgotten to name, I give my thanks for their help.

Ken Jones
San Francisco, California
April 2009

http://www.tcl.tk/community/coreteam
http://www.tkdocs.com

xxvi i

Preface to the First Edition

Tcl was born of frustration. In the early 1980s my students and I developed a num-
ber of interactive tools at the University of California at Berkeley, mostly for inte-
grated circuit design, and we found ourselves spending a lot of time building bad
command languages. Each tool needed to have a command language of some sort,
but our main interest was in the tool rather than its command language. We spent
as little time as possible on the command language and always ended up with a lan-
guage that was weak and quirky. Furthermore, the command language for one tool
was never quite right for the next tool, so we ended up building a new bad com-
mand language for each tool. This became increasingly frustrating.

In the fall of 1987 it occurred to me that the solution was to build a reusable com-
mand language. If a general-purpose scripting language could be built as a C library
package, then perhaps it could be reused for many different purposes in many dif-
ferent applications. Of course, the language would need to be extensible so that each
application could add its own specific features to the core provided by the library. In
the spring of 1988 I decided to implement such a language, and the result was Tcl.

Tk was also born of frustration. The basic idea for Tk arose in response to Apple’s
announcement of HyperCard in the fall of 1987. HyperCard generated tremendous
excitement because of the power of the system and the way in which it allowed many
different interactive elements to be scripted and work together. However, I was discour-
aged. The HyperCard system had obviously taken a large development effort, and it
seemed unlikely to me that a small group such as a university research project
could ever mount such a massive effort. This suggested that we would not be able to
participate in the development of new forms of interactive software in the future.

xxvii i Preface to the First Edition

I concluded that the only hope for us was a component approach. Rather than
building a new application as a self-contained monolith with hundreds of thou-
sands of lines of code, we needed to find a way to divide applications into many
smaller reusable components. Ideally each component would be small enough to be
implemented by a small group, and interesting applications could be created by
assembling components. In this environment it should be possible to create an
exciting new application by developing one new component and then combining it
with existing components.

The component-based approach requires a powerful and flexible “glue” for
assembling the components, and it occurred to me that perhaps a shared scripting
language could provide that glue. Out of this thinking grew Tk, an X11 toolkit
based on Tcl. Tk allows components to be either individual user-interface controls
or entire applications; in either case components can be developed independently
and Tcl can be used to assemble the components and communicate between them.

I started writing Tcl and Tk as a hobby in my spare time. As other people began to
use the systems I found myself spending more and more time on them, to the point
where today they occupy almost all of my waking hours and many of my sleeping ones.

Tcl and Tk have succeeded beyond my wildest dreams. The Tcl/Tk developer
community now numbers in the tens of thousands and there are thousands of Tcl
applications in existence or under development. The application areas for Tcl and
Tk cover virtually the entire spectrum of graphical and engineering applications,
including computer-aided design, software development, testing, instrument control,
scientific visualization, and multimedia. Tcl is used by itself in many applications, and
Tcl and Tk are used together in many others. Tcl and Tk are being used by hundreds
of companies, large and small, as well as universities and research laboratories.

One benefit that came as a surprise to me is that it is possible to create interest-
ing graphical user interfaces (GUIs) entirely as Tcl scripts. I had always assumed
that every Tcl application would contain some new C code that implements new Tcl
commands, plus some Tcl scripts that combine the new commands with the built-in
facilities provided by Tcl. However, once a simple Tcl/Tk application called wish
became available, many people began creating user interfaces by writing Tcl scripts
for it, without writing any C code at all! It turned out that the Tcl and Tk com-
mands provide a high-level interface to GUI programming that hides many of the
details faced by a C programmer. As a result, it is much easier to learn how to use
wish than a C-based toolkit, and user interfaces can be written with much less
code. Most Tcl/Tk users never write any C code at all and most of the Tcl/Tk appli-
cations consist solely of Tcl scripts.

This book is intended as an introduction to Tcl and Tk for programmers who plan
to write or modify Tcl/Tk applications. I assume that readers have programmed in
C and have at least passing familiarity with a shell such as sh or csh or ksh. I also
assume that readers have used the X Window System and are familiar with basic

Preface to the First Edition xxix

ideas such as using the mouse, resizing windows, etc. No prior experience with Tcl
or Tk is needed in order to read this book, and you need not have written X applica-
tions using other toolkits such as Motif.

The book is organized so that you can learn Tcl without learning Tk if you wish.
Also, the discussion of how to write Tcl scripts is separate from the discussion of
how to use the C library interfaces provided by Tcl and Tk. The first two parts of
the book describe Tcl and Tk at the level of writing scripts, and the last part
describes the C interfaces for Tcl; if you are like the majority of Tcl/Tk users who
only write scripts, you can stop after reading the first two parts.

In spite of my best efforts, I’m sure that there are errors in this edition of the book.
I’m interested in hearing about any problems that you encounter, whether they are
typos, formatting errors, sections or ideas that are hard to understand, or bugs in
the examples. I’ll attempt to correct the problems in future printings of the book.

Many people have helped in the creation of this book. First and foremost I would
like to thank Brian Kernighan, who reviewed several drafts of the manuscript with
almost terrifying thoroughness and uncovered numerous problems both large and
small. I am also grateful for the detailed comments provided by the other Addison-
Wesley technical reviewers: Richard Blevins, Gerard Holzmann, Curt Horkey, Ron
Hutchins, Stephen Johnson, Oliver Jones, David Korn, Bill Leggett, Don Libes,
Kent Margraf, Stuart McRobert, David Richardson, Alexei Rodrigues, Gerald
Rosenberg, John Slater, and Win Treese. Thanks also to Bob Sproull, who read the
next-to-last draft from cover to cover and provided countless bug fixes and suggestions.

I made early drafts of the manuscript available to the Tcl/Tk community via the
Internet and received countless comments and suggestions from all over the world
in return. I’m afraid that I didn’t keep careful enough records to acknowledge all
the people who contributed in this way, but the list of contributors includes at least
the following people: Marvin Aguero, Miriam Amos Nihart, Jim Anderson, Frederik
Anheuser, Jeff Blaine, John Boller, David Boyce, Terry Brannon, Richard Campbell,
J. Cazander, Wen Chen, Richard Cheung, Peter Chubb, De Clarke, Peter Collinson,
Peter Costantinidis, Alistair Crooks, Peter Davies, Tal Dayan, Akim Demaille,
Mark Diekhans, Matthew Dillon, Tuan Doan, Tony Duarte, Paul DuBois, Anton
Eliens, Marc R. Ewing, Luis Fernandes, Martin Forssen, Ben Fried, Matteo Frigo,
Andrej Gabara, Steve Gaede, Sanjay Ghemawat, Bob Gibson, Michael Halle, Jun
Hamano, Stephen Hansen, Brian Harrison, Marti Hearst, Fergus Henderson,
Kevin Hendrix, David Herron, Patrick Hertel, Carsten Heyl, Leszek Holenderski,
Jamie Honan, Rob W.W. Hooft, Nick Hounsome, Christopher Hylands, Jonathan
Jowett, Poul-Henning Kamp, Karen L. Karavanic, Sunil Khatri, Vivek Khera, Jon
Knight, Roger Knopf, Ramkumar Krishnan, Dave Kristol, Peter LaBelle, Tor-Erik
Larsen, Tom Legrady, Will E. Leland, Kim Lester, Joshua Levy, Don Libes, Oscar
Linares, David C.P. Linden, Toumas J. Lukka, Steve Lord, Steve Lumetta, Earlin
Lutz, David J. Mackenzie, B.G. Mahesh, John Maline, Graham Mark, Stuart

xxx Preface to the First Edition

McRobert, George Moon, Michael Morris, Russell Nelson, Dale K. Newby, Richard
Newton, Peter Nguyen, David Nichols, Marty Olevitch, Rita Ousterhout, John
Pierce, Stephen Pietrowicz, Anna Pluzhnikov, Nico Poppelier, M.V.S. Ramanath,
Cary D. Renzema, Mark Roseman, Samir Tiongson Saxena, Jay Schmidgall, Dan
M. Serachitopol, Hume Smith, Frank Stajano, Larry Streepy, John E. Stump,
Michael Sullivan, Holger Teutsch, Bennett E. Todd, Glenn Trewitt, D.A. Vaughan-
Pope, Richard Vieregge, Larry W. Virden, David Waitzman, Matt Wartell, Glenn
Waters, Wally Wedel, Juergen Weigert, Mark Weiser, Brent Welch, Alex Woo, Su-Lin
Wu, Kawata Yasuro, Chut Ngeow Yee, Richard Yen, Stephen Ching-SingYen, and
Mike Young.

Many many people have made significant contributions to the development of
Tcl and Tk. Without all of their efforts there would have been nothing of interest to
write about in this book. Although I cannot hope to acknowledge all the people who
helped to make Tcl and Tk what they are today, I would like to thank the following
people specially: Don Libes, for writing the first widely used Tcl application; Mark
Diekhans and Karl Lehenbauer, for TclX; Alastair Fyfe, for supporting the early
development of Tcl; Mary Ann May-Pumphrey, for developing the original Tcl test
suite; George Howlett, Michael McLennan, and Sani Nassif, for the BLT extensions;
Kevin Kenny, for showing that Tcl can be used to communicate with almost any
imaginable program; Joel Bartlett, for many challenging conversations and for
inspiring Tk’s canvas widget with his ezd program; Larry Rowe, for developing
Tcl-DP and for providing general advice and support; Sven Delmas, for developing
the XF application builder based on Tk; and Andrew Payne, for the widget tour and
for meritorious Tcl evangelism.

Several companies have provided financial support for the development of Tcl
and Tk, including Digital Equipment Corporation, Hewlett-Packard Corporation,
Sun Microsystems, and Computerized Processes Unlimited. I am particularly
grateful to Digital’s Western Research Laboratory and its director, Richard Swan,
for providing me with a one-day-per-week hideaway where I could go to gather my
thoughts and work on Tcl and Tk.

Terry Lessard-Smith and Bob Miller have provided fabulous administrative sup-
port for this and all my other projects. I don’t know how I would get anything done
without them.

Finally, I owe a special debt to my colleague and friend Dave Patterson, whose
humor and sage advice have inspired and shaped much of my professional career,
and to my wife, Rita, and daughters, Kay and Amy, who have tolerated my work-
aholic tendencies with more cheer and affection than I deserve.

John Ousterhout
Berkeley, California
February 1994

xxxi

Introduction

This book is about two software packages called Tcl and Tk.1 Tcl is a dynamic
language (also known as a scripting language) for controlling and extending appli-
cations; its name stands for “tool command language.” Tcl provides general pro-
gramming facilities sufficient for most applications. Furthermore, Tcl is both
embeddable and extensible. Its interpreter is a library of C functions that can easily
be incorporated into applications, and each application can extend the core Tcl fea-
tures with additional commands either unique to the application or provided by
add-on libraries (referred to as extensions in the Tcl community).

One of the most useful extensions to Tcl is Tk, which is a toolkit for developing
graphical user interface (GUI) applications. Tk extends the core Tcl facilities with
commands for building user interfaces, so that you can construct GUIs by writing
Tcl scripts instead of C code. Like Tcl, Tk is implemented as a library of C functions
so it can be used in many different applications.

Note: This book corresponds to Tcl/Tk version 8.5. The release notes for each version
of Tcl/Tk describe the changes and new features in each release. The Tcler’s Wiki
web site (http://wiki.tcl.tk) also compiles change lists for each release;
you can find them by searching for pages that contain Changes in in the title.

1. The official pronunciation for Tcl is “tickle,” although “tee-see-ell” is also used frequently. Tk is
pronounced “tee-kay.”

http://wiki.tcl.tk

xxxii Introduction

I.1 Benefits of Tcl/Tk

Together, Tcl and Tk provide several benefits to application developers and users.
The first benefit is rapid development. Many interesting applications can be writ-
ten entirely as Tcl scripts. This allows you to program at a much higher level than
you would in C/C++ or Java, and Tk hides many of the details that C or Java pro-
grammers must address. Compared to low-level toolkits, there is much less to learn
in order to use Tcl and Tk, and much less code to write. New Tcl/Tk users often can
create interesting user interfaces after just a few hours of learning, and many peo-
ple have reported tenfold reductions in code size and development time when they
switched from other toolkits to Tcl and Tk.

Another reason for rapid development with Tcl and Tk is that Tcl is an inter-
preted language. When you use a Tcl application, you can generate and execute
new scripts on the fly without recompiling or restarting the application. This allows
you to test out new ideas and fix bugs rapidly. Since Tcl is interpreted, it executes
more slowly than compiled C code; but internal optimizations, such as bytecode
compilation coupled with ever-increasing processor power, have erased most of the
perceived performance advantages of compiled languages. For example, you can
execute scripts with hundreds of Tcl commands on each movement of the mouse
with no perceptible delay. In the rare cases where performance becomes an issue,
you can reimplement the performance-critical parts of your Tcl scripts in C.

A second benefit is that Tcl is a cross-platform language, as are most of its exten-
sions, including Tk. This means that an application developed on one platform,
such as Linux, in most cases can be run without change on another platform, such
as Macintosh or Windows.

Tcl was also the first dynamic language to have native Unicode support. As a
result, Tcl applications can handle text in virtually any of the world’s written lan-
guages. Tcl requires no extensions to process text in any of the Unicode-supported
scripts, and standard extensions such as msgcat provide simple localization support.

Another significant benefit is that Tcl and most of its extensions are freely avail-
able as open source. Tcl and Tk follow the so-called BSD license, which allows any-
one to download, inspect, modify, and redistribute Tcl/Tk without charge.

Tcl is an excellent “glue language.” A Tcl application can include many different
extensions, each of which provides an interesting set of Tcl commands. Tk is one
example of a library package; many other packages have been developed by the Tcl/
Tk community, and you can also write your own packages. Tcl scripts for such appli-
cations can include commands from any of the packages.

Additionally, Tcl makes it easy for applications to have powerful scripting lan-
guages. For example, to add scripting capability to an existing application, all you
need do is implement a few new Tcl commands that provide the basic features of

Introduction xxxiii

the application. Then you can link your new commands with the Tcl library to pro-
duce a full-function scripting language that includes both the commands provided
by Tcl (called the Tcl core) and those that you wrote.

Tcl also provides user convenience. Once you learn Tcl and Tk, you will be able to
write scripts for any Tcl and Tk application merely by learning the few application-
specific commands for the new application. This should make it possible for more
users to personalize and enhance their applications.

I.2 Organization of the Book

Chapter 1 uses several simple scripts to provide a quick overview of the most
important features of Tcl and Tk. It is intended to give you the flavor of the systems
and convince you that they are useful, without explaining anything in detail. The
remainder of the book goes through everything again in a more comprehensive
fashion. It is divided into three parts:

� Part I introduces the Tcl scripting language. After reading this section, you
will be able to write scripts for Tcl applications. You will need to know at least
some of the information in this part in order to write Tk applications.

� Part II describes the additional Tcl commands provided by Tk, which allow
you to create user-interface widgets such as menus and scrollbars and arrange
them in GUI applications. After reading this section, you will be able to create
new GUI applications and write scripts to enhance existing Tk applications.

� Part III discusses the C functions in the Tcl library and how to use them to
create new Tcl commands. After reading this section, you will be able to write
new Tcl packages and applications in C. However, you will be able to do a
great deal (perhaps everything you need) without this information.

Each of these parts contains about a dozen short chapters. Each chapter is intended
to be a self-contained description of a piece of the system, and you need not neces-
sarily read the chapters in order.

Not every feature of Tcl and Tk is covered here, and the explanations are orga-
nized to provide a smooth introduction rather than a complete reference source. A
separate set of reference manual entries, referred to as the reference documenta-
tion, is available with the Tcl and Tk distributions. These are much more terse but
they cover absolutely every feature of both systems. Appendix A describes how to
retrieve the Tcl and Tk distributions, including reference documentation, via the
Internet. Appendix B provides a survey of some popular Tcl extensions. Appendix C
lists additional online and printed resources for Tcl and Tk. The full Tcl Source Dis-
tribution License is included in Appendix D.

xxxiv Introduction

This book assumes that you already know how to use your operating system,
including interacting with applications from the command line. Part III of this book
assumes that you are familiar with the C programming language as defined by the
ANSI C standard; a basic knowledge of C is helpful for Parts I and II but not
required. You need not know anything about either Tcl or Tk before reading this
book; both are introduced from scratch.

I.3 Notation

This book uses a monospace font for anything that might be typed to a computer,
such as Tcl scripts, C code, and names of variables, procedures, and commands. The
examples of Tcl scripts use notation like the following:

set a 44
44

Tcl commands, such as set a 44 in the example, appear in monospace; their
results, such as 44 in the example, appear in italicized monospace. The symbol
before the result indicates that this is a normal return value. If an error occurs in a
Tcl command, the error message appears in italicized monospace, preceded by a
symbol to indicate that this is an error rather than a normal return

set a 44 55
wrong # args: should be "set varName ?newValue?"

When describing the syntax of Tcl commands, italicized Courier is used for formal
argument names. An argument or group of arguments enclosed in question marks
indicates that the arguments are optional. For example, the syntax of the set com-
mand is as follows:

set varName ?newValue?

This means that the word set must be entered verbatim to invoke the command,
and varName and newValue are the names of set’s arguments; when invoking the
command, you type a variable name instead of varName and a new value for the
variable instead of newValue. The newValue argument is optional.

3

1
An Overview of
Tcl and Tk

This chapter introduces Tcl and Tk with a series of scripts illustrating their
main features. Although you should be able to start writing simple scripts after
reading this chapter, the explanations here are not complete. The purpose of this
chapter is to show you the overall structure of Tcl and Tk and the kinds of things
they can do, so that when individual features are discussed in detail you’ll be able
to see why they are useful. All of the information in this chapter is revisited in more
detail in later chapters, and several important aspects, such as the Tcl C interfaces,
are not discussed at all in this chapter.

1.1 Getting Started

To invoke Tcl scripts, you must run a Tcl application. If Tcl is installed on your sys-
tem, there should exist a simple Tcl shell application called tclsh, which you can
use to try out some of the examples in this chapter. If Tcl has not been installed on
your system, refer to Appendix A for information on how to obtain and install it.

Note: It’s common practice to install tclsh with its version number as part of
the name (for example, tclsh8.5 on Unix or tclsh85 on Windows). This has
the advantage of allowing multiple versions of Tcl to exist on the same system at
once, but also the disadvantage of making it harder to write scripts that start uni-
formly across different versions of Tcl. Therefore, most installers also commonly

4 Chapter 1 � An Overview of Tcl and Tk

link or alias tclsh to the most recent version installed on the system. The same is
true for the wish interpreter, described later. Therefore, unless you want to use a
specific version of a Tcl application installed on your system, you should simply
use tclsh or wish.

You can start the tclsh application by opening a terminal window on a Macintosh
or Unix system, or a command prompt window on a Windows system, and then
entering the command

tclsh

This causes tclsh to start in interactive mode, reading Tcl commands from the
keyboard and passing them to the Tcl interpreter for evaluation. For starters, enter
the following command at the tclsh prompt:

expr 2 + 2

tclsh prints the result (4) and then prompts you for another command.
This example illustrates several features of Tcl. Each command consists of one or

more words separated by spaces or tabs (referred to as whitespace characters). In
the example there are four words: expr, 2, +, and 2. The first word of each com-
mand is the name of the command to execute. The other words are arguments that
are passed to the command for processing. expr is one of the core commands provided
by the Tcl library, so it exists in every Tcl application. It concatenates its arguments
into a single string and evaluates the string as an arithmetic expression.

Each Tcl command returns a result. If a command has no meaningful result, it
returns an empty string. For the expr command the result is the value of the
expression.

All values in Tcl have a string representation and may also have a more efficient
internal representation. In this example, expr’s result is a numerical value that
would have a binary integer or floating-point internal representation. The internal
representation allows faster and more efficient processing of information. If the
value simply is assigned to a variable or if it is used by another command expecting
a numerical value, this is done very efficiently as no string conversion is required.
Tcl automatically generates a string representation of a value on an as-needed
basis—for example, when the value is displayed on the console.

Note: At the script development level, you can treat all values as strings; Tcl con-
verts between the string and the internal representation automatically as needed.
As you grow more familiar with Tcl, understanding what can cause conversions
can help you avoid them, resulting in more efficient and faster code. In general,

1.1 Getting Started 5

always being consistent in your treatment of a value (e.g., always using list com-
mands to process lists, always using dictionary commands to process dictionaries,
etc.) and avoiding unnecessary printing and other string manipulation of
numeric, list, and dictionary values can go a long way in speeding up your code.
For more information on the internal representation of values at the C language
level, see Chapter 32.

From now on, we will use notation such as the following to describe examples:

expr 2 + 2
4

The first line is the command you enter and the second line is the result returned
by the command. The symbol indicates that the line contains a return value; the

 is not actually printed out by tclsh. We will omit return values in cases where
they aren’t important, such as sequences of commands where only the last com-
mand’s result matters.

Commands are normally terminated by newlines (typically the Enter or Return
key on your keyboard), so each line that you enter in tclsh normally becomes a
separate command. Semicolons also act as command separators, in case you wish to
enter multiple commands on a single line. It is also possible for a single command
to span multiple lines; you’ll see how to do this later.

The expr command supports an expression syntax similar to that of expressions
in ANSI C, including the same precedence rules and most of the C operators. Here
are a few examples that you could enter in tclsh:

expr 2 * 10 - 1
19
expr 14.1*6
84.6
expr sin(.2)
0.19866933079506122
expr rand()
0.62130973004797
expr rand()
0.35263291623100307
expr (3 > 4) || (6 <= 7)
1

The first example shows the multiplication operator and how it has a higher prece-
dence than subtraction. The second shows that expressions can contain real values
as well as integer values. The next examples show some of the built-in functions
supported by expr, including the rand() function for generating random numbers
between 0 and 1. The last example shows the use of the relational operators > and

6 Chapter 1 � An Overview of Tcl and Tk

<= and the logical OR operator ||. As in C, Boolean results are represented numer-
ically with 1 for true and 0 for false.

To leave tclsh, invoke the exit command:

exit

This command terminates the application and returns you to your shell.

1.2 “Hello, World!” with Tk

Tcl provides a full set of programming features such as variables, loops, and proce-
dures. It can be used by itself or with extensions that implement their own Tcl com-
mands in addition to those in the Tcl core.

One of the more interesting extensions to Tcl is the set of windowing commands
provided by the Tk toolkit. Tk’s commands allow you to create graphical user inter-
faces. Many of the examples in this book use an application called wish (“window-
ing shell”), which is similar to tclsh except that it also includes the commands
defined by Tk. If Tcl and Tk have been installed on your system, you can invoke
wish from your terminal or command prompt window just as you did for tclsh; it
displays a small empty window on your screen and then reads commands from the
console. Alternatively, if you have Tcl/Tk version 8.4 or later installed, you can
invoke the tclsh application, and then use the command package require Tk
to dynamically load the Tk extension.

Note: On Windows, invoking an interactive wish session displays both the
empty window and a separate console window. The console window is a replace-
ment for a real console to allow input and output on the standard I/O channels.
The console window normally is hidden when a script file is executing, as
described later, although you can display it by executing the console show
command. Consult the console reference documentation for more information.

Here is a simple Tk script that you could run with wish:

button .b -text "Hello, world!" -command exit
grid .b

If you enter these two Tcl commands in wish, the window’s appearance changes to
that shown in Figure 1.1. If you move the pointer over the “Hello, world!” text and
click the main mouse button (the leftmost button in most configurations), the win-
dow disappears and wish exits.

1.2 “Hello, World!” with Tk 7

Several things about this example need explanation. First let us deal with the
syntactic issues. The example contains two commands, button and grid, both of
which are implemented by Tk. Although these commands do not look like the expr
command in the previous section, they have the same basic structure as all Tcl com-
mands: one or more words separated by whitespace characters. The button com-
mand contains six words, and the grid command contains two words.

The fourth word of the button command is enclosed in double quotes. This
allows the word to include whitespace characters; without the quotes, Hello, and
world! would be separate words. The double quotes are delimiters, not part of the
word itself; they are removed by the Tcl interpreter before the command is executed.

For the expr command the word structure doesn’t matter much since expr con-
catenates all its arguments. However, for the button and grid commands, and for
most Tcl commands, the word structure is important. The button command
expects its first argument to be the name of a new window to create. Additional
arguments to this command must come in pairs, where the first argument of each
pair is the name of a configuration option and the second argument is a value for
that option. Thus if the double quotes were omitted, the value of the -text option
would be Hello, and world! would be treated as the name of a separate configu-
ration option. Since there is no option defined with the name world! the command
would return an error.

Now let us move on to the behavior of the commands. The basic building block for
a graphical user interface in Tk is a widget. A widget is a window with a particular
appearance and behavior (the terms widget and window are used synonymously in
Tk). Widgets are divided into classes such as buttons, menus, and scrollbars. All the
widgets in the same class have the same general appearance and behavior. For
example, all button widgets display a text string, bitmap, or image and execute a
Tcl script when the user clicks the button.

Widgets are organized hierarchically in Tk, with names that reflect their posi-
tions in the hierarchy. The main widget, which appeared on the screen when you
started wish, has the name . and .b refers to a child b of the main widget. Widget
names in Tk are like file name paths except that they use . as a separator charac-
ter instead of / or \. Thus, .a.b.c refers to a widget that is a child of widget .a.b,
which in turn is a child of .a, which is a child of the main widget.

Tk provides one command for each class of widgets, called a class command,
which you invoke to create widgets of that class. For example, the button command
creates button widgets. This is similar to standard object-oriented programming

Figure 1.1 The “Hello, world!” application

8 Chapter 1 � An Overview of Tcl and Tk

principles, though Tk doesn’t support direct subclassing of the widget classes. All of
the class commands have the same form: the first argument is the name of a new
widget to create, and additional arguments specify configuration options. Different
widget classes support different sets of options. Widgets typically have many
options, with default values for the options that you don’t specify. When a class
command like button is invoked, it creates a new widget with the given name and
configures it as specified by the options.

The button command in the example specifies two options: -text, which is a
string to display in the button, and -command, which is a Tcl script to execute when
the user invokes the button. In this example the -command option is exit. Here
are a few other button options that you can experiment with:

� -background—the background color for the button, such as blue

� -foreground—the color of the text in the button, such as black

� -font—the font to use for the button, such as "times 12" for a 12-point
Times Roman font

Creating a widget does not automatically cause it to be displayed. The grid com-
mand causes the button widget to appear on the screen. Independent entities called
geometry managers are responsible for computing the sizes and locations of widgets
and making them appear on the screen. The separation of widget creation and
geometry management provides significant flexibility in arranging widgets on the
screen to design your application. The grid command in the example asks a geom-
etry manager called the gridder to manage .b. The gridder arranges widgets in a
grid of columns and rows. In this case, the command placed .b in the first column
of the first row of the grid and sized the grid to just large enough to accommodate
the widget; furthermore, if the parent has more space than needed by the grid, as in
the example, the parent is shrunk so that it is just large enough to hold the child.
Thus, when you entered the grid command, the main window (.) shrank from its
original size to the size that appears in Figure 1.1.

1.3 Script Files

In the examples so far, you have entered Tcl commands interactively to tclsh or
wish. You can also place commands into script files and invoke the script files just
like shell scripts. To do this for the “Hello, world!” example, place the following text
in a file named hello.tcl:

#!/usr/local/bin/wish
button .b -text "Hello, world!" -command exit
pack .b

1.3 Script Files 9

You can execute this script by invoking the wish interpreter and passing the script
file name as a command-line argument:

wish hello.tcl

This causes wish to display the same window as shown in Figure 1.1 and wait for
you to interact with it. In this case you will not be able to type commands interac-
tively to wish; all you can do is click on the button.

1.3.1 Executable Scripts on Unix and Mac OS X

The script just shown is the same as the one you typed earlier except for the first
line. As far as wish is concerned, this line is a comment, but on Unix systems if you
make the file executable (for example, by executing chmod +x hello.tcl in your
shell), you can then invoke the file directly by typing hello.tcl to your shell.
(This requires the directory containing your hello.tcl script to be listed in your
PATH environment variable.) When you do this, the system invokes wish, passing it
the file as a script to interpret.

As written, this script works as an executable script only if wish is installed in /usr/
local/bin, although you could still run it by invoking wish with the script file
name as a command-line argument. If wish has been installed somewhere else, you
need to change the first line to reflect its location on your system. Some systems
misbehave in confusing ways if the first line of the script file is longer than 32 char-
acters, so beware if the full path name of the wish binary is longer than 27 characters.

To work around these limitations, a common technique for scripts on Unix has
been to start script files with the following three lines:

#!/bin/sh
Tcl ignores the next line but 'sh' doesn't \
exec wish "$0" "$@"

or the more arcane but more robust version:

#!/bin/sh
Tcl ignores the next line but 'sh' doesn't \
exec wish "$0" ${1+"$@"}

In most modern Unix implementations, though, the following will work correctly, as
long as wish appears in one of the directories in your PATH environment variable:

#!/usr/bin/env wish

1.3.2 Executable Scripts on Windows

On Windows, you can use the standard system tools to associate the wish inter-
preter with a file extension (.tcl by convention) so that double-clicking on the icon

10 Chapter 1 � An Overview of Tcl and Tk

for a Tcl/Tk script automatically invokes the wish interpreter, passing it the name
of the file as a script to interpret. Most Windows installers for Tcl/Tk automatically
create this association for you. wish is typically selected as the default association
because most Windows-based Tcl/Tk programs are GUI-based. However, if the
majority of your Tcl scripts don’t use Tk commands, you could change the default
association to invoke tclsh.

If you plan to distribute your scripts on multiple platforms, you should include
the appropriate #! header as discussed in the previous section for Unix executable
scripts so that they can be directly executable on Unix systems. On the other hand,
Windows doesn’t follow the #! convention, and the #! line is treated as a comment
by the wish interpreter, so the net effect is that the line is ignored when the script
is run on a Windows system.

1.3.3 Executing Scripts in an Interactive Interpreter

In practice, users of Tk applications rarely type Tcl commands; they interact with
the applications using the mouse and keyboard in the usual ways you would expect
for graphical applications. Tcl works behind the scenes where users don’t normally
see it. The hello.tcl script behaves just the same as an application that has been
coded in C with a GUI toolkit and compiled into a binary executable file.

During debugging, though, it is common for application developers to type Tcl
commands interactively. For example, you could test the hello.tcl script by start-
ing wish interactively (type wish to your shell instead of hello.tcl). Then enter
the following Tcl command:

source hello.tcl

source is a Tcl command that takes a file name as an argument. It reads the file
and evaluates it as a Tcl script. This generates the same user interface as if you had
invoked hello.tcl directly from your shell, but you can now enter Tcl commands
interactively, too. For example, you could edit the script file to change the -command
option to

-command "puts Good-bye!; exit"

then enter the following commands interactively to wish without restarting the
program:

destroy .b
source hello.tcl

The first command deletes the existing button, and the second command re-creates
the button with the new -command option. Now when you click on the button, the
puts command prints a message on standard output before wish exits.

1.4 Variables and Substitutions 11

1.4 Variables and Substitutions

Tcl allows you to store values in variables and use those values in commands. For
example, consider the following script, which you could enter in either tclsh or
wish:

set a 44
44
expr $a*4
176

The first command assigns the value 44 to the variable a and returns the variable’s
value. In the second command, the $ causes Tcl to perform variable substitution:
the Tcl interpreter replaces the dollar sign and the variable name following it with
the value of the variable, so that the actual argument received by expr is 44*4.
Variables need not be declared in Tcl; they are created automatically when set.
Variable values can always be represented as strings but may be maintained in a
native binary format. Strings may contain binary data and may be of any length. Of
course, in this example an error occurs in expr if the value of a doesn’t make sense
as an integer or real number.

Tcl also provides command substitution, which allows you to use the result of one
command in an argument to another command:

set a 44
set b [expr $a*4]
176

Square brackets invoke command substitution: everything inside the brackets is
evaluated as a separate Tcl script, and the result of that script is substituted into
the word in place of the bracketed command. In this example the second argument
of the second set command is 176.

The final form of substitution in Tcl is backslash substitution, which either adds
special meaning to a normal character or takes it away from a special character, as
in the following examples:

set x \$a
set newline \n

The first command sets the variable x to the string $a (the characters \$ are
replaced with a dollar sign and no variable substitution occurs). The second com-
mand sets the variable newline to hold a string consisting of the newline character
(the characters \n are replaced with a newline character).

12 Chapter 1 � An Overview of Tcl and Tk

1.5 Control Structures

The next example uses variables and substitutions along with some simple control
structures to create a Tcl procedure called factorial, which computes the facto-
rial of a given non-negative integer value:

proc factorial {val} {
 set result 1
 while {$val>0} {
 set result [expr $result*$val]
 incr val -1
 }
 return $result
}

If you enter the preceding lines in wish or tclsh, or if you enter them into a file
and then source the file, a new command factorial becomes available. The com-
mand takes one non-negative integer argument, and its result is the factorial of
that number:

factorial 3
6
factorial 20
2432902008176640000
factorial 0.5
expected integer but got "0.5"

This example uses one additional piece of Tcl syntax: braces. Braces are like double
quotes in that they can be placed around a word that contains embedded spaces.
However, braces are different from double quotes in two respects. First, braces nest.
The last word of the proc command starts after the open brace on the first line and
contains everything up to the close brace on the last line. The Tcl interpreter
removes the outer braces and passes everything between them, including several
nested pairs of braces, to proc as an argument. The second difference between
braces and double quotes is that no substitutions occur inside braces, whereas they
do inside quotes. All of the characters between the braces are passed verbatim to
proc without any special processing.

The proc command takes three arguments: the name of a procedure, a list of
argument names separated by whitespace, and the body of the procedure, which is
a Tcl script. proc enters the procedure name into the Tcl interpreter as a new com-
mand. Whenever the command is invoked, the body of the procedure is evaluated.
While the procedure body is executing, it can access its arguments as variables: val
holds the first and only argument.

The body of the factorial procedure contains three Tcl commands: set,
while, and return. The while command does most of the work of the procedure.

1.5 Control Structures 13

It takes two arguments, an expression, $val>0, and a body, which is another Tcl
script. The while command evaluates its expression argument and if the result is
nonzero, it evaluates the body as a Tcl script. It repeats this process over and over
until eventually the expression evaluates to zero. In the example, the body of the
while command multiplies the result by val and then uses the incr command to
add the specified integer increment (-1 in this case) to the value contained in val.
When val reaches zero, result contains the desired factorial.

The return command causes the procedure to exit with the value of the variable
result as the procedure’s result. If a return command is omitted, the return
value of a procedure is the result of the last command executed in the procedure’s
body. In the case of factorial this would be the result of while, which is always
an empty string.

The use of braces in this example is crucial. The single most difficult issue in
writing Tcl scripts is managing substitutions: making them happen when you want
them and preventing them when you don’t. The body of the procedure must be
enclosed in braces because we don’t want variable and command substitutions to
occur at the time the body is passed to proc as an argument; we want the substitu-
tions to occur later, when the body is evaluated as a Tcl script. The body of the
while command is enclosed in braces for the same reason: rather than performing
the substitutions once, while parsing the while command, we want the substitu-
tions to be performed over and over, each time the body is evaluated. Braces are
also needed in the {$val>0} argument to while. Without them the value of the
variable val would be substituted when the while command is parsed; the expres-
sion would have a constant value and while would loop forever. Try replacing some
of the braces in the example with double quotes to see what happens.

The examples in this book use a style in which the open brace for an argument
that is a Tcl script appears at the end of one line, the script follows on successive
indented lines, and the close brace is on a line by itself after the script. Although
this makes for readable scripts, Tcl doesn’t require this particular syntax. Argu-
ments that are scripts are subject to the same syntax rules as any other arguments;
in fact, the Tcl interpreter doesn’t even know that an argument is a script at the
time it parses it. One consequence is that the open brace must be on the same line
as the preceding portion of the command. If the open brace is moved to a line by
itself, the newline before the open brace terminates the command.

The variables in a procedure are normally local to that procedure and are not vis-
ible outside the procedure. In the factorial example the local variables include
the argument val as well as the variable result. A fresh set of local variables is
created for each call to a procedure (arguments are passed by copying their values),
and when a procedure returns, its local variables are deleted. Variables named out-
side any procedure are called global variables; they last forever unless explicitly
deleted. You’ll find out later how a procedure can access global variables and the

14 Chapter 1 � An Overview of Tcl and Tk

local variables of other active procedures. Additionally, persistent variables can be
created within specific namespaces to prevent naming conflicts; Chapter 10 dis-
cusses the use of namespaces.

1.6 On the Tcl Language

As a programming language, Tcl is defined quite differently from most other lan-
guages. Most languages have a grammar that defines the entire language. For
example, consider the following statement in C:

while (val>0) {
 result *= val;
 val -= 1;
}

The grammar for C defines the structure of this statement in terms of a reserved word
while, an expression, and a substatement to execute repeatedly until the expres-
sion evaluates to zero. The C grammar defines both the overall structure of the
while statement and the internal structure of its expression and substatement.

In Tcl no fixed grammar explains the entire language. Instead, Tcl is defined by
an interpreter that parses single Tcl commands, plus a collection of procedures that
execute individual commands. The interpreter and its substitution rules are fixed,
but new commands can be defined at any time and existing commands can be
replaced. Features such as control flow, procedures, and expressions are imple-
mented as commands; they are not understood directly by the Tcl interpreter. For
example, consider the Tcl command that is equivalent to the preceding while loop:

while {$val>0} {
 set result [expr $result*$val]
 incr val -1
}

When this command is evaluated, the Tcl interpreter knows nothing about the com-
mand except that it has three words, the first of which is a command name. The Tcl
interpreter has no idea that the first argument to while is an expression and the
second is a Tcl script. Once the command has been parsed, the Tcl interpreter
passes the words of the command to while, which treats its first argument as an
expression and the second as a Tcl script. If the expression evaluates to nonzero,
while passes its second argument back to the Tcl interpreter for evaluation. At
this point the interpreter treats the contents of the argument as a script (i.e., it per-
forms command and variable substitutions and invokes the expr, set, and incr
commands).

Now consider the following command:

1.7 Event Bindings 15

set {$val>0} {
 set result [expr $result*$val]
 incr val -1
}

As far as the Tcl interpreter is concerned, the set command is identical to the
while command except that it has a different command name. The interpreter
handles this command in exactly the same way as the while command, except that
it invokes a different procedure to execute the command. The set command treats
its first argument as a variable name and its second argument as a new value for
that variable, so it will set a variable with the rather unusual name of $val>0.

The most common mistake made by new Tcl users is to try to understand Tcl
scripts in terms of a grammar; this leads people to expect much more sophisticated
behavior from the interpreter than actually exists. For example, a C programmer
using Tcl for the first time might think that the first pair of braces in the while
command serves a different purpose from the second pair. In reality, there is no differ-
ence. In each case the braces are present so that the Tcl interpreter passes the char-
acters between the braces to the command without performing any substitutions.

Thus the entire Tcl “language” consists of about a dozen simple rules for parsing
arguments and performing substitutions. The actual behavior of a Tcl script is
determined by the commands executed. The commands determine whether to treat
an argument as a literal value, the name of a variable, a code block to execute, and
so on. An interesting consequence of this is that a script can define commands
implementing entirely new control structures, which is a feature not available in
most other languages.

1.7 Event Bindings

The next example provides a graphical front end for the factorial procedure. In
addition to demonstrating two new widget classes, it illustrates Tk’s binding mech-
anism. A binding causes a particular Tcl script to be evaluated whenever a particu-
lar event occurs in a particular window. The -command option for buttons is an
example of a simple binding implemented by a particular widget class. Tk also
includes a more general mechanism that can be used to extend the behavior of wid-
gets in nearly arbitrary ways.

To run the example, copy the following script into a file factorial.tcl and
invoke the file from your shell.

#!/usr/bin/env wish
proc factorial {val} {
 set result 1
 while {$val>0} {

16 Chapter 1 � An Overview of Tcl and Tk

 set result [expr $result*$val]
 incr val -1
 }
 return $result
}
entry .value -width 6 -relief sunken -textvariable value
label .description -text "factorial is"
label .result -textvariable result
button .calculate -text "Calculate" \
 -command {set result [factorial $value]}
bind .value <Return> {
 .calculate flash
 .calculate invoke
}
grid .value .description .result -padx 1m -pady 1m
grid .calculate - - -padx 1m -pady 1m

This script produces a screen display like that in Figure 1.2. There is an entry wid-
get in which you can click with the mouse and type a number. If you click the button
labeled “Calculate,” the result appears on the right side of the window; the same
occurs if you press the Return key in the entry.

This application consists of four widgets: one entry, one button, and two labels.
Entries are widgets that display one-line text strings that you can edit interac-
tively. The entry is configured with a -width of 6, which means it is large enough
to display about six digits, and a -relief of sunken, which makes the entry
appear sunken into the window. The -textvariable option for each entry speci-
fies the name of a global variable to hold the entry’s text—any changes you make in
the entry are reflected in the variable and vice versa.

The .description label widget holds decorative text, and the .result label
holds the result of the power computation. The -textvariable option for .result
causes it to display whatever string is in the global variable result and to update
itself whenever the variable changes. In contrast, .description displays a con-
stant string.

Figure 1.2 A graphical user interface that computes a factorial

1.7 Event Bindings 17

The first grid command arranges the entry and two label widgets in a row from
left to right. The -padx and -pady options make the display a bit more attractive
by arranging for 1 millimeter of extra space on the left and right sides of each wid-
get, and 1 millimeter of extra space above and below each widget. The m suffix spec-
ifies millimeters; you could also use c for centimeters, i for inches, p for points, or
no suffix for pixels.

The second grid command arranges the button in a second row. Because the
widget name occurs as the first argument, the gridder allocates the first column of
the row to the button. The two - arguments following the widget name indicate to
the gridder that the space allocated to the button widget should span two addi-
tional columns. The gridder then centers the button widget inside its allocated
space.

The command creating the .calculate button occupies two lines in the script;
the backslash at the end of the first line is a line-continuation character, which
causes the newline to be treated as a space. The button’s -command script connects
the user interface to the factorial procedure. The script invokes factorial,
passing it the values in the entry and storing the result in the result variable so
that it is displayed in the .result widget.

The bind command has three arguments: the name of a widget, an event specifi-
cation, and a Tcl script to invoke when the given event occurs in the given widget.
<Return> specifies an event consisting of the user pressing the return key on the
keyboard (which is still labeled “Return” on Mac keyboards but typically labeled
“Enter” on most other English keyboards these days). Table 1.1 shows a few other
event specifiers that you might find useful.

Table 1.1 Event Specifiers

Event specifer Meaning

<Button-1> Mouse button 1 is pressed

<1> Shorthand for <Button-1>

<ButtonRelease-1> Mouse button 1 is released

<Double-Button-1> Double-click on mouse button 1

<Key-a> Key a is pressed

<a> or a Shorthand for <Key-a>

<Motion> Pointer motion with any (or no) buttons or modifier keys
pressed

<B1-Motion> Pointer motion with button 1 pressed

18 Chapter 1 � An Overview of Tcl and Tk

The script for a binding has access to several pieces of information about the
event, such as the location of the pointer when the event occurred. For an example,
start up wish interactively and enter the following command in it:

bind . <Motion> {puts "pointer at %x,%y"}

Now move the pointer over the window. Each time the pointer moves, a message is
printed on standard output giving its new location. When the pointer motion event
occurs, Tk scans the script for % sequences and replaces them with information
about the event before passing the script to Tcl for evaluation. %x is replaced with
the pointer’s x-coordinate and %y is replaced with the pointer’s y-coordinate.

The intent of a binding is to extend the generic built-in behavior of the entry
(editing text strings) with an application-specific behavior. In this script, as a con-
venience we would like to allow the user to request the factorial calculation by
pressing the Return key as an alternative to clicking the “Calculate” button. We
could simply duplicate the button’s command script, but if we were to modify the
command script later, we’d need to remember to replicate the change in the binding
script as well. Instead, we provide a binding script that “programmatically clicks”
the button.

The binding script executes two commands called widget commands. Whenever a
new widget is created, a new Tcl command is also created with the same name as
the widget, and you can invoke this command to communicate with the widget. The
first argument to a widget command selects one of several operations, and addi-
tional arguments are used as parameters for that operation. In this binding script,
the first widget command flashes the button. (Depending on your system’s color
scheme, you might not see the button flash.) The second widget command causes
the button widget to invoke its -command option just as if you had clicked the
mouse button on it.

Each class of widget supports a different set of operations in its widget commands,
but many of the operations are similar from class to class. For example, every wid-
get class supports a configure widget command that can be used to modify any of
the configuration options for the widget. If you run the factorial.tcl script
interactively, you could type the following command to change the background of
the entry widget to yellow:

.value configure -background yellow

Or you could type

.calculate configure -state disabled

to make the button unresponsive to user interaction.

1.8 Additional Features of Tcl and Tk 19

1.8 Additional Features of Tcl and Tk

The examples in this chapter have used almost every aspect of the Tcl language
syntax, and they illustrated many features of Tcl and Tk. However, Tcl and Tk con-
tain many other facilities that are not used in this chapter; all of these are
described later in the book. Here is a sample of some of the most useful features
that haven’t been mentioned yet:

� Arrays, dictionaries, and lists—Tcl provides associative arrays and dictio-
naries for storing key-value pairs efficiently and lists for managing aggregates
of data.

� More control structures—Tcl provides several additional commands for
controlling the flow of execution, such as eval, for, foreach, and switch.

� String manipulation—Tcl contains a number of commands for manipulat-
ing strings, such as measuring their length, regular expression pattern match-
ing and substitution, and format conversion.

� File access—You can read and write files from Tcl scripts and retrieve direc-
tory information and file attributes such as size and creation time.

� More widgets—Tk contains many widget classes besides those shown here,
such as menus, scrollbars, a drawing widget called a canvas, and a text widget
that makes it easy to achieve hypertext effects.

� Access to other windowing features—Tk provides commands for accessing
all of the major windowing facilities, such as a command for communicating
with the window manager (to set the window’s title, for example), a command
for retrieving the selection, and a command to manage the input focus.

� Interapplication communication—Tcl includes the ability to communicate
between applications through interprocess pipes and TCP/IP sockets.

� C interfaces—Tcl provides C library procedures that you can use to define
new Tcl commands in C. (Tk provides a library that you can use to create new
widget classes and geometry managers in C, but this capability is rarely used
and so is not covered in this book.)

737

Index

Symbols
!! in history shortcuts, 286
in comments, 32–35
#! in script execution, 9–10
$

command evaluation, 24
as constraint, 80
invoking substitution, 11
variable substitution, 24–25, 43–45

%
in expressions, 55–56
substitutions in scripts that handle

events, 419–421
in time and date strings, 254–256

& in expressions, 56, 57
&& in expressions, 56, 57
*

expr syntax, 5
glob-style pattern matching, 79
operators and precedence, 55–56
as quantifier, 84
in regular expressions, 81

** in expressions, 55–56
:: in qualified names, 161–162

::pkg::create, 237
::tcl::tm::path list, 231, 240–241
::tk, 304

::ttk, 304
@ in image options, 311
[]

command substitution, 26
invoking substitution, 11
regular expression atoms, 82–83

\\ in substitution, 27
^

as constraint, 80
in gridder, 396
operators and precedence, 56, 57

^old^new, 286
{ }

basic dictionary structure, 118
in glob commands, 180
inside comments, 34–35
in lists, 104
quoting expressions, 61
quoting with, 29–30
in regular expressions, 86
in replacement strings, 88
string manipulation, 62
use of, 12–13
using in variable names, 45

{*}
argument expansion, 32
substitutions, 36

738 Index

{m, } in regular expressions, 81
{m,n} in regular expressions, 81
{m} in regular expressions, 81
|

operators and precedence, 56, 57
in regular expressions, 84

||
expr syntax, 5–6
operators and precedence, 56, 57

~
in file names, 176
operators and precedence, 55

+
operators and precedence, 55–56
as quantifier, 84
in regular expressions, 81

< in expressions, 55, 56–57
<< in expressions, 55, 57
<=

expr syntax, 5–6
precedence and, 55, 56–57

!= in expressions, 55, 56–57
== in expressions, 55, 56–57
>

expr syntax, 5–6
precedence and, 55, 56–57

>= in expressions, 55, 56–57
>> in expressions, 55, 57
;

in basic syntax, 5
as separator, 21

"
vs. braces, 12–13
quoting with, 28–29
string expressions, 62
in notation, xxxiv

/
in glob commands, 180
precedence and, 55–56

2> in redirection syntax, 201
2>@1 in redirection syntax, 201
-

expr syntax, 5–6
in gridder, 396
precedence and, 55–56

! and precedence, 55–56, 57
?: and precedence, 56, 58

?
glob-style pattern matching, 79
as quantifier, 84
in regular expressions, 81

--
odd file names, 185
in regexp command, 87

.
regular expression atoms, 80
in widget names, 7, 294–295

\
back references, 85
backslash substitution, 26–27
invoking substitution, 11
in regular expressions, 80–82
in replacement strings, 88

basic syntax, 5
notation, xxxiv

A
\a in substitution, 27
Aborting commands, 219
abs function, 58
Absolute paths, 178
Absolute qualified names, 161
Access

file. See File access.
positions, 191–192
safe interpreter, 277–279

Accessing Tcl variables
functions, 551–553
linking with C variables, 556–558
multiple traces, 561
reading, 555
setting and unsetting traces, 558–559
setting values, 553–555
trace callbacks, 559–561
unset callbacks, 562
unsetting, 556
whole-array traces, 561

aclocal.m4 file, 710–711
acos function, 58
Action-oriented programming, 525–526
Actions

defined, 300
logical, 423–424

Index 739

active state
for button widgets, 313
common widget options, 339
themed widgets, 358

ActiveState Software, 718, 722–724
ActiveTcl, 718
add action, 328–329
Addition operator

precedence and, 55–56
as quantifier, 84
in regular expressions, 81

Advanced regular expressions (AREs), 80
after cancel command, 248
after command, 247, 253–254
after idle command, 248
-after option

configuring packer, 398
packing order, 404
panedwindows, 336

Aliases
command, 276–277
safe interpreter, 278

Aligning text, 309
all binding, 423
all tag, 439
Allocation, memory, 544
-alpha attribute, 487, 488
alternate state, 358
-anchor option, 398, 403–404
Anchor position, 340–341
AND operator, 56, 57
Anonymous procedures, 151–153
ANSI C. See C.
Apartment threading models, 727
Appearance

themed widget states, 358–360
themed widget styles, 360–364

append command
defined, 47–49
working with variables, 39

Applications
adding Tcl to, 594
option database entries, 507
sending commands to Tcl programs,

214–217
simple Tcl interpreters, 530–531
Tk, 296

apply command
creating anonymous procedures, 151–153
defined, 143–144

arc type, 434
AREs (advanced regular expressions), 80
argc variable, 49
args variable, 147–148
Arguments

applying anonymous procedures, 151–153
clientData, 572–575
command evaluation, 22–24
control structures, 12–13
defaults and variable numbers of,

146–148
defined, 4
event binding, 15–18
expanding, 30–32
notation, xxxiv
passing lists as, 30
in windowing commands, 7–8

argv variable, 49
argv0 variable, 49
Arithmetic

operators, 64
performing clock, 258–259

array command, 46–47
array exists command, 40, 47
array get command, 40
array names command, 40, 46–47
array set command, 40
array size command, 40, 46
array unset command, 40, 49
Arrays, 19

accessing with upvar, 149
byte, 540
defined, 42–43
vs. dictionaries, 115, 119–120
file stat, 184
hash table keys, 632
multidimensional, 45–46
querying elements of, 45–46
tk::Priv, 518
tracing variables, 268–269
whole-array traces, 561

Arrows in scrollbars, 318
asin function, 58
Aspect ratios, 482

740 Index

Associative arrays, 42. See also Arrays.
Asynchronous events, 690–694
Asynchronous subprocesses, 211–212
atan function, 58
atan2 function, 58
atime option, 184–185
Atoms, 80–83
Attributes

channel functions, 654–655
system-specific window, 487–488

auto_execok command, 274
auto_mkindex command, 230, 233–234
auto_path variable, 234
Autoexec, 273
Autoloading

default version of unknown, 273
defined, 229, 233–234

B
\b, 27
Back references, 85
Background errors, 416
-background option

button command, 7–8
configuring bitmap images, 376
formatting text tags, 455
for images, 311
widget color, 307–308

Background processes, 193–194, 685
background state, 358
Backslash substitution

defined, 11
inside braces, 29
inside double quotes, 28–29
more on, 36–37
syntax overview, 26–27

Backslashes
back references, 85
in file names, 176
in lists, 104–105
in regular expressions, 80–82
in replacement strings, 88

Backspaces
escape sequences, 82
keysyms, 415
in substitutions, 27

Basic regular expressions (BREs), 80

-before option
configuring packer, 398
packing order, 404
panedwindows, 336

Behavior of themed widgets, 358–360
bell command, 518
Bézier curves, 434
-bgstipple option, 455
Bignum types, 538
Binary files, 190–191
binary format command, 65, 95–97
Binary numeric operands, 54
binary scan command, 65–66, 96–99
Binary strings, 95–99
bind command

defined, 413–414
overview, 416–417

Bindings
additional uses, 431
bind command, 416–417
canvas widget, 439–444
conflict resolution, 421–422
defined, 413
event-binding hierarchy, 422–423
event-driven channel interaction, 206
events, 15–18
generating events, 427–428
keyboard shortcut, 332–333
named virtual events, 425–426
text tag, 457–458
text widget, 449–450
treeview item tags, 356–357
widget default, 304–305

Bindtags, 422–423
bindtags command, 414, 422
-bitmap option, 311
bitmap type, 434
Bitmaps

image command, 375–377
in window decoration, 485–486

Bit-wise operators, 56, 57
blink procedure, 254
Blocking channels

defined, 204–205
interacting with, 206

Book resources, 732–733
bool function, 58

Index 741

Boolean operators
expr syntax, 6
precedence and, 57

Boolean types, 538
-borderwidth option

formatting text tags, 455
for frames, 305

Bounds, 84
Braces

basic dictionary structure, 118
in glob commands, 180
inside comments, 33–34
in lists, 104
quoting expressions, 61
quoting with, 29–30
in regular expressions, 86
in replacement strings, 88
string manipulation, 62
use of, 12–13
using in variable names, 45

Brackets
command substitution, 26
invoking substitution, 11

Branches, 84–85
break command

defined, 131
event-binding hierarchy and, 423
generating exceptions, 224
loop control, 138

BREs (basic regular expressions), 80
Buffering

channel buffering mode, 205
file output, 188
I/O to and from command pipeline, 203

Building
embedded Tcl, 714
Tcl and Tk, 703–707
TEA, 707–714
threaded Tcl, 697

Butenhof, David, 695
button command, 6–8
Button widgets

defined, 294
event bindings, 16–18
overview, 312–315

ButtonPress event, 415
ButtonRelease event, 415
Byte arrays, 540

C
C

accessing Tcl variables from. See
Accessing Tcl variables.

analogous Tcl channel commands, 658
character set issues, 89
command evaluation, 24
creating commands. See Command

creation.
embedding Tcl. See Embedding Tcl.
evaluating Tcl code in. See Evaluating

Tcl code.
expr syntax, 5–6
fetching values from Tcl objects, 538–539
file system interaction functions, 681–683
generating strings with format, 74–75
integration with Tcl. See Tcl and C

integration.
interfaces, 19
loading libraries, 232
operators, 5–6
operators and precedence, 56
parsing strings with scan, 76–77
real operand specification, 54
string functions in UTF-8 and Unicode,

626
vs. Tcl, 14, 523–524
Tcl interpreters. See Interpreters.
writing extensions in. See Extensions.

c suffix, 17
\c in regular expressions, 81
Call by reference, 148–150
Callbacks

applying anonymous procedures, 152–153
channel event handling, 673–676
clientData and deletion, 572–575
handling idle, 677–678
handling with namespace code, 160–161
idle, 253, 671
invoking event dispatcher, 678–680
timer event handling, 676–677
trace, 559–561
unset, 562

canvas command, 434–435
Canvas widget

bindings, 439–444
canvas scrolling, 444–445
items and types, 433–436

742 Index

Canvas widget (continued)
manipulating items with identifiers and

tags, 436–439
PostScript generation, 445

Carriage return in substitutions, 27
cascade entry, 328
Cascaded menus, 331–332
Case conversion, 70
Case-sensitivity of variable names, 41
Catalogs, message, 91–95
catch command

defined, 219–220
generating exceptions, 224–226
limiting interpreters, 280–281
return options dictionary, 604
trapping errors, 222–223

Cavities
defined, 361
packing, 396–397

cd command, 173, 179
ceil function, 58
Cells in gridder, 389
cget widget command, 505, 512
chan close command, 174
chan configure command

configuring channel options, 204–205
defined, 175, 198–199

chan copy command, 176, 192–194
chan eof command, 174, 191–192
chan event command, 199, 207–209
chan flush command, 174
chan gets command, 174
chan puts command, 175
chan read command, 175
chan seek command, 175, 191–192
chan tell command, 175, 191–192
Channel events, 206
Channel handlers, 673–676
Channels

basic file, 186–188
character encodings and, 90
configuring options, 204–205
creating new types, 661–669
event handling, 672–676
event-driven interaction, 206–208
functions, 649–656
operating system process utilities, 687–689
operations, 656–658

registering, 658–660
standard, 660–661
transferring between interpreters,

279–280
char functions, 536–537
Character classes, 82–83
Character encodings

defined, 89–91
working with string utilities, 624–625
working with text files, 190

Characters
extracting with string, 69
generating strings with format, 74–76
glob-style pattern matching, 78–79
handling Unicode and UTF-8 strings,

625–627
parsing strings with scan, 76–78
in regular expressions, 80–83
relative placement in gridder, 395–396
separators, 7
set issues, 89–91
split, 112
substitutions. See Substitutions.
supported by string is , 73–74
text tags, 453–458
time and date format groups, 254–257
variables and substitutions, 11
working with text files, 190

[chars]
glob-style pattern matching, 79
in regular expressions, 81

checkbutton entry, 328
Checkbuttons, 313–314
Child process reaping, 689–690
Choice operator, 56, 58
chooseDirectory procedure, 338
Class commands

creating and destroying widgets,
297–298

for widgets, 7–8
class widget command, 505
Classes

bindings, 416
character in regular expressions, 82–83
characters supported by string is, 73–74
namespaces and, 171–172
option database entries, 507–508
themed widget vs. classic widget, 344–345

Index 743

widget, 7–8, 294, 305. See also Widgets.
widget commands, 18, 299–300

Cleanup, process in C, 693–694
Clearing, selection, 470–471
Client communication sockets, 210–212
clientData argument, 572–575
clipboard append command, 468–469, 474
clipboard clear command, 468
clipboard command, 473–474
clipboard get command, 469, 473
Clipboard model

defined, 467
selection, retrievals, and types, 469–470

CLIPBOARD selection, 469
clock add command, 248, 258–259
clock command, 254–259
clock format command, 248, 254–257
clock microseconds command, 248, 254
clock milliseconds command, 248, 254
clock scan command, 248, 257–258
clock seconds command, 248, 254
Closing

command pipeline, 204
windows, 489–490

Code evaluation. See Evaluating Tcl code.
Collections. See Lists, Dictionaries.
Colon in qualified names, 161–162
Colors for widgets, 307–308
Columns

gridder options, 389–390
managing treeview, 353–355
spanning gridder, 393–394

Combobox widget, 345–346
Command creation

clientData and deletion callbacks,
572–575

command functions, 565–567
deleting, 575
fetching and setting parameters, 576–578
functions, 564–565
how procedures work, 578–579
registration, 567–569
result protocol, 569
Tcl_AppendResult, 569–570
Tcl_SetResult and interp->result,

570–572
traces, 579

command entry, 327

Command functions, 565–567
-command option

button command, 7–8
widget commands, 18

Command procedures. See Procedures.
Command substitution

defined, 11
syntax overview, 26

Commands
additional Tk, 513–514
analogous C functions, 658
canvas, 434–435
configuration option, 505–506
control flow, 131–132
creating and destroying widgets, 297–298
creating lists as, 113–114
dictionary, 116–118
errors and exceptions, 219–220
evaluation, 22–24
event binding, 15–18
expression, 53
file access, 173–176
file system interaction, 681–683
for fonts, bitmaps and images, 367–369
geometry manager, 386
history, 283–284
information about, 262–263
inspecting namespaces, 163–164
for interconnection, 300–301
library, 230–231
list, 101–103
namespace, 155–158
normal and exceptional returns, 35
notation, xxxiv
peer text widget, 463–465
process, 197–199
re-executing from history list, 285–286
script files, 8–10
selection and clipboard, 468–469
sending to Tcl programs, 214–217
string manipulation, 65–69
string utility completeness, 627–628
syntax overview, 21–22
Tcl as language, 14–15
Tcl internals, 247–253
tclsh application, 4–6
Tcl/Tk benefits, xxxii–xxxiii
Tk windowing, 6–8

744 Index

Commands (continued)
variables, 39–40
variables and substitutions, 11
widget, 18, 299–300
window management, 478–481
working with ensembles, 164–169

Comments
in switch statements, 136
syntax overview, 32–35

Communication
commands for widget interconnection,

300–301
interapplication, 19
TCP/IP socket, 210–214

Comparisons
operators, 64
string, 71
text widget index, 452

Compatibility issues in releases, 717–718
comp.lang.tcl newsgroup, 732
Completeness, command, 627–628
Completion codes, 600–603
Composite objects, 540
-compound option

defined, 311
in themed widgets, 365

concat command, 101, 105–106
Condition variables, 699–701
Conditions, 699–701
Configuration options

bitmap image, 376–377
cget widget command, 512
chan configure, 204–205
color, 307–308
commands, 505–506
common themed widget, 364–365
common widget, 339–342
configure widget command, 511–512
creating and destroying widgets, 298
database, 506–507
database entries, 507–508
ensembles, 166–167
for frames, 306–307
geometry manager, 408–409
gridder, 390–392
for labels, 309–312
named font, 370–371
notebook, 347–348

option command, 510–511
packer, 398–399
panedwindows, 336–337
photo images, 377–379
priorities in database, 509–510
RESOURCE_MANAGER property and

.Xdefaults file, 508–509
text widget tags, 454–456
themed widget style, 362–364
treeview columns and headings, 355
treeview item selection management, 355
treeview item tags, 356
treeview items, 351
widget, 294, 304
windowing commands, 7

configure command
defined, 18
TEA standard options, 707–709

Configure event, 415
configure widget command, 506, 511–512
configure.in file, 711–714
Conflicts

in event bindings, 421–422
priorities in option database, 509–510

Console window, 6
Constraints, 80
Contents

copying file, 192–194
listing directory, 179–181
PostScript generation, 445

continue command
defined, 131
generating exceptions, 224
loop control, 138

Contributed extensions to Tcl/Tk, 721–724
Control flow

commands, 131–132
eval, 139–140
executing from files, 140–141
if, 132–133
loop control, 138
looping commands, 136–138
switch, 133–136

Control structures
additional features, 19
creating new, 150–151
Tcl, 12–14

Conversion specifiers, 94–95

Index 745

Conversions
character encodings, 89–91
generating strings with format, 74–76
parsing strings with scan, 76–78
between strings and lists, 111–112
types and, 63–64
working with character encodings,

624–625
Copying

with clipboard, 473–474
file content, 192–194
files, 182–183

Core commands, xxxi
cos function, 58
cosh function, 58
countdown procedure, 34–35
Counting, reference, 540–541
Current event number, 287
current tag, 439
Current working directory, 179
Cursors

common widget options, 341–342
insertion, 323
themed widget options, 364

Customization
aclocal.m4 file, 710–711
channel instance, 662
configure.in file, 711–714
dialog, 499–504
Makefile.in file, 714

Cutting with clipboard, 473–474

D
Dashes in odd file names, 185
-data option

configuring bitmap images, 376
configuring photo images, 377

Data storage, 41–42
Databases, 728
Databases, option. See Option database.
Date manipulation, 254–259
Decimal operands, 54
Decorating windows, 485–486
Default bindings, 304–305
Default fonts, 370
Default installation repositories, 722–724
Defaults and variable number of

arguments, 146–148

Deferred evaluation, 29–30
Deiconified state

creating custom dialogs, 500
defined, 483–484

Delayed operations, 514–515
Delaying for time, 253–254
Deleting

clientData and deletion callbacks,
572–575

commands, 269, 575
destroying widgets, 514
with dict unset, 127
files, 181–182
hash table entries, 637
hash tables, 632–633
interpreters, 531
with lreplace, 107
named fonts, 372
namespace, 159
with namespace forget, 162
thread termination, 698
traces, 562
tracing commands, 270
treeview items, 353
with unset and array unset, 49
widgets, 298
windows, 490–491

Demo script for widgets, 305
Descriptions, font, 374–375
Desktop environment, 293
destroy command

defined, 298
destroying widgets, 513, 514

Destroy event, 415
Detail field

for event patterns, 417–418
for key and button events, 415

Advantages, Tcl, xxxii
Dialogs

custom, 499–504
modal interactions, 495–499
standard, 337–339

dict append command, 123–124
dict command, 116, 123–126
dict create command, 116, 120–121
dict exists command, 116, 122–123
dict filter command, 116
dict for command, 116, 122–123

746 Index

dict get command
basic dictionary structure, 118–120
defined, 116
working with nested dictionaries, 126–127

dict incr command, 116, 124
dict keys command, 117, 122–123
dict lappend command, 117, 124
dict merge command, 117, 121
dict remove command, 117
dict replace command, 117, 120–121
dict set command

defined, 117
updating dictionaries, 121
working with nested dictionaries, 126–127

dict size command, 117, 122–123
dict unset command

defined, 117
updating dictionaries, 121
updating dictionary values, 125
working with nested dictionaries, 126–127

dict update command, 117, 124–125
dict values command, 117
dict with command, 118, 126–129
Dictionaries

basic structure, 117–120
commands, 116–118
converting betweens arrays and, 47
creating and updating, 120–121
defined, 19
examining, 122–123
managing return options, 604–605
overview, 115–116
return options, 225–226
string map command, 72
updating values, 123–126
working with nested, 126–129

Dictionary objects
defined, 644–648
functions, 639–642

Diekhans, Mark, 730
Directories

creating, 181
current working, 179
layout for TEA extensions, 709–710
libraries. See Libraries.
listing contents, 179–181
name manipulation, 176–179

-disabled attribute, 488

disabled state, 358
Disk files

handling channel events and, 675–676
working with, 181–185

Dispatcher, event, 678–680
Display lists, 435
Displays, 292
DLL (Dynamic Link Library), 232
DND (Drag and Drop), 474–475
do command

creating with uplevel, 150–151
generating exceptions, 226–227

Dockable windows, 488–489
Dollar sign

command evaluation, 24
invoking substitution, 11
variable substitution, 24–25, 43–45

Double colon, 161–162
double function, 58
Double modifier, 418
Double quotes, 28–29
Double types, 538
Drag and Drop (DND), 474–475
Duquette, William, 726
Dynamic languages, xxxi
Dynamic Link Library (DLL), 232
Dynamic strings, 617–621
Dynamic Tcl objects, 539
Dynamic Tcl scripts, 548

E
Echo servers, 212–214
Elements

defined, 101
examining dictionaries, 122–123
extracting from lists, 109
inserting and deleting from lists, 644
themed widget style, 361–362

Elements, array
defined, 42–43
multidimensional arrays, 45–46
querying, 45–46
removing, 49

-elide, 454
Ellipses in canvas widgets, 433
else clauses, 133
elseif clauses, 133
Embeddable commands languages, xxxi

Index 747

Embedded images, 460–462
Embedded windows, 459–460
Embedding Tcl

adding to application, 594
building, 714
in C, 522
creating shells, 596–597
functions, 593
initialization, 595

Encapsulated PostScript, 445
encoding convertfrom command, 66
encoding convertto command, 66
encoding names command

character set issues, 89
defined, 66

encoding system command, 66
Encodings, character

defined, 89–91
working with string utilities, 624–625
working with text files, 190

End-of-line conventions, 188–190
Ensembles

defined, 23
working with namespaces and, 164–169

Enter event, 415
enter traces, 271–272
enterstep traces, 271–272
entier function, 64
Entries

creating hash table, 633–634, 635
defined, 16
deleting hash table, 637
in listboxes, 317–318
option database, 507–508
overview, 323–327

env variable
defined, 50
processes and, 210
tracing, 268–269

Epoch time
defined, 184–185
manipulation, 254–259

eq operator, 55
Equals sign, 55, 56–57
EREs (extended regular expressions), 80
error command, 220, 222
Error messages, 221

errorCode variable
defined, 603–604
setting, 221–222

errorInfo variable
adding to stack trace in, 605–608
defined, 35

Errors
background, 416
background and bgerror, 227–228
commands, 219–220
entry validation, 326–327
exceptional returns, 35
exceptions, 223–227. See also Exceptions.
generating from Tcl scripts, 222
raised by exec, 202
in system calls, 196
trapping, 222–223
unknown commands, 274
what happens after?, 220–222

Escape sequences
in file names, 176
regular expression character class, 83
in regular expressions, 82

eval command
control flow, 139–140
defined, 131

Evaluating Tcl code
dynamically building scripts, 548
embedding Tcl, 595
functions, 545–546
in namespaces, 158–161
overview, 546–547
Tcl expressions, 549

Evaluation
command, 22–24
deferring, 29–30
nested script, 31

event add command, 414
event delete command, 414
Event dispatcher, 678–680
event generate command, 414, 427–428
Event handlers

background errors, 227–228
commands for interconnection, 300
defined, 206
registering, 207–209
Tk, 297

748 Index

Event handling
asynchronous, 690–694
channel events, 672–676
event dispatcher, 678–680
functions, 671–672
idle callbacks, 677–678
timer events, 676–677

event info command, 414
Event loops

defined, 297
entering Tcl with vwait, 206–207
processing times, 423–424

Event patterns, 417–419
!event shortcut, 286
Event specifiers, 17
Event-driven programming

after command, 253–254
Tk applications, 297

Events
bind, 416–417
binding, 15–18
commands, 413–414
conflict resolution, 421–422
current event number, 287
event-binding hierarchy, 422–423
event-driven channel interaction,

206–208
generating, 427–428
history list, 284–285
logical actions, 428–431
named virtual, 425–426
overview, 414–416
processing times, 423–424
sequences, 419
specifying, 285
substitutions in scripts, 419–421
tag bindings, 457–458
Tk, 297
in windowing systems, 293

Examples
blink, 253–254
do, 150–151, 226–227
fac, 145
factorial, 15–18
flash, 515
GetGizmo, 635
GizmoCreateCmd, 633–634
GizmoDeleteCmd, 637

GizmoSearchCmd, 636
GizmoStatCmd, 638
GizmoTwistCmd, 635
graphs, 440–441
Hello, World!, 6–8
inc, 417, 578–579
map, 618
plus, 144–145
power, 167
printargs, 50
printArray, 149
printVars, 147
ruler, 435–436
sum, 148
waitWindows, 499

Exceptional returns, 35
Exceptions

adding to stack trace in errorInfo,
605–608

completion codes, 600–603
functions, 599–600
managing return options dictionary,

604–605
overview, 223–227
setting errorCode, 603–604
Tcl_Panic, 608–609

Exclamation points, 55–56
exec command

accessing process IDs, 209
autoexec, 273
defined, 197
invoking subprocesses with, 199–203

Executable files, 184
Executable scripts, 9
Execution

defined, 22–24
from files, 140–141
re-executing commands from history list,

285–286
timing command, 259
tracing command, 271, 579

exit command
defined, 6, 198
process termination, 199

Exiting
asynchronous event handlers, 693–694
threads, 698

exp function, 58

Index 749

-expand option in packer, 398, 401–403
Expansion

argument, 30–32
configuring packer, 401–403
file name and exec, 202–203

Expect, 729–730
Explicit focus models, 493–494
Exponentiation operator, 55–56
Exporting namespace commands, 162
expr command

defined, 53
evaluating, 23
getting started, 4

Expressions
commands, 53
evaluating from C, 549
list manipulation, 63
matching regular, 622–623
math functions, 58–60
numeric operands, 54
operators and precedence, 55–58
Pattern matching with, 79–87
precision, 64
string manipulation, 62–63
substitutions, 60–61
Substitutions with, 87–88
Tcl as language, 14–15
types and conversions, 63–64

Extended regular expressions (EREs), 80
Extended Tcl (TclX), 730
Extensible languages, xxxi
Extensions

connected C to Tcl, 524–525
database programming, 728
defined, xxxi
file and directory name manipulation,

178
functions, 581–582
ifconfig, 585–592
Init, 582–583
integrating Tcl and C, 522
namespaces, 584
obtaining and installing, 721–724
packages, 583–584
Snack, 725–726
Tcl stubs, 584–585
Tcl/Tk benefits, xxxii
TEA, 707–714

Thread, 727
TkCon, 724
virtual file systems, 194–196
XML programming, 727–728

External padding in packer, 404
Extraction

character, 69
element, 109

F
\f in backslash substitution, 27
fac example, 145
factorial procedure, 12–14, 15–18
-failindex option, 73
False values, 57–58
fconfigure command, 90
Fetching command parameters, 576–578
-fgstipple option, 455
File access

additional features, 19
commands, 173–176
current working directory, 179
on disks, 181–185
errors in system calls, 196
listing directory contents, 179–181
name manipulation, 176–179
reading and writing files, 185–194
virtual file systems, 194–196

file command, 183–185
file copy command, 182–183
file delete command, 181–182
file dirname command, 178
File events

defined, 206
registering handlers, 207–209

file extension command, 178
File extensions, 9–10
File handlers, 673–676
File identifiers, 187
file join command, 176–177
file mkdir command, 181
File name expansion, 202–203
file nativename command, 177
file normalize command, 178
-file option

configuring bitmap images, 376
configuring photo images, 377

file option command, 174

750 Index

file pathtype command, 178–179
file rename command, 183
file rootname command, 178
file split command, 176–177
File system interaction

Tcl functions, 681–683
virtual file systems, 683

file tail command, 178
file volumes command, 179
FILE_NAME type, 469–470
Files

executing from, 140–141
navigation dialogs, 338–339
script, 8–10, 263

-fill option
configuring packer, 398, 400–401
vs. -expand, 403

Flags
operating system process, 687–688
reading variable, 555
Tcl variable values, 554
variable linking, 557

flash example, 515
floor function, 58
Flow, control. See Control flow.
flush command, 188
fmod function, 58
Focus, input

commands, 491–492
overview, 493–495

focus command, 491–492, 494
focus state, 358
Focus widgets, 301
FocusIn event, 415
FocusOut event, 415
font actual command, 367
font configure command, 368, 371
font create command, 368, 370
font delete command, 368, 372
font families command, 368, 373–374
font measure command, 368, 374
font metrics command, 368
font names command, 368, 372
-font option

in button command, 7–8
for formatting text tags, 455
for labels, 310

Fonts
command overview, 367–368
font command, 369–375

for command
defined, 131–132
looping, 136–138

forAllMatches procedure, 451–452
foreach command

defined, 132
looping, 136–138
using with array names, 47

-foreground option
for bitmap image configuration, 376
in button command, 7–8
defined, 308
for formatting text tags, 455
for images, 311

Form feeds
escape sequences, 82
in substitution, 27

format command
defined, 66
generating strings with, 74–76

Format groups
clock format, 254–257
clock scan, 257

-format option in photo images, 377
Formats

additional image with Img, 725
font, 374–375
representing information, 526
text tags, 453–458
types for binary strings, 96–97

Forward slash
in glob commands, 180
precedence and, 55–56

Frames
defined, 306–307
hierarchical geometry management with,

405–407
in panedwindows, 335
window decorations, 485–486

-fullscreen attribute, 487
Functions

for accessing Tcl variables, 551–553
analogous Tcl channel commands, 658
channel, 649–656

Index 751

command creation, 564–565
for evaluating Tcl code, 545–546
event handling, 671–672
exception, 599–600
file system interaction, 681–683
hash table, 630–631
Init, 582–583
interpreter, 527–529
manipulating list and dictionary objects,

639–642
math, 58–60
operating system, 685–687
string utility, 611–617
Tcl embedding, 593
Tcl extension, 581–582
Tcl object, 534–537
thread management, 695–697

G
-gamma option in photo images, 377
Geometry managers

commands, 386
defined, 8
gridder, 389–396
hierarchy, 405–407
options, 408–409
other in Tk, 409–411
overview, 385, 387–389
packer, 396–404
padding, 404–405
placer, 405
text widget as, 459
Tk, 298–299
widget stacking order, 407–408
window management. See Window

managers.
Geometry propagation, 409
GetGizmo example, 635
getOpenFile procedure, 338
gets command, 203
getSaveFile procedure, 338
GizmoCreateCmd example, 633–634
GizmoDeleteCmd example, 637
Gizmos

checking statistics, 638
creating, 633–634
defined, 629–630
searching, 636

GizmoSearchCmd example, 636
GizmoStatCmd example, 638
GizmoTwistCmd example, 635
glob command

defined, 173–174
listing directory contents, 179–181

global command, 51, 144
Global grabs, 496–497
Global namespaces, 91–95
Global variables

accessing with upvar, 149–150
defined, 13–14
managed by Tk, 517–518
overview, 49–50
procedures, 146

Glob-style pattern matching
listing directory contents, 179–181
String manipulation, 78–79
string matching, 621–622

Glue language, xxxii
gm command, 386, 408–409
gm configure command, 386, 408
gm forget command, 386, 408–409
gm info command, 386, 408
gm slaves command, 386, 408
GNU Autoconf

building Tcl and Tk, 703–707
TEA, 707–714

grab command, 492, 495–497
Grabs

defined, 301
modal interactions, 495–497

Grammar, 14–15
Graphical user interface (GUI) creation

with Tk. See Tk.
graphs example, 440–441
Gravity, mark, 450
Greater than, 55, 56–57
Greater than or equal to, 55, 56–57
Greedy quantifiers, 84–85
grid command

event binding, 17
"Hello, World!" example, 6–8
introduction to widgets, 304

Grid managers, 298–299
Gridded geometry management, 483
Gridded windows, 483–484
Gridders, 8, 385, 389–396

752 Index

Groups, window, 486–487
GUI (Graphical user interface) creation

with Tk. See Tk.

H
Handlers, event. See Event handlers.
Handling events. See Event handling.
Hash tables

creating and deleting, 632–633
creating entries, 633–634
deleting entries, 637
finding existing entries, 635
functions, 630–631
keys and values, 631–632
overview, 629–630
searching, 636–637
statistics, 638

Hashmarks in comments, 32–35
Headings, treeview, 353–355
-height option

for configuring photo images, 377
in panedwindows, 336
in widgets, 339–340

"Hello, World!" example, 6–8
Hexadecimal operands, 54
Hidden commands and slave interpreters,

277–279
-hide option in panedwindows, 336
Hiding text, 325
Hierarchies

event-binding, 422–423
geometry management, 405–407
widget, 7–8

History
commands, 283–284
current event number, 287
event specification, 285
history list, 284–285
re-executing commands from list, 285–286
shortcuts implemented by unknown,

286–287
history clear command, 282
history command, 282
history info command, 282
history keep command, 282
History lists

defined, 284–285

re-executing commands from, 284–285
history nextid command, 282, 287
history redo command, 282, 285–286
Hobbs, Jeff, 724
Hostnames, 694
Human-readable time and data

generating, 254–257
scanning, 257–258

hypot function, 59

I
i suffix, 17
Icon decorations, 485–486
Iconified state, 483–484
Identifiers

accessing process, 209–210
file, 187
manipulating items with canvas widget,

436–439
process, 208–209
retrieving thread, 701
tab in notebook widgets, 347

Idle callbacks
defined, 671
handling, 677–678
time delay commands, 253

Idleness, 514
IEEE Floating Point Standard, 63
if command

comments, 34–35
control flow, 132–133
defined, 53, 132

ifconfig command, 585–592
image create command, 311, 368, 376
image delete command, 368
image height command, 368
image inuse command, 369
image names command, 369
Image objects, 375
-image option in themed widgets, 365
image type, 434
image type command, 369
image types command, 369
image width command, 369
Images

additional formats, 725
commands, 368–369

Index 753

embedded in text widget, 460–462
image command, 375–383
widget options, 311

Img format, 725
Immediate values, 201
Implicit focus models, 493–494
Importing

namespace commands, 162
variables from other namespaces, 169

in operator
list manipulation, 63
operators and precedence, 56

-in option
configuring gridder, 390
configuring packer, 398

inc example, 417, 578–579
incr command

defined, 47–49
working with variables, 39

Indices
in basic list structure, 103–105
building with autoloader, 233–234
extracting characters, 69
text widget, 450–451
treeview item, 353

info args command, 248, 261–262
info body command, 248, 261–262
info cmdcount command, 248, 263
info command, 259–264
info commands command, 249, 262–263
info complete command, 249, 263
info default command, 249, 261–262
info exists command, 249, 260
info globals command, 249, 260
info hostname command, 249, 264
info level command, 249, 262
info library command, 249, 264

defined, 230
info loaded command, 230
info locals command, 249–250, 260
info nameofexecutable command, 250,

264
info patchlevel command, 250, 264
info procs command, 250, 261–262
info script command, 250, 263
info sharedlibextension command

defined, 230, 250

loading libraries, 232
runtime information, 264

info tclversion command, 250, 264
info vars command, 250, 260–261
Init function, 582–583
Initialization scripts

defined, 297
Tcl embedding, 595

Input focus
commands, 491–492
overview, 493–495

Input/output (I/O). See I/O (input/output).
insert action, 323
Insertion cursors, 323
Installation

package, 238
Tcl and Tk, 717–719
Tcl extensions, 721–724
Tcl module, 240–241
Tclkit, 243

Installation repositories, 722–724
instate widget command, 359–360
int function

defined, 59
types and conversions, 64

Integers
clock arithmetic, 258–259
generating strings with format, 74–76
numeric operands, 54
numerical object types, 537–538
types and conversions, 63–64

Integrating Tcl and C. See Tcl and C
integration.

Interactive interpreters, 10
Interactive resizing, 481–482
Interapplication communication, 19
Interconnection commands, 300–301
Interface integration. See Tcl and C

integration.
Internal padding

in packers, 404
in widgets, 341

Internal windows, 292
Internals, Tcl. See Tcl internals.
interp alias command, 250, 276–277
interp bgerror command, 220, 227–228
interp command, 275–276

754 Index

interp create command
defined, 251
safe interpreters, 277–278
slave interpreters, 275

interp delete command, 251, 275
interp eval command, 251, 275
interp expose command, 251, 279
interp hide command, 251, 279
interp invokehidden command, 251
interp limit command, 251
interp recursionlimit command, 251,

281
interp share command, 251, 280
interp transfer command, 251, 280
interp->result, 570–572
Interpreters

autoloading, 233–234
command evaluation, 22–24
deleting, 531
errors and exceptions, 220
functions, 527–529
loading libraries into, 232
managing internals. See Tcl internals.
multiple, 531–532
overview, 529
simple Tcl application, 530–531
slave, 274–281
Starpacks, 245–246
Tcl as language, 14–15
Tclkit, 243
thread safety, 697

invalid state, 359
I/O (input/output)

basic file, 186–188
channel event handling, 673–676
to and from command pipeline, 203–204
configuring channel options, 204–205
exec support for redirection, 200–201
transferring channels between

interpreters, 279–280
-ipadx

configuring gridder, 391
configuring packer, 399
geometry management, 404–405

-ipady
configuring gridder, 391
configuring packer, 399
geometry management, 404–405

Itcl, 726
Items

canvas widget, 433–436
manipulating with identifiers and tags,

436–439
treeview, 350–353
treeview selection management, 355–356
treeview tags, 256–257

J
Java and Tcl integration, 728–729
join command, 102, 111–113
Joinable threads, 697–698
-justify option

in labels, 309
in text tags, 455

K
\k in regular expressions, 81
Kenny, Kevin, 701
Key replacements, 72
Keyboard events and tag bindings, 458
Keyboard shortcuts

binding to named virtual events, 425–426
defined, 332–333

Keyboard traversal
defined, 332
in notebook widgets, 349

Keyboards and grabs, 497
KeyPress events, 414
KeyRelease events, 414
Keys

in basic dictionary structure, 118–119
defined, 629
dictionary objects, 644–648
examining dictionaries, 122–123
file stat, 184
hash table, 631–632
input focus, 493–495
updating dictionary values, 123–126

Keysyms, 415–416

L
Label widgets

defined, 309–312
event binding, 16–18

-labelanchor option, 312
Labelframes, 312

Index 755

Language
creating localized message files, 93–94
Tcl and C integration. See Tcl and C

integration.
Tcl as, 14–15

lappend command, 102, 108–109
lassign command, 102, 109
Layout

formatting text tags, 455–456
geometry management, 387–388
for TEA extensions, 709–710
themed widget styles, 361

Leaders, window, 486–487
Leave event, 415
leave traces, 271–272
leavestep traces, 271–272
Lehenbauer, Karl, 730
Length

basic list structure, 104–105
string, 70

Less than, 55, 56–57
Less than or equal to, 55, 56–57
Libes, Don, 730
Libraries

autoloading, 233–234
commands, 230–231
default version of unknown, 273
extensions as, 582
load, 232
overview, 229
packages, 234–239
packaging scripts as Starkits, 242–246
Tcl modules, 239–241
Tcllib, 725
vs. tclsh, 596
Tk variables, 517–518
using, 232

Limiting interpreters, 280–281
lindex command

basic list structure, 103
defined, 102
evaluating, 23

Line continuation, 17
line type, 434
Lines in canvas widgets, 434
Linking Tcl variables to C variables, 556–558
linsert command, 102, 107
list command, 102, 105–106

List objects
defined, 642–644
functions, 639–642

Listboxes, 317–318
Listening sockets, 212–214
Lists

vs. arrays, 43
basic structure, 103–105
commands, 101–103
converting between strings and,

111–112
creating, 105–106
creating commands as, 113–114
defined, 19, 23
directory contents, 179–181
extracting elements, 109
history, 284–285
manipulation expressions, 63
modifying, 106–109
packing, 396
passing as arguments, 30
re-executing commands from history list,

285–286
searching, 110
sorting, 111

llength command, 102, 103–105
-lmargin1 option, 455
-lmargin2 option, 455
load command, 232
Local grabs vs. global grabs, 496–497
Local variables

accessing with upvar, 149–150
defined, 13
procedures, 146

Locale
generating readable time and date,

256–257
scanning time and date, 258
setting msgcat, 91–92

log command, 270–271
log function, 59
log10 function, 59
Logical actions, 428–431
Logical operators, 53
Long types, 538
Looping

after command, 253
commands, 136–138

756 Index

Looping (continued)
control, 138
with dict for, 123
entering Tcl event with vwait, 206–207
generating exceptions, 226–227

lower command, 386, 407–408
lrange command, 102, 106
lrepeat command, 102, 105–106
lreplace command, 102, 107–108
lsearch command, 102–103, 110
lset command, 103, 108–109
lsort command, 103, 111
lstat option, 185

M
\m in regular expressions, 81
\M in regular expressions, 81
m suffix, 17
Mac OS X

binding to named virtual events, 425–426
building Tcl and Tk on, 705–706
cursor options, 342
executable scripts on, 9
platform-specific menus, 333
system-specific window attributes, 488
tcl_platform array, 50

Main widgets, 7
Main windows, 295
Major releases, 717–718
Major version number, 717
Makefile.in file customization, 714
Managers, geometry. See Geometry

managers.
Managers, window. See Window managers.
Managing Tcl internals. See Tcl internals.
Manual entries, xxxiii
map command, 153
Map event, 415
map example, 618
-map option in ensembles, 167
Marks, 450–451
-maskdata option in bitmaps, 376
-maskfile option in bitmaps, 377
Master interpreters, 274
Master widgets, 387–389
Master windows, 486
Matching

patterns. See Pattern matching.

regular expressions, 622–623
strings, 621–622

Math functions
overview, 58–60
types and conversions, 64

max function, 59
McLennan, Michael, 726
mcload command, 92
mclocale command, 91–93
Memory allocation, 544
Menu bars, 329–331
Menubuttons, 316
Menus, 327–334
Message catalogs, 91–95
Message files

creating localized, 93–94
defined, 91

messageBox dialog, 337–338
Messages, error, 221
min function, 59
Minor releases, 717–718
Minor version number, 717
-minsize option in panedwindows, 336
Minus sign, 55–56
Mk4tcl, 728
Modal interactions, 495–499
Modal user interface elements

defined, 330
messageBox dialog, 338

-modified attribute, 488
Modified virtual event, 458, 462–463
Modifier keys, 416, 418
Modify flag, 462–463
Module path, 240
Modules

defined, 229
working with Tcl, 239–241

Monitoring. See Tracing.
monospace notation, xxxiv
Motion events, 415
Mouse

button widgets, 312–313
DND, 474–475
input focus and, 493–494
modal interactions, 495–499
pop-up menus, 334

MouseWheel event, 415
msgcat package, 91–95

Index 757

Multidimensional arrays, 45–46
Multiple interpreters, 531–532
Multiple traces, 561
Multiplication operator, 5, 55–56
Multithreading

Tcl scripting, 727
Tk support, 296

Mutexes, 698–699
Mysqltcl, 728

N
\n in substitution, 27
Named fonts

defined, 369–370
manipulating and using, 370–373

Named keys, 125
Named virtual events, 425–426
Names

application and using send, 216
array, 42–43
array commands, 40
in basic dictionary structure, 118–120
controlling resolution paths, 170–172
dealing with odd file, 185
file name expansion and exec, 202–203
managing image, 375
manipulating file and directory, 176–179
manipulating qualified, 161–162
renaming files, 183
signal, 693
simple variables, 41
tracing array variables, 268
unknown commands, 272–274
utility package commands, 238
variable substitution, 44–45
widget, 7, 294–295

namespace children command, 155–156,
163

namespace code command, 156, 160–161
namespace command, 51, 158
namespace current command, 156, 163
namespace delete command, 156, 159
namespace ensemble command, 164–169
namespace ensemble configure

command, 156, 166–167
namespace ensemble create command

controlling configuration, 166–167
defined, 156, 164–165

namespace ensemble exists command,
156, 165

namespace eval command, 156, 158–161
namespace exists command, 156
namespace export command

creating ensembles, 164
defined, 156, 162
inspecting namespaces, 164

namespace forget command, 156–157,
162

namespace import command, 157, 162
namespace origin command, 157, 164
namespace parent command, 157, 163
namespace path command, 157, 170–172
namespace qualifiers command, 157,

161–162
namespace tail command, 157, 161
namespace unknown command, 157
namespace upvar command, 158
namespace which command, 158, 163–164
Namespaces

accessing variables from other, 169–170
commands, 155–158
controlling name resolution path, 170–172
ensemble commands, 164–169
evaluating Tcl code in, 158–161
exporting and importing commands, 162
images and, 383
inspecting, 163–164
manipulating qualified names, 161–162
mapping functions to commands, 59–60
C language extensions, 584
Tk widgets, 304
using message catalogs with, 95
variables, 14, 146

Natural window size, 481
ne operator, 56
Nesting

with braces, 12, 29
dictionary, 126–129
ensembles, 165–166
handling errors, 221
in lists, 105
script evaluation, 31
slave interpreters, 275
treeview items, 351
widgets, 294

Neumann, Gustaf, 726

758 Index

Newline characters
backslash substitution, 26–27
in basic syntax, 21
variables and substitutions, 11

\newline whitespace, 27
Newsgroup for Tcl and Tk, 732
ni operator

list manipulation, 63
precedence and, 56

-nocase option, 71
Non-blocking I/O, 675
Non-capturing subexpressions, 85
Non-greedy quantifiers, 84–85
Normal returns, 35
Normal window state, 483
Not equal, 55, 56–57
NOT operator, 55, 57
Notation, xxxiv
Notebook widget

defined, 346–349
as geometry manager, 410–411

-notify attribute, 488
Numeric operands, 54
Numerical objects, 537–538

O
Object-oriented programming

vs. Action-oriented programming, 525–526
Tcl, 726

Objects. See Tcl objects.
Octal operands, 54
Ones complement, 57
Online resources, 731–732
\ooo in substitution, 27
open command

command pipeline, 203
defined, 186–187, 198

open name command, 174
Operands

defined, 53
list manipulation, 63
numeric, 54
string manipulation, 62–63
substitution, 60–61
types and conversions, 63–64

Operating system utilities
asynchronous events, 690–694
functions, 685–687

miscellaneous, 694
processes, 687–689
reaping child processes, 689–690

Operating systems
character encodings and, 89–90
file and directory name manipulation,

176–179
system-specific window attributes, 487–488
Tk support, 293
variable describing, 50

Operations, channel, 656–658
Operators

defined, 53
expr syntax, 5–6
overview, 55–58
types and conversions, 63–64

option command, 506, 510–511
Option database

defined, 506–507
entries, 507–508
option command, 510–511
option priorities, 509–510

Options. See Configuration options.
OR operator

expr syntax, 5–6
precedence and, 56, 57

Oratcl, 728
Ordered collections, 115
Orientation

panedwindows, 334
progressbar, 349
scrollbar, 320
separator, 350

Origins, namespace, 164
Output buffering, 188
oval type, 433
Override-redirect windows, 487
-overstrike option

configuring font, 371
formatting text tags, 455

Ownership, selection
locating selections, 470–471
model, 467
retrievals, types and, 469

P
p suffix, 17
pack command, 399–400

Index 759

package ifneeded command, 230, 237
package names command, 230, 238
package prefer command, 230–231
package provide command

defined, 231, 235–236
using Tcl modules, 238–239

package require command
defined, 231, 235
using Tcl modules, 239

package vcompare command, 231
package versions command, 231, 238
Packages

defined, 229
packaging scripts as Starkits, 242–246
Tcl extension, 583–584
Tcl modules, 239–241
working with, 234–239

Packers
defined, 298, 385
geometry management, 396–404

Packing lists, 396
Packing space, 397
Padding options

configuring gridder, 391
configuring packer, 399
defined, 341
geometry management, 404–405

-padx option
configuring gridder, 391
configuring packer, 399
event binding, 17
geometry management, 404–405
panedwindows, 336
in widgets, 341

-pady option
configuring gridder, 391
configuring packer, 399
event binding, 17
geometry management, 404–405
panedwindows, 336
in widgets, 341

-palette option in photo images, 377–378
Panedwindows

as geometry manager, 410
overview, 334–337

Parameters, command, 576–578
Parcels

defined, 362
packing, 397

Parentheses, 81–82
Parsing

defined, 22–24
forcing with eval, 139–140
operand substitution, 60–61
string operands, 62
strings, 543–544
strings with scan, 76–78
substitutions, 36

Pasting with clipboard, 473–474
Patch levels, 518
Patch releases, 717–718
PATH environment variable, 9, 200
Paths

file pathtype command, 178–179
module, 240

Pattern matching
event patterns, 417–419
Glob style, 78–79
listing directory contents, 179–181
with regular expressions, 79–87
with switch, 133–136

Patterns
event, 417–419
option database entries, 507–508

peer text widget command, 464–466
Percent symbol

operators and precedence, 55–56
substitutions in scripts that handle

events, 419–421
in time and date strings, 254–256

Periods as separators, 7
photo images, 375–376, 377–383
Photos in window decoration, 485
pid command, 198, 209–210
Pipeline I/O, 203–204
pkg_mkIndex procedure, 231, 236–237
place command, 405
Placers

defined, 385
geometry management, 405

Platforms
binding to named virtual events, 425–426
building Tcl and Tk, 703–707
file and directory name manipulation,

176–179
handling end-of-line conventions,

188–190
specific menus, 333

760 Index

Platforms (continued)
Starpacks, 245–246
variable describing, 50

plus example, 144–145
Plus sign, 55–56
Pointer options in widgets, 341–342
polygon type, 434
Pop-up menus, 334
Ports, 210
Positional specifiers

defined, 76
using in source and translation strings, 95

Positioning points, 435
Positions, 482–483
POSIX

errors, 222
signal names, 222

Posted menus, 328–329
PostgreSQL, 728
PostScript, 445
pow function, 59
power example, 167
Precedence of operators, 55–58
Predefined variables, 49–50
Preferences, 84
Prefixes, 161–162
pressed state, 358
PRIMARY selection, 469
printargs example, 50
printArray example, 149
Printing array variables, 149
printVars example, 147
Priorities

configuration option database, 509–510
tag, 457

proc command
creating procedures, 144–145
defaults and variable numbers of

arguments, 146–148
defined, 12–13, 143
Tcl code in namespace, 158–161

Procedures
applying anonymous, 151–153
basics, 144–145
call by reference, 148–150
command creation, 578–579
command evaluation, 23
commands, 143–144

creating new control structures, 150–151
declaring in namespaces, 158
defaults and variable numbers of

arguments, 146–148
factorial, 12–14
information about, 261–262
libraries. See Libraries.
local and global variables, 146
Tcl as language, 14–15

Processes
commands, 197–199
configuring channel options, 204–205
environment variables, 210
event-driven channel interaction, 206–208
IDs, 208–209
invoking subprocesses, 199–203
I/O to and from command pipeline,

203–204
operating system utilities, 687–689
reaping child processes, 689–690
sending commands to Tcl programs,

214–217
TCP/IP socket communication, 210–214
termination, 199

Processing events, 423–424
Programming with POSIX Threads

(Butenhof), 695
Progressbar widget, 349
Prompts, displaying command number, 287
Propagation

geometry, 409
using traces for, 51

Property, RESOURCE_MANAGER, 508–509
Protocols

result, 569
window management, 490–491

Pull-down menus, 329–331
puts command

I/O to and from command pipeline, 203
output buffering, 188

pvar procedure, 265
pwd command, 174, 179

Q
Quadruple modifier, 418
Qualified names

inspecting namespace, 163–164
manipulating, 161–162

Index 761

Quantifiers, 84–85
Querying

array elements, 46–47
channel functions, 655
with ifconfig, 585–592
input focus, 494–495

Quoting
with braces, 29–30
with double quotes, 28–29
in element names, 43
expressions with braces, 61
string manipulation, 62

R
\r in substitution, 27
radiobutton entry, 328
Radiobuttons, 315–316
raise command, 386, 407–408
rand function, 5, 59
Random Access, 190–191
Range

extracting characters, 69
regular expression atoms, 82–83

re1|re2 in regular expressions, 81
Read traces, 266–267
Readable files, 184
Readable time and date

generating, 254–257
scanning, 257–258

Reading
files, 185–194
Tcl variables, 555

readlink option, 185
readonly state, 358
Read-only variables, 266
Real operands

defined, 54
types and conversions, 63–64

Reaping, 689–690
rectangle type, 433
Redirection, I/O, 200–201
Redisplays, optimizing, 677–678
Redo

history, 286
text widget, 462

Reference
call by, 148–150
counting, 540–541

Reference documentation, xxxiii

regexp command, 66, 81
Registering

background errors, 227–228
channels, 653–654, 658–660
file event handlers, 207–209
new commands, 567–569
toplevel windows as transient, 499

regsub command, 66, 87–88
Regular expressions

matching, 622–623
pattern matching with, 79–87
using for substitutions, 87–88

Relational operators
defined, 56–57
expr syntax, 5–6

Relative paths, 178
Relative placement characters, 395–396
Relative qualified names, 161
Releases, 717–718
-relief option

formatting text tags, 455
for frames, 305

Removing variables, 49
Removing whitespace, 70
rename command, 252, 268
Renaming

commands, 269
files, 183
tracing commands, 270

Repeating strings, 70
Repetition count, 259
Replacements, string, 72
Replacing

elements from list objects, 644
with text widget, 451–452

Repositories, installation, 722–724
Representing information, 526
Requested sizes of widgets, 387–388
Resizing windows, 481–482
Resolution, commands in namespaces, 170
Resolution paths, 170–172
Resource names, 524–525
RESOURCE_MANAGER property, 508–509
.result label, 16–17
Result protocols

command creation, 569
Tcl_AppendResult, 569–570
Tcl_SetResult and interp->result,

570–572

762 Index

Retrievals, selection, 469–470
return command

basics of, 144–145
defined, 144
errors and exceptions, 220
of factorial, 12–13
generating exceptions, 224–226
return options dictionary, 604–605

Return options dictionary, 225–226
Returns

managing return options dictionary,
604–605

normal and exceptional, 35
Right-shifting, 57
-rmargin2 option in text tags, 455
Romeo and Juliet (Shakespeare), 469
Root items, 351
Root windows, 292, 296
ROOT.msg, 93
ROT13 channels, 663–669
round function, 59, 64
Rows

gridder options, 389–391
spanning gridder, 393–394

ruler example, 435–436
Runtime information, 264

S
Safe interpreters, 277–279
Safety, thread, 697
Saving sessions, 490
Scalar variables, 39
Scales, 321–323
scan command

defined, 54, 66
parsing strings with, 76–78

Scoping for variables, 143
Screens

distances, 307
Tk, 296

Script files
info script, 263
overview, 8–10

Script libraries. See Libraries.
Scripting languages

defined, xxxi
Tcl/Tk benefits, xxxii–xxxiii

Scripts
dynamically building, 548
executing in namespaces, 158–161
generating errors from, 222
multithreaded Tcl, 727
packaging as Starkits, 242–246
substitutions in, 419–421
supplying selection with, 471–473
syntax overview, 21–22
Tk, 297

Scroll regions, 444–445
Scrollbars

commands for interconnection, 300
overview, 318–321

Scrolling
canvas widget, 444–445
themed widgets, 364–365

sdx Starkit, 243–245
Searching

with array names, 47
canvas specifications, 438–439
glob-style pattern matching, 78–79
hash tables, 636–637
lists, 110
with message catalogs, 91–95
with regular expressions, 79–87
simple string, 70–71
with text widget, 451–452

Security and send, 217
sel tag, 453–454
Selected checkbuttons, 313
selected state, 358
Selection

clipboard, 473–474
commands, 468–469
DND, 474–475
locating and clearing, 470–471
managing treeview, 355–356
overview, 467–468
retrievals, types and, 469–470
supplying with Tcl scripts, 471–473

selection clear command, 468, 471
selection command, 301
selection get command, 468, 469–470
selection handle command, 468
selection own command, 468, 470
Selection owner model, 467

Index 763

Selection virtual event, 458
Selectors, checkbutton, 313
Semicolons, 5
send command, 214–217
separator entry, 328
Separator widget, 350
Separators

in basic syntax, 21–22
defined, 7
disabling, 28
variable substitution, 44

Sequences, event, 419
Server sockets, 212–214
Service-oriented architecture (SOA), 728
Session management, 490
set command

evaluating, 23
simple variables and, 41
working with variables, 40

Setting
command parameters, 576–578
Tcl variable values, 553–555
traces, 558–559

Shapes, canvas, 433–436
Shared libraries, 232
Shared objects, 541–542
Sharing

channels between interpreters, 279–280
between peer widgets, 464–466

Shells, 596–597
Shifting operators, 57
Shimmering, 42
Shortcuts

binding to named virtual events, 425–426
event pattern, 418–419
implemented by unknown, 286–287
menu, 332–333
notebook, 349

-show option for entry widgets, 325
-side option for packer, 399–400
Signals, 690–694
sin function, 59
Single-file distribution, 242–246
sinh function, 59
Size

channel buffering mode, 205
common widget options, 339–340
dictionary object, 647

examining dictionary, 122
file information options, 184–185
window management, 481–482

-size option in fonts, 370–371
Sizegrip widget, 350
Sjölander, Kåre, 726
-slant option in fonts, 370
Slave interpreters

creating, 531–532
defined, 274–281

Slave widgets
defined, 320–321
geometry management, 387–389

Sliders
in scrollbars, 318
scrolling single widget, 319–320

Snack, 725–726
Snit, 726
SOA (service-oriented architecture), 728
socket command, 198, 210–212
Socket communication, 210–214
socket -server command, 198
Sorting

dictionaries, 123
lists, 111

Sound support, 725–726
Source code

building Tcl and Tk, 703–704
compiling Tcl/Tk from, 719

source command
autoloading and, 233
defined, 66, 132
executing from files, 140–141
safe interpreters, 278–279
system encodings, 90

SourceForge, 703, 719
Space characters

append command and, 48
backslash substitution, 27
multidimensional arrays, 46

-spacing options in text tags, 456
Special characters

backslash substitution, 26–27
creating commands as lists, 113–114
glob-style pattern matching, 79
quoting with braces, 29–30
in regular expressions, 80–83
variables and substitutions, 11

764 Index

Specifiers, conversion
generating strings with format, 74–76
using in source and translation strings,

94–95
Specifiers, event, 285
Specifiers, positional, 76
Spencer, Henry, 79
Spinboxes, 324–325
Spinning, 324
Split characters, 112
split command

converting between lists and strings,
111–113

defined, 103
sprintf procedure, 74–75
sqlite2, 728
sqrt function, 59
Square brackets

command substitution, 26
invoking substitution, 11

srand function, 59
sscanf procedure, 76
Stack traces, 605–608
Stacked channels, 662–663
Stacking order

canvas item, 435
widget, 407–408

Standard error, redirection, 201
Standard input

command completeness, 627–628
redirection in exec, 201

Standard output
channel I/O, 661
redirection in exec, 201

Standard Tcl Library, 725
Star-crossed lovers, 470
Starkits

defined, 229
packaging scripts as, 242–246

Starpacks, 245–246
stat option, 184–185
state widget command, 359
States

event, 416
representing with checkbuttons, 314
themed widget, 358–360
widget, 339
window management, 484–485

Static variables, 146
Statistics, 638
stderr channel

defined, 187
manipulating in C, 660–661

stdin channel
defined, 187
manipulating in C, 660–661

stdout channel
defined, 187
manipulating in C, 660–661

-sticky option
configuring gridder, 391, 392–393
panedwindows, 336

Storage
with clipboard, 473–474
internal data, 41–42
Tcl module, 239

Stretch behavior of gridder, 394–395
-stretch option for panedwindows, 336
string bytelength command, 67
string command, 23
string compare command, 67, 71
string equal command, 67, 71
string first command, 67, 70–71
string index command, 67, 69
string is command, 67, 73–74
string last command, 67, 71
string length command, 67, 70
String manipulation

binary strings, 95–99
character set issues, 89–91
commands, 65–69
comparisons, 71
extracting characters, 69
generating with format, 74–76
glob-style pattern matching, 78–79
length, case conversion, trimming, and

repeating, 70
message catalogs, 91–95
parsing with scan, 76–78
pattern matching with regular

expressions, 79–87
replacements, 72
simple searching, 70–71
substitutions with regular expressions,

87–88
types, 73–74

Index 765

string map command, 67–68, 72
string match command, 68, 78–79
string range command, 68, 69
string repeat command, 68, 70
string replace command, 68, 72
string tolower command, 68
string totitle command, 68
string toupper command, 68, 70
string trim command, 68, 70
string trimleft command, 68, 70
string trimright command, 68, 70
STRING type, 469–470
String utilities, C language

command completeness, 627–628
dynamic, 617–621
functions, 611–617
handling Unicode and UTF-8, 625–627
regular expression matching, 622–623
string matching, 621–622
working with character encodings,

624–625
string wordend command, 69
string wordstart command, 69
Strings

accompanying exceptions, 224–225
command evaluation, 22–24
constructing with append, 49
converting between lists and, 111–112
hash table keys, 632
internal storage of data, 41–42
manipulation commands, 19
manipulation expressions, 62–63
object, 537
parsing, 543–544
representing values, 4–5
time and date, 254–258
variables and substitutions, 11

Stubs, 584–585
Styles

defined, 343
themed widget, 360–364

Subcommands
image, 378–379
working with ensembles, 164–169

Subexpressions
defined, 81–82
non-capturing, 85

Subpatterns, 82
Subprocesses, 199–203

Substitutions
backslash, 26–27
call by reference, 148–149
command, 26
expression, 60–61
in file names, 176
inside braces, 12–13, 29–30
inside double quotes, 28–29
overview, 11
with regular expressions, 87–88
in scripts, 419–421
with switch, 134
syntax overview, 35–37
Tcl as language, 14–15
variable, 24–25, 43–45

Substrings, 86
Subtraction operator, 5–7, 55–56
sum example, 148
Support

characters classes supported by string
is, 73–74

exec, 200
operators and precedence, 55–58
regular expression, 80
Tcl/Tk benefits, xxxii
for virtual file systems, 194

Suspended processes, 202, 672–673
SWIG, 729
switch command, 132, 133–136
Sybtcl, 728
Symbolic links, 185
Synchronized scrolling, 320–321
Synonyms, 308
Syntax

argument expansion, 30–32
backslash substitution, 26–27
command evaluation, 22–24
command substitution, 26
comments, 32–35
defined, xxxiv
normal and exceptional returns, 35
option database entries, 507–508
quoting with braces, 29–30
quoting with double quotes, 28–29
regular expressions, 80
scripts, commands, and words, 21–22
substitutions, 35–37
use of braces, 12–13
variable substitution, 24–25

766 Index

System call errors, 196
System encodings, 89–90

T
\t in substitution, 27
Tab identifiers, 347
-tab option in text tags, 456
Tables, hash. See Hash tables.
Tabs

formatting text tags, 456
in notebook widgets, 347–348

-tabstyle option in text tags, 456
Tags

canvas widget, 433
event-binding hierarchy, 422–423
manipulating items with canvas widget,

436–439
text widget, 447, 453–458
treeview item, 256–257

tan function, 59
tanh function, 59
Targets, selection, 469–470
TARGETS selection target, 470
.tcl, 9
Tcl (tool command language)

additional features, 19
benefits of, xxxii–xxxiii
building, 703–707
building threaded, 697
control structures, 12–14
creating commands. See Command

creation.
defined, xxxi
embedding. See Embedding Tcl.
evaluating code. See Evaluating Tcl code.
evaluating code in namespaces, 158–161
event binding, 15–18
generating errors from scripts, 222
getting started, 3–6
"Hello, World!" with Tk, 6–8
installing, 717–719
interpreters. See Interpreters.
as language, 14–15
script files, 8–10
script libraries. See Libraries.
sending commands to Tcl programs,

214–217
supplying selection with scripts, 471–473

variable access. See Accessing Tcl
variables.

variables and substitutions, 11
Tcl and C integration

action-oriented vs. object-oriented,
525–526

overview, 521–523
representing information, 526
resource names, 524–525
Tcl vs. C, 523–524

Tcl Extension Architecture (TEA), 707–714
Tcl internals

commands, 247–253
info command, 259–264
renaming and deleting commands, 269
slave interpreters, 274–281
time and date manipulation, 254–259
time delays, 253–254
timing command execution, 259
tracing array variables, 268–269
tracing commands, 270–272
tracing operations on simple variables,

264–267
unknown commands, 272–274

Tcl objects
byte arrays, 540
composite, 540
dictionaries, 644–648
dynamic nature of, 539
fetching C values from, 538–539
functions, 534–537
gizmos, 629–630
image, 375
lists, 642–644
memory allocation, 544
namespaces and, 171–172
new types, 542–543
numerical, 537–538
overview, 533–534
parsing strings, 543–544
reference counting, 540–541
shared, 541–542
string, 537

Tcl resources
books, 732–733
online, 731–732

TCL_ALL_EVENTS symbol, 679–680
Tcl_AppendResult procedure, 569–570

Index 767

Tcl_CancelIdleCall procedure, 677
Tcl_CreateHashEntry procedure, 431,

433–434
Tcl_CreateSlave function, 531–532
Tcl_CreateTimerHandler procedure,

672, 676–677
Tcl_DeleteHashEntry procedure, 637
Tcl_DeleteHashTable procedure, 633, 637
Tcl_DeleteInterp function, 531
Tcl_DeleteTimerHandler procedure,

676–677
Tcl_DetachPids procedure, 685, 690
TCL_DONT_WAIT flag, 680
Tcl_DoOneEvent procedure, 677–680
Tcl_DoWhenIdle procedure, 677
TCL_EVAL functions, 545–547
TCL_EXCEPTION flag, 673
TCL_FILE_EVENTS flag, 680
Tcl_FileProc procedure prototype, 671–673
Tcl_FindHashEntry procedure, 635
Tcl_FirstHashEntry procedure, 636
Tcl_GetHashKey macro, 636
Tcl_HashSearch type, 636
Tcl_HashStats procedure, 638
Tcl_HashTable type, 632–633
TCL_IDLE_EVENTS flag, 680
Tcl_IdleProc procedure prototype, 677
Tcl_InitHashTable procedure, 632–633
Tcl_Interp function, 527–528, 529
Tcl_NextHashEntry procedure, 636–637
TCL_OBJ function

defined, 534–535
regular expression matching, 623

TCL_ONE_WORD_KEYS symbol, 632
Tcl_Panic function, 608–609
tcl_platform array, 50
TCL_READABLE flag, 655–656, 662–663,

673–675
Tcl_ReapDetachedProcs procedure, 685,

690
Tcl_SetHashValue macro, 633–634
Tcl_SetResult procedure, 570–572
Tcl_SignalId procedure, 693
Tcl_SignalMsg procedure, 693
TCL_STRING_KEYS symbol, 630, 632
TCL_TIMER_EVENTS flag, 680
Tcl_TimerProc procedure prototype, 672,

676

Tcl_TimerToken type, 676
TCL_WRITABLE flag, 655–656, 662–663,

673–675
Tcl/Java Project, 728–729
Tclkits

defined, 229
installing, 719
packaging scripts as Starkits, 242–243

Tcllib, 725
TclODBC, 728
tclsh application

creating new shells, 596–597
getting started, 3–6
script execution, 10
variables and substitutions, 11

TclSOAP, 728
tclvfs extension, 194–196
TclX (Extended Tcl), 730
TclXML, 727
TCP/IP socket communication, 210–214
tDOM, 727
TEA (Tcl Extension Architecture), 707–714
teacup, 722–724
TEApot, 722–724
Tear-off menus, 329
Termination

process, 199
thread, 698

Ternary operator, 56, 58
text command, 447
Text editor example, 428–431
Text files, 185–194
-text option

button command, 7–8
for labels, 309–310
themed widgets, 365

text type, 434
Text widget

basics, 447–450
embedded images, 460–462
embedded windows, 459–460
gridded windows, 482–483
indices and marks, 450–451
peer, 464–466
search and replace, 451–452
tags, 453–458
-undo, 462–463
virtual events, 458

768 Index

-textvariable option
event binding, 16
for labels, 309–310
themed widgets, 365

tgrep script, 186–188
Themed widgets

basics, 305
vs. classic widgets, 343–345
combobox, 345–346
defined, 303–304
notebook, 346–349
other standard options, 364–365
progressbar, 349
separators, 350
sizegrip, 350
states, 358–360
styles, 360–364
treeview, 350–357

Themes
defined, 343
widget styles, 360–361

Threads
building threaded Tcl, 697
condition variables, 699–701
creating, 697–698
extension, 727
functions, 695–697
interacting with blocking channels, 206
miscellaneous, 701–702
multiple interpreters, 275
mutexes, 698–699
safety, 697
terminating, 698

Tilde
in file names, 176
precedence and, 55–56

Time
command execution, 259
delay commands, 253–254
event processing, 423–424
manipulation, 254–259

time command, 252, 259
Time zones, 256
Timer events, 676–677
-titlepath attribute, 488
Titles, window, 485
Tk

applications, toplevel widgets, and
screens, 296

benefits of, xxxii–xxxiii
building, 703–707
commands for fonts and images, 367–369
commands for interconnection, 300–301
configuration options. See Configuration

options.
creating and destroying widgets, 297–298
defined, xxxi
focus commands, 492
fonts, 369–375
geometry managers, 298–299. See also

Geometry managers.
"Hello, World!" example, 6–8
images, 375–383
installing, 717–719
introduction to windowing systems,

292–293
odds and ends, 513–518
overview, 291
scripts and events, 297
send command, 214–217
tcl_platform array, 50
widget commands, 299–300
widgets, 294–295. See also widgets.

tk appname command, 513, 517
tk command, 516–517
tk inactive command, 513, 516–517
tk scaling command, 513
tk windowingsystem command, 513, 516
TK_APPLICATION selection target, 470–471
Tk_DoOneEvent procedure, 679
tk_focusFollowsMouse command, 492, 494
TK_LIBRARY environment variable, 517–518
tk_library variable, 517–518
Tk_MainLoop procedure, 678–679
tk_patchlevel variable, 518
tk_version variable, 518
TK_WINDOW type, 471
TkCon, 724
tk::Priv, 518
tkwait command

defined, 492–493
invoking event loops, 423–424
modal interactions, 497–499

Tokens, 578
Tool command language (Tcl). See Tcl (tool

command language).
-toolwindow attribute, 488
Toplevel widgets, 296, 308–309

Index 769

Toplevel windows
defined, 292, 296
managing position, 482–483
sizing, 481–482

-topmost attribute, 487
trace add command command, 252, 270–271
trace add execution command, 252, 271
trace add variable command, 252, 267
trace command

array variables, 268–269
commands, 270–272
defined, 50–51
operations on simple variables, 264–267

trace info command command, 252
trace info execution command, 252, 272
trace info variable command, 252, 267
trace remove command command, 252, 272
trace remove execution command, 252,

272
trace remove variable command, 252, 267
Tracing

adding to stack trace in errorInfo,
605–608

array variables, 268–269
callbacks, 559–561
command creation, 579
commands, 270–272
multiple, 561
operations on simple variables, 264–267
setting and unsetting traces, 558–559
whole-array, 561

Transferring channels between
interpreters, 279–280

Transformation formats, 89–91
Transients

custom dialogs, 499–500
defined, 486

Translation
binary to text, 190–191
creating localized message files, 93–94
using in conversion specifiers in, 94–95

-transparentcolor attribute, 488
Treeview widget, 350–357
Trimming strings, 70
Triple modifier, 418
Tristate values

defined, 314
of radiobuttons, 315–316

Troughs, 318
True values, 74
Types

adding selection to widgets, 471–473
canvas widget, 433–436
channel definition functions, 655–656
conversions and, 63–64
creating new channel, 661–669
event, 414–415
fetching C values from Tcl objects,

538–539
finding file, 180
identifying file, 183
new object, 542–543
numerical object, 537–538
selection and, 469–470
string, 73–74
variable linking, 557

U
\uhhhh in substitution, 27
-underline option

configuring font, 371
formatting text tags, 455

-undo in text widget, 462–463
Undocking window, 488–489
Unicode

character set issues, 89
characters supported by string is,

73–74
handling strings, 625–627
Tcl backslash substitution, 26–27
Tcl support, xxxii
working with character encodings,

624–625
-uniform option

configuring gridder, 392
stretch behavior and, 394–395

Unix
building Tcl and Tk on, 704–705
bundled Tcl distributions, 718
executable scripts on, 9
tcl_platform array, 50

unknown command
defined, 252–253
managing, 272–274
shortcuts implemented by, 286–287

-unknown option in ensembles, 167–169

770 Index

unknown procedures, 233
Unmap event, 415
Unposted menus, 328–329
unset command

variable removal, 49
working with variables, 40

Unsetting
Tcl variables, 556
traces, 558–559

update command
defined, 513
invoking event loops, 423–424
updating widgets, 514–516

Updating
dictionaries, 120–121
dictionary values, 123–126
installation repositories, 723

Uplevel addressing, 144
uplevel command, 144
upvar command

call by reference, 148–150
defined, 51, 144
env variable and, 268–269

User interface creation with Tk. See Tk.
UTF-8

character set issues, 89–91
handling strings, 625–627
working with character encodings,

624–625
Utilities, operating system. See Operating

system utilities.
Utilities, string. See String utilities.

V
\v in substitution, 27
Validation for entry widgets, 325–327
Values

basic dictionary structure, 118–120
changing with incr and append, 47–49
creating commands as lists, 113–114
dictionary objects, 644–648
examining dictionaries, 122–123
in expressions. See Expressions.
fetching C from Tcl objects, 538–539
generating strings with format, 74–76
in hash tables, 629, 631–632
option database entries, 507–508
setting Tcl variable, 553–555

simple variable, 41
storage as strings, 41–42
string representation, 4–5
updating dictionary, 123–126
variables and substitutions, 11

variable command, 159–160
Variable linking, 556–558
Variable substitution

defined, 11
overview, 43–45
syntax overview, 24–25

Variables
accessing from C. See Accessing Tcl

variables.
accessing from other namespaces,

169–170
accessing with upvar, 148–150
arrays, 42–43
auto_path, 234
command evaluation, 23–24
commands, 39–40
declaring in namespaces, 159
environment, 210
errorCode, 221–222
global, 13–14
incr and append commands, 47–49
information about, 260–261
inspecting namespaces, 163–164
listbox, 317
local and global, 146
managed by Tk, 517–518
multidimensional arrays, 45–46
overview, 11
predefined, 49–50
preview of other facilities, 50–51
querying array elements, 46–47
radiobutton options, 315
setting errorCode, 603–604
simple and set, 41
slave interpreter, 274
Tcl's internal storage of data, 41–42
-textvariable option, 309–310
thread condition, 699–701
tracing array, 268–269
tracing operations on simple, 264–267
unset and array unset, 49
waiting and, 499

Vasiljevic, Zorand, 727

Index 771

Versions
installing Tcl and Tk, 717–718
Tcl interpreter, 264
tclsh application, 3–4
Tk variables, 518
using packages, 235
utility package commands, 238

Virtual events
binding to named, 425–426
generating, 427–428
text widget, 458

Virtual file systems
file access, 194–196
interaction, 683
Starkits, 242

Virtual root window managers, 483
Volumes, 179
vwait command

defined, 199
entering Tcl event loop with, 206–207
invoking event loops, 423–424

W
Waiting

condition variables for threads, 699–701
tkwait command, 497–499

waitWindows example, 499
-weight option

configuring font, 371
configuring gridder, 392
stretch behavior and, 394–395

Welch, Brent, 727
while command

defined, 132
of factorial, 12–13
looping, 136–138

Whitespace characters
backslash substitution, 27
in basic syntax, 22
defined, 4
variable substitution, 44

Whole-array traces, 561
wide function, 59, 64
Wide types, 538
Widget commands

basics, 304–305
cget, 511–512

configuration options, 505–506
configure, 511–512
defined, 299–300
evaluating, 23
event binding, 18

widget delete command, 448
widget get command, 448
widget insert command, 448
widget replace command, 448
Widgets

additional features, 19
basics of, 304–305
buttons, 312–315
canvas. See Canvas widget.
color options, 307–308
commands for interconnection, 300–301
creating and destroying, 297–298
defined, 292
entries, 323–327
event bindings, 15–18
events. See Events.
frames, 306–307
geometry management, 409–411
geometry managers, 298–299
"Hello, World!" example, 7–8
joinable thread support, 698
labelframes, 312
labels, 309–312
listboxes, 317–318
menus, 327–334
odds and ends, 513–518
other common options, 339–342
overview, 294–295, 303–304
panedwindows, 334–337
scales, 321–323
scrollbars, 318–321
selection. See Selection.
stacking order, 407–408
standard dialogs, 337–339
text. See Text widget.
vs. themed widgets, 343–345
toplevel, 296
toplevels, 308–309

-width option
configuring photo images, 378
panedwindows, 337
in widgets, 339–340

772 Index

Wildcards
in glob-style pattern matching, 180
in patterns, 507

Window manager protocols, 490–491
Window managers

commands, 478–481
decorations, 485–486
defined, 293, 298
dockable windows, 488–489
gridded windows, 483–484
overview, 477–478
session management, 490
special handling, 486–487
states, 484–485
system-specific window attributes,

487–488
window close, 489–490
window positions, 482–483
window sizes, 481–482

window type, 434
Windowing commands

additional features, 19
"Hello, World!" with Tk, 6–8

Windowing systems
clipboard command, 471–473
introduction to, 292–293
stacking order, 435
tk command, 516–517

Windows
binding to named virtual events, 425–426
building Tcl and Tk on, 707
building TEA extension on, 714
cursor options, 342
defined, 292
embedded in text widget, 459–460
exec support, 200
executable scripts on, 9–10
input focus, 493–495
invoking wish on, 6
modal, 495–499
platform-specific menus, 333
system-specific window attributes,

487–488
tcl_platform array, 50
waiting and, 498

winfo command, 513, 516
wish interpreter

executing script files with, 9–10

"Hello, World!" example, 6–8
variables and substitutions, 11
versions, 4

Withdrawn window state, 483–484
wm aspect command, 482
wm attribute command, 487–488
wm client command, 490
wm command

defined, 301, 477–478
geometry management, 410
list of subcommands, 478–480

wm command command, 490
wm deiconify command

creating custom dialogs, 500, 504
defined, 485

wm forget command, 488–489
wm geometry command

window positions, 482–483
window sizes, 481

wm group command, 486
wm iconbitmap command, 486
wm iconify command, 485
wm iconmask command, 486
wm iconname command, 485–486
wm iconphoto command, 485–486
wm iconposition command, 486
wm iconwindow command, 486
wm manage command, 488–489
wm override-redirect command, 487
wm protocol command, 490–491
wm state command, 485
wm title command, 485
wm transient command, 486
wm withdraw command

creating custom dialogs, 500, 504
defined, 485

WM_DELETE_WINDOW protocol, 490–491
Words

command evaluation, 22–24
defined, 4
substitution in. See Substitutions.
syntax overview, 21–22

-wrap option in text tags, 456
Writable files, 184
Write traces, 266–267
Writing

files, 185–194
Tcl variable values, 553–555

Index 773

X
\x

glob-style pattern matching, 79
in regular expressions, 80

x in gridder, 396
X Window System

selection, 467
send, 215

X11
platform-specific menus, 333
system-specific window attributes, 488

.Xdefaults file configuration, 508–509

\xhh in substitution, 27
XML programming, 727–728
XOTcl, 726

Y
-yscrollcommand option, 319–320

Z
Zdun, Uwe, 726
Zombies, 689–690
Zoomed state for windows, 488

	Preface
	Preface to the First Edition
	Introduction
	Chapter 1 An Overview of Tcl and Tk
	1.1 Getting Started
	1.2 “Hello, World!” with Tk
	1.3 Script Files
	1.4 Variables and Substitutions
	1.5 Control Structures
	1.6 On the Tcl Language
	1.7 Event Bindings
	1.8 Additional Features of Tcl and Tk

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

