
Wysopal_Rev-FM.qxp 10/25/06 8:36 PM Page xiii

Foreword
Who can argue with testing things before you allow yourself to depend on them? 
No one can argue. No one will argue. Therefore, if testing is not done, the 
reasons have to be something other than a reasoned objection to testing. There 
seem to be exactly three: I can’t afford it, I can get along without it, and I don’t 
know how. 

■ Not being able to afford it—Allowing for economists to disagree over fine 
points, the cost of anything is the foregone alternative. If you do testing, 
what didn’t you do? If it is to add yet another feature, perhaps you deserve 
congratulations on choosing a simpler product. Simpler products are in fact 
easier to test (and for good reason: the chief enemy of security is complexity, 
and nothing breeds complexity like creeping featuritis). If you didn’t do test-
ing, the usual reason given is to “get the product out on time.” That reason is 
insufficient if not petulant. The sort of testing taught in this book is about 
the future even more than getting the product out on time is about the 
future. Only CEOs intoxicated on visions of wealth are immune to thinking 
about the future in ways that preclude testing. Testing is about controlling 
your future rather than allowing it to control you. Testing accelerates the 
inevitable future failure of products into the present. When William Gibson 
famously said, “The future is already here—it’s just unevenly distributed,” he 
wasn’t thinking of testing as we mean it here. What you explicitly want is to 
unevenly distribute the future so that your product gets to see its future 
before your customers (and opponents) do. Since you are reading this para-
graph, it’s pretty likely you are of a testing frame of mind, so we’ll drop the 
argument and move on. 

xiii 



Wysopal_Rev-FM.qxp 10/25/06 8:36 PM Page xiv

Foreword 

■ Getting along without it—Some products probably don’t need much testing. 
They are not subject to innovation; they’re nonperishable commodities, or 
something equally boring. That’s not why we are here. We are here to 
protect security-sensitive products. Which products are those? A product is 
security-sensitive if, in its operation, it faces sentient opponents. If the only 
perils it faces are cluelessness (“Hey, watch this!”) or random happenstance 
(alpha particles), the product may well not be security-sensitive. But with 
software and networks being as they are, nearly everything is security-sensitive 
because, if nothing else, every sociopath is your next-door neighbor. The 
burden of perfection is no longer on the criminal to commit the perfect crime 
but rather is on the defender to commit the perfect defense. Sure, you can 
get away with not testing, just as you can get away with never wearing 
protective gear while you band-saw aluminum, mountain-bike in Moab, or 
scrub down a P3 containment lab. There’s always someone who has gotten 
away with that and more. That doesn’t apply here. Why? Because the more 
successful and widespread your product is, the more those sociopaths, the 
more those sentient opponents, will adopt you as a special project. Just ask 
Microsoft. If you want to get widespread adoption, you will be tested. The 
only question is “Tested by whom?” 

■ Not knowing how—And so we come to the purpose of this book. You are 
ready, willing, and unable. Or you want to make sure that you’re as up to date 
as your opponents. Or you need raw material for even more extreme sports 
than what is outlined here. You’ve come to a right place (there is no “the” 
right place). This is (let’s be clear) a very right place. The authors are proven, 
and the techniques are current. Although techniques in security have the ter-
rible beauty of never being “done,” you won’t do much better than these. If 
you can, there is an audience for your book. In the meantime, absorb what 
Chris Wysopal, Lucas Nelson, Dino Dai Zovi, and Elfriede Dustin have to 
teach you, and put it into practice. Skill sets like these do not grow on trees, 
and they don’t stand still any more than the opposition stands still. 

As you can see from the table of contents, testing is a way of thinking, not a 
button to press or a budget item to approve. You very nearly have to adopt this 
way of thinking—and nothing enforces a way of thinking as much as the regular 
use of tools and techniques that embody it. This is no joke. The outside attacker is 
skillful and increasingly professional and has tools and thought patterns. 
Malware—in particular, malware that turns good citizens into unintentionally bad 
citizens—has made true the long-standing supposition of security geeks: The real 
threat is the insider. 

xiv 



Wysopal_Rev-FM.qxp 10/25/06 8:36 PM Page xv

Foreword 

Question: What is an external attacker’s first measure of success? Answer: 
Gaining an insider’s credentials, access, and authority. If that attacker intends to 
do so by exploiting software the target insider runs, only your design and your 
testing stand in the way of the attacker’s goals. As shown in the following figure, 
the idea is not “Does the product do what it is supposed to do?” but “Does the 
product not do what it supposed to not do?” That question is far harder than the 
quality assurance question because it is inherently open-ended. It cannot be fully 
handled by development per se. It has to be tested—preferably by informed testers 
not tangled up with the build process. 

Quality vs. Security1 

BuiltDesigned 

Quality Security 

Works 

Fault Fault 

That, again, is where this book comes in. It tells you how to exert the kind of 
expert pressure that does accelerated failure time testing. You learn how to do so 
efficiently enough to be willing to do the testing and not think that you can get away 
without it. In other words, this is hunting in the bush. You can learn to do it by your-
self, but following an expert tracker is a faster education than learning everything the 
hard way. Absorb everything that is here, and you’ll either be a formidable hunter or 
you’ll be in a position to be a tracker yourself. Remember, all skill is the result of prac-
tice. These authors are well practiced; it is your turn, and they have given you a leg up. 

Daniel E. Geer, Jr., Sc.D. 
24 July 2006 

Endnote 
1. Herbert H. Thompson and James A. Whittaker. Testing for Software

Security. Dr. Dobb's Journal, 27(11): 24–32, November 2002.

xv 



Wysopal_Rev-FM.qxp 10/25/06 8:36 PM Page xvi




