
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321278654
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321278654
https://plusone.google.com/share?url=http://www.informit.com/title/9780321278654
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321278654
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321278654/Free-Sample-Chapter

Praise for Extreme Programming Explained, Second Edition

“In this second edition of Extreme Programming Explained, Kent Beck orga-
nizes and presents five years’ worth of experiences, growth, and change revolv-
ing around XP. If you are seriously interested in understanding how you and
your team can start down the path of improvement with XP, you must read
this book.”

—Francesco Cirillo, Chief Executive Officer, XPLabs S.R.L.

“The first edition of this book told us what XP was—it changed the way many
of us think about software development. This second edition takes it farther
and gives us a lot more of the ‘why’ of XP, the motivations and the principles
behind the practices. This is great stuff. Armed with the ‘what’ and the ‘why,’
we can now all set out to confidently work on the ‘how’: how to run our
projects better, and how to get agile techniques adopted in our organizations.”

—Dave Thomas, The Pragmatic Programmers LLC

“This book is dynamite! It was revolutionary when it first appeared a few years
ago, and this new edition is equally profound. For those who insist on cook-
book checklists, there’s an excellent chapter on ‘primary practices,’ but I urge
you to begin by truly contemplating the meaning of the opening sentence in
the first chapter of Kent Beck’s book: ‘XP is about social change.’ You should
do whatever it takes to ensure that every IT professional and every IT man-
ager—all the way up to the CIO—has a copy of Extreme Programming
Explained on his or her desk.”

—Ed Yourdon, author and consultant

“XP is a powerful set of concepts for simplifying the process of software
design, development, and testing. It is about minimalism and incrementalism,
which are especially useful principles when tackling complex problems that
require a balance of creativity and discipline.”

—Michael A. Cusumano, Professor, MIT Sloan School of Management, and
author of The Business of Software

“Extreme Programming Explained is the work of a talented and passionate
craftsman. Kent Beck has brought together a compelling collection of ideas
about programming and management that deserves your full attention. My
only beef is that our profession has gotten to a point where such common-
sense ideas are labeled ‘extreme.’ . . .”

—Lou Mazzucchelli, Fellow, Cutter Business Technology Council

“If your organization is ready for a change in the way it develops software,
there’s the slow incremental approach, fixing things one by one, or the fast
track, jumping feet first into Extreme Programming. Do not be frightened by
the name, it is not that extreme at all. It is mostly good old recipes and com-
mon sense, nicely integrated together, getting rid of all the fat that has accu-
mulated over the years.”

—Philippe Kruchten, UBC, Vancouver, British Columbia

“Sometimes revolutionaries get left behind as the movement they started takes
on a life of its own. In this book, Kent Beck shows that he remains ahead of
the curve, leading XP to its next level. Incorporating five years of feedback, this
book takes a fresh look at what it takes to develop better software in less time
and for less money. There are no silver bullets here, just a set of practical prin-
ciples that, when used wisely, can lead to dramatic improvements in software
development productivity.”

—Mary Poppendieck, author of Lean Software Development: An Agile Toolkit

“Kent Beck has revised his classic book based on five more years of applying and
teaching XP. He shows how the path to XP is both easy and hard: It can be
started with fewer practices, and yet it challenges teams to go farther than ever.”

—William Wake, independent consultant

“With new insights, wisdom from experience and clearer explanations of the
art of Extreme Programming, this edition of Beck’s classic will help many real-
ize the dream of outstanding software development.”

—Joshua Kerievsky, author, Refactoring to Patterns, and Founder, Industrial
Logic, Inc.

“XP has changed the way our industry thinks about software development. Its
brilliant simplicity, focused execution, and insistence on fact-based planning
over speculation have set a new standard for software delivery.”

—David Trowbridge, Architect, Microsoft Corporation

Extreme Programming
Explained

Second Edition

The XP Series
Kent Beck, Series Advisor

Extreme Programming, familiarly known as XP, is a discipline of the business
of software development that focuses the whole team on common, reachable
goals. Using the values and principles of XP, teams apply appropriate XP prac-
tices in their own context. XP practices are chosen for their encouragement of
human creativity and their acceptance of human frailty. XP teams produce
quality software at a sustainable pace.

One of the goals of XP is to bring accountability and transparency to software
development, to run software development like any other business activity.
Another goal is to achieve outstanding results—more effective and efficient
development with far fewer defects than is currently expected. Finally, XP aims
to achieve these goals by celebrating and serving the human needs of everyone
touched by software development—sponsors, managers, testers, users, and
programmers.

The XP series exists to explore the myriad variations in applying XP. While XP
began as a methodology addressing small teams working on internal projects,
teams worldwide have used XP for shrink-wrap, embedded, and large-scale
projects as well. The books in the series describe how XP applies in these and
other situations, addressing both technical and social concerns.

Change has come to software development. However, change can be seen as
an opportunity, not a threat. With a plan for change, teams can harness this
opportunity to their benefit. XP is one such plan for change.

Titles in the Series

Extreme Programming Applied: Playing to Win, Ken Auer and Roy Miller

Extreme Programming Explained, Second Edition: Embrace Change, Kent Beck
with Cynthia Andres

Extreme Programming Explored, William C. Wake

Extreme Programming for Web Projects, Doug Wallace, Isobel Raggett,
and Joel Aufgang

Extreme Programming Installed, Ron Jeffries, Ann Anderson, and Chet Hendrickson

Planning Extreme Programming, Kent Beck and Martin Fowler

Testing Extreme Programming, Lisa Crispin and Tip House

For more information, check out the series Web site at www.awprofessional.com/series/XP

http://www.awprofessional.com/series/XP

Extreme Programming
Explained
Second Edition

Embrace Change

Kent Beck
with Cynthia Andres

Boston

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Publisher: John Wait
Editor in Chief: Don O’Hagan
Acquisitions Editor: Paul Petralia
Managing Editor: John Fuller
Project Editors: Julie Nahil and Kim Arney Mulcahy
Compositor: Kim Arney Mulcahy
Manufacturing Buyer: Carol Melville

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Beck, Kent.
extreme programming explained: embrace change / Kent Beck with Cynthia Andres. — 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-27865-8 (alk. paper)
1. Computer software—Development. 2. eXtreme programming. I. Title.

QA76.76.D47B434 2004
005.1—dc22

2004057463

Text copyright © 2005 Pearson Education, Inc.

Inside cover art copyright © 2004 by Kent Beck

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and we were aware of a trademark claim, the
designations have been printed in initial caps or all caps.

ISBN 0-321-27865-8
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

Tenth printing, January 2012

http://www.awprofessional.com

To Cindee
Without you, this book would still be about programmers hiding in a
corner. Without you, I would still be one of those programmers.

This page intentionally left blank

Note To Programmers
Even programmers can be whole people in the real world. XP is an
opportunity to test yourself, to be yourself, to realize that maybe you’ve
been fine all along and just hanging with the wrong crowd.

This page intentionally left blank

xi

Contents

Foreword to the Second Edition ... xv

Foreword to the First Edition .. xvii

Preface ... xxi

Chapter 1 What is XP? ..1

Section 1 Exploring XP ..9

Chapter 2 Learning to Drive ..11

Chapter 3 Values, Principles, and Practices13

Chapter 4 Values ...17
Communication ..18
Simplicity ..18
Feedback ..19
Courage ..20
Respect ...21
Others ..21

Chapter 5 Principles ..23
Humanity ...24
Economics ..25
Mutual Benefit ..26

xii Contents

Self-Similarity ..27
Improvement ..28
Diversity ...29
Reflection ...29
Flow ...30
Opportunity ...30
Redundancy ..31
Failure ..32
Quality ...32
Baby Steps ..33
Accepted Responsibility ..34

Chapter 6 Practices ...35

Chapter 7 Primary Practices ..37
Sit Together ..37
Whole Team ...38
Informative Workspace ..39
Energized Work ..41
Pair Programming ...42
Stories ..44
Weekly Cycle ..46
Quarterly Cycle ..47
Slack ...48
Ten-Minute Build ...49
Continuous Integration ..49
Test-First Programming ..50
Incremental Design ...51

Chapter 8 Getting Started ...55

Chapter 9 Corollary Practices ..61
Real Customer Involvement ..61
Incremental Deployment ..62
Team Continuity ...63
Shrinking Teams ...64
Root-Cause Analysis ...64
Shared Code ...66
Code and Tests ...66
Single Code Base ..67

Contents xiii

Daily Deployment ...68
Negotiated Scope Contract ...69
Pay-Per-Use ..69

Chapter 10 The Whole XP Team ..73
Testers ..74
Interaction Designers ..75
Architects ..75
Project Managers ..76
Product Managers ...77
Executives ...78
Technical Writers ...80
Users ..81
Programmers ..81
Human Resources ...81
Roles ..82

Chapter 11 The Theory of Constraints ..85

Chapter 12 Planning: Managing Scope ..91

Chapter 13 Testing: Early, Often, and Automated97

Chapter 14 Designing: The Value of Time103
Simplicity ..109

Chapter 15 Scaling XP ..111
Number of People ...111
Investment ..113
Size of Organization ...113
Time ...114
Problem Complexity ...115
Solution Complexity ...115
Consequences of Failure ..116

Chapter 16 Interview ..119

Section 2 Philosophy of XP ..123

Chapter 17 Creation Story ...125

Chapter 18 Taylorism and Software ..131

xiv Contents

Chapter 19 Toyota Production System ...135

Chapter 20 Applying XP ...139
Choosing a Coach ..143
When You Shouldn’t Use XP ..144

Chapter 21 Purity ...145
Certification and Accreditation ..146

Chapter 22 Offshore Development ..149

Chapter 23 The Timeless Way of Programming153

Chapter 24 Community and XP ..157

Chapter 25 Conclusion ..159

Annotated Bibliography ...161

Index ..175

xv

Foreword to
the Second Edition

Wow—the second edition. I cannot believe that five years have already
passed since the appearance of the first edition. When Kent pinged me
to write a foreword to the second edition I asked him for a manuscript
version with change bars. What a silly request—the book is a full
rewrite! In the second edition of XP Explained Kent revisits XP and
applies the XP paradigm—stay aware, adapt, change—to XP itself. Kent
has revisited, cleaned-up, and refactored every bit of XP Explained and
integrated many new insights. The result is XP Explained even better
explained!

This is an excellent opportunity to reflect on how XP has influenced
my own software development. Shortly after the first edition of XP
Explained I became involved in the Eclipse project and it is now
absorbing all my software energy. Eclipse isn’t run under the pure XP
flag. We follow agile practices; however, the XP influences are easy to
spot. The most obvious one is that we have encoded several XP prac-
tices directly into our tool. Refactoring, unit testing, and immediate
feedback as you code are now an integral part of our toolset. Moreover,
since we are “eating our own dog food” we use these practices in our
day-to-day development. Even more interesting are the XP influences
one can spot in our development process. Eclipse is an open source
project and one of our goals is to practice completely transparent devel-
opment. The rationale is simple; if you don’t know where the project is
going you cannot help out or provide feedback. XP practices help us to
achieve this goal.

xvi Foreword to the Second Edition

Here is how we apply some of these practices:

✧ Testing early, often and automated—To get a green check mark
for our latest builds more than 21,000 unit tests have to pass.

✧ Incremental design—We invest in the design every day, but we have
the additional constraint that we need to keep our APIs stable.

✧ Daily deployment—Components deploy their code at least once
per day and develop on top of the deployed code to get immedi-
ate feedback and to catch problems early.

✧ Customer involvement—We are lucky to have an active user com-
munity that isn’t shy and provides us with continuous feedback.
We listen and do our best to be responsive.

✧ Continuous integration—The latest code is built every night. The
nightly builds provide us with insights about cross-component
integration problems. Once per week we do an integration build
where we ensure integrity across all components.

✧ Short development cycles—Our cycles are longer than the XP-sug-
gested one week cycles, but the goals are the same. Each of our six
week cycles ends in a milestone build which have become the
heartbeat of our project. The goal of each milestone build is to
show progress (which keeps us honest) and to deliver it with a
high enough level of quality that our community can really use it
and provide feedback (which keeps us even more honest).

✧ Incremental planning—After a release we develop an embryonic
overall plan which we evolve throughout the release cycle. This
plan is posted on our website early so that our user community
can join the dialog. The exception is the milestones, which are
fixed in the first planning iteration since they define the heartbeat
of our project.

Despite the fact that we have not adopted XP in its entirety, we are
getting a lot out of the above XP practices. In particular, they help us to
reduce our development stress! All these practices, underpinned by a
strong team committed to shipping quality software on time, are our
keys to hitting the projected milestones and ship dates with precision.

Foreword to the Second Edition xvii

Kent is continuing to challenge my views on software development.
While reading the book I’ve discovered several practices that I will add
to my try-list. I suggest you do the same and accept the XP invitation
to improve the way you develop software and to create outstanding
software.

Erich Gamma
September 2004

This page intentionally left blank

xix

Foreword to
the First Edition

Extreme Programming (XP) nominates coding as the key activity
throughout a software project. This can’t possibly work!

Time to reflect for a second about my own development work. I
work in a just-in-time software culture with compressed release cycles
spiced up with high technical risk. Having to make change your friend
is a survival skill. Communication in and across often geographically
separated teams is done with code. We read code to understand new or
evolving subsystem APIs. The life cycle and behavior of complex objects
is defined in test cases, again in code. Problem reports come with test
cases demonstrating the problem, once more in code. Finally, we con-
tinuously improve existing code with refactoring. Obviously our devel-
opment is code-centric, but we successfully deliver software in time, so
this can work after all.

It would be wrong to conclude that all that is needed to deliver soft-
ware is daredevil programming. Delivering software is hard, and deliv-
ering quality software in time is even harder. To make it work requires
the disciplined use of additional best practices. This is where Kent starts
in his thought-provoking book on XP.

Kent was among the leaders at Tektronix to recognize the potential
of man in the loop pair programming in Smalltalk for complex engineer-
ing applications. Together with Ward Cunningham, he inspired much of
the pattern movement that has had such an impact on my career. XP
describes an approach to development that combines practices used by
many successful developers that got buried under the massive literature

xx Foreword to the First Edition

on software methods and process. Like patterns, XP builds on best prac-
tices such as unit testing, pair programming, and refactoring. In XP
these practices are combined so that they complement and often control
each other. The focus is on the interplay of the different practices, which
makes this book an important contribution. There is a single goal to
deliver software with the right functionality and hitting dates. While
OTI’s successful Just In Time Software process is not pure XP, it has
many common threads.

I’ve enjoyed my interaction with Kent and practicing XP episodes on
a little thing called JUnit. His views and approaches always challenge
the way I approach software development. There is no doubt that XP
challenges some traditional big M approaches; this book will let you
decide whether you want to embrace XP or not.

Erich Gamma
August 1999

xxi

Preface

The goal of Extreme Programming (XP) is outstanding software devel-
opment. Software can be developed at lower cost, with fewer defects,
with higher productivity, and with much higher return on investment.
The same teams that are struggling today can achieve these results by
careful attention to and refinement of how they work, by pushing ordi-
nary development practices to the extreme.

There are better ways and worse ways to develop software. Good
teams are more alike than they are different. No matter how good or
bad your team you can always improve. I intend this book as a resource
for you as you try to improve.

This book is my personal take on what it is that good software devel-
opment teams have in common. I’ve taken things I’ve done that have
worked well and things I’ve seen done that worked well and distilled
them to what I think is their purest, most “extreme” form. What I’m
most struck with in this process is the limitations of my own imagina-
tion in this effort. Practices that seemed impossibly extreme five years
ago, when the first edition of this book was published, are now com-
mon. Five years from now the practices in this book will probably seem
conservative.

If I only talked about what good teams do I would be missing the
point. There are legitimate differences between outstanding teams’
actions based on the context in which they work. Looking below the
surface, where their activities become ripples in the river hinting at

xxii Preface

shapes below, there is an intellectual and intuitive substrate to software
development excellence that I have also tried to distill and document.

Critics of the first edition have complained that it tries to force them
to program in a certain way. Aside from the absurdity of me being able
to control anyone else’s behavior, I’m embarrassed to say that was my
intention. Relinquishing the illusion of control of other people’s behav-
ior and acknowledging each individual’s responsibility for his or her
own choices, in this edition I have tried to rephrase my message in a
positive, inclusive way. I present proven practices you can add to your
bag of tricks.

✧ No matter the circumstance you can always improve.
✧ You can always start improving with yourself.
✧ You can always start improving today.

Acknowledgments
I would like to thank my most excellent group of reviewers, each of
whom spent considerable time reading and commenting on the manu-
script: Francesco Cirillo, Steve McConnell, Mike Cohn, David Ander-
son, Joshua Kerievsky, Beth Andres-Beck, and Bill Wake. The Silicon
Valley Patterns Group also provided valuable feedback on drafts: Chris
Lopez, John Parello, Phil Goodwin, Dave Smith, Keith Ray, Russ
Rufer, Mark Taylor, Sudarsan Piduri, Tracy Bialik, Jan Chong, Rituraj
Kirti, Carlos Mc Evilly, Bill Venners, Wayne Vucenic, Raj Baskaran, Tim
Huske, Patrick Manion, Jeffrey Miller, and Andrew Chase. Thanks to
the production staff at Pearson: Julie Nahil, Kim Arney Mulcahy, and
Michelle Vincenti. Paul Petralia, my editor, saw me through difficult
times with humor and understanding. He taught me lessons in the
value of relationships. Erich Gamma, my pair programming partner,
provided conversation and feedback. The owners and staff of Bluestone
Bakery and Cafe kept the hot chocolate and broadband flowing. Joëlle
Andres-Beck edited copy and collected garbage. All of my children;
Lincoln, Lindsey, Forrest, and Joëlle; spent many hours at Bluestone
while we edited. Gunjan Doshi provided thought-provoking questions.

Finally, I cannot possibly give sufficient thanks to my wife, develop-
mental editor, friend, and intellectual colleague Cynthia Andres.

1

Chapter 1

What is XP?

Extreme Programming (XP) is about social change. It is about letting
go of habits and patterns that were adaptive in the past, but now get in
the way of us doing our best work. It is about giving up the defenses
that protect us but interfere with our productivity. It may leave us feel-
ing exposed.

It is about being open about what we are capable of doing and then
doing it. And, allowing and expecting others to do the same. It is
about getting past our adolescent surety that “I know better than
everyone else and all I need is to be left alone to be the greatest.” It is
about finding our adult place in the larger world, finding our place in
the community including the realm of business/work. It is about the
process of becoming more of our best selves and in the process our
best as developers. And, it is about writing great code that is really
good for business.

Good relationships lead to good business. Productivity and confi-
dence are related to our human relationships in the workplace as well as
to our coding or other work activities. You need both technique and
good relationships to be successful. XP addresses both.

Prepare for success. Don’t protect yourself from success by holding
back. Do your best and then deal with the consequences. That’s
extreme. You leave yourself exposed. For some people that is incredi-
bly scary, for others it’s daily life. That is why there are such polarized
reactions to XP.

2 Extreme Programming Explained: Embrace Change

XP is a style of software development focusing on excellent applica-
tion of programming techniques, clear communication, and teamwork
which allows us to accomplish things we previously could not even
imagine. XP includes:

✧ A philosophy of software development based on the values of
communication, feedback, simplicity, courage, and respect.

✧ A body of practices proven useful in improving software develop-
ment. The practices complement each other, amplifying their
effects. They are chosen as expressions of the values.

✧ A set of complementary principles, intellectual techniques for
translating the values into practice, useful when there isn’t a prac-
tice handy for your particular problem.

✧ A community that shares these values and many of the same
practices.

XP is a path of improvement to excellence for people coming together
to develop software. It is distinguished from other methodologies by:

✧ Its short development cycles, resulting in early, concrete, and con-
tinuing feedback.

✧ Its incremental planning approach, which quickly comes up with an
overall plan that is expected to evolve through the life of the project.

✧ Its ability to flexibly schedule the implementation of functionality,
responding to changing business needs.

✧ Its reliance on automated tests written by programmers, custom-
ers, and testers to monitor the progress of development, to allow
the system to evolve, and to catch defects early.

✧ Its reliance on oral communication, tests, and source code to
communicate system structure and intent.

✧ Its reliance on an evolutionary design process that lasts as long as
the system lasts.

✧ Its reliance on the close collaboration of actively engaged individ-
uals with ordinary talent.

✧ Its reliance on practices that work with both the short-term instincts
of the team members and the long-term interests of the project.

Chapter 1 What is XP? 3

The first edition of Extreme Programming Explained: Embrace
Change had a definition of XP with the advantage of clarity: “XP is a
lightweight methodology for small-to-medium-sized teams developing
software in the face of vague or rapidly changing requirements.” While
this statement was true about the origin and intent of XP, it doesn’t tell
the whole story. In the five years since the publication of the first edi-
tion teams have pushed XP much further than the original definition.
XP can be described this way:

✧ XP is lightweight. In XP you only do what you need to do to cre-
ate value for the customer. You can’t carry a lot of baggage and
move fast. However, there is no freeze-dried software process.
The body of technical knowledge necessary to be an outstanding
team is large and growing.

✧ XP is a methodology based on addressing constraints in software
development. It does not address project portfolio management,
financial justification of projects, operations, marketing, or sales.
XP has implications in all of these areas, but does not address
these practices directly. Methodology is often interpreted to mean
“a set of rules to follow that guarantee success.” Methodologies
don’t work like programs. People aren’t computers. Every team
does XP differently with varying degrees of success.

✧ XP can work with teams of any size. Five years ago, I did not want
to claim too much. Others have since put XP to use in a wide
range of projects and have had success with both large and small
projects and teams. The values and principles behind XP are appli-
cable at any scale. The practices need to be augmented and altered
when many people are involved.

✧ XP adapts to vague or rapidly changing requirements. XP is still
good for this situation, which is fortunate because requirements
need to change to adapt to rapid shifts in the modern business
world. However, teams have also successfully used XP where
requirements don’t seem volatile, like porting projects.

XP is my attempt to reconcile humanity and productivity in my own
practice of software development and to share that reconciliation. I had
begun to notice that the more humanely I treated myself and others,

4 Extreme Programming Explained: Embrace Change

the more productive we all became. The key to success lies not in self-
mortification but in acceptance that we are people in a person-to-per-
son business.

Technique also matters. We are technical people in a technical field.
There are better ways and worse ways of working. The pursuit of excel-
lence in technique is critical in a social style of development. Technique
supports trust relationships. If you can accurately estimate your work,
deliver quality the first time, and create rapid feedback loops; then you
can be a trustworthy partner. XP demands that participants learn a high
level of technique in service of the team’s goals.

XP means giving up old habits of working for new ways tailored to
today’s reality. The habits, attitudes, and values of our early years
worked then; but may not be our best choices in the current world of
team software development. Good, safe social interaction is as neces-
sary to successful XP development as good technical skills.

One example is the concept that vulnerability is safety. The old habit
of holding something back in order to be safe doesn’t really work.
Holding back that last 20% of effort doesn’t protect me. When my
project fails, the fact that I didn’t give my all doesn’t actually make me
feel better. It doesn’t protect me from a sense of failure that I couldn’t
make the project work. If I do my very best writing a program and peo-
ple don’t like it, I can still feel justly good about myself. This attitude
allows me to feel safe no matter the circumstance. If how I feel is based
on an accurate read on whether I did my best, I can feel good about
myself by doing my best.

XP teams play full out to win and accept responsibility for the conse-
quences. When self-worth is not tied to the project, we are free to do
our best work in any circumstance. In XP you don’t prepare for failure.
Keeping a little distance in relationships, holding back effort either
through underwork or overwork, putting off feedback for another
round of responsibility diffusion: none of these behaviors have a place
on an XP team.

You may have enough time, money, or skills on your team or you may
not; but it is always best to act as if there is going to be enough. This
“mentality of sufficiency” is movingly documented by anthropologist
Colin Turnbull in The Mountain People and The Forest People. He con-
trasts two societies: a resource-starved tribe of lying, cheating backstab-
bers and a resource-rich, cooperative, loving tribe. I often ask developers

Chapter 1 What is XP? 5

in a dilemma, “How would you do it if you had enough time?” You can
do your best work even when there are constraints. Fussing about the
constraints distracts you from your goals. Your clear self does the best
work no matter what the constraints are.

If you have six weeks to get a project done, the only thing you con-
trol is your own behavior. Will you get six weeks’ worth of work done
or less? You can’t control others’ expectations. You can tell them what
you know about the project so their expectations have a chance of
matching reality. My terror of deadlines vanished when I learned this
lesson. It’s not my job to “manage” someone else’s expectations. It’s
their job to manage their own expectations. It’s my job to do my best
and to communicate clearly.

XP is a software development discipline that addresses risk at all lev-
els of the development process. XP is also productive, produces high-
quality software, and is a lot of fun to execute. How does XP address
the risks in the development process?

✧ Schedule slips—XP calls for short release cycles, a few months at
most, so the scope of any slip is limited. Within a release, XP uses
one-week iterations of customer-requested features to create fine-
grained feedback about progress. Within an iteration, XP plans
with short tasks, so the team can solve problems during the cycle.
Finally, XP calls for implementing the highest priority features first,
so any features that slip past the release will be of lower value.

✧ Project canceled—XP asks the business-oriented part of the team
to choose the smallest release that makes the most business sense,
so there is less to go wrong before deploying and the value of the
software is greatest.

✧ System goes sour—XP creates and maintains a comprehensive suite
of automated tests, which are run and rerun after every change
(many times a day) to ensure a quality baseline. XP always keeps
the system in deployable condition. Problems are not allowed to
accumulate.

✧ Defect rate—XP tests from the perspective of both programmers
writing tests function-by-function and customers writing tests
program-feature-by-program-feature.

✧ Business misunderstood—XP calls for business-oriented people to
be first-class members of the team. The specification of the project

6 Extreme Programming Explained: Embrace Change

is continuously refined during development, so learning by the
customer and the team can be reflected in the software.

✧ Business changes—XP shortens the release cycle, so there is less
change during the development of a single release. During a
release, the customer is welcome to substitute new functionality
for functionality not yet completed. The team doesn’t even notice
if it is working on newly discovered functionality or features
defined years ago.

✧ False feature rich—XP insists that only the highest priority tasks
are addressed.

✧ Staff turnover—XP asks programmers to accept responsibility for
estimating and completing their own work, gives them feedback
about the actual time taken so their estimates can improve, and
respects those estimates. The rules for who can make and change
estimates are clear. Thus, there is less chance for a programmer to
get frustrated by being asked to do the obviously impossible. XP
also encourages human contact among the team, reducing the
loneliness that is often at the heart of job dissatisfaction. Finally,
XP incorporates an explicit model of staff turnover. New team
members are encouraged to gradually accept more and more
responsibility, and are assisted along the way by each other and by
existing programmers.

XP assumes that you see yourself as part of a team, ideally one with
clear goals and a plan of execution. XP assumes that you want to work
together. XP assumes that change can be made inexpensive using this
method. XP assumes that you want to grow, to improve your skills, and
to improve your relationships. XP assumes you are willing to make
changes to meet those goals.

Now I’m ready to answer the question posed by this chapter: what
is XP?

✧ XP is giving up old, ineffective technical and social habits in favor
of new ones that work.

✧ XP is fully appreciating yourself for total effort today.
✧ XP is striving to do better tomorrow.

Chapter 1 What is XP? 7

✧ XP is evaluating yourself by your contribution to the team’s
shared goals.

✧ XP is asking to get some of your human needs met through soft-
ware development.

The rest of this book explores what to do to effect these changes and
speculates about why they work, personally and economically. The
book is divided into two sections. The first is practical, describing a way
of doing and thinking about software development that both assumes
and satisfies human needs, including the need for relationships. The
second section covers the philosophical and historical roots of XP and
places XP in today’s context.

There are as many ways of reading this book and applying XP as
there are of getting into a cool pool on a hot day: one toe at a time,
walking steadily down the steps, the cannonball, the racing dive. They
all meet the goal of getting into the water. Your choice may be based
on style, speed, efficiency, or fear. Only you can decide which is right
for you. I hope that in reading and applying this book you will come to
a deeper understanding of why you are involved in software develop-
ment and how you can find satisfaction from this work.

This page intentionally left blank

175

Index

A
Abundant living, 167
Accepted responsibility, 4, 165
Accomplishment, as human need, 24
Accountability

community and, 158
executive role and, 78

Accounting, for expense vs. invest-
ment, 113

Accreditation, XP, 146–147
Action, reflection following, 30
Adopting XP. See XP, applying
Alexander, Christopher, 153–154
Analysis, decision making, 172
Andres-Beck, Beth, 104
Anxiety, accompanying change, 57
Application development. See Soft-

ware development
Architects, team roles, 75–76
Architecture

design and, 154–155
fluidity, 128
tests and, 75–76

Architecture, of buildings, 162, 163
Artifacts, of development, 66–67
Attitude, bibliographic references,

162–163

Auditing, projects prior to release,
116

Authority
misalignment of authority and

responsibility, 141
Automated builds, 49
Automated tests, 100–101, 171
awareness, of need for change,

56–57

B
Baby steps, 33, 53
Belonging

human needs, 24
team approach and, 39

Beta testing, 101
Bibliography, 161–174

attitudes, 162–163
emergent processes, 163–164
people, 165–168
philosophy, 161–162
programming, 171–174
project management, 168–171
systems, 164–165

Big bang integration, 30, 87
Big deployments, 63
Biology, in 21st Century, 155

176 Index

Boehm, Barry, 52
Bottlenecks

coach noticing, 143
identifying, 47, 86–87
Theory of Constraints and, 85–86

Brand, Stewart, 104, 174
Breaks, in work day, 41–42
Budgets, 94–95
Business

business interests dominating
development, 154

business interests sharing responsi-
bility with programmers, 155

paradigm shifts and, 166
relationships, 1

C
Capability Maturity Model, 150
Capital expenditures, 113
Certification, XP, 146–147
Change

accountability and, 158
adapting to, 11
awareness of need for, 56–57
baby steps and, 33
changing one thing at a time, 55
costs of, 52
deciding what to change first, 56
factors in rapid change, 142
feedback and, 19
opportunities for, 30–31
people and, 155
speed of, 56
starting with yourself, 57
strategies for, 168

Chaos theory, 164
Charts, in Informative Workspace,

41
Chrysler Smalltalk project, 125–129

estimation, 127–128
incremental design, 127

success of, 128–129
team creation, 126–127
trouble indicators, 126

Clarity, bibliographic reference, 161
Coach, selecting, 143–144
Code

code and tests, 66–67, 101–102
communicating through, 171
defect levels and, 98
eliminating duplication of, 108
future users, 26
as key in software development, xix
profitability of, 173
sharing responsibility for, 66
single code base vs. multiple code

streams, 67–68
team approach to, 17
test-first programming and, 50
traceability of changes to, 116–117
trust and, 51
waste and, 137

Code Complete (McConnell), 104
Coe, Bob, 126
Cohesion, of code, 50
Collective ownership, 66. See also

Responsibility
Comics, 166
Commitment, waste created by over-

commitment, 48
Communication

between business and technical
people, 172

courage and, 21
credibility and, 48
documentation and, 146
drawings as, 174
embracing as a value, 146
feedback and, 20
listening skills vs. talking skills, 157
multi-site development and, 149
nonviolent, 167

Index 177

product managers encouraging, 78
programming as form of, 173
project managers responsibility for,

76–77
simplicity and, 19
as value guiding development, 18

Community, XP, 157–160
Computing, in 21st Century, 155
Conflict

community and, 158
diversity and, 29

Conquer-and-divide, 112
Consensus, in project management,

170
Constraints. See Theory of

Constraints
Continuous improvement, 141–142
Continuous integration

collective ownership and, 66
as primary practice, 49–50

Contracts, ongoing negotiation of
scope, 69

Contributing to Eclipse (Gamma),
51

Control
fallacy of working longer to regain,

41
illusion of being able to control

others, xxii
of people, 166
quality and, 32, 169
scope as basis of, 33

Cooperation, 18, 93
Costs

changes, 52
code development, 173
defects, 97
finding defects early and, 99
options pricing, 174
project management and, 92
redundancy, 31

software development, 173
variable in zero-sum model,

161–162
Coupling, of code, 50–51
Courage

balancing with other values, 21
executive role and, 78
multi-site development and, 149
as value guiding development, 20–21

Credibility, 48
Customers

development artifacts of value to,
66–67

driving system content, 12
evolutionary delivery and, 169
features controlled by, 128
interaction designers working with,

75
involvement of, xvi, 61–62
technical writers and, 80
Whole Team practice and, 39

D
Daily deployment, xvi, 68–69, 143
Daily focus, of incremental design,

103
Database design strategy, 107–108,

172
DCI (Defect Cost Increase), 98–99
Deadlines, business concerns domi-

nating, 154
Decision making

analysis decisions, 172
design decision, 172
in difficult situations, 165

Defect Cost Increase (DCI), 98–99
Defects, 119–121

acceptable levels of, 97–98
defect rate in Smalltalk project,

128
incremental design and, 52

178 Index

Defects, continued
metrics for defects after

deployment, 79
redundancy and, 31
root cause analysis, 64–65
tests for reducing rate of, 5
values and, 14

Deming, W. Edwards, 167
Deployment

daily, 68–69, 143
incremental approach to, 62–63
incremental design and, 109
metrics for defects after, 79

Design. See also Incremental design
Alexander’s principles, 162
common language for decision

making, 172
database design strategy, 107–108,

172
patterns and, 108, 173
small scale, 171

Developers. See Programmers
Development. See Software

development
Disney, 163
Diversity principle, 29
Documentation

code and tests as basis of, 66
communication and, 146
“Rosetta Stone” document,

114–115
technical publications, 80–81
of tests, 26
Unified Process document driven

basis, 169
Double-checking, defect testing,

98–100
Drawings. See Images
Drawings, as communication

medium, 174

DSDM (Dynamic Systems Develop-
ment Method), 170

Dynamic Systems Development
Method (DSDM), 170

E
Eclipse project, xv–xvi
Economics

principles in XP, 25
quality and, 33

Ego, thinking and, 165
Emergent processes, bibliographic

references, 163–164
Emotions, fear as barrier to perfor-

mance, 167
Employees. See Staffing
Energized work

map of, 58
as primary practice, 41–42

Ernst, Michael, 51, 173
Estimation

benefit of early estimation, 44–45
creating believable estimates,

127–128
planning and, 92, 93–94
real time estimates, 168
values and, 14

Execution, separating from planning
in social engineering, 132

Executive, as team role, 78–79
Executive sponsorship

crucial to success of XP, 90,
119–121

finding, 140
Expenses. See Costs
Experience, design process and, 107
“An Experimental Evaluation of

Continuous Testing During
Development” (Saff and Ernst),
51, 173

Index 179

F
Facilities. See Workspace
Failure

dealing with consequences of,
116–117

learning from, 143
as principle in XP, 32

Features
customer control of, 128
tracking projects by, 169

Feedback
from continuous testing, 173
Eclipse project and, xv
finding defects and, 99
measuring software projects, 169
pay-per-use, 69–70
reflection combined with doing,

30
types of, 20
as value guiding development,

19–20
Flow

principles in XP, 30
team approach and, 73–74

The Forest People (Turnbull), 4
Fowler, Martin, 95, 126
Fractals, 27

G
Gamma, Erich, 51
Gannt, Henry, 131
Gilbreth, Frank, 131
Gilbreth, Lillian, 131
Gladwell, Malcolm, 39
Global software development, 151
Goals

executive role and, 78
planning and, 91
XP goals for software develop-

ment, xxi

Graphics. See Images
Group dynamics, 143
Growth, as human need, 24

H
Health, pair programming and, 43
Hendrickson, Chet, 128
High-cost base areas, compared with

low-cost base areas, 150
Hiring, 81–82
History, practice of, 167
Hopelessness, overcoming, 163
How Buildings Learn (Brand), 104
Human resources, reviews and hir-

ing, 81–82
Humanity

fear as barrier to performance, 167
principle in XP, 24–25
Sit Together practice and, 38
workspace and, 40

Hunt, Andy, 140
Hygiene, 43

I
Illnesses. See Sicknesses
Images

communicating with drawings,
174

communicating with graphs and
pictures, 174

Improvement
executive role and, 78
noncontinuous nature of, 142
principles in XP, 28

Incremental deployment, 62–63,
169

Incremental design, 103–110
daily focus of, 103
database design strategy, 107–108
deciding when to design, 105–107

180 Index

Incremental design, continued
Eclipse project and, xvi
improvement as focus of, 28
investing in, 172
Once and Only Once heuristic,

108
as primary practice, 51–53
simplicity of design, 109–110
Smalltalk project, 127
timing of design decisions, 109
weakness of physical-based meta-

phors for, 103–104
Industrial engineering, 131
Informative workplace, 39–41

charts, 41
human needs and, 40–41
story cards, 40

Insight, 41
Integration, continuous integration

practice, 49–50
Integrity, 159
Interaction designers, as team role,

75
Investments

measuring investment-to-return,
79

XP as expense or investment, 113
Iterations

feedback cycles and, 7, 94
planning frequency of, 121
removing constraints or limita-

tions, 168
story implementation and, 127

J
JAD (Joint Application Develop-

ment), 171
Jeffries, Ron, 126
Jensen, Brad, 119–121
Jobs, offshore development and,

150

Joint Application Development
(JAD), 171

Judgement, communication and,
168

JUnit, xiv, 171, 173
Just In Time Software process,

xiii–xiv

L
Leadership, 143
Learning

applying new skills, 141
conflict and disagreement and, 158
by example, 143
from failures, 32, 143
reflection as basis of, 30

Life cycle models, 116
Listening skill

community and, 157
listening to feedback, 80, 141
planning and, 93

Load tests, 101
Low-cost base areas, compared with

high-cost base areas, 150
M
Maintenance

applying XP to, 170
project management and, 170

Management
executives, 78–79
product managers, 78
project managers, 76–77, 92,

113–114
Scientific Management and, 131
self-organizing systems as meta-

phor for management, 164
Manual testing, 101
Manuals, 80–81. See also

Documentation
Margins, in software development,

165

Index 181

Mathematics, programming as, 172
McConnell, Steve, 104–105, 173
Meetings, weekly cycles, 46
Metaphors

chosen by interaction designers, 75
code names and, 26
driving XP, 12
physical-based impose limits on

software development, 104
Scientific Management, 131
self-organizing systems as meta-

phor for management, 164
thinking and, 162
Unified Process emphasis on, 170

Metrics
awareness and, 56
feedback and, 169
graphing, 174
for health of XP team, 79
measuring progress with tests, 102
for XP, 145

Micro-optimization, 88
Mistakes. See Failure
Modernism, 161
Money. See also Costs

pay-per-use and, 69–70
time value of, 25

The Mountain People (Turnbull), 4
Multi-site development, 149–152

global software development, 151
high-cost base areas compared

with low-cost base areas, 150
practices and, 150
principles and, 150
reasons for, 149
values and, 149

Mutual benefit, as principle in XP, 26

N
Names, coding style and, 26
Negotiated scope contract, 69

O
Offshore development. See Multi-site

development
Ohno, Taiichi, 136, 174
Once and Only Once, heuristic for

incremental design, 108
Online communities, XP, 158
Opportunity, as principle in XP,

30–31
Option value, of systems and teams,

25
Organizations

reducing team sizes, 150
reverting to old habits, 140
scaling XP and, 113–114

Overall throughput, vs. micro-opti-
mization, 88

Overproduction, as waste, 136
Overwork, holding back effort

through, 6
Ownership, collective, 66. See also

Responsibility

P
Pain, as factor in quick change, 142
Pair programming

benefits of, 42–43
continuous integration and, 50
personal space and, 43–44
as primary practice, 42–43
reasons for applying, 35
teamwork and, 66
technical collaboration and, 57
XP building on, xiv

Paradigms, 166
Partitioning systems

architect’s responsibility for, 76
scaling XP and, 112

Patterns
design process and, 108, 173
XP and, xiv

182 Index

Pay-per-release, 70
Pay-per-use, 69–70
People

bibliographic references, 165–168
change and, 155
communication between business

and technical people, 172
as component of problems, 38
scaling XP and, 111–112

Perfection, 28
Performance, fear as barrier to, 167
Performance tuning, 93, 125
Permaculture, 103, 162
Personal space, 43–44
Philosophy

bibliographic references, 161–162
of XP, 123

Physical environment. See Workspace
Planning, 91–95

Chrysler Smalltalk project, 127
deciding what to change first, 56
estimation and, 92, 93–95
goals and, 91
incremental, xvi
project managers responsibility for,

77
quarterly cycles and, 47–48
scope as basis of, 92
separating from execution in

Taylorism, 132
team cooperation in, 93
technical details of, 168
timescales and, 92–93
weekly cycles and, 46–47

Politics, of offshore development,
150

Postmodernism, 161
Practices

based on values, 14
compared with values, 14–15
defined, 13

implementing primary before
corollary, 61

ineffectiveness of dictating, 57
learning by example, 143
mapping, 58–59
multi-site development and, 150
overview of, 35–36
social relationships and, 154
win-win-win, 26

Practices, corollary, 61–73
code and tests, 66–67
customer involvement, 61–62
daily deployment, 68–69
incremental deployment, 62–63
negotiated scope contract, 69
pay-per-use, 69–70
root cause analysis, 64–66
shared code, 66
shrinking teams, 64
single code base, 67–68
team continuity, 63–64

Practices, primary, 37–54
continuous integration, 49–50
energized work, 41–42
incremental design, 51–53
informative workplace, 39–41
pair programming, 42–43
quarterly cycles, 47–48
sit together, 37–38
slack, 48
stories, 44–45
ten-minute build, 49
test-first programming, 50–51
weekly cycles, 46–47
whole team approach, 38–39

Predictability, as value, 22
Principles, 23–36

baby steps, 33
defined, 15
diversity, 29
economics, 25

Index 183

failure, 32
flow, 30
humanity, 24–25
improvement, 28
learning by example, 143
multi-site development and, 150
mutual benefit, 26
opportunity, 30–31
overview of, 23
quality, 32–33
redundancy, 31–32
reflection, 29–30
responsibility, 34
self-similarity, 27–28
social relationships and, 154

Priorities, 109
aligning, 55–57
business, 67
economics of, 25
funding, 129
implementing highest priority first,

7–8
product managers and, 77

Problems
complexity in scaling XP, 115
as opportunity for change, 30–31
people-oriented solutions, 38
resolving in flow-based environ-

ment, 30
steps for working with big, 112

Product development, 170
Product managers, 77–78
Productivity

Energized Work principle and, 41
Scientific Management and, 131
TPS, 136

Programmers
global demand, 151
sharing responsibility with business

interests, 155
as team role, 81

tests, 100
working with sponsors and users,

154
Programming

art of writing, 166
balancing human interests, 153–155
bibliographic references, 171–174
continuous integration practice,

49–50
pair programming principle, 42–43
for and by people, 168
pragmatic programmers, 140
short-cycle, 169
social and technical networks, 164
test-first programming, 50–51,

141, 143
Project management

bibliographic references, 168–171
Taylorist perspective, 170

Project managers
presenting information to organi-

zations, 113–114
story cards and, 95
as team role, 76–77

Projects
cancellations, 5
feedback and, 169
tracking projects by features, 169
trouble indicators, 126

Pull, model of development, 87–88
Push, model of development, 87–88

Q
Quality

principles in XP, 32–33
project management and, 92
quality control in Deming’s model,

167
social engineering and, 132–133
variable in zero-sum model,

161–162

184 Index

Quality-of-life, 22
Quarterly cycles, 47–48, 114

R
Redundancy principle, 31–32
Refactoring, xiv, xv, 172
Reflection principle, 29–30
Regression testing, 65
Relationships

business relationships, 1
community, 157
fostering strong, 154
improving, 146
mutual benefit as basis of, 26
relational skills of programmers,

81
separating intimate relationships

from work setting, 43
in societies of abundance and scar-

city, 167
undermined by misalignment of

authority and responsibility,
141

Release cycle, reducing, 6
Requirements

gathering, 137
misused terminology in develop-

ment, 44
Resources, in societies of abundance

and scarcity, 167
Respect

multi-site development and, 149
in Ohno’s management approach,

174
as value guiding development, 21

Responsibility
accepted, 4, 165
vs. control by others, xxii
misalignment undermines trust,

141
as principle in XP, 34

shared code and, 66
sharing between programmers and

business interests, 155
Revenue, measuring investment-to-

return, 79
Review, of human resources, 81–82
Rewards, as control mechanism, 166
Risk

big deployments and, 63
daily deployment and, 68
economic, 26
of error, 49
of failure, leading to success, 32
management, 73, 116, 169
negotiated scope contract and, 69
not asking others to take risks you

are not willing to take, 141
partitioning and, 112
silence as sound of risk piling up,

79
XP addresses at all levels, 7

Risk, in development process, 5–6
Roles flexibility, in XP programming,

82–83
Root cause analysis, 64–66
“Rosetta Stone” document, 114–115

S
Sabre Airline Solutions, 119–121
Sadalage, Pramod, 107
Safety

human needs, 24
Sit Together practice and, 38
as value, 22

Saff, David, 51
Scaffolding, incremental deploy-

ment, 63
Scaling XP, 111–117

consequences of failure, 116–117
investments, 113
organization size, 113–114

Index 185

overview of, 111
people, 111–112
problem complexity and, 115
solution complexity and, 115–116
time, 114–115

Schedules, slipping, 5
Scientific Management, 131–132,

174
Scope

business concerns dominating, 154
as control mechanism, 33
ongoing negotiation of, 69
planning as means of managing, 92
variable in zero-sum model,

161–162
Scope creep, 50
Seasons, as organizational timescale,

47
Security

certifiable, 116–117
as value, 22

Self-organizing systems, 164
Self-similarity principle, 27–28
Sexuality, in work environment, 43
Shape, self-similarity principle, 27
Shared code, 66
Shrinking teams, 64
Sicknesses, 41
Simplicity

bibliographic reference, 161
courage and, 21
dealing with excess complexity,

115–116
feedback and, 20
incremental design, 109–110
multi-site development and, 149
as value guiding development,

18–19
Single code base, 67–68, 150
Sit together as a practice, 37–38, 145
Skiing, 165

Skills, learning and applying, 141
Slack, as primary practice, 48
Social change, 1
Social engineering, 132–133
Social relationships

stratification lacking in TPS, 136
XP applied in context of, 139

Software development
advantages of XP for, 3–4
community for, 157–160
costs, 173
cycles, xvi
driving with stories, 169
DSDM approach to rapid develop-

ment, 170
electrical engineering paradigm,

169
global, 151
goals of XP and, xxi
limitations of Taylor’s model when

applied to, 132
low-cost base areas vs. high-cost

base areas, 150
margins in, 165
overproduction, 136–137
push model contrasted with pull

model, 87–88
risk in, 5–6
shortcomings of Taylorist

approach, 166
team-driven process, 12
Theory of Constraints and, 168
utility vs. technical virtuosity, 154
values guiding, 18

Software engineering, 49
Solution complexity, 115–116
Sponsors

executive sponsorship, 90,
119–121, 140

working with developers and users,
154

186 Index

Staffing
managing turnover, 6
scaling, 112
needs of good developers, 24
worker responsibility in TPS,

135–136
Static verification, 101
Stories

breaking into tasks, 47
deciding what to change first, 56
driving development from, 169
interaction designers writing, 75
planning and, 91, 93–95
as primary practice, 44–45
product managers writing, 77–78
project completion time and, 127
slack time and, 48
weekly cycles and, 46

Story cards
example, 45
in informative workplace, 40
in planning process, 96
presenting information to organi-

zations, 113–114
Stress tests, 101
Subscription model, software mar-

keting, 70
Success

as goal, 146
XP and, 4

Survival, problem solving and, 31
Systems

bibliographic references, 164–165
self-organizing, 164

T
Talking skills, 157
Tasks, breaking stories into, 47
Taylor, Frederick, 131–133, 150,

165, 167, 170

TDD (Test-Driven Development),
171

Team. See also Whole team practice
approach to coding style, 17
balancing individual needs with

team needs, 24
certification and accreditation, 146
common factors in good software

development teams, xxi–xxii
communication as basis of cooper-

ation, 18
continuity, 63–64
Disney’s, 163
diversity, 29
models, 66
orientation in XP, 6
reducing size (shrinking) of, 64
respect as key value to working of,

21
reverting to old habits, 140
scaling XP and, 112
sexuality complicating working of,

43
sharing power, 155
size thresholds, 39
software development as team-

driven process, 12
things that can go wrong, 168
undermined by misalignment of

authority and responsibility,
141

Team continuity, 63–64
Teamwork models, 66
Technical aspects

communication between business
and technical people, 172

excellence in, 4
technical fixes must be comple-

mented by people-oriented
solutions, 38

Index 187

Technical collaboration, 57
Technical employment, 150
Technical publications, 80–81
Technical writers, as team role,

80–81
Technique, as basis of practices, 13
Ten-minute build, as primary prac-

tice, 49
Test-Driven Development (TDD),

171
Test-first programming, 50–51, 141,

143, 171
Testers, as team role, 74–75
Tests, 97–102

automating, 100–101
code and test cycle, 66–67,

101–102
DCI, 98–99
defect rates, 5
defect reduction, 97–98
documenting, 26
double-checking, 100
early and often, xvi
feedback from continuous testing,

173
frequency of, 100
JUnit, 171
learning from failures, 32
measuring progress with, 102
regression testing, 65
static verification, 101
system architecture, 75–76
ten-minute build, 49
test-first programming, 50–51,

141, 143
unit tests, 173
weekly cycles and, 46, 74

Theory of Constraints, 85–90
bottlenecks and, 85–86
identifying constraints, 86–87

overall throughput vs. micro-
optimization, 88

push model of development con-
trasted with pull model, 87–88

software development and, 168
statement of theory, 86
understanding systems, 164
XP shifting constraints to non-

software development areas,
89–90

Thinking
ego and, 165
linear vs. nonlinear, 174
metaphors and, 162

Thomas, Dave, 140
ThoughtWorks, 107
Throughput, 88, 164
Time

long-running projects and,
114–115

planning and, 92–93
project management and, 92
quarterly cycles and, 47–48
seasons and, 47
time value of money, 25
variable in zero-sum model,

161–162
weekly cycles and, 46

The Tipping Point (Gladwell), 39
Toyota Production System (Ohno),

137
Toyota Production System (TPS),

135–138
parallels to software development,

136–137
production process, 136
social stratification lacking in, 136
waste reduced, 135–136
worker responsibility in, 135–136

Tracking, projects by features, 169

188 Index

Trust
defects and, 97–98
undermined by misalignment of

responsibility, 141
Turnbull, Colin, 4

U
Underwork, holding back effort

through, 6
Unit tests, xiv, xv, 173
UP (Unified Process), 170
User-interface design, 166
Users. See also Customers

as team role, 81
technical writers and, 80

Users, continued
tests based on perspective of, 102
working with developers and spon-

sors, 154

V
Values, 17–22

based on what really matters, 17
change and, 56
communication, 18
compared with practices, 14–15
courage, 20–21
defined, 14
feedback, 19–20
guiding development, 18
improvement and, 142
integrity and, 159
learning by example, 143
multi-site development and, 149
not using XP when organization

values at odds with XP values,
144

other important, 22
respect, 21
simplicity, 18–19

W
Wabi-Sabi, 161
Waste

customer involvement in reduc-
ing, 61

eliminating, 28
overcommitment and, 48
overproduction and, 136–137
planning as necessary waste, 46–47
redundancy and, 32
Toyota success in eliminating,

135–136
Waterfall process, 87, 146
Weekly cycles, 46–47, 74
Whole team practice, 73–83

architects, 75–76
customers, 61–62
executives, 78–79
failure to work together,

73–74
human resources, 81–82
interaction designers, 75
overview of, 38–39
product managers, 77–78
programmers, 81
project managers, 76–77
role flexibility and, 82–83
technical writers, 80–81
testers, 74–75
users, 81

Win-win-win practices, 26
Work hours

balancing with other human needs,
24

energized work principle and, 41
Workspace

design of, 163–164
informative workspace practice,

39–41
sit together practice, 38

Index 189

X
XP, applying, 139–144

coach selection, 143–144
executive sponsorship, 119–121,

140
improvements, 142
learning and applying skills, 141
organization reverting to old hab-

its, ways of doing things, 140
social relationships and, 139
staring with yourself, 140–141
when not to apply XP, 144

XP, getting started, 55–59
awareness of need for change,

56–57
change starts with yourself, 57
changing one thing at a time, 55
deciding what to change first, 56
mapping practices and, 58–59

XP, overview
aspects of, 2
benefits of, 3
business relationships and, 1
certification and accreditation,

146–147
constraints shifted to non-

software development areas,
89–90

defined, iv, 6–7
distinguishing characteristics, 2
metrics for, 145–146
risk in development process and,

5–6
social change and, 1
success and, 4

Z
Zero-sum model, 161–162

	Contents
	Foreword to the Second Edition
	Foreword to the First Edition
	Preface
	Chapter 1 What is XP?
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

