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Praise for Extreme Programming Explained, Second Edition

“In this second edition of Extreme Programming Explained, Kent Beck orga-
nizes and presents five years’ worth of experiences, growth, and change revolv-
ing around XP. If you are seriously interested in understanding how you and
your team can start down the path of improvement with XP, you must read
this book.”

—Francesco Cirillo, Chief Executive Officer, XPLabs S.R.L.

“The first edition of this book told us what XP was—it changed the way many
of us think about software development. This second edition takes it farther
and gives us a lot more of the ‘why’ of XP, the motivations and the principles
behind the practices. This is great stuff. Armed with the ‘what’ and the ‘why,’
we can now all set out to confidently work on the ‘how’: how to run our
projects better, and how to get agile techniques adopted in our organizations.”

—Dave Thomas, The Pragmatic Programmers LLC

“This book is dynamite! It was revolutionary when it first appeared a few years
ago, and this new edition is equally profound. For those who insist on cook-
book checklists, there’s an excellent chapter on ‘primary practices,’ but I urge
you to begin by truly contemplating the meaning of the opening sentence in
the first chapter of Kent Beck’s book: ‘XP is about social change.’ You should
do whatever it takes to ensure that every IT professional and every IT man-
ager—all the way up to the CIO—has a copy of Extreme Programming
Explained on his or her desk.”

—Ed Yourdon, author and consultant

“XP is a powerful set of concepts for simplifying the process of software
design, development, and testing. It is about minimalism and incrementalism,
which are especially useful principles when tackling complex problems that
require a balance of creativity and discipline.”

—Michael A. Cusumano, Professor, MIT Sloan School of Management, and
author of The Business of Software

“Extreme Programming Explained is the work of a talented and passionate
craftsman. Kent Beck has brought together a compelling collection of ideas
about programming and management that deserves your full attention. My
only beef is that our profession has gotten to a point where such common-
sense ideas are labeled ‘extreme.’ . . .”

—Lou Mazzucchelli, Fellow, Cutter Business Technology Council



“If your organization is ready for a change in the way it develops software,
there’s the slow incremental approach, fixing things one by one, or the fast
track, jumping feet first into Extreme Programming. Do not be frightened by
the name, it is not that extreme at all. It is mostly good old recipes and com-
mon sense, nicely integrated together, getting rid of all the fat that has accu-
mulated over the years.”

—Philippe Kruchten, UBC, Vancouver, British Columbia

“Sometimes revolutionaries get left behind as the movement they started takes
on a life of its own. In this book, Kent Beck shows that he remains ahead of
the curve, leading XP to its next level. Incorporating five years of feedback, this
book takes a fresh look at what it takes to develop better software in less time
and for less money. There are no silver bullets here, just a set of practical prin-
ciples that, when used wisely, can lead to dramatic improvements in software
development productivity.”

—Mary Poppendieck, author of Lean Software Development: An Agile Toolkit

“Kent Beck has revised his classic book based on five more years of applying and
teaching XP. He shows how the path to XP is both easy and hard: It can be
started with fewer practices, and yet it challenges teams to go farther than ever.”

—William Wake, independent consultant

“With new insights, wisdom from experience and clearer explanations of the
art of Extreme Programming, this edition of Beck’s classic will help many real-
ize the dream of outstanding software development.”

—Joshua Kerievsky, author, Refactoring to Patterns, and Founder, Industrial
Logic, Inc.

“XP has changed the way our industry thinks about software development. Its
brilliant simplicity, focused execution, and insistence on fact-based planning
over speculation have set a new standard for software delivery.”

—David Trowbridge, Architect, Microsoft Corporation
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To Cindee
Without you, this book would still be about programmers hiding in a
corner. Without you, I would still be one of those programmers.
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Note To Programmers
Even programmers can be whole people in the real world. XP is an
opportunity to test yourself, to be yourself, to realize that maybe you’ve
been fine all along and just hanging with the wrong crowd.
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Foreword to
the Second Edition

Wow—the second edition. I cannot believe that five years have already
passed since the appearance of the first edition. When Kent pinged me
to write a foreword to the second edition I asked him for a manuscript
version with change bars. What a silly request—the book is a full
rewrite! In the second edition of XP Explained Kent revisits XP and
applies the XP paradigm—stay aware, adapt, change—to XP itself. Kent
has revisited, cleaned-up, and refactored every bit of XP Explained and
integrated many new insights. The result is XP Explained even better
explained!

This is an excellent opportunity to reflect on how XP has influenced
my own software development. Shortly after the first edition of XP
Explained I became involved in the Eclipse project and it is now
absorbing all my software energy. Eclipse isn’t run under the pure XP
flag. We follow agile practices; however, the XP influences are easy to
spot. The most obvious one is that we have encoded several XP prac-
tices directly into our tool. Refactoring, unit testing, and immediate
feedback as you code are now an integral part of our toolset. Moreover,
since we are “eating our own dog food” we use these practices in our
day-to-day development. Even more interesting are the XP influences
one can spot in our development process. Eclipse is an open source
project and one of our goals is to practice completely transparent devel-
opment.  The rationale is simple; if you don’t know where the project is
going you cannot help out or provide feedback. XP practices help us to
achieve this goal.
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Here is how we apply some of these practices:

✧ Testing early, often and automated—To get a green check mark
for our latest builds more than 21,000 unit tests have to pass. 

✧ Incremental design—We invest in the design every day, but we have
the additional constraint that we need to keep our APIs stable. 

✧ Daily deployment—Components deploy their code at least once
per day and develop on top of the deployed code to get immedi-
ate feedback and to catch problems early. 

✧ Customer involvement—We are lucky to have an active user com-
munity that isn’t shy and provides us with continuous feedback.
We listen and do our best to be responsive. 

✧ Continuous integration—The latest code is built every night. The
nightly builds provide us with insights about cross-component
integration problems. Once per week we do an integration build
where we ensure integrity across all components. 

✧ Short development cycles—Our cycles are longer than the XP-sug-
gested one week cycles, but the goals are the same. Each of our six
week cycles ends in a milestone build which have become the
heartbeat of our project. The goal of each milestone build is to
show progress (which keeps us honest) and to deliver it with a
high enough level of quality that our community can really use it
and provide feedback (which keeps us even more honest). 

✧ Incremental planning—After a release we develop an embryonic
overall plan which we evolve throughout the release cycle. This
plan is posted on our website early so that our user community
can join the dialog. The exception is the milestones, which are
fixed in the first planning iteration since they define the heartbeat
of our project.

Despite the fact that we have not adopted XP in its entirety, we are
getting a lot out of the above XP practices. In particular, they help us to
reduce our development stress! All these practices, underpinned by a
strong team committed to shipping quality software on time, are our
keys to hitting the projected milestones and ship dates with precision.
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Kent is continuing to challenge my views on software development.
While reading the book I’ve discovered several practices that I will add
to my try-list. I suggest you do the same and accept the XP invitation
to improve the way you develop software and to create outstanding
software.

Erich Gamma
September 2004
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xix

Foreword to
the First Edition

Extreme Programming (XP) nominates coding as the key activity
throughout a software project. This can’t possibly work! 

Time to reflect for a second about my own development work. I
work in a just-in-time software culture with compressed release cycles
spiced up with high technical risk. Having to make change your friend
is a survival skill. Communication in and across often geographically
separated teams is done with code. We read code to understand new or
evolving subsystem APIs. The life cycle and behavior of complex objects
is defined in test cases, again in code. Problem reports come with test
cases demonstrating the problem, once more in code. Finally, we con-
tinuously improve existing code with refactoring. Obviously our devel-
opment is code-centric, but we successfully deliver software in time, so
this can work after all.

It would be wrong to conclude that all that is needed to deliver soft-
ware is daredevil programming. Delivering software is hard, and deliv-
ering quality software in time is even harder. To make it work requires
the disciplined use of additional best practices. This is where Kent starts
in his thought-provoking book on XP.

Kent was among the leaders at Tektronix to recognize the potential
of man in the loop pair programming in Smalltalk for complex engineer-
ing applications. Together with Ward Cunningham, he inspired much of
the pattern movement that has had such an impact on my career. XP
describes an approach to development that combines practices used by
many successful developers that got buried under the massive literature
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on software methods and process. Like patterns, XP builds on best prac-
tices such as unit testing, pair programming, and refactoring. In XP
these practices are combined so that they complement and often control
each other. The focus is on the interplay of the different practices, which
makes this book an important contribution. There is a single goal to
deliver software with the right functionality and hitting dates. While
OTI’s successful Just In Time Software process is not pure XP, it has
many common threads.

I’ve enjoyed my interaction with Kent and practicing XP episodes on
a little thing called JUnit. His views and approaches always challenge
the way I approach software development. There is no doubt that XP
challenges some traditional big M approaches; this book will let you
decide whether you want to embrace XP or not.

Erich Gamma
August 1999
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Preface

The goal of Extreme Programming (XP) is outstanding software devel-
opment. Software can be developed at lower cost, with fewer defects,
with higher productivity, and with much higher return on investment.
The same teams that are struggling today can achieve these results by
careful attention to and refinement of how they work, by pushing ordi-
nary development practices to the extreme.

There are better ways and worse ways to develop software. Good
teams are more alike than they are different. No matter how good or
bad your team you can always improve. I intend this book as a resource
for you as you try to improve.

This book is my personal take on what it is that good software devel-
opment teams have in common. I’ve taken things I’ve done that have
worked well and things I’ve seen done that worked well and distilled
them to what I think is their purest, most “extreme” form. What I’m
most struck with in this process is the limitations of my own imagina-
tion in this effort. Practices that seemed impossibly extreme five years
ago, when the first edition of this book was published, are now com-
mon. Five years from now the practices in this book will probably seem
conservative.

If I only talked about what good teams do I would be missing the
point. There are legitimate differences between outstanding teams’
actions based on the context in which they work. Looking below the
surface, where their activities become ripples in the river hinting at
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shapes below, there is an intellectual and intuitive substrate to software
development excellence that I have also tried to distill and document.

Critics of the first edition have complained that it tries to force them
to program in a certain way. Aside from the absurdity of me being able
to control anyone else’s behavior, I’m embarrassed to say that was my
intention. Relinquishing the illusion of control of other people’s behav-
ior and acknowledging each individual’s responsibility for his or her
own choices, in this edition I have tried to rephrase my message in a
positive, inclusive way. I present proven practices you can add to your
bag of tricks.

✧ No matter the circumstance you can always improve.
✧ You can always start improving with yourself.
✧ You can always start improving today.
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Finally, I cannot possibly give sufficient thanks to my wife, develop-
mental editor, friend, and intellectual colleague Cynthia Andres.
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Chapter 1

What is XP?

Extreme Programming (XP) is about social change. It is about letting
go of habits and patterns that were adaptive in the past, but now get in
the way of us doing our best work. It is about giving up the defenses
that protect us but interfere with our productivity. It may leave us feel-
ing exposed. 

It is about being open about what we are capable of doing and then
doing it. And, allowing and expecting others to do the same. It is
about getting past our adolescent surety that “I know better than
everyone else and all I need is to be left alone to be the greatest.” It is
about finding our adult place in the larger world, finding our place in
the community including the realm of business/work. It is about the
process of becoming more of our best selves and in the process our
best as developers. And, it is about writing great code that is really
good for business.

Good relationships lead to good business. Productivity and confi-
dence are related to our human relationships in the workplace as well as
to our coding or other work activities. You need both technique and
good relationships to be successful. XP addresses both.

Prepare for success. Don’t protect yourself from success by holding
back. Do your best and then deal with the consequences. That’s
extreme. You leave yourself exposed. For some people that is incredi-
bly scary, for others it’s daily life. That is why there are such polarized
reactions to XP.
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XP is a style of software development focusing on excellent applica-
tion of programming techniques, clear communication, and teamwork
which allows us to accomplish things we previously could not even
imagine. XP includes:

✧ A philosophy of software development based on the values of
communication, feedback, simplicity, courage, and respect.

✧ A body of practices proven useful in improving software develop-
ment. The practices complement each other, amplifying their
effects. They are chosen as expressions of the values.

✧ A set of complementary principles, intellectual techniques for
translating the values into practice, useful when there isn’t a prac-
tice handy for your particular problem.

✧ A community that shares these values and many of the same
practices.

XP is a path of improvement to excellence for people coming together
to develop software. It is distinguished from other methodologies by:

✧ Its short development cycles, resulting in early, concrete, and con-
tinuing feedback.

✧ Its incremental planning approach, which quickly comes up with an
overall plan that is expected to evolve through the life of the project.

✧ Its ability to flexibly schedule the implementation of functionality,
responding to changing business needs.

✧ Its reliance on automated tests written by programmers, custom-
ers, and testers to monitor the progress of development, to allow
the system to evolve, and to catch defects early.

✧ Its reliance on oral communication, tests, and source code to
communicate system structure and intent.

✧ Its reliance on an evolutionary design process that lasts as long as
the system lasts.

✧ Its reliance on the close collaboration of actively engaged individ-
uals with ordinary talent.

✧ Its reliance on practices that work with both the short-term instincts
of the team members and the long-term interests of the project.
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The first edition of Extreme Programming Explained: Embrace
Change had a definition of XP with the advantage of clarity: “XP is a
lightweight methodology for small-to-medium-sized teams developing
software in the face of vague or rapidly changing requirements.” While
this statement was true about the origin and intent of XP, it doesn’t tell
the whole story. In the five years since the publication of the first edi-
tion teams have pushed XP much further than the original definition.
XP can be described this way:

✧ XP is lightweight. In XP you only do what you need to do to cre-
ate value for the customer. You can’t carry a lot of baggage and
move fast. However, there is no freeze-dried software process.
The body of technical knowledge necessary to be an outstanding
team is large and growing.

✧ XP is a methodology based on addressing constraints in software
development. It does not address project portfolio management,
financial justification of projects, operations, marketing, or sales.
XP has implications in all of these areas, but does not address
these practices directly. Methodology is often interpreted to mean
“a set of rules to follow that guarantee success.” Methodologies
don’t work like programs. People aren’t computers. Every team
does XP differently with varying degrees of success.

✧ XP can work with teams of any size. Five years ago, I did not want
to claim too much. Others have since put XP to use in a wide
range of projects and have had success with both large and small
projects and teams. The values and principles behind XP are appli-
cable at any scale. The practices need to be augmented and altered
when many people are involved.

✧ XP adapts to vague or rapidly changing requirements. XP is still
good for this situation, which is fortunate because requirements
need to change to adapt to rapid shifts in the modern business
world. However, teams have also successfully used XP where
requirements don’t seem volatile, like porting projects.

XP is my attempt to reconcile humanity and productivity in my own
practice of software development and to share that reconciliation. I had
begun to notice that the more humanely I treated myself and others,
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the more productive we all became. The key to success lies not in self-
mortification but in acceptance that we are people in a person-to-per-
son business.

Technique also matters. We are technical people in a technical field.
There are better ways and worse ways of working. The pursuit of excel-
lence in technique is critical in a social style of development. Technique
supports trust relationships. If you can accurately estimate your work,
deliver quality the first time, and create rapid feedback loops; then you
can be a trustworthy partner. XP demands that participants learn a high
level of technique in service of the team’s goals.

XP means giving up old habits of working for new ways tailored to
today’s reality. The habits, attitudes, and values of our early years
worked then; but may not be our best choices in the current world of
team software development. Good, safe social interaction is as neces-
sary to successful XP development as good technical skills.

One example is the concept that vulnerability is safety. The old habit
of holding something back in order to be safe doesn’t really work.
Holding back that last 20% of effort doesn’t protect me. When my
project fails, the fact that I didn’t give my all doesn’t actually make me
feel better. It doesn’t protect me from a sense of failure that I couldn’t
make the project work. If I do my very best writing a program and peo-
ple don’t like it, I can still feel justly good about myself. This attitude
allows me to feel safe no matter the circumstance. If how I feel is based
on an accurate read on whether I did my best, I can feel good about
myself by doing my best.

XP teams play full out to win and accept responsibility for the conse-
quences. When self-worth is not tied to the project, we are free to do
our best work in any circumstance. In XP you don’t prepare for failure.
Keeping a little distance in relationships, holding back effort either
through underwork or overwork, putting off feedback for another
round of responsibility diffusion: none of these behaviors have a place
on an XP team.

You may have enough time, money, or skills on your team or you may
not; but it is always best to act as if there is going to be enough. This
“mentality of sufficiency” is movingly documented by anthropologist
Colin Turnbull in The Mountain People and The Forest People. He con-
trasts two societies: a resource-starved tribe of lying, cheating backstab-
bers and a resource-rich, cooperative, loving tribe. I often ask developers
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in a dilemma, “How would you do it if you had enough time?” You can
do your best work even when there are constraints. Fussing about the
constraints distracts you from your goals. Your clear self does the best
work no matter what the constraints are. 

If you have six weeks to get a project done, the only thing you con-
trol is your own behavior. Will you get six weeks’ worth of work done
or less? You can’t control others’ expectations. You can tell them what
you know about the project so their expectations have a chance of
matching reality. My terror of deadlines vanished when I learned this
lesson. It’s not my job to “manage” someone else’s expectations. It’s
their job to manage their own expectations. It’s my job to do my best
and to communicate clearly.

XP is a software development discipline that addresses risk at all lev-
els of the development process. XP is also productive, produces high-
quality software, and is a lot of fun to execute. How does XP address
the risks in the development process?

✧ Schedule slips—XP calls for short release cycles, a few months at
most, so the scope of any slip is limited. Within a release, XP uses
one-week iterations of customer-requested features to create fine-
grained feedback about progress. Within an iteration, XP plans
with short tasks, so the team can solve problems during the cycle.
Finally, XP calls for implementing the highest priority features first,
so any features that slip past the release will be of lower value.

✧ Project canceled—XP asks the business-oriented part of the team
to choose the smallest release that makes the most business sense,
so there is less to go wrong before deploying and the value of the
software is greatest.

✧ System goes sour—XP creates and maintains a comprehensive suite
of automated tests, which are run and rerun after every change
(many times a day) to ensure a quality baseline. XP always keeps
the system in deployable condition. Problems are not allowed to
accumulate.

✧ Defect rate—XP tests from the perspective of both programmers
writing tests function-by-function and customers writing tests
program-feature-by-program-feature.

✧ Business misunderstood—XP calls for business-oriented people to
be first-class members of the team. The specification of the project
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is continuously refined during development, so learning by the
customer and the team can be reflected in the software.

✧ Business changes—XP shortens the release cycle, so there is less
change during the development of a single release. During a
release, the customer is welcome to substitute new functionality
for functionality not yet completed. The team doesn’t even notice
if it is working on newly discovered functionality or features
defined years ago.

✧ False feature rich—XP insists that only the highest priority tasks
are addressed.

✧ Staff turnover—XP asks programmers to accept responsibility for
estimating and completing their own work, gives them feedback
about the actual time taken so their estimates can improve, and
respects those estimates. The rules for who can make and change
estimates are clear. Thus, there is less chance for a programmer to
get frustrated by being asked to do the obviously impossible. XP
also encourages human contact among the team, reducing the
loneliness that is often at the heart of job dissatisfaction. Finally,
XP incorporates an explicit model of staff turnover. New team
members are encouraged to gradually accept more and more
responsibility, and are assisted along the way by each other and by
existing programmers.

XP assumes that you see yourself as part of a team, ideally one with
clear goals and a plan of execution. XP assumes that you want to work
together. XP assumes that change can be made inexpensive using this
method. XP assumes that you want to grow, to improve your skills, and
to improve your relationships. XP assumes you are willing to make
changes to meet those goals.

Now I’m ready to answer the question posed by this chapter: what
is XP?

✧ XP is giving up old, ineffective technical and social habits in favor
of new ones that work.

✧ XP is fully appreciating yourself for total effort today.
✧ XP is striving to do better tomorrow.
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✧ XP is evaluating yourself by your contribution to the team’s
shared goals.

✧ XP is asking to get some of your human needs met through soft-
ware development.

The rest of this book explores what to do to effect these changes and
speculates about why they work, personally and economically. The
book is divided into two sections. The first is practical, describing a way
of doing and thinking about software development that both assumes
and satisfies human needs, including the need for relationships. The
second section covers the philosophical and historical roots of XP and
places XP in today’s context.

There are as many ways of reading this book and applying XP as
there are of getting into a cool pool on a hot day: one toe at a time,
walking steadily down the steps, the cannonball, the racing dive. They
all meet the goal of getting into the water. Your choice may be based
on style, speed, efficiency, or fear. Only you can decide which is right
for you. I hope that in reading and applying this book you will come to
a deeper understanding of why you are involved in software develop-
ment and how you can find satisfaction from this work.
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through, 6
Unit tests, xiv, xv, 173
UP (Unified Process), 170
User-interface design, 166
Users. See also Customers

as team role, 81
technical writers and, 80

Users, continued
tests based on perspective of, 102
working with developers and spon-

sors, 154

V
Values, 17–22

based on what really matters, 17
change and, 56
communication, 18
compared with practices, 14–15
courage, 20–21
defined, 14
feedback, 19–20
guiding development, 18
improvement and, 142
integrity and, 159
learning by example, 143
multi-site development and, 149
not using XP when organization 

values at odds with XP values, 
144

other important, 22
respect, 21
simplicity, 18–19

W
Wabi-Sabi, 161
Waste

customer involvement in reduc-
ing, 61

eliminating, 28
overcommitment and, 48
overproduction and, 136–137
planning as necessary waste, 46–47
redundancy and, 32
Toyota success in eliminating, 

135–136
Waterfall process, 87, 146
Weekly cycles, 46–47, 74
Whole team practice, 73–83

architects, 75–76
customers, 61–62
executives, 78–79
failure to work together, 

73–74
human resources, 81–82
interaction designers, 75
overview of, 38–39
product managers, 77–78
programmers, 81
project managers, 76–77
role flexibility and, 82–83
technical writers, 80–81
testers, 74–75
users, 81

Win-win-win practices, 26
Work hours

balancing with other human needs, 
24

energized work principle and, 41
Workspace

design of, 163–164
informative workspace practice, 

39–41
sit together practice, 38



Index 189

X
XP, applying, 139–144

coach selection, 143–144
executive sponsorship, 119–121, 

140
improvements, 142
learning and applying skills, 141
organization reverting to old hab-

its, ways of doing things, 140
social relationships and, 139
staring with yourself, 140–141
when not to apply XP, 144

XP, getting started, 55–59
awareness of need for change, 

56–57
change starts with yourself, 57
changing one thing at a time, 55
deciding what to change first, 56
mapping practices and, 58–59

XP, overview
aspects of, 2
benefits of, 3
business relationships and, 1
certification and accreditation, 

146–147
constraints shifted to non-

software development areas, 
89–90

defined, iv, 6–7
distinguishing characteristics, 2
metrics for, 145–146
risk in development process and, 

5–6
social change and, 1
success and, 4

Z
Zero-sum model, 161–162
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