

“Think you know Microsoft Excel? Think again. This book covers intermediate (class mod-
ules, dictator applications, etc.) to advanced topics like XLLs, C APIs and Web Services.
It offers plenty of easy to understand code listings that show exactly what the authors are
trying to convey without forcing the readers to follow step-by-step.”

Deepak Sharma, Sr. Systems Specialist, Tata Infotech Ltd.

“This book takes off where other Excel books stop. It covers Excel programming beyond
VBA and looks at the professional issues—security, distribution, working with databas-
es—using VB, VBA.NET and Windows API calls. The authors’ depth and practical expe-
rience shows in the details. They explain complex issues clearly, describe best practices
and point out traps to avoid.”

Shauna Kelly, Microsoft Office MVP, www.ShaunaKelly.com

“The approach of following an application’s development is very effective in developing
the concepts as the chapters unfold. The practical, working examples used are
relevant to many professional programmers.”

Jan Karel Pieterse, JKP Application Development Services, www.jkp-ads.com

“This book stands out. While there are plenty of Excel books, I am not aware of any organ-
ized in this way. Information on .NET, and C, as well as other unique and useful chapters
makes this a great offering.”

Ken Bluttman, Author of Developing Microsoft Office Solutions

“This book explains difficult concepts in detail. The authors provide more than one
method for complex development topics, along with the advantages and disadvantages of
using the various methods described. They have my applause for the
incorporation of development best practices.”

Beth Melton, Microsoft Office MVP

Praise for Professional Excel Development

www.ShaunaKelly.com
www.jkp-ads.com

This page intentionally left blank

Professional Excel Development

This page intentionally left blank

Professional Excel
Development

The Definitive Guide to
Developing Applications Using

Microsoft Excel and VBA

Stephen Bullen, Rob Bovey, John Green

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Catalog Number: 2004114575

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-321-26250-6
Text printed in the United States on recycled paper at Phoenix BookTech in Hagerstown, Maryland.
First printing, February, 2005

www.awprofessional.com

vii

Contents

Acknowledgments .xv
About the Authors .xvii

Chapter 1: Introduction .1

About This Book .1
The Excel Developer .2
Excel as an Application Development Platform 3
Structure .7
Examples .8
Supported Versions .9
Typefaces .9
On the CD .10
Help and Support .11
Feedback .12

Chapter 2: Application Architectures .13

Concepts .13
Conclusion .25

Chapter 3: Excel and VBA Development Best Practices 29

Naming Conventions .29
Best Practices for Application Structure and Organization 42
General Application Development Best Practices 47
Conclusion .68

Chapter 4: Worksheet Design .69

Principles of Good Worksheet UI Design .69
Program Rows and Columns: The Fundamental UI
Design Technique .70

Defined Names .71
Styles .78
User Interface Drawing Techniques .84
Data Validation .89
Conditional Formatting .92
Using Controls on Worksheets .99
Practical Example .101
Conclusion .107

Chapter 5: Function, General and Application-Specific Add-ins 109

The Four Stages of an Application .109
Function Library Add-ins .112
General Add-ins .120
Application-Specific Add-ins .121
Practical Example .128
Conclusion .142

Chapter 6: Dictator Applications .143

Structure of a Dictator Application .143
Practical Example .159
Conclusion .166

Chapter 7: Using Class Modules to Create Objects 167

Creating Objects .167
Creating a Collection .172
Trapping Events .179
Raising Events .182
Practical Example .190
Conclusion .197

Chapter 8: Advanced Command Bar Handling 199

Command Bar Design .199
Table-Driven Command Bars .201
Putting It All Together .222
Loading Custom Icons from Files .232

viii Contents

Hooking Command Bar Control Events .237
Practical Example .246
Conclusion .253

Chapter 9: Understanding and Using Windows API Calls 255

Overview .255
Working with the Screen .261
Working with Windows .264
Working with the Keyboard .274
Working with the File System and Network 279
Practical Examples .294
Conclusion .297

Chapter 10: Userform Design and Best Practices 299

Principles .299
Control Fundamentals .309
Visual Effects .316
Userform Positioning and Sizing .325
Wizards .332
Dynamic Userforms .336
Modeless Userforms .344
Control Specifics .350
Practical Examples .357
Conclusion .358

Chapter 11: Interfaces .359

What Is an Interface? .359
Code Reuse .361
Defining a Custom Interface .363
Implementing a Custom Interface .364
Using a Custom Interface .366
Polymorphic Classes .368
Improving Robustness .373
Simplifying Development .374
A Plug-in Architecture .386
Practical Example .388
Conclusion .389

Contents ix

Chapter 12: VBA Error Handling .391

Error-Handling Concepts .391
The Single Exit Point Principle .401
Simple Error Handling .402
Complex Project Error Handler Organization 403
The Central Error Handler .408
Error Handling in Classes and Userforms 415
Putting It All Together .416
Practical Example .423
Conclusion .433

Chapter 13: Programming with Databases 435

An Introduction to Databases .435
Designing the Data Access Tier .453
Data Access with SQL and ADO .454
Further Reading .475
Practical Example .477
Conclusion .489

Chapter 14: Data Manipulation Techniques 491

Excel’s Data Structures .491
Data Processing Features .497
Advanced Functions .509
Conclusion .517

Chapter 15: Advanced Charting Techniques 519

Fundamental Techniques .519
VBA Techniques .537
Conclusion .543

Chapter 16: VBA Debugging .545

Basic VBA Debugging Techniques .545
The Immediate Window (Ctrl+G) .556
The Call Stack (Ctrl+L) .560
The Watch Window .561

x Contents

The Locals Window .573
The Object Browser (F2) .574
Creating and Running a Test Harness .578
Using Assertions .581
Debugging Shortcut Keys that Every Developer Should Know 583
Conclusion .585

Chapter 17: Optimizing VBA Performance 587

Measuring Performance .587
The PerfMon Utility .588
Creative Thinking .592
Macro-Optimization .598
Micro-Optimization .609
Conclusion .616

Chapter 18: Controlling Other Office Applications 619

Fundamentals .619
The Primary Office Application Object Models 635
Practical Example .648
Conclusion .649

Chapter 19: XLLs and the C API .651

Why Create an XLL-Based Worksheet Function 651
Creating an XLL Project in Visual Studio 652
The Structure of an XLL .657
The XLOPER and OPER Data Types .667
The Excel4 Function .672
Commonly Used C API Functions .674
XLOPERs and Memory Management .675
Registering and Unregistering Custom Worksheet Functions 676
Sample Application Function .679
Debugging the Worksheet Functions .682
Miscellaneous Topics .683
Additional Resources .684
Conclusion .686

Contents xi

Chapter 20: Combining Excel and Visual Basic 6 687

A Hello World ActiveX DLL .688
Why Use VB6 ActiveX DLLs in Excel VBA Projects 704
In-Process versus Out-of-Process .719
Automating Excel From a VB6 EXE .720
Practical Examples .729
Conclusion .743

Chapter 21: Writing Add-ins with Visual Basic 6 745

A Hello World Add-in .745
The Add-in Designer .749
Installation Considerations .753
The AddinInstance Events .755
Command Bar Handling .757
Why Use a COM Add-in? .763
Automation Add-ins .765
Practical Example .768
Conclusion .769

Chapter 22: Using VB.NET and the Visual Studio Tools
for Office .771

Overview .771
How to Leverage the .NET Framework .774
Managed Workbooks .775
Managed Excel Add-ins .795
Hybrid VBA/VSTO Solutions .796
The VSTO Security Model .799
The Big Issues .805
Further Reading .812
Practical Example .812
Conclusion .816

Chapter 23: Excel, XML and Web Services 819

XML .819
Web Services .843
Practical Example .850
Conclusion .861

xii Contents

Chapter 24: Providing Help, Securing, Packaging
and Distributing .863

Providing Help .863
Securing .872
Packaging .877
Distributing .883
Conclusion .884

Index .885

Contents xiii

This page intentionally left blank

Acknowledgments

xv

First and foremost, this book would never have been written without the
support of our partners and families, who have graciously put up with our
insatiable computer habits and many late nights over the past year. Neither
would it have been done without our dogs, who kept our feet warm while
we worked and forced us to get out of the house at least once each day.

We all owe a debt of gratitude to the Excel group at Microsoft, past and
present, for making Excel the amazing development platform it is today. It
is their dedication and commitment to us that makes Excel application
development possible and enjoyable. They have repeatedly demonstrated
their willingness to listen to and implement our suggestions over the years.

There are many people we want to thank at Addison-Wesley
Professional, particularly Amy Fleischer for bringing us together, Stephane
Thomas, Ebony Haight and Joan Murray for their support while writing
the book, Kristy Hart for steering us through the production process and
Curt Johnson for getting it on the shelves.

The quality of a technical book depends as much on the reviewers as
the authors, so we want to thank all our technical reviewers. Most of your
suggestions were implemented. At the risk of offending the others, we
would particularly like to thank Dick Kusleika and John Peltier for the
quality and rigor of their reviews and Beth Melton for finding numerous
errors nobody else spotted.

Lastly, we want to thank you for buying this book. Please tell us what
you think about it, either by e-mail or by writing a review at Amazon.com.

Thank you,

Stephen Bullen
Rob Bovey
John Green

This page intentionally left blank

About the Authors

xvii

Stephen Bullen

stephen@oaltd.co.uk

Stephen Bullen lives in Woodford Green, London, England, with his part-
ner Clare, daughter Becky and their dog, Fluffy. A graduate of Oxford
University, Stephen has an MA in Engineering, Economics and
Management, providing a unique blend of both business and technical
skills.

He has been providing Excel consulting and application development
services since 1994, originally as an employee of Price Waterhouse
Management Consultants and since 1997 as an independent consultant
trading under the name of Business Modelling Solutions Limited. In
September 2004, BMS changed its name to Office Automation Limited. If
you would like to make use of Stephen’s services, please contact him at
stephen@oaltd.co.uk.

The Office Automation Web site, www.oaltd.co.uk, provides a
number of helpful and interesting utilities, examples, tips and techniques
to help in your use of Excel and development of Excel applications.

Stephen contributed chapters to John Green’s Excel 2000 VBA Pro-
grammer’s Reference and co-authored the sequel, Excel 2002 VBA
Programmer’s Reference (both published by Wrox Press).

In addition to his consulting and writing assignments, Stephen actively
supports the Excel user community in Microsoft’s peer-to-peer support
newsgroups. In recognition of his knowledge, skills and contributions,
Microsoft has awarded him the title of Most Valuable Professional each
year since 1996.

www.oaltd.co.uk

Rob Bovey

robbovey@appspro.com

Rob Bovey is president of Application Professionals, a software develop-
ment company specializing in Microsoft Office, Visual Basic, and SQL
Server applications. He brings many years’ experience creating financial,
accounting and executive information systems for corporate users to
Application Professionals. You can visit the Application Professionals Web
site at www.appspro.com.

Rob developed several add-ins shipped by Microsoft for Microsoft
Excel, co-authored the Microsoft Excel 97 Developers Kit and contributed
to the Excel 2002 VBA Programmer’s Reference. He earned his Bachelor
of Science degree from The Rochester Institute of Technology and his
MBA from the University of North Carolina at Chapel Hill. He is a
Microsoft Certified Systems Engineer (MCSE) and a Microsoft Certified
Solution Developer (MCSD). Microsoft has awarded him the title of Most
Valuable Professional each year since 1995. He currently resides in
Edmonds, Washington, with his wife Michelle, and their two black labs,
Jasper and Jade.

John Green

greenj@bigpond.net.au

John Green lives and works in Sydney, Australia, as an independent com-
puter consultant, specializing in integrating Excel, Access, Word and
Outlook using VBA. He has more than 30 years of computing experience,
a Chemical Engineering degree and an MBA.

He wrote his first programs in FORTRAN, took a part in the evolution
of specialized planning languages on mainframes and, in the early 1980s,
became interested in spreadsheet systems, including 1-2-3 and Excel.

John established his company, Execuplan Consulting, in 1980, devel-
oping computer-based planning applications and training users and
developers.

John has had regular columns in a number of Australian magazines and
has contributed chapters to a number of books, including Excel Expert
Solutions and Using Visual Basic for Applications 5, published by Que. He
is the principal author of Excel 2000 VBA Programmer’s Reference and its
subsequent editions, published by Wrox Press.

Since 1995 he has been accorded the status of Most Valuable
Professional by Microsoft for his contributions to the CompuServe Excel
forum and MS Internet newsgroups.

www.appspro.com

C H A P T E R 9

Understanding and Using
Windows API Calls

255

In the Programming with the Windows API chapter of our Excel 2002 VBA
Programmers Reference, we approached the subject of using Windows API
calls by explaining how to locate the definitions for various functions on the
MSDN Web site and translate those functions for use in VBA. The idea
was to enable readers to browse through the API documentation and use
anything of interest they found.

In reality, extremely few people use Windows API calls in that manner;
indeed, trying to include previously unexplored API calls in our Excel
applications is very likely to result in a maintenance problem, because it’s
doubtful that another developer will understand what we were trying to
do. Instead, most of us go to Google and search the Web or the news-
groups for the answer to a problem and find that the solution requires the
use of API calls. (Searching Google for “Excel Windows API” results in
more than 200,000 Web pages and 19,000 newsgroup posts.) We copy the
solution into our application and hope it works, usually without really
understanding what it does. This chapter shines a light on many of those
solutions, explaining how they work, what they use the API calls for, and
how they can be modified to better fit our applications. Along the way, we
fill in some of the conceptual framework of common Windows API tech-
niques and terminology.

By the end of the chapter, you will be comfortable about including API
calls in your applications, understand how they work, accept their use in
the example applications we develop in this book and be able to modify
them to suit your needs.

Overview

When developing Excel-based applications, we can get most things done
by using the Excel object model. Occasionally, though, we need some

information or feature that Excel doesn’t provide. In those cases, we can
usually go directly to the files that comprise the Windows operating system
to find what we’re looking for. The first step in doing that is to tell VBA the
function exists, where to find it, what arguments it takes and what data type
it returns. This is done using the Declare statement, such as that for
GetSystemMetrics:

Declare Function GetSystemMetrics Lib "user32" _

(ByVal nIndex As Long) As Long

This statement tells the VBA interpreter that there is a function called
GetSystemMetrics located in the file user32.exe (or user32.dll, it’ll check
both) that takes one argument of a Long value and returns a Long value.
Once defined, we can call GetSystemMetrics in exactly the same way as if
it is the VBA function:

Function GetSystemMetrics(ByVal nIndex As Long) As Long

End Function

The Declare statements can be used in any type of code module, can
be Public or Private (just like standard procedures), but must always be
placed in the Declarations section at the top of the module.

Finding Documentation

All of the functions in the Windows API are fully documented in the
Windows Development/Platform SDK section of the MSDN library on the
Microsoft Web site, at http://msdn.microsoft.com/library,
although the terminology used and the code samples tend to be targeted
at the C++ developer. A Google search will usually locate documentation
more appropriate for the Visual Basic and VBA developer, but is unlikely
to be as complete as MSDN. If you’re using API calls found on a Web site,
the Web page will hopefully explain what they do, but it is a good idea to
always check the official documentation for the functions to see whether
any limitations or other remarks may affect your usage.

Unfortunately, the MSDN library’s search engine is significantly worse
than using Google to search the MSDN site. We find that Google always
gives us more relevant pages than MSDN’s search engine. To use Google
to search MSDN, browse to http://www.google.com and click the
Advanced Search link. Type in the search criteria and then in the Domain
edit box type msdn.microsoft.com to restrict the search to MSDN.

256 Chapter 9 Understanding and Using Windows API Calls

http://www.google.com
http://msdn.microsoft.com/library

Finding Declarations

It is not uncommon to encounter code snippets on the Internet that
include incorrect declarations for API functions—such as declaring an
argument’s data type as Integer or Boolean when it should be Long.
Although using the declaration included in the snippet will probably work
(hopefully the author tested it), it might not work for the full range of pos-
sible arguments that the function accepts and in rare cases may cause
memory corruption and data loss. The official VBA-friendly declarations
for many of the more commonly used API functions can be found in the
win32api.txt file, which is included with a viewer in the Developer Editions
of Office 97–2002, Visual Basic 6 and is available for download from
http://support.microsoft.com/?kbid=178020. You’ll notice from
the download page that the file hasn’t been updated for some time. It
therefore doesn’t include the declarations and constants added in recent
versions of Windows. If you’re using one of those newer declarations, you’ll
have to trust the Web page author, examine a number of Web pages to
check that they all use the same declaration or create your own VBA-
friendly declaration by following the steps we described in the Excel 2002
VBA Programmers Reference.

Finding the Values of Constants

Most API functions are passed constants to modify their behavior or spec-
ify the type of value to return. For example, the GetSystemMetrics
function shown previously accepts a parameter to specify which metric
we want, such as SM_CXSCREEN to get the width of the screen in pixels
or SM_CYSCREEN to get the height. All of the appropriate constants
are shown on the MSDN page for that declaration. For example,
the GetSystemMetrics function is documented at http://
msdn.microsoft.com/library/en-us/sysinfo/base/
getsystemmetrics.asp and shows more than 70 valid constants.

Although many of the constants are included in the win32api.txt
file mentioned earlier, it does not include constants added for
recent versions of Windows. The best way to find these values is by down-
loading and installing the core Platform SDK from http://
w w w . m i c r o s o f t . c o m / m s d o w n l o a d / p l a t f o r m s d k /
sdkupdate/. This includes all the C++ header files that were used to
build the DLLs, in a subdirectory called \include. The files in this directo-
ry can be searched using normal Windows file searching to find the file that

Overview 257

http://support.microsoft.com/?kbid=178020
http://msdn.microsoft.com/library/en-us/sysinfo/base/getsystemmetrics.asp
http://msdn.microsoft.com/library/en-us/sysinfo/base/getsystemmetrics.asp
http://msdn.microsoft.com/library/en-us/sysinfo/base/getsystemmetrics.asp
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

contains the constant we’re interested in. For example, searching for
SM_CXSCREEN gives the file winuser.h. Opening that file and searching
within it gives the following lines:

#define SM_CXSCREEN 0

#define SM_CYSCREEN 1

These constants can then be included in your VBA module by declar-
ing them as Long variables with the values shown:

Const SM_CXSCREEN As Long = 0

Const SM_CYSCREEN As Long = 1

Sometimes, the values will be shown in hexadecimal form, such as
0x8000, which can be converted to VBA by replacing the 0x with &h and
adding a further & on the end, such that

#define KF_UP 0x8000

becomes

Const KF_UP As Long = &h8000&

Understanding Handles

Within VBA, we’re used to setting a variable to reference an object using
code like

Set wkbBackDrop = Workbooks("Backdrop.xls")

and releasing that reference by setting the variable to Nothing (or letting
VBA do that for us when it goes out of scope at the end of the procedure).
Under the covers, the thing that we see as the Backdrop.xls workbook is
just an area of memory containing data structured in a specific way that
only Excel understands. When we set the variable equal to that object, it is
just given the memory location of that data structure. The Windows oper-
ating system works in a very similar way, but at a much more granular level;
almost everything within Windows is maintained as a small data structure
somewhere. If we want to work with the item that is represented by that
structure (such as a window), we need to get a reference to it and pass that

258 Chapter 9 Understanding and Using Windows API Calls

reference to the appropriate API function. These references are known as
handles and are just ID numbers that Windows uses to identify the data
structure. Variables used to store handles are usually given the prefix h and
are declared As Long.

When we ask for the handle to an item, some functions—such as
FindWindow—give us the handle to a shared data structure; there is only
one data structure for each window, so every call to FindWindow with the
same parameters will return the same handle. In these cases, we can just
discard the handle when we’re finished with it. In most situations, howev-
er, Windows allocates an area of memory, creates a new data structure for
us to use and returns the handle to that structure. In these cases, we must
tidy up after ourselves, by explicitly telling Windows that we’ve finished
using the handle (and by implication, the memory used to store the data
structure that the handle points to). If we fail to tidy up correctly, each call
to our routine will use another bit of memory until Windows crashes—this
is known as a memory leak. The most common cause of memory leaks is
forgetting to include tidy-up code within a routine’s error handler. The
MSDN documentation will tell you whether you need to release the han-
dle and which function to call to do it.

Encapsulating API Calls

GetSystemMetrics is one of the few API calls that can easily be used in
isolation—it has a meaningful name, takes a single parameter, returns a
simple result and doesn’t require any preparation or cleanup. So long as
you can remember what SM_CXSCREEN is asking for, it’s extremely easy
to call this function; GetSystemMetrics(SM_CXSCREEN) gives us the
width of the screen in pixels.

In general practice, however, it is a very good idea to wrap your API
calls inside their own VBA functions and to place those functions in mod-
ules dedicated to specific areas of the Windows API, for the following
reasons:

■ The VBA routine can include some validity checks before trying to
call the API function. Passing invalid data to API functions will often
result in a crash.

■ Most of the textual API functions require string variables to be
defined and passed in, which are then populated by the API func-
tion. Using a VBA routine hides that complexity.

Overview 259

■ Many API functions accept parameters that we don’t need to use. A
VBA routine can expose only the parameters that are applicable to
our application.

■ Few API functions can be used in isolation; most require extra
preparatory and clean up calls. Using a VBA routine hides that
complexity.

■ The API declarations themselves can be declared Private to the
module in which they’re contained, so they can be hidden from use
by other developers who may not understand how to use them; their
functionality can then be exposed through more friendly VBA
routines.

■ Some API functions, such as the encryption or Internet functions,
require an initial set of preparatory calls to open resources, a num-
ber of routines that use those resources and a final set of routines
to close the resources and tidy up. Such routines are ideally encap-
sulated in a class module, with the Class_Initialize and
Class_Terminate procedures used to ensure the resources are
opened and closed correctly.

■ By using dedicated modules for specific areas of the Windows API,
we can easily copy the routines between applications, in the knowl-
edge that they are self-contained.

When you start to include lots of API calls in your application, it quick-
ly becomes difficult to keep track of which constants belong to which func-
tions. We can make the constants much easier to manage if we encapsulate
them in an enumeration and use that enumeration for our VBA function’s
parameter, as shown in Listing 9-1. By doing this, the applicable constants
are shown in the Intellisense list when the VBA function is used, as shown
in Figure 9-1. The ability to define enumerations was added in Excel 2000.

Listing 9-1 Encapsulating the GetSystemMetrics API Function and Related Constants

'Declare all the API-specific items Private to the module

Private Declare Function GetSystemMetrics Lib "user32" _

(ByVal nIndex As Long) As Long

Private Const SM_CXSCREEN As Long = 0

Private Const SM_CYSCREEN As Long = 1

'Wrap the API constants in a public enumeration,

260 Chapter 9 Understanding and Using Windows API Calls

'so they appear in the Intellisense dropdown

Public Enum SystemMetricsConstants

smScreenWidth = SM_CXSCREEN

smScreenHeight = SM_CYSCREEN

End Enum

'Wrapper for the GetSystemMetrics API function,

'using the SystemMetricsConstants enumeration

Public Function SystemMetrics(_

ByVal uIndex As SystemMetricsConstants) As Long

SystemMetrics = GetSystemMetrics(uIndex)

End Function

Working with the Screen 261

Figure 9-1 By Using the Enumeration, the Relevant Constants Appear in the
Intellisense Drop-Down

Working with the Screen

The procedures included in this section all relate to the Windows screen
and can be found in the MScreen module of the API Examples.xls
workbook.

Reading the Screen Resolution

The GetSystemMetrics API function has been used to illustrate the gen-
eral concepts above. It can be used to discover many of the simpler aspects
of the operating system, from whether a mouse or network is present to the
height of the standard window title bar. By far its most common use in
Excel is to find the screen resolution, to check that it is at least a minimum
size (for example, 800×600) or to work out which userform to display if you
have different layouts optimized for different resolutions. The code in
Listing 9-2 wraps the GetSystemMetrics API function, exposing it as sep-
arate ScreenWidth and ScreenHeight functions.

Listing 9-2 Reading the Screen Resolution

'Declare all the API-specific items Private to the module

Private Declare Function GetSystemMetrics Lib "user32" _

(ByVal nIndex As Long) As Long

Private Const SM_CXSCREEN = 0 'Screen width

Private Const SM_CYSCREEN = 1 'Screen height

'The width of the screen, in pixels

Public Function ScreenWidth() As Long

ScreenWidth = GetSystemMetrics(SM_CXSCREEN)

End Function

'The height of the screen, in pixels

Public Function ScreenHeight() As Long

ScreenHeight = GetSystemMetrics(SM_CYSCREEN)

End Function

Finding the Size of a Pixel

In general, Excel measures distances in points, whereas most API func-
tions use pixels and many ActiveX controls (such as the Microsoft Flexgrid)
use twips. A point is defined as being 1/72 (logical) inches, and a twip is
defined as 1/20th of a point. To convert between pixels and points, we need
to know how many pixels Windows is displaying for each logical inch. This
is the DPI (dots per inch) set by the user in Control Panel > Display >
Settings > Advanced > General > Display, which is usually set at either
Normal size (96 DPI) or Large size (120 DPI). In versions of Windows
prior to XP, this was known as Small Fonts and Large Fonts. The value of
this setting can be found using the GetDeviceCaps API function, which is
used to examine the detailed capabilities of a specific graphical device,
such as a screen or printer.

Device Contexts

One of the fundamental features of Windows is that applications can inter-
act with all graphical devices (screens, printers, or even individual picture
files) in a standard way. This is achieved by operating through a layer of
indirection called a device context, which represents a drawing layer. An
application obtains a reference (handle) to the drawing layer for a specific
device (for example, the screen), examines its capabilities (such as the size

262 Chapter 9 Understanding and Using Windows API Calls

of a dot, whether it can draw curves and how many colors it supports),
draws onto the drawing layer and then releases the reference. Windows
takes care of exactly how the drawing layer is represented on the graphical
device. In this example, we’re only examining the screen’s capabilities.

The code to retrieve the size of a pixel is shown in Listing 9-3.
Remember that when adding this code to an existing module, the declara-
tions must always be placed at the top of the module.

Listing 9-3 Finding the Size of a Pixel

Private Declare Function GetDC Lib "user32" _

(ByVal hwnd As Long) As Long

Private Declare Function GetDeviceCaps Lib "gdi32" _

(ByVal hDC As Long, ByVal nIndex As Long) As Long

Private Declare Function ReleaseDC Lib "user32" _

(ByVal hwnd As Long, ByVal hDC As Long) As Long

Private Const LOGPIXELSX = 88 'Pixels/inch in X

'A point is defined as 1/72 inches

Private Const POINTS_PER_INCH As Long = 72

'The size of a pixel, in points

Public Function PointsPerPixel() As Double

Dim hDC As Long

Dim lDotsPerInch As Long

hDC = GetDC(0)

lDotsPerInch = GetDeviceCaps(hDC, LOGPIXELSX)

PointsPerPixel = POINTS_PER_INCH / lDotsPerInch

ReleaseDC 0, hDC

End Function

The first thing to notice about this routine is that we cannot just call
GetDeviceCaps directly; we need to give it a handle to the screen’s device
context. This handle is obtained by calling the GetDC function, where the
zero parameter conveniently gives us the device context for the screen. We
then call GetDeviceCaps, passing the constant LOGPIXELSX, which asks

Working with the Screen 263

for the number of pixels per logical inch horizontally. (For screens, the hor-
izontal and vertical DPI is the same, but it might not be for printers, which
is why circles on screen often print out as ovals.) With Normal size chosen,
we get 96 dots per inch. We divide the 72 points per inch by the 96 DPI,
telling us that a dot (that is, pixel) is 0.75 points; so if we want to move
something in Excel by one pixel, we need to change its Top or Left by 0.75.
With Large Size selected, a pixel is 0.6 points.

Every time we use GetDC to obtain a handle to a device context, we
use up a small amount of Window’s graphical resources. If we didn’t
release the handle after using it, we would eventually use up all of
Window’s graphical resources and crash. To avoid that, we have to be sure
to release any resources we obtain, in this case by calling ReleaseDC.

Working with Windows

Everything that we see on the screen is either a window or is contained
within a window, from the Windows desktop to the smallest popup tooltip.
Consequently, if we want to modify something on the screen, we always
start by locating its window. The windows are organized into a hierarchy,
with the desktop at the root. The next level down includes the main win-
dows for all open applications and numerous system-related windows.
Each application then owns and maintains its own hierarchy of windows.
Every window is identified by its window handle, commonly referred to as
hWnd. By far the best tool for locating and examining windows is the
Spy++ utility that is included with Visual Studio. Figure 9-2 shows the
Spy++ display for the window hierarchy of a typical Excel session.

Window Classes

As well as showing the hierarchy, the Spy++ display shows three key
attributes for each window: the handle (in hexadecimal), the caption and
the class. Just like class modules, a window class defines a type of window.
Some classes, such as the ComboBox class, are provided by the Windows
operating system, but most are defined as part of an application. Each
window class is usually associated with a specific part of an application,
such as XLMAIN being Excel’s main application window. Table 9-1 lists
the window classes shown in the Spy++ hierarchy and their uses, plus
some other window classes commonly encountered during Excel applica-
tion development.

264 Chapter 9 Understanding and Using Windows API Calls

Working with Windows 265

Figure 9-2 The Spy++ Display of the Excel Window Hierarchy

Table 9-1 Excel Window Classes and Their Uses

Window Class Usage

XLMAIN The main Excel application window.
EXCEL; The left half of the formula bar, including the Name

drop-down.
ComboBox A standard Windows combo box (in this case, it’s the

Name drop-down).
EXCEL< The edit box section of the formula bar.
EXCEL2 The four command bar docking areas (top, left,

right and bottom).
MsoCommandBar A command bar.
XLDESK The Excel desktop.
EXCEL7 A workbook window. In this example, Book1 has

two windows open.
EXCELE A window used to provide in-sheet editing of

embedded charts.
EXCEL4 The status bar.

Finding Windows

The procedures shown in the sections that follow can be found in the
MWindows module of the API Examples.xls workbook.

To work with a window, we first need to find its handle. In Excel 2002,
the hWnd property was added to the Application object, giving us the han-
dle of the main Excel application window. In previous versions and for all
other top-level windows (that is, windows that are direct children of the
desktop), we can use the FindWindow API call, which is defined as follows:

Declare Function FindWindow Lib "user32" Alias "FindWindowA" _

(ByVal lpClassName As String, _

ByVal lpWindowName As String) As Long

To use the FindWindow function, we need to supply a class name
and/or a window caption. We can use the special constant vbNullString for
either, which tells the function to match on any class or caption. The func-
tion searches through all the immediate children of the desktop window
(known as top-level windows), looking for any that have the given class
and/or caption that we specified. To find the main Excel window in ver-
sions prior to Excel 2002, we might use the following:

hWndExcel = FindWindow("XLMAIN", Application.Caption)

ANSI vs. Unicode and the Alias Clause

You might have noticed that the declaration for FindWindow contains an
extra clause that we haven’t used before—the Alias clause. All Windows
API functions that have textual parameters come in two flavors: Those that
operate on ANSI strings have an A suffix, whereas those that operate on
Unicode strings have a W suffix. So while all the documentation and
searches on MSDN talk about FindWindow, the Windows DLLs do not
actually contain a function of that name—they contain two functions called
FindWindowA and FindWindowW. We use the Alias statement to provide
the actual name (case sensitive) for the function contained in the DLL. In
fact, as long as we provide the correct name in the Alias clause, we can give
it any name we like:

Declare Function Foo Lib "user32" Alias "FindWindowA" _

(ByVal lpClassName As String, _

266 Chapter 9 Understanding and Using Windows API Calls

ByVal lpWindowName As String) As Long

ApphWnd = Foo("XLMAIN", Application.Caption)

Although VBA stores strings internally as Unicode, it always converts
them to ANSI when passing them to API functions. This is usually suffi-
cient, and it is quite rare to find examples of VB or VBA calling the
Unicode versions. In some cases, however, we need to support the full
Unicode character set and can work around VBA’s conversion behavior by
calling the W version of the API function and using StrConv to do an extra
ANSI-to-Unicode conversion within our API function calls:

Declare Function FindWindow Lib "user32" Alias "FindWindowW" _

(ByVal lpClassName As String, _

ByVal lpWindowName As String) As Long

ApphWnd = FindWindow(StrConv("XLMAIN", vbUnicode), _

StrConv(Application.Caption, vbUnicode))

Finding Related Windows

The problem with the (very common) usage of FindWindow to get the
main Excel window handle is that if we have multiple instances of Excel
open that have the same caption, there is no easy way to tell which one we
get, so we might end up modifying the wrong instance! It is a common
problem if the user typically doesn’t have his workbook windows maxi-
mized, because all instances of Excel will then have the same caption of
“Microsoft Excel.”

A more robust and foolproof method is to use the FindWindowEx
function to scan through all children of the desktop window, stopping
when we find one that belongs to the same process as our current instance
of Excel. FindWindowEx works in exactly the same way as FindWindow,
but we provide the parent window handle and the handle of a child
window to start searching after (or zero to start with the first). Listing
9-4 shows a specific ApphWnd function, which calls a generic
FindOurWindow function, which uses the following API functions:

■ GetCurrentProcessID to retrieve the ID of the instance of Excel
running the code

Working with Windows 267

■ GetDesktopWindow to get the handle of the desktop window, that
we pass to FindWindowEx to look through its children (because all
application windows are children of the desktop)

■ FindWindowEx to find the next window that matches the given class
and caption

■ GetWindowThreadProcessID to retrieve the ID of the instance of
Excel that owns the window that FindWindowEx found

Listing 9-4 Foolproof Way to Find the Excel Main Window Handle

'Get the handle of the desktop window

Declare Function GetDesktopWindow Lib "user32" () As Long

'Find a child window with a given class name and caption

Declare Function FindWindowEx Lib "user32" _

Alias "FindWindowExA" _

(ByVal hWnd1 As Long, ByVal hWnd2 As Long, _

ByVal lpsz1 As String, ByVal lpsz2 As String) _

As Long

'Get the process ID of this instance of Excel

Declare Function GetCurrentProcessId Lib "kernel32" () _

As Long

'Get the ID of the process that a window belongs to

Declare Function GetWindowThreadProcessId Lib "user32" _

(ByVal hWnd As Long, ByRef lpdwProcessId As Long) _

As Long

'Foolproof way to find the main Excel window handle

Function ApphWnd() As Long

'Excel 2002 and above have a property for the hWnd

If Val(Application.Version) >= 10 Then

ApphWnd = Application.hWnd

Else

ApphWnd = FindOurWindow("XLMAIN", Application.Caption)

End If

End Function

268 Chapter 9 Understanding and Using Windows API Calls

'Finds a top-level window of the given class and caption

'that belongs to this instance of Excel, by matching the

'process IDs

Function FindOurWindow(_

Optional sClass As String = vbNullString, _

Optional sCaption As String = vbNullString)

Dim hWndDesktop As Long

Dim hWnd As Long

Dim hProcThis As Long

Dim hProcWindow As Long

'Get the ID of this instance of Excel, to match to

hProcThis = GetCurrentProcessId

'All top-level windows are children of the desktop,

'so get that handle first

hWndDesktop = GetDesktopWindow

Do

'Find the next child window of the desktop that

'matches the given window class and/or caption.

'The first time in, hWnd will be zero, so we'll get

'the first matching window. Each call will pass the

'handle of the window we found the last time,

'thereby getting the next one (if any)

hWnd = FindWindowEx(hWndDesktop, hWnd, sClass, _

sCaption)

'Get the ID of the process that owns the window

GetWindowThreadProcessId hWnd, hProcWindow

'Loop until the window's process matches this process,

'or we didn't find a window

Loop Until hProcWindow = hProcThis Or hWnd = 0

'Return the handle we found

FindOurWindow = hWnd

End Function

The FindOurWindow function can also be used to safely find any of
the top-level windows that Excel creates, such as userforms.

Working with Windows 269

After we’ve found Excel’s main window handle, we can use the
FindWindowEx function to navigate through Excel’s window hierarchy.
Listing 9-5 shows a function to return the handle of a given Excel work-
book’s window. To get the window handle, we start at Excel’s main window,
find the desktop (class XLDESK) and then find the window (class
EXCEL7) with the appropriate caption.

Listing 9-5 Function to Find a Workbook’s Window Handle

Private Declare Function FindWindowEx Lib "user32" _

Alias "FindWindowExA" _

(ByVal hWnd1 As Long, ByVal hWnd2 As Long, _

ByVal lpsz1 As String, ByVal lpsz2 As String) _

As Long

'Function to find the handle of a given workbook window

Function WorkbookWindowhWnd(wndWindow As Window) As Long

Dim hWndExcel As Long

Dim hWndDesk As Long

'Get the main Excel window

hWndExcel = ApphWnd

'Find the desktop

hWndDesk = FindWindowEx(hWndExcel, 0, _

"XLDESK", vbNullString)

'Find the workbook window

WorkbookWindowhWnd = FindWindowEx(hWndDesk, 0, _

"EXCEL7", wndWindow.Caption)

End Function

Windows Messages

At the lowest level, windows communicate with each other and with the
operating system by sending simple messages. Every window has a main
message-handling procedure (commonly called its wndproc) to which
messages are sent. Every message consists of four elements: the handle of

270 Chapter 9 Understanding and Using Windows API Calls

the window to which the message is being sent, a message ID and two
numbers that provide extra information about the message (if required).
Within each wndproc, there is a huge case statement that works out what
to do for each message ID. For example, the system will send the
WM_PAINT message to a window when it requires the window to redraw
its contents.

It will probably come as no surprise that we can also send messages
directly to individual windows, using the SendMessage function. The eas-
iest way to find which messages can be sent to which window class is to
search the MSDN library using a known constant and then look in the See
Also list for a link to a list of related messages. Look down the list for a mes-
sage that looks interesting, then go to its details page to see the parameters
it requires. For example, if we look again at Figure 9-1, we can see that the
EXCEL; window contains a combo box. This combo box is actually
the Name drop-down to the left of the formula bar. Searching the MSDN
library (using Google) with the search term “combo box messages” gives
us a number of relevant hits. One of them takes us to
msdn.microsoft.com/library/en-us/shellcc/platform/
commctls/comboboxes/comboboxes.asp. Looking down the list of
messages we find the CB_SETDROPPEDWIDTH message that we can
use to change the width of the drop-down portion of the Name box. In
Listing 9-6, we use the SendMessage function to make the Name drop-
down 200 pixels wide, enabling us to see the full text of lengthy defined
names.

Listing 9-6 Changing the Width of the Name Drop-Down List

Private Declare Function FindWindowEx Lib "user32" _

Alias "FindWindowExA" _

(ByVal hWnd1 As Long, ByVal hWnd2 As Long, _

ByVal lpsz1 As String, ByVal lpsz2 As String) _

As Long

Private Declare Function SendMessage Lib "user32" _

Alias "SendMessageA" _

(ByVal hwnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, Byval lParam As Long) _

As Long

'Not included in win32api.txt, but found in winuser.h

Working with Windows 271

Private Const CB_SETDROPPEDWIDTH As Long = &H160&

'Make the Name dropdown list 200 pixels wide

Sub SetNameDropdownWidth()

Dim hWndExcel As Long

Dim hWndFormulaBar As Long

Dim hWndNameCombo As Long

'Get the main Excel window

hWndExcel = ApphWnd

'Get the handle for the formula bar window

hWndFormulaBar = FindWindowEx(hWndExcel, 0, _

"EXCEL;", vbNullString)

'Get the handle for the Name combobox

hWndNameCombo = FindWindowEx(hWndFormulaBar, 0, _

"combobox", vbNullString)

'Set the dropdown list to be 200 pixels wide

SendMessage hWndNameCombo, CB_SETDROPPEDWIDTH, 200, 0

End Sub

Changing the Window Icon

When creating a dictator application, the intent is usually to make it look
as though it is a normal Windows application and not necessarily running
within Excel. Two of the giveaways are the application and worksheet
icons. These can be changed to our own icons using API functions. We first
use the ExtractIcon function to get a handle to an icon from a file, then
send that icon handle to the window in a WM_SETICON message, as
shown in Listing 9-7. The SetIcon routine is given a window handle and
the path to an icon file, so it can be used to set either the application’s icon
or a workbook window’s icon. For best use, the icon file should contain
both 32×32 and 16×16 pixel versions of the icon image. Note that when
setting the workbook window’s icon, Excel doesn’t refresh the image to the
left of the menu bar until a window is maximized or minimized/restored,
so you may need to toggle the WindowState to force the update.

272 Chapter 9 Understanding and Using Windows API Calls

Listing 9-7 Setting a Window’s Icon

Private Declare Function ExtractIcon Lib "shell32.dll" _

Alias "ExtractIconA" _

(ByVal hInst As Long, _

ByVal lpszExeFileName As String, _

ByVal nIconIndex As Long) As Long

Private Declare Function SendMessage Lib "user32" _

Alias "SendMessageA" _

(ByVal hwnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, Byval lParam As Long) _

As Long

Private Const WM_SETICON As Long = &H80

'Set a window's icon

Sub SetIcon(ByVal hWnd As Long, ByVal sIcon As String)

Dim hIcon As Long

'Get the icon handle

hIcon = ExtractIcon(0, sIcon, 0)

'Set the big (32x32) and small (16x16) icons

SendMessage hWnd, WM_SETICON, 1, hIcon

SendMessage hWnd, WM_SETICON, 0, hIcon

End Sub

Changing Windows Styles

If you look at all the windows on your screen, you might notice that they all
look a little different. Some have a title bar, some have minimize and maxi-
mize buttons, some have an [x] to close them, some have a 3D look, some
are resizable, some are a fixed size and so on. All of these things are indi-
vidual attributes of the window and are stored as part of the window’s data
structure. They’re all on/off flags stored as bits in two Long numbers. We
can use the GetWindowLong function to retrieve a window’s style settings,
switch individual bits on or off and write them back using SetWindowLong.
Modifying windows styles in this way is most often done for userforms and
is covered in Chapter 10 — Userform Design and Best Practices.

Working with Windows 273

Working with the Keyboard

The behavior of many of Excel’s toolbar buttons and some of the dialog
buttons changes if the Shift key is held down when the button is clicked.
For example, the Increase decimal toolbar button normally increases the
number of decimal places shown in a cell, but decreases the number of
decimal places if it is clicked with the Shift key held down. Similarly, when
closing Excel, if you hold down the Shift key when clicking the No button
on the Save Changes? dialog, it acts like a “No to All” button. We can do
exactly the same in our applications by using API functions to examine the
state of the keyboard. The procedures included in this section can be
found in the MKeyboard module of the API Examples.xls workbook.

Checking for Shift, Ctrl, Alt, Caps Lock, Num Lock and
Scroll Lock

The GetKeyState API function tells us whether a given key on the key-
board is currently held down or “on” (in the case of Caps Lock, Num Lock
and Scroll Lock). The function is used by passing a code representing the
key we’re interested in and returns whether the key is being held down or
is “on.” Listing 9-8 shows a function to determine whether one of the six
“special” keys is currently pressed. Note that we have again encapsulated
the key code constants inside a more meaningful enumeration.

Listing 9-8 Checking Whether a Key Is Held Down

Private Declare Function GetKeyState Lib "user32" _

(ByVal vKey As Long) As Integer

Private Const VK_SHIFT As Long = &H10

Private Const VK_CONTROL As Long = &H11

Private Const VK_MENU As Long = &H12

Private Const VK_CAPITAL = &H14

Private Const VK_NUMLOCK = &H90

Private Const VK_SCROLL = &H91

Public Enum GetKeyStateKeyboardCodes

gksKeyboardShift = VK_SHIFT

gksKeyboardCtrl = VK_CONTROL

gksKeyboardAlt = VK_MENU

274 Chapter 9 Understanding and Using Windows API Calls

gksKeyboardCapsLock = VK_CAPITAL

gksKeyboardNumLock = VK_NUMLOCK

gksKeyboardScrollLock = VK_SCROLL

End Enum

Public Function IsKeyPressed _

(ByVal lKey As GetKeyStateKeyboardCodes) As Boolean

Dim iResult As Integer

iResult = GetKeyState(lKey)

Select Case lKey

Case gksKeyboardCapsLock, gksKeyboardNumLock, _

gksKeyboardScrollLock

'For the three 'toggle' keys, the 1st bit says if it's

'on or off, so clear any other bits that might be set,

'using a binary AND

iResult = iResult And 1

Case Else

'For the other keys, the 16th bit says if it's down or

'up, so clear any other bits that might be set, using a

'binary AND

iResult = iResult And &H8000

End Select

IsKeyPressed = (iResult <> 0)

End Function

Bit Masks

The value obtained from the call to GetKeyState should not be interpret-
ed as a simple number, but as its binary representation where each indi-
vidual bit represents whether a particular attribute is on or off. This is one
of the few functions that return a 16-bit Integer value, rather than the
more common 32-bit Long. The MSDN documentation for GetKeyState
says that “If the high-order bit is 1, the key is down, otherwise the key is
up. If the low-order bit is 1, the key is on, otherwise the key is off.” The

Working with the Keyboard 275

first sentence is applicable for all keys (down/up), whereas the second is
only applicable to the Caps Lock, Num Lock and Scroll Lock keys. It is
possible for both bits to be set, if the Caps Lock key is held down and “on.”
The low-order bit is the rightmost bit, and the high-order bit is the leftmost
(16th) bit. To examine whether a specific bit has been set, we have to apply
a bit mask, to zero-out the bits we’re not interested in, by performing a
binary AND between the return value and a binary value that has a single
1 in the position we’re interested in. In the first case, we’re checking for a
1 in the first bit, which is the number 1. In the second case, we’re check-
ing for a 1 in the 16th bit, i.e. the binary number 1000 0000 0000 0000,
which is easiest to represent in code as the hexadecimal number &h8000.
After we’ve isolated that bit, a zero value means off/up and a nonzero value
means on/down.

Testing for a Key Press

As mentioned previously, at the lowest level, windows communicate
through messages sent to their wndproc procedure. When an application
is busy (such as Excel running some code), the wndproc only processes
critical messages (such as the system shutting down). All other messages
get placed in a queue and are processed when the application next has
some spare time. This is why using SendKeys is so unreliable; it’s not until
the code stops running (or issues a DoEvents statement) that Excel checks
its message queue to see whether there are any key presses to process.

We can use Excel’s message queuing to allow the user to interrupt our
code by pressing a key. Normally, if we want to allow the user to stop a
lengthy looping process, we can either show a modeless dialog with a
Cancel button (as explained in Chapter 10 — Userform Design and Best
Practices), or allow the user to press the Cancel key to jump into the rou-
tine’s error handler (as explained in Chapter 12 — VBA Error Handling).
An easier way is to check Excel’s message queue during each iteration of
the loop to see whether the user has pressed a key. This is achieved using
the PeekMessage API function:

Declare Function PeekMessage Lib "user32" _

Alias "PeekMessageA" _

(ByRef lpMsg As MSG, _

ByVal hWnd As Long, _

ByVal wMsgFilterMin As Long, _

ByVal wMsgFilterMax As Long, _

ByVal wRemoveMsg As Long) As Long

276 Chapter 9 Understanding and Using Windows API Calls

Structures

If you look at the first parameter of the PeekMessage function, you’ll see
it is declared As MSG and is passed ByRef. MSG is a windows structure
and is implemented in VBA as a user-defined type. To use it in this case,
we declare a variable of that type and pass it in to the function. The func-
tion sets the value of each element of the UDT, which we then read. Many
API functions use structures as a convenient way of passing large amounts
of information into the function, instead of having a long list of parameters.
Many messages that we send using the SendMessage function require a
structure to be passed as the final parameter (as opposed to a single Long
value). In those cases, we use a different form of the SendMessage decla-
ration, where the final parameter is declared As Any and is passed ByRef:

Declare Function SendMessageAny Lib "user32" _

Alias "SendMessageA" _

(ByVal hwnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, _

ByRef lParam As Any) As Long

When we use this declaration, we’re actually sending a pointer to the
memory where our UDT is stored. If we have an error in the definition of
our UDT, or if we use this version of the declaration to send a message that
is not expecting a memory pointer, the call will at best fail and possibly
crash Excel.

Listing 9-9 shows the full code to check for a key press.

Listing 9-9 Testing for a Key Press

'Type to hold the coordinates of the mouse pointer

Private Type POINTAPI

x As Long

y As Long

End Type

'Type to hold the Windows message information

Private Type MSG

hWnd As Long 'the window handle of the app

message As Long 'the type of message (e.g. keydown)

wParam As Long 'the key code

lParam As Long 'not used

time As Long 'time when message posted

Working with the Keyboard 277

pt As POINTAPI 'coordinate of mouse pointer

End Type

'Look in the message buffer for a message

Private Declare Function PeekMessage Lib "user32" _

Alias "PeekMessageA" _

(ByRef lpMsg As MSG, ByVal hWnd As Long, _

ByVal wMsgFilterMin As Long, _

ByVal wMsgFilterMax As Long, _

ByVal wRemoveMsg As Long) As Long

'Translate the message from a key code to a ASCII code

Private Declare Function TranslateMessage Lib "user32" _

(ByRef lpMsg As MSG) As Long

'Windows API constants

Private Const WM_CHAR As Long = &H102

Private Const WM_KEYDOWN As Long = &H100

Private Const PM_REMOVE As Long = &H1

Private Const PM_NOYIELD As Long = &H2

'Check for a key press

Public Function CheckKeyboardBuffer() As String

'Dimension variables

Dim msgMessage As MSG

Dim hWnd As Long

Dim lResult As Long

'Get the window handle of this application

hWnd = ApphWnd

'See if there are any "Key down" messages

lResult = PeekMessage(msgMessage, hWnd, WM_KEYDOWN, _

WM_KEYDOWN, PM_REMOVE + PM_NOYIELD)

'If so ...

If lResult <> 0 Then

'... translate the key-down code to a character code,

'which gets put back in the message queue as a WM_CHAR

'message ...

lResult = TranslateMessage(msgMessage)

278 Chapter 9 Understanding and Using Windows API Calls

'... and retrieve that WM_CHAR message

lResult = PeekMessage(msgMessage, hWnd, WM_CHAR, _

WM_CHAR, PM_REMOVE + PM_NOYIELD)

'Return the character of the key pressed,

'ignoring shift and control characters

CheckKeyboardBuffer = Chr$(msgMessage.wParam)

End If

End Function

When we press a key on the keyboard, the active window is sent a
WM_KEYDOWN message, with a low-level code to identify the physical
key pressed. The first thing we need to do, then, is to use PeekMessage to
look in the message queue to see whether there are any pending
WM_KEYDOWN messages, removing it from the queue if we find one. If
we found one, we have to translate it into a character code using
TranslateMessage, which sends the translated message back to Excel’s
message queue as a WM_CHAR message. We then look in the message
queue for this WM_CHAR message and return the character pressed.

Working with the File System and Network

The procedures included in this section can be found in the MFileSys
module of the API Examples.xls workbook.

Finding the User ID

Excel has its own user name property, but does not tell us the user’s net-
work logon ID. This ID is often required in Excel applications for securi-
ty validation, auditing, logging change history and so on. It can be retrieved
using the API call shown in Listing 9-10.

Listing 9-10 Reading the User’s Login ID

Private Declare Function GetUserName Lib "advapi32.dll" _

Alias "GetUserNameA" _

(ByVal lpBuffer As String, _

ByRef nSize As Long) As Long

Working with the File System and Network 279

'Get the user's login ID

Function UserName() As String

'A buffer that the API function fills with the login name

Dim sBuffer As String * 255

'Variable to hold the length of the buffer

Dim lStringLength As Long

'Initialize to the length of the string buffer

lStringLength = Len(sBuffer)

'Call the API function, which fills the buffer

'and updates lStringLength with the length of the login ID,

'including a terminating null - vbNullChar - character

GetUserName sBuffer, lStringLength

If lStringLength > 0 Then

'Return the login id, stripping off the final vbNullChar

UserName = Left$(sBuffer, lStringLength - 1)

End If

End Function

Buffers

Every API function that returns textual information, such as the user
name, does so by using a buffer that we provide. A buffer comprises a
String variable initialized to a fixed size and a Long variable to tell the func-
tion how big the buffer is. When the function is called, it writes the text to
the buffer (including a final Null character) and (usually) updates the
length variable with the number of characters written. (Some functions
return the text length as the function’s result instead of updating the vari-
able.) We can then look in the buffer for the required text. Note that VBA
stores strings in a very different way than the API functions expect, so
whenever we pass strings to API functions, VBA does some conversion for
us behind the scenes. For this to work properly, we always pass strings by
value (ByVal) to API functions, even when the function updates the string.
Some people prefer to ignore the buffer length information, looking
instead for the first vbNullChar character in the buffer and assuming that’s
the end of the retrieved string, so you may encounter usage like that shown
in Listing 9-11.

280 Chapter 9 Understanding and Using Windows API Calls

Listing 9-11 Using a Buffer, Ignoring the Buffer Length Variable

'Get the user's login ID, without using the buffer length

Function UserName2() As String

Dim sBuffer As String * 255

GetUserName sBuffer, 255

UserName2 = Left$(sBuffer, InStr(sBuffer, vbNullChar) - 1)

End Function

Changing to a UNC Path

VBA’s intrinsic ChDrive and ChDir statements can be used to change the
active path prior to using Application.GetOpenFilename, such that
the dialog opens with the correct path preselected. Unfortunately, that can
only be used to change the active path to local folders or network folders
that have been mapped to a drive letter. Note that once set, the VBA
CurDir function will return a UNC path. We need to use API functions to
change the folder to a network path of the form \\server\share\path, as
shown in Listing 9-12. In practice, the SetCurDir API function is one of
the few that can be called directly from your code.

Listing 9-12 Changing to a UNC Path

Private Declare Function SetCurDir Lib "kernel32" _

Alias "SetCurrentDirectoryA" _

(ByVal lpPathName As String) As Long

'Change to a UNC Directory

Sub ChDirUNC(ByVal sPath As String)

Dim lReturn As Long

'Call the API function to set the current directory

lReturn = SetCurDir(sPath)

'A zero return value means an error

If lReturn = 0 Then

Err.Raise vbObjectError + 1, "Error setting path."

End If

End Sub

Working with the File System and Network 281

Locating Special Folders

Windows maintains a large number of special folders that relate to either
the current user or the system configuration. When a user is logged in to
Windows with relatively low privileges, such as the basic User account, it
is highly likely that the user will only have full access to his personal fold-
ers, such as his My Documents folder. These folders can usually be found
under C:\Documents and Settings\UserName, but could be located any-
where. We can use an API function to give us the correct paths to these
special folders, using the code shown in Listing 9-13. Note that this listing
contains a subset of all the possible folder constants. The full list can be
found by searching MSDN for “CSIDL Values.” The notable exception
from this list is the user’s Temp folder, which can be found by using the
GetTempPath function. Listing 9-13 includes a special case for this folder,
so that it can be obtained through the same function.

Listing 9-13 Locating a Windows Special Folder

Private Declare Function SHGetFolderPath Lib "shell32" _

Alias "SHGetFolderPathA" _

(ByVal hwndOwner As Long, ByVal nFolder As Long, _

ByVal hToken As Long, ByVal dwFlags As Long, _

ByVal pszPath As String) As Long

Private Declare Function GetTempPath Lib "kernel32" _

Alias "GetTempPathA" _

(ByVal nBufferLength As Long, _

ByVal lpBuffer As String) As Long

'More Commonly used CSIDL values.

'For the full list, search MSDN for "CSIDL Values"

Private Const CSIDL_PROGRAMS As Long = &H2

Private Const CSIDL_PERSONAL As Long = &H5

Private Const CSIDL_FAVORITES As Long = &H6

Private Const CSIDL_STARTMENU As Long = &HB

Private Const CSIDL_MYDOCUMENTS As Long = &HC

Private Const CSIDL_MYMUSIC As Long = &HD

Private Const CSIDL_MYVIDEO As Long = &HE

Private Const CSIDL_DESKTOPDIRECTORY As Long = &H10

Private Const CSIDL_APPDATA As Long = &H1A

Private Const CSIDL_LOCAL_APPDATA As Long = &H1C

Private Const CSIDL_INTERNET_CACHE As Long = &H20

282 Chapter 9 Understanding and Using Windows API Calls

Private Const CSIDL_WINDOWS As Long = &H24

Private Const CSIDL_SYSTEM As Long = &H25

Private Const CSIDL_PROGRAM_FILES As Long = &H26

Private Const CSIDL_MYPICTURES As Long = &H27

'Constants used in the SHGetFolderPath call

Private Const CSIDL_FLAG_CREATE As Long = &H8000&

Private Const SHGFP_TYPE_CURRENT = 0

Private Const SHGFP_TYPE_DEFAULT = 1

Private Const MAX_PATH = 260

'Public enumeration to give friendly names for the CSIDL values

Public Enum SpecialFolderIDs

sfAppDataRoaming = CSIDL_APPDATA

sfAppDataNonRoaming = CSIDL_LOCAL_APPDATA

sfStartMenu = CSIDL_STARTMENU

sfStartMenuPrograms = CSIDL_PROGRAMS

sfMyDocuments = CSIDL_PERSONAL

sfMyMusic = CSIDL_MYMUSIC

sfMyPictures = CSIDL_MYPICTURES

sfMyVideo = CSIDL_MYVIDEO

sfFavorites = CSIDL_FAVORITES

sfDesktopDir = CSIDL_DESKTOPDIRECTORY

sfInternetCache = CSIDL_INTERNET_CACHE

sfWindows = CSIDL_WINDOWS

sfWindowsSystem = CSIDL_SYSTEM

sfProgramFiles = CSIDL_PROGRAM_FILES

'There is no CSIDL for the temp path,

'so we need to give it a dummy value

'and treat it differently in the function

sfTemporary = &HFF

End Enum

'Get the path for a Windows special folder

Public Function SpecialFolderPath(_

ByVal uFolderID As SpecialFolderIDs) As String

'Create a buffer of the correct size

Dim sBuffer As String * MAX_PATH

Dim lResult As Long

If uFolderID = sfTemporary Then

Working with the File System and Network 283

'Use GetTempPath for the temporary path

lResult = GetTempPath(MAX_PATH, sBuffer)

'The GetTempPath call returns the length and a

'trailing \ which we remove for consistency

SpecialFolderPath = Left$(sBuffer, lResult - 1)

Else

'Call the function, passing the buffer

lResult = SHGetFolderPath(0, _

uFolderID + CSIDL_FLAG_CREATE, 0, _

SHGFP_TYPE_CURRENT, sBuffer)

'The SHGetFolderPath function doesn't give us a

'length, so look for the first vbNullChar

SpecialFolderPath = Left$(sBuffer, _

InStr(sBuffer, vbNullChar) - 1)

End If

End Function

The observant among you might have noticed that we’ve now come
across all three ways in which buffers are filled by API functions:

■ GetUserName returns the length of the text by modifying the input
parameter.

■ GetTempPath returns the length of the text as the function’s return
value.

■ SHGetFolderPath doesn’t return the length at all, so we search for
the first vbNullChar.

Deleting a File to the Recycle Bin

The VBA Kill statement is used to delete a file, but does not send it to the
recycle bin for potential recovery by the user. To send a file to the recycle
bin, we need to use the SHFileOperation function, as shown in Listing 9-14:

Listing 9-14 Deleting a File to the Recycle Bin

'Structure to tell the SHFileOperation function what to do

Private Type SHFILEOPSTRUCT

hwnd As Long

284 Chapter 9 Understanding and Using Windows API Calls

wFunc As Long

pFrom As String

pTo As String

fFlags As Integer

fAnyOperationsAborted As Boolean

hNameMappings As Long

lpszProgressTitle As String

End Type

Private Declare Function SHFileOperation Lib "shell32.dll" _

Alias "SHFileOperationA" _

(ByRef lpFileOp As SHFILEOPSTRUCT) As Long

Private Const FO_DELETE = &H3

Private Const FOF_SILENT = &H4

Private Const FOF_NOCONFIRMATION = &H10

Private Const FOF_ALLOWUNDO = &H40

'Delete a file, sending it to the recycle bin

Sub DeleteToRecycleBin(ByVal sFile As String)

Dim uFileOperation As SHFILEOPSTRUCT

Dim lReturn As Long

'Fill the UDT with information about what to do

With FileOperation

.wFunc = FO_DELETE

.pFrom = sFile

.pTo = vbNullChar

.fFlags = FOF_SILENT + FOF_NOCONFIRMATION + _

FOF_ALLOWUNDO

End With

'Pass the UDT to the function

lReturn = SHFileOperation(FileOperation)

If lReturn <> 0 Then

Err.Raise vbObjectError + 1, "Error deleting file."

End If

End Sub

Working with the File System and Network 285

There are two things to note about this function. First, the function
uses a user-defined type to tell it what to do, instead of the more common
method of having multiple input parameters. Second, the function returns
a value of zero to indicate success. If you recall the SetCurDir function in
Listing 9-12, it returns a value of zero to indicate failure! The only way to
know which to expect is to check the Return Values section of the func-
tion’s information page on MSDN.

Browsing for a Folder

All versions of Excel have included the GetOpenFilename and
GetSaveAsFilename functions to allow the user to select a filename to
open or save. Excel 2002 introduced the common Office FileDialog object,
which can be used to browse for a folder, using the code shown in Listing
9-15, which results in the dialog shown in Figure 9-3.

Listing 9-15 Using Excel 2002’s FileDialog to Browse for a Folder

'Browse for a folder, using the Excel 2002 FileDialog

Sub BrowseForFolder()

Dim fdBrowser As FileDialog

'Get the File Dialog object

Set fdBrowser = Application.FileDialog(msoFileDialogFolderPicker)

With fdBrowser

'Initialize it

.Title = "Select Folder"

.InitialFileName = "c:\"

'Display the dialog

If .Show Then

MsgBox "You selected " & .SelectedItems(1)

End If

End With

End Sub

286 Chapter 9 Understanding and Using Windows API Calls

We consider this layout far too complicated, when all we need is a sim-
ple tree view of the folders on the computer. We can use API functions to
show the standard Windows Browse for folder dialog shown in Figure 9-4,
which our users tend to find much easier to use. The Windows dialog also
gives us the option to display some descriptive text to tell our users what
they should be selecting.

Callbacks

So far, every function we’ve encountered just does its thing and returns
its result. However, a range of API functions (including the
SHBrowseForFolder function that we’re about to use) interact with
the calling program while they’re working. This mechanism is known as a
callback. Excel 2000 added a VBA function called AddressOf, which pro-
vides the address in memory where a given procedure can be found. This
address is passed to the API function, which calls back to the procedure
found at that address as required. For example, the EnumWindows func-
tion iterates through all the top-level windows, calling back to the proce-
dure with the details of each window it finds. Obviously, the procedure
being called must be defined exactly as Windows expects it to be so the
API function can pass it the correct number and type of parameters.

Working with the File System and Network 287

Figure 9-3 The Standard Office 2002 Folder Picker Dialog

The SHBrowseForFolder function uses a callback to tell us when the
dialog is initially shown, enabling us to set its caption and initial selection,
and each time the user selects a folder, enabling us to check the selection
and enable/disable the OK button. The full text for the function is con-
tained in the MBrowseForFolder module of the API Examples.xls work-
book and a slightly simplified version is shown in Listing 9-16.

Listing 9-16 Using Callbacks to Interact with the Windows File Picker Dialog

'UDT to pass information to the SHBrowseForFolder function

Private Type BROWSEINFO

hOwner As Long

pidlRoot As Long

pszDisplayName As String

lpszTitle As String

ulFlags As Long

lpfn As Long

lParam As Long

iImage As Long

End Type

288 Chapter 9 Understanding and Using Windows API Calls

Figure 9-4 The Standard Windows Folder Picker Dialog

'Commonly used ulFlags constants

'Only return file system directories.

'If the user selects folders that are not

'part of the file system (such as 'My Computer'),

'the OK button is grayed.

Private Const BIF_RETURNONLYFSDIRS As Long = &H1

'Use a newer dialog style, which gives a richer experience

Private Const BIF_NEWDIALOGSTYLE As Long = &H40

'Hide the default 'Make New Folder' button

Private Const BIF_NONEWFOLDERBUTTON As Long = &H200

'Messages sent from dialog to callback function

Private Const BFFM_INITIALIZED = 1

Private Const BFFM_SELCHANGED = 2

'Messages sent to browser from callback function

Private Const WM_USER = &H400

'Set the selected path

Private Const BFFM_SETSELECTIONA = WM_USER + 102

'Enable/disable the OK button

Private Const BFFM_ENABLEOK = WM_USER + 101

'The maximum allowed path

Private Const MAX_PATH = 260

'Main Browse for directory function

Declare Function SHBrowseForFolder Lib "shell32.dll" _

Alias "SHBrowseForFolderA" _

(ByRef lpBrowseInfo As BROWSEINFO) As Long

'Gets a path from a pidl

Declare Function SHGetPathFromIDList Lib "shell32.dll" _

Alias "SHGetPathFromIDListA" _

(ByVal pidl As Long, _

ByVal pszPath As String) As Long

Working with the File System and Network 289

'Used to set the browse dialog's title

Declare Function SetWindowText Lib "user32" _

Alias "SetWindowTextA" _

(ByVal hwnd As Long, _

ByVal lpString As String) As Long

'A versions of SendMessage, to send strings to the browser

Private Declare Function SendMessageString Lib "user32" _

Alias "SendMessageA" (ByVal hwnd As Long, _

ByVal wMsg As Long, ByVal wParam As Long, _

ByVal lParam As String) As Long

'Variables to hold the initial options,

'set in the callback function

Dim msInitialPath As String

Dim msTitleBarText As String

'The main function to initialize and show the dialog

Function GetDirectory(Optional ByVal sInitDir As String, _

Optional ByVal sTitle As String, _

Optional ByVal sMessage As String, _

Optional ByVal hwndOwner As Long, _

Optional ByVal bAllowCreateFolder As Boolean) _

As String

'A variable to hold the UDT

Dim uInfo As BROWSEINFO

Dim sPath As String

Dim lResult As Long

'Check that the initial directory exists

On Error Resume Next

sPath = Dir(sInitDir & "*.*", vbNormal + vbDirectory)

If Len(sPath) = 0 Or Err.Number <> 0 Then sInitDir = ""

On Error GoTo 0

'Store the initials setting in module-level variables,

'for use in the callback function

msInitialPath = sInitDir

msTitleBarText = sTitle

'If no owner window given, use the Excel window

290 Chapter 9 Understanding and Using Windows API Calls

'N.B. Uses the ApphWnd function in MWindows

If hwndOwner = 0 Then hwndOwner = ApphWnd

'Initialise the structure to pass to the API function

With uInfo

.hOwner = hwndOwner

.pszDisplayName = String$(MAX_PATH, vbNullChar)

.lpszTitle = sMessage

.ulFlags = BIF_RETURNONLYFSDIRS + BIF_NEWDIALOGSTYLE _

+ IIf(bAllowCreateFolder, 0, BIF_NONEWFOLDERBUTTON)

'Pass the address of the callback function in the UDT

.lpfn = LongToLong(AddressOf BrowseCallBack)

End With

'Display the dialog, returning the ID of the selection

lResult = SHBrowseForFolder(uInfo)

'Get the path string from the ID

GetDirectory = GetPathFromID(lResult)

End Function

'Windows calls this function when the dialog events occur

Private Function BrowseCallBack (ByVal hwnd As Long, _

ByVal Msg As Long, ByVal lParam As Long, _

ByVal pData As Long) As Long

Dim sPath As String

'This is called by Windows, so don't allow any errors!

On Error Resume Next

Select Case Msg

Case BFFM_INITIALIZED

'Dialog is being initialized,

'so set the initial parameters

'The dialog caption

If msTitleBarText <> "" Then

SetWindowText hwnd, msTitleBarText

End If

Working with the File System and Network 291

'The initial path to display

If msInitialPath <> "" Then

SendMessageString hwnd, BFFM_SETSELECTIONA, 1, _

msInitialPath

End If

Case BFFM_SELCHANGED

'User selected a folder

'lParam contains the pidl of the folder, which can be

'converted to the path using GetPathFromID

'sPath = GetPathFromID(lParam)

'We could put extra checks in here,

'e.g. to check if the folder contains any workbooks,

'and send the BFFM_ENABLEOK message to enable/disable

'the OK button:

'SendMessage hwnd, BFFM_ENABLEOK, 0, True/False

End Select

End Function

'Converts a PIDL to a path string

Private Function GetPathFromID(ByVal lID As Long) As String

Dim lResult As Long

Dim sPath As String * MAX_PATH

lResult = SHGetPathFromIDList(lID, sPath)

If lResult <> 0 Then

GetPathFromID = Left$(sPath, InStr(sPath, Chr$(0)) - 1)

End If

End Function

'VBA doesn't let us assign the result of AddressOf

'to a variable, but does allow us to pass it to a function.

'This 'do nothing' function works around that problem

Private Function LongToLong(ByVal lAddr As Long) As Long

LongToLong = lAddr

End Function

292 Chapter 9 Understanding and Using Windows API Calls

Let’s take a closer look at how this all works. First, most of the shell
functions use things called PIDLs to uniquely identify folders and files.
For simplicity’s sake, you can think of a PIDL as a handle to a file or folder,
and there are API functions to convert between the PIDL and the normal
file or folder name.

The GetDirectory function is the main function in the module and is
the function that should be called to display the dialog. It starts by validat-
ing the (optional) input parameters, then populates the BROWSEINFO
user-defined type that is used to pass all the required information to the
SHBrowseForFolder function. The hOwner element of the UDT is used
to provide the parent window for the dialog, which should be the handle
of the main Excel window, or the handle of the userform window if show-
ing this dialog from a userform. The ulFlags element is used to specify
detailed behavior for the dialog, such as whether to show a Make Folder
button. The full list of possible flags and their purpose can be found on
MSDN by searching for the SHBrowseForFolder function. The lpfn
element is where we pass the address of the callback function,
BrowseCallBack. We have to wrap the AddressOf value in a simple
LongToLong function, because VB doesn’t let us assign the value directly
to an element of a UDT.

After the UDT has been initialized, we pass it to the
SHBrowseForFolder API function. That function displays the dialog and
Windows calls back to our BrowseCallBack function, passing the
BFFM_INITIALIZED message. We respond to that message by setting
the dialog’s caption (using the SetWindowText API function) and the ini-
tial folder selection (by sending the BFFM_SETSELECTIONA message
back to the dialog with the path string).

Every time the user clicks a folder, it triggers a Windows callback to
our BrowseCallBack function, passing the BFFM_SELCHANGED mes-
sage and the ID of the selected folder. All the code to respond to that mes-
sage is commented out in this example, but we could add code to check
whether the folder is a valid selection for our application (such as whether
it contains any workbooks) and enable/disable the OK button appropriate-
ly (by sending the BFFM_ENABLEOK message back to the dialog).

When the user clicks the OK or Cancel button, the function returns
the ID of the selected folder and execution continues back in the
GetDirectory function. We get the textual path from the returned ID and
return it to the calling code.

Working with the File System and Network 293

Practical Examples

All the routines included in this chapter have been taken out of actual
Excel applications, so are themselves practical examples of API calls.

The PETRAS application files for this chapter can be found on the CD
in the folder \Application\Ch09—Understanding and Using Windows API
Calls and now includes the following files:

■ PetrasTemplate.xlt—The timesheet template
■ PetrasAddin.xla—The timesheet data-entry support add-in
■ PetrasReporting.xla—The main reporting application
■ PetrasConsolidation.xlt—A template to use for new results

workbooks
■ Debug.ini—A dummy file that tells the application to run in debug

mode
■ PetrasIcon.ico—A new icon file, to use for Excel’s main window

PETRAS Timesheet

Until this chapter, the location used by the Post to Network routine has
used Application.GetOpenFilename to allow the user to select the direc-
tory to save the timesheet workbook to. The problem with that call is that
the directory must already contain at least one file. In this chapter, we add
the BrowseForFolder dialog and use that instead of GetOpenFilename,
which allows empty folders to be selected.

We’ve also added a new feature to the timesheet add-in. In previous
versions you were prompted to specify the consolidation location the first
time you posted a timesheet workbook to the network. When you selected
a location, that location was stored in the registry and from there on out
the application simply read the location from the registry whenever you
posted a new timesheet.

What this didn’t take into account is the possibility that the consolida-
tion location might change. If it did, you would have no way, short of
editing the application’s registry entries directly, of switching to the new
location. Our new Specify Consolidation Folder feature enables you to
click a button on the toolbar and use the Windows browse for folders

294 Chapter 9 Understanding and Using Windows API Calls

dialog to modify the consolidation folder. The SpecifyConsolidationFolder
procedure is shown in Listing 9-17 and the updated toolbar is shown in
Figure 9-5.

Listing 9-17 The New SpecifyConsolidationFolder Procedure

Public Sub SpecifyConsolidationFolder()

Dim sSavePath As String

InitGlobals

' Get the current consolidation path.

sSavePath = GetSetting(gsREG_APP, gsREG_SECTION, _

gsREG_KEY, "")

' Display the browse for folders dialog with the initial

' path display set to the current consolidation folder.

sSavePath = GetDirectory(sSavePath, _

gsCAPTION_SELECT_FOLDER, gsMSG_SELECT_FOLDER)

If Len(sSavePath) > 0 Then

' Save the selected path to the registry.

If Right$(sSavePath, 1) <> "\" Then _

sSavePath = sSavePath & "\"

SaveSetting gsREG_APP, gsREG_SECTION, _

gsREG_KEY, sSavePath

End If

End Sub

Table 9-2 summarizes the changes that have been made to the
timesheet add-in for this chapter.

Practical Examples 295

Figure 9-5 The Updated PETRAS Timesheet Toolbar

PETRAS Reporting

The changes made to the central reporting application for this chapter are
to display a custom icon for the application and to enable the user to close
all the results workbooks simultaneously, by holding down the Shift key
while clicking the File > Close menu. The detailed changes are shown in
Table 9-3, and Listing 9-18 shows the new MenuFileClose routine that
includes the check for the Shift key.

296 Chapter 9 Understanding and Using Windows API Calls

Table 9-2 Changes to the PETRAS Timesheet Add-in to Use the BrowseForFolder
Routine

Module Procedure Change

MBrowseForFolder Included the entire
(new module) MBrowseForFolder module

shown in Listing 9-16
MEntryPoints PostTimeEntriesToNetwork Added call to the

GetDirectory function in
MBrowseForFolder

SpecifyConsolidationFolder New feature to update the
consolidation folder location

Table 9-3 Changes to the PETRAS Reporting Application for Chapter 9

Module Procedure Change

MAPIWrappers ApphWnd Included Listing 9-4 to obtain the
(new module) handle of Excel’s main window
MAPIWrappers SetIcon Included Listing 9-7 to display
(new module) a custom icon, read from the

new PetrasIcon.ico file.
MAPIWrappers IsKeyPressed Included Listing 9-8 to check for

the Shift key held down when
clicking File > Close

MGlobals Added a constant for the icon
filename

MWorkspace ConfigureExcelEnvironment Added a call to SetIcon
MEntryPoints MenuFileClose Added check for Shift key being

held down, shown in Listing
9-17, doing a Close All if so

Listing 9-18 The New MenuFileClose Routine, Checking for a Shift+Close

'Handle the File > Close menu

Sub MenuFileClose()

Dim wkbWorkbook As Workbook

'Ch09+

'Check for a Shift+Close

If IsKeyPressed(gksKeyboardShift) Then

'Close all results workbooks

For Each wkbWorkbook In Workbooks

If IsResultsWorkbook(wkbWorkbook) Then

CloseWorkbook wkbWorkbook

End If

Next

Else

'Ch09-

'Close only the active workbook

If IsResultsWorkbook(ActiveWorkbook) Then

CloseWorkbook ActiveWorkbook

End If

End If

End Sub

Later chapters, particularly Chapter 10 — Userform Design and Best
Practices, use more of the routines and concepts introduced in this
chapter.

Conclusion

The Excel object model provides an extremely rich set of tools for us to use
when creating our applications. By including calls to Windows API func-
tions, we can enhance our applications to give them a truly professional
look and feel.

Conclusion 297

This chapter has explained most of the uses of API functions that are
commonly encountered in Excel application development. All the funda-
mental concepts have been explained and you should now be able to inter-
pret and understand new uses of API functions as you encounter them.

All of the example routines included in this chapter have been taken
from actual Excel applications and are ready for you to use in your own
workbooks.

298 Chapter 9 Understanding and Using Windows API Calls

C H A P T E R 1 5

Advanced Charting
Techniques

519

Only a few minutes are required to learn the basics of Excel’s charting
module, but many frustrating hours are required to get a chart looking
“just right.” Most people create charts using one of the built-in chart types,
but are unable to modify them to meet their exact requirements. This
chapter introduces and explains the fundamental techniques we can use to
impose our will on Excel’s charting engine to produce charts that look
exactly how we want them to.

The chapter focuses solely on the technical aspects of working with the
chart engine. We do not investigate which chart type should be used in any
given situation, nor the pros and cons of whether 3D charts can be used to
present data accurately, nor whether you should use as few or as many of
the colorful formatting options that Excel supports.

Fundamental Techniques

Combining Chart Types

When most people create charts, they start the Chart Wizard and browse
through all the standard and custom chart types shown in Step 1, trying to
find one that most closely resembles the look they’re trying to achieve.
More often than not, there isn’t a close enough match and they end up
thinking that Excel doesn’t support the chart they’re trying to create. In
fact, we can include any number of column, bar, line, XY and/or area series
within the same chart. All of the choices on the Custom Types tab of Step
1 of the Chart Wizard are no more than preformatted combinations of
these basic styles, with a bit of formatting thrown in. Instead of relying on
these custom types, we can usually get better results (and a greater under-
standing of the chart engine) by creating these combination charts
ourselves. Unfortunately, we can’t combine the different 3D styles, pie
charts or bubble charts with other types.

Let’s start by creating a simple column/line combination chart for the
data shown in Figure 15-1, where we want the 2004 sales to be shown as
columns, with the forecast shown as lines.

The easiest way to start is by selecting the data region, A3:C8 and cre-
ate a simple column chart from it, as shown in Figure 15-2. We usually find
it easiest to start with a column chart, but perhaps that’s because it’s the
default selection in the Chart Wizard, so we can create the chart by select-
ing the source data, clicking the Chart Wizard toolbar button and then the
Finish button on the Chart Wizard.

520 Chapter 15 Advanced Charting Techniques

Figure 15-1 The Sample Data to Plot as a Combination Column/Line Chart

Figure 15-2 The Chart Wizard Created a Standard Column Chart

Fundamental Techniques 521

To change the Forecast values from a column to a line, select the
series, click the Chart > Chart Type menu item and select one of the 2D
Line chart types, choosing to apply the chart type to the selected series, as
shown in Figure 15-3.

Figure 15-3 Selecting the New Type for the Selected Series

When you click OK, the Forecast series will display as a line, while the
Sales series remains as the original column, as shown in Figure 15-4.
(We’ve also modified the format of the Forecast line to make it stand out
in the book.)

That’s just about all there is to it. Start with a simple column chart with
multiple series, select each series in turn, use the Chart > Chart Type
menu to change its type and then apply the required formatting. The pos-
sible combinations are limited only by our imagination and the legibility of
the final chart!

Using Multiple Axes

When we create one of the standard 2D charts, the plot area can have two
sets of axes. The primary axes are usually displayed on the bottom and left,
whereas the secondary axes are usually displayed on the top and right. If
we have more than one series on the chart, we can choose which set of axes
to use for each series by double-clicking the series and making our choice
on the Axis tab of the Format Data Series dialog. When instructed to place
a series on the secondary axis, Excel usually only displays a secondary Y axis
on the chart. This can be changed using the Chart > Chart Options menu
command, clicking the Axes tab and choosing whatever combination of pri-
mary and secondary axes are desired. When two series are plotted on dif-
ferent axes, the axes are scaled independently. Care must be taken to
ensure that it is obvious to the viewer which series is plotted on which axis,
by adding relevant axis labels and matching them to the series labels, as
shown in Figure 15-5.

522 Chapter 15 Advanced Charting Techniques

Figure 15-4 The Resulting Combination Column/Line Chart

Using Defined Names to Link Charts to Data

A key point to understand is that our charts do not have to refer directly to
the cells containing their data. The source data for a chart series is provid-
ed by the =SERIES() function, which can be seen in the formula bar when
a series is selected. The SERIES() function has the following format:

=SERIES(Name, XValues, YValues, PlotOrder)

Each of the four parameters can be a constant or array of constants, a
direct range reference or a reference to a defined name. All the lines in
Listing 15-1 are examples of valid functions.

Listing 15-1 Examples of Valid SERIES() Functions

=SERIES(Sheet1!B1,Sheet1A2:A20,Sheet1!$B2:$B20,1)

=SERIES("Sales",Sheet1A2:A20,Sheet1!$B2:$B20,1)

=SERIES("Horizontal Line",{0,1},{123,123},1)

=SERIES("Book Names",Book1.xls!chtXName,Book1.xls!chtYName,1)

=SERIES("Sheet Names",Sheet1!chtXName,Sheet1!chtYName,1)

Fundamental Techniques 523

Figure 15-5 Using Labels and Axis Titles to Clearly Identify Which Series
Applies to Which Axis

The last two versions of the SERIES() formula use workbook-level and
sheet-level defined names respectively instead of direct cell references.
This indirection enables us to use the defined names’ definitions to modi-
fy the ranges or arrays passed to the chart, as shown in the following
examples.

Setting Up the Defined Name Links

When you use a defined name in a SERIES formula, for best results you
should begin with a name that references a worksheet range directly. After
you have this working correctly, you can modify the name to perform more
complex operations. Sometimes, if the formula for the defined name is par-
ticularly complex, or if we make an error in its definition, the charting mod-
ule will refuse to accept the name in the SERIES() function. By starting
with a very simple definition for the names, we are able to add them to the
SERIES() function without problem.

Figure 15-6 shows a simple line chart, with the series selected and the
SERIES() function displayed in the formula bar.

524 Chapter 15 Advanced Charting Techniques

Figure 15-6 A Simple Line Chart

To change the chart to use defined names, we first create two defined
names, for the Date and Value ranges. Select Insert > Name > Define from
the menu and create the following two names:

Name: Sheet1!chtDates
Refers to: =Sheet1!A2:A9

Name: Sheet1!chtValues
Refers to: =Sheet1!B2:B9

Now select the chart series and edit the SERIES() formula to read as
follows:

=SERIES("Value",Sheet1!chtDates,Sheet1!chtValues,1)

That’s it! The chart series is now linked to the defined names and the
defined names refer to the source data ranges. Obviously, if we had more
series in our chart, we would have to create extra names for the values for
each additional series. Now that we’ve set up the linkage, we can modify
the Refers To: formulas for the names (their definitions) to create some
interesting and time-saving effects.

Auto-Expanding Charts

One of the most frequently asked questions in the microsoft.public.
excel.charting newsgroup is how to get a chart to automatically include
new data as it’s typed in. In Excel 2003, if we create a List from the data
range and set either the chart or the defined names to refer to an entire
column of the List, the reference will automatically be adjusted to include
any new data. In previous versions, or if we prefer not to convert the range
to a List in Excel 2003, we can use defined names to do the automatic
updating.

The trick is to use a combination of the OFFSET() and COUNTA()
functions in the definition of the name used for the X values, then define
the name used for the Y values as an offset from the X values range. Select
a cell in the worksheet, then choose Insert > Name > Define. Change the
definition of the chtDates range to be the following by selecting the exist-
ing chtDates entry, typing the new definition and clicking the Add button:

Name: Sheet1!chtDates
Refers to: =OFFSET(Sheet1!A2,0,0,COUNTA

(Sheet1!$A:$A)-1,1)

The OFFSET() function has the following parameters:

=OFFSET(SourceRange, RowsToMoveDown, ColumnsToMoveAcross,

NumberOfRowsToInclude, NumberOfColumnsToInclude)

Fundamental Techniques 525

The COUNTA() function returns the number of non-blank cells in the
range, which in our case includes the header row. We therefore subtract
one to get the number of data items. Putting the two together gives us a
reference that starts in A2, moves down zero rows and across zero columns
(so remains in A2), has a number of rows equal to the count of our data
items and is one column wide. While in the Define Name dialog with the
chtDates name selected, if we tab into the Refers to: box, Excel will high-
light the resulting range with its “dancing ants,” as shown in Figure 15-7.

526 Chapter 15 Advanced Charting Techniques

Figure 15-7 Excel’s Dancing Ants Showing the Range Referred to by the
Defined Name

While we’re in the Define Name dialog, we need to modify the defini-
tion of the chtValues name. The easiest way to do that is to again use the
OFFSET() function, but this time to start at the range referred to by the
chtDates name and move one column across, keeping the same height and
width:

Name: Sheet1!chtValues
Refers to: =OFFSET(Sheet1!chtDates,0,1)

After clicking OK to apply those changes and return to the worksheet,
the chart should be showing exactly the same as before—the new defini-
tions resolve to the same ranges we started off with. The difference now is

that if we type a new data point in row 10, it will automatically appear on
the chart (assuming calculation is set to Automatic)!

To recap, it works because the COUNTA() function contained within
the definition of the chtDates range returns the number of items in col-
umn A, which now includes the new entry. That feeds into the OFFSET()
function, making it include the new entry in its resulting reference (now
A2:A10). The chtValues range is updated to refer to one column across
from the expanded chtDates range, so becomes B2:B10 and both those
names feed into the chart series =SERIES() function, making the chart
redraw to include the new data. The functions used in the defined name
assume that the source data is contiguous, starting in cell A2. Blank cells
will result in an incorrectly calculated range. More precise formulas are
outside the scope of this book, but can easily be found by searching the
Google newsgroup archives.

It is fundamental to the rest of this section that you fully understand
the mechanism we’re using. If anything is unclear, take some time to go
through the example, perhaps trying to create an auto-expanding chart
with two or three data series.

Scrolling and Zooming a Time Series

In the auto-expanding chart, we were only updating one of the OFFSET()
function’s parameters. If we modify both the row offset and number of
rows, we can provide a simple, codeless mechanism for our users to scroll
and zoom through a time series. In the worksheet shown in Figure 15-8,
we’ve added two scrollbars from the Forms toolbar below the chart, set
their Min and Max values to correspond to the number of data points and
linked their values to the cells in column D, using two defined names
ZoomVal and ScrollVal to refer to cells D24 and D25 respectively.

In the definition for the chtDates name for this example, the ScrollVal
figure is used for the row offset and the ZoomVal figure provides the num-
ber of data points to include in the range:

Name: Sheet1!chtDates
Refers to: =OFFSET(Sheet1!A1,Sheet1!ScrollVal,0,

Sheet1!ZoomVal,1)

The chtValues definition is the same as before, =OFFSET(chtDates,
0,1).

Fundamental Techniques 527

Transforming Coordinate Systems

In the previous two examples, we’ve used the OFFSET() function in the
defined name to change the range of values drawn on the chart, but keep-
ing the actual data intact. We can also use defined names to modify the
data itself prior to plotting it, such as transforming between polar and x, y
coordinate systems. In polar coordinates, a point’s location is defined by its
angle and distance from the origin, rather than the distance-along and dis-
tance-up of the standard XY chart. Excel does not have a built-in chart type
that will plot data in polar coordinates, but we can use defined names to
convert the (angle, length) polar coordinate to (x, y), which can then be
drawn on a standard XY chart. We’re going to show you how to create the
chart shown in Figure 15-9 from the data shown beside it by using defined
names. In this example, the length figures are calculated from the angle
using the formula a*sin(a).

528 Chapter 15 Advanced Charting Techniques

Figure 15-8 Allowing the User to Zoom and Scroll Through Time-Series
Data

To demonstrate how the various uses of defined names can be com-
bined, we’ll implement two levels of indirection. The first level will use the
technique from the Auto-Expanding Charts section above to automatical-
ly handle changing data sets, while a second level will perform the coordi-
nate transformation.

The names to handle the automatic updates are defined as follows:

Name: Sheet1!datAngle
Refers to: =OFFSET(Sheet1!A3,1,0,

COUNTA(Sheet1!A3:A5000)-1,1)

Name: Sheet1!datLength
Refers to: =OFFSET(Sheet1!datAngle,0,1)

The observant reader might have noticed that we’re using a slight dif-
ferent version of the OFFSET() function in the definition for the datAngle
name. The version shown here is slightly more robust, as it counts within

Fundamental Techniques 529

Figure 15-9 Plotting Polar Coordinates on an XY Scatter Chart

a specific range of 5,000 cells, starting with the data header cell. You may
have seen a variation on this technique in which the entire column address
was used in the COUNTA function. By limiting the range in the way we do
here, it doesn’t matter whether the user changes the contents of the cells
above the data range, such as adding extra titles to the sheet.

With the datAngle and datLength names referring to our source data,
we can define two more names to convert from the polar to x, y coordinates:

Name: Sheet1!chtX
Refers to: =Sheet1!datLength*

COS(Sheet1!datAngle*PI()/180)

Name: Sheet1!chtY
Refers to: =Sheet1!datLength*

SIN(Sheet1!datAngle*PI()/180)

The chart series can then use the chtX and chtY names for the X and Y
data:

=SERIES("Polar Plot",Sheet1!chtX,Sheet1!chtY,1)

Charting a Function

So we’ve used defined names to change the range of cells to plot and to
manipulate the data in that range before we plot it. In Chapter 14 — Data
Manipulation Techniques, we introduced array formulas and explained
how they can be used to perform calculations on arrays of data. We also
showed a specific array formula that is often used to generate a number
sequence for use in other array formulas. What we didn’t mention was that
we can also use array formulas in our defined names and refer to them
from charts! Figure 15-10 shows a worksheet that uses array formulas in
defined names to plot a mathematical function over a range of x values,
without needing to read any data from the worksheet.

This worksheet combines a number of Excel tricks to generate the x
axis values and use them to calculate the y axis results. We create a defined
named to generate the values for the x axis and give it the name x, for rea-
sons explained below:

Name: Sheet1!x
Refers to: =C6+(ROW(OFFSET(A1,0,0,C8,1))-

1)*(C7-C6)/(C8-1)

530 Chapter 15 Advanced Charting Techniques

Working through the parts of this array formula:

■ OFFSET(A1,0,0, C8,1) gives the range A1:A51.
■ ROW(OFFSET(A1,0,0, C8,1)) converts the range to the

array {1, 2, 3, …, 50, 51}.
■ (ROW(OFFSET(A1,0,0, C8,1))-1) subtracts 1 from each

item in the array, giving {0, 1, 2, …, 49, 50}.
■ (C7-C6)/(C8-1) calculates the x axis increment for each

point, giving 0.1 in our example.
■ (ROW(OFFSET(A1,0,0,C8,1))-1)*(C7-C6)/(C8-
1) multiplies each item in the array by the x axis increment, giving
the array {0, 0.1, 0.2, …, 4.9, 5.0}.

■ C6+(ROW(OFFSET(A1,0,0,C8,1))-1)*(C7-
C6)/(C8-1) adds the array to the required x value start point,
resulting in the range of x values to use in the chart {–4.5, –4.4, –4.3,
… 0.49, 0.50}.

Unfortunately, if we try to include Sheet1!x in the chart SERIES()
function, we get an error about an incorrect range reference. To create the
chart, we use the workaround described at the start of this section, by

Fundamental Techniques 531

Figure 15-10 Using Array Formulas in Defined Names to Generate and
Plot Data

creating two names chtX and chtY that point to worksheet cells, use them
to create the chart and then change them to their real definitions:

Name: Sheet1!chtX
Refers to: =Sheet1!x

Name: Sheet1!chtY
Refers to: =EVALUATE(Sheet1!B3&"+x*0")

The definition for chtX is just a workaround for Excel not allowing us
to use the x name in the chart itself. The definition for chtY needs
some explaining! Cell B3 contains the equation to be plotted,
exp(x)*sin(x^2), as text. The EVALUATE function is an XLM macro
function, equivalent to the VBA Application.Evaluate method, but which
can be called from within a defined name. XLM functions were the pro-
gramming language for Excel 4, replaced by VBA in Excel 5, but still sup-
ported in Excel 2003. The documentation for the XLM functions can be
downloaded from the Microsoft Web site, by searching for “macrofun.exe”
or “xlmacro.exe.” At the time of writing, one version of the file is available
from http://support.microsoft.com/?kbid=128175.

EVALUATE() evaluates the expression it’s given, returning a numeric
result. In our case, when the expression is evaluated, Excel replaces the x’s
in the formula with the array of values produced by our Sheet1!x defined
name (which is exactly why we called it x) and returns an array containing
the result of the function for each of our x axis values. These arrays are
plotted on the chart, to give the line for the equation. The &"+x*0" part
of the chtY definition works around an error in Excel that sometimes
causes trig functions to not evaluate as array formulas, by forcing the entire
formula to be evaluated as an array.

Faking It

A chart is a visual artifact, designed to impart information to the viewer in
a graphical manner. As such, we should mainly be interested in whether
the final chart looks correct and performs its purpose of providing clear
information. We should not be too bothered about whether the chart has
been constructed according to a notional set of generally approved guide-
lines. In other words, we often need to cheat by using some of the chart
engine’s features in “creative and imaginative” ways. This section explains
a few ways in which we can get creative with Excel’s chart engine, by using
some of its features in ways they were probably not designed to be used.

532 Chapter 15 Advanced Charting Techniques

http://support.microsoft.com/?kbid=128175

Error Bars

When is a line not a line? When it’s an error bar! From a purely visual per-
spective, an error bar is a horizontal or vertical line emanating from a data
point, so if we ever have the need to draw horizontal or vertical lines around
our data points, we might consider using error bars for those lines. A great
example is the step chart shown in Figure 15-11, where the vertical lines
show the change in an item’s price during a day and the horizontal lines con-
nect the end price from one day to the start price for the next day.

Fundamental Techniques 533

Because Excel doesn’t include a built-in Step Chart type, many peo-
ple believe that Excel can’t create them. There are quite a few ways in
which it can be done, but the easiest is probably to use an XY chart with
both vertical and horizontal error bars. The basic data for the chart con-
sists of a list of dates and end-of-day prices, with a calculated field for the
change in price from the end of the previous day. From this basic data, we
start with a normal XY chart to plot the price against the date, as shown in
Figure 15-12.

Below each data point, we want to display a vertical line equal to the
change in price for that day, which we do by specifying a custom minus
error value in the Y Error Bars tab of the Format Data Series Dialog, as
shown in Figure 15-13.

Figure 15-11 A Step Chart

534 Chapter 15 Advanced Charting Techniques

Figure 15-12 Start with a Normal XY (Scatter) Chart of Price vs. Date

Figure 15-13 Add a Custom Minus Y Error Bar for the Day’s Change
in Price

The horizontal lines need to join each data point to the bottom of the
subsequent point’s error bar. That sounds difficult, but because these are
daily prices all you need to do is add Plus markers to the X error bars with
a fixed value setting of 1. With the error bars configured, you should be
seeing a chart something like that shown in Figure 15-14.

Fundamental Techniques 535

All that remains is to double-click the error bar lines and use the
Patterns tab to change their color, thickness and marker style, and then
double-click the original XY line and format that to have no line and no
marker. The result appears to be the step chart from Figure 15-11, even
though it’s actually only error bars being drawn.

Dummy XY Series

When is an axis not an axis? When it’s an XY series with data labels! Excel’s
value axes are either boringly linear or logarithmic. They do not support
breaks in the axis, nor scales that vary along the axis nor many other com-
plex-axis effects. Figure 15-15 shows a chart with a variable Y axis, where
the bottom half of the chart plots values from 0 to 100 in steps of 20, but
the top half plots 100 to 1,000 in steps of 200:

Figure 15-14 The Chart with the Additional Error Bars

In this chart, the real Y axis goes from zero to 200, but we’ve added a
dummy XY series using the data from B10:C20, added data labels to the
XY series, set them to display to the left of the point and customized their
text to that shown in the figure. The result appears to be a complex axis
scale that varies up the chart. The final step is to transform the real sales
data in B3:B7 into the correct values for Excel to plot on its linear 0 to 200
scale, which is done using a simple mapping formula in C3:C7 of
=IF(B3<=100,B3,100+B3/10), which is the data that Excel plots.

We can use this technique to implement any axis scale of our choosing,
such as including breaks in our axes, plotting using logarithmic, hyperbol-
ic or probability scales or even including multiple dummy XY series to
make the chart appear to have many axes (as long as the user can deter-
mine which series is plotted against which axis). This effect can be mis-
leading, if it is not clearly shown that a break in the axis scale exists. The
chart in Figure 15-15 looks linear along its entire range, but if plotted on a
true linear scale, it would resemble a boomerang with a large angle in the
middle. An easy way to indicate a break in the axis is to set an individual
point’s data marker using a custom image, as we have done. Draw the
image using Paint or other graphics program, copy it to the clipboard,
select the data point and paste the image.

536 Chapter 15 Advanced Charting Techniques

Figure 15-15 Chart with a Complex Axis Scale

VBA Techniques

So far, we’ve concentrated on the techniques we can use to get the most
out of Excel’s charting engine through the user interface. In this section,
we examine how we can use VBA to manipulate charts.

Converting Between Chart Coordinate Systems

When using VBA to work with charts, there are (at least) four different
coordinate systems that we often need to convert between:

■ The chart series data displayed inside the plot area is in the axis
coordinates if it’s an XY Scatter chart.

■ The mouse pointer coordinates given in the MouseMove etc. events
are measured in pixels, with the origin in the top-left corner of the
ChartObject window.

■ The coordinates of any drawing objects added to the chart are in
points, with the origin being the top left of the chart area, slightly
inside the ChartObject window.

■ The coordinates used by the GET.CHART.ITEM XLM function to
locate the vertices of chart objects are in points, but with the origin
in the bottom-left corner of the chart area. See the Locating Chart
Items section later for an example of its use.

Furthermore, if the chart is embedded on a worksheet, the worksheet
zoom factor affects the mouse pointer coordinates, but not the data nor
location of any drawing objects on the chart.

Listing 15-2 shows a MouseMove event for a chart, within which we
convert the X, Y mouse coordinates given to the event into both data coor-
dinates (displayed in the status bar) and drawing object coordinates (which
we use to move an oval to follow the mouse pointer). Note that this code
uses the PointsPerPixel function defined in Chapter 9 — Understanding
and Using Windows API Calls:

Listing 15-2 Converting from Mouse Coordinates to Data and Drawing Object
Coordinates

Private Sub mchtChart_MouseMove(ByVal Button As Long, _

ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)

VBA Techniques 537

Dim dZoom As Double

Dim dXVal As Double

Dim dYVal As Double

Dim dPixelSize As Double

On Error Resume Next

'The active window zoom factor

dZoom = ActiveWindow.Zoom / 100

'The pixel size, in points

dPixelSize = PointsPerPixel

'Mouse coordinates to (XY) Data coordinates

With mchtChart

dXVal = .Axes(xlCategory).MinimumScale + _

(.Axes(xlCategory).MaximumScale - _

.Axes(xlCategory).MinimumScale) * _

(X * dPixelSize / dZoom - _

(.PlotArea.InsideLeft + .ChartArea.Left)) / _

.PlotArea.InsideWidth

dYVal = .Axes(xlValue).MinimumScale + _

(.Axes(xlValue).MaximumScale - _

.Axes(xlValue).MinimumScale) * _

(1 - (Y * dPixelSize / dZoom - _

(.PlotArea.InsideTop + .ChartArea.Top)) / _

.PlotArea.InsideHeight)

End With

Application.StatusBar = "(" & Application.Round(dXVal, 2) _

& ", " & Application.Round(dYVal, 2) & ")"

'Mouse coordinates to Drawing Object Points

'We'll only move the oval if the Shift key is pressed

If Shift = 1 Then

With mchtChart

dXVal = (X * dPixelSize / dZoom - .ChartArea.Left)

dYVal = (Y * dPixelSize / dZoom - .ChartArea.Top)

With .Shapes("ovlPointer")

.Left = dXVal - .Width / 2

.Top = dYVal - .Height / 2

538 Chapter 15 Advanced Charting Techniques

End With

End With

End If

End Sub

Locating Chart Items

Sometimes, however hard we try, the only way to get a chart looking exact-
ly how we want it is to add drawing objects to it, such as rectangles, lines,
arrows and so on. As soon as we do that, we hit the problem of trying to
identify where in the drawing object coordinate space an item on the chart
is located, such as the top middle of a specific column in a column chart.

That level of positional information cannot be obtained through the
Excel object model, but can be obtained by calling on the long-disused
XLM function GET.CHART.ITEM. This function has the following
parameters:

GET.CHART.ITEM(x_y_index, point_index, item_text)

Where:

■ x_y_index is 1 to return the x position and 2 to return the y
position.

■ point_index depends on the item we’re looking at, but is a num-
ber from 1 to 8 to identify a specific vertex within the item. For
example, 2 is the upper middle of any rectangular item, such as a
column in a column chart.

■ item_text identifies the item we’re interested in, such as “Plot” for
the plot area, or “S2P4” for the fourth data point in the second series
in the chart.

The full list of available parameters can be found in the XLM Macros
help file available for download from the Microsoft Web site at
http://support.microsoft.com/?kbid=128175. The only caveat
with using GET.CHART.ITEM is that the chart must be active for it to
work. The code in Listing 15-3 moves an arrow on a chart to be from the
top-left corner of the inside of the plot area (using normal VBA position-
ing) to the top middle of the third column of a column chart, resulting in
the chart shown in Figure 15-16.

VBA Techniques 539

http://support.microsoft.com/?kbid=128175

Listing 15-3 Using GET.CHART.ITEM to Locate a Chart Item’s Vertices

Private Sub cmdMoveArrow_Click()

Dim rngActive As Range

Dim dXVal As Double

Dim dYVal As Double

Dim chtChart As Chart

Set rngActive = ActiveCell

'We have to activate the chart to use GET.CHART.ITEM

Me.ChartObjects(1).Activate

'Find the XY position of the middle top of the third column

'in the data series,

'returned in XLM coordinates

dXVal = ExecuteExcel4Macro("GET.CHART.ITEM(1,2,""S1P3"")")

dYVal = ExecuteExcel4Macro("GET.CHART.ITEM(2,2,""S1P3"")")

'Get the Chart

Set chtChart = Me.ChartObjects(1).Chart

With chtChart

'Convert the XLM coordinates to Drawing Object coordinates

'The x values are the same, but the Y values need to be

'flipped

dYVal = .ChartArea.Height - dYVal

'Move and size the Arrow

.Shapes("linArrow").Left = .PlotArea.InsideLeft

.Shapes("linArrow").Top = .PlotArea.InsideTop

.Shapes("linArrow").Width = dXVal - .Shapes("linArrow").Left

.Shapes("linArrow").Height = dYVal - .Shapes("linArrow").Top

End With

rngActive.Activate

End Sub

540 Chapter 15 Advanced Charting Techniques

Calculating Reasonable Axis Scales

Often when we’re controlling charts through VBA, we need to set our own
values for the axis scales. The code in Listing 15-4 calculates tidy
Minimum, Maximum and MajorUnit values. It is a different algorithm
than the one Excel uses to determine chart axis scales, but is one that we
have found to give pleasant-looking results.

Listing 15-4 Function to Calculate Reasonable Chart Axes Scales

Public Type CHART_SCALE

dMin As Double

dMax As Double

dScale As Double

End Type

Public Function ChartScale(ByVal dMin As Double, _

ByVal dMax As Double) As CHART_SCALE

Dim dPower As Double, dScale As Double

'Check if the max and min are the same

If dMax = dMin Then

dScale = dMax

dMax = dMax * 1.01

VBA Techniques 541

Figure 15-16 Moving an Arrow to Point to the Top Middle of a Column

dMin = dMin * 0.99

End If

'Check if dMax is bigger than dMin - swap them if not

If dMax < dMin Then

dScale = dMax

dMax = dMin

dMin = dScale

End If

'Make dMax a little bigger and dMin a little smaller

If dMax > 0 Then

dMax = dMax + (dMax - dMin) * 0.01

Else

dMax = dMax - (dMax - dMin) * 0.01

End If

If dMin > 0 Then

dMin = dMin - (dMax - dMin) * 0.01

Else

dMin = dMin + (dMax - dMin) * 0.01

End If

'What if they are both 0?

If (dMax = 0) And (dMin = 0) Then dMax = 1

'This bit rounds the maximum and minimum values to

'reasonable values to chart.

'Find the range of values covered

dPower = Log(dMax - dMin) / Log(10)

dScale = 10 ^ (dPower - Int(dPower))

'Find the scaling factor

Select Case dScale

Case 0 To 2.5

dScale = 0.2

Case 2.5 To 5

dScale = 0.5

Case 5 To 7.5

dScale = 1

Case Else

dScale = 2

End Select

542 Chapter 15 Advanced Charting Techniques

'Calculate the scaling factor (major unit)

dScale = dScale * 10 ^ Int(dPower)

'Round the axis values to the nearest scaling factor

ChartScale.dMin = dScale * Int(dMin / dScale)

ChartScale.dMax = dScale * (Int(dMax / dScale) + 1)

ChartScale.dScale = dScale

End Function

Conclusion

Although Excel’s charting engine has a relatively poor reputation among
users, most of that is due to a lack of knowledge about how to exploit the
engine, rather than a lack of features. Yes, we would like to see significant
improvements in the quality of the graphics, proper support for true 3D
contour and XYZ scatter plots and a general overhaul of the user interface
to make the advanced techniques shown in this chapter much more dis-
coverable for the average user.

However, after we’ve spent the time to explore the charting engine and
fully understand the techniques introduced here, we realize that the limits
of Excel’s charting capabilities are to be found in our imagination and cre-
ativity, rather than with Excel.

Conclusion 543

Index

885

Symbols
2D charts, 522
. (dot) operator, 613
! (exclamation point) character, 660
/ (forward slash) character, 242
character, 550
? (question mark) character, 212
? wildcard, 507
* wildcard, 507

A
accelerator keys, controls, 310
Access

deleting data, 474
further resources, 476
inserting data, 469

object model, 635
retrieving data from, 465
running a report using Excel data, 636
updating data, 471

Access data sources, connecting to, 461
Access Relationship window, 447
Accessing Excel application object from

an automation add-in, 766
accessing data

connecting to data sources, 457-458
Access, 461
error handling, 462

data manipulation operations, 464-465
deleting data, 473
inserting data, 468
retrieving data, 467
updating data, 470-471

technology, 455

886 Index

Activate event, 416
ActiveDocument, referencing, 622
ActiveX controls, 101
ActiveX Data Objects, 454-455

connecting to data sources, 457-458
Access, 461
data manipulation operations,

464-473
error handling, 462

connection pooling, 461
ConnnectionString property, 460
data manipulation operations, 464
data retrieval, 464
further resources, 476
recordsets, creating structured

ranges, 493
technology defined, 455

ActiveX DLLs
complex case—two-way

communication, 693-696
creating a new project, 688-689
creating front loaders, 735-741
displaying a VB6 form in Excel,

698-703
Hello World, 688
in-process communication, 719
justification of use

code protection, 704
custom collection support, 716-717
OOP, 714
resource files, 718
VB6 forms, 705-710, 713-714

out-of-process communication, 720
simple case—one-way communication,

690-692
using resource files to load icons,

729-730

adding bitmaps to the resource
file, 731

using bitmaps located in the
resource file, 733-735

add-in command bar definition
table, 247

Add-in Designer, 747-751
AddinInstance object, 755
Advanced tab, 752
load behavior, 751

add-ins
Add-in Designer, 749-751

Advanced tab, 752
load behavior, 751

application-specific add-ins, 19-20,
121-124, 127

automation add-ins, 765
accessing Excel application object

from, 766
IfError automation add-in, 765

COM Add-ins
Excel interaction, 755-757
installing, 753-754

development/maintenance, 110
function library add-ins, 112, 115

creating names and descriptions, 117
example UDF, 113

general add-ins, 120
general-purpose, 17
Hello World, 745-747
installation requirements, 879
installing using the object model, 882
managed, 775, 795
multi-application, 764
practical example, 130, 133, 136-139
runtime, 111
shutdown, 112

Index 887

startup, 110
structure, 18
worksheets, 18

AddInInstall event, 758
AddinInstance object (Add-in

Designer), 755
ADO (ActiveX Data Objects), 454-455

connecting to data sources, 457-458
Access, 461
data manipulation operations,

464-473
error handling, 462

connection pooling, 461
ConnnectionString property, 460
data manipulation operations, 464
data retrieval, 464
further resources, 476
recordsets, creating structured

ranges, 493
technology defined, 455

ADO Connection object, bypassing, 472
ADO object model, 456
ADsPath, 875
advanced filter criteria range, 510
Advanced Filter feature (Excel), 504-506
Alias clause, 266
Alt+A shortcut key, 572
Alt+V shortcut key, 561
API calls, 259
API

documentation, 256
functions, 266

application shutdown code, 398
application tier, 42
application-specific add-ins, 19, 121

structure, 20

table-driven approach to UI worksheet
management, 122-124, 127

applications, 13
add-ins, 17-20, 749. See also add-ins
API calls, 260
automation, 619, 722
codeless, 14-15
communication

in-process communication, 719
out-of-process communication, 720

creating instances of Office
applications, 627

data access code, 453
debugging, 546
design considerations, 13
development

change control, 67
preparing for release, 863
worksheet, 4

development best practices
code commenting, 47-51
code readability, 51-52
VBA, 54-58

dictator applications, 20-22, 143
customizing the UI, 153-158
requirements of, 23
startup and shutdown, 144-147,

150-152
structure, 24, 143

distributing, 883
Help files, 863-864

creating, 865-868
displaying from VBA, 870-872
writing content, 869

organization best practices, 44
creating procedures, 46
functional decomposition, 45

888 Index

applications (cont.)
packaging

installation location, 877
installation mechanisms, 881
installation requirements, 879-880

performance, 587-588
optimization, 593-596
PerfMon utility, 589-591

Run mode versus Break mode, 545
security, 873

checking network groups, 873-875
macro security, 875-877

self-automated workbooks, 15-16
structure best practices

one-workbook versus the n-work-
book application, 42

separation of data/UI from code, 44
separation of logical tiers, 42

tiers, 43
VBA, code validation, 740

arguments
declaring explicitly, 63
validating, 64

array formulas, 510-513, 531
arrays

control arrays (VB6), 707-710, 713-714
hard-coding array bounds, 58
looping, 58
variant arrays, 614

Arrows icon, 235
artificial keys, 451-452
As Double variable, 615
assemblies, 776
assertions, 581-582
atomic values, 439
attributes (XML), 822
auto-expanding charts, 525
auto-instantiation, 303

automation, 619
Access, 636
Excel from a VB6 EXE, 721-728
Outlook, 644-645
PowerPoint and MSGraph, 641
Word, 638-639

automation add-ins, 765
accessing Excel application object

from, 766
IfError automation add-in, 765
installation requirements, 881

axes (charts), 522, 536

B
backdrops, 153-155
Before setting (CommandBarControl

objects), 218
Begin Group setting

(CommandBarControl
objects), 217

best practices
application development

change control, 67
code commenting, 47-51
code readability, 51-52
including Excel object library in

variable declarations, 621
qualifying property and method

calls, 622
VBA, 54-58
versioning, 623

application organization, 44
creating procedures, 46
functional decomposition, 45

application structure
one-workbook versus the

n-workbook application, 42

Index 889

separation of data/UI from code, 44
separation of logical tiers, 42

command bar design, 199-200
constants, 58
variables, 55-57

best routines (optimization), 599
binding

early versus late, 60-62, 625
optimization, 612

bit-masks, 276
bitmaps, 233

as CommandBarButton icons, 235
bookmarks, 638
borders, 84-86
Break in Class Module setting, 546
Break mode, 545
Break on All Errors setting, 545
Break on Unhandled Errors setting, 546
break points, 550-552
browsing for folders, 286-287
browsing to regsvr32.exe, 753
buffers, 280
business logic (userforms), 300
business logic tier, 42
ByRef, 63
byte-counting, 669
ByVal, 63

C
C API, 652

example worksheet function, 679
Excel4 function, 672

parameters, 673
functions, 674

xlCoerce function, 675
xlFree function, 674

xlGetName function, 675
XLOPER data type, 667, 669-670

C strings, 658
calculated fields, 500

adding alongside a query table, 501
calculated items, 500
call stack, 391
Call Stack window, 560
callback functions (XLL)

xlAddInManagerInfo function, 664
xlAutoClose function, 664
xlAutoOpen function, 663
xlAutoRegister function, 666

callbacks, 287, 293
interacting with the Windows File

Picker dialog, 288
cascading data-validation lists, 90-91
caspol, 804-805
catching errors, 406
cell comments, 86
central error handler, 405, 408-414
change control, 67
changing

to a UNC path, 281
userform window styles, 317
width of the Name drop-down list, 271
window icon, 272
window styles, 273

chart sheets, naming conventions, 38
Chart Wizard, 519
charts

auto-expanding, 525
axes, 522
calculating reasonable axis scales

(VBA), 541
combining chart types, 519-521
complex axis scale, 536

890 Index

charts (cont.)
coordinate systems, 528
error bars, 533
linking to data with defined names,

523-530
locating chart items (VBA), 539
PowerPoint, 642
step charts, 533
time-series data, 527
working with VBA, 537

charts (userforms), 321
circular references, 514-515
class instancing types, 714
class modules, 167

creating objects, 168-169
Collection objects, 172-178
raising events, 182-188
trapping events, 179-181

structure
methods, 171
property procedures, 170

userforms, 304
classes

error handling, 415
GlobalMultiUse classes, 716
polymorphic, 368-369, 372
userforms, 303

client-server databases, 437
Close button, disabling (userforms), 320
code

defensive coding, 63
executing in the Immediate

window, 559
execution points, 553
organizing, 45
prefixes, 31
readability, 51

grouping lines, 52

line continuation, 53
reuse, 361

code comments, 47
internal, 49
mistake avoidance, 51
module-level, 47
procedure-level, 48

code-created userforms, 336, 340, 343
code templates, 110
codeless applications, 14-15
Collection object, 612
Collection objects

creating, 172-178
custom collection classes, 177

columns, foreign keys, 440, 446
COM (Component Object Model), 619

vTable, 624
COM Add-ins, 747

adding menu items to Excel, 758
checking for, 750
Command Bar Event Hooks, 758
custom toolbar faces, 762
Excel interaction, 755

OnAddInsUpdate event, 756
OnBeginShutdown event, 757
OnConnection event, 755
OnDisconnection event, 757
OnStartupComplete event, 756
Terminate event, 757

Hello World, 748
installation requirements, 880
installing, 753-754
justification for, 763
Managed COM Add-ins, 774
Paste Special Bar, 762
permanent menus, 759-760
separate threading, 764
temporary menus, 761

Index 891

COM DLLs, Managed, 774
combination charts, 519
combo boxes, 308
ComboBox control, 309, 352
Command Bar Control Events, 237
command bar definition tables, 202-204

custom toolbars, 226
Paste Special toolbar, 240

Command Bar Event Hooks, 758
Command Bar Name column, 206
command bars, 23

custom, 158
adding custom menus/submenus to

the Worksheet Menu Bar, 224-225
designing

best practices, 199-200
table-driven command bars, 201-202,

206-215
managed workbooks, 789
practical example, 247

CommandBar objects
IsMenubar setting, 208
Position setting, 207
Protection setting, 209
Visible setting, 208

CommandBarButton objects, 235
CommandBarControl objects

Before setting, 218
Begin Group setting, 217
Control ID setting, 211
Control Style setting, 214
Control Type setting, 213
Face ID setting, 215
List setting, 220
ListRange setting, 220
OnAction setting, 211
Parameter setting, 219
Shortcut Text setting, 218

State setting, 220
Tag setting, 219
Tooltip setting, 218

comments, 47
internal, 49
mistake avoidance, 51
module-level, 47
procedure-level, 48

compatibility, Office versions, 623
Component Object Model. See COM
Component One’s Doc-to-Help web

site, 863
conditional compilation constants, 549
conditional formatting, 92

calling out error conditions, 96-98
dynamic tables, 93-95, 151

connecting to data sources, 457-458
Access, 461
error handling, 462
Excel, 460

connection strings, 457-460
consolidating data, 502-504
constants

best practices, 58
conditional compilation constants, 549
defined in the command bar definition

table, 204
finding values, 257
including in VBA module, 258
named constants, 72
naming conventions, 31

Control Array Demo form, 710
control arrays, 341
Control Caption columns, 206
control events, trapping, 244
Control ID setting

(CommandBarControl
objects), 211

892 Index

Control Style setting
(CommandBarControl
objects), 214

Control Type setting
(CommandBarControl
objects), 213

controlling applications from Excel
Access, 636
Outlook, 644-645
performance, 632
PowerPoint and MSGraph, 641
Word, 638-639

controls, 39, 99
ActiveX controls, 101
assigning event handler classes, 342
Custom Toolbar, 227
drag-and-drop operations, 357
form controls, 100
hooking, 238
MultiPage control, 356
userforms, 306

accelerator keys, 310
ComboBox, 352
data binding, 311
data validation, 313
event handling, 311
layering, 309
locking versus disabling, 323
naming, 309
positioning, 309-310
Windows Common Controls,

355-357
z-order, 309

converting
pixels to points, 262
values to VBA, 258

coordinate systems, 528, 537
copy, 156
CopyFromRecordset method, 467

CopyPicture method, 321
COUNTA() function, 525
COUNTIF() function, 511
crashes, 150
CreateObject function, 627, 631
CreateParameter method, 473
creating

cell comments, 86
COM Add-in projects, 747-748
custom toolbars, 226
dynamic tables, 93-95
front loaders, 735-741
Help project files, 865

compiling, 868
No Help Available topic files, 867
topics, 868
updating project options, 865
writing content, 869

IfError automation add-in, 765
instances, 627
menu items, 759
objects, 167-169

Collection objects, 172-178
raising events, 182-188
trapping events, 179-181

procedures, 46
query tables, 495
resource files, 730
special effects with borders, 84
strong names, 801
structured ranges, 493
styles, 80-82
tables, 85
trigger classes, 187-188
Web services, 844-846
XLL projects, 652, 655-666
XML XSD files, 828

criteria range, 506

Index 893

Ctrl+G shortcut key, 556
Ctrl+L shortcut key, 560
culture (.NET framework), 809-810
custom collection classes, 177
custom collections, 716-717
custom document properties, 140, 163
custom drop-down pane, 354
custom errors, 400
custom icons, 232-235
custom interfaces

defining, 363
implementing, 364-366
use of, 366-367

Custom Toolbar, controls, 227
custom wizards, 333
customizing dictator application UI

backdrops, 153-155
custom command bars, 158
cut, copy, and paste, 156

cut, 156

D
dancing ants, 526
DAO (Data Access Objects), 636
DAO Database object, 636
data

access, 455
accessing

connecting to data sources, 457-458,
461-462

data manipulation operations,
464-473

Advanced Filter feature (Excel),
504-505

array formulas, 510
derived, 444
filtering, 508

inserting, 468
linking charts to, 523-530
normalization, 438, 445
plot data, 530
retrieving, 464-466
structured ranges, 492
time-series, 527
types, 660
unstructured ranges, 492
updating, 470

data access and storage tier, 43
data access code, 453
Data Access Objects (DAO), 636
data binding

controls (userforms), 311
data consolidation, 502-504
data manipulation operations, 464
Data Type Specifier, 31
data types

OPER, 671
XLOPER, 667, 670

memory management, 675
xltype member, 669

data validation, 89
cascading lists, 90-91
controls (userforms), 313
unique entries, 89

data-validation list, 449
database functions, 509
databases, 435

client-server, 437
file-based, 437
justification for, 436
primary keys, 438
relational, 437
second normal form, 441
SQL Server, 459
third normal form, 443

894 Index

DAVERAGE() function, 509
Debug mode, 150, 546

conditional compilation constants, 549
Stop statement, 548

Debug.Assert method, 581
Debug.Print statement, 556
debugging, 545

assertions, 581
Break in Class Module setting, 546
Break on All Errors setting, 545
Break on Unhandled Errors

setting, 546
Call Stack window, 560
conditional compilation constants, 550
Immediate window, 556

Debug.Print statement, 556
executing code, 558

Locals window, 573
advanced features, 576
basic features, 575

Quick Watch window, 572
Set Next Statement command, 555
shortcut keys, 552, 583-584

Step Into command, 552
Step Out command, 554
Step Over command, 554
Step to Cursor command, 554

stepping into code, 553
test harnesses, 578-581
User-Defined Debug mode, 547
Watch window, 561, 564

arrays, UDTs, and classes, 570-572
Watch Context option, 567
Watch Type setting, 567-569
watch types, 565

worksheet functions, 682
XLL projects, 655

debugging errors, 408

declarations, 6, 257
Declare statements, 256
declaring, 63
default instances, 303
default interfaces, 360
default VSTO templates, 780
defensive coding, 63
Define Name dialog, 526
defined names

linking data to charts, 523-530
named constants, 72
named formulas, 76
named ranges, 73
naming conventions, 41
relative named ranges, 73
scope of, 77

defining custom interfaces, 363
DELETE statement (SQL), 473
deleting files to recycle bin, 284, 286
dependency checks, 144
derived data, 444
design-time version (ActiveX

controls), 706
designing

command bars
best practices, 199-200
table-driven command bars, 201-202,

206-215
Excel applications, 13
Excel UI

borders, 84
cell comments, 86
conditional formatting, 92-98
controls, 99-101
data validation, 89-91
defined names, 72-73, 76-77
practical example, 101, 103-104

Index 895

rows and columns, 70
shapes, 88
styles, 78-83
tables, 85

wizard dialogs, 333
developers, 2

Excel, 3
VBA, 2

development add-ins, 110
device context, 262
disconnected recordsets, 486
dictator applications, 20-22

customizing the UI
backdrops, 153-155
custom command bars, 158
cut, copy and paste, 156

requirements of, 23
startup and shutdown, 144

crashes, 150
Debug Mode, 150-152
storing/restoring Excel settings,

145-147
structure, 24, 143

dictator applications, 143
dictionaries, 612
digital signatures, 875-877
disabling

Close button (userforms), 320
COM Add-ins, 749
controls versus locking

(userforms), 323
On Error Resume Next, 547
toolbar buttons, 194
Toolbar List command bar, 210

displaying
Help files from VBA, 870-872
Immediate window, 556

VB6 forms in Excel, 698-703
distributing applications, 883
DLLMain function, 662
DLLs, 694-696
Do…While loops, 50
DoCmd object, 636
document properties, 140
documents, range, 639
dot (.) operator, 613
downloading HML Help Workshop, 864
drag-and-drop operations, 156, 357
drawing objects, 40
drop-down panes, 354
dynamic lists, 76
dynamic control event handling

(dynamic userforms), 341
dynamic tables, 93-95
dynamic userforms, 336

code-created/table-driven userforms,
336-340, 343

dynamic control event handling and
control arrays, 341

scroll regions, 340
subset userforms, 336

E
early binding, 60-62, 624-625
embedded objects, 40
EnableCancelKey property, 24
enabling

COM Add-ins, 749
error handlers, 394

encapsulating
API calls, 259-260
userforms, 306

encapsulation, 45

896 Index

entry points, 253
EntryPoint subroutine, 420-421
enumerations, 35

advantages of, 36
naming conventions, 31

EOF property, 467
Err object, 392
error bars, 533
Error Check formula, 97
error handled command bar builder, 222
error handling, 391

accessing data sources, 462
central error handler, 408-414
classes and userforms, 415
complex error handler example, 405
enabling handlers, 394
Err object, 392
function return value, 426
On Error statement, 396
overview , 393
procedure error handlers, 404-405
raising custom errors, 400
re-throw system, 428
Resume statement, 399
scope, 394-395
simple error handler example, 402
starting and closing Outlook, 630
trivial procedures, 407
unhandled versus handled errors, 391
userforms, 417-421
VBA, 628

error log files, 408, 413
errors

calling out error conditions, 96-98
debugging, 408
trapping, 426

Type Mismatch errors, 359
EVALUATE() function, 532
event handlers, 342
event handling, 311
event hooks

functionality, 238
why use?, 237

events
Activate event, 416
Initialize event, 416
Terminate event, 416
XML, 835-840

Evil Type Coercion, 56
Excel

Advanced Filter feature, 504-505
applications

add-ins, 17-18
applications-specific add-ins, 19-20
codeless, 14-15
dictator applications, 20-24
distributing, 883
preparing for release, 863
self-automated workbooks, 15-16

controlling applications, 620
controlling applications from

Access, 636
Outlook, 644-645
performance, 632
PowerPoint and MSGraph, 641
Word, 638-639

dancing ants, 526
data processing features, 497
data-handling features, 491
developers, 2-3
keyboard functions, 274-277
menu items, 759
object model, 7

Index 897

overview, 1
populating a Word document

from, 633
power users, 2
retrieving holiday dates from Outlook

calendar, 645
security, 872-877
supported versions, 9
user IDs, 279
VBA, 5
Web services, 843-844

creating, 845-846
functionality, 847-849
practical example, 850-854

XML features, 825-827
Excel 2003, 494
Excel 97 SDK, 652
Excel UI

designing
borders, 84
cell comments, 86
conditional formatting, 92-98
controls, 99-101
data validation, 89-91
defined names, 72-73, 76-77
practical example, 101-104
rows and columns, 70
shapes, 88
styles, 78-83
tables, 85

naming conventions
defined names, 41
embedded objects, 40

principles of good design, 69
Excel4 function, 672-673
exclamation point (!) character, 660
Execute method, 470

execution point indicator, 553
execution points, 553
exporting XML data, 833-834, 842
expressions

lvalue, 564
watch, 562

F
file-based databases, 437
files, deleting to recycle bin, 284-286
filtering data, 504-508
FindWindow function, 266
FindWindowEx function, 267
first normal form, 439
folders

browsing for, 286-287
special folders, 282-284

foreign keys, 440, 446
form controls, 100
form-based UI, 155
forms (VB6), 705

ActiveX control support, 706
control arrays, 707-710, 713-714

Forms toolbar, selecting controls, 99
forms, 305. See also userforms
formulas

array formulas, 510, 531
data validation, 89
Error Check formula, 97
named formulas, 76

Form_Load event procedure, 722
Form_QueryUnload event, 713
formulas (array formulas), 511-513
FP struct, 661
Frame control, 309

898 Index

front loaders
creating, 735-741
structure, 736
Sub Main procedure, 741

function library add-ins, 112, 115
creating names and descriptions, 117
example UDF, 113

function return value, 426
function tables, 658-661
functional decomposition, 45
functionals, 17
functions, 36

C API, 674
xlCoerce function, 675
xlFree function, 674
xlGetName function, 675

charting, 530
database functions, 509
structure, 18
wrapped in On Error Resume Next

statement, 398

G
general add-ins, 120
General Options panel, 337
general-purpose add-ins, 17

structure, 18
GET.CHART.ITEM XLM function,

537-539
GetDC function, 263
GetKeyState API function, 274
GetSetting, 18
GetSystemMetrics API function, 257

encapsulating, 260
finding screen resolution, 261

global scope, 30

GlobalMultiUse instancing type, 715
guard counters, 65
GUIDs, 624

H
handles, 259

finding Excel main window
handle, 268

handling instances, 626
application availability, 632
creating new instances, 627
multiversion support, 631
referencing existing instances, 629
tidying up, 628

Hello World ActiveX DLL, 688
complex case—two-way

communication, 693-696
creating a new project, 688
displaying a VB6 form in Excel,

698-703
simple case—one-way communication,

690-692
Hello World add-in, 745-747
Hello World Com Add-in, 748
Hello World managed workbook,

777, 780
Help files, 864

creating, 865
compiling, 868

No Help Available topic files, 867
topics, 868
updating project options, 865

displaying from VBA, 870-872
writing content, 869

hiding userforms, 305
Highlight method, 176
hOwner element, 293

Index 899

HTML help files, 864
creating, 865

compiling, 868
No Help Available topic files, 867
topics, 868
updating project options, 865

displaying from VBA, 870-872
writing content, 869

HTML Help Workshop, 864
hWnd, 264
hybrid VBA/VSTO solutions, 775,

796-799

I
Icon property procedure, 733
icon/mask method, 217
icons, 216

loading custom icons from files,
232-235

ID property, 238
ID/Tag combination, 238
IfError automation add-in, 765
IFERROR UDF, 113
IgnoreOtherApplications, 23
Immediate window, 556

Debug.Print statement, 556
executing code, 558

implementing
custom interface, 364-366
single exit points, 401

implicit agreement, 374
implicit interfaces, 386
importing

text files, 494
XML data, 825, 833-834

in-process communication, 719

indexes,
Help files, 869
unique, 453

infinite loops, protecting against, 65
Initialize event, 188, 194, 416
INSERT statement (SQL), 468
inserting data, 468
installation application, 877
installing

COM Add-ins, 753-754
HEML Help Workshop, 864
installation location, 878
installation mechanisms, 881
installation requirements, 880

instances
handling, 626

application availability, 632
creating new instances, 627
multiversion support, 631
referencing existing instances, 629
tidying up, 628

instantiation, 194
auto-instantiation, 303
global class variables, 243

IntegralHeight property, setting to
False, 329

intellectual property, 763
IntelliSense, 374
interfaces, 359

custom
defining, 363
implementing, 364-366
use of, 366-367

default, 360
implicit, 386
improving robustness, 373
polymorphic classes, 368-369, 372
progress bars, 375, 381

900 Index

intermediate tables, 450
internal code comments, 49
intrusive validation, 313
IsAddin property, 18
IsEnabled setting, 211
IsMenubar setting (CommandBar

objects), 208
IsNumeric() function, 311
IsTemporary setting, 211
iterating through a collection of different

object types, 373

J-K
joins, 465

K data type, 661
key columns, 438
keyboards, 274

checking to see if a key is held
down, 274

testing for a key press, 276-277
KeyDown , 311
KeyPress event, 311, 724
kill switches, 516

L
languages, VBA, 5
late binding, 60-62, 625
layering controls (userforms), 309
lcid, 807
leveraging .NET framework, 774
line continuation, 53
list boxes, splitter bars, 330
List feature (Excel 2003), 494
List range, 505
List setting (CommandBarControl

objects), 220

ListRange setting (CommandBarControl
objects), 220

LoadBehavior value, 751
loading custom icons from files, 232-235
Locals window, 573

advanced features, 576
basic features, 575

locking controls (userforms), 323
LOOKUP() function, 492
loops

arrays, 58
infinite, protecting against, 65

lpfn element, 293
lvalue, 564

M
macro security, 875, 877
macro-optimization, 598

best routines, 599
nested loops, 600
VBA algorithms

binary search, 605
QuickSort routine, 602
sort and scan, 607
SORTSEARCH_INDEX udt, 608

Macromedia’s RoboHelp, 863
maintaining add-ins, 110
Managed COM Add-ins, 774
managed COM DLLs, 774
managed Excel Add-ins, 795
managed workbooks, 775-776

default template, 780
Hello World managed workbook,

777, 780
ProExcel VSTO template, 781-784,

787-788
sharing command bars, 789, 793

Index 901

managing UI worksheets, 122
many to many relationships, 449
MAPIFolder object, 645
mapping XML maps, 830-831, 836
margin indicator bar, 551
masks, 215, 233
member variables, 35
memory leak, 259
memory management, 675
menus, adding a custom menu with

submenus to the Worksheet Menu
Bar, 224-225

methods (class modules), 171
micro-optimization, 609

Excel, 613-615
VBA, 610-612

Microsoft Excel
Advanced Filter feature, 504-505
applications

add-ins, 17-18
applications-specific add-ins, 19-20
codeless, 14-15
dictator applications, 20-24
distributing, 883
preparing for release, 863
self-automated workbooks, 15-16

controlling applications, 620
controlling applications from

Access, 636
Outlook, 644-645
performance, 632
PowerPoint and MSGraph, 641
Word, 638-639

dancing ants, 526
data processing features, 497
data-handling features, 491
developers, 2-3

keyboard functions, 274-277
menu items, 759
object model, 7
overview, 1
populating a Word document

from, 633
power users, 2
retrieving holiday dates from Outlook

calendar, 645
security, 872-877
supported versions, 9
user IDs, 279
VBA, 5
Web services, 843-844

creating, 845-846
functionality, 847-849
practical example, 850-854

XML features, 825-827
Microsoft Excel 2003, 494
Microsoft Excel 97 SDK, 652
Microsoft Excel UI

designing
borders, 84
cell comments, 86
conditional formatting, 92-98
controls, 99-101
data validation, 89-91
defined names, 72-73, 76-77
practical example, 101-104
rows and columns, 70
shapes, 88
styles, 78-83
tables, 85

naming conventions
defined names, 41
embedded objects, 40

principles of good design, 69

902 Index

migrating from VBA to VSTO, 811
MISSING object library reference, 624
modeless userforms, 344

combining with menu items, 348
progress bars, 346
splash screens, 345

modifying
styles, 82
worksheet UI, 127

module definition file, 653
module-level code comments, 47
modules, organizing code, 45
mousers, 310
MSDN library, 256
MSForms toolbox, ComboBox

control, 350
MSG, 277
msoBarPopup style, 324
MSQuery application, 495
MUI Pack, 808
multi-application add-ins, 764
MultiPage control, 334, 356
MultiUse instancing type, 715

N
.NET framework

assemblies, 776
culture, 809-810
interacting with Office, 773
leveraging, 774
runtime, 807
security policies, 800
terminology, 773

named constants, 72
named formulas, 76
named ranges, 73

Namespace object, 645
namespaces, 841-842
naming

controls, 309
conventions, 29

descriptive names, 32
Excel UI, 40
making exceptions, 41
prefixes, 31
sample, 30
subroutines and functions, 36
UDFs, 114
worksheets and chart sheets, 38

natural keys, 451-452
nested loops, 599
network groups, 873-875
New keyword, 627
NewEnum method, 716-717
nonkey columns, 438
normalization

of data, 438
when not to, 445

null-terminated C strings, 658

O
Object Browser, 574
Object Linking and Embedding

(OLE), 619
object model, 7
object models

Access, 635
XML, 835-840

object-oriented programming (OOP), 5
objects

checking interface , 372
creating with class modules, 167-169

Index 903

Collection objects, 172-178
raising events, 182-188
trapping events, 179-181

declaring, 622
Office

creating instances of applications, 627
interacting with .NET framework, 773

Office FileDialog object, 286-287
Office object libraries, forward

compatibility, 625
OfficeCodeBehind class, 777
OFFSET() function, 525
OLE (Object Linking and

Embedding), 619
OLE DB, 455

providers
Microsoft Jet, 457
SQL Server, 458

On Error GoTo 0 statement, 398
On Error Goto <label>, 396
On Error Resume Next statement, 396
On Error statement, 396
OnAction setting (CommandBarControl

objects), 211
OnAddInsUpdate event, 756
OnBeginShutdown event, 757
OnConnection event, 755
OnDisconnection event, 757
one to many relationships, 448
one to one relationships, 447
OnStartupComplete event, 756
OOP (object-oriented programming),

5, 714
OPER data type, 671
operations, 6
optimization, 593-596

macro-optimization, 598

best routines, 599
binary search, 605
nested loops, 600
QuickSort routine, 602
sort and scan, 607
SORTSEARCH_INDEX udt, 608

micro-optimization, 609
Excel, 613-615
VBA, 610-612

Option Base 1 statement, 54
option buttons, changing to combo

boxes, 308
Option Compare Text, 611
Option Explicit statement, 54
Option Private Module statement, 54
OptionSelected property procedure, 713
optType_Click event procedure, 713
out-of-process communication, 720
Outlook

starting and closing with error
handling, 630

using Excel data, 644-645

P
packaging applications

installation location, 877
installation mechanisms, 881
installation requirements, 879-880

panels (General Options panel), 337
Parameter setting (CommandBarControl

objects), 219
Pascal strings, 665, 669
paste, 156
Paste Special Bar COM Add-in, 762
Paste Special Bar VSTO Add-n, 795
Paste Special Command Bar, 239
PerfMon utility, 589

904 Index

performance, 587-588
controlling applications from

Excel, 632
macro-optimization, 598

best routines, 599
binary search, 605
nested loops, 600
QuickSort routine, 602
sort and scan, 607
SORTSEARCH_INDEX udt, 608

micro-optimization, 609
Excel, 613-615
VBA, 610-612

optimization, 593-596
PerfMon utility, 589- 591

permanent assertions, 582
permanent menus (COM Add-ins),

759-760
pictures, 217
pivot caches, 498
pivot tables, 498-500
pixels

converting to points, 262
finding size of, 263

plot data, 530
points, converting pixels to, 262
polymorphic classes, 368-369, 372
populating

PowerPoint presentation from Excel
data, 642

Word documents from Excel, 633
Word templates from Excel data, 639

popup menus (userforms), 324
Position setting (CommandBar

objects), 207
positioning

controls (userforms), 309-310

userforms next to a cell, 325
power users, 2
PowerPoint

charts, 642
Slide object, 641
using Excel data, 641

prefixes, 31
primary axis, 522
primary keys, 438

natural versus artificial, 451-452
procedure error handlers, 404-405
procedure-level code comments, 48
procedures, 36

creating, 46
PerfMon calls, 590
trivial, 407
validating arguments before use, 64

ProExcel VSTO template, 781-783
program columns, 70
program rows, 70
programming

code comments, 47
code reuse, 361
debugging, 545

assertions, 581
Break in Class Module setting, 546
Break on All Errors setting, 545
Break on Unhandled Errors

setting, 546
Call Stack window, 560
conditional compilation

constants, 550
Immediate window, 556-558
Locals window, 573-576
Quick Watch window, 572
Set Next Statement command, 555
shortcut keys, 552-554, 583-584

Index 905

stepping into code, 553
test harnesses, 578-581
User-Define Debug mode, 547
Watch window, 561, 564-572
worksheet functions, 682
XLL projects, 655

defensive coding, 63
naming conventions, 30

descriptive names, 32
Excel UI, 40
making exceptions, 41
prefixes, 31
sample, 30
worksheets and chart sheets, 38

VB6, 687
ActiveX DLL projects, 688-696
displaying VB6 form in Excel,

698-703
VBA, 5

progress bars, 346, 375, 381
properties (userforms), 306
property procedures (class

modules), 170
Protection setting (CommandBar

objects), 209
providers

Microsoft Jet, 457
OLE DB, 455
SQL Sever, 458

public scope, 30

Q
query tables, 494

adding a calculated field, 501
cautions, 495
limitations, 497
refreshing, 496

question mark (?) character, 212
Quick Watch window, 572

R
raising custom errors, 400
raising events, 182-183

creating trigger classes, 187-188
family relationship problem, 184-186

ranges, named, 73
re-throw system of error handling, 428
readability (code), 51

grouping lines, 52
line continuation, 53

recordsets, 467
creating structured ranges, 493
disconnected, 486

recycle bin, deleting files, 284-286
referencing

ActiveDocument, 622
adding to an object library

Office object library, 625
Word object library, 620

Excel from VB6, 695
existing instances, 629
multiversion support, 631

referential integrity, 445, 451
refreshing query tables, 496
regsvr32.exe, browsing to, 753
relational databases, 437

many to many relationships, 450
natural versus artificial keys, 451-452
referential integrity, 451
relationships, 449
unique indexes, 453

relationships, 445
many to many, 449
one to many, 448

906 Index

relationships (cont.)
one to one, 447
referential integrity, 451

relative named ranges, 73
resolution (screen), 261
resolutions (userforms), 327
resource files, 718

creating, 730
loading icons, 729-730

adding bitmaps to the resource
file, 731

using bitmaps located in the
resource file, 733-735

restoring Excel settings during
shutdown, 147

Resume <Label> statement, 400
Resume Next statement, 400
Resume statement, 399
retrieving data, 464-466
RHS, 371
right-click command bars, 230
root element (XML), 822
routines

general-purpose add-ins, 17
group routines in application-specific

modules, 624
Run mode, 545
runtime add-ins, 111
runtime version (ActiveX controls), 706

S
satellite DLL, 753
SaveSetting, 18
saving application versions, 67
schema, mapping to worksheets, 832
schema definition files (XML), 820

scope
defined names, 77
error handling, 394-395
variables, 30, 59

screen resolution, 261
userform concerns, 327

scroll regions (dynamic userforms), 340
second normal form, 441
secondary axis, 522
security

checking network groups, 873-875
COM Add-ins, 763
Excel, 872-873
macro security, 875-877
VSTO, 811
VSTO security model, 799-801

caspol, 804-805
strong names, 800-802

SELECT statement (SQL), 465
self-automated workbooks, 15-16
SendKeys, 16
separate threading, 764
Series() function, 523
Set Next Statement command, 555
setting

basic watches, 562
break points, 551

shapes, 88
sharing command bars (managed

workbooks), 789, 793
SHBrowseForFolder function, 293
sheet-based UI, 155
shortcut keys (debugging), 583-584

Step Into command, 552
Step Out command, 554
Step Over command, 554
Step to Cursor command, 554

Index 907

Shortcut Text setting
(CommandBarControl
objects), 218

ShowWindowsInTaskBar, 23
shutdown

add-ins, 112
dictator applications, 144

Debug Mode, 150-152
handling crashes, 150
storing/restoring Excel settings,

145-147
single exit point principle, 401
size

converting pixels to points, 262
device contexts, 262
userforms, 328

sorting routines, 367
SORTSEARCH_INDEX udt, 608
source data, defined names, 525
special folders, 282-284
splash screens, showing at startup, 345
splitter bars, 330
Spy++ utility, 264
SQL (Structured Query Language), 437

data retrieval, 464
DELETE statement, 473
further resources, 475-476
INSERT statement, 468
SELECT statement, 465
UPDATE statement, 470

Standard EXE (VB6), 735
startup

add-ins, 110
dictator applications, 144

Debug Mode, 150-152
storing/restoring Excel settings, 145

State setting (CommandBarControl
objects), 220

statements, Resume statements, 399
step charts, 533
Step Out command, 554
Step Over command, 554
step through code, 552
Step to Cursor command, 554
stepping into code, 553
storage

resource files (VB6), 718
toolbar customizations, 148

strings, byte-counted, 669
strong names, 800

creating, 801
trusting, 802-803

structure
class modules

methods, 171
property procedure, 170

dictator applications, 143
front loader applications, 736

Structured Query Language. See SQL
structured ranges, 492

creating, 493
Style Includes option, 82
styles (windows), 273

adding Style drop down to the
toolbar, 83

advantages, 78
creating, 80-82
modifying, 82
userforms, 316

Sub Main procedure, 742
subroutines, 36
subset userforms, 336
subtiers, 44
sum of digits, 513
SUMIF() function, 511

908 Index

T
tab orders, 310
table of contents (Help files), 869
table-driven command bars, 201

command bar definition table, 202
Command Bar Name column, 206
Control Style setting, 214
Control Type setting, 213
Face ID setting, 215
Position setting, 207
Protection setting, 209
settings, 211
table-driven command bar builder, 201

table-driven userforms, 336, 340, 343
tables, 85, 435. See also databases

dynamic, 93, 95
first normal form, 439
foreign keys, 440
function tables, 658-661
intermediate, 450
many to many relationships, 449
one to many relationships, 448
one to one relationships, 447
pivot tables, 498

calculated fields, 500
primary keys, 438
query tables, 494
second normal form, 441
third normal form, 443

Tag property, 238
Tag setting (CommandBarControl

objects), 219
templates, 191

installation requirements, 879
temporary menus (COM Add-ins), 761
Terminate event, 398, 416, 757
Terminate method, 185
test harnesses, 578-579, 581

testing for key presses, 276-277
Thawte, 876
third normal form, 443
time-series data, scrolling and

zooming, 527
Timer, 609
toolbar customizations, 148
Toolbar List command bar,

disabling, 210
toolbars

custom, 226
custom faces (COM Add-ins), 762
custom icons, 230
custom right-click command bars, 230
disabling buttons, 194

Tooltip setting (CommandBarControl
objects), 218

top-level windows, 266
trapping

control events, 244
errors, 426
events, 179-181

trigger classes, 187-188
trivial procedures, 407
troubleshooting, 546. See also debugging

calling out error conditions, 96-98
type library, 627
Type Mismatch errors, 359
TypeName() function, 372
TypeOf function, 372
type_text data types, 660

U
UDFs (User-Defined Functions), 111

critical details, 119
function library add-ins, 113
IFERROR, 113

Index 909

making appear native, 114
naming conventions, 114
unregistering, 116
VBA, 120

UIS (user interface support) layer,
301-304

ulFlags element, 293
UNC paths, 281
unique indexes, 453
unobtrusive validation, 313
unstructured ranges, 492
UPDATE statement (SQL), 470
updating data, 470
User-Defined Debug mode, 547
User-Defined Functions. See UDFs
user-defined types, 35, 454

naming conventions, 31
user IDs, finding, 279
user interface support (UIS) layer, 301
user-interface tier, 42
user32.exe, 256
userforms, 299

business logic, 300
controls, 306

accelerator keys, 310
ComboBox, 352
data binding, 311
data validation, 313
event handling, 311
layering, 309
naming, 309
positioning, 309-310
Windows Common Controls,

355-357
default instances versus classes, 303
disabling the Close button, 320
displaying graphics, 321

dynamic userforms, 336
code-created/table-driven userforms,

336, 340, 343
dynamic control event handling and

control arrays, 341
scroll regions, 340
subset userforms, 336

error handling, 415
demo, 417-421

exposing properties and methods, 306
hiding versus unloading, 305
locking versus disabling controls, 323
modeless, 344

combining with menu items, 348
progress bars, 346
splash screens, 345

popup menus, 324
positioning next to a cell, 325
property procedures, 307
resizable, 328
responding to resolutions, 327
simplicity, 299
splitter bars, 330
UIS layer, 301-304
window styles, 316
wizard dialogs, 332

creating, 334
design rules, 333

V
validating data (userform controls), 313
values

atomic, 439
converting to VBA, 258

variables
best practices, 55-57
lvalue, 564

910 Index

variables (cont.)
member variables, 35
naming conventions, 31
scope, 30, 59
storing handles, 259

variant arrays, 614
VB.NET. See VSTO (Visual Studio Tools

for Office)
VB.NET, creating Web services, 845-846
VB6 (Visual Basic 6), 687

activeX DLL projects, 688-689
code protection, 704
complex case—two-way

communication, 693-696
custom collections, 717
displaying a VB6 form in Excel,

698-703
OOP, 714
resource files, 718
simple case—one-way

communication, 690-692
taking advantage of VB6 forms,

705-710, 713-716
control arrays, 707-710, 713-714
referencing Excel, 695
Standard EXE, 735

VB6 EXE, automating Excel, 721-728
VB6 front loaders

creating, 735-741
structure, 736
Sub Main procedure, 741

VB6 Resource Editor, 729
VBA, 5

advanced filtering, 505
applications, code validation, 740
charts, 537

calculating reasonable axes

scales, 541
Collection object, 612
debugging

break points, 550
Step Out command, 554
Step Over command, 554
step through code, 552
Step to Cursor command, 554
stepping into code, 552

developers, 2
displaying Help files, 870-872
error handling, 391, 628
hybrid VBA/VSTO solutions, 796-799
locating chart items, 539
migrating to VSTO, 811
modifying worksheet UI, 127
naming conventions, 32
Object Browser, 574
programming, best practices, 54-58
self-automated workbooks, 15-16
Stop statement, 548
UDFs, 119-120

VBA References dialog, 692
VBE (Visual Basic Editor), 545

Add-in Manager dialog, 751
conditional compilation constants, 549

VBE Error Trapping setting, 546
VBE Object Browser, msoControlType

enumeration members, 213
VBE Tools Control Nudger toolbar, 310
VeriSign, 876
version checks (dictator

applications), 144
virtual function table, 624
Visible setting (CommandBar

objects), 208
Visual Basic Editor. See VBE

Index 911

Visual Studio.NET, 771
including XSD files in projects, 853

VSTO (Visual Studio Tools for Office),
763, 771

application links, 806
functional gaps, 806
global solutions, 807-808
hybrid VBA/VSTO solutions, 796-799
managed Excel add-ins, 795
managed workbooks, 776

default template, 780
Hello World, 777, 780
ProExcel template, 781-784, 787-788
sharing command bars, 789, 793

migrating from VBA, 811
Office versions, 812
overview, 771-772
security, 811
security model, 799-801

caspol, 804-805
strong names, 800-802

vTable, 624

W
Watch Context options, 566
Watch window, 561

arrays, UDTs, and classes, 570-572
using a basic watch, 564
Watch Context option, 567
Watch Type setting, 567-569
watch types, 565

Web services, 843-844
creating, 845-846
data connectivity, 852
functionality, 847-849
practical example, 850-854

Web sites
assistance, 11
authors’, 11
Component One’s Doc-to-Help, 863
downloading ADO, 458
Macromedia’s RoboHelp, 863
MSDN library, 256
Thawte, 876
VeriSign, 876

windows
classes, 264
finding, 266
finding related windows, 267
hWnd, 264
icons, changing, 272
messages, 270
special folders, 282-284
structures, 277
styles, 273

userforms, 316
top-level windows, 266

Windows API
documentation, 256
functions, 266

Windows Common Controls, 355-357
WithEvents objects, 238
wizard dialogs, 332

code-created/table-driven, 336
creating, 334
design rules, 333

WM_PAINT message, 271
WM_SETICON message, 272
Word

controlling from Excel, 620
creating new instances of, 627
populating a document from

Excel, 633

912 Index

Word object library, 620
WordArt (userforms), 321
workbooks

linking to XML schema, 826
managed, 775-776

default template, 780
Hello World, 777, 780
ProExcel VSTO template, 781-784,

787-788
sharing command bars, 789, 793

templates, 191
Worksheet Menu Bar, adding custom

menu with submenus, 224-225
worksheets

add-ins, 18
controls, 99

ActiveX controls, 101
form controls, 100

as a declarative programming
language, 6

debugging functions, 682
example function, 679
naming conventions, 38
registering/unregistering custom

functions, 676-678
UI

modifying, 127
utility code, 124

UI settings, 122-123
XLL-based, why create?, 651

wrapper procedures, test harness, 578

X-Z
xlAddInManagerInfo function, 664
xlAutoAdd function, 666
xlAutoClose function, 664
xlAutoFree function, 666

xlAutoOpen function, 663
xlAutoRegister function, 666
xlAutoRemove function, 666
xlcal.h file, 671
xlCoerce function, 675
xlFree function, 674
xlGetName function, 675
XLL, 652

callback functions
xlAddInManagerInfo function, 664
xlAutoClose function, 664
xlAutoOpen function, 663
xlAutoRegister function, 666

creating projects, 652, 655
structure, 657

callback functions, 663-666
DLLMain function, 662
function table, 658-661

XLL-based worksheets, why create?, 651
XLOPER data type, 665-667

C++ keyword clash, 683
containing arrays, 670
memory management, 675
xltype member, 669

XML, 819
elements, 822
events, 835-840
example file, 821
example XSD file, 823
Excel 2003’s XML features, 825

sample model, 827
exporting/importing data, 833-834
maps, 830-831, 836
namespaces, 841-842
object model, 835-840
overview, 820-821
preventing importing, 840

Index 913

schema definitions, 820
support in previous Excel versions, 841
Web services, 843-844

creating, 845-846
functionality, 847-849
practical example, 850-854

XSD files, 828-829
XML functions, 532
XML Source task pane, 825
XMLDataQuery method, 839
XMLMapQuery method, 839
XPaths, 838
XSD (XML schema definition) files, 823,

828-829
including in Visual Studio.NET

projects, 853
XML maps, 830-831

XY series, 535

z-order (controls), 309

	Contents
	Acknowledgments
	About the Authors
	Chapter 9: Understanding and Using Windows API Calls
	Overview
	Working with the Screen
	Working with Windows
	Working with the Keyboard
	Working with the File System and Network
	Practical Examples
	Conclusion

	Chapter 15: Advanced Charting Techniques
	Fundamental Techniques
	VBA Techniques
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

