

Praise for Java Application Architecture
“The fundamentals never go out of style, and in this book Kirk returns
us to the fundamentals of architecting economically interesting software-
intensive systems of quality. You’ll find this work to be well-written,
timely, and full of pragmatic ideas.”

—Grady Booch, IBM Fellow

“Along with GOF’s Design Patterns, Kirk Knoernschild’s Java Application
Architecture is a must-own for every enterprise developer and architect
and on the required reading list for all Paremus engineers.”

—Richard Nicholson, Paremus CEO, President of the OSGi Alliance

“In writing this book, Kirk has done the software community a great ser-
vice: He’s captured much of the received wisdom about modularity in a
form that can be understood by newcomers, taught in computer science
courses, and referred to by experienced programmers. I hope this book
finds the wide audience it deserves.”

—Glyn Normington, Eclipse Virgo Project Lead

“Our industry needs to start thinking in terms of modules—it needs this
book!”

—Chris Chedgey, Founder and CEO, Structure 101

“In this book, Kirk Knoernschild provides us with the design patterns
we need to make modular software development work in the real world.
While it’s true that modularity can help us manage complexity and create
more maintainable software, there’s no free lunch. If you want to achieve
the benefits modularity has to offer, buy this book.”

—Patrick Paulin, Consultant and Trainer, Modular Mind

“Kirk has expertly documented the best practices for using OSGi and
Eclipse runtime technology. A book any senior Java developer needs to
read to better understand how to create great software.”

—Mike Milinkovich, Executive Director, Eclipse Foundation

This page intentionally left blank

Java Application
Architecture

The Robert C. Martin Series is directed at software developers, team-
leaders, business analysts, and managers who want to increase their

skills and proficiency to the level of a Master Craftsman. The series contains
books that guide software professionals in the principles, patterns, and
practices of programming, software project management, requirements
gathering, design, analysis, testing and others.

Visit informit.com/martinseries for a complete list of available publications.

The Robert C. Martin Series

Java Application
Architecture

MODULARITY PATTERNS WITH

EXAMPLES USING OSGI

Kirk Knoernschild

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Knoernschild, Kirk.
 Java application architecture : modularity patterns with examples using OSGi / Kirk
Knoernschild.
 p. cm.
 Includes index.
 ISBN 978-0-321-24713-1 (pbk. : alk. paper)
 1. Java (Computer program language) 2. Application software—Development.
3. Software architecture. 4. Component software. I. Title.
 QA76.73.J38K563 2012
 005.13'3—dc23
 2011051434

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohib-
ited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permis-
sion to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-24713-1
ISBN-10: 0-321-24713-2
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, March 2012

Tammy,
My wife, best friend, and soul mate . . . forever!

Thank you for all that you do.

I love you.

Cory,
Fly high.

Cody,
Play ball.

Izi,
Cheer loud.

Chloe,
Dream big.

This page intentionally left blank

ix

Foreword by Robert C. Martin xix

Foreword by Peter Kriens xxi

Acknowledgments xxv

About the Author xxvii

Introduction 1
Object-Oriented Design 2

Logical versus Physical Design 3

Modularity 4

Unit of Modularity: The JAR File 5

OSGi 5

Who This Book Is For 6

How This Book Is Organized 7

Part I: The Case for Modularity 7

Part II: The Patterns 8

Part III: POMA and OSGi 9

Pattern Form 10

Pattern Name 11

Pattern Statement 11

Sketch 11

Description 11

CO NTE NT S

CONTENTS

x

Implementation Variations 11

Consequences 11

Sample 12

Wrapping Up 12

Pattern Catalog 12

The Code 13

An Opening Thought on the Modularity Patterns 14

Reference 14

PA RT I TH E CA S E FO R MO D U L A R IT Y 15

Chapter 1 Module Defined 17
1.1 Defining a Module 17

1.1.1 Deployable 17

1.1.2 Manageable 18

1.1.3 Testable 19

1.1.4 Natively Reusable 19

1.1.5 Composable 19

1.1.6 Stateless 19

1.2 Succinct Definition of a Software Module 20

1.3 Conclusion 20

Chapter 2 The Two Facets of Modularity 21
2.1 The Runtime Model 21

2.2 The Development Model 22

2.2.1 The Programming Model 22

2.2.2 The Design Paradigm 23

2.3 Modularity Today 25

2.3.1 Beware 26

2.4 Conclusion 27

Chapter 3 Architecture and Modularity 29
3.1 Defining Architecture 29

3.2 A Software Architecture Story 30

3.2.1 The Ivory Tower 30

3.2.2 Turtles and the Tower 31

CONTENTS

xi

3.3 The Goal of Architecture 33

3.3.1 The Paradox 34

3.3.2 Eliminating Architecture 35

3.4 Modularity: The Missing Ingredient 36

3.4.1 Is It Really Encapsulated? 37

3.5 Answering Our Questions 43

3.6 Conclusion 44

3.7 References 44

Chapter 4 Taming the Beast Named Complexity 45
4.1 Enterprise Complexity 46

4.2 Technical Debt 47

4.3 Design Rot 48

4.3.1 Hinder Maintenance 48

4.3.2 Prevent Extensibility 48

4.3.3 Inhibit Reusability 49

4.3.4 Restrict Testability 49

4.3.5 Hamper Integration 49

4.3.6 Limit Understanding 49

4.4 Cyclic Dependencies—The Death Knell 50

4.4.1 Types of Cycles 50

4.4.2 Creeping Cycles 53

4.4.3 Managing Cycles 54

4.4.4 Are Cycles Always Bad? 55

4.5 Joints, Modules, and SOLID 56

4.6 Managing Complexity 57

4.6.1 Illustrating the Benefit 57

4.7 Benefits of Modularity 59

4.8 Conclusion 60

4.9 References 60

Chapter 5 Realizing Reuse 61
5.1 The Use/Reuse Paradox 62

5.2 The Reuse Disclaimer 63

5.2.1 Granularity 63

5.2.2 Weight 64

CONTENTS

xii

5.3 Reuse or Use 64

5.4 Modular Tension 65

5.5 Modular Design 66

5.6 Conclusion 67

5.7 Reference 68

Chapter 6 Modularity and SOA 69
6.1 All the Way Down, Revisited 69

6.1.1 Structural Flexibility—Different Entities, Different Purpose 70

6.2 Granularity—Architecture’s Nemesis 72

6.2.1 A Really Simple Example 72

6.2.2 Bring It Up a Level 74

6.2.3 Another Dimension 74

6.2.4 The Complete Picture 75

6.2.5 A Service Example 77

6.3 An Alternate View 79

6.4 Conclusion 80

Chapter 7 Reference Implementation 83
7.1 Why No OSGi? 83

7.2 Background on This Exercise: Building the System 84

7.3 Version 1 85

7.4 First Refactoring 87

7.4.1 Wrapping Up and Getting Ready for the Next Refactoring 89

7.5 Second Refactoring 90

7.6 Third Refactoring 93

7.6.1 Wrapping Up and Getting Ready for the Fourth Refactoring 95

7.7 Fourth Refactoring 95

7.7.1 A Note on the Benefit of OSGi 96

7.7.2 Wrapping Up and Getting Ready for the Next Refactoring 98

7.8 Fifth Refactoring 98

7.9 Sixth Refactoring 99

7.10 Seventh Refactoring 102

7.11 The Postmortem 103

7.11.1 A Note on Module Testing 104

7.11.2 A Note on Managing Module Dependencies 106

7.11.3 A Note on Module Reuse 108

CONTENTS

xiii

7.11.4 A Note on the Build 109

7.11.5 A Note on Object Orientation 110

7.12 Conclusion 110

7.13 Reference 110

PA RT I I TH E PAT TE R N S 111

Chapter 8 Base Patterns 115
Manage Relationships 116

Statement 116

Description 116

Implementation Variations 117

Consequences 120

Sample 122

Wrapping Up 124

Module Reuse 125

Statement 125

Description 125

Implementation Variations 127

Consequences 129

Sample 129

Wrapping Up 138

Cohesive Modules 139

Statement 139

Description 139

Implementation Variations 139

Consequences 140

Sample 141

Wrapping Up 144

Chapter 9 Dependency Patterns 145
Acyclic Relationships 146

Statement 146

Description 146

Implementation Variations 146

Consequences 147

CONTENTS

xiv

Sample 148

Wrapping Up 155

Levelize Modules 157

Statement 157

Description 157

Implementation Variations 157

Consequences 159

Sample 160

Wrapping Up 160

Physical Layers 162

Statement 162

Description 162

Implementation Variations 162

Consequences 164

Sample 164

Wrapping Up 169

Container Independence 170

Statement 170

Description 170

Implementation Variations 171

Consequences 172

Sample 172

Wrapping Up 176

Independent Deployment 178

Statement 178

Description 178

Implementation Variations 178

Consequences 180

Sample 180

Wrapping Up 185

Reference 185

Chapter 10 Usability Patterns 187
Published Interface 188

Statement 188

Description 188

Implementation Variations 189

CONTENTS

xv

Consequences 192

Sample 193

Wrapping Up 199

External Configuration 200

Statement 200

Description 200

Implementation Variations 200

Consequences 202

Sample 202

Wrapping Up 205

Default Implementation 206

Statement 206

Description 206

Implementation Variations 206

Consequences 208

Sample 208

Wrapping Up 211

Module Facade 212

Statement 212

Description 212

Implementation Variations 212

Consequences 214

Sample 215

Wrapping Up 219

Chapter 11 Extensibility Patterns 221
Abstract Modules 222

Statement 222

Description 222

Implementation Variations 223

Consequences 224

Sample 224

Wrapping Up 228

Implementation Factory 229

Statement 229

Description 229

Implementation Variations 230

CONTENTS

xvi

Consequences 231

Sample 232

Wrapping Up 236

Separate Abstractions 237

Statement 237

Description 237

Implementation Variations 238

Consequences 240

Sample 241

Wrapping Up 244

Reference 244

Chapter 12 Utility Patterns 245
Colocate Exceptions 246

Statement 246

Description 246

Implementation Variations 247

Consequences 247

Sample 248

Wrapping Up 252

Levelize Build 253

Statement 253

Description 253

Implementation Variations 255

Consequences 256

Sample 257

Wrapping Up 262

Test Module 263

Statement 263

Description 263

Implementation Variations 263

Consequences 265

Sample 265

Wrapping Up 269

CONTENTS

xvii

PA RT I I I POMA A N D OSGI 271

Chapter 13 Introducing OSGi 273
13.1 Some History 273

13.2 Benefits of OSGi 274

13.2.1 Modular Development 274

13.2.2 Managed Dependencies 274

13.2.3 Module Platform 275

13.2.4 Versioned Bundles 275

13.2.5 Dynamic (Re)deployment 276

13.2.6 Environmental Control 276

13.3 Digesting OSGi 276

13.4 OSGi Bundle 277

13.4.1 Bundle State 277

13.4.2 OSGi μServices 278

13.5 OSGi Runtime Management 279

13.6 The Two Facets of Modularity, Revisited 279

13.7 OSGi and the Patterns 279

13.7.1 Managing Dependencies 280

13.7.2 Dynamism 281

13.7.3 Blueprint Specification 281

Chapter 14 The Loan Sample and OSGi 283
14.1 Getting Started 283

14.2 The Manifests 285

14.3 μServices 286

14.3.1 Blueprint Services 286

14.3.2 The Loan Bean Configuration 287

14.3.3 OSGi μService Declarations 290

14.4 Installation and Execution 292

14.5 Conclusion 293

Chapter 15 OSGi and Scala 295
15.1 Getting Started 295

15.2 The Scala Code 296

15.2.1 The Manifest 298

CONTENTS

xviii

15.3 Scala Bean Configuration 299

15.4 Scala μService Configuration 299

15.5 Building the Scala Module 300

15.6 Installation and Execution 300

15.7 Conclusion 301

Chapter 16 OSGi and Groovy 303
16.1 Getting Started 303

16.2 The Groovy Code 304

16.2.1 The Manifest 306

16.3 Groovy Bean Configuration 306

16.4 Groovy Service Configuration 307

16.5 Building the Groovy Module 307

16.6 Installation and Execution 308

16.7 Conclusion 309

Chapter 17 Future of OSGi 311
17.1 OSGi as an Enabler 312

17.2 The Disruption 312

17.2.1 A Bit of (Recent) Platform History 313

17.3 The Power of Ecosystems 314

17.3.1 Ecosystems and the Two Facets of Modularity 315

17.3.2 CBD Has Already Had Its Day, You Say? 315

17.4 The Ecosystem 316

17.5 Conclusion 317

Appendix SOLID Principles of Class Design 319
Single Responsibility Principle (SRP) 320

Open Closed Principle (OCP) 320

Liskov Substitution Principle (LSP) 323

Dependency Inversion Principle (DIP) 325

Interface Segregation Principle 327

Composite Reuse Principle (CRP) 329

References 335

Index 337

xix

I’m dancing! By God I’m dancing on the walls. I’m dancing on the ceiling.
I’m ecstatic. I’m overjoyed. I’m really, really pleased.

“Why?” you ask. Well, I’ll tell you why—since you asked. I’m happy
because somebody finally read John Lakos’s book!

Way back in the 1990s, John Lakos wrote a book entitled Large-Scale
C++ Software Design. The book was brilliant. The book was groundbreak-
ing. The book made the case for large-scale application architecture and
made it well.

There was just one problem with John’s book. The book had “C++” in
the title and was published just as the software community was leaping to
Java. And so the people who really needed to read that book didn’t read it.

Ah, but then the people doing Java back then weren’t reading any books
on software design, because they were all 22 years old, sitting in Herman-
Miller office chairs, hacking Java, day trading, and dreaming of being bil-
lionaires by the time they were 23. Oh, God, they were such hot stuff!

So, here we are, more than a decade later. We’ve matured a bit. And
we’ve failed a bit. And our failures have winnowed and seasoned us. We
now look back at the wasteland of Java architectures we created and gri-
mace. How could we have been so naïve? How could we have lost sight of
the principles of Jacobson, Booch, Rumbaugh, Fowler, and Lakos? Where
did we go wrong?

I’ll tell you where we went wrong. The Web bamboozled us. We all
got Twitterpated. We thought the Web was revolutionary. We thought the

FO R E WO R D BY
RO B E RT C. MA RTI N

FOREWORD BY ROBERT C. MARTIN

xx

Web changed everything. We thought the Web made all the old rules irrel-
evant. We thought the Web was so new, so revolutionary, and so game-
changing that we ignored the rules of the game.

And we paid. Oh, God, how we paid. We paid with huge, unmanage-
able designs. We paid with tangled, messy code. We paid with misguided
directionless architectures. We paid with failed projects, bankrupt com-
panies, and broken dreams. We paid, and we paid, and we paid.

It took 15 years, and we’ve just begun to realize why. We’ve just begun
to see that the game hasn’t changed at all. We’ve begun to see that the Web
is just another delivery mechanism, no different from all the others—a
reincarnation of the old IBM green-screen request/response technology. It
was just plain old software after all, and we should never have abandoned
the rules of the game.

Now we can see that we should have stuck to the wisdom of Parnas,
Weinberg, Page-Jones, and DeMarco all along. We should never have
walked away from the teachings of Jacobson and Booch. And we should
have read that damn book by Lakos!

Well, somebody did read that book. And he must have read a few others,
too, because he’s written a book that states the rules of the Java architecture
game better than I’ve seen them stated before. You’re holding that book in
your hands right now. The man who wrote it is named Kirk Knoernschild.

In this book Kirk has gone beyond Lakos, beyond Jacobson, beyond
Booch. He’s taken the principles of those past masters and created a bril-
liant new synthesis of principles, rules, guidelines, and patterns. This is
how you build a Java application, people.

Go ahead and flip through the pages. Notice something? Yeah, no
fluff! It’s all hard-core. It’s all right to the point. It’s all pragmatic, useful,
necessary! It’s all about the nuts and bolts architecture of Java applica-
tions—the way it should be: modular, decoupled, levelized, independently
deployable, and smart.

If you are a Java programmer, if you are a tech lead or a team lead, if
you are an architect, if you are someone who wants and needs to make a
difference on your software development team, read this book. If you want
to avoid repeating the tragedy of the last 15 years, read this book. If you
want to learn what software architecture is really all about, read this book!

Nuff said.

— Uncle Bob
35,000 feet over the Atlantic
October 1, 2011

xxi

About two years ago (January 2010) I got an e-mail from Kirk Knoerns-
child, soliciting feedback for his almost-ready book. Looking back at the
heated discussion that ensued—50 or more lengthy mails—I cannot but
wonder that some resentment must have formed on his side. I am pretty
sure our conversations caused heavy delays in his initial schedule. I was
therefore pleasantly surprised when Kirk asked me to write a foreword for
this book; it takes a strong man to let an opponent write a foreword for the
book he put so much effort into.

Now, I do agree with most of what Kirk says in this book. We are
both intrigued by the magic of modularity, and we see eye to eye on most
of the fundamental concepts. However, as is so often the case, the most
heated debates are between people who agree on the principles but differ
on the details. It was not until the OSGi Community Event in Darmstadt,
Germany (two days before the deadline of this foreword), that I suddenly
understood Kirk’s resistance.

At this event Graham Charters (IBM) presented the “Modularity Matu-
rity Model,” which he derived from IBM’s SOA Maturity Model, which of
course came from the original SEI Capability Maturity Model (CMM).
This was an insightful presentation that made me understand that my
perspective of system design is very much tainted by more than 13 years
of living modularity.

FO R E WO R D BY
PETE R KR I E N S

FOREWORD BY PETER KRIENS

xxii

One of the key lessons of the CMM was that it is impossible to skip
a step. If your company is on level 1 of CMM (chaotic), then it is not a
good idea to make plans to move to level 4 (managed) in one giant step.
Companies have tried and failed spectacularly. Transitions through each
of the intermediate stages are required to help organizations understand
the intricacies of the different levels. Every level has its own set of prob-
lems that are solved by the next level.

After Graham’s presentation, it became clear to me that I basically
look down from level 5, and Kirk is trying to make people look up from
level 1. The particular issues that we were disagreeing on are about the
challenges you will encounter when designing modular software. These
challenges seem perfectly sensible after you’ve reached level 2 or 3 but
tend not to make a lot of sense on level 1. Our brains are wired in such a
way that we can understand a solution only once we experience the cor-
responding problem. I was trying to beat Kirk into discussing those solu-
tions before his readers had experienced and understood the problems of
the prior levels.

In my Modularity Maturity Model (Graham’s was a bit different), I
see the following levels:

1. Unmanaged/chaos

2. Managing dependencies

3. Proper isolation

4. Modifying the code base to minimize coupling

5. Service-oriented architectures

In the first level, applications are based on the class path, a linear list
of JARs. Applications consist of a set of JARs or directories with classes
that form the classpath. In this level there is no modularity whatsoever.
Problems on this level are missing classes or mixing versions.

The second level is when you get module identity and specify depen-
dencies on other modules. Modules get a name and can be versioned.
They still are linearly searched, and many of the problems from level 1
exist, but the system is more maintainable and the results more repeat-
able. Problems on this level mainly circulate around “downloading the
Internet” because of excessive transitive dependencies. This is the level
Maven is currently at.

The third stage is to truly isolate the modules from each other with a
very distinct set of exported, imported, and private packages. Dependencies

FOREWORD BY PETER KRIENS

 xxiii

can now be expressed on packages, reducing the need to “download the
Internet.” This isolation provides an internal namespace for a module that
is truly local to the module, and it allows multiple namespaces so that
different versions of a package can be supported in the same system. The
problems at this level are usually caused by popular Java patterns based on
dynamic class loading that are rarely compatible with module boundaries
and multiple namespaces.

The fourth level starts when the code base is modified only for the
purpose of maximizing cohesion and minimizing coupling. There
is increased awareness that a single line in the code can actually cause
an excessive amount of dependencies. Combining or separating func-
tions can have a significant influence on how the system behaves during
deployment. At this level the existing Java patterns become painful to use
because they often require central configuration, while the solutions seem
to indicate a more equal peer-to-peer model. In OSGi, μServices become
very attractive since they solve many problems.

At level 5, the last level, the modules become less important than the
μServices they provide. Design and dependency resolution is now com-
pletely by μServices; modules are just containers that consume and pro-
vide μServices.

In the past 13 years I’ve lived and breathed level 5 as it is implemented
in OSGi. This sometimes makes it hard to empathize with people who
have used only the classpath and simple JARs. Looking at Graham Char-
ter’s presentation, I realized that Kirk’s ambition is to help people under-
stand the importance of modular design principles and move them from
level 1 to level 2, ultimately giving them a solid foundation to achieve even
greater maturity with OSGi. I realize that I often tried to drag the book
straight to level 5, foregoing several important lessons that are necessary
to design modular software. That book is still critical and is one I hope to
write myself someday.

Kirk’s book is so important now because it provides patterns to get
started with modular thinking and allows you to begin your journey in
building modular software using the platforms, frameworks, and lan-
guages most widely used today. Yes, I do believe there are better solutions
to some of the problems in this book, but I also realize that better is often
the enemy of good.

This is therefore an excellent book if you build Java applications
using Spring, Guice, or other popular dependency injection frameworks
but continue to experience the pain of brittle and rigid software that is

FOREWORD BY PETER KRIENS

xxiv

difficult and expensive to maintain. The global coupling of your code
makes it hard to add new functionality or change the existing code base.
This book teaches you many of the fundamental lessons of modularity
and will give you a view into the magic of modularity.

That said, I also hope you pay special attention to the examples
throughout the book that use OSGi. The first is at the end of Chapter 4
and demonstrates how OSGi helps you achieve proper isolation and mini-
mize coupling using μServices. As much value as this book provides, I
am convinced that following its advice will help you build software with
greater architectural integrity and will lead you on the correct migration
path toward OSGi. OSGi is by far the most mature modularity solution
around.

Kirk has been a more than worthy opponent; he has taught me more
about my own ideas than almost anybody else in the last few years by
forcing me to put them into words. I do hope you will have as much fun
reading this book as I had discussing this book with him over the last two
years.

— Peter Kriens
Technical Director, OSGi Alliance
Beaulieu, England
September 2011

xxv

The inspiration for this book comes from several sources, and the help I’ve
received over the past several years is tremendous. However, I owe a very
special thanks to seven individuals. It is their ideas that have guided my
work over the past two decades, the development of these patterns over
the past ten years, and the completion of this book over the past two years.
They include the following:

Robert C. Martin (Uncle Bob): Bob’s work on object-oriented design
principles (i.e., the SOLID principles) is a cornerstone of many of the
techniques discussed throughout this book. In fact, this book is part
of his series, and Appendix A provides an overview of several of the
principles.

Clemens Szyperski: Clemens’s Component Software: Beyond Object
Oriented Programming served as the building block upon which the
definition of module is used throughout this book.

John Lakos: Johns’s Large Scale C++ Software Design is the only
book I’m aware of that discusses physical design. The ideas in John’s
book served as inspiration and increased my interest in physical
design, allowing me, over the past ten years, to apply and refine tech-
niques that have resulted in the modularity patterns.

Ralph Johnson, John Vlissides, Erich Gamma, and Richard Helm
(“the GOF” or “the Gang of Four”): Aside from providing the

AC K N OW LE DG M E NT S

ACKNOWLEDGMENTS

xxvi

pattern template I use throughout this book, Design Patterns helped
cement my understanding of object-oriented concepts.

Additionally, I want to thank the following individuals whose feed-
back has served me tremendously in helping improve the book’s message.

Notably, Peter Kriens, technology director of the OSGi Alliance: Peter
provided enough feedback that I should have probably listed him as a
coauthor.

I’d also like to thank Brad Appleton, Kevin Bodie, Alex Buckley,
Robert Bogetti, Chris Chedgey, Michael Haupt, Richard Nicholson, Glyn
Normington, Patrick Paulin, John Pantone, and Vineet Sinha for provid-
ing thoughtful reviews and valuable feedback that helped me clarify cer-
tain areas of the text and provide alternative views on the discussion. Of
course, along this journey, several others have influenced my work. Sadly,
I’m sure I’ve neglected to mention a few of them. You know who you are.
Thank you!

Of course, the Prentice Hall team helped make it all happen. Chris
Guzikowski, my editor, gave me more chances over the past several years
to complete this book than I probably deserved. Sheri Cain, my develop-
ment editor, provided valuable formatting advice, answered several of my
silly questions, and helped me structure and refine a very rough manu-
script. Olivia Basegio and Raina Chrobak, the editorial assistants, helped
guide me through the entire process. Anna Popick, the project editor, saw
it through to completion. And Kim Wimpsett, my copy editor, helped pol-
ish the final manuscript.

Finally, I want to thank my family. Without their love, few things are
possible, and nothing is worthwhile. Mom and Dad, for their gentle guid-
ance along life’s journey. I’m sure there were many times they wondered
where I was headed. Grandma Maude, the greatest teacher there ever was.
My children, Cory, Cody, Izi, and Chloe, who make sure there is never
a dull moment. And of course, my wife, Tammy. My best friend whose
encouragement inspired me to dust off an old copy of the manuscript and
start writing again. Thank you. All of you!

xxvii

Kirk Knoernschild is a software developer who has filled most roles on
a software development team. Kirk is the author of Java Design: Objects,
UML, and Process (Addison-Wesley, 2002), and he contributed to No Fluff
Just Stuff 2006 Anthology (Pragmatic Bookshelf, 2006). Kirk is an open
source contributor, has written numerous articles, and is a frequent con-
ference speaker. He has trained and mentored thousands of software pro-
fessionals on topics including Java/J2EE, modeling, software architecture
and design, component-based development, service-oriented architec-
ture, and software process. You can visit his website at http://techdistrict
.kirkk.com.

ABO UT TH E AUTH O R

http://techdistrict.kirkk.com
http://techdistrict.kirkk.com

This page intentionally left blank

1

In 1995, design patterns were all the rage. Today, I find the exact opposite.
Patterns have become commonplace, and most developers use patterns on
a daily basis without giving it much thought. New patterns rarely emerge
today that have the same impact of the Gang of Four (GOF) patterns.1 In
fact, the industry has largely moved past the patterns movement. Patterns
are no longer fashionable. They are simply part of a developer’s arsenal of
tools that help them design software systems.

But, the role design patterns have played over the past decade should
not be diminished. They were a catalyst that propelled object-oriented
development into the mainstream. They helped legions of developers
understand the real value of inheritance and how to use it effectively. Pat-
terns provided insight into how to construct flexible and resilient software
systems. With nuggets of wisdom, such as “Favor object composition over
class inheritance” and “Program to an interface, not an implementation”
(Gamma 1995), patterns helped a generation of software developers adopt
a new programming paradigm.

Patterns are still widely used today, but for many developers, they are
instinctive. No longer do developers debate the merits of using the Strat-
egy pattern. Nor must they constantly reference the GOF book to identify

1. The patterns in the book Design Patterns: Elements of Reusable Object-Oriented Software are

affectionately referred to as the GOF patterns. GOF stands for the Gang of Four, in reference to

the four authors.

INTRO D U CTI O N

INTRODUCTION

2

which pattern might best fit their current need. Instead, good developers
now instinctively design object-oriented software systems.

Many patterns are also timeless. That is, they are not tied to a spe-
cific platform, programming language, nor era of programming. With
some slight modification and attention to detail, a pattern is molded to a
form appropriate given the context. Many things dictate context, includ-
ing platform, language, and the intricacies of the problem you’re trying to
solve. As we learn more about patterns, we offer samples that show how to
use patterns in a specific language. We call these idioms.

I’d like to think the modularity patterns in this book are also time-
less. They are not tied to a specific platform or language. Whether you’re
using Java or .NET, OSGi,2 or Jigsaw3 or you want to build more modular
software, the patterns in this book help you do that. I’d also like to think
that over time, we’ll see idioms emerge that illustrate how to apply these
patterns on platforms that support modularity and that tools will emerge
that help us refactor our software systems using these patterns. I’m hope-
ful that when these tools emerge, they will continue to evolve and aid the
development of modular software. But most important, I hope that with
your help, these patterns will evolve and morph into a pattern language
that will help us design better software—software that realizes the advan-
tages of modularity. Time will tell.

OB J E C T- OR I E NTE D DE S I G N

Over the past several years, a number of object-oriented design princi-
ples have emerged. Many of these design principles are embodied within
design patterns. The SOLID design principles espoused by Uncle Bob are
prime examples. Further analysis of the GOF patterns reveals that many
of them adhere to these principles.

For all the knowledge shared, and advancements made, that help guide
object-oriented development, creating very large software systems is still
inherently difficult. These large systems are still difficult to maintain,
extend, and manage. The current principles and patterns of object-oriented
development fail in helping manage the complexity of large software

2. OSGi is the dynamic module system for the Java platform. It is a specification managed by the

OSGi Alliance. For more, see www.osgi.org.

3. Jigsaw is the proposed module system for Java SE 8.

SOLID
principles, 319

www.osgi.org

LOGICAL VERSUS PHYSICAL DESIGN

3

systems because they address a different problem. They help address prob-
lems related to logical design but do not help address the challenges of
physical design.

LO G I C A L V E R S U S PH YS I C A L DE S I G N

Almost all principles and patterns that aid in software design and archi-
tecture address logical design.4 Logical design pertains to language con-
structs such as classes, operators, methods, and packages. Identifying the
methods of a class, relationships between classes, and a system package
structure are all logical design issues.

It’s no surprise that because most principles and patterns emphasize
logical design, the majority of developers spend their time dealing with
logical design issues. When designing classes and their methods, you are
defining the system’s logical design. Deciding whether a class should be a
Singleton is a logical design issue. So is determining whether an operation
should be abstract or deciding whether you should inherit from a class
versus contain it. Developers live in the code and are constantly dealing
with logical design issues.

Making good use of object-oriented design principles and patterns
is important. Accommodating the complex behaviors required by most
business applications is a challenging task, and failing to create a flexible
class structure can have a negative impact on future growth and exten-
sibility. But logical design is not the focus of this book. Numerous other
books and articles provide the guiding wisdom necessary to create good
logical designs. Logical design is just one piece of the software design and
architecture challenge. The other piece of the challenge is physical design.
If you don’t consider the physical design of your system, then your logical
design, no matter how beautiful, may not provide you with the benefits
you believe it does. In other words, logical design without physical design
may not really matter all that much.

Physical design represents the physical entities of your software sys-
tem. Determining how a software system is packaged into its deploy-
able units is a physical design issue. Determining which classes belong in

4. One exception is the excellent book by John Lakos, Large-Scale C++ Software Design. Here,

Lakos presents several principles of logical and physical design to aid development of software

programs written using C++.

INTRODUCTION

4

which deployable units is also a physical design issue. Managing the rela-
tionships between the deployable entities is also a physical design issue.
Physical design is equally as, if not more important than, logical design.

For example, defining an interface to decouple clients from all classes
implementing the interface is a logical design issue. Decoupling in this
fashion certainly allows you to create new implementations of the inter-
face without impacting clients. However, the allocation of the interface
and its implementing classes to their physical entities is a physical design
issue. If the interface has several different implementations and each of
those implementation classes has underlying dependencies, the placement
of the interface and implementation has a tremendous impact on the over-
all quality of the system’s software architecture. Placing the interface and
implementation in the same module introduces the risk of undesirable
deployment dependencies. If one of the implementations is dependent
upon a complex underlying structure, then you’ll be forced to include this
dependent structure in all deployments, regardless of which implementa-
tion you choose to use. Regardless of the quality of the logical design, the
dependencies between the physical entities will inhibit reusability, main-
tainability, and many other benefits you hope to achieve with your design.

Unfortunately, although many teams spend a good share of time on
logical design, few teams devote effort to their physical design. Physical
design is about how we partition the software system into a system of
modules. Physical design is about software modularity.

MO D U L A R IT Y

Large software systems are inherently more complex to develop and main-
tain than smaller systems. Modularity involves breaking a large system
into separate physical entities that ultimately makes the system easier to
understand. By understanding the behaviors contained within a module
and the dependencies that exist between modules, it’s easier to identify
and assess the ramification of change.

For instance, software modules with few incoming dependencies are
easier to change than software modules with many incoming dependen-
cies. Likewise, software modules with few outgoing dependencies are
much easier to reuse than software modules with many outgoing depen-
dencies. Reuse and maintainability are important factors to consider
when designing software modules, and dependencies play an important
factor. But dependencies aren’t the only factor.

MODULARITY

5

Module cohesion also plays an important role in designing high-
quality software modules. A module with too little behavior doesn’t do
enough to be useful to other modules using it and therefore provides
minimal value. Contrarily, a module that does too much is difficult to
reuse because it provides more behavior than other modules desire. When
designing modules, identifying the right level of granularity is important.
Modules that are too fine-grained provide minimal value and may also
require other modules to be useful. Modules that are too coarse-grained
are difficult to reuse.

The principles in this book provide guidance on designing modular
software. They examine ways that you can minimize dependencies between
modules while maximizing a module’s reuse potential. Many of these prin-
ciples would not be possible without the principles and patterns of object-
oriented design. As you’ll discover, the physical design decisions you make
to modularize the system will often dictate the logical design decisions.

 UN IT O F MO D U L A R IT Y : TH E JAR FI L E

Physical design on the Java platform is done by carefully designing the
relationships and behavior of Java JAR files. On the Java platform, the unit
of modularity is the JAR file. Although these principles can be applied to
any other unit, such as packages, they shine when using them to design
JAR files.

OSGI

The OSGi Service Platform is the dynamic module system for Java. In
OSGi parlance, a module is known as a bundle. OSGi provides a framework
for managing bundles that are packaged as regular Java JAR files with an
accompanying manifest. The manifest contains important metadata that
describes the bundles and its dependencies to the OSGi framework.

You’ll find examples leveraging OSGi throughout this book. However,
OSGi is not a prerequisite for using the modularity patterns. OSGi simply
provides a runtime environment that enables and enforces modularity on
the Java platform. OSGi offers the following capabilities:

• Modularity: Enables and enforces a modular approach to architec-
ture on the Java platform.

• Versioning: Supports multiple versions of the same software module
deployed within the same Java Virtual Machine (JVM) instance.

module defined, 17

OSGi, 273

INTRODUCTION

6

• Hot deployments: Permits modules to be deployed and updated
within a running system without restarting the application or the
JVM.

• Encapsulation: Allows modules to hide their implementation details
from consuming modules.

• Service orientation: Encourages service-oriented design principles
in a more granular level within the JVM. To accomplish this, OSGi
uses μServices.

• Dependency management: Requires explicit declaration of depen-
dencies between modules.

WH O TH I S BO O K IS FO R

This book is for the software developer or architect responsible for devel-
oping software applications. If you’re interested in improving the design
of the systems you create, this book is for you.

This book is not exclusively for individuals who are using a platform
that provides native support for modularity. For instance, if you’re using
OSGi, this book helps you leverage OSGi to design more modular software.
But if you’re not using OSGi, the techniques discussed in this book are still
valuable in helping you apply techniques that increase the modularity of
your software systems. Nor is this book exclusively for Java developers.
Although the examples throughout this book use Java, the techniques dis-
cussed can be applied to other platforms, such as .NET, with relative ease.

If you want to understand more deeply the benefits of modularity and
start designing modular software systems, this book is for you! This book
provides answers to the following questions:

• What are the benefits of modularity and why is it important?

• How can I convince other developers of the importance of
modularity?

• What techniques can I apply to increase the modularity of my soft-
ware systems?

• How can I start using modularity now, even if I’m not developing on
a platform with native support for modularity, such as OSGi?

• How can I migrate large-scale monolithic applications to applica-
tions with a modular architecture?

HOW THIS BOOK IS ORGANIZED

7

HOW TH I S BO O K IS OR G A N I Z E D

This book is divided into three parts. Part I presents the case for modular-
ity. Here, you explore the important role that software modularity plays
in designing software systems and learn why you want to design modu-
lar software. Part II is a catalog of 18 patterns that help you design more
modular software. These patterns rely heavily on the ideas discussed in
Part I. Part III introduces OSGi and demonstrates how a software system
designed using the patterns in this book is well positioned to take advan-
tage of platform support for modularity. Part III relies heavily on code
examples to demonstrate the points made.

Naturally, I suggest reading the book cover to cover. But, you might
also want to explore the book by jumping from chapter to chapter. Feel
free! Throughout this book, in the margin, you’ll notice several forward
and backward references to the topics relevant to the current topic. This
helps you navigate and consume the ideas more easily. The following is a
summary of each chapter.

PA RT I : TH E CA S E FO R MO D U L A R IT Y

Part I presents the reasons why modularity is important. It is the case for
modularity. A brief synopsis of each chapter in Part I follows:

• Chapter 1, “Module Defined”: This chapter introduces modularity
and formally defines and identifies the characteristics of a software
module. I encourage everyone to read this short chapter.

• Chapter 2, “The Two Facets of Modularity”: There are two aspects
to modularity: the runtime model and the development model.
Much emphasis has been placed on providing runtime support for
modularity. As more platforms provide runtime support for modu-
larity, the importance of the development model will take center
stage. The development model consists of the programming model
and the design paradigm.

• Chapter 3, “Architecture and Modularity”: Modularity plays a criti-
cal role in software architecture. It fills a gap that has existed since
teams began developing enterprise software systems. This chapter
examines the goal of software architecture and explores the impor-
tant role modularity plays in realizing that goal.

INTRODUCTION

8

• Chapter 4, “Taming the Beast Named Complexity”: Enterprise
software systems are fraught with complexity. Teams are challenged
by technical debt, and systems are crumbling from rotting design.
This chapter explains how modularity helps us tame the increasing
complexity of software systems.

• Chapter 5, “Realizing Reuse”: Reuse is the panacea of software
development. Unfortunately, few organizations are able to realize
high rates of reuse. This chapter examines the roadblocks that pre-
vent organizations from realizing reuse and explores how modularity
increases the chance of success.

• Chapter 6, “Modularity and SOA”: Modularity and SOA are com-
plementary in many ways. This chapter explores how modularity
and SOA are a powerful combination.

• Chapter 7, “Reference Implementation”: It’s important to provide
some decent samples that illustrate the concepts discussed. The ref-
erence implementation serves two purposes. First, it ties together the
material in the first six chapters so you can see how these concepts
are applied. Second, it lays the foundation for many of the patterns
discussed in Part II.

PA RT I I : TH E PAT TE R N S

The patterns are a collection of modularity patterns. They are divided into
five separate categories, each with a slightly different purpose. There is
some tension between the different categories. For instance, the usability
patterns aim to make it easy to use a module while the extensibility pat-
terns make it easier to reuse modules. This tension between use and reuse
is further discussed in Chapter 5.

• Chapter 8, “Base Patterns”: The base patterns are the fundamental
elements upon which many of the other patterns exist. They estab-
lish the conscientious thought process that go into designing systems
with a modular architecture. They focus on modules as the unit of
reuse, dependency management, and cohesion. All are important
elements of well-designed modular software systems.

• Chapter 9, “Dependency Patterns”: I’ve personally found it fasci-
nating that development teams spend so much time designing class

HOW THIS BOOK IS ORGANIZED

9

relationships but spend so little time creating a supporting physi-
cal structure. Here, you find some guidance that helps you create a
physical structure that emphasizes low coupling between modules.
You’ll also find some discussion exploring how module design
impacts deployment.

• Chapter 10, “Usability Patterns”: Although coupling is an impor-
tant measurement, cohesion is equally important. It’s easy to create
and manage module dependencies if I throw all of my classes in a
couple of JAR files. But in doing so, I’ve introduced a maintenance
nightmare. In this chapter, we see patterns that help ensure our
modules are cohesive units. It’s interesting that you’ll find some
contention between the dependency patterns and usability patterns.
I talk about this contention and what you can do to manage it.

• Chapter 11, “Extensibility Patterns”: A goal in designing software
systems is the ability to extend the system without making modifi-
cations to the existing codebase. Abstraction plays a central role in
accomplishing this goal, but simply adding new functionality to an
existing system is only part of the battle. We also want to be able to
deploy those new additions without redeploying the entire applica-
tion. The extensibility patterns focus on helping us achieve this goal.

• Chapter 12, “Utility Patterns”: The utility patterns aid modular
development. Unlike the other patterns, they don’t emphasize reuse,
extensibility, or usability. Instead, they discuss ways that modularity
can be enforced and that help address quality-related issues.

PA RT I I I : POMA A N D OSGI

Standard Java gives you everything you need to begin using the patterns in
this book. Undoubtedly, though, you want to see the patterns in the con-
text of an environment that provides first-class support for modularity. In
this section, we do just that and use the OSGi framework to illustrate this
through example.

• Chapter 13, “Introducing OSGi”: This chapter provides a brief
introduction to OSGi, including its capabilities and benefits. This
chapter isn’t meant as a tutorial and assumes some cursory knowl-
edge of OSGi. We talk about OSGi and modularity, including

INTRODUCTION

10

μServices and the Blueprint specification. Additionally, you’ll see
how the dynamism of OSGi brings modularity to the runtime envi-
ronment. Finally, we wrap up by exploring how the patterns relate to
development in OSGi. We point out how OSGi makes it easier to use
some of the modularity patterns in their purest form.

• Chapter 14, “The Loan Sample and OSGi”: As you read through
the pattern discussions, you’ll notice a common example we use is a
loan system. In this chapter, we again use the loan system but refac-
tor the application so that it runs in an OSGi environment. You’ll be
surprised that once you have a modular architecture, OSGi is just a
simple step away.

• Chapter 15, “OSGi and Scala”: The Java platform supports mul-
tiple languages, and OSGi doesn’t inhibit you from using alternative
languages on the Java platform. In this section, we show how we can
create a Scala module and plug it into a system. You’ll see two simple
advantages. First, the modular architecture makes it easy to add
code without making modifications to any other code in the system.
Second, it clearly illustrates the dynamism of OSGi.

• Chapter 16, “OSGi and Groovy”: Like the Scala example in Chap-
ter 15, we develop another module using the Groovy programming
language to further illustrate the flexibility and dynamicity of a
runtime environment that supports modularity.

• Chapter 17, “Future of OSGi”: What’s the future of modularity and
OSGi? How might it transform how we currently think about large
enterprise software systems? In this chapter, we explore that future
with a provocative look at what’s in store for modularity and OSGi.

 PAT TE R N FO R M

Each pattern is consistent in structure to help maximize its readability.
Each is also accompanied by an example that illustrates how the under-
lying principles it captures are applied. Not all sections appear for all
patterns. In some cases, certain sections are omitted when a previous dis-
cussion can be referenced. The general structure of each pattern resembles
the Gang of Four (GOF) format, which is the format used in the book
Design Patterns: Elements of Reusable Object-Oriented Software, struc-
tured as follows:

PATTERN FORM

11

 PAT TE R N NA M E

First, the name of the pattern is presented. The name is important, because
it helps establish a common vocabulary among developers.

 PAT TE R N STATE M E NT

The pattern statement is a summary that describes the pattern. This state-
ment helps establish the intent of the pattern.

 SK E TC H

A sketch is a visual representation that shows the general structure of the
pattern. Usually, the Unified Modeling Language (UML) is used here.

 DE S C R I P TI O N

The description offers a more detailed explanation of the problem that
the pattern solves. The description establishes the motivation behind the
pattern.

 IM PL E M E NTATI O N VA R I ATI O N S

As with any pattern, subtle implementation details quickly arise when
applying the pattern to a real-world problem. “Implementation Varia-
tions” discusses some of the more significant alternatives you should con-
sider when applying the pattern.

 CO N S EQ U E N C E S

All design decisions have advantages and disadvantages, and like most
advice on software design, the use of these patterns must be judicious.
While they offer a great deal of flexibility, that flexibility comes with a
price. The “Consequences” section discusses some of the interesting
things you’ll likely encounter when applying the pattern and some of the
probable outcomes should you decide to ignore the pattern. After reading
through the consequences, you should have a better idea of when you’ll
want to apply the pattern and when you may want to consider using an
alternative approach. Boiled down, this section represents the advantages

INTRODUCTION

12

and disadvantages of using the pattern, the price you’ll pay, and the ben-
efits you should realize.

 SA M PL E

It’s usually easier to understand a pattern when you can see a focused
example. In this section, we walk through a sample that illustrates how
the pattern can be applied. Sometimes, we work through some code, and
other times, some simple visuals clearly convey the message. Most impor-
tant though is that the sample won’t exist in a vacuum. When we apply
patterns in the real world, patterns are often used in conjunction with
each other to create a more flexible tailored solution. In cases where it
makes sense, the sample builds on previous samples illustrated in other
patterns. The result is insight into how you can pragmatically apply the
pattern in your work.

 WR A PPI N G UP

This section offers a few closing thoughts on the pattern.

 PAT TE R N CATA LO G

The following are the modularity patterns:

• Base Patterns

• Manage Relationships: Design module relationships.

• Module Reuse: Emphasize reusability at the module level.

• Cohesive Modules: Module behavior should serve a singular
purpose.

• Dependency Patterns

• Acyclic Relationships: Module relationships must be acyclic.

• Levelize Modules: Module relationships should be levelized.

• Physical Layers: Module relationships should not violate the
conceptual layers.

• Container Independence: Modules should be independent of the
runtime container.

THE CODE

13

• Independent Deployment: Modules should be independently
deployable units.

• Usability Patterns

• Published Interface: Make a module’s published interface well
known.

• External Configuration: Modules should be externally
configurable.

• Default Implementation: Provide modules with a default
implementation.

• Module Facade: Create a facade serving as a coarse-grained
entry point to another fine-grained module’s underlying
implementation.

• Extensibility Patterns

• Abstract Module: Depend upon the abstract elements of a
module.

• Implementation Factory: Use factories to create a module’s
implementation classes.

• Separate Abstractions: Place abstractions and the classes that
implement them in separate modules.

• Utility Patterns

• Colocate Exceptions: Exceptions should be close to the class or
interface that throws them.

• Levelize Build: Execute the build in accordance with module
levelization.

• Test Module: Each module should have a corresponding test
module.

 TH E CO D E

Numerous examples are spread throughout this book, and many of these
samples include code. All pattern samples for this book can be found in
the following GitHub repository: https://github.com/pragkirk/poma.

If you’re interested in running the code on your machine but are
unfamiliar with Git, see the Git documentation at http://git-scm.com/
documentation.

https://github.com/pragkirk/poma
http://git-scm.com/documentation
http://git-scm.com/documentation

INTRODUCTION

14

The sample code in Chapter 7 can be found in a Google Code Subver-
sion repository at http://code.google.com/p/kcode/source/browse/#svn/
trunk/billpayevolution/billpay.

I encourage everyone to download the code from these repositories
and use the code while reading each pattern’s “Sample” section. Although
code is included with many of the patterns, it’s not possible to include all
the code for each sample. The code you find in this book helps guide you
through the discussion and provides an overview of how the pattern can
be applied. But, you gain far greater insight to the intricacies of the pattern
by downloading and reviewing the code.

AN OPE N I N G TH O U G HT O N TH E MO D U L A R IT Y

PAT TE R N S

There was some debate surrounding the modularity patterns as I wrote
this book. Some suggested they would be more aptly referred to as prin-
ciples, while others preferred laws. Some even suggested referring to them
as heuristics, guidelines, idioms, recipes, or rules. At the end of the day,
however, all reviewers said they loved this book’s content and approach.
So, in the end, I stuck with patterns. Instead of trying to decide whether
you feel these should be patterns, principles, heuristics, or something else,
I encourage you to focus on the topic of discussion for each pattern. The
idea! That’s what’s important.

RE F E R E N C E

Gamma, Erich, et al. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley.

http://code.google.com/p/kcode/source/browse/#svn/trunk/billpayevolution/billpay
http://code.google.com/p/kcode/source/browse/#svn/trunk/billpayevolution/billpay

29

3
Modularity plays an important role in software architecture. It fills a gap
that has existed since we began developing enterprise software systems in
Java. This chapter discusses that gap and explores how modularity is an
important intermediary technology that fills that gap.

3.1 DE F I N I N G AR C H IT E C T U R E

There are numerous definitions of architecture. But within each lies a
common theme and some key phrases. Here are a few of the definitions.
From Booch, Rumbaugh, and Jacobson (1999):

An architecture is the set of significant decisions about the organiza-
tion of a software system, the selection of the structural elements and
their interfaces by which the system is composed, together with their
behavior as specified in the collaborations among those elements, the
composition of these structural elements and behavioral elements
into progressively larger subsystems, and the architecture style that
guides this organization — these elements and their interfaces, their col-
laborations, and their composition.

Now, from the ANSI/IEEE Std 1471-2000 (the Open Group):

The fundamental organization of a system, embodied in its compo-
nents, their relationships to each other and the environment, and the
principles governing its design and evolution.

ARC H ITECTU R E A N D
MO D U L A R IT Y

CHAPTER 3 ARCHITECTURE AND MODULARITY

30

In the Open Group Architecture Framework (TOGAF), architecture
has two meanings depending on context (the Open Group):

1) A formal description of a system, or a detailed plan of the system at
component level to guide its implementation

2) The structure of components, their inter-relationships, and the
principles and guidelines governing their design and evolution
over time

Examining these definitions reveals many common keywords, which
I’ve made bold in the various definitions. Important underlying cur-
rents are embodied by these keywords. But, these keywords lead to some
important questions that must be answered to more fully understand
architecture. What makes a decision architecturally significant? What
are the elements of composition? How do we accommodate evolution of
architecture? What does this have to do with modularity? As we delve into
these questions, I want to start with a story on software architecture.

3.2 A SO F T WA R E AR C H IT E C T U R E STO RY

The story of software architecture reminds me of the following story
(Hawking 1998):

A well-known scientist (some say it was Bertrand Russell) once gave a
public lecture on astronomy. He described how the earth orbits around the
sun and how the sun, in turn, orbits around the center of a vast collection
of stars called our galaxy. At the end of the lecture, a little old lady at the
back of the room got up and said: “What you have told us is rubbish. The
world is really a flat plate supported on the back of a giant tortoise.” The
scientist gave a superior smile before replying, “What is the tortoise stand-
ing on?” “You’re very clever, young man, very clever,” said the old lady.
“But it’s turtles all the way down!”

—A Brief History of Time by Stephen Hawking

Software architecture is “turtles all the way down.” How? This section
discusses these ideas.

3.2 .1 TH E IVO RY TOW E R

Many of us can relate to the ivory tower. In dysfunctional organizations,
architects and developers fail to communicate effectively. The result is a

3.2 A SOFTWARE ARCHITECTURE STORY

31

lack of transparency and a lack of understanding by both sides. As shown
in Figure 3.1, architects bestow their wisdom upon developers who are
unable to translate high-level concepts into concrete implementations. The
failure often occurs (although I recognize there are other causes) because
architecture is about breadth and development is about depth. Each group
has disparate views of software architecture, and although both are war-
ranted, there’s a gap between these views. The architect might focus on
applications and services, while the developer focuses on the code. Sadly,
there is a lot in between that no one focuses on. This gap between breadth
and depth contributes to ivory tower architecture.

3.2 .2 TU RTL E S A N D TH E TOW E R

Without question, the ivory tower is dysfunctional, and systems lack-
ing architectural integrity are a symptom of ivory tower architecture.
So, assuming good intent on the part of the architect and the developer,
how can we bridge the gap between breadth and depth? How can we
more effectively communicate? How do we increase understanding and
transparency?

Architect's
Ivory Tower

Development TeamDevelopment Team

Lack of U
nderstanding

D
ep

th

La
ck

 o
f T

ra
ns

pa
re

nc
y

Adapted from http://www.rendell.org/jam/upload/2009/1/tower-12054835.jpg

B
re

ad
th

Figure 3.1 The ivory tower (the Open Group)

http://www.rendell.org/jam/upload/2009/1/tower-12054835.jpg

CHAPTER 3 ARCHITECTURE AND MODULARITY

32

Let’s revisit the definition of software architecture by exploring
another definition. My favorite definition of software architecture was
offered by Ralph Johnson in an article by Martin Fowler (2003). He states:

In most successful software projects, the expert developers working on that
project have a shared understanding of the system design. This shared
understanding is called “architecture.” This understanding includes how
the system is divided into components and how the components interact
through interfaces. These components are usually composed of smaller
components, but the architecture only includes the components and inter-
faces that are understood by all the developers . . . Architecture is about
the important stuff. Whatever that is.

The key aspect of this definition that differentiates it from the ear-
lier definitions in this chapter is that of “shared understanding,” which
implies that there is a social aspect to software architecture. We must have
a shared understanding of how the system is divided into components and
how they interact. Architecture isn’t just some technical concept; it’s also a
social construct. Through this social aspect of architecture, we can break
down the divide between architects and developers.

To ensure shared understanding, we have to architect “all the way
down.” Architects cannot worry only about services, and developers can-
not worry only about code. Each group must also focus on a huge middle
ground, as illustrated in Figure 3.2.

Focusing exclusively on top-level abstractions is not enough. Empha-
sizing only code quality is not enough either. We must bridge the gap
through other means, including module and package design. Often, when
I speak at various conferences, I ask the audience to raise their hands if
they devote effort to service design. Many hands raise. I also ask them to
raise their hand if they spend time on class design and code quality. Again,
many hands go up. But when I ask if they also devote effort to package and
module design, only a small percentage leave their hands raised.

This is unfortunate, because module and package design are equally
as important as service and class design. But somewhere along the way,
with our emphasis on services and code quality, we’ve lost sight of what
lies in between. Within each application or service awaits a rotting design,
and atop even the most flexible code sits a suite of applications or services
riddled with duplication and lack of understanding. A resilient package
structure and corresponding software modules help bridge the divide
between services and code. Modularity is an important intermediate

architecture all the
way down, 69

3.3 THE GOAL OF ARCHITECTURE

33

technology that helps us architect all the way down and is the conduit that
fills the gap between breadth and depth.

We need to focus on modularity to ensure a consistent architecture
story is told. It is the glue that binds. It’s the piece that helps bridge low-
level class design with higher-level service design. It’s the piece that helps
bring down the ivory tower, enhance communication, increase transpar-
ency, ensure understanding, and verify consistency at multiple levels. It is
the piece that allows us to “architect all the way down” and allows us to
realize the goal of architecture.

3.3 TH E GOA L O F AR C H IT E C T U R E

Modularity helps address the social aspect of software architecture, but
it also helps us design more flexible software systems—that is, systems
with resilient, adaptable, and maintainable architectures. Examining the
earlier definitions of architecture leads us to the goal of architecture. The
Johnson definition of architecture as quoted by Fowler makes it apparent
that architecture is about the important stuff. In the following statement,
Booch makes it clear that something is architecturally significant if it’s
difficult to change (2006):

Services

Modules

Packages

Classes

Code

SOA Principles &
Patterns

Modularity Principles &
Patterns

Package Design
Principles & Patterns

SOLID &
Design Patterns

Code Quality

In
cr

ea
se

 T
ra

n
p

ar
en

cy
 &

 U
n

d
er

st
an

d
in

g

Architect's
Ivory Tower

Development TeamDevelopment Team

Lack of U
nderstanding

D
ep

th

La
ck

 o
f T

ra
ns

pa
re

nc
y

B
re

ad
th

Adapted from http://www.rendell.org/jam/upload/2009/1/tower-12054835.jpg

Figure 3.2 Architecture all the way down

http://www.rendell.org/jam/upload/2009/1/tower-12054835.jpg

CHAPTER 3 ARCHITECTURE AND MODULARITY

34

All architecture is design but not all design is architecture. Architecture
represents the significant design decisions that shape a system, where
significant is measured by cost of change.

Based on these statements, it’s fair to conclude that the goal of soft-
ware architecture must be to eliminate the impact and cost of change,
thereby eliminating architectural significance. We attempt to make some-
thing architecturally insignificant by creating flexible solutions that can
be changed easily, as illustrated in Figure 3.3. But herein lies a paradox.

3.3.1 TH E PA R A D OX

The idea behind eliminating architecture isn’t new. In fact, Fowler men-
tions “getting rid of software architecture” in his article “Who Needs an
Architect?” (2003). The way to eliminate architecture by minimizing the
impact of cost and change is through flexibility. The more flexible the
system, the more likely that the system can adapt and evolve as necessary.
But herein lies the paradox, and a statement by Ralph Johnson presents
and supports the idea (Fowler 2003):

. . . making everything easy to change makes the entire system very complex . . .

As flexibility increases, so does the complexity. And complexity is the
beast we are trying to tame because complex things are more difficult to
deal with than simple things. It’s a battle for which there is no clear path
to victory, for sure. But, what if we were able to tame complexity while
increasing flexibility, as illustrated in Figure 3.4? Let’s explore the pos-
sibility of designing flexible software without increasing complexity. Is it
even possible? In other words, how do we eliminate architecture?

complexity, 46

Goal of Architecture

This is the
important stuff

Cost of Change

Impact of
Change

Architecture

& Design

Cost of Change

Impact of
Change Design

Architecture

Figure 3.3 The goal of architecture

3.3 THE GOAL OF ARCHITECTURE

35

3.3.2 ELI M I N ATI N G AR C H IT E C T U R E

As the Johnson quote clearly points out, it’s not feasible to design an infi-
nitely flexible system. Therefore, it’s imperative that we recognize where
flexibility is necessary to reduce the impact and cost of change. The chal-
lenge is that we don’t always know early in the project what might eventu-
ally change, so it’s impossible to create a flexible solution to something
we can’t know about. This is the problem with Big Architecture Up Front
(BAUF), and it’s why we must make architectural decisions temporally. In
other words, we should try to defer commitment to specific architectural
decisions that would lock us to a specific solution until we have the req-
uisite knowledge that will allow us to make the most informed decision.

It’s also why we must take great care in insulating and isolating deci-
sions we’re unsure of and ensuring that these initial decisions are easy to
change as answers to the unknown emerge. For this, modularity is a miss-
ing ingredient that helps minimize the impact and cost of change, and it’s
a motivating force behind why we should design software systems with
a modular architecture. In the UML User Guide (page 163), Booch talks
about “modeling the seams in a system.” He states (1999):

Identifying the seams in a system involves identifying clear lines of
demarcation in your architecture. On either side of those lines, you’ll find
components that may change independently, without affecting the compo-
nents on the other side, as long as the components on both sides conform
to the contract specified by that interface.

Where Booch talks about components, we talk about modules. Where
Booch talks about seams, we’ll talk about joints. Modularity, combined
with design patterns and SOLID principles, represents our best hope to

SOLID
principles, 319

joints, 56

What if we could do this?

Im
pa

ct
an

d C
os

t o
f C

ha
ng

e

Im
pa

ct
 a

nd
 C

os
t o

f C
ha

ng
e

Complexity

Flexibility

Complexity

Flexibility

Figure 3.4 Maximizing flexibility, managing complexity

CHAPTER 3 ARCHITECTURE AND MODULARITY

36

minimize the impact and cost of change, thereby eliminating the archi-
tectural significance of change.

3.4 MO D U L A R IT Y : TH E MI S S I N G IN G R E D I E NT

Two of the key elements of the architectural definitions are component
and composition. Yet there is no standard and agreed-upon definition of
component1 (reminding me of architecture, actually), and most use the
term loosely to mean “a chunk of code.” But, that doesn’t work, and in the
context of OSGi, it’s clear that a module is a software component. Devel-
oping a system with an adaptive, flexible, and maintainable architecture
requires modularity because we must be able to design a flexible system
that allows us to make temporal decisions based on shifts that occur
throughout development. Modularity has been a missing piece that allows
us to more easily accommodate these shifts, as well as focus on specific
areas of the system that demand the most flexibility, as illustrated in Fig-
ure 3.5. It’s easier to change a design encapsulated within a module than it
is to make a change to the design than spans several modules.

1. In his book Component Software: Beyond Object-Oriented Programming, Clemens Szyperski

makes one of the few attempts I’ve seen to formally define the term component. He did a fine

job, too.

module
definition, 17

This mess is
highly visible

This mess is
encapsulated

Figure 3.5 Encapsulating design

 3.4 MODULARITY: THE MISSING INGREDIENT

37

3.4 .1 I S IT RE A L LY EN C A P S U L ATE D ?

In standard Java, there is no way to enforce encapsulation of design details
to a module because Java provides no way to define packages or classes
that are module scope. As a result, classes in one module will always have
access to the implementation details of another module. This is where a
module framework, such as OSGi, shines because it allows you to forcefully
encapsulate implementation details within a module through its explicit
import package and export package manifest headers. Even public classes
within a package cannot be accessed by another module unless the pack-
age is explicitly exported. The difference is subtle, although profound. We
see several examples of this in the patterns throughout this book, and I
point it out as it occurs. For now, let’s explore a simple example.

3.4.1.1 Standard Java: No Encapsulation

Figure 3.6 illustrates a Client class that depends upon Inter, an inter-
face, with Impl providing the implementation. The Client class is pack-
aged in the client.jar module, and Inter and Impl are packaged in
the provider.jar module. This is a good example of a modular system
but demonstrates how we cannot encapsulate implementation details in
standard Java because there is no way to prevent access to Impl. Classes

modularizing
without a runtime
module, 26

client.jar

provider.jar

com.p1.Client

<<interface>>
com.p2.Inter

com.p2.impl.Impl

<<reference>>

Package Scope Class

AppContext.xml

Figure 3.6 Standard Java can’t encapsulate design details in a module.

CHAPTER 3 ARCHITECTURE AND MODULARITY

38

outside of the provider.jar module can still reach the Impl class to
instantiate and use it directly.

In fact, the Impl class is defined as a package scope class, as shown in
Listing 3.1. However, the AppContext.xml Spring XML configuration
file, which is deployed in the client.jar module, is still able to cre-
ate the Impl instance at runtime and inject it into Client. The App-
Context.xml and Client class are shown in Listing 3.2 and Listing 3.3,
respectively. The key element is that the AppContext.xml is deployed
in the client.jar module and the Impl class it creates is deployed in
the provider.jar module. As shown in Listing 3.2, the AppContext
.xml file deployed in the client.jar file violates encapsulation by
referencing an implementation detail of the provider.jar module.
Because the Spring configuration is a global configuration, the result is a
violation of encapsulation.

Listing 3.1 Impl Class

package com.p2.impl;

import com.p2.*;

class Impl implements Inter {
 public void doIt() { . . . /* any implementation */ }
}

Listing 3.2 AppContext.xml Spring Configuration

<beans>
 <bean id="inter" class="com.p2.impl.Impl"/>
</beans>

Listing 3.3 Client Class

package com.p1;

import com.p2.*;
import org.springframework.context.*;
import org.springframework.context.support.*;

public class Client {
 public static void main(String args[]) {
 ApplicationContext appContext = new
 FileSystemXmlApplicationContext(
 "com/p1/AppContext.xml");

 3.4 MODULARITY: THE MISSING INGREDIENT

39

 Inter i = (Inter) appContext.getBean("inter");
 i.doIt();
 }
}

3.4.1.2 OSGi and Encapsulation

Now let’s look at the same example using OSGi. Here, the Impl class in
the provider.jar module is tightly encapsulated, and no class in any
other module is able to see the Impl class. The Impl class and Inter
interface remain the same as in the previous examples; no changes are
required. Instead, we’ve taken the existing application and simply set it up
to work with the OSGi framework, which enforces encapsulation of mod-
ule implementation details and provides an intermodule communication
mechanism.

Figure 3.7 demonstrates the new structure. It’s actually an exam-
ple of the Abstract Modules pattern. Here, I separated the Spring XML

OSGi, 273

Abstract Modules
pattern, 222

client.jar

provider.jar

com.p1.Client

<<interface>>
com.p2.Inter

com.p2.impl.Impl

<<reference>>

Public Class

client-osgi.xml

client.xml

provider-osgi.xml

provider.xml

Figure 3.7 Encapsulating design with OSGi

CHAPTER 3 ARCHITECTURE AND MODULARITY

40

configuration into four different files. I could have easily used only two
configuration files, but I want to keep the standard Java and OSGi frame-
work configurations separate for each module. The provider.jar
module is responsible for the configuration itself and exposing its capa-
bilities when it’s installed. Before we describe the approach, here is a brief
description of each configuration file:

• client.xml: Standard Spring configuration file that describes how
the application should be launched by the OSGi framework

• client-osgi.xml: Spring configuration file that allows the Client class
to consume an OSGi μService

• provider.xml: Spring configuration with the provider.jar
 module bean definition

• provider-osgi.xml: Spring configuration that exposes the bean
 definition in provider.xml as an OSGi μService

Before we look at how the two modules are wired together, let’s look at
the provider.jar module, which contains the Inter interface, Impl
implementation, and two configuration files. Again, Inter and Impl
remain the same as in the previous example, so let’s look at the configura-
tion files. The provider.xml file defines the standard Spring bean con-
figuration and is what was previously shown in the AppContext.xml file
in Figure 3.7. Listing 3.4 shows the provider.xml file. The key is that this
configuration is deployed with the provider.jar module. Attempting
to instantiate the Impl class outside of the provider.jar module will
not work. Because OSGi enforces encapsulation, any attempt to reach the
implementation details of a module will result in a runtime error, such as a
ClassNotFoundException.

Listing 3.4 provider.xml Configuration File

<beans>
 <bean id="inter" class="com.p2.impl.Impl"/>
</beans>

How does OSGi prevent other classes from instantiating the Impl class
directly? The Manifest.mf file included in the provider.jar module
exposes classes only in the com.p2 package, not the com.p2.impl pack-
age. So, the Inter interface registered as an OSGi μService is accessible

 3.4 MODULARITY: THE MISSING INGREDIENT

41

by other modules but not by the Impl class. Listing 3.5 shows the section
of the Manifest.mf illustrating the package export.

Listing 3.5 provider.xml Configuration File

Export-Package: com.p2

The provider-osgi.xml file is where things get very interesting,
and it is where we expose the behavior of the provider.jar module as an
OSGi μService that serves as the contract between the Client and Impl
classes. The configuration for the provider.jar module lives within the
provider.jar module, so no violation of encapsulation occurs.

Listing 3.6 shows the configuration. The name of the μService we
are registering with the OSGi framework is called interService, and
it references the Impl bean defined in Listing 3.4, exposing its behav-
ior as type Inter. At this point, the provider.jar module has a
interService OSGi μService that can be consumed by another mod-
ule. This service is made available by the provider.jar module after it
is installed and activated in the OSGi framework.

Listing 3.6 provider.xml Configuration File

<osgi:service id="interService" ref="inter"
 interface="com.p2.Inter"/>

Now, let’s look at the client.jar module. The client.xml file con-
figures the Client class. It effectively replaces the main method on the
Client class in Listing 3.3 with the run method, and the OSGi framework
instantiates the Client class, configures it with an Inter type, and invokes
the run method. Listing 3.7 shows the client.xml file, and Listing 3.8
shows the Client class. This is the mechanism that initiates the process and
replaces the main method in the Client class of the previous example.

Listing 3.7 Client.xml Configuration File

<beans>
 <bean name="client" class="com.p1.impl.Client"
 init-method="run">
 <property name="inter"
 ref="interService"/>
 </bean>
</beans>

CHAPTER 3 ARCHITECTURE AND MODULARITY

42

Listing 3.8 The Client Class

package com.p1.impl;
import com.p2.*;
import com.p1.*;
public class Client {
 private Inter i;
 public void setInter(Inter i) {
 this.i = i;
 }

 public void run() throws Exception {
 i.doIt();
 }
}

The Inter type that is injected into the client class is done through
the client-osgi.xml configuration file. Here, we specify that we
want to use a μService of type Inter, as shown in Listing 3.9.

Listing 3.9 Client.xml Configuration File

<osgi:reference id="interService"
 interface="com.p2.Inter"/>

The Manifest.mf file for the client.jar module imports the
com.p2 packages, which gives it access to the Inter μService. Listing
3.10 shows the section of Manifest.mf showing the package imports
and exports for the client.jar module.

Listing 3.10 Client.xml Configuration File

Import-Package: com.p2

This simple example has several interesting design aspects.2 The
provider.jar module is independently deployable. It has no dependen-
cies on any other module, and it exposes its set of behaviors as a μService.
No other module in the system needs to know these details.

2. Although this example builds upon the OSGi Blueprint Specification, some of you may not

be huge fans of XML. If that’s the case, Peter Kriens has an implementation that uses OSGi

Declarative Services. The sample can be found at http://bit.ly/OSGiExamples in the aQute.

poma.basic directory.

Independent
Deployment
pattern, 178

http://bit.ly/OSGiExamples

3.5 ANSWERING OUR QUESTIONS

43

The design could have also been made even more flexible by packaging
the Impl class and Inter interface in separate modules. By separating
the interface from the implementation, we bring a great deal of flexibility
to the system, especially with OSGi managing our modules.

At first glance, it might also appear to contradict the External Config-
uration pattern. When defining the external configuration for a module,
we still want to ensure implementation details are encapsulated. External
configuration is more about allowing clients to configure a module to its
environmental context and not about exposing implementation details of
the module.

The key takeaway from this simple demonstration is that the classes
in the provider.jar module are tightly encapsulated because the OSGi
framework enforces type visibility. We expose only the public classes in the
packages that a module exports, and the μService is the mechanism that
allows modules to communicate in a very flexible manner. The μService
spans the joints of the system, and because OSGi is dynamic, so too are the
dependencies on μServices. Implementations of the μService can come and
go at runtime, and the system can bind to new instances as they appear.

Again, we’ll see several more examples of this throughout the remain-
der of the discussion. Even though you can’t enforce encapsulation of
module implementation using standard Java, it’s still imperative to begin
designing more modular software systems. As we’ll see, by applying sev-
eral of the techniques we discuss in this book, we put ourselves in an
excellent position to take advantage of a runtime module system.

3.5 AN S W E R I N G OU R QU E S TI O N S

Earlier, this chapter posed the following questions after introducing
the three definitions of software architecture. Through explanation, we
answered each question. But to be clear, let’s offer concise answers:

What makes a decision architecturally significant? A decision
is architecturally significant if the impact and cost of change is
significant.

What are the elements of composition? The elements of composi-
tion include classes, modules, and services.

How do we accommodate evolution of architecture? Evolution is
realized by designing flexible solutions that can adapt to change. But

Separate
Abstractions
pattern, 237

External
Configuration
pattern, 200

joints, 56

CHAPTER 3 ARCHITECTURE AND MODULARITY

44

flexibility breeds complexity, and we must be careful to build flex-
ibility in the right areas of the system.

3.6 CO N C LU S I O N

The goal of architecture is to minimize the impact and cost of change.
Modularity helps us realize this goal by filling in a gap that exists between
top-level architectural constructs and lower-level code. Modularity is the
important intermediate that helps increase architectural agility. It fills a
gap that exists between architects and developers. It allows us to create a
software architecture that can accommodate shifts. Modularity helps us
architect all the way down.

3.7 RE F E R E N C E S

Booch, Grady, James Rumbaugh, and Ivar Jacobson. 1999. The Unified
Modeling Language User Guide. Reading, MA: Addison-Wesley.

The Open Group. The Open Group Architecture Framework. www.open-
group.org/architecture/togaf8-doc/arch/chap01.html

Hawking, Stephen. 1998. A Brief History of Time. Bantam.

Fowler, Martin. 2003. “Who Needs an Architect?” IEEE Software.

Booch, Grady. 2006. On Design. www.handbookofsoftwarearchitecture.
com/index.jsp?page=Blog&part=All

www.opengroup.org/architecture/togaf8-doc/arch/chap01.html
www.opengroup.org/architecture/togaf8-doc/arch/chap01.html
www.handbookofsoftwarearchitecture.com/index.jsp?page=Blog&part=All
www.handbookofsoftwarearchitecture.com/index.jsp?page=Blog&part=All

337

ActionForm
Physical Layers, 165–169
version 1, 85

active bundles, 277
ActiveX, 315
acyclic relationships

creeping cycles and, 53–54
defined, 50

Acyclic Relationships pattern
Abstract Modules and, 228
Cohesive Modules and, 143–144
consequences, 147–148
description, 146
implementation variations, 146–147
Independent Deployment and, 179
Levelize Build and, 254–255
Levelize Build sample, 259
Levelize Modules and, 158
Module Facade and, 213–214
Physical Layers and, 162
sample, 148–155
Separate Abstractions and, 239
statement, 146
Test Module and, 264–265

A
abstract coupling

defined, 236
Dependency Inversion Principle, 325
Implementation Factory and, 230–231
Liskov Substitution Principle, 324
Open Closed Principle, 321–322

Abstract Modules pattern
Default Implementation and, 206, 208
dynamism of, 281
Implementation Factory and, 229
Independent Deployment and, 178
managing relationships and, 118–119
overview, 222–228
Published Interface and, 191
second refactoring, 90–92
Separate Abstractions and, 237, 241
Test Module and, 264

abstraction.jar, 170–171
Abstractions pattern, Separate. See Separate

Abstractions pattern
account sample

Composite Reuse Principle, 329–334
Open Closed Principle, 321–323

INDEX

INDEX

338

Acyclic Relationships pattern (continued)
third refactoring, 93–94
wrapping up, 155–156

ANSI/IEEE Std 1471-2000, 29
Ant, 257–258
API (application programming interface)

OSGi μServices, 278–279
in programming model, 22
in Published Interface, 188

Apple, 313
applicant sample

Abstract Modules, 225–227
Implementation Factory, 232–236

architecture all the way down
advantages of, 70–71
conclusion, 80
defined, 32–33
granularity and, 76–78
Module Reuse and, 128
with OSGi, 277

architecture and modularity
answering questions, 43–44
conclusion, 44
defining architecture, 29–30
goal of, 33–36
granularity and, 74–75
modularity: missing ingredient, 36–43
references, 44
SOA and. See modularity and SOA
software architecture story, 30–33

Atlassian, 314
audit sample. See reference implementation
automated builds, 253–254

B
base patterns

Cohesive Modules, 139–144
Manage Relationships. See Manage

Relationships pattern
Module Reuse. See Module Reuse pattern
overview, 111, 115
postmortem, 104

base.jar, 259
batch applications, 121
BAUF (Big Architecture Up Front), 35
bean configuration

Groovy, 306–307
OSGi loan sample, 287–290
Scala, 299

bidirectional association
defined, 50
second refactoring, 90–92

Big Architecture Up Front (BAUF), 35
billing sample

Acyclic Relationships, 148–155
Cohesive Modules, 141–144
creeping cycles, 53–54
Levelize Build, 259
Manage Relationships, 122–124
Physical Layers, 160, 165–169
reference implementation. See reference

implementation
Separate Abstractions, 239–241
Test Module, 266–269
types of cycles, 50–53

Blueprint Services
defined, 278–279
loan sample, 286–291
patterns and, 281–282
wiring classes, 230

Booch, Grady
defining architecture, 29
goal of architecture, 33–34
modeling seams in system, 35

book organization, 7–10
breaking cycles, 51–53. See also Acyclic

Relationships pattern
A Brief History of Time (Hawking), 30
builds

first refactoring, 87–89
Groovy module, 307–308
levelization pattern. See Levelize Build

pattern
Manage Relationships, 119–120

INDEX

339

module levelization and, 160–161
reference implementation, 109
Scala module, 300

bundles
creating manifest files, 285–286
defined, 5, 274
digesting OSGi, 276–277
installation and execution, 292–293
OSGi, 277–279
versioned, 275

business logic layer
allowable relationships, 163
building objects with ActionForm,

165–169
defined, 162
in first refactoring, 87–88
Physical Layers, 164–165

C
calc-impl.jar

implementing in Groovy, 303–306
implementing in Scala, 295–298
Separate Abstractions, 242–243

calculateInterest method, 330–334
CalculationException, 248–251
callback

defined, 147
sample, 154–155

Capability Maturity Model (CMM), xxi–xxii
Carters, Graham, xxi
case for modularity, 15
catalog of patterns, 12–13
CBD (component-based development), 315
change

in Cohesive Modules, 139–140
goal of architecture, 33–34
stable modules, 224

Checking class
Composite Reuse Principle, 329–334
Open Closed Principle, 321–323

ClassCastException, 275

classes
in Cohesive Modules, 139–140
cyclic dependencies, 50–56
granularity, 72–74
Implementation Factory, 229–236
initial version, 85–86
options for creation, 223–224
Policy, 130–138
principles of design. See SOLID principles

of design
reuse, 125–126
separating abstractions, 238–240
structural f lexibility, 70–71
Test Module and, 263

classpath builds
defined, 254
full classpath build, 257–258
Levelize Build, 259–262
Scala module, 300

client sample
Abstract Modules, 222–223
Collocate Exceptions, 246–248
Container Independence, 170–171,

172–176
Default Implementation, 206–208
External Configuration, 200–201
Implementation Factory, 229, 232–236
Java and encapsulation, 37–39
Levelize Build, 255
Manage Relationships, 116–117, 120–121
OSGi and encapsulation, 39–43
Physical Layers, 157–158
Published Interface and, 188–189
Separate Abstractions, 238
Test Module, 263–264

CMM (Capability Maturity Model), xxi–xxii
coarse-grained modules

balancing modular tension, 65–66
Cohesive Modules and, 140–141
granularity and architecture, 77–79
reuse and, 63–64

INDEX

340

code
Groovy, 304–306
introduction, 13–14
Scala, 296–298

cohesion
interface, 327–328
Open Closed Principle, 320

Cohesive Modules pattern
defining module relationships, 121
Independent Deployment and, 178
OSGi and Groovy, 303
OSGi and Scala, 295
overview, 139–144

Collocate Exceptions pattern
Abstract Modules and, 228
fifth refactoring, 99
overview, 246–252
Separate Abstractions and, 243

compile errors, 253
complexity

benefits of modularity, 59–60
conclusion, 60
cyclic dependencies, 50–56
design rot, 48–50
enterprise, 46–47
flexibility and, 34–35
Independent Deployment, 180
joints, modules and SOLID, 56–57
managing, 57–59
modular tension, 65–66
overview, 45–46
references, 60
reuse and, 62
Separate Abstractions, 240–241
technical debt, 47–48

component-based development (CBD), 315
Component Software: Beyond Object-Oriented

Programming (Szyperski), 36, xxv
components, 30, 36
Composite Reuse Principle (CRP), 329–334
composition

architecture and modularity, 36

elements of, 43
modularity and, 19

conditional compiles, 254
configuration files

External Configuration of, 200–201
loan sample installation and execution, 292
Module Facade sample, 215–218
OSGi and encapsulation, 40

Configuration pattern, External. See External
Configuration pattern

consequences
Abstract Modules, 224
Acyclic Relationships, 147–148
Cohesive Modules, 140–141
Collocate Exceptions, 247–248
Default Implementation, 208
External Configuration, 202
Implementation Factory, 231–232
Levelize Build, 256–257
Levelize Modules, 159–160
Manage Relationships, 120–121
Module Facade, 214
Module Reuse, 129
pattern format, 11–12
Published Interface, 192–193
Test Module, 265

constraints, 256
Container Independence pattern

Blueprint and, 281
OSGi loan sample, 287
overview, 170–177

cost of change
in architecture, 43
goal of architecture, 34–36

coupling, abstract. See abstract coupling
createNewOrder method, 193–198
creeping cycles, 53–54
CruiseControl, 313–314
Cunningham, Ward, 47
customer sample

Acyclic Relationships, 148–155
creeping cycles, 53–54

INDEX

341

Default Implementation, 208–211
Levelize Build, 259
Manage Relationships, 122–124
Published Interfaces, 193–198
Separate Abstractions, 239–241
Test Module, 266–269
types of cycles, 50–53

cyclic dependencies
Acyclic Relationships. See Acyclic

Relationships pattern
Cohesive Modules and, 143
Collocate Exceptions and, 247–248
defined, 50–56
Levelize Build and, 254–255
third refactoring, 93–94

D
data access layer

allowable relationships, 163
defined, 162
in first refactoring, 87–88
Physical Layers, 164–165

dbutils.jar, 160
debt, technical, 47–48
Declarative Services, 279
decoupling

logical vs. physical design, 4
Policy class, 133
sixth refactoring, 100–101

Default Implementation pattern
External Configuration and, 201
OSGi and Groovy, 303
OSGi and Scala, 295
OSGi loan sample, 287
overview, 206–211

DefaultBill, 259
DefaultCustomer class, 197–198
demotion

defined, 147
sample, 153–154

dependencies
Abstract Modules, 222

cyclic, 50–56. See also cyclic dependencies
defining constraints, 256
in design rot, 48–50
direct and indirect, 116–117
enforcing, 256–257
escalation, 99
in levelized modules, 157
managing relationships, 117–119
modularity and, 4
Module Facade, 214
module weight and reuse, 62
outgoing, 178
Test Module, 104–105, 264–265

dependency injection
Container Independence and, 171–172
Dependency Inversion Principle and, 327
Implementation Factory and, 230–231

Dependency Inversion Principle (DIP),
325–327

dependency management
with OSGi, 6, 274–275
with patterns, 280
reference implementation, 106–108
runtime support, 27

dependency patterns
Acyclic Relationships. See Acyclic

Relationships pattern
Container Independence, 170–177
Independent Deployment, 178–185
Levelize Modules, 157–161
overview, 111–112, 145
Physical Layers, 162–168

deployment
dynamic redeployment with OSGi, 276
Independent Deployment. See Independent

Deployment pattern
modularity and, 17–18

descriptions
Abstract Modules, 222–223
Acyclic Relationships, 146
Cohesive Modules, 139
Collocate Exceptions, 246

INDEX

342

descriptions (continued)
Default Implementation, 206
Implementation Factory, 229–230
Levelize Build, 253–255
Levelize Modules, 157
Manage Relationships, 116–117
Module Facade, 212
Module Reuse, 125–127
pattern format, 11
Published Interface, 188–189
Test Module, 263

Design by Contract, 324
design paradigm

defined, 21
overview, 23–25

design patterns. See patterns
design principles. See SOLID principles of

design
Design Principles and Design Principles

(Martin), 319
design rot

defined, 48–50
SOA and, 79
technical debt and, 47

designing services, 79–80
destroy-method parameter, 289
development model

ecosystems and, 315
OSGi and, 279
overview, 22–25

digesting OSGi, 276–277
DIP (Dependency Inversion Principle),

325–327
direct dependencies

cyclic, 146–147
defined, 116–117

DiscountCalculator
Acyclic Relationships sample, 153–154
creeping cycles, 53–54
Default Implementation, 208–210
Levelize Build, 259
Test Module, 266–269

disruption of OSGi, 312–314

domain layer
allowable relationships, 163
defined, 162
Module Facade and, 213
Physical Layers, 164–165

dumbclient.jar, 289–290
dynamic creation, 223
dynamic deployment

μServices, 286
patterns, 281
runtime support, 26

dynamic redeployment, 276

E
Eclipse, 273–274, 313
ecosystems

OSGi and, 312–314
overview, 316
power of, 314–315

EDI (electronic data interchange) format, 165
EJB (Enterprise JavaBeans)

lessons learned, 24–25
overview, 24
weight of, 170

electronic data interchange (EDI) format, 165
eliminating architecture, 35–36
eliminating relationships

Manage Relationships and, 123–124
Separate Abstractions and, 240

employee sample
Independent Deployment, 180–185
reuse, 127

enabler, OSGi as, 312
encapsulation

architecture and modularity, 36–43
cycles and, 55
with Module Facade, 212
OSGi, 6
OSGi μServices, 278
in Published Interface, 188, 191
runtime support, 26

enforcing dependencies, 256–257
enterprise complexity, 46–47

INDEX

343

Enterprise JavaBeans (EJB)
lessons learned, 24–25
overview, 24
weight of, 170

entities
granularity and architecture, 75–76
structural f lexibility, 70–71

entity beans, 24
environment

control with OSGi, 276
module weight and reuse, 62

Equinox
loan sample installation and execution, 292
OSGi history, 273

escalation
defined, 99, 147
vs. demotion, 154
Module Facade and, 214
sample, 151–153

evolution of architecture
complexity and, 46–47
defined, 43–44

evolution of software, 129
exceptions

Collocate Exceptions. See Collocate
Exceptions pattern

fifth refactoring, 98–99
preconditions and postconditions, 324–325
versioned bundles and, 275

execution
Groovy, 308–309
OSGi loan sample, 292–293
Scala, 300–301

extensiblity patterns
Abstract Modules, 222–228
Implementation Factory, 229–236
overview, 112–113, 221
Separate Abstractions, 237–244
third refactoring, 94

extension
dependencies which prevent, 48
Open Closed Principle, 320–323

External Configuration pattern
Blueprint and, 282
Container Independence and, 171
Default Implementation and, 206
Independent Deployment and, 178–179
Module Facade and, 212
Module Reuse and, 128
overview, 200–205
Published Interface and, 192

F
Facade pattern, Module. See Module Facade

pattern
Factory pattern, Implementation. See

Implementation Factory pattern
fine-grained modules

balancing modular tension, 65–66
granularity and architecture, 77–79
Module Facade and, 212
reuse and, 63–64

flexibility
with Abstract Modules, 228
benefit of OSGi, 98
complexity and, 34–35
External Configuration and, 201
Independent Deployment, 179–180
in modularity, 36
in Module Reuse, 125–127
Separate Abstractions, 240–241

Fowler, Martin
defining architecture, 32
goal of architecture, 33–34
on technical debt, 47

full classpath builds
defined, 254
Levelize Build, 257–258

future of OSGi, 311–317

G
Gamma, Erich

on design patterns, 1
Knoernschild on, xxv

INDEX

344

GitHub, 286
goals of architeture, 33–36
GOF (Gang of Four)

desgin patterns, 1
Knoernschild on, xxv–xxvi
pattern format, 10–12

granularity
vs. architecture, 72–79
in Cohesive Modules, 140–141
Container Independence and, 170
in levelized modules, 158
Module Facade and, 212
reuse and, 63–64

Groovy
bean configuration, 306–307
building module, 307–308
code, 304–306
conclusion, 309
getting started, 303
installation and execution, 308–309
manifest, 306
service configuration, 307

H
Hawking, Stephen, 30
heavyweight modules

balancing modular tension, 65–66
Container Independence, 172–176
Container Independence and, 170
reuse and, 62

Helm, Richard, xxv
history

of OSGi, 273–274
of platforms, 313–314

horizontal modules, 127–128
hot deployments

OSGi, 6
runtime support, 27

HTML files, 106–107
Hudson, 313–314

I
IDE (integrated development environment),

254
idioms, 2
Impl

Java and encapsulation, 37–38
OSGi and encapsulation, 39–43

Implementation Factory pattern
Blueprint and, 282
Default Implementation, 208
overview, 229–236
Separate Abstractions and, 238
seventh refactoring, 103

implementation, reference. See reference
implementation

implementation variations
Abstract Modules, 223–224
Acyclic Relationships, 146–147
Cohesive Modules, 139–140
Collocate Exceptions, 247
Default Implementation, 206–208
External Configuration, 200–202
Implementation Factory, 230–231
Levelize Build, 255–256
Levelize Modules, 157–159
Manage Relationships, 117–120
Module Facade, 212–214
Module Reuse, 127–129
pattern format, 11
Published Interface, 189–191
Test Module, 263–265

implementations
Default Implementation. See Default

Implementation pattern
designing services, 79–80
reference. See reference implementation

Independent Deployment pattern
dynamism of, 281
OSGi and Groovy, 303
OSGi and Scala, 295
OSGi loan sample, 287

INDEX

345

overview, 178–185
sixth refactoring, 101–102

indirect dependencies
cyclic, 146–147
defined, 116–117

init-method parameter, 289
InjectedBean, 202–204
installation

Groovy, 308–309
OSGi loan sample, 292–293
Scala, 300–301

installed bundle, 277
insurance company sample, 129–138
integrated development environment (IDE),

254
integration, 49
Inter

Java and encapsulation, 37–39
OSGi and encapsulation, 39–43

InterestCalculator, 331–334
Interface Segregation Principle, 327–329
interfaces

Abstract Modules, 224, 225–227
Module Facade and, 213–214
μServices, 278
Published Interfaces. See Published

Interface pattern
Separate Abstractions, 241–243
UI layer. See UI (user interface) layer

inverting relationships
Manage Relationships, 122–123
Separate Abstractions, 238–240

iPhone, 313
ivory tower, 30–31

J
Jacobson, Ivar, 29
JAR files

bundles, 274
defined, 5
Kriens on, xxii–xxiii
managed dependencies, 274–275

reuse, 126–127
succinct definition, 19

JarAnalyzer
Manage Relationships, 122
managing cycles, 55
managing dependencies, 106–108
module levelization, 256
Test Module and, 265

Java
encapsulation and, 37–39
OSGi and ecosystems, 316
POMA and OSGi, 271
Published Interface and, 188–189

Java Virtual Machine (JVM), 299
JavaDoc, 190–191
JDepend

managing cycles, 55
physical layering and, 164

Johnson, Ralph
defining architecture, 32
Knoernschild on, xxv

joints
managing complexity, 56–57
relationships and, 124

JVM (Java Virtual Machine), 299

K
Knoernschild, Kirk

about, xxvii
Kriens on, xxi–xxiv
Martin on, xx

Kriens, Peter, xxi–xxiv, xxvi

L
Lakos, John, xix–xx, xxv
Large-Scale C++ Software Design (Lakos), xix,

xxv
layers

in first refactoring, 87–88
granularity and, 74–75
Levelize Modules and, 157
Physical Layers. See Physical Layers pattern

INDEX

346

Lehman, M. M., 46
Lehman's Law, 46
Levelize Build pattern

Acyclic Relationships and, 148
consequences, 256–257
description, 253–255
implementation variations, 255–256
Levelize Modules and, 159
managing cycles, 55
managing relationships and, 119–120
physical layering and, 164
postmortem, 104
runtime support, 26
sample, 257–262
statement, 253
wrapping up, 262

Levelize Modules pattern
Abstract Modules and, 224
Acyclic Relationships and, 148
Independent Deployment and, 180
Levelize Build and, 254
overview, 157–161
physical layering and, 163
refactoring for OSGi, 285
Test Module and, 264–265

lightweight modules
balancing modular tension, 65–66
Container Independence and, 170
reuse and, 62

Liskov, Barbara, 324
Liskov Substitution Principle (LSP), 323–325
loan sample

Abstract Modules, 225–227
Collocate Exceptions, 248
Implementation Factory, 232–236
implementing in Groovy. See Groovy
implementing in Scala. See Scala
Module Facade, 215–218
OSGi. See OSGi and loan sample
OSGi and. See OSGi and loan sample
Separate Abstractions, 241–243

logical design
layering, 162
vs. physical design, 3–4

lookup
disadvantages of, 232
Implementation Factory, 230

LSP (Liskov Substitution Principle), 323–325

M
maintenance, 48
Manage Relationships pattern

Abstract Modules and, 228
consequences, 120–121
dependency management, 280
description, 116–117
implementation variations, 117–120
Levelize Build and, 257
sample, 122–124
Separate Abstractions and, 239–240
statement, 116
wrapping up, 124

managing dependencies. See dependency
management

managing modules
defined, 18
reuse and, 128–129

manifests
defining, 285–286
Groovy, 306
OSGi and encapsulation, 40–42
Scala, 298–299

Martin Metrics, 108
Martin, Robert C.

forward, xix–xx
Knoernschild on, xxv
SOLID principles of design, 319
on stable modules, 222

methods
granularity, 72–74
preconditions and postconditions, 324–325
Published Interface and, 189–191

INDEX

347

Meyer, Bertrand
Liskov Substitution Principle, 324
Open Closed Principle, 320

midlevel.jar, 157–158
MinimumPaymentSchedule-

Calculator class
Collocate Exceptions, 250–252
implementing in Groovy, 304–306
implementing in Scala, 296–298

MockServiceImpl, 264
modification, 320–323
modularity

architecture and. See architecture and
modularity

benefits of, 59–60
case for, 15
conclusion, 27
design patterns, 1–2. See also patterns
development model, 22–25
ecosystems and, 315, 316
introduction, 4–5
JAR files, 5
modularity today, 25–27
OSGi and facets of, 279
for reuse, 66–67
runtime model, 21–22

modularity and SOA
alternate view, 79–80
architecture revisited, 69–71
conclusion, 80–81
granularity vs. architecture, 72–79

Modularity Maturity Model, xxi–xxii
Module Facade pattern

overview, 212–219
Published Interface and, 191, 192–193

Module Reuse pattern
consequences, 129
description, 125–127
dynamism of, 281
implementation variations, 127–129
sample, 129–138

statement, 125
wrapping up, 138

modules
building Groovy, 307–308
building Scala, 300
defined, 17–20
dependencies. See dependencies
granularity, 74
managing complexity, 56–57
OSGi, 5–6
platforms, 275
The Reuse Release Equivalence Principle, 138
use/reuse tension, 65–66

MoneyMarket class
Composite Reuse Principle, 329–333
Open Closed Principle, 321

MonthlyPaymentCalculator
implementing in Groovy, 304
implementing in Scala, 296–298

μServices. See OSGi μServices

N
native reusability, 19. See also reuse

O
object factories

defined, 223
Dependency Inversion Principle and,

326–327
Implementation Factory. See

Implementation Factory pattern
object-oriented design

introduction, 2–3
joints, modules and SOLID, 56–57
lessons learned, 24–25
logical vs. physical design, 3–4
in Module Reuse, 125–126
Open Closed Principle, 320–321
OSGi and, 277
overview, 23–24
reference implementation, 110

INDEX

348

OCR (Optical Character Recognition)
software, 129–130

Open Closed Principle (OCP)
defined, 320–323
Dependency Inversion Principle and,

325–326
joints, modules and SOLID, 56
Liskov Substitution Principle and, 323–324
modular tension, 65

The Open Group, 29–30
Open Services Gateway initiative (OSGi).

See OSGi (Open Services Gateway
initiative)

Optical Character Recognition (OCR)
software, 129–130

Order class, 193–198
organization of book, 7–10
OSGi and loan sample

conclusion, 293
getting started, 283–285
installation and execution, 292–293
manifests, 285–286
μServices, 286–291

OSGi μServices
defined, 223
Groovy configuration, 307
loan sample, 286–291
OSGi encapsulation, 26, 40–43
OSGi service orientation, 6
overview, 278–279
Published Interface and, 199
Scala configuration, 299–300
Separate Abstractions and, 243

OSGi (Open Services Gateway initiative)
benefits of, 274–276
Blueprint Services for wiring, 229
bundles, 277–279
class creation, 223
Container Independence, 172–176
dependency injection, 227
digesting, 276–277
encapsulation and, 39–43

future of, 311–317
Groovy and, 303–309
history of, 273–274
introduction, 5–6
Kriens on, xxi–xxiv
modularity today, 25–26
note on benefit of, 96–98
patterns and, 279–282
POMA and, 271
Published Interface, 191
Published Interfaces and, 199
runtime management, 279
runtime model, 21–22
Scala and, 295–301
two facets of modularity, 279
why no?, 83–84

outgoing dependencies
defined, 178
Module Facade and, 214

P
packages

granularity, 74
Manage Relationships, 119–120
OSGi, 275
scope, 191–192

paradox of architecture, 34
paradox of use/reuse. See use/reuse paradox
Parnas, David, 45
password (PWD), 202–204
patterns

base. See base patterns
catalog, 12–13
dependency. See dependency patterns
extensiblity. See extensiblity patterns
form, 10–12
introduction, 1–2
logical vs. physical design, 3–4
opening thought, 14
OSGi and, 279–282
overview, 111–113
postmortem, 103–104

INDEX

349

usability. See usability patterns
utility. See utility patterns

Patterns of Modular Architecture (POMA)
defined, 111
OSGi and, 271

pay method, 180–185
payment sample

Abstract Modules, 227
Acyclic Relationships sample, 151–153
Collocate Exceptions, 250–252
OSGi μService declarations, 290–291
reference implementation. See reference

implementation
Test Module, 266–267

Payroll class, 180–185
Person class, 72–74
physical design vs. logical design, 3–4
Physical Layers pattern

Abstract Modules and, 228
defining module relationships, 121
dependency management, 280
in first refactoring, 87–89
Levelize Modules and, 157
overview, 162–168

plan old Java objects (POJOs), 22
platforms

history of, 313–314
module, 275

POJOs (plan old Java objects), 22
Policy class, 130–138
polymorphic composition of objects, 329–334
POMA (Patterns of Modular Architecture).

See also patterns
defined, 111
OSGi and, 271

portability, 170
postconditions, 324–325
preconditions, 324–325
presentation layer

allowable relationships, 163
defined, 162
Physical Layers, 164–165

principles of design. See SOLID principles of
design

programming model, 22
provider.jar

Java and encapsulation, 37–38
OSGi and encapsulation, 39–43

Published Interface pattern
consequences, 192–193
dependency management, 280
description, 188–189
implementation variations, 189–191
Module Facade and, 214
postmortem, 104
sample, 193–199
statement, 188
Test Module and, 265
wrapping up, 199

PWD (password), 202–204

R
refactoring
AccountType hierarchy, 332
BillTest class, 267–269
callback, 154–155
Customer class, 197–198
for OSGi, 283–286
Policy class, 133–134
reference implementation. See reference

implementation
reference implementation

building system, 84–85
conclusion, 110
Dependency Inversion Principle and,

326–327
fifth refactoring, 98–99
first refactoring, 87–90
fourth refactoring, 95–98
note on build, 109
note on managing dependencies, 106–108
note on module reuse, 108–109
note on module testing, 104–105
note on object orientation, 110

INDEX

350

reference implementation (continued)
postmortem, 103–104
references, 110
second refactoring, 90–92
seventh refactoring, 102–103
sixth refactoring, 99–102
third refactoring, 93–95
version 1, 85–86
why no OSGi, 83–84

relationships
acyclic. See Acyclic Relationships pattern
in Cohesive Modules, 140
defining architecture, 29–30
Implementation Factory and, 230
managing. See Manage Relationships

pattern
managing with dependency patterns, 145
physical layer, 163

relaxed levelization
physical layering and, 162
vs. strict levelization, 159

Release Reuse Equivalency Principles, 108
repeatable builds, 253–254
resolve bundle, 277
Resource.properties file, 203–204
reuse

batch applications and, 121
in Cohesive Modules, 139–140
Composite Reuse Principle, 329–334
conclusion, 67–68
Default Implementation, 206
demotion, 154
dependencies which inhibit, 49
disclaimer, 63–64
External Configuration and, 202
Independent Deployment, 179–180
with Levelize Modules, 160
Manage Relationships, 118
modular design, 66–67
modular tension, 65–66
modularity and, 19
Module Facade, 212

Module Reuse. See Module Reuse pattern
overview, 61
Physical Layers, 162, 164
with Published Interfaces, 192
reference implementation, 108–109
references, 68
reuse or use, 64–65
use/reuse paradox, 62

The Reuse Release Equivalence Principle
defined, 138
in Module Reuse, 126

Router class, 141–144
RowSetManager interface, 328–329
Rumbaugh, James, 29
runtime management

benefit of OSGi, 98
OSGi, 279

runtime model
Abstract Modules, 224
ecosystems and, 315
modularity today, 25–26
OSGi, 273
OSGi and, 279
overview, 21–22

runtime.jar, 170–171

S
samples

Abstract Modules, 224–228
Acyclic Relationships, 148–155
Cohesive Modules, 141–144
Collocate Exceptions, 248–252
Default Implementation, 208–211
External Configuration, 202–204
Implementation Factory, 232–236
Levelize Build, 257–262
Levelize Modules, 160
Manage Relationships, 122–124
Module Facade, 215–218
Module Reuse, 129–138
OSGi and loan. See OSGi and loan sample
pattern format, 12

INDEX

351

Published Interface, 193–199
Test Module, 265–269

save method, 72–74, 75
Savings class

Composite Reuse Principle, 329–334
Open Closed Principle, 321–323

Scala
bean configuration, 299
building module, 300
code, 296–298
conclusion, 300–301
getting started, 295
implementing loan sample in, 296
installation and execution, 300–301
manifest, 298–299
μService configuration, 299–300

Separate Abstractions pattern
Cohesive Modules and, 143
Collocate Exceptions and, 247
Default Implementation and, 206, 208
dynamism of, 281
eliminating relationships and, 123
Implementation Factory and, 229
managing cycles, 55
managing relationships and, 118–119
Module Reuse and, 128
μServices and, 278
overview, 237–244
third refactoring, 96

service-oriented architecture (SOA). See SOA
(service-oriented architecture)

service sample
Abstract Modules, 222–223
Collocate Exceptions, 246–248
Container Independence, 172–176
Implementation Factory, 229
Levelize Build, 255
Manage Relationships, 116–117, 120–121
mock implementation, 264
Physical Layers, 157–158
Published Interface, 188–190
Separate Abstractions, 237
Test Module and, 264

services
Blueprint Services. See Blueprint Services
granularity, 74
granularity and architecture, 75–76
granularity example, 77–79
Module Reuse and, 128
μServices. See OSGi μServices
structural f lexibility, 70–71

setDiscountAmount method, 193–198
shared understanding, 32
Single Responsibility Principle (SRP), 320
SOA (service-oriented architecture)

modularity and. See modularity and SOA
OSGi and, 276–277
OSGi module platform, 275
reuse and, 61

social media, 314
software architecture. See architecture and

modularity
software evolution, 129
SOLID principles of design

Composite Reuse Principle, 329–334
Dependency Inversion Principle, 325–327
Interface Segregation Principle, 327–329
Liskov Substitution Principle, 323–325
managing complexity, 56–57
Open Closed Principle, 320–323
overview, 319–320
The Reuse Release Equivalence Principle, 126
Single Responsibility Principle, 320

split packages, 120
Spring framework

Container Independence, 172–176
dependency injection, 227
evolution, 46
External Configuration, 203–204
Groovy bean configuration, 306–307
Implementation Factory, 232–236
Module Facade sample, 215–218
OSGi loan sample, 287
Scala bean configuration, 299
weight, 170

SRP (Single Responsibility Principle), 320

INDEX

352

stable modules
changing, 224
defined, 222–223

starting bundle, 277
state, bundle, 277–278
stateless module, 19
statements

Abstract Modules, 222
Acyclic Relationships, 146
Cohesive Modules, 139
Collocate Exceptions, 246
Default Implementation, 206
External Configuration, 200
Implementation Factory, 229
Levelize Build, 253
Levelize Modules, 157
Manage Relationships, 116
Module Facade, 212
Module Reuse, 125
pattern format, 11
Published Interface, 188
Test Module, 263

Stock class, 330–331
stopping bundle, 278
strict levelization

physical layering and, 162
vs. relaxed levelization, 159

structure. See architecture and modularity
Struts

first refactoring, 87–88
horizontal modules, 127
Physical Layers, 165–169
version 1, 85

subclasses, 323–325
substitution, 323–325
subsystem.jar, 116–117
Szyperski, Clemens, 36, xxv

T
TDD (test-driven development), 54–55
technical debt, 47–48
test-driven development (TDD), 54–55

Test Module pattern
Abstract Modules and, 224
Acyclic Relationships and, 148
Container Independence and, 170, 172
eliminating relationships and, 123
levelization and, 159
managing relationships and, 119
Module Facade and, 214
overview, 263–269
physical layering and, 164
postmortem, 104
reference implementation, 104–105

testability
clean build, 253–254
dependencies which restrict, 49
levelization and, 159
modularity and, 19
Test Module, 265

testclient.jar, 263–264
TOGAF (the Open Group Architecture

Framework), 30
topclient.jar, 157–158
transitive dependencies, 116

U
UI (user interface) layer

in first refactoring, 87
Module Facade, 213
Physical Layers, 167–168

UID (userid), 202–204
UML (Unified Modeling Language), 126
understanding module relationships

Cohesive Modules and, 140
defined, 121
dependencies which limit, 49–50
improving with levelization, 159
shared understanding, 32

Unified Modeling Language (UML), 126
uninstalled bundle, 278
unit tests

clean builds, 253–254
Test Module and, 269

INDEX

353

usability patterns
Default Implementation, 206–211
External Configuration, 200–205
Module Facade, 212–219
overview, 112, 187
Published Interface. See Published Interface

pattern
use/reuse paradox

defined, 62
demotion vs. escalation, 154
External Configuration and, 202
Independent Deployment and, 179–180
in Module Reuse, 125, 129
reference implementation, 108–109
striking balance, 64–65

user experience (UX), 79–80
user interface (UI) layer

in first refactoring, 87
Module Facade, 213
Physical Layers, 167–168

userid (UID), 202–204
utility classes, 264
utility patterns

Collocate Exceptions, 246–252
Levelize Build. See Levelize Build pattern
overview, 113, 245
Test Module, 263–269

UX (user experience), 79–80

V
Validator, 73
verification of clean build, 254

versioning
managing relationships and, 119
OSGi, 5
OSGi versioned bundles, 275
runtime support, 27

vertical reuse, 63, 127–128
visualization

JarAnalyzer output, 106–107
modularity and, 26

Vlissides, John, xxv

W
WAR files

benefit of OSGi, 98
version 1, 85

weight
Container Independence and, 170
External Configuration and, 200
Levelize Modules and, 158
Module Facade and, 212
μServices and, 278
reuse and, 64

who this book is for, 6
wiring

defined, 229
Implementation Factory, 232–236
OSGi loan sample, 287–288

WordPress, 314

X
XML construction, 137

	Contents
	Foreword
	Foreword
	Acknowledgments
	About the Author
	Introduction
	Object-Oriented Design
	Logical versus Physical Design
	Modularity
	Unit of Modularity: The JAR File
	OSGi

	Who This Book Is For
	How This Book Is Organized
	Part I: The Case for Modularity
	Part II: The Patterns
	Part III: POMA and OSGi

	Pattern Form
	Pattern Name
	Pattern Statement
	Sketch
	Description
	Implementation Variations
	Consequences
	Sample
	Wrapping Up

	Pattern Catalog
	The Code
	An Opening Thought on the Modularity Patterns
	Reference

	Chapter 3 Architecture and Modularity
	3.1 Defining Architecture
	3.2 A Software Architecture Story
	3.3 The Goal of Architecture
	3.4 Modularity: The Missing Ingredient
	3.5 Answering Our Questions
	3.6 Conclusion
	3.7 References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

