
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321200686
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321200686
https://plusone.google.com/share?url=http://www.informit.com/title/9780321200686
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321200686
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321200686/Free-Sample-Chapter

Aggregator (268)

How do we combine the
results of individual but related messages so
that they can be processed as a whole?

Canonical Data Model (355)

How can you
minimize dependencies when integrating
applications that use different data formats?

Channel Adapter (127)

How can you connect
an application to the messaging system so that
it can send and receive messages?

Channel Purger (572)

How can you keep left-
over messages on a channel from disturbing
tests or running systems?

Claim Check (346)

How can we reduce the
data volume of message sent across the system
without sacrificing information content?

Command Message (145)

How can messaging
be used to invoke a procedure in another
application?

Competing Consumers (502)

How can a
messaging client process multiple messages
concurrently?

Composed Message Processor (294)

How can
you maintain the overall message flow when pro-
cessing a message consisting of multiple elements,
each of which may require different processing?

Content Enricher (336)

How do we communi-
cate with another system if the message origina-
tor does not have all the required data items
available?

Content Filter (342)

How do you simplify
dealing with a large message when you are
interested only in a few data items?

Content-Based Router (230)

How do we han-
dle a situation in which the implementation
of a single logical function is spread across
multiple physical systems?

Control Bus (540)

How can we effectively
administer a messaging system that is distri-
buted across multiple platforms and a wide
geographic area?

Correlation Identifier (163)

How does a re-
questor that has received a reply know which
request this is the reply for?

Datatype Channel (111)

How can the applica-
tion send a data item such that the receiver
will know how to process it?

Dead Letter Channel (119)

What will the mes-
saging system do with a message it cannot deliver?

Detour (545)

How can you route a message
through intermediate steps to perform valida-
tion, testing, or debugging functions?

Document Message (147)

How can messaging
be used to transfer data between applications?

Durable Subscriber (522)

How can a subscriber
avoid missing messages while it’s not listening for
them?

Dynamic Router (243)

How can you avoid the
dependency of the router on all possible destina-
tions while maintaining its efficiency?

Envelope Wrapper (330)

How can existing sys-
tems participate in a messaging exchange that plac-
es specific requirements, such as message header
fields or encryption, on the message format?

Event Message (151)

How can messaging be
used to transmit events from one application to
another?

Event-Driven Consumer (498)

How can an
application automatically consume messages
as they become available?

File Transfer (43)

How can I integrate multiple
applications so that they work together and can
exchange information?

Format Indicator (180)

How can a message’s
data format be designed to allow for possible
future changes?

Guaranteed Delivery (122)

How can the sender
make sure that a message will be delivered even
if the messaging system fails?

Idempotent Receiver (528)

How can a message
receiver deal with duplicate messages?

Invalid Message Channel (115)

How can a mes-
saging receiver gracefully handle receiving a mes-
sage that makes no sense?

Message Broker (322)

How can you decouple
the destination of a message from the sender
and maintain central control over the flow of
messages?

Message Bus (137)

What architecture enables
separate applications to work together but in a de-
coupled fashion such that applications can be eas-
ily added or removed without affecting the others?

Message Channel (60)

How does one applica-
tion communicate with another using messaging?

Message Dispatcher (508)

How can multiple
consumers on a single channel coordinate their
message processing?

Message Endpoint (95)

How does an applica-
tion connect to a messaging channel to send and
receive Messages?

Message Expiration (176)

How can a sender
indicate when a message should be considered
stale and thus shouldn’t be processed?

C

A B

D

E

List of Patterns

Message Filter (237)

How can a component
avoid receiving uninteresting messages?

Message History (551)

How can we effectively
analyze and debug the flow of messages in a
loosely coupled system?

Message Router (78)

How can you decouple
individual processing steps so that messages
can be passed to different filters depending on
a set of conditions?

Message Sequence (170)

How can messaging
transmit an arbitrarily large amount of data?

Message Store (555)

How can we report against
message information without disturbing the
loosely coupled and transient nature of a
messaging system?

Message Translator (85)

How can systems
using different data formats communicate with
each other using messaging?

Message (66)

How can two applications con-
nected by a message channel exchange a piece
of information?

Messaging Bridge (133)

How can multiple mes-
saging systems be connected so that messages
available on one are also available on the others?

Messaging Gateway (468)

How do you encap-
sulate access to the messaging system from the
rest of the application?

Messaging Mapper (477)

How do you move
data between domain objects and the messaging
infrastructure while keeping the two indepen-
dent of each other?

Messaging (53)

How can I integrate multiple
applications so that they work together and
can exchange information?

Normalizer (352)

How do you process messag-
es that are semantically equivalent but arrive in a
different format?

Pipes and Filters (70)

How can we perform
complex processing on a message while main-
taining independence and flexibility?

Point-to-Point Channel (103)

How can the
caller be sure that exactly one receiver will
receive the document or perform the call?

Polling Consumer (494)

How can an applica-
tion consume a message when the application
is ready?

Process Manager (312)

How do we route a mes-
sage through multiple processing steps when the
required steps may not be known at design time
and may not be sequential?

Publish-Subscribe Channel (106)

How can the
sender broadcast an event to all interested
receivers?

Recipient List (249)

How do we route a mes-
sage to a dynamic list of recipients?

Remote Procedure Invocation (50)

How can I
integrate multiple applications so that they work
together and can exchange information?

Request-Reply (154)

When an application sends
a message, how can it get a response from the
receiver?

Resequencer (283)

How can we get a stream of
related but out-of-sequence messages back into
the correct order?

Return Address (159)

How does a replier know
where to send the reply?

Routing Slip (301)

How do we route a message
consecutively through a series of processing
steps when the sequence of steps is not known
at design time and may vary for each
message?

Scatter-Gather (297)

How do you maintain the
overall message flow when a message must be
sent to multiple recipients, each of which may
send a reply?

Selective Consumer (515)

How can a message
consumer select which messages it wishes to
receive?

Service Activator (532)

How can an application
design a service to be invoked both via various
messaging technologies and via non-messaging
techniques?

Shared Database (47)

How can I integrate mul-
tiple applications so that they work together and
can exchange information?

Smart Proxy (558)

How can you track messages
on a service that publishes reply messages to the
Return Address specified by the requestor?

Splitter (259)

How can we process a message if
it contains multiple elements, each of which may
have to be processed in a different way?

Test Message (569)

What happens if a compo-
nent is actively processing messages but garbles
outgoing messages due to an internal fault?

Transactional Client (484)

How can a client
control its transactions with the messaging
system?

Wire Tap (547)

How do you inspect messages
that travel on a Point-to-Point Channel?

1 2 3

?

Enterprise
Integration Patterns

The Addison-Wesley Signature Series provides readers with

practical and authoritative information on the latest trends in modern

technology for computer professionals. The series is based on one simple

premise: Great books come from great authors. Books in the series are

personally chosen by expert advisors, world-class authors in their own

right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely

with authors to define topic coverage, book scope, critical content, and

overall uniqueness. The expert signatures also symbolize a promise to

our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley

Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

Enterprise
Integration Patterns

Designing, Building,
and Deploying Messaging Solutions

Gregor Hohpe
Bobby Woolf

With Contributions by
Kyle Brown
Conrad F. D’Cruz
Martin Fowler
Sean Neville
Michael J. Rettig
Jonathan Simon

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Hohpe, Gregor.
Enterprise integration patterns : designing, building, and deploying messaging

solutions / Gregor Hohpe, Bobby Woolf.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-20068-3
1. Telecommunication—Message processing. 2. Management information

systems. I. Woolf, Bobby. II. Title.

TK5102.5.H5882 2003
005.7'136—dc22

2003017989

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please sub-
mit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN: 0-321-20068-3

Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.
Fifteenth printing, May 2011

www.awprofessional.com

To my family and all my friends who still remember me

after I emerged from book “crunch mode”

—Gregor

To Sharon, my new wife

—Bobby

This page intentionally left blank

vii

Contents

Foreword by John Crupi . xv

Foreword by Martin Fowler. xvii

Preface . xix

Acknowledgments . xxv

Introduction . xxix

Chapter 1: Solving Integration Problems Using Patterns 1

The Need for Integration .1
Integration Challenges .2
How Integration Patterns Can Help .4
The Wide World of Integration .5
Loose Coupling .9
One-Minute EAI .11
A Loosely Coupled Integration Solution .15
Widgets & Gadgets ’R Us: An Example .17

Internal Systems .18
Taking Orders .18
Processing Orders .20
Checking Status .26
Change Address .30
New Catalog .32
Announcements .33
Testing and Monitoring .34

Summary .37

Chapter 2: Integration Styles . 39

Introduction .39
File Transfer

(by Martin Fowler)

 .43

viii

C

ONTENTS

Shared Database

(by Martin Fowler)

. .47
Remote Procedure Invocation

(by Martin Fowler)

.50
Messaging .53

Chapter 3: Messaging Systems . 57

Introduction .57
Message Channel .60
Message .66
Pipes and Filters .70
Message Router .78
Message Translator .85
Message Endpoint .95

Chapter 4: Messaging Channels . 99

Introduction .99
Point-to-Point Channel .103
Publish-Subscribe Channel .106
Datatype Channel .111
Invalid Message Channel .115
Dead Letter Channel .119
Guaranteed Delivery .122
Channel Adapter .127
Messaging Bridge .133
Message Bus .137

Chapter 5: Message Construction . 143

Introduction .143
Command Message .145
Document Message .147
Event Message .151
Request-Reply .154
Return Address .159
Correlation Identifier .163
Message Sequence .170
Message Expiration .176
Format Indicator .180

C

ONTENTS

ix

Chapter 6: Interlude: Simple Messaging . 183

Introduction .183
Request-Reply Example .183
Publish-Subscribe Example .185

JMS Request-Reply Example .187
Request-Reply Example .187
Request-Reply Code .189
Invalid Message Example .196
Conclusions .197

.NET Request-Reply Example .198
Request-Reply Example .198
Request-Reply Code .200
Invalid Message Example .205
Conclusions .206

JMS Publish-Subscribe Example .207
The Observer Pattern .207
Distributed Observer .208
Publish-Subscribe .209
Comparisons .212
Push and Pull Models .213
Channel Design .219
Conclusions .222

Chapter 7: Message Routing . 225

Introduction .225
Content-Based Router .230
Message Filter .237
Dynamic Router .243
Recipient List .249
Splitter .259
Aggregator .268
Resequencer .283
Composed Message Processor .294
Scatter-Gather .297
Routing Slip .301

x

C

ONTENTS

Process Manager .312
Message Broker .322

Chapter 8: Message Transformation . 327

Introduction .327
Envelope Wrapper .330
Content Enricher .336
Content Filter .342
Claim Check .346
Normalizer .352
Canonical Data Model .355

Chapter 9: Interlude: Composed Messaging . 361

Loan Broker Example .361
Obtaining a Loan Quote .361
Designing the Message Flow .362
Sequencing: Synchronous versus Asynchronous364
Addressing: Distribution versus Auction 366
Aggregating Strategies: Multiple Channels versus

Single Channel .368
Managing Concurrency .368
Three Implementations .369

Synchronous Implementation Using Web Services

(by Conrad F. D’Cruz)

. .371
Solution Architecture .371
Web Services Design Considerations .372
Apache Axis .376
Service Discovery .379
The Loan Broker Application .379
Components of the Loan Broker Application381
Client Application .396
Running the Solution .397
Performance Limitations .399
Limitations of This Example .400
Summary .400

Asynchronous Implementation with MSMQ 401
Loan Broker Ecosystem .401
Laying the Groundwork: A Messaging Gateway 402

C

ONTENTS

xi

Base Classes for Common Functionality 405
Designing the Bank .410
Designing the Credit Bureau .412
Designing the Loan Broker .413
Refactoring the Loan Broker .431
Putting it All Together .435
Improving Performance .435
A Few Words on Testing .440
Limitations of This Example .443
Summary. .444

Asynchronous Implementation with TIBCO ActiveEnterprise

(by Michael J. Rettig)

. .445
Solution Architecture .445
The Implementation Toolset .448
The Interfaces .451
Implementing the Synchronous Services452
The Loan Broker Process .455
Managing Concurrent Auctions .459
Execution .460
Conclusions .462

Chapter 10: Messaging Endpoints . 463

Introduction .463
Messaging Gateway .468
Messaging Mapper .477
Transactional Client .484
Polling Consumer .494
Event-Driven Consumer .498
Competing Consumers .502
Message Dispatcher .508
Selective Consumer .515
Durable Subscriber .522
Idempotent Receiver .528
Service Activator .532

Chapter 11: System Management. 537

Introduction .537
Control Bus .540

xii

C

ONTENTS

Detour .545
Wire Tap .547
Message History .551
Message Store .555
Smart Proxy .558
Test Message .569
Channel Purger .572

Chapter 12: Interlude: System Management Example 577

Loan Broker System Management .577
Instrumenting the Loan Broker .578
Management Console .579
Loan Broker Quality of Service .579
Verify the Credit Bureau Operation .587
Credit Bureau Failover .592
Enhancing the Management Console .595
Limitations of This Example .602

Chapter 13: Integration Patterns in Practice . 603

Case Study: Bond Pricing System

 (by Jonathan Simon)

 603
Building a System .603
Architecture with Patterns .604
Structuring Channels .610
Selecting a Message Channel .614
Problem Solving with Patterns .618
Flashing Market Data Updates .618
Major Production Crash .620
Summary. .623

Chapter 14: Concluding Remarks . 625

Emerging Standards and Futures
in Enterprise Integration

 (by Sean Neville)

.625
The Relationship between Standards and Design Patterns 626
Survey of Standards Processes and Organizations 627
Business Process Components and Intra-Web

Service Messaging .629
ebXML and the Electronic Business Messaging

Service (ebMS) .631

C

ONTENTS

xiii

Business Process Execution Language for
Web Services (BEPL4WS) .634

Web Service Choreography Interface (WSCI)636
Java Business Process Component Standards637
WS-* .639
Conclusions .647

Bibliography . 649

Index .659

This page intentionally left blank

xv

Foreword

by John Crupi

What do you do when a new technology arrives? You learn the technology. This
is exactly what I did. I studied J2EE (being from Sun Microsystems, it seemed to
be the logical choice). Specifically, I focused on the EJB technology by reading
the specifications (since there were no books yet). Learning the technology, how-
ever, is just the first step—the real goal is to learn how to effectively apply the
technology. The nice thing about platform technologies is that they constrain
you to performing certain tasks. But, as far as the technology is concerned, you
can do whatever you want and quite often get into trouble if you don’t do things
appropriately.

One thing I’ve seen in the past 15 years is that there seem to be two areas that
software developers obsess over: programming and designing—or more specifi-
cally, programming and designing effectively. There are great books out there
that tell you the most efficient way to program certain things in Java and C#, but
far fewer tell you how to design effectively. That’s where this book comes in.
When Deepak Alur, Dan Malks, and I wrote

Core J2EE Patterns

, we wanted to
help J2EE developers “design” better code. The best decision we made was to
use patterns as the artifact of choice. As James Baty, a Sun Distinguished Engi-
neer, puts it, “Patterns seem to be the sweet spot of design.” I couldn’t agree
more, and luckily for us, Gregor and Bobby feel the same way.

This book focuses on a hot and growing topic: integration using messaging.
Not only is messaging key to integration, but it will most likely be the predomi-
nant focus in Web services for years to come. There is so much noise today in the
Web services world, it’s a delicate and complex endeavor just to identify the spec-
ifications and technologies to focus on. The goal remains the same, however—
software helps you solve a problem. Just as in the early days of J2EE and .NET,
there is not a lot of design help out there yet for Web services. Many people say

xvi

F

OREWORD

Web services is just a new and open way to solve our existing integration prob-
lems—and I agree. But, that doesn’t mean we know how to design Web services.
And that brings us to the gem of this book. I believe this book has many of the
patterns we need to design Web services and other integration systems. Because
the Web service specifications are still battling it out, it wouldn’t have made sense
for Bobby and Gregor to provide examples of many of the Web service specifica-
tions. But, that’s okay. The real payoff will result when the specifications become
standards and we use the patterns in this book to design for those solutions that
are realized by these standards. Then maybe we can realize our next integration
goal of designing for service-oriented architectures.

Read this book and keep it by your side. It will enhance your software career
to no end.

John Crupi
Bethesda, MD
August 2003

xvii

Foreword

by Martin Fowler

While I was working on my book

Patterns of Enterprise Application Architec-
ture

, I was lucky to get some in-depth review from Kyle Brown and Rachel
Reinitz at some informal workshops at Kyle’s office in Raleigh-Durham. During
these sessions, we realized that a big gap in my work was asynchronous messag-
ing systems.

There are many gaps in my book, and I never intended it to be a complete
collection of patterns for enterprise development. But the gap on asynchronous
messaging is particularly important because we believe that asynchronous mes-
saging will play an increasingly important role in enterprise software develop-
ment, particularly in integration. Integration is important because applications
cannot live isolated from each other. We need techniques that allow us to take
applications that were never designed to interoperate and break down the
stovepipes so we can gain a greater benefit than the individual applications can
offer us.

Various technologies have been around that promise to solve the integration
puzzle. We all concluded that messaging is the technology that carries the greatest
promise. The challenge we faced was to convey how to do messaging effectively.
The biggest challenge in this is that messages are by their nature asynchronous,
and there are significant differences in the design approaches that you use in an
asynchronous world.

I didn’t have space, energy, or frankly the knowledge to cover this topic
properly in

Patterns of Enterprise Application Architecture

. But we came up
with a better solution to this gap: find someone else who could. We hunted
down Gregor and Bobby, and they took up the challenge. The result is the book
you’re about to read.

xviii

F

OREWORD

I’m delighted with the job that they have done. If you’ve already worked
with messaging systems, this book will systematize much of the knowledge that
you and others have already learned the hard way. If you are about to work
with messaging systems, this book will provide a foundation that will be invalu-
able no matter which messaging technology you have to work with.

Martin Fowler
Melrose, MA
August 2003

xix

Preface

This is a book about enterprise integration using messaging. It does not docu-
ment any particular technology or product. Rather, it is designed for developers
and integrators using a variety of messaging products and technologies, such as

• Message-oriented middleware (MOM) and EAI suites offered by vendors
such as IBM (WebSphere MQ Family), Microsoft (BizTalk), TIBCO, Web-
Methods, SeeBeyond, Vitria, and others.

• Java Message Service (JMS) implementations incorporated into commercial
and open source J2EE application servers as well as standalone products.

• Microsoft’s Message Queuing (MSMQ), accessible through several APIs,
including the System.Messaging libraries in Microsoft .NET.

• Emerging Web services standards that support asynchronous Web services
(for example, WS-ReliableMessaging) and the associated APIs such as Sun
Microsystems’ Java API for XML Messaging (JAXM) or Microsoft’s Web
Services Extensions (WSE).

Enterprise integration goes beyond creating a single application with a dis-
tributed

n

-tier architecture, which enables a single application to be distributed
across several computers. Whereas one tier in a distributed application cannot
run by itself, integrated applications are independent programs that can each run
by themselves, yet that function by coordinating with each other in a loosely
coupled way. Messaging enables multiple applications to exchange data or com-
mands across the network using a “send and forget” approach. This allows the
caller to send the information and immediately go on to other work while the
information is transmitted by the messaging system. Optionally, the caller can
later be notified of the result through a callback. Asynchronous calls and call-
backs can make a design more complex than a synchronous approach, but an
asynchronous call can be retried until it succeeds, which makes the communica-

xx

P

REFACE

tion much more reliable. Asynchronous messaging also enables several other
advantages, such as throttling of requests and load balancing.

Who Should Read This Book

This book is designed to help application developers and system integrators
connect applications using message-oriented integration tools:

•

Application architects and developers

 who design and build complex
enterprise applications that need to integrate with other applications. We
assume that you’re developing your applications using a modern enterprise
application platform such as the Java 2 Platform, Enterprise Edition
(J2EE), or the Microsoft .NET Framework. This book will help you con-
nect the application to a messaging layer and exchange information with
other applications. This book focuses on the integration of applications,
not on building applications; for that, we refer you to

Patterns of Enter-
prise Application Architecture

 by Martin Fowler.

•

Integration architects and developers

 who design and build integration
solutions connecting packaged or custom applications. Most readers in
this group will have experience with one of the many commercial integra-
tion tools like IBM WebSphere MQ, TIBCO, WebMethods, SeeBeyond, or
Vitria, which incorporate many of the patterns presented in this book.
This book helps you understand the underlying concepts and make confi-
dent design decisions using a vendor-independent vocabulary.

•

Enterprise architects

 who have to maintain the “big picture” view of the
software and hardware assets in an enterprise. This book presents a consis-
tent vocabulary and graphical notation to describe large-scale integration
solutions that may span many technologies or point solutions. This lan-
guage is also a key enabler for efficient communication between the enter-
prise architect and the integration and application architects and developers.

What You Will Learn

This book does not attempt to make a business case for enterprise application
integration; the focus is on how to make it work. You will learn how to inte-
grate enterprise applications by understanding the following:

P

REFACE

xxi

• The advantages and limitations of asynchronous messaging as compared
to other integration techniques.

• How to determine the message channels your applications will need, how
to control whether multiple consumers can receive the same message, and
how to handle invalid messages.

• When to send a message, what it should contain, and how to use special
message properties.

• How to route a message to its ultimate destination even when the sender
does not know where that is.

• How to convert messages when the sender and receiver do not agree on a
common format.

• How to design the code that connects an application to the messaging
system.

• How to manage and monitor a messaging system once it’s in use as part of
the enterprise.

What This Book Does Not Cover

We believe that any book sporting the word “enterprise” in the title is likely to
fall into one of three categories. First, the book might attempt to cover the
whole breadth of the subject matter but is forced to stop short of detailed guid-
ance on how to implement actual solutions. Second, the book might provide
specific hands-on guidance on the development of actual solutions but is forced
to constrain the scope of the subject area it addresses. Third, the book might
attempt to do both but is likely never to be finished or else to be published so
late as to be irrelevant. We opted for the second choice and hopefully created a
book that helps people create better integration solutions even though we had
to limit the scope of the book. Topics that we would have loved to discuss but
had to exclude in order not to fall into the category-three trap include security,
complex data mapping, workflow, rule engines, scalability and robustness, and
distributed transaction processing (XA, Tuxedo, and the like). We chose asyn-
chronous messaging as the emphasis for this book because it is full of interest-
ing design issues and trade-offs, and provides a clean abstraction from the
many implementations provided by various integration vendors.

This book is also not a tutorial on a specific messaging or middleware tech-
nology. To highlight the wide applicability of the concepts presented in this

xxii

P

REFACE

book, we included examples based on a number of different technologies, such
as JMS, MSMQ, TIBCO, BizTalk, and XSL. However, we focus on the design
decisions and trade-offs as opposed to the specifics of the tool. If you are inter-
ested in learning more about any of these specific technologies, please refer to
one of the books referenced in the bibliography or to one of the many online
resources.

How This Book Is Organized

As the title suggests, the majority of this book consists of a collection of

pat-
terns

. Patterns are a proven way to capture experts’ knowledge in fields where
there are no simple “one size fits all” answers, such as application architecture,
object-oriented design, or integration solutions based on asynchronous messag-
ing architectures.

Each pattern poses a specific design problem, discusses the considerations
surrounding the problem, and presents an elegant solution that balances the
various

forces

or drivers. In most cases, the solution is not the first approach
that comes to mind, but one that has evolved through actual use over time. As a
result, each pattern incorporates the experience base that senior integration
developers and architects have gained by repeatedly building solutions and
learning from their mistakes. This implies that we did not “invent” the patterns
in this book; patterns are not invented, but rather discovered and observed
from actual practice in the field.

Because patterns are harvested from practitioners’ actual use, chances are
that if you have been working with enterprise integration tools and asynchro-
nous messaging architectures for some time, many of the patterns in this book
will seem familiar to you. Yet, even if you already recognize most of these pat-
terns, there is still value in reviewing this book. This book should validate your
hard-earned understanding of how to use messaging while documenting details
of the solutions and relationships between them of which you might not have
been aware. It also gives you a consolidated reference to help you pass your
knowledge effectively to less-experienced colleagues. Finally, the pattern names
give you a common vocabulary to efficiently discuss integration design alterna-
tives with your peers.

The patterns in this book apply to a variety of programming languages and
platforms. This means that a pattern is not a cut-and-paste snippet of code, but
you have to

realize

a pattern to your specific environment. To make this transla-
tion easier, we added a variety of examples that show different ways of imple-

P

REFACE

xxiii

menting patterns using popular technologies such as JMS, MSMQ, TIBCO,
BizTalk, XSL, and others. We also included a few larger examples to demon-
strate how multiple patterns play together to form a cohesive solution.

Integrating multiple applications using an asynchronous messaging architec-
ture is a challenging and interesting field. We hope you enjoy reading this book
as much as we did writing it.

About the Cover Picture

The common theme for books in the

Martin Fowler Signature Series

 is a picture
of a bridge. In some sense we lucked out, because what theme would make a
better match for a book on integration? For thousands of years, bridges have
helped connect people from different shores, mountains, and sides of the road.

We selected a picture of the Taiko-bashi Bridge at the Sumiyoshi-taisha
Shrine in Osaka, Japan, for its simple elegance and beauty. As a Shinto shrine
dedicated to the guardian deity for sailors, it was originally erected next to the
water. Interestingly, land reclamation has pushed the water away so that the
shrine today stands almost three miles inland. Some three million people visit
this shrine at the beginning of a new year.

Gregor Hohpe
San Francisco, California

Bobby Woolf
Raleigh, North Carolina

September 2003

www.enterpriseintegrationpatterns.com

www.enterpriseintegrationpatterns.com

The Pioneer Plaque by Dr. Carl Sagan
A message to extraterrestrial life forms.

xxv

Acknowledgments

Like most books,

Enterprise Integration Patterns

 has been a long time in the
making. The idea of writing about message-based integration patterns dates
back to the summer of 2001 when Martin Fowler was working on

Patterns of
Enterprise Application Architecture

 (

P of EAA

). At that time, it struck Kyle
Brown that while

P of EAA

talked a lot about how to create applications, it
touches only briefly on how to integrate them. This idea was the starting point
for a series of meetings between Martin and Kyle that also included Rachel Rein-
itz, John Crupi, and Mark Weitzel. Bobby joined these discussions in the fall of
2001, followed by Gregor in early 2002. The following summer the group sub-
mitted two papers for review at the Pattern Languages of Programs (PLoP) con-
ference, one authored jointly by Bobby and Kyle and the other by Gregor. After
the conference, Kyle and Martin refocused on their own book projects while
Gregor and Bobby merged their papers to form the basis for the book. At the
same time, the

www.enterpriseintegrationpatterns.com

 site went live to allow
integration architects and developers around the world to participate in the
rapid evolution of the content. As they worked on the book, Gregor and Bobby
invited contributors to participate in the creation of the book. About two years
after Kyle’s original idea, the final manuscript arrived at the publisher.

This book is the result of a community effort involving a great number of
people. Many colleagues and friends (many of whom we met through the book
effort) provided ideas for examples, ensured the correctness of the technical
content, and gave us much needed feedback and criticism. Their input has
greatly influenced the final form and content of the book. It is a pleasure for us
to acknowledge their contributions and express our appreciation for their
efforts.

Kyle Brown and Martin Fowler deserve special mention for laying the foun-
dation for this book. This book might have never been written were it not for
Martin’s writing

P of EAA

and Kyle’s forming a group to discuss messaging
patterns to complement Martin’s book.

www.enterpriseintegrationpatterns.com

xxvi

A

CKNOWLEDGMENTS

We were fortunate to have several contributors who authored significant
portions of the book: Conrad F. D’Cruz, Sean Neville, Michael J. Rettig, and
Jonathan Simon. Their chapters round out the book with additional perspec-
tives on how the patterns work in practice.

Our writers’ workshop participants at the PLoP 2002 conference were the
first people to provide substantial feedback on the material, helping to get us
going in the right direction: Ali Arsanjani, Kyle Brown, John Crupi, Eric Evans,
Martin Fowler, Brian Marick, Toby Sarver, Jonathan Simon, Bill Trudell, and
Marek Vokac.

We would like to thank our team of reviewers who took the time to read
through the draft material and provided us with invaluable feedback and sug-
gestions:

Richard Helm

Luke Hohmann

Dragos Manolescu

David Rice

Russ Rufer and the Silicon Valley Patterns Group

Matthew Short

Special thanks go to Russ for workshopping the book draft in the Silicon
Valley Patterns Group. We would like to thank the following members for their
efforts: Robert Benson, Tracy Bialik, Jeffrey Blake, Azad Bolour, John Brewer,
Bob Evans, Andy Farlie, Jeff Glaza, Phil Goodwin, Alan Harriman, Ken Hej-
manowski, Deborah Kaddah, Rituraj Kirti, Jan Looney, Chris Lopez, Jerry
Louis, Tao-hung Ma, Jeff Miller, Stilian Pandev, John Parello, Hema Pillay,
Russ Rufer, Rich Smith, Carol Thistlethwaite, Debbie Utley, Walter Vannini,
David Vydra, and Ted Young.

Our public e-mail discussion list allowed people who discovered the material
on

www.enterpriseintegrationpatterns.com

 to chime in and share their thoughts
and ideas. Special honors go to Bill Trudell as the most active contributor to the
mailing list. Other active posters included Venkateshwar Bommineni, Duncan
Cragg, John Crupi, Fokko Degenaar, Shailesh Gosavi, Christian Hall, Ralph
Johnson, Paul Julius, Orjan Lundberg, Dragos Manolescu, Rob Mee, Srikanth
Narasimhan, Sean Neville, Rob Patton, Kirk Pepperdine, Matthew Pryor,
Somik Raha, Michael Rettig, Frank Sauer, Jonathan Simon, Federico Spinazzi,
Randy Stafford, Marek Vokac, Joe Walnes, and Mark Weitzel.

www.enterpriseintegrationpatterns.com

A

CKNOWLEDGMENTS

xxvii

We thank Martin Fowler for hosting us in his signature series. Martin’s
endorsement gave us confidence and the energy required to complete this work.

We thank John Crupi for writing the foreword for our book. He has observed
the book’s formation from the beginning and has been a patient guide all along
without ever losing his sense of humor.

Finally, we owe a great deal to the editing and production team at Addison-
Wesley, led by our chief editor, Mike Hendrickson, and including our production
coordinator, Amy Fleischer; our project manager, Kim Arney Mulcahy; our copy-
editor, Carol J. Lallier; our proofreader, Rebecca Rider; our indexer, Sharon
Hilgenberg; as well as Jacquelyn Doucette, John Fuller, and Bernard Gaffney.

We’ve likely missed some names and not given everyone the credit they
deserve, and we apologize. But to everyone listed and not listed who helped
make this book better, thank you for all your help. We hope you can be as proud
of this book as we are.

This page intentionally left blank

xxix

Introduction

Interesting applications rarely live in isolation. Whether your sales application
must interface with your inventory application, your procurement application
must connect to an auction site, or your PDA’s calendar must synchronize with
the corporate calendar server, it seems that any application can be made better by
integrating it with other applications.

All integration solutions have to deal with a few fundamental challenges:

•

Networks are unreliable.

 Integration solutions have to transport data from
one computer to another across networks. Compared to a process running
on a single computer, distributed computing has to be prepared to deal
with a much larger set of possible problems. Often, two systems to be inte-
grated are separated by continents, and data between them has to travel
through phone lines, LAN segments, routers, switches, public networks,
and satellite links. Each step can cause delays or interruptions.

•

Networks are slow.

 Sending data across a network is multiple orders of
magnitude slower than making a local method call. Designing a widely
distributed solution the same way you would approach a single applica-
tion could have disastrous performance implications.

•

Any two applications are different.

 Integration solutions need to transmit
information between systems that use different programming languages,
operating platforms, and data formats. An integration solution must be
able to interface with all these different technologies.

•

Change is inevitable.

 Applications change over time. An integration solution
has to keep pace with changes in the applications it connects. Integration
solutions can easily get caught in an avalanche effect of changes—if one sys-
tem changes, all other systems may be affected. An integration solution
needs to minimize the dependencies from one system to another by using

loose coupling

 between applications.

xxx INTRODUCTION

Over time, developers have overcome these challenges with four main
approaches:

1. File Transfer (43)—One application writes a file that another later reads.
The applications need to agree on the filename and location, the format of
the file, the timing of when it will be written and read, and who will delete
the file.

2. Shared Database (47)—Multiple applications share the same database
schema, located in a single physical database. Because there is no duplicate
data storage, no data has to be transferred from one application to the
other.

3. Remote Procedure Invocation (50)—One application exposes some of its
functionality so that it can be accessed remotely by other applications as a
remote procedure. The communication occurs in real time and synchronously.

4. Messaging (53)—One application publishes a message to a common mes-
sage channel. Other applications can read the message from the channel at a
later time. The applications must agree on a channel as well as on the for-
mat of the message. The communication is asynchronous.

While all four approaches solve essentially the same problem, each style has
its distinct advantages and disadvantages. In fact, applications may integrate
using multiple styles such that each point of integration takes advantage of the
style that suits it best.

What Is Messaging?

This book is about how to use messaging to integrate applications. A simple
way to understand what messaging does is to consider the telephone system. A
telephone call is a synchronous form of communication. I can communicate
with the other party only if the other party is available at the time I place the
call. Voice mail, on the other hand, allows asynchronous communication. With
voice mail, when the receiver does not answer, the caller can leave him a mes-
sage; later, the receiver (at his convenience) can listen to the messages queued in
his mailbox. Voice mail enables the caller to leave a message now so that the
receiver can listen to it later, which is much easier than trying to get the caller
and the receiver on the phone at the same time. Voice mail bundles (at least part

INTRODUCTION xxxi

of) a phone call into a message and queues it for later consumption; this is
essentially how messaging works.

Messaging is a technology that enables high-speed, asynchronous, program-
to-program communication with reliable delivery. Programs communicate by
sending packets of data called messages to each other. Channels, also known as
queues, are logical pathways that connect the programs and convey messages. A
channel behaves like a collection or array of messages, but one that is magically
shared across multiple computers and can be used concurrently by multiple
applications. A sender or producer is a program that sends a message by writing
the message to a channel. A receiver or consumer is a program that receives a
message by reading (and deleting) it from a channel.

The message itself is simply some sort of data structure—such as a string, a
byte array, a record, or an object. It can be interpreted simply as data, as the
description of a command to be invoked on the receiver, or as the description of
an event that occurred in the sender. A message actually contains two parts, a
header and a body. The header contains meta-information about the message—
who sent it, where it’s going, and so on; this information is used by the messag-
ing system and is mostly ignored by the applications using the messages. The
body contains the application data being transmitted and is usually ignored by
the messaging system. In conversation, when an application developer who is
using messaging talks about a message, she’s usually referring to the data in the
body of the message.

Asynchronous messaging architectures are powerful but require us to rethink
our development approach. As compared to the other three integration
approaches, relatively few developers have had exposure to messaging and mes-
sage systems. As a result, application developers in general are not as familiar
with the idioms and peculiarities of this communications platform.

What Is a Messaging System?

Messaging capabilities are typically provided by a separate software system
called a messaging system or message-oriented middleware (MOM). A messag-
ing system manages messaging the way a database system manages data persis-
tence. Just as an administrator must populate the database with the schema for
an application’s data, an administrator must configure the messaging system
with the channels that define the paths of communication between the applica-
tions. The messaging system then coordinates and manages the sending and
receiving of messages. The primary purpose of a database system is to make

xxxii INTRODUCTION

sure each data record is safely persisted, and likewise the main task of a messag-
ing system is to move messages from the sender’s computer to the receiver’s
computer in a reliable fashion.

A messaging system is needed to move messages from one computer to
another because computers and the networks that connect them are inherently
unreliable. Just because one application is ready to send data does not mean
that the other application is ready to receive it. Even if both applications are
ready, the network may not be working or may fail to transmit the data prop-
erly. A messaging system overcomes these limitations by repeatedly trying to
transmit the message until it succeeds. Under ideal circumstances, the message
is transmitted successfully on the first try, but circumstances are often not ideal.

In essence, a message is transmitted in five steps:

1. Create—The sender creates the message and populates it with data.

2. Send—The sender adds the message to a channel.

3. Deliver—The messaging system moves the message from the sender’s com-
puter to the receiver’s computer, making it available to the receiver.

4. Receive—The receiver reads the message from the channel.

5. Process—The receiver extracts the data from the message.

The following figure illustrates these five transmission steps, which computer
performs each, and which steps involve the messaging system:

Sending Application Receiving Application

1. Create 5. Process

2. Send 4. Receive

Computer 1 Computer 2

Channel

Data

Message with data

Message storage
3. Deliver

Message Transmission Step-by-Step

INTRODUCTION xxxiii

This figure also illustrates two important messaging concepts:

1. Send and forget—In step 2, the sending application sends the message to the
message channel. Once that send is complete, the sender can go on to other
work while the messaging system transmits the message in the background.
The sender can be confident that the receiver will eventually receive the mes-
sage and does not have to wait until that happens.

2. Store and forward—In step 2, when the sending application sends the mes-
sage to the message channel, the messaging system stores the message on the
sender’s computer, either in memory or on disk. In step 3, the messaging
system delivers the message by forwarding it from the sender’s computer to
the receiver’s computer, and then stores the message once again on the
receiver’s computer. This store-and-forward process may be repeated many
times as the message is moved from one computer to another until it reaches
the receiver’s computer.

The create, send, receive, and process steps may seem like unnecessary over-
head. Why not simply deliver the data to the receiver? By wrapping the data as
a message and storing it in the messaging system, the applications delegate to
the messaging system the responsibility of delivering the data. Because the data
is wrapped as an atomic message, delivery can be retried until it succeeds, and
the receiver can be assured of reliably receiving exactly one copy of the data.

Why Use Messaging?

Now that we know what messaging is, we should ask, Why use messaging? As
with any sophisticated solution, there is no one simple answer. The quick
answer is that messaging is more immediate than File Transfer (43), better
encapsulated than Shared Database (47), and more reliable than Remote Proce-
dure Invocation (50). However, that’s just the beginning of the advantages that
can be gained using messaging.

Specific benefits of messaging include:

• Remote Communication. Messaging enables separate applications to com-
municate and transfer data. Two objects that reside in the same process can
simply share the same data in memory. Sending data to another computer is
a lot more complicated and requires data to be copied from one computer
to another. This means that objects have to be “serializable”—that is, they

xxxiv INTRODUCTION

can be converted into a simple byte stream that can be sent across the net-
work. Messaging takes care of this conversion so that the applications do
not have to worry about it.

• Platform/Language Integration. When connecting multiple computer systems
via remote communication, these systems likely use different languages,
technologies, and platforms, perhaps because they were developed over
time by independent teams. Integrating such divergent applications can
require a neutral zone of middleware to negotiate between the applications,
often using the lowest common denominator—such as flat data files with
obscure formats. In these circumstances, a messaging system can be a uni-
versal translator between the applications that works with each one’s lan-
guage and platform on its own terms yet allows them to all to communicate
through a common messaging paradigm. This universal connectivity is the
heart of the Message Bus (137) pattern.

• Asynchronous Communication. Messaging enables a send-and-forget ap-
proach to communication. The sender does not have to wait for the re-
ceiver to receive and process the message; it does not even have to wait for
the messaging system to deliver the message. The sender only needs to wait
for the message to be sent, that is, for the message to be successfully stored
in the channel by the messaging system. Once the message is stored, the
sender is free to perform other work while the message is transmitted in
the background.

• Variable Timing. With synchronous communication, the caller must wait
for the receiver to finish processing the call before the caller can receive the
result and continue. In this way, the caller can make calls only as fast as
the receiver can perform them. Asynchronous communication allows the
sender to submit requests to the receiver at its own pace and the receiver to
consume the requests at its own different pace. This allows both applica-
tions to run at maximum throughput and not waste time waiting on each
other (at least until the receiver runs out of messages to process).

• Throttling. A problem with remote procedure calls (RPCs) is that too many
of them on a single receiver at the same time can overload the receiver. This
can cause performance degradation and even cause the receiver to crash.
Because the messaging system queues up requests until the receiver is ready
to process them, the receiver can control the rate at which it consumes
requests so as not to become overloaded by too many simultaneous
requests. The callers are unaffected by this throttling because the commu-
nication is asynchronous, so the callers are not blocked waiting on the
receiver.

INTRODUCTION xxxv

• Reliable Communication. Messaging provides reliable delivery that an RPC
cannot. The reason messaging is more reliable than RPC is that messaging
uses a store-and-forward approach to transmitting messages. The data is
packaged as messages, which are atomic, independent units. When the
sender sends a message, the messaging system stores the message. It then
delivers the message by forwarding it to the receiver’s computer, where it is
stored again. Storing the message on the sender’s computer and the
receiver’s computer is assumed to be reliable. (To make it even more reli-
able, the messages can be stored to disk instead of memory; see Guaranteed
Delivery [122].) What is unreliable is forwarding (moving) the message
from the sender’s computer to the receiver’s computer, because the receiver
or the network may not be running properly. The messaging system over-
comes this by resending the message until it succeeds. This automatic retry
enables the messaging system to overcome problems with the network so
that the sender and receiver don’t have to worry about these details.

• Disconnected Operation. Some applications are specifically designed to
run disconnected from the network, yet to synchronize with servers when
a network connection is available. Such applications are deployed on plat-
forms like laptop computers and PDAs. Messaging is ideal for enabling
these applications to synchronize—data to be synchronized can be queued
as it is created, waiting until the application reconnects to the network.

• Mediation. The messaging system acts as a mediator—as in the Mediator
pattern [GoF]—between all of the programs that can send and receive mes-
sages. An application can use it as a directory of other applications or ser-
vices available to integrate with. If an application becomes disconnected
from the others, it need only reconnect to the messaging system, not to all of
the other messaging applications. The messaging system can employ redun-
dant resources to provide high availability, balance load, reroute around
failed network connections, and tune performance and quality of service.

• Thread Management. Asynchronous communication means that one
application does not have to block while waiting for another application
to perform a task, unless it wants to. Rather than blocking to wait for a
reply, the caller can use a callback that will alert the caller when the reply
arrives. (See the Request-Reply [154] pattern.) A large number of blocked
threads or threads blocked for a long time can leave the application with
too few available threads to perform real work. Also, if an application
with a dynamic number of blocked threads crashes, reestablishing those
threads will be difficult when the application restarts and recovers its
former state. With callbacks, the only threads that block are a small,

xxxvi INTRODUCTION

known number of listeners waiting for replies. This leaves most threads
available for other work and defines a known number of listener threads
that can easily be reestablished after a crash.

So, there are a number of different reasons an application or enterprise may
benefit from messaging. Some of these are technical details that application
developers relate most readily to, whereas others are strategic decisions that res-
onate best with enterprise architects. Which of these reasons is most important
depends on the current requirements of your particular applications. They’re all
good reasons to use messaging, so take advantage of whichever reasons provide
the most benefit to you.

Challenges of Asynchronous Messaging

Asynchronous messaging is not the panacea of integration. It resolves many of
the challenges of integrating disparate systems in an elegant way, but it also
introduces new challenges. Some of these challenges are inherent in the asyn-
chronous model, while other challenges vary with the specific implementation
of a messaging system.

• Complex programming model. Asynchronous messaging requires develop-
ers to work with an event-driven programming model. Application logic
can no longer be coded in a single method that invokes other methods, but
instead the logic is now split up into a number of event handlers that
respond to incoming messages. Such a system is more complex and harder
to develop and debug. For example, the equivalent of a simple method call
can require a request message and a request channel, a reply message and a
reply channel, a correlation identifier and an invalid message queue (as
described in Request-Reply [154]).

• Sequence issues. Message channels guarantee message delivery, but they do
not guarantee when the message will be delivered. This can cause messages
that are sent in sequence to get out of sequence. In situations where mes-
sages depend on each other, special care has to be taken to reestablish the
message sequence (see Resequencer [283]).

• Synchronous scenarios. Not all applications can operate in a send-and-
forget mode. If a user is looking for airline tickets, he or she is going to
want to see the ticket price right away, not after some undetermined time.

INTRODUCTION xxxvii

Therefore, many messaging systems need to bridge the gap between syn-
chronous and asynchronous solutions.

• Performance. Messaging systems do add some overhead to communica-
tion. It takes effort to package application data into a message and send it,
and to receive a message and process it. If you have to transport a huge
chunk of data, dividing it into a gazillion small pieces may not be a smart
idea. For example, if an integration solution needs to synchronize informa-
tion between two existing systems, the first step is usually to replicate all
relevant information from one system to the other. For such a bulk data
replication step, ETL (extract, transform, and load) tools are much more
efficient than messaging. Messaging is best suited to keeping the systems in
sync after the initial data replication.

• Limited platform support. Many proprietary messaging systems are not
available on all platforms. Often, transferring a file via FTP is the only
integration option because the target platform may not support a messag-
ing system.

• Vendor lock-in. Many messaging system implementations rely on propri-
etary protocols. Even common messaging specifications such as JMS do
not control the physical implementation of the solution. As a result, differ-
ent messaging systems usually do not connect to one another. This can
leave you with a whole new integration challenge: integrating multiple
integration solutions! (See the Messaging Bridge [133] pattern.)

In summary, asynchronous messaging does not solve all problems, and it can
even create new ones. Keep these consequences in mind when deciding which
problems to solve using messaging.

Thinking Asynchronously

Messaging is an asynchronous technology, which enables delivery to be retried
until it succeeds. In contrast, most applications use synchronous function calls—
for example, a procedure calling a subprocedure, one method calling another
method, or one procedure invoking another remotely through an RPC (such as
CORBA and DCOM). Synchronous calls imply that the calling process is halted
while the subprocess is executing a function. Even in an RPC scenario, where the
called subprocedure executes in a different process, the caller blocks until the
subprocedure returns control (and the results) to the caller. In contrast, when

xxxviii INTRODUCTION

using asynchronous messaging, the caller uses a send-and-forget approach that
allows it to continue to execute after it sends the message. As a result, the calling
procedure continues to run while the subprocedure is being invoked (see figure).

Asynchronous communication has a number of implications. First, we no
longer have a single thread of execution. Multiple threads enable subprocedures
to run concurrently, which can greatly improve performance and help ensure that
some subprocesses are making progress even while other subprocesses may be
waiting for external results. However, concurrent threads also make debugging
much more difficult. Second, results (if any) arrive via a callback mechanism. This
enables the caller to perform other tasks and be notified when the result is avail-
able, which can improve performance. However, this means that the caller has to
be able to process the result even while it is in the middle of other tasks, and it has
to be able to remember the context in which the call was made. Third, asyn-
chronous subprocesses can execute in any order. Again, this enables one sub-
procedure to make progress even while another cannot. But it also means that
the sub-processes must be able to run independently in any order, and the caller
must be able to determine which result came from which subprocess and combine
the results together. As a result, asynchronous communication has several advan-
tages but requires rethinking how a procedure uses its subprocedures.

Distributed Applications versus Integration

This book is about enterprise integration—how to integrate independent appli-
cations so that they can work together. An enterprise application often incor-
porates an n-tier architecture (a more sophisticated version of a client/server

Synchronous and Asynchronous Call Semantics

time

Process A

Process B
call return

Synchronous Call

time

Process A

Process B
message

Asynchronous Message

blocked

INTRODUCTION xxxix

architecture), enabling it to be distributed across several computers. Even though
this results in processes on different machines communicating with each other,
this is application distribution, not application integration.

Why is an n-tier architecture considered application distribution and not
application integration? First, the communicating parts are tightly coupled—
they dependent directly on each other, so one tier cannot function without the
others. Second, communication between tiers tends to be synchronous. Third,
an application (n-tier or atomic) tends to have human users who will only
accept rapid system response times.

In contrast, integrated applications are independent applications that can
each run by themselves but that coordinate with each other in a loosely coupled
way. This enables each application to focus on one comprehensive set of func-
tionality and yet delegate to other applications for related functionality. Inte-
grated applications communicating asynchronously don’t have to wait for a
response; they can proceed without a response or perform other tasks concur-
rently until the response is available. Integrated applications tend to have a
broad time constraint, such that they can work on other tasks until a result
becomes available, and therefore are more patient than most human users wait-
ing real-time for a result.

Commercial Messaging Systems

The apparent benefits of integrating systems using an asynchronous messaging
solution have opened up a significant market for software vendors creating
messaging middleware and associated tools. We can roughly group the messag-
ing vendors’ products into the following four categories:

1. Operating systems. Messaging has become such a common need that ven-
dors have started to integrate the necessary software infrastructure into the
operating system or database platform. For example, the Microsoft Win-
dows 2000 and Windows XP operating systems include the Microsoft Mes-
sage Queuing (MSMQ) service software. This service is accessible through a
number of APIs, including COM components and the System.Messaging
namespace, part of the Microsoft .NET platform. Similarly, Oracle offers
Oracle AQ as part of its database platform.

2. Application servers. Sun Microsystems first incorporated the Java Messaging
Service (JMS) into version 1.2 of the J2EE specification. Since then, virtually
all J2EE application servers (such as IBM WebSphere and BEA WebLogic)

xl INTRODUCTION

provide an implementation for this specification. Also, Sun delivers a JMS ref-
erence implementation with the J2EE JDK.

3. EAI suites. Products from these vendors offer proprietary—but functionally
rich—suites that encompass messaging, business process automation, work-
flow, portals, and other functions. Key players in this marketplace are IBM
WebSphere MQ, Microsoft BizTalk, TIBCO, WebMethods, SeeBeyond, Vit-
ria, CrossWorlds, and others. Many of these products include JMS as one of
the many client APIs they support, while other vendors—such as SonicSoft-
ware and Fiorano—focus primarily on implementing JMS-compliant mes-
saging infrastructures.

4. Web services toolkits. Web services have garnered a lot of interest in the
enterprise integration communities. Standards bodies and consortia are
actively working on standardizing reliable message delivery over Web ser-
vices (i.e., WS-Reliability, WS-ReliableMessaging, and ebMS). A growing
number of vendors offer tools that implement routing, transformation, and
management of Web services-based solutions.

The patterns in this book are vendor-independent and apply to most messag-
ing solutions. Unfortunately, each vendor tends to define its own terminology
when describing messaging solutions. In this book, we strove to choose pattern
names that are technology- and product-neutral yet descriptive and easy to use
conversationally.

Many messaging vendors have incorporated some of this book’s patterns as
features of their products, which simplifies applying the patterns and acceler-
ates solution development. Readers who are familiar with a particular vendor’s
terminology will most likely recognize many of the concepts in this book. To
help these readers map the pattern language to the vendor-specific terminology,
the following tables map the most common pattern names to their correspond-
ing product feature names in some of the most widely used messaging products.

Enterprise Integration
Patterns

Java Message
Service (JMS)

Microsoft
MSMQ

WebSphere
MQ

Message Channel Destination MessageQueue Queue

Point-to-Point Channel Queue MessageQueue Queue

Publish-Subscribe Channel Topic — —

Message Message Message Message

Message Endpoint
MessageProducer,
MessageConsumer

INTRODUCTION xli

Pattern Form

This book contains a set of patterns organized into a pattern language. Books
such as Design Patterns, Pattern Oriented Software Architecture, Core J2EE
Patterns, and Patterns of Enterprise Application Architecture have popularized
the concept of using patterns to document computer-programming techniques.
Christopher Alexander pioneered the concept of patterns and pattern languages
in his books A Pattern Language and A Timeless Way of Building. Each pattern
represents a decision that must be made and the considerations that go into that
decision. A pattern language is a web of related patterns where each pattern
leads to others, guiding you through the decision-making process. This
approach is a powerful technique for documenting an expert’s knowledge so
that it can be readily understood and applied by others.

A pattern language teaches you how to solve a limitless variety of problems
within a bounded problem space. Because the overall problem that is being
solved is different every time, the path through the patterns and how they’re
applied is also unique. This book is written for anyone using any messaging
tools for any application, and it can be applied specifically for you and the
unique application of messaging that you face.

Using the pattern form by itself does not guarantee that a book contains a
wealth of knowledge. It is not enough to simply say, “When you face this prob-
lem, apply this solution.” For you to truly learn from a pattern, the pattern has
to document why the problem is difficult to solve, consider possible solutions
that in fact don’t work well, and explain why the solution offered is the best
available. Likewise, the patterns need to connect to each other so as to walk you

Enterprise Integration
Patterns TIBCO WebMethods SeeBeyond Vitria

Message Channel Subject Queue
Intelligent
Queue

Channel

Point-to-Point Channel
Distributed
Queue

Deliver
Action

Intelligent
Queue

Channel

Publish-Subscribe
Channel

Subject
Publish-
Subscribe
Action

Intelligent
Queue

Publish-
Subscribe
Channel

Message Message Document Event Event

Message Endpoint
Publisher,
Subscriber

Publisher,
Subscriber

Publisher,
Subscriber

Publisher,
Subscriber

xlii INTRODUCTION

from one problem to the next. In this way, the pattern form can be used to teach
not just what solutions to apply but also how to solve problems the authors
could not have predicted. These are goals we strive to accomplish in this book.

Patterns should be prescriptive, meaning that they should tell you what to
do. They don’t just describe a problem, and they don’t just describe how to
solve it—they tell you what to do to solve it. Each pattern represents a decision
you must make: “Should I use Messaging?” “Would a Command Message help
me here?” The point of the patterns and the pattern language is to help you
make decisions that lead to a good solution for your specific problem, even if
the authors didn’t have that specific problem in mind and even if you don’t have
the knowledge and experience to develop that solution on your own.

There is no one universal pattern form; different books use various struc-
tures. We used a style that is fairly close to the Alexandrian form, which was
first popularized for computer programming in Smalltalk Best Practice Patterns
by Kent Beck. We like the Alexandrian form because it results in patterns that
are more prose-like. As a result, even though each pattern follows an identical,
well-defined structure, the format avoids headings for individual subsections,
which would disrupt the flow of the discussion. To improve navigability, the
format uses style elements such as underscoring, indentation, and illustrations
to help you identify important information at a quick glance.

Each pattern follows this structure:

• Name—This is an identifier for the pattern that indicates what the pattern
does. We chose names that can easily be used in a sentence so that it is easy
to reference the pattern’s concept in a conversation between designers.

• Icon—Most patterns are associated with an icon in addition to the pattern
name. Because many architects are used to communicating visually through
diagrams, we provide a visual language in addition to the verbal language.
This visual language underlines the composability of the patterns, as multi-
ple pattern icons can be combined to describe the solution of a larger,
more complex pattern.

• Context—This section explains what type of work might make you run
into the problem that this pattern solves. The context sets the stage for the
problem and often refers to other patterns you may have already applied.

• Problem—This explains the difficulty you are facing, expressed as a ques-
tion. You should be able to read the problem statement and quickly deter-
mine if this pattern is relevant to your work. We’ve formatted the problem
to be one sentence delimited by horizontal rules.

INTRODUCTION xliii

• Forces—The forces explore the constraints that make the problem difficult
to solve. They often consider alternative solutions that seem promising but
don’t pan out, which helps show the value of the real solution.

• Solution—This part explains what you should do to solve the problem. It
is not limited to your particular situation, but describes what to do in the
variety of circumstances represented by the problem. If you understand a
pattern’s problem and solution, you understand the pattern. We’ve format-
ted the solution in the same style as the problem so that you can easily spot
problem and solution statements when perusing the book.

• Sketch—One of the most appealing properties of the Alexandrian form is
that each pattern contains a sketch that illustrates the solution. In many
cases, just by looking at the pattern name and the sketch, you can under-
stand the essence of the pattern. We tried to maintain this style by illustrat-
ing the solution with a figure immediately following the solution statement
of each pattern.

• Results—This part expands upon the solution to explain the details of
how to apply the solution and how it resolves the forces. It also addresses
new challenges that may arise as a result of applying this pattern.

• Next—This section lists other patterns to be considered after applying the
current one. Patterns don’t live in isolation; the application of one pattern
usually leads you to new problems that are solved by other patterns. The
relationships between patterns are what constitutes a pattern language as
opposed to just a pattern catalog.

• Sidebars—These sections discuss more detailed technical issues or varia-
tions of the pattern. We set these sections visually apart from the remain-
der of the text so you can easily skip them if they are not relevant to your
particular application of the pattern.

• Examples—A pattern usually includes one or more examples of the pat-
tern being applied or having been applied. An example may be as simple as
naming a known use or as detailed as a large segment of sample code.
Given the large number of available messaging technologies, we do not
expect you to be familiar with each technology used to implement an
example. Therefore, we designed the patterns so that you can safely skip
the example without losing any critical content of the pattern.

The beauty in describing solutions as patterns is that it teaches you not only
how to solve the specific problems discussed, but also how to create designs

xliv INTRODUCTION

that solve problems the authors were not even aware of. As a result, these pat-
terns for messaging not only describe messaging systems that exist today, but
may also apply to new ones created well after this book is published.

Diagram Notation

Integration solutions consist of many different pieces—applications, databases,
endpoints, channels, messages, routers, and so on. If we want to describe an inte-
gration solution, we need to define a notation that accommodates all these differ-
ent components. To our knowledge, there is no widely used, comprehensive
notation that is geared toward the description of all aspects of an integration
solution. The Unified Modeling Language (UML) does a fine job of describing
object-oriented systems with class and interaction diagrams, but it does not
contain semantics to describe messaging solutions. The UML Profile for EAI
[UMLEAI] enriches the semantics of collaboration diagrams to describe mes-
sage flows between components. This notation is very useful as a precise visual
specification that can serve as the basis for code generation as part of a model-
driven architecture (MDA). We decided not to adopt this notation for two rea-
sons. First, the UML Profile does not capture all the patterns described in our
pattern language. Second, we were not looking to create a precise visual specifi-
cation, but images that have a certain “sketch” quality to them. We wanted pic-
tures that are able to convey the essence of a pattern at a quick glance—very
much like Alexander’s sketch. That’s why we decided to create our own “nota-
tion.” Luckily, unlike the more formal notation, ours does not require you to
read a large manual. A simple picture should suffice:

This simple picture shows a message being sent to a component over a chan-
nel. We use the word component very loosely here—it can indicate an applica-
tion that is being integrated, an intermediary that transforms or routes the

Channel ComponentMessage

Visual Notation for Messaging Solutions

INTRODUCTION xlv

message between applications, or a specific part of an application. Sometimes,
we also depict a channel as a three-dimensional pipe if we want to highlight the
channel itself. Often, we are more interested in the components and draw the
channels as simple lines with arrow heads. The two notations are equivalent.
We depict the message as a small tree with a round root and nested, square ele-
ments because many messaging systems allow messages to contain tree-like
data structures—for example, XML documents. The tree elements can be
shaded or colored to highlight their usage in a particular pattern. Depicting
messages in this way allows us to provide a quick visual description of transfor-
mation patterns—it is easy to show a pattern that adds, rearranges, or removes
fields from the message.

When we describe application designs—for example, messaging endpoints or
examples written in C# or Java—we do use standard UML class and sequence
diagrams to depict the class hierarchy and the interaction between objects
because the UML notation is widely accepted as the standard way of describing
these types of solutions (if you need a refresher on UML, have a look at [UML]).

Examples and Interludes

We have tried to underline the broad applicability of the patterns by including
implementation examples using a variety of integration technologies. The
potential downside of this approach is that you may not be familiar with each
technology that is being used in an example. That’s why we made sure that
reading the examples is strictly optional—all relevant points are discussed in the
pattern description. Therefore, you can safely skip the examples without risk of
losing out on important detail. Also, where possible, we provided more than
one implementation example using different technologies.

When presenting example code, we focused on readability over runnability.
A code segment can help remove any potential ambiguity left by the solution
description, and many application developers and architects prefer looking at
30 lines of code to reading many paragraphs of text. To support this intent, we
often show only the most relevant methods or classes of a potentially larger
solution. We also omitted most forms of error checking to highlight the core
function implemented by the code. Most code snippets do not contain in-line
comments, as the code is explained in the paragraphs before and after the code
segment.

Providing a meaningful example for a single integration pattern is challenging.
Enterprise integration solutions typically consist of a number of heterogeneous

xlvi INTRODUCTION

components spread across multiple systems. Likewise, most integration patterns
do not operate in isolation but rely on other patterns to form a meaningful solu-
tion. To highlight the collaboration between multiple patterns, we included more
comprehensive examples as interludes (see Chapters 6, 9, and 12). These solu-
tions illustrate many of the trade-offs involved in designing a more comprehen-
sive messaging solution.

All code samples should be treated as illustrative tools only and not as a
starting point for development of a production-quality integration solution. For
example, almost all examples lack any form of error checking or concern for
robustness, security, or scalability.

We tried as much as possible to base the examples on software platforms
that are available free of charge or as a trial version. In some cases, we used
commercial platforms (such as TIBCO ActiveEnterprise and Microsoft BizTalk)
to illustrate the difference between developing a solution from scratch and
using a commercial tool. We presented those examples in such a way that they
are educational even if you do not have access to the required runtime platform.
For many examples, we use relatively barebones messaging frameworks such as
JMS or MSMQ. This allows us to be more explicit in the example and focus on
the problem at hand instead of distracting from it with all the features a more
complex middleware toolset may provide.

The Java examples in this book are based on the JMS 1.1 specification,
which is part of the J2EE 1.4 specification. By the time this book is published,
most messaging and application server vendors will support JMS 1.1. You can
download Sun Microsystems’ reference implementation of the JMS specifica-
tion from Sun’s Web site: http://java.sun.com/j2ee.

The Microsoft .NET examples are based on Version 1.1 of the .NET Frame-
work and are written in C#. You can download the .NET Framework SDK
from Microsoft’s Web site: http://msdn.microsoft.com/net.

Organization of This Book

The pattern language in this book, as with any pattern language, is a web of
patterns referring to each other. At the same time, some patterns are more fun-
damental than others, forming a hierarchy of big-concept patterns that lead to
more finely detailed patterns. The big-concept patterns form the load-bearing
members of the pattern language. They are the main ones, the root patterns that
provide the foundation of the language and support the other patterns.

http://java.sun.com/j2ee
http://msdn.microsoft.com/net

INTRODUCTION xlvii

This book groups patterns into chapters by level of abstraction and by topic
area. The following diagram shows the root patterns and their relationship to
the chapters of the book.

The most fundamental pattern is Messaging (53); that’s what this book is
about. It leads to the six root patterns described in Chapter 3, “Messaging Sys-
tems,” namely, Message Channel (60), Message (66), Pipes and Filters (70),
Message Router (78), Message Translator (85), and Message Endpoint (95). In
turn, each root pattern leads to its own chapter in the book (except Pipes and
Filters [70], which is not specific to messaging but is a widely used architectural
style that forms the basis of the routing and transformation patterns).

The pattern language is divided into eight chapters, which follow the hierar-
chy just described:

Chapter 2, “Integration Styles”—This chapter reviews the different ap-
proaches available for integrating applications, including Messaging (53).

Chapter 3, “Messaging Systems”—This chapter reviews the six root messag-
ing patterns, giving an overview of the entire pattern language.

Chapter 4, “Messaging Channels”—Applications communicate via channels.
Channels define the logical pathways a message can follow. This chapter
shows how to determine what channels your applications need.

Chapter 5, “Message Construction”—Once you have message channels, you
need messages to send on them. This chapter explains the different ways
messages can be used and how to take advantage of their special properties.

MessagingMessaging
Chapter 2:
Integration

Styles

Chapter 3:
Messaging
Systems

MessageMessageMessage
Channel

Message
Channel

Pipes and
Filters

Pipes and
Filters

Message
Router

Message
Router

Message
Translator

Message
Translator

Message
Endpoint

Message
Endpoint

Chapter 4:
Message

Construction

Chapter 5:
Message

Construction

Chapter 3:
Messaging
Channels

Chapter 4:
Messaging
Channels

Chapter 5:
Message
Routing

Chapter 7:
Message
Routing

Chapter 6:
Message

Transformation

Chapter 8:
Message

Transformation

Chapter 7:
Messaging
Endpoints

Chapter 10:
Messaging
Endpoints

Chapter 8:
Systems

Management

Chapter 11:
System

Management

Relationship of Root Patterns and Chapters

xlviii INTRODUCTION

Chapter 7, “Message Routing”—Messaging solutions aim to decouple the
sender and the receiver of information. Message routers provide location
independence between sender and receiver so that senders don’t have to know
about who processes their messages. Rather, they send the messages to inter-
mediate message routing components that forward the message to the correct
destination. This chapter presents a variety of different routing techniques.

Chapter 8, “Message Transformation”—Independently developed applica-
tions often don’t agree on messages’ formats, on the form and meaning of
supposedly unique identifiers, or even on the character encoding to be used.
Therefore, intermediate components are needed to convert messages from
the format one application produces to that of the receiving applications.
This chapter shows how to design transformer components.

Chapter 10, “Messaging Endpoints”—Many applications were not designed
to participate in a messaging solution. As a result, they must be explicitly
connected to the messaging system. This chapter describes a layer in the
application that is responsible for sending and receiving the messages, mak-
ing your application an endpoint for messages.

Chapter 11, “System Management”—Once a messaging system is in place to
integrate applications, how do we make sure that it’s running correctly and
doing what we want? This chapter explores how to test and monitor a run-
ning messaging system.

These eight chapters together teach you what you need to know about con-
necting applications using messaging.

Getting Started

With any book that has a lot to teach, it’s hard to know where to start, both for
the authors and the readers. Reading all of the pages straight through assures
covering the entire subject area but isn’t the quickest way to get to the issues
that are of the most help. Starting with a pattern in the middle of the language
can be like starting to watch a movie that’s half over—you see what’s happen-
ing but don’t understand what it means.

Luckily, the pattern language is formed around the root patterns described
earlier. These root patterns collectively provide an overview of the pattern lan-
guage, and individually provide starting points for delving deep into the details

INTRODUCTION xlix

of messaging. To get an overall survey of the language without reviewing all of
the patterns, start with reviewing the root patterns in Chapter 3.

Chapter 2, “Integration Styles,” provides an overview of the four main
application integration techniques and settles on Messaging (53) as being the
best overall approach for many integration opportunities. Read this chapter if
you are unfamiliar with issues involved in application integration and the pros
and cons of the various approaches that are available. If you’re already con-
vinced that messaging is the way to go and want to get started with how to use
messaging, you can skip this chapter completely.

Chapter 3, “Messaging Systems,” contains all of this pattern language’s root
patterns (except Messaging [53], which is in Chapter 2). For an overview of the
pattern language, read (or at least skim) all of the patterns in this chapter. To
dive deeply on a particular topic, read its root pattern, then go to the patterns
mentioned at the end of the pattern section; those next patterns will all be in a
chapter named after the root pattern.

After Chapters 2 and 3, different types of messaging developers may be most
interested in different chapters based on the specifics of how each group uses
messaging to perform integration:

• System administrators may be most interested in Chapter 4, “Messaging
Channels,” the guidelines for what channels to create, and Chapter 11,
“System Management,” guidance on how to maintain a running messag-
ing system.

• Application developers should look at Chapter 10, “Messaging End-
points,” to learn how to integrate an application with a messaging system
and at Chapter 5, “Message Construction,” to learn what messages to send
when.

• System integrators will gain the most from Chapter 7, “Message Rout-
ing”—how to direct messages to the proper receivers—and Chapter 8,
“Message Transformation”—how to convert messages from the sender’s
format to the receiver’s.

Keep in mind that when reading a pattern, if you’re in a hurry, start by just
reading the problem and solution. This will give you enough information to
determine if the pattern is of interest to you right now and if you already know
the pattern. If you do not know the pattern and it sounds interesting, go ahead
and read the other parts.

Also remember that this is a pattern language, so the patterns are not neces-
sarily meant to be read in the order they’re presented in the book. The book’s

l INTRODUCTION

order teaches you about messaging by considering all of the relevant topics in
turn and discussing related issues together. To use the patterns to solve a partic-
ular problem, start with an appropriate root pattern. Its context explains what
patterns need to be applied before this one, even if they’re not the ones immedi-
ately preceding this one in the book. Likewise, the next section (the last para-
graph of the pattern) describes what patterns to consider applying after this
one, even if they’re not the ones immediately following this one in the book.
Use the web of interconnected patterns, not the linear list of book pages, to
guide you through the material.

Supporting Web Site

Please look for companion information to this book plus related information on
enterprise integration at our Web site: www.enterpriseintegrationpatterns.com.
You can also e-mail your comments, suggestions, and feedback to us at authors@
enterpriseintegrationpatterns.com.

Summary

You should now have a good understanding of the following concepts, which
are fundamental to the material in this book:

• What messaging is.

• What a messaging system is.

• Why to use messaging.

• How asynchronous programming is different from synchronous
programming.

• How application integration is different from application distribution.

• What types of commercial products contain messaging systems.

www.enterpriseintegrationpatterns.com

INTRODUCTION li

You should also have a feel for how this book is going to teach you to use
messaging:

• The role patterns have in structuring the material.

• The meaning of the custom notation used in the diagrams.

• The purpose and scope of the examples.

• The organization of the material.

• How to get started learning the material.

Now that you understand the basic concepts and how the material will be
presented, we invite you to start learning about enterprise integration using
messaging.

This page intentionally left blank

39

Integration
Styles

Chapter 2

Integration Styles

Introduction

Enterprise integration is the task of making disparate applications work together
to produce a unified set of functionality. These applications can be custom devel-
oped in house or purchased from third-party vendors. They likely run on multiple
computers, which may represent multiple platforms, and may be geographically
dispersed. Some of the applications may be run outside of the enterprise by busi-
ness partners or customers. Other applications might not have been designed
with integration in mind and are difficult to change. These issues and others like
them make application integration complicated. This chapter explores multiple
integration approaches that can help overcome these challenges.

Application Integration Criteria

What makes good application integration? If integration needs were always the
same, there would be only one integration style. Yet, like any complex technolog-
ical effort, application integration involves a range of considerations and conse-
quences that should be taken into account for any integration opportunity.

The fundamental criterion is whether to use application integration at all. If
you can develop a single, standalone application that doesn’t need to collabo-
rate with any other applications, you can avoid the whole integration issue
entirely. Realistically, though, even a simple enterprise has multiple applications
that need to work together to provide a unified experience for the enterprise’s
employees, partners, and customers.

The following are some other main decision criteria.

Application coupling—Integrated applications should minimize their depen-
dencies on each other so that each can evolve without causing problems to
the others. As explained in Chapter 1, “Solving Integration Problems Using
Patterns,” tightly coupled applications make numerous assumptions about

40 CHAPTER 2 INTEGRATION STYLES

Introduction

how the other applications work; when the applications change and break
those assumptions, the integration between them breaks. Therefore, the
interfaces for integrating applications should be specific enough to imple-
ment useful functionality but general enough to allow the implementation to
change as needed.

Intrusiveness—When integrating an application into an enterprise, develop-
ers should strive to minimize both changes to the application and the amount
of integration code needed. Yet, changes and new code are often necessary to
provide good integration functionality, and the approaches with the least
impact on the application may not provide the best integration into the
enterprise.

Technology selection—Different integration techniques require varying
amounts of specialized software and hardware. Such tools can be expensive,
can lead to vendor lock-in, and can increase the learning curve for develop-
ers. On the other hand, creating an integration solution from scratch usually
results in more effort than originally intended and can mean reinventing the
wheel.

Data format—Integrated applications must agree on the format of the data
they exchange. Changing existing applications to use a unified data format
may be difficult or impossible. Alternatively, an intermediate translator can
unify applications that insist on different data formats. A related issue is data
format evolution and extensibility—how the format can change over time
and how that change will affect the applications.

Data timeliness—Integration should minimize the length of time between
when one application decides to share some data and other applications have
that data. This can be accomplished by exchanging data frequently and in
small chunks. However, chunking a large set of data into small pieces may
introduce inefficiencies. Latency in data sharing must be factored into the
integration design. Ideally, receiver applications should be informed as soon
as shared data is ready for consumption. The longer sharing takes, the
greater the opportunity for applications to get out of sync and the more com-
plex integration can become.

Data or functionality—Many integration solutions allow applications to
share not only data but functionality as well, because sharing of functional-
ity can provider better abstraction between the applications. Even though
invoking functionality in a remote application may seem the same as invok-
ing local functionality, it works quite differently, with significant conse-
quences for how well the integration works.

INTRODUCTION 41

Introduction

Remote Communication—Computer processing is typically synchronous—
that is, a procedure waits while its subprocedure executes. However, calling a
remote subprocedure is much slower than a local one so that a procedure may
not want to wait for the subprocedure to complete; instead, it may want to
invoke the subprocedure asynchronously, that is, starting the subprocedure
but continuing with its own processing simultaneously. Asynchronicity can
make for a much more efficient solution, but such a solution is also more
complex to design, develop, and debug.

Reliability—Remote connections are not only slow, but they are much less reli-
able than a local function call. When a procedure calls a subprocedure inside a
single application, it’s a given that the subprocedure is available. This is not
necessarily true when communicating remotely; the remote application may
not even be running or the network may be temporarily unavailable. Reliable,
asynchronous communication enables the source application to go on to other
work, confident that the remote application will act sometime later.

So, as you can see, there are several different criteria that must be consid-
ered when choosing and designing an integration approach. The question then
becomes, Which integration approach best addresses which of these criteria?

Application Integration Options

There is no one integration approach that addresses all criteria equally well.
Therefore, multiple approaches for integrating applications have evolved over
time. The various approaches can be summed up in four main integration styles.

File Transfer (43)—Have each application produce files of shared data for
others to consume and consume files that others have produced.

Shared Database (47)—Have the applications store the data they wish to
share in a common database.

Remote Procedure Invocation (50)—Have each application expose some of
its procedures so that they can be invoked remotely, and have applications
invoke those to initiate behavior and exchange data.

Messaging (53)—Have each application connect to a common messaging
system, and exchange data and invoke behavior using messages.

This chapter presents each style as a pattern. The four patterns share the
same problem statement—the need to integrate applications—and very similar
contexts. What differentiates them are the forces searching for a more elegant

42 CHAPTER 2 INTEGRATION STYLES

Introduction

solution. Each pattern builds on the last, looking for a more sophisticated
approach to address the shortcomings of its predecessors. Thus, the pattern order
reflects an increasing order of sophistication, but also increasing complexity.

The trick is not to choose one style to use every time but to choose the best
style for a particular integration opportunity. Each style has its advantages and
disadvantages. Applications may integrate using multiple styles so that each
point of integration takes advantage of the style that suits it best. Likewise, an
application may use different styles to integrate with different applications,
choosing the style that works best for the other application. As a result, many
integration approaches can best be viewed as a hybrid of multiple integration
styles. To support this type of integration, many integration and EAI middle-
ware products employ a combination of styles, all of which are effectively hid-
den in the product’s implementation.

The patterns in the remainder of this book expand on the Messaging (53)
integration style. We focus on messaging because we believe that it provides a
good balance between the integration criteria but is also the most difficult style
to work with. As a result, messaging is still the least well understood of the inte-
gration styles and a technology ripe with patterns that quickly explain how to
use it best. Finally, messaging is the basis for many commercial EAI products,
so explaining how to use messaging well also goes a long way in teaching you
how to use those products. The focus of this section is to highlight the issues
involved with application integration and how messaging fits into the mix.

FILE TRANSFER 43

File
Transfer

File Transfer

by Martin Fowler

An enterprise has multiple applications that are being built independently, with
different languages and platforms.

How can I integrate multiple applications so that they work together and can ex-
change information?

In an ideal world, you might imagine an organization operating from a single,
cohesive piece of software, designed from the beginning to work in a unified
and coherent way. Of course, even the smallest operations don’t work like that.
Multiple pieces of software handle different aspects of the enterprise. This is
due to a host of reasons.

• People buy packages that are developed by outside organizations.

• Different systems are built at different times, leading to different technol-
ogy choices.

• Different systems are built by different people whose experience and pref-
erences lead them to different approaches to building applications.

• Getting an application out and delivering value is more important than
ensuring that integration is addressed, especially when that integration
doesn’t add any value to the application under development.

As a result, any organization has to worry about sharing information between
very divergent applications. These can be written in different languages, based
on different platforms, and have different assumptions about how the business
operates.

Tying together such applications requires a thorough understanding of how
to link together applications on both the business and technical levels. This is a
lot easier if you minimize what you need to know about how each application
works.

44 CHAPTER 2 INTEGRATION STYLES

File
Transfer

What is needed is a common data transfer mechanism that can be used by a
variety of languages and platforms but that feels natural to each. It should
require a minimal amount of specialized hardware and software, making use of
what the enterprise already has available.

Files are a universal storage mechanism, built into any enterprise operating
system and available from any enterprise language. The simplest approach
would be to somehow integrate the applications using files.

Have each application produce files that contain the information the other applica-
tions must consume. Integrators take the responsibility of transforming files into dif-
ferent formats. Produce the files at regular intervals according to the nature of the
business.

An important decision with files is what format to use. Very rarely will the
output of one application be exactly what’s needed for another, so you’ll have
to do a fair bit of processing of files along the way. This means not only that all
the applications that use a file have to read it, but that you also have to be able
to use processing tools on it. As a result, standard file formats have grown up
over time. Mainframe systems commonly use data feeds based on the file system
formats of COBOL. UNIX systems use text-based files. The current method is to
use XML. An industry of readers, writers, and transformation tools has built up
around each of these formats.

Another issue with files is when to produce them and consume them. Since
there’s a certain amount of effort required to produce and process a file, you
usually don’t want to work with them too frequently. Typically, you have some
regular business cycle that drives the decision: nightly, weekly, quarterly, and so
on. Applications get used to when a new file is available and processes it at its
time.

The great advantage of files is that integrators need no knowledge of the
internals of an application. The application team itself usually provides the file.
The file’s contents and format are negotiated with integrators, although if a

Application

A

Application

A

Application

B

Application

B

E
x
p
o
r
t

E
x
p
o
r
t

I
m
p
o
r
t

I
m
p
o
r
t

Shared
Data

FILE TRANSFER 45

File
Transfer

package is used, the choices are often limited. The integrators then deal with the
transformations required for other applications, or they leave it up to the con-
suming applications to decide how they want to manipulate and read the file. As
a result, the different applications are quite nicely decoupled from each other.
Each application can make internal changes freely without affecting other appli-
cations, providing they still produce the same data in the files in the same for-
mat. The files effectively become the public interface of each application.

Part of what makes File Transfer simple is that no extra tools or integration
packages are needed, but that also means that developers have to do a lot of the
work themselves. The applications must agree on file-naming conventions and
the directories in which they appear. The writer of a file must implement a strat-
egy to keep the file names unique. The applications must agree on which one
will delete old files, and the application with that responsibility will have to
know when a file is old and no longer needed. The applications will need to
implement a locking mechanism or follow a timing convention to ensure that
one application is not trying to read the file while another is still writing it. If all
of the applications do not have access to the same disk, then some application
must take responsibility for transferring the file from one disk to another.

One of the most obvious issues with File Transfer is that updates tend to
occur infrequently, and as a result systems can get out of synchronization. A
customer management system can process a change of address and produce an
extract file each night, but the billing system may send the bill to an old address
on the same day. Sometimes lack of synchronization isn’t a big deal. People
often expect a certain lag in getting information around, even with computers.
At other times the result of using stale information is a disaster. When deciding
on when to produce files, you have to take the freshness needs of consumers
into account.

In fact, the biggest problem with staleness is often on the software develop-
ment staff themselves, who frequently must deal with data that isn’t quite right.
This can lead to inconsistencies that are difficult to resolve. If a customer
changes his address on the same day with two different systems, but one of
them makes an error and gets the wrong street name, you’ll have two different
addresses for a customer. You’ll need some way to figure out how to resolve
this. The longer the period between file transfers, the more likely and more
painful this problem can become.

Of course, there’s no reason that you can’t produce files more frequently.
Indeed, you can think of Messaging (53) as File Transfer where you produce a
file with every change in an application. The problem then is managing all the
files that get produced, ensuring that they are all read and that none get lost.
This goes beyond what file system–based approaches can do, particularly since

46 CHAPTER 2 INTEGRATION STYLES

File
Transfer

there are expensive resource costs associated with processing a file, which can
get prohibitive if you want to produce lots of files quickly. As a result, once you
get to very fine-grained files, it’s easier to think of them as Messaging (53).

To make data available more quickly and enforce an agreed-upon set of data
formats, use a Shared Database (47). To integrate applications’ functionality
rather than their data, use Remote Procedure Invocation (50). To enable fre-
quent exchanges of small amounts of data, perhaps used to invoke remote func-
tionality, use Messaging (53).

SHARED DATABASE 47

Shared
Database

Shared Database

by Martin Fowler

An enterprise has multiple applications that are being built independently, with
different languages and platforms. The enterprise needs information to be
shared rapidly and consistently.

How can I integrate multiple applications so that they work together and can ex-
change information?

File Transfer (43) enables applications to share data, but it can lack timeli-
ness—yet timeliness of integration is often critical. If changes do not quickly
work their way through a family of applications, you are likely to make mis-
takes due to the staleness of the data. For modern businesses, it is imperative
that everyone have the latest data. This not only reduces errors, but also
increases people’s trust in the data itself.

Rapid updates also allow inconsistencies to be handled better. The more fre-
quently you synchronize, the less likely you are to get inconsistencies and the
less effort they are to deal with. But however rapid the changes, there are still
going to be problems. If an address is updated inconsistently in rapid succes-
sion, how do you decide which one is the true address? You could take each
piece of data and say that one application is the master source for that data, but
then you’d have to remember which application is the master for which data.

File Transfer (43) also may not enforce data format sufficiently. Many of the
problems in integration come from incompatible ways of looking at the data.
Often these represent subtle business issues that can have a huge effect. A geo-
logical database may define an oil well as a single drilled hole that may or may
not produce oil. A production database may define a well as multiple holes cov-
ered by a single piece of equipment. These cases of semantic dissonance are
much harder to deal with than inconsistent data formats. (For a much deeper
discussion of these issues, it’s really worth reading Data and Reality [Kent].)
What is needed is a central, agreed-upon datastore that all of the applications
share so each has access to any of the shared data whenever it needs it.

48 CHAPTER 2 INTEGRATION STYLES

Shared
Database

Integrate applications by having them store their data in a single Shared Data-
base, and define the schema of the database to handle all the needs of the differ-
ent applications.

If a family of integrated applications all rely on the same database, then you
can be pretty sure that they are always consistent all of the time. If you do get
simultaneous updates to a single piece of data from different sources, then you
have transaction management systems that handle that about as gracefully as it
ever can be managed. Since the time between updates is so small, any errors are
much easier to find and fix.

Shared Database is made much easier by the widespread use of SQL-based
relational databases. Pretty much all application development platforms can
work with SQL, often with quite sophisticated tools. So you don’t have to
worry about multiple file formats. Since any application pretty much has to use
SQL anyway, this avoids adding yet another technology for everyone to master.

Since every application is using the same database, this forces out problems
in semantic dissonance. Rather than leaving these problems to fester until they
are difficult to solve with transforms, you are forced to confront them and deal
with them before the software goes live and you collect large amounts of
incompatible data.

One of the biggest difficulties with Shared Database is coming up with a suit-
able design for the shared database. Coming up with a unified schema that can
meet the needs of multiple applications is a very difficult exercise, often resulting
in a schema that application programmers find difficult to work with. And if the
technical difficulties of designing a unified schema aren’t enough, there are also
severe political difficulties. If a critical application is likely to suffer delays in
order to work with a unified schema, then often there is irresistible pressure to
separate. Human conflicts between departments often exacerbate this problem.

Application
A

Application
A

Shared
Data

Application
B

Application
B

Application
C

Application
C

SHARED DATABASE 49

Shared
Database

Another, harder limit to Shared Database is external packages. Most pack-
aged applications won’t work with a schema other than their own. Even if there
is some room for adaptation, it’s likely to be much more limited than integra-
tors would like. Adding to the problem, software vendors usually reserve the
right to change the schema with every new release of the software.

This problem also extends to integration after development. Even if you can
organize all your applications, you still have an integration problem should a
merger of companies occur.

Multiple applications using a Shared Database to frequently read and modify
the same data can turn the database into a performance bottleneck and can cause
deadlocks as each application locks others out of the data. When applications are
distributed across multiple locations, accessing a single, shared database across a
wide-area network is typically too slow to be practical. Distributing the database
as well allows each application to access the database via a local network connec-
tion, but confuses the issue of which computer the data should be stored on. A
distributed database with locking conflicts can easily become a performance
nightmare.

To integrate applications’ functionality rather than their data, use Remote
Procedure Invocation (50). To enable frequent exchanges of small amounts of
data using a format per datatype rather than one universal schema, use Messag-
ing (53).

50 CHAPTER 2 INTEGRATION STYLES

Remote
Procedure
Invocation

Remote Procedure Invocation

by Martin Fowler

An enterprise has multiple applications that are being built independently, with
different languages and platforms. The enterprise needs to share data and pro-
cesses in a responsive way.

How can I integrate multiple applications so that they work together and can ex-
change information?

File Transfer (43) and Shared Database (47) enable applications to share
their data, which is an important part of application integration, but just shar-
ing data is often not enough. Changes in data often require actions to be taken
across different applications. For example, changing an address may be a sim-
ple change in data, or it may trigger registration and legal processes to take into
account different rules in different legal jurisdictions. Having one application
invoke such processes directly in others would require applications to know far
too much about the internals of other applications.

This problem mirrors a classic dilemma in application design. One of the
most powerful structuring mechanisms in application design is encapsulation,
where modules hide their data through a function call interface. In this way,
they can intercept changes in data to carry out the various actions they need to
perform when the data is changed. Shared Database (47) provides a large,
unencapsulated data structure, which makes it much harder to do this. File
Transfer (43) allows an application to react to changes as it processes the file,
but the process is delayed.

The fact that Shared Database (47) has unencapsulated data also makes it
more difficult to maintain a family of integrated applications. Many changes in
any application can trigger a change in the database, and database changes
have a considerable ripple effect through every application. As a result, organi-
zations that use Shared Database (47) are often very reluctant to change the
database, which means that the application development work is much less
responsive to the changing needs of the business.

REMOTE PROCEDURE INVOCATION 51

Remote
Procedure
Invocation

What is needed is a mechanism for one application to invoke a function in
another application, passing the data that needs to be shared and invoking the
function that tells the receiver application how to process the data.

Develop each application as a large-scale object or component with encapsulated
data. Provide an interface to allow other applications to interact with the running
application.

Remote Procedure Invocation applies the principle of encapsulation to inte-
grating applications. If an application needs some information that is owned by
another application, it asks that application directly. If one application needs to
modify the data of another, it does so by making a call to the other application.
This allows each application to maintain the integrity of the data it owns. Fur-
thermore, each application can alter the format of its internal data without
affecting every other application.

A number of technologies, such as CORBA, COM, .NET Remoting, and Java
RMI, implement Remote Procedure Invocation (also referred to as Remote Pro-
cedure Call, or RPC). These approaches vary as to how many systems support
them and their ease of use. Often these environments add additional capabili-
ties, such as transactions. For sheer ubiquity, the current favorite is Web ser-
vices, using standards such as SOAP and XML. A particularly valuable feature
of Web services is that they work easily with HTTP, which is easy to get through
firewalls.

The fact that there are methods that wrap the data makes it easier to deal
with semantic dissonance. Applications can provide multiple interfaces to the
same data, allowing some clients to see one style and others a different style.
Even updates can use multiple interfaces. This provides a lot more ability to
support multiple points of view than can be achieved by relational views. How-
ever, it is awkward for integrators to add transformation components, so each
application has to negotiate its interface with its neighbors.

Function
Application

A

Application

A

Application

B

Application

BResult

S
t
u
b

S
t
u
b

S
k
e
l
e
t
o
n

S
k
e
l
e
t
o
n

52 CHAPTER 2 INTEGRATION STYLES

Remote
Procedure
Invocation

Since software developers are used to procedure calls, Remote Procedure
Invocation fits in nicely with what they are already used to. Actually, this is
more of a disadvantage than an advantage. There are big differences in perfor-
mance and reliability between remote and local procedure calls. If people don’t
understand these, then Remote Procedure Invocation can lead to slow and
unreliable systems (see [Waldo], [EAA]).

Although encapsulation helps reduce the coupling of the applications by
eliminating a large shared data structure, the applications are still fairly tightly
coupled together. The remote calls that each system supports tend to tie the dif-
ferent systems into a growing knot. In particular, sequencing—doing certain
things in a particular order—can make it difficult to change systems indepen-
dently. These types of problems often arise because issues that aren’t significant
within a single application become so when integrating applications. People
often design the integration the way they would design a single application,
unaware that the rules of the engagement change dramatically.

To integrate applications in a more loosely coupled, asynchronous fashion,
use Messaging (53) to enable frequent exchanges of small amounts of data, ones
that are perhaps used to invoke remote functionality.

MESSAGING 53

Messaging

Messaging

An enterprise has multiple applications that are being built independently, with
different languages and platforms. The enterprise needs to share data and pro-
cesses in a responsive way.

How can I integrate multiple applications so that they work together and can ex-
change information?

File Transfer (43) and Shared Database (47) enable applications to share
their data but not their functionality. Remote Procedure Invocation (50)
enables applications to share functionality, but it tightly couples them as well.
Often the challenge of integration is about making collaboration between sepa-
rate systems as timely as possible, without coupling systems together in such a
way that they become unreliable either in terms of application execution or
application development.

File Transfer (43) allows you to keep the applications well decoupled but at
the cost of timeliness. Systems just can’t keep up with each other. Collaborative
behavior is way too slow. Shared Database (47) keeps data together in a
responsive way but at the cost of coupling everything to the database. It also
fails to handle collaborative behavior.

Faced with these problems, Remote Procedure Invocation (50) seems an
appealing choice. But extending a single application model to application inte-
gration dredges up plenty of other weaknesses. These weaknesses start with the
essential problems of distributed development. Despite that RPCs look like
local calls, they don’t behave the same way. Remote calls are slower, and they
are much more likely to fail. With multiple applications communicating across
an enterprise, you don’t want one application’s failure to bring down all of the
other applications. Also, you don’t want to design a system assuming that calls
are fast, and you don’t want each application knowing the details about other
applications, even if it’s only details about their interfaces.

What we need is something like File Transfer (43) in which lots of little data
packets can be produced quickly and transferred easily, and the receiver applica-
tion is automatically notified when a new packet is available for consumption.

54 CHAPTER 2 INTEGRATION STYLES

Messaging

The transfer needs a retry mechanism to make sure it succeeds. The details of
any disk structure or database for storing the data needs to be hidden from the
applications so that, unlike Shared Database (47), the storage schema and
details can be easily changed to reflect the changing needs of the enterprise. One
application should be able to send a packet of data to another application to
invoke behavior in the other application, like Remote Procedure Invocation
(50), but without being prone to failure. The data transfer should be asynchro-
nous so that the sender does not need to wait on the receiver, especially when
retry is necessary.

Use Messaging to transfer packets of data frequently, immediately, reliably, and
asynchronously, using customizable formats.

Asynchronous messaging is fundamentally a pragmatic reaction to the prob-
lems of distributed systems. Sending a message does not require both systems to
be up and ready at the same time. Furthermore, thinking about the communica-
tion in an asynchronous manner forces developers to recognize that working with
a remote application is slower, which encourages design of components with high
cohesion (lots of work locally) and low adhesion (selective work remotely).

Messaging systems also allow much of the decoupling you get when using
File Transfer (43). Messages can be transformed in transit without either the
sender or receiver knowing about the transformation. The decoupling allows
integrators to choose between broadcasting messages to multiple receivers,
routing a message to one of many receivers, or other topologies. This separates
integration decisions from the development of the applications. Since human
issues tend to separate application development from application integration,
this approach works with human nature rather than against it.

The transformation means that separate applications can have quite different
conceptual models. Of course, this means that semantic dissonance will occur.

Message Bus

Application
A

Application
A

Application
B

Application
B

Application
C

Application
C

Event

MESSAGING 55

Messaging

However, the messaging viewpoint is that the measures used by Shared Data-
base (47) to avoid semantic dissonance are too complicated to work in practice.
Also, semantic dissonance is going to occur with third-party applications and
with applications added as part of a corporate merger, so the messaging
approach is to address the issue rather than design applications to avoid it.

By sending small messages frequently, you also allow applications to collabo-
rate behaviorally as well as share data. If a process needs to be launched once an
insurance claim is received, it can be done immediately by sending a message
when a single claim comes in. Information can be requested and a reply made
rapidly. While such collaboration isn’t going to be as fast as Remote Procedure
Invocation (50), the caller needn’t stop while the message is being processed and
the response returned. And messaging isn’t as slow as many people think—many
messaging solutions originated in the financial services industry where thousands
of stock quotes or trades have to pass through a messaging system every second.

This book is about Messaging, so you can safely assume that we consider
Messaging to be generally the best approach to enterprise application integra-
tion. You should not assume, however, that it is free of problems. The high fre-
quency of messages in Messaging reduces many of the inconsistency problems
that bedevil File Transfer (43), but it doesn’t remove them entirely. There are
still going to be some lag problems with systems not being updated quite simul-
taneously. Asynchronous design is not the way most software people are
taught, and as a result there are many different rules and techniques in place.
The messaging context makes this a bit easier than programming in an asyn-
chronous application environment like X Windows, but asynchrony still has a
learning curve. Testing and debugging are also harder in this environment.

The ability to transform messages has the nice benefit of allowing applica-
tions to be much more decoupled from each other than in Remote Procedure
Invocation (50). But this independence does mean that integrators are often left
with writing a lot of messy glue code to fit everything together.

Once you decide that you want to use Messaging for system integration,
there are a number of new issues to consider and practices you can employ.

How do you transfer packets of data?

A sender sends data to a receiver by sending a Message (66) via a Message
Channel (60) that connects the sender and receiver.

How do you know where to send the data?

If the sender does not know where to address the data, it can send the data to
a Message Router (78), which will direct the data to the proper receiver.

56 CHAPTER 2 INTEGRATION STYLES

Messaging

How do you know what data format to use?

If the sender and receiver do not agree on the data format, the sender can
direct the data to a Message Translator (85) that will convert the data to the
receiver’s format and then forward the data to the receiver.

If you’re an application developer, how do you connect your application to
the messaging system?

An application that wishes to use messaging will implement Message End-
points (95) to perform the actual sending and receiving.

659

Index

A
Abstract pipes, 72
ACID (atomic, consistent, isolated, and

durable), 484
ACT (Asynchronous Completion Token),

418, 472
ActiveEnterprise, see TIBCO

ActiveEnterprise
Activity diagrams, 21–22, 319
Adapters, 16, 19–20, 31–32, 86, 129–131,

140
connecting to existing systems, 344
database, 344
message bus, 139
messaging systems, 102
Web services, 132

Address Change message, 31
Addresses, 30–32
Aggregate interface, 280
Aggregating

loan broker system strategies, 368
responses to single message, 298–300

Aggregation algorithm, 270
Aggregator class, 276–279
Aggregator pattern, 24–27, 173, 226–227,

268–282, 352
aggregation algorithm, 270
collect data for later evaluation algo-

rithm, 273
completeness condition, 270
composed message processor, 296
condense data algorithm, 273
correlation, 270
correlation identifiers, 270–271
event-driven consumers, 278

External event strategy, 273
first best strategy, 273
implementation, 270–272
initialized, 274
JMS (Java Messaging Service), 276–282
listing active aggregates, 270
listing closed out aggregates, 271
loan broker, 275
loan broker system, 363, 368
loan broker system (ActiveEnterprise),

446–447, 458
loan broker system (MSMQ), 402, 422,

424
as missing message detector, 275–276
out-of-order messages, 284
parameters and strategy, 274
Publish-Subscribe Channel pattern, 22
scatter-gatherers, 300
selecting best answer algorithm, 273
sequentially numbered child messages,

262
splitters and, 274
stateful, 269
strategies, 272–274
timeout strategy, 272
timeout with override strategy, 273
wait for all strategy, 272

Apache Axis, 371, 376–378
Application integration

application coupling, 39–40
criteria, 39–41
data formats, 40
data sharing, 40
data timeliness, 40
encapsulation, 51–52

660 INDEX

Application integration, continued
file transfer, 41, 43–46
intrusiveness, 40
messaging, 41, 53–56
options, 41–42
reliability, 41
remote communication, 41
remote procedure invocation, 41, 50–52
shared database, 41, 47–49
sharing functionality, 40
technology selection, 40

Application layer, 88
Applications

automatically consuming messages, 498
brokering between, 82–83
channels, 61
client for each messaging system, 134
as client of messaging server, 95–96
collaborating behaviorally, 55
communicating with messaging, 60–66
communicating with simple protocol,

127
connecting to messaging system, 56
consistency, 48
consuming messages, 494
coupling, 39–40
data integrity, 51
data types, 88
deadlocks, 49
decoupling, 88–89
deleting files, 45
design and encapsulation, 50
different conceptual models, 54
errors, 117
exchanging data, 127
explicitly communicating with other

applications, 323
file-naming conventions, 45
files, 44
handling different aspects of enterprise,

43
integration problems, 117
invalid request, 117
invoking procedures in, 145–146
logical entities, 88
messages, 67
much more decoupled, 55

multiple interfaces to data, 51
operating independently, 137–138
physical representation of data, 86
proprietary data models and data

formats, 85
semantic dissonance, 47, 54
sharing databases, 47–49
sharing information, 43, 50–52
specific core function, 2
spreading business functions across, 2
as standalone solution, 127
tightly coupled, 39–40
transferring data between, 147–150
transmitting events between, 151–153
two-way conversation, 100

Application-specific messages, 20
AppSpecific property, 288, 290, 405, 424
Architectural patterns, 225, 228
Aspects, 219, 221
Asynchronous callback, 155–156
Asynchronous Completion Token pattern,

167, 472
Asynchronous message channels, 27
Asynchronous messaging, 71
AsyncRequestReplyService class, 408–409
Attach() method, 207–209, 212
Auction class, 276, 279–280
Auction versus distribution, 366–368
AuctionAggregate class, 276, 278–280
Auction-style scatter-gathers, 298
Axis server, 376

B
BAM (Business Activity Monitoring), 537
BankConnection class, 422–423
BankConnectionManager class, 438
BankGateway class, 426
BankName parameter, 410
BankQuoteGateway class, 379
BeginReceive method, 234, 292
Bid class, 276
Bidirectional channels, 100
Big-endian format, 12–13
Billing addresses, 30
BitConverter class, 12
BizTalk Mapper editor, 93
BizTalk Orchestration Manager, 320–321

INDEX 661

Blocking gateways, 470–471
Body, 67
Body property, 68
BodyStream property, 68, 591
BodyType property, 68
BPEL4WS (Business Process Execution

Language for Web Services), 318, 634
Bridges, 134–136
Broadcasting

document messages, 148
messages, 106–110
messages to multiple recipients,

298–300
Buffers, 286–288
Business applications, 1, 129
Business logic adapters, 129
Business object identifier, 166
Business tasks, 166
Business-to-business integration, 9
Byte streams, 12, 66
BytesMessage subtype, 68

C
C#

content-based routers, 233–234
delegates, 84
dynamic recipient lists, 256–258
dynamic routers, 246–248
filters, 76–77
routers, 83–84
smart proxies, 561–568
splitting XML order document,

262–267
CanHandleLoanRequest method, 422
Canonical Data Model pattern, 67, 90,

130, 355–360
Canonical data models, 20, 31, 113

ActiveEnterprise, 360
data format dependencies, 359
designing, 358–359
double translation, 358
indirection between data formats, 356
message bus, 140
multiple applications, 357
transformation options, 357–358
WSDL, 359–360

Canonical messages, 20

Chain of Responsibility pattern, 231,
308

Chaining
envelope wrappers, 332
gateways, 414, 472–473
request-reply message pairs, 166–167
transformations, 89–90

Change notification, 151
Channel Adapter pattern, 63, 86, 97, 102,

127–132, 134–135, 139
Channel Purger pattern, 572–575
Channels, 14–15, 20, 26, 57, 60–66,

359
acting like multiple channels, 63
adapters, 127–132
asynchronous, 27
bidirectional, 100
concurrent threading, 213
cost of, 63
crash proof, 101–102
data types, 101, 112, 220–221
datatyped, 111–114
dead letter, 119–121
dead messages, 101
decisions about, 101–102
defining for recipients, 250–251
deployment time, 62
design in Publish-Subscribe example,

219–222
designing, 62–63
determining set of, 100
dynamic, 100
for each aspect, 221
eliminating dependences, 327–328
FIFO (First-In, First-Out), 74
fixed set of, 99–100
hierarchical, 100
input, 107
invalid messages, 63, 101, 115–118
item number as address, 231
JMS, 64
message priorities, 113
message sequences, 172
message types, 78
messages, 15
mixing data types, 63
MSMQ, 65

662 INDEX

Channels, continued
multiple consumer coordination,

508–509
multiple data types sharing, 113
multiple receivers, 103–104
names, 63
non-messaging clients, 102
notifying subscriber about event once,

106
number needed, 220–222
one-to-one or one-to-many relation-

ships, 101–102
one-way, 154
output, 107
persistent, 63, 102
Pipes and Filters architecture, 72
planning, 61–62
point-to-point, 103–105
practical limit to, 63
preventing more than one receiver mon-

itoring, 103
publish-subscribe, 106–110
quality-of-service, 113
queuing requests, 14
routing, 79
separating data types, 63–64
static, 99
subscribing to multiple, 108
subscribing to relevant, 237
themes, 99–100
TIB/RendezVous Transport, 448
transmitting units of data, 66
two-way, 154
unidirectional, 100

Channel-specific endpoints, 96–97
Channel-to-RDBMS adapters, 131
Child messages, 262
Claim Check pattern, 27, 90, 173,

346–351
Class diagrams, 88
Client-Dispatcher-Server pattern, 246
Clients, 62

concurrently processing messages, 502
non-messaging, 102
transaction control, 484–485

CLR (Common Language Runtime), 110
Coarse-grained interfaces, 32

COBOL, 44
Collect data for later evaluation algo-

rithm, 273
Collections and data types, 112
Command Message pattern, 23, 67, 104,

112, 117, 139, 143–147, 153, 156
invoking behavior, 148
JMS, 146
loan broker system (ActiveEnterprise),

452
routing, 140
SOAP (Simple Object Access Protocol),

146
Commands, common structure of, 139
Commercial EAI tools

channel adapters, 131
content-based routers, 234–236
Message Broker pattern, 82–83
message brokers, 326
message stores, 557
Message Translator pattern, 445
process Manager pattern, 445

Common command structure, 139
Common communication infrastructure,

139
Communications

assumptions, 13–14
availability of components, 14
big-endian format, 12–13
data formats, 14
little-endian format, 12–13
local method invocation, 10–11
location of remote machine, 13
loose coupling, 10
platform technology, 13
reducing assumptions about, 10
strict data format, 13
TCP/IP, 12
tight coupling, 10

Communications backbone, 102
Competing Consumers pattern, 74, 97,

104, 172, 502–507
JMS, 505–507
processors, 289

Components
decoupling, 72, 88–89
dependencies between, 71

INDEX 663

filtering out undesirable messages, 238
receiving only relevant messages,

237–238
two-way communication, 154

Composed Message Processor pattern, 25,
28, 227–228, 294–296

Composed routers, 225, 227–228
Composed service, 309–310
Composite messages, processing, 295–296
Computations and content enrichers, 339
ComputeBankReply method, 412
Computer systems

communications bus, 139
reliability, 124

ComputeSubject method, 235–236
Concurrency, 368–369
Concurrent threading, 213
Condense data algorithm, 273
Conflict resolution, 248
Consumers, 62, 515–516
Content, 111
Content Enricher pattern, 24–25, 90,

336–341
loan broker system, 363
loan broker system (ActiveEnterprise),

447
loan broker system (Java), 372

Content Filter pattern, 75, 90, 342–345
Content-Based Router pattern, 22–24,

81–82, 114, 225–226, 230–236
C#, 233–234
commercial EAI tools, 234–236
implementing functionality with filters,

240–242
knowledge about every recipient, 308
modifying for multiple destinations,

237–238
MSMQ, 233–234
reducing dependencies, 232–233
routing messages to correct validation

chain, 303–305
routing messages to dynamic list of

recipients, 249–250
routing rules associated with recipient,

308
special case of, 238
TIB/MessageBroker, 234–236

Context-Based Router, 82
ContextBasedRouter class, 594
Contivo, 93
Control Box pattern, 82
Control Bus pattern, 35, 407, 540–544
Control channels and dynamic routers,

244
ControlReceiver class, 594–595
Conway’s Law, 3
CORBA, 4, 10
Correlation

aggregators, 270
process managers, 315–316

Correlation Identifier pattern, 115, 143,
161, 163–169, 172, 197, 206

loan broker system (ActiveEnterprise),
457, 459–469

loan broker system (MSMQ), 405,
420–421, 439

replier, 195, 205
reply, 156

Correlation identifiers, 164–169,
270–271, 285, 315–316

CorrelationId property, 195, 205
CreditAgencyGateway class, 379
CreditBureauGateway class, 476
CreditBureauGatewayImp class, 442
CreditBureauRequest struct, 414
CreditBureauReply struct, 418
Criteria and application integration,

39–41
CSPs (Communicating Sequential

Processes), 75–76
Custom applications, sending and

receiving messages, 127–128

D
Data

byte stream, 66
changes to, 50
frequent exchanges of small amounts

of, 52
inconsistencies, 47
knowing where to send, 55–56
as message sequence, 171–179
moving between domain objects and

infrastructure, 477–480

664 INDEX

Data, continued
multiple interfaces to, 51
sharing, 53
storage schema and details easily

changed, 54
storing in tree structure, 260–261
transferring between applications,

147–150
transformations, 327–329
transmitting large amounts,

170–171
units, 66
wrapping and unwrapping in envelope,

331–335
Data formats, 56

application integration, 40
changing, 85–86
changing application internal, 357
content, 111
dependencies, 359
designing for changes, 180–181
detecting, 353–354
distinguishing different, 180–181
evolution and extensibility, 40
foreign key, 181
format document, 181–182
format indicator, 181–182
integration, 16
internal, 16
minimizing dependencies, 355–356
not enforcing, 47
proprietary, 85
rate of change, 352
standardized, 85
transformations, 14
translation, 16, 86
translators, 353
version number, 181

Data models, proprietary, 85
Data packets, 55, 57
Data replication, 7, 31
Data Representation layer, 87–88, 90
Data sharing and latency, 40
Data structure content, 111
Data Structures layer, 87–88
Data transfer mechanism, 44, 54

Data types, 88
channels, 101, 112, 220–221
collections, 112
Datatype Channel pattern, 222
multiple sharing channel, 113

Data Types layer, 87
Database adapters, 129–130
Databases

adapters with content filters, 344–345
adding trigger to relevant tables, 129
changes to, 50
extracting information directly from,

129–130
performance bottleneck, 49
sharing, 47–49
suitable design for shared, 48

Datatype Channel pattern, 20, 63, 78,
101, 111–114, 139, 196, 353

data types, 220–222
Message Channel pattern, 115
request channel, 205
stock trading, 114

DCOM, 10
Dead Letter Channel pattern, 101,

117–121, 144
expired messages, 177
messaging systems, 120

Dead letter queue, 120
Dead message queue, 120
Dead messages, 101, 117–118, 120
Deadlocks, 49
Debugging Guaranteed Delivery pattern,

123–124
Decoupling, 88–89
DelayProcessor class, 288–290, 292
Detach() method, 207, 208
Detour pattern, 545–546
Detours, 545–546
Direct translation, 358
Dispatchers, 509–512

Java, 513–514
.NET, 512–513

Distributed environment and Observer
pattern, 208–209

Distributed query message sequences,
173

INDEX 665

Distributed systems
asynchronous messaging, 54
change notification, 151

Distribution versus auction, 366–368
DNS (Dynamic Naming Service), 13
Document binding, 375
Document Message pattern, 20, 67, 104,

143–144, 147–150, 153, 156
Document/event messages, 153
Double translation, 358
Duplicate messages and receivers, 528–529
Durable Subscriber pattern, 108, 124,

522–527
JMS, 525–527
observers, 213
stock trading, 125, 525

Dynamic channels, 100
Dynamic Recipient List pattern, 34,

252–253
C#, 256–258
MSMQ, 256–258

Dynamic Router pattern, 226, 233,
242–248

Dynamic routing slips, 309
DynamicRecipientList class, 256, 258

E
EAI (Enterprise Application Integration)

applications operating independently,
137–138

one-minute, 11
process manager component, 317–318
suites, 2–3

ebXML, 85
E-mail

data as discrete mail messages, 67
Encapsulation, 50–52

reply-to field, 161
encodingStyle attribute, 374
Endpoints, 19, 58, 62, 84

channel-specific, 96–97
customizing messaging API, 96
encapsulating messaging system from

rest of application, 96
message consumer patterns, 464–466
message endpoint themes, 466–467

send and receive patterns, 463–464
sending and receiving messages, 95–97
transactional, 84

EndReceive method, 204, 292
Enterprises

challenges to integration, 2–4
loose coupling, 9–11
need for integration, 1
services, 8

Entity-relationship diagrams, 88
Envelope Wrapper pattern, 69, 90,

330–335
adding information to raw data, 332
chaining, 332
headers, 331–332
postal system, 334–335
process of wrapping and unwrapping

messages, 331
SOAP messages, 332–333
TCP/IP, 333–334

Envoy Connect, 136
EnvoyMQ, 131
ERP (Enterprise Resource Planning)

vendors, 1
Errors, 117
Event Message pattern, 67, 123, 143, 148,

151–153, 156
Observer pattern, 153
Publish-Subscribe Channel, 108

Event-Driven Consumer pattern, 77, 84,
97, 498–501

aggregators, 278
gateways, 212
JMS MessageListener interface,

500–501
loan broker system (MSMQ), 417–418
.NET ReceiveCompletedEventHandler

delegate, 501
pull model, 217
replier, 195, 204

Event-driven gateways, 471–472
Events

content, 152
Guaranteed Delivery pattern, 152
Message Expiration pattern, 152
notify/acknowledge, 156

666 INDEX

Events, continued
notifying subscriber once about, 106
timing, 152
transmitting between applications,

151–153
Exceptions, 156, 473
Expired messages, 176–179
External event strategy, 273
External packages and schemas, 49

F
FailOverHandler class, 599–600
FIFO (First-In, First-Out) channels, 74
File formats, standard, 44
File transfer, 33, 41, 43–46
File Transfer pattern, 50, 147

decoupling, 53–54
multiple data packets, 53–54
not enforcing data format, 47
reacting to changes, 50
sharing data, 47, 53

Files, 44–45
Filtering

built-in messaging system functions,
239–240

messaging, 71
reactive, 233
splitters, 344

Filters, 58, 71–72, 226, 238
aggregators, 269–270
combining, 227
composability, 312
connection with pipes, 72
decoupling, 79
directly connecting, 78
eliminating messages not meeting

criteria, 226
generic, 75
implementing router functionality,

240–242
loan broker system, 367
multiple channels, 72–73
parallelizing, 74
versus recipient lists, 254–255
sequence of processing steps as

independent, 301–302
single input port and output port, 72

stateful, 239
stateless, 239

Fine-grained interfaces, 32
First best strategy, 273
Fixed routers, 81
Foreign key, 181
Format document, 181–182
Format Indicator pattern, 112, 114,

180–182
Formatter property, 234

G
Gateways, 469

abstracting technical details, 403
asynchronous loan broker gateway

(MSMQ), 475–476
blocking, 470–471
chaining, 414, 472–473
event-driven, 471–472
Event-Driven Consumer pattern, 212
exceptions, 473
generating, 473–474
between observer and messaging

system, 212
pull model, 215–217
sending replies, 217–218
between subject and messaging system,

211
testing, 475

generateGUID method, 457
Generic filters, 75
getaddr method, 93
GetCreditHistoryLength method,

441–442
GetCreditScore method, 414, 420,

441–442, 477
GetLastTradePrice method, 146, 150
GetRequestBodyType method, 407, 409,

412
GetState() method, 207–209, 214, 218
getStateRequestor method, 218, 219
GetTypedMessageBody method, 407
Guaranteed delivery

built-in datastore, 123
debugging, 123–124
events, 152
large amount of disk space, 123

INDEX 667

redundant disk storage, 124
stock trading, 124–125
testing, 123–124
WebSphere MQ, 126

Guaranteed Delivery pattern, 102, 113,
122–126, 176

GUIDs (globally unique identifiers), 285
GUIs and message bus, 140

H
Half-Sync/Half-Async pattern, 472, 534
Header, 67
Hierarchical channels, 100
Host Integration Server, 135–136
HTTP Web services, 51
Hub-and-spoke architecture, 228,

313–314, 324–326

I
ICreditBureauGateway interface, 442
Idempotent Receiver pattern, 97, 528–531
Idempotent receivers, 252, 529–531
IMessageReceiver interface, 403, 442
IMessageSender interface, 403, 442
Incoming messages output channel

criteria, 81
Information Portal scenario, 32
Information portals, 6
Initialized aggregators, 274
Integration

application, 39–56
big-endian format, 12–13
broad definition, 5
business-to-business, 9
challenges, 2–4
channels, 14–5
data formats, 16
data replication, 7
distributed business processes, 8–9
existing XML Web services standards, 4
far-reaching implications on business, 3
information portals, 6
limited amount of control over partici-

pating applications, 3
little-endian format, 12–13
location of remote machine, 13
loose coupling, 9–11

loosely coupled solution, 15–16
message-oriented middleware, 15
messages, 15
middleware, 15
need for, 1–2
patterns, 4–5
redundant functionality, 7
remote data exchange into semantics as

local method call, 10
removing dependencies, 14–15
routing, 16
semantic differences between systems, 4
shared business functions, 7–8
significant shift in corporate politics, 3
skill sets required by, 4
SOAs (service-oriented architectures), 8
standard data format, 14
standards, 3–4
systems management, 16
tightly coupled dependencies, 11–14
user interfaces, 129

Integrators and files, 44–45
Interfaces, 32

loan broker system (Java), 371–372
Internal data formats, 16
Invalid application request, 117
Invalid Message Channel pattern, 101,

115–118, 196–197, 205–206
loan broker system (MSMQ), 405
messages out of sequence, 172
queues, 233

Invalid messages, 23, 63, 101, 115–118,
120

application integration problems, 117
ignoring, 116
JMS specification, 118
monitoring, 117
receiver context and expectations, 117
receivers, 120
Request-Reply example, 196–197
stock trading, 118

InvalidMessenger class, 196, 205
Inventory Check message, 26
Inventory systems, 22–23
IsConditionFulfilled method, 84
Iterating splitters, 260–261
Iterator, 261

668 INDEX

J
J2EE

EJBs (Enterprise JavaBeans), 535
messaging systems, 64

j2eeadmin tool, 64
Java

dispatchers, 513–514
document messages, 149
event messages, 152
loan broker system, 371–400

Java RMI, 10
JAX-RPC specification, 375
JMS (Java Messaging Service)

aggregators, 276–282
channel purgers, 574–575
channels, 64
command message, 146
competing consumers, 505–507
correlation identifiers, 167
Correlation-ID property, 167
document messages, 148
Durable subscribers, 525–527
event messages, 152
expired messages, 178
invalid messages, 118
mappers, 483
message selector, 521
message sequences, 174
MessageListener interface, 500–501
messages, 68
multiple message systems, 133
persistent messages, 125–126
point-to-point channels, 104–105
producer and consumer, 97
Publish-Subcribe example, 207–208
Publish-Subscribe Channel pattern, 109,

124, 186
receive method, 496
Reply-To property, 161
requestor objects, 157–158
Request-Reply example, 118, 187–197
Request/Reply pattern, 157–158
return addresses, 161
Time-To-Live parameter, 178
transacted session, 489

JndiUtil JNDI identifiers, 191
JWS (Java Web Service) file, 378

K
Kahn Process Networks, 74
Kaye, Doug, 9

L
Large document transfer message

sequences, 173
Legacy application routing slips imple-

mentation, 306
Legacy platform and adapters, 131
LenderGateway class, 379
Listens, 62
little-endian format, 12–13
Loan broker system

ActiveEnterprise, 445–462
addressing, 366–368
aggregating strategies, 368
Aggregator pattern, 363, 368
aggregators, 275
asynchronous timing, 364–366
bank component, 578
Content Enricher pattern, 363
control buses, 544
credit bureau component, 578
credit bureau failover, 579, 592–595
designing message flow, 362–364
distribution versus auction, 366–368
enhancing management console,

595–602
instrumenting, 578–579
Java, 371–400
loan broker component, 578
loan broker quality of service, 578–587
management console, 578, 579
managing concurrency, 368–369
Message Channel pattern, 367–368
Message Filter pattern, 367
Message Translators pattern, 364
MSMQ, 401–444
normalizer pattern, 364
obtaining loan quote, 361–362
patterns, 363
Point-to-Point pattern, 368
process managers, 320
Publish-Subscribe Channel pattern, 363,

366–368
Recipient List pattern, 366–367

INDEX 669

recipient lists, 256
Scatter-Gather pattern, 363, 366
scatter-gatherers, 299
Selective Consumer pattern, 367
sequencing, 364–366
synchronous implementation with Web

services, 371–400
synchronous timing, 364–366
system management, 577–602
test client component, 578
verifying credit bureau operation, 579,

587–592
wire taps, 549
XML Web services, 371–400

Loan broker system (ActiveEnterprise)
Aggregator pattern, 446–447, 458
architecture, 445–447
Command Message pattern, 452
Content Enricher pattern, 447
Correlation Identifier pattern, 457,

459–460
design considerations, 455
execution, 460–461
implementing synchronous services,

452–454
interfaces, 451–452
managing concurrent auctions,

459–460
Message Translator pattern, 457–458
process model implementation,

456–459
Publish-Subscribe pattern, 446
Request-Reply pattern, 446, 452
Return Address pattern, 452

Loan broker system (Java), 379–381
accepting client requests, 378–384
Apache Axis, 376–378
Bank1.java file, 393–394
Bank1WS.jws file, 395
Bank.java file, 391–392
BankQuoteGateway.java file, 390–391,

396
client application, 396–397
Content Enricher pattern, 372
CreditAgencyGateway.java file,

385–386
CreditAgencyWS.java file, 386–388

implementing banking operations,
394–3945

interfaces, 371–372
JWS (Java Web Service) file, 378
LenderGateway.java file, 389–390
Message Translators pattern, 372
Normalizer pattern, 372
obtaining quotes, 388–3889
performance limitations, 399–400
Recipient List pattern, 372
running solution, 397–399
Service Activator pattern, 372, 379
service discovery, 379
solution architecture, 371–372
Web services design considerations,

372–376
Loan broker system (MSMQ), 401

accepting requests, 428–431
Aggregator pattern, 402, 422, 424
bank design, 410–412
bank gateway, 421–428
Bank.cs file, 411–412
base classes, 405–409
Control Bus pattern, 407
Correlation Identifier pattern, 405,

420–421, 439
credit bureau design, 412–413
credit bureau gateway, 414–421
CreditBureau.cs file, 413
CreditBureauGateway.cs file, 418–420
designing, 413–431
Event-Driven Consumer pattern,

417–418
external interfaces, 401–402
IMessage Sender.cs file, 403–404
improving performance, 435–540
Invalid Message Channel pattern, 405
limitations, 443–444
LoanBroker.cs file, 430–431
Message Translator pattern, 402
message types for bank, 410
Messaging Gateway pattern, 402–405
MQService.cs file, 406–409
Process Manager pattern, 402, 434
Recipient List pattern, 402, 422,

424–425
refactoring, 431–434

670 INDEX

Loan broker system (MSMQ), continued
Return Address pattern, 405
Scatter-Gather pattern, 402, 422
Service Activator pattern, 412
testing, 440–443

LoanBroker class, 428–431
LoanBrokerPM class, 433–434
LoanBrokerProcess class, 432–433
LoanBrokerProxy class, 582–583
LoanBrokerProxyReplyConsumer class,

584–585
LoanBrokerProxyRequestConsumer class,

584
LoanBrokerWS class, 379
Local invocation, 145
Local method invocation, 10–11
Local procedure calls, 52
Logical entities, 88
Loose coupling, 9–11

M
ManagementConsole class, 597–598
MapMessage subtype, 68
Mapper pattern, 480
Mapper task, 457–458
Mappers, 480–483
match attribute, 93
MaxLoanTerm parameter, 410
Mediator pattern, 509
Mediators, 481
Message Broker pattern, 228, 322–326

brokering between applications, 82–83
central maintenance, 324
commercial EAI tools, 82–83, 326
hierarchy, 325
stateless, 324–325
translating message data between

applications, 325–326
Message bus, 102, 139–141
Message Bus pattern, 64, 137–141
Message Channel pattern, 19, 55, 57, 62,

73, 78, 106
Apache Axis, 377
availability, 100
Datatype Channel pattern, 115
decisions about, 101–102
decoupling applications, 89

fixed set of, 99–100
load-balancing capabilities, 82
loan broker system, 367–368
monitoring tool, 108
as pipe, 66
security policies, 108
unidirectional or bidirectional, 100

Message class, 68
Message Consumer patterns, 464–466
Message Dispatcher pattern, 97, 113,

508–514
Message dispatchers, 172
Message Endpoint pattern, 56, 58, 61,

173
Apache Axis, 376
data format translation, 86
Selective Consumer pattern, 226

Message endpoints, 16, 62, 95–97,
134–135

Message Expiration pattern, 67, 108, 119,
123, 144, 176–179

Message Filter pattern, 75, 80, 237–242
Publish-Subscribe Channel pattern, 226

Message History pattern, 81, 551–554
Message ID, 166
Message identifiers, 285
Message pattern, 57–58, 78
Message Router pattern, 34, 58, 75, 89,

139, 225, 228
capabilities, 139
Content-Based Router pattern, 232
Message Filter pattern, 238

Message Sequence pattern, 67, 115, 144,
156, 170–175

Message sequences, 171–179
channels, 172
Competing Consumers pattern, 172
distributed query, 173
end indicator field, 171
identification fields, 171
identifiers, 167
JMS, 174
large document transfer, 173
Message Dispatcher pattern, 172
multi-item query, 173
.NET, 174
position identifier field, 171

INDEX 671

Request-Reply pattern, 172
sending and receiving, 172
sequence identifier field, 171
size field, 171

Message Store pattern, 555–557
Message stores, 26–27, 34, 556–557
Message Translator pattern, 58

Channel Adapters, 130
commercial EAI products, 445
data in incoming message, 336
loan broker system, 364
loan broker system (ActiveEnterprise),

457–458
loan broker system (Java), 372
loan broker system (MSMQ), 402
metadata, 130

MessageConsumer class, 191, 278,
562–563

MessageConsumer type, 97
MessageGateway, 414
message-id property, 195, 205
MessageListener interface, 195, 212, 217,

500–501
Message-oriented middleware, 15
Message-processing errors, 117
MessageProducer class, 125, 191, 195
MessageProducer type, 97
MessageQueue class, 97, 105, 126, 167,

201, 204
MessageQueue instance, 65
MessageReceiverGateway class, 404
Messages, 14–15, 66, 159

aggregating, 24
applications, 67
application-specific, 20
augmenting with missing information,

338–341
authentication information, 70
body, 67
breaking data into smaller parts, 67
broadcasting, 106–110
canonical, 20
channels, 78
checking in data for later use, 27
collecting and storing, 269–270
combining related to process as whole,

268–269

common format, 86
conforming to data types, 101
containing commands, 146
contents are semantically incorrect, 117
correlation ID, 166
data formats, 56
data packets, 57
dead, 101, 117–118
decoupling destination of, 322–323
decrypting, 70–71
delivering, 57–58
demultiplexing, 113
destination of, 80
different types of, 67
directing, 56
document/event, 153
duplicate, 70
elements requiring different processing,

259–260, 294–295
encrypted, 70
endpoints, 58
expired, 176–179
format data, 67
formatting in proprietary formats, 31
guaranteed delivery, 122–126
header, 67
high frequency of, 55
huge amounts of data, 144
improper datatype or format, 115
“incoming message massaging module,”

70
intent, 143
invalid, 101, 115–118, 120
JMS, 68
large amounts of data, 170–171
message ID, 166
messaging system, 67
missing properties, 115
monitoring, 34–36
multiple recipients with multiple replies,

297
.NET, 68
order ID, 24–25
out-of-sequence, 227, 283–284
peek functions, 108
persistent, 122–126
private, 358

672 INDEX

Messages, continued
processing in type-specific ways,

113–114
processing steps, 71
public, 358
recombining, 226–227
recursive nature, 69
reducing data volume, 346
removing unimportant data from,

343–345
removing valuable elements from,

342–343
reordering, 284–293
response, 143–144
retry timeout parameter, 123
return address, 161
routing, 58, 80, 85
routing slips, 305–306
routing to correct recipient based on

content, 232–236
semantically equivalent in different

format, 352–353
sending and receiving, 95–97
sent time, 178
sequence numbers, 285
simplifying structure, 343
slow, 144
SOAP, 68–69
splitting, 24, 226, 260–267
state reply, 153
state request, 153
storing data between, 28
storing data in central database, 27
storing data in tree structure, 260–261
testing, 34–36
timestamp, 177–178
transformation, 54, 58, 327–329
transformation levels, 87–88
two-way, 154
types, 68, 78
unable to deliver, 118–121
update, 153
Wire Tap, 27

MessageSenderGateway class, 404
Messaging, 41, 53–56

asynchronous, 54, 71
basic concepts, 57–58

filtering, 71
invoking procedure in another applica-

tion, 145–146
one-way communication, 154
remote procedure invocation, 156
remote query, 156
transfering data between applications,

147–150
transmitting discrete units of data, 66

Messaging API, 96
Messaging Bridge pattern, 102, 131,

133–136
Messaging Gateway pattern, 19–20, 72,

97, 117, 211, 468–476
loan broker system (MSMQ), 402–405

Messaging Mapper pattern, 97, 477–483
Messaging mappers, 357–358
Messaging pattern, 45–46, 49, 52, 57–58,

163
Messaging server, applications as clients

of, 95–96
Messaging services, 8

dynamic discovery, 245
invoking with messaging and non-

messaging technologies, 532
request-reply, 28–29
reuse, 29
shared business functions as, 28

Messaging systems
adapters, 102
applications communicating with,

60–66
built-in datastore, 123
channel adapters, 63
communicating without required data

items, 336–338
communications backbone, 102
connecting application to, 56
connecting multiple, 133–136
connections, 60–61
Dead Letter Channel, 120
decoupling, 54
delivering messages, 57–58
encapsulating access to, 468–469
filtering built-in functions, 239–240
filters, 58
hierarchical channel-naming scheme, 63

INDEX 673

implementation of single function
spread across, 230–232

inconsistency, 55
interoperability, 133–134
invalid messages, 330
J2EE, 64
logical addresses, 61
managing channels, 95
messages, 67
pipes, 58
Pipes and Filters architecture, 70–77
planning channels, 61–62
receivers inspecting message properties,

79
reducing data volume of messages, 346
sending and receiving messages, 95–97
specific messaging requirements, 330–331
store-and-forward process, 122
uneconomical or impossible to adjust

components, 79
valid messages, 330
WebSphere MQ for Java, 64–65

Metadata
management and transformations,

328–329
Message Translators pattern, 130

Metadata adapter, 130–131
MetricsSmartProxy class, 566
Meunier, Regine, 74
Middleware, 15
MIDL (Microsoft Interface Definition

Language), 531
Missing messages

aggregators as detector of, 275–276
stand-in messages for, 287–288

MockQueue, 404
Model-View-Controller architecture, 151
Monitor class, 589–592
MonitorStatusHandler class, 598
MQSend class, 288
MQSequenceReceive class, 289
MQService class, 405–409, 412
MSMQ (Microsoft Messaging Queuing

Service)
asynchronous loan broker gateway,

475–476
bridges, 135–136

content-based routers, 233–234
distribution lists, 110
dynamic recipient lists, 256–258
dynamic routers, 246–248
filters, 76–77
loan broker system, 401–444
maximum message size, 173
message channels, 65
multiple-element format names, 110
one-to-many messaging model, 109
persistent channels, 124
queues, 65
real-time messaging multicast, 109
resequencers, 288–293
routers, 83–84
smart proxies, 561–568
splittering order document, 264–267
Transactional Clients pattern, 124
transactional filter, 490–493

Multi-item queries and message sequences,
173

Multiple asynchronous responses, 174
Multiplexing, 113

N
.NET

CLR (Common Language Runtime),
110

correlation identifiers, 167–168
Correlation-Id property, 167–168
delegates, 418
dispatchers, 512–513
document messages, 148
event messages, 152
expired messages, 179
message sequences, 174
MessageQueue class, 97
messages, 68
persistent messages, 126
point-to-point channels, 105
Receive method, 496–497
ReceiveCompletedEventHandler

delegate, 501
Request-Reply example, 118, 198–206
resequencers, 288–293
Response-Queue property, 162
return addresses, 162

674 INDEX

.NET, continued
selective consumers, 521
serialization and deserialization, 416
Time-To-Be-Received property, 179
Time-To-Reach-Queue property, 179
transactional queue, 490

.NET Framework, 404–405

.NET Framework SDK, 415

.NET Remoting, 10
Networks, inefficiencies and recipient lists,

253–254
Neville, Sean, 375
New Order message, 22, 27, 30
Normalizer pattern, 90, 352–354

loan broker system, 364
loan broker system (Java), 372

Normalizers, 353–354
Notify() method, 207, 208, 211, 213
notifyNoState() method, 217
Null Object, 238

O
OAGIS, 85
ObjectMessage class, 196
ObjectMessage subtype, 68
Objects, notifying dependents of change,

207–208
Observer pattern, 106, 110, 151

distributed environment, 208–209
Event Message pattern, 153
implementing, 209–212
JMS Publish-Subcribe example,

207–208
.NET Framework, 404
pull model, 153
push model, 153

ObserverGateway class, 212, 218
Observers, 207–208

concurrent threading, 213
Durable Subscriber pattern, 213
implementing, 209–213
losing notification, 209
multiple aspects, 219
receiving messages, 213
reply channels, 214–215
subscribing and unsubscribing from

channels, 213

OnBestQuote method, 431
OnCreditReply method, 431
OnCreditReplyEvent delegate, 476
OnCreditReplyEvent event, 420
One-minute EAI (Enterprise Application

Integration) suites, 11
One-way channels, 154
OnMessage event, 404
onMessage method, 84, 195, 197, 212,

217, 234, 264, 278, 407–408
OnMsgEvent delegate, 404
OnReceiveCompleted method, 77, 204
Operating environment, 339
ORB (object request broker) environment,

208
Order ID, 24–25
Order Item Aggregator, 25
Order Item messages, 24–25
Order message, 24–25, 263
Ordered or unordered child messages,

262
Orders, checking status, 26–29
Out-of-order messages, 283–284
Out-of-sequence messages, 227

P
Parallelizing filters, 74
Pattern matching, 93
Patterns

combining with scatter-gatherers,
299–300

comparing Process Manager pattern
with, 319–320

loan broker system, 363
pattern form, xliii–xlvi

Peek functions, 108
PeekByCorrelationId() method, 168
Persistence, 123
Persistent channels, 63, 102, 126
Persistent messages, 122–126

JMS, 125–126
.NET, 126

Persistent recipient lists, 252
Persistent store, 29, 347–348
PGM (Pragmatic General Multicast),

109
Pipeline processing, 73–74

INDEX 675

Pipes, 58
abstract, 72
composability, 312
connection with filters, 72
managing state, 316
Message Channel pattern, 66
simple in-memory queue to implement,

72
Pipes and Filters architecture, 58

directly connecting filters, 78
history of, 74–75
large number of required channels, 72

Pipes and Filters pattern, 227
chaining transformations, 89
composability of individual compo-

nents, 79
composability of processing units, 312
distributed, 317
pipeline processing, 73–74
processing messages, 73–74
processing steps, 230
sequence of processing steps as indepen-

dent filters, 301–302
testability, 73

Point-to-Point Channel pattern, 63,
73–74, 101, 124, 147, 368

Point-to-Point channels, 20, 23, 26–27,
103–105

broadcasting messages, 153
command messages, 146
document messages, 148
eavesdropping, 107–108
inspecting messages, 547–550
JMS, 104–105
.NET, 105
request channel, 155
stock trading, 104

Polling Consumer pattern, 97, 155,
494–497

Port, 72
Postal service

data as discrete mail messages, 67
envelope wrappers, 334–335

Predictive routing, 80
Private messages, 358
Procedures, invoking in another

application, 145–146

Process definitions, 315
process managers creation of, 317–318
TIB/IntegrationManager Process Man-

ager Tool, 449
Process instances, 28

process managers, 314–315
TIB/IntegrationManager Process

Manager Tool, 449
Process Manager pattern, 312–321

commercial EAI products, 445
comparing with other patterns,

319–320
loan broker system (MSMQ), 402,

434
Process managers, 27–31, 309, 313

BizTalk Orchestration Manager,
320–321

central, 317
claim checks, 350–351
correlation, 315–316
hub-and-spoke pattern, 313–314
keeping state in messages, 316–317
loan broker, 320
process definition, 315, 317–318
process instances, 314–315
state maintenance, 314
storing intermediate information, 314
trigger message, 313
versatility, 314

Process method, 77
Process template, 28
Processes

marshaling and unmarshaling data, 66
passing piece of data, 66
synchronizing with IO (input-output),

75
Processing

composite messages, 295–296
orders, 20–23

Processing pipeline, 73–74
ProcessMessage method, 76–77, 290, 292,

408–412, 431
Processor class, 76, 290, 292
Processors competing with consumers,

289
Producers, 62
Protocols, tunneling, 330

676 INDEX

Provider, 62
Public messages, 358
Publisher, 62
Publish-Subscribe Channel pattern, 62–63,

80, 101, 104, 139, 147, 153, 207,
209

loan broker system (ActiveEnterprise),
446

Publish-subscribe channels, 23, 26, 31,
33–34, 106–110, 249–250

announcing address changes, 220
basic routing, 323
as debugging tool, 107
document messages, 148
eavesdropping, 107–108
Event Message pattern, 108
filters versus recipient lists, 254–255
hierarchical structure, 239
implementing router functionality

with filters, 240–242
JMS, 109, 124, 186
loan broker system, 363, 366–368
Message Filters pattern, 226
multiple output channels, 107
one input channel, 107
out-of-product announcements, 220
receiving change notification code,

211–212
request channel, 155
Scatter-Gather pattern, 228
special wildcard characters, 108
stock trading, 108–109
storing messages, 108
subscription to, 237

Publish-Subscribe example
channel design, 219–222
code to announce change, 210–211
Command Message pattern, 185
comparisons, 212–213
Datatype Channel pattern, 185
distributed notification between

applications, 212–213
Document Message pattern, 185
Durable Subscriber pattern, 185
Event Message pattern, 185
Event-Driven Consumer pattern, 185
implementing observers, 209–212

Java using JMS, 186
Messaging Gateway pattern, 185
Observer pattern, 185
Publish-Subscribe Channel pattern, 185
pull model, 213–219
push model, 213–219
Request-Reply pattern, 185
Return Address pattern, 185
serialization, 213

Pull model, 153, 207–208
Event-Driven Consumer pattern, 217
gateways, 215–217
Publish-Subscribe example, 213–219

PullObserverGateway class, 218
PullSubjectGateway class, 217
Push model, 153, 207–208

Publish-Subscribe example, 213–219

Q
Quality-of-Service Channel pattern, 113
Queries, 173
Queue instance, 64
Queue interface, 104
QueueRequestor class, 192
Queues

Invalid Message Channel pattern, 233
peek functions, 108

R
RatePremium parameter, 410
Reactive filtering, 80, 233
ReceiveByCorrelationID() method, 168
ReceiveCompleted event, 404
ReceiveCompletedEventHandler class,

204
ReceiveCompletedEventHandler delegate,

501
Receive() method, 192, 202
Receivers, 62

communicating message type to, 112
content data structure and data format,

111
dead messages, 120
duplicate messages, 528–529
Event-Driven Consumer pattern, 97
idempotent receivers, 529–531
inspecting message properties, 79

INDEX 677

invalid messages, 120
multiple on channel, 103–104
Polling Consumer pattern, 97
response from, 154–158
type of messages received, 111

ReceiveSync() method, 192, 202
Receiving sequences, 172
Recipient List pattern, 110, 226, 249–258

loan broker system (Java), 372
loan broker system (MSMQ), 402, 422,

424–425
Recipient lists, 242, 250–251

dynamic, 252–253
idempotent receivers, 252
list of recipients, 251
loan broker, 256
network inefficiencies, 253–254
persistent, 252
versus publish-subscribe channels and

filters, 254–255
restartable, 252
robustness, 252
routing, 439
scatter-gathers, 298
sending copy of message to all

recipients, 251
sending preferences to, 253
single transaction, 252

Recipients
broadcasting messages to multiple,

298–300
defining channel for, 250–251
list of, 251
multiple with multiple replies, 297
routing messages to dynamic list,

249–250
sending copy of message to all, 251

Recombining messages, 226–227
Redundant functionality, 7
Relational databases, SQL-based, 48
Relationships and entities, 88
Reliability of Web services, 375–376
Remote invocation, 145
Remote Procedure Call pattern, 209
Remote procedure calls, 52
Remote Procedure Invocation pattern, 46,

49, 62, 145, 147, 151

Remote procedure invocations, 41
failure of, 53–54
messaging, 156
sharing functionality, 53
synchronous, 163
two-way communication, 147

Remote query and messaging, 156
Web services, 375

Reordering messages, 284–293
Replier class, 183, 187, 198
Repliers, 155

agreeing on details, 165
correlation identifier, 164
Correlation Identifier pattern, 195, 205
Event-Driven Consumer pattern, 195,

204
Return Address pattern, 195, 204

Replies
callback processor to process, 160
correlation identifier, 164–169, 165
Correlation Identifier pattern, 156
document messages, 148
exceptions, 156
gateway sending, 217–218
from multiple recipients, 297
one-to-one correspondence with

request, 159
pointer or reference to request, 164
processing, 195
reassembling multiple into one, 228
result value, 156
return address, 159–162
token, 166
void, 156
where to send, 159–162
which requests they are for, 163–169

Reply channels and observers, 214–215
Request channel, 155, 205
Requestor class, 183, 187, 198
Requestor.receiveSync() method, 197
Requestors, 62, 155

agreeing on details, 165
callback processor to process replies,

160
correlation identifier, 164
map of request IDs and business object

IDs, 166

678 INDEX

Requestors, continued
receiving reply messages, 192, 202
sending request messages, 192, 202

Request-replies
asynchronous callback, 155–156
chaining message pairs, 166–167
channels to transmit messages, 214
loan broker system (ActiveEnterprise),

446, 452
message sequences, 172
replier, 155
requestor, 155
synchronous block, 155

Request-Reply example
Command Message pattern, 188
Correlation Identifier pattern, 184, 189,

200
Datatype Channel pattern, 184
Document Message pattern, 184, 188
Event Driven Consumer pattern, 184
Invalid Message Channel pattern, 184
Invalid Message example, 196–197,

205–206
JMS, 187–197
JMS API in Java J2EE, 184
jms/InvalidMessages queue, 187
jms/ReplyQueue queue, 187, 188
jms/RequestQueue queue, 187
Message Channel pattern, 184
MSMQ API in Microsoft .NET using

C#, 184
.NET, 198–206
Point-to-Point Channel pattern, 184
Polling Consumer pattern, 184
.\private$\InvalidQueue queue, 198
.\private$\ReplyQueue queue, 198
.\private$\RequestQueue queue, 198
Replier class, 183, 187, 198
Requestor class, 183, 187, 198
Request-Reply code, 189–196, 200–205
Request-Reply pattern, 184
Return Address pattern, 184, 188–189,

199, 204
Request-Reply pattern, 67, 104, 108,

143–144, 154–158
JMS, 157–158
reply channel, 100

RequestReplyService class, 408–409, 412,
424

Request-Response Message Exchange
pattern

return addresses, 162
SOAP 1.2, 157, 162, 168–169
Web services, 162, 168–169

Requests
correlation identifier, 165
messaging query, 156
notify/acknowledge messages, 156
pointer or reference to, 164
remote procedure invocation messages,

156
Return Address pattern, 100, 156
return addresses, 167, 195
sent and received timestamps, 199
unique ID, 166
which replies are for, 163–169

Resequencer class, 289
Resequencer pattern, 74, 164, 227,

283–293
Resequencers, 227, 284

avoiding buffer overrun, 286–288
buffers, 286
internal operations, 285–286
MSMQ, 288–293
.NET, 288–293
out-of-sequence messages, 285–286
sequence numbers, 285
stand-in messages for missing messages,

287–288
throttling message producer with active

acknowledgment, 287
ResponseQueue property, 202
Responses, 143–144

aggregating to single message, 298–300
delivered out of order, 268
from receivers, 154–158

Retry timeout parameter, 123
Return Address pattern, 115, 143, 159–162

loan broker system (ActiveEnterprise),
452

loan broker system (MSMQ), 405
replier, 195, 204
request message, 100
requests, 156

INDEX 679

Return addresses, 29, 35, 36, 159–162
JMS, 161
.NET, 162
Request-Response Message Exchange

pattern, 162
requests, 167

RIP (Routing Information Protocol), 245
RMI (Remote Method Invocation), 10
RosettaNet, 85
Router slips, 308–309
Routers, 25, 56, 58, 73, 78–84, 140, 359

abuse of, 81
architectural patterns, 225, 228
avoiding dependency, 243
built-in intelligence, 82
C#, 83–84
combining variants, 228
composed, 225, 227–228
content-based, 81–82, 225–226,

230–236
context-based, 82
Control Bus pattern, 82
decoupling filters, 80
degrading performance, 81
destination based on environment

conditions, 82
destination of message, 80–82
dynamic, 244–248
eliminating dependencies, 327–328
filters, 238
fixed, 81
fixed rules for destination of in-coming

message, 226
hard-coded logic, 82
implementing functionality with filters,

240–242
knowledge of all destination channels,

80
loosely coupled systems, 81
maintaining efficiency, 243
maintenance bottleneck, 80
MSMQ, 83–84
multiple in parallel, 81
parallel processing, 82
performance bottleneck, 81
selecting correct for purpose, 228–229
self-configuring, 244–248

simple, 225–227
stateful, 82, 227
stateless, 82, 233
variants, 81–82

Routing, 16, 58
basic form, 79
channels, 79
command messages, 140
to correct recipient based on content,

232–236
flexibility, 302
maintaining state of sequence, 313–321
message flow efficiency, 302
moving logic to middleware layer, 323
recipient lists, 439
resource usage efficiency, 302
simple maintenance, 302
unknown non-sequential processing

steps, 312–313
Routing messages, 80, 85

based on criteria, 226
to correct translator, 353–354
to dynamic list of recipients, 249–250
with multiple elements, 259–260
for system management, 545–546
through series of unknown steps,

301–305
Routing Slip pattern, 301–311
Routing slips

acting as chain of responsibility, 308
binary validation steps, 307
as composed service, 309–310
decision postponed until end, 307
dynamic, 309
legacy application implementation, 306
limitations, 306
processing steps, 312
stateless transformation steps, 307
WS-Routing (Web Services Routing

Protocol), 310–311
RPC (Remote Procedure Call), 10, 51, 103

asynchronous messaging, 122
binding, 375
marshaling, 66

RPC-style SOAP messaging, 149
RPC-style Web services, 10
Run method, 412

680 INDEX

S
SASE (Self-Addresses Stamped Envelope)

pattern, 219
Scatter-Gather pattern, 228, 297–300

loan broker system, 363, 366
loan broker system (ActiveEnterprise),

446
loan broker system (MSMQ), 402, 422
Publish-Subscribe Channel pattern, 228

Scatter-gatherers, 298–300
Schemas, 49
Security and Web services, 375–376
Selecting best answer algorithm, 273
Selective Consumer pattern, 63, 119, 168,

222, 226, 239–240, 515–521
JMS message selector, 521
loan broker system, 367
.NET, 521
separating types, 520

Selectors, 239–240
Semantic dissonance, 47, 54–55
Semantic enrichment, 414
Send and receive patterns, 463–464
SendConsecutiveMessages method,

290
Senders, 62

communicating message type to
receiver, 112

decoupling message destination from,
322–323

Send() method, 192, 202
SendReply method, 408, 433
Sent time, 178
Sequence identifier, 172
Sequence numbers, 285
Sequencer, 261
Sequencing, 364–366
Serializable command object, 146
Serialization in Publish-Subscribe

example, 213
Service Activator pattern, 97, 117, 139,

532–535
Service activators, 140, 533–534

Axis server, 376
loan broker system (Java), 379
loan broker system (MSMQ), 412

Service stubs, 403

Service-oriented architecture (SOA), 8, 140
Shared business functions, 7–8
Shared Database pattern, 46–50, 147
Shared databases, 29, 41, 53

avoiding semantic dissonance, 55
unencapsulated data structure, 50

Sharing data, 53
Sharing information, 43
Shipping addresses, 30
Silly Window Syndrome, 287
Simple routers, 225–227, 308–309
SimpleRouter class, 84
Slow messages, 144
Smart proxies, 29, 35, 36, 559–560

C#, 561–568
MSMQ, 561–568

Smart Proxy pattern, 558–568
SmartProxyBase class, 563
SmartProxyReplyConsumer class, 565
SmartProxyReplyConsumerMetrics class,

566
SmartProxyRequestConsumer class, 564
SOAP (Simple Object Access Protocol)

binding styles, 375
command messages, 146
document messages, 148, 149–150
encoding style, 374
messages, 68–69
recursive nature of messages, 69
transport protocol, 373
Web services, 372–373

SOAP 1.2 and Request-Response Message
Exchange pattern, 157, 162, 168–169

SOAP messages
envelope wrappers, 332–333
Request-Reply pairs, 157

SOAP request messages, 168, 174
SOAP response messages

correlation to original request, 168–169
sequencing and correlation to original

request, 174–175
SonicMQ Bridges, 136
Splitter pattern, 173, 226, 259–267
Splitters, 24, 25

aggregators and, 274
C# XML order document, 262–267
filtering, 344

INDEX 681

iterating, 260–261
MSMQ XML order document,

264–267
ordered or unordered child messages,

262
static, 261

Splitting messages, 226, 260–267
SQL-based relational databases, 48
Stale information, 45
Standard file formats, 44
Standardized data formats, 85
State

aspects, 219
keeping in messages, 316–317
process manager maintenance, 314

State request messages, 153
Static channels, 99
Static splitters, 261, 343–344
Stock trading

bridges, 135
channel adapter, 131
Datatype Channel pattern, 114
dead letter channels, 121
Durable Subscriber pattern, 125
guaranteed delivery, 124–125
invalid messages, 118
message bus, 141
Publish-Subscribe Channel pattern,

108–109
Store-and-forward process, 122
StreamMessage subtype, 68
Structural transformations, 90–93
SubjectGateway class, 211, 217
Subscribers, 62

avoiding missing messages, 522–523
durable or nondurable, 108
multiple channels, 108
notifying once about event, 106
special wildcard characters, 108

Synchronous block, 155
Synchronous implementation of loan bro-

ker system, 371–400
Syntax layer, 88
System management, 537

analyzing and debugging message flow,
551–554

avoiding infinite loops, 554

internal faults, 569
leftover messages, 572–575
loan broker system, 577–602
monitoring and controlling, 538
observing and analyzing message traffic,

538
reporting against message information,

555–557
routing messages for, 545–546
testing and debugging, 539
tracking messages, 558–568
widely distributed system, 540–541

Systems
data transfer between, 87–88
management, 16
out of synchronization, 45

T
Taking orders, 18–19, 24–25
Talks, 62
TCP/IP, 12–13, 88

ensuring in-sequence delivery of mes-
sages, 287

envelope wrappers, 333–334
tightly coupled dependencies, 11–12
Tee, 547

Template methods, 292, 404
TemporaryQueue class, 215
Test data generator, 36
Test data verifier, 36
Test Message pattern, 569–571
Test messages, 36, 569–571
Testing

gateways, 475
Guaranteed Delivery pattern, 123–124
loan broker system (MSMQ), 440–443

Text-based files, 44
TextMessage subtype, 68
TIBCO ActiveEnterprise

canonical data models, 360
loan broker system, 445–462
message history, 553–554

TIBCO Repository for Metadata Manage-
ment Integration, 450–451

TIB/IntegrationManager Process Manager
Tool, 448–450

TIB/MessageBroker, 234–236

682 INDEX

TIB/RendezVous Transport, 448
Tight coupling, 10, 32
Tightly coupled applications, 39–40
Tightly coupled dependencies

integration, 11–14
TCP/IP, 11–12

Timeout strategy, 272
Timeout with override strategy, 273
Topic interface, 109
TopicPublisher class, 109, 209
TopicSubscriber class, 109
Transactional Client pattern, 77, 84, 97,

131, 172, 484–493
JMS transacted session, 489
message groups, 487–488
message/database coordination, 488
message/workflow coordination, 488
MSMQ, 124
.NET transactional queue, 490
send-receive message pairs, 487
transactional filter with MSMQ, 490–493

Transactions, 172, 484–485
Transform method, 265
Transformations, 54, 58

chaining, 89–90
changing application internal data

format, 357
changing at individual level, 90
content enrichers, 338–341
Data Representation layer, 87, 88
Data Structures layer, 87, 88
Data Types layer, 87, 88
decoupling levels, 88–89
dragging and dropping, 94
eliminating dependencies, 327–328
external translators, 357–358
implementing messaging mapper,

357–358
levels of, 87–88
metadata management, 328–329
at multiple layers, 89
options, 357–358
outside of messaging, 329
structural, 90–93
Transport layer, 87–88
visual tools, 93–94
XML documents, 90–93

Translators, 20, 23, 31, 56, 85–94
chaining multiple units, 89–90
data formats, 353
double translation, 358
external, 357–358
versus mappers, 482
resolving data format differences,

355–356
routing messages to correct, 353–354

Transport protocols, 87
Tree structure, 260–261
Trigger message, 313
Tunneling, 330, 334
Two-way channels, 154
Two-way messages, 154

U
UDDI (Universal Description, Discovery

and Integration), 379
UML (Unified Modeling Language)

activity diagrams, 21–22
Unidirectional adapters, 130
Unidirectional channels, 100
Universal storage mechanism, 44
Update messages, 153
updateConsumer method, 218
Update() method, 151, 207–209, 213–214
updateNoState() method, 218–219
Updating files, 45
User interface adapters, 129
User interfaces, 129

V
Validated Order message, 26
Verify Customer Standing message, 27
Visual transformation tools, 93–94
Void replies, 156

W
Wait for all strategy, 272
Web services, 3

adapters, 132
Apache AXIS toolkit, 371
architecture usage scenarios, 174–175
asynchronous versus synchronous

messaging, 373–374
discovery, 379

INDEX 683

encoding style, 374
existing standards, 4
HTTP, 51
loan broker system (Java) design

considerations, 372–376
reliability, 375–376
Remote Procedure Invocation pattern,

375
Request-Response Message Exchange

pattern, 162, 168–169
security, 375–376
SOAP (Simple Object Access Protocol),

372–373
synchronous implementation of loan

broker system, 371–400
transport protocol, 373

Web Services Gateway, 132
WebSphere Application Server, 132
WebSphere MQ for Java

Guaranteed Delivery, 126
messaging systems, 64–65
persistent channels, 126
queues, 65

WGRUS (Widgets & Gadgets ’R Us), 17
announcements, 17, 33–34
changing addresses, 17, 30–32
channels to interact with customers, 18
checking order status, 17
checking status, 26–29
internal systems, 18
inventory systems, 22–23
processing orders, 17, 20–25
requirements, 17

SOAs (service-oriented architectures), 8
taking orders, 17, 18–20
testing and monitoring, 17, 34–36
updating catalog, 17, 32–33

Wire Tap pattern, 547–550
World Wide Web Consortium Web site,

373, 374
Wrapping and unwrapping data in enve-

lope, 331–335
WSDD (Web Services Deployment

Descriptor), 378
WSDL (Web Services Definition Lan-

guage), 374
canonical data models, 359–360
Command Message pattern, 146
document messages, 149–150

WSFL (Web Services Flow Language), 318
WS-Routing (Web Services Routing

Protocol), 310–311

X
XLANG, 318, 634
XML, 3, 149, 182
XML documents, 68, 90–93
XML files, 44
XML schema, 374–375
XML Schema Definition Tool, 415
XML Web services, 371–400
XML Splitter class, 263–264
XmlMessageFormatter class, 201
XSL, 3, 90–93
XSLT (XSL Transformation) language, 90
XslTransform class, 265

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	Introduction
	Chapter 2: Integration Styles
	Introduction
	File Transfer
	Shared Database
	Remote Procedure Invocation
	Messaging

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

