
177

6
ClickOnce Security

HEN PLANNING FOR DEPLOYMENT, you need to consider a number
of different aspects with respect to security. You need to consider

• How to protect the client machine from being compromised by your
application’s installation or execution

• How to protect the application files from being tampered with on the
deployment server

• How to implement authentication and authorization based on the
user’s identity

• What you want to allow the application to do based on the identity of
the application publisher

ClickOnce, the .NET Framework, and the Windows operating system
provide facilities to address all of these considerations. This chapter will
discuss these different aspects and give you a solid understanding of what
protections ClickOnce provides, and how you can customize those protec-
tions to suit the needs of your particular application.

ClickOnce Security Overview

ClickOnce is designed to be a trustworthy deployment mechanism for
smart client applications. This means that ClickOnce is designed to protect

W

noyes.book Page 177 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security178

the client machine from being harmed by applications that it deploys.
ClickOnce provides protection for the client machine at install time and at
runtime, ensures that the client machine and users can identify who the
publisher of the application is, and protects the application’s files to ensure
than no one can tamper with them after the publisher has published the
application.

ClickOnce runtime protection is based on the application’s identity,
not on the user. ClickOnce is specifically designed to enable low-privilege
users to deploy and launch smart client applications without adminis-
trator intervention. The user identity is not used directly by ClickOnce
in any way. However, that does not mean that your ClickOnce applica-
tion will be unprotected with respect to user privileges either. You can
take advantage of .NET role-based security to prevent users from using
functionality in your application if they do not have sufficient rights.
Additionally, the client machine’s operating system will still enforce
access controls based on the logged-in user, such as limiting access to
files, folders, or the registry if the user is not part of the access control list
for those resources.

ClickOnce Deployment-Time Protections
ClickOnce security protection comes into play as soon as an application
or update is deployed to the client machine. When files are deployed to
the client machine through ClickOnce, they are isolated per user, per
application, and per version under the user’s profile. The application
deployment itself is nothing more than a series of files copied into an iso-
lated folder under the user’s profile. If you have worked with .NET iso-
lated storage before, the ClickOnce cache folders are similar in concept,
but located in a different place under the user’s profile. You cannot exe-
cute any custom installation steps that make modifications to the local
machine as part of the ClickOnce deployment itself (see Chapters 7 and 8
for more information on custom installation requirements). As a result of
this design, there is no way that the act of deploying an application to a
client machine through ClickOnce can harm other applications or data on
the machine.

noyes.book Page 178 Tuesday, December 5, 2006 8:01 PM

 ClickOnce Security Overview 179

ClickOnce Runtime Protections
ClickOnce and the .NET runtime provide runtime protections for the client
as well. ClickOnce relies on the Code Access Security (CAS) infrastructure
of the .NET Framework for enforcing those runtime protections, but Click-
Once security is configured and managed a little differently than for non-
ClickOnce deployed applications. For a quick overview of CAS, see the
sidebar entitled A Short Primer on Code Access Security. 1

A Short Primer on Code Access Security

The .NET Framework provides Code Access Security (CAS), which is a secu-

rity mechanism that complements Windows access control and .NET role-

based security. Both of these are based on the identity of the user who is

executing the code. CAS lets you control the permissions the executing

managed code has based on evidence associated with the executing code.

CAS is a fairly complicated topic that many developers do not even know

exists, or if they do, they do not really understand how it works.1

Evidence is based on either the identity of the code itself or the launch

location of the code. The code’s identity is determined by one of several

forms of code identity that are embedded in the assembly manifest at

compile time. These forms of identity include a hash of the assembly con-

tents, an assembly strong name, or a publisher certificate. The location

the code is being executed from can be determined by the .NET runtime

based on the path used to load an assembly, and can be associated with a

local machine directory, URL, site, or zone.

CAS is driven by security policies that can be administratively config-

ured through the .NET Configuration tool or set programmatically. A com-

plex schema of security objects drives the application of CAS by the

runtime. Each machine has several security policies defined for it. Each

sssseeeeccccuuuurrrr iiii ttttyyyy ppppoooollll iiiiccccyyyy is composed of a collection of code groups, and each

Continues

1. For a deep understanding of Code Access Security, including how it works, how to
configure it, and how to programmatically invoke it, I recommend Programming .NET
Components, Second Edition, by Juval Löwy (O’Reilly & Associates, 2005).

noyes.book Page 179 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security180

code group is composed of a form of evidence (also called membership cri-

teria) and an associated permission set. Each permission set is composed

of a collection of individual permission types, which correspond to the dis-

crete operations or resources that you want to protect, such as the file sys-

tem, user interface, security capabilities, or the registry. For each

permission type, there are fine-grained options that you can control. For

example, you can control what specific set of URLs an application is

allowed to access for a permission of type WebPermission.

For applications that are not launched through ClickOnce, CAS evaluates

the evidence available for an assembly as the runtime loads it. It compares

the evidence for the assembly against each code group’s membership crite-

ria (form of evidence associated with the code group). If the evidence pre-

sented by the assembly meets the code group’s membership criteria, the

assembly will be granted the code group’s permission set. The runtime fol-

lows this process for all of the code groups in all of the policies on the sys-

tem to come up with a final set of permissions that the assembly is granted

for execution. As the code in the assembly is invoked, security demands can

be made programmatically (typically by Framework assemblies) that ensure

that the assembly and all of its callers have been granted the required per-

mission for the operation or resource access that is being performed. If the

assembly itself or any of the calling assemblies do not have the demanded

permission, a security exception will be thrown.

By controlling the configuration of CAS, you can explicitly grant or

deny permissions to any assembly on a machine for various operations

and resources. For example, you can configure a server machine so that

only .NET Framework code and code signed by your development organi-

zation’s strong name are allowed to run on that machine. By doing so, you

can ensure that if any other managed assemblies make it onto that server

somehow, they will be unable to run unless an administrator intervenes

and grants those assemblies a set of permissions.

When you install .NET, there are a predefined set of CAS policies and

code groups installed on the machine. The built-in code groups are all

based on the location that code is executing from. By default, any assemblies

noyes.book Page 180 Tuesday, December 5, 2006 8:01 PM

 ClickOnce Security Overview 181

ClickOnce security is applied at the application level, instead of at the
individual assembly level as it is in a normal .NET application. Your entire
ClickOnce application (the application executable and all assemblies that it
loads) are treated as a single unit for the purposes of deployment, version-
ing, and security. When an application is deployed through ClickOnce, the
application manifest specifies what security permissions the application
needs to run. These permissions are based on CAS.

As the application is launched by ClickOnce, the runtime first evaluates
what URL or UNC path was used to deploy the application to the client
machine (the path to the deployment manifest on the deployment server).
This path is treated as the launch path. Based on this path, the runtime
associates your application with one of the built-in location-based code
groups (My Computer, LocalIntranet, Internet, Trusted Sites, or Restricted
Sites zones). The runtime determines what set of permissions should be
granted to your application based on the zone that it was launched from
and compares that to the set of permissions requested by the application.

If the requested permissions in the application manifest are less than or
equal to the set that would be granted based on the launch zone, then no
elevation of permissions needs to occur and the application can simply
launch and run. If the application attempts to perform an operation that
exceeds the granted permissions, then a SecurityException will be
thrown.

installed on the local machine have full trust (unrestricted permissions).

This corresponds to the My Computer CAS zone. If assemblies are loaded

from somewhere other than a local disk, the runtime can evaluate the

path used to load the assembly and will compare it to the membership cri-

teria of the other code groups. The other built-in code groups include ones

for paths that evaluate to the LocalIntranet zone, Internet zone, Trusted

Sites, or Restricted Sites. The LocalIntranet and Internet are the most com-

mon other security zones applied, based on the path to the assembly

being loaded. The Trusted and Restricted Sites zones are based on URLs

configured through Internet Explorer security settings.

noyes.book Page 181 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security182

To see this in action, do the following.

1. Create a new Windows Application project in Visual Studio, and
name the project RuntimeProtectionApp.

2. From the toolbox, add a button to the form.

3. Double-click on the button to add a Click event handler for the
button.

4. Add the following code to the event handler:

private void button1_Click(object sender, EventArgs e)

{

 StreamWriter writer = new StreamWriter("AttemptedHack.evil");

 writer.WriteLine("If I can do this, what else could I do??");

 writer.Close();

}

5. Add a using statement for the System.IO namespace to the top of
the file:

using System.IO;

6. Open the project properties editor (choose Project > RuntimeProtec-
tionApp Properties).

7. On the Security tab, check the checkbox labeled Enable ClickOnce Secu-
rity Settings, and click the radio button labeled This is a partial trust
application (see Figure 6.1).

8. Publish the application by choosing Build > Publish Runtime-
ProtectionApp.

9. When the Publish wizard appears, click the Next button.

10. In the second step of the Publish wizard, select the option to make the
application available online only (see Figure 6.2) and then click Finish.

11. Click the Run button in the publish.htm test page when it appears in
the browser. This launches the application.

12. Press the button that you added to the form in step 2, causing the
application to try to write a text file to the current working directory
(which in this case is the C:\Windows\Microsoft.NET\Frame-
work\v2.0.50727 folder, since the application is marked for partial
trust as discussed in Chapter 5).

noyes.book Page 182 Tuesday, December 5, 2006 8:01 PM

 ClickOnce Security Overview 183

Figure 6.1: ClickOnce Security Settings

Figure 6.2: Selecting Install Mode in the Publish Wizard

noyes.book Page 183 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security184

13. A SecurityException will be thrown for the FileIOPermission
type, because the default LocalIntranet zone security permissions do
not include that permission. The permission is demanded by the
StreamWriter class when you construct an instance of the Stream-
Writer. Since the application does not catch the exception, the dialog
shown in Figure 6.3 will display.

14. Click the Quit button to exit the application.

In this example, the application requested permissions that did not
exceed the permissions granted by the launch zone. This is because you
selected partial trust and the default zone for partial trust is the Local Intra-
net zone. When you installed the application by clicking on the Run button
in the publish.htm test page, the address used was http://<your-machine-
name>/RuntimeProtectionApp/RuntimeProtectionApp.application. The
runtime evaluates this address to the Local Intranet zone (based on the
server address portion of the URL: http://<your-machine-name>/) and
compares the requested permissions in the application manifest to the per-
missions for that zone. Since they match, no additional prompting is
needed based on security and the application launches.

However, just because the application only requests a certain set of per-
missions based on its manifest does not mean that there is not code in that
application that might try to do some operation that exceeds the granted
set of permissions. In this example, the application contains code that tries
to perform a file write to the local directory. That operation triggers a check
for FileIOPermission for the file that is being written. Since the Local
Intranet zone does not include that permission, a SecurityException is
thrown at that point.

These protections are designed to ensure that your application does not
inadvertently do something on the user’s machine that it was not designed
to do. This could result from bugs in your code, debug code that was left
behind unintentionally, or it could happen if your application manages to
load some other assembly that does something more than you expect it to.
For example, suppose you design a smart client application that acts as a
data entry client for a distributed application. Based on your design, that
application should only present a rich interactive user interface for the user

noyes.book Page 184 Tuesday, December 5, 2006 8:01 PM

 ClickOnce Security Overview 185

to view, enter, and manipulate data that gets passed to your middle-tier
application server through Web services.

Suppose you choose to use some third-party UI component to speed
your development. Unknown to you, the code inside that component col-
lects any values that are entered through its controls and transfers that
data to some unknown location via a Web request for intelligence gather-
ing. If you deployed this application with full trust, the component would
be able to do just that and you may never even know it is happening
behind the scenes. However, if you deployed your application with partial
trust and restricted the WebPermission options to only allow calls to your
middle-tier servers, then a security exception would be thrown when that
nefarious component tried to do its evil deeds. By restricting the permis-
sion set, you would be protecting the user from that hidden data transfer.

Using a restricted set of permissions through partial trust is an excellent
way to prevent your application from doing anything it was not designed
to do. Unfortunately, for a lot of meaningful things that you might want to
do in your application, such as doing on-demand updates through Click-
Once or making remote calls through Windows Communication Founda-
tion, you will be required to set your application for full trust due to the
more advanced things the Framework does for you under the covers to
provide those capabilities. You can still lock down permissions for specific
sections of your code, however (see the section Adding Restricted Code
Sections later in this chapter for an example of how to do that).

If the application manifest requests permissions that exceed the launch
zone permissions, such as full trust, then those permissions need to be
granted to the application somehow so it can launch. This can be done either

Figure 6.3: Unhandled Exception Dialog

noyes.book Page 185 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security186

through user prompting (the default) or automatically based on trusted pub-
lishers. Both of these approaches are covered later in this chapter.

ClickOnce Size Limitations for Online-Only Applications
A partial trust online-only application can run without any user prompt-
ing, depending on the permissions the application requires and the zone it
is running from. To prevent such an application from filling up the hard
disk by downloading many large files, ClickOnce restricts the total size of a
partial-trust online-only application to be half the online cache quota on
the machine. This size is checked at download time as bits are being down-
loaded, and the ClickOnce launch will fail once the limit is exceeded. The
default cache quota is 250MB, so partial-trust applications larger than
125MB should ask for full trust.

ClickOnce Tamper Protections
ClickOnce protects the files that your application is composed of by using
digital signatures. When you publish an application with ClickOnce, you
have to sign the deployment and application manifest with an Authenticode
Class 3 Code Signing publisher certificate. Authenticode certificates are

NOTE ClickOnce Evaluates Permissions at the
Application Level

An important distinction between the way CAS evaluates permissions
and the way ClickOnce does so is where the scoping boundary is for a
set of granted permissions. CAS evaluates permissions on an assem-
bly-by-assembly basis, at the point where the assembly is loaded.
ClickOnce evaluates permissions at the application boundary when
the application is launched, and further checks are not done when
each assembly is loaded. Additionally, ClickOnce only considers the
built-in location-based code groups (My Computer, Internet, Local
Intranet, Trusted Sites, and Restricted Sites zones) to determine what
set of permissions the application should be given by default based on
its launch URL. If you have custom code groups defined for which
your assemblies would normally meet the membership criteria, those
code groups will not be factored into what set of permissions the run-
time will give your application by default.

noyes.book Page 186 Tuesday, December 5, 2006 8:01 PM

 ClickOnce Security Overview 187

based on public-private key cryptography. Publisher certificates contain both
a public and a private key. The public and private keys have a mathematical
relationship that makes it so anything you encrypt with one of the keys, you
can decrypt with the other. However, the complexity of the mathematical
relationship is such that it is extremely difficult to come up with one key
when you just have the other. With the strength of current cryptographic
keys, it would take hundreds or thousands of years of heavy-duty computing
to figure out the value of one key if you just know the value of the other.

As the names imply, the intent is that you keep one key (the private
key) to yourself, but you can freely hand out the public key to anyone who
wants it. Once others have your public key, you can encrypt a message or
file with your private key and give the message or file to them, and they
can decrypt it using the public key with a strong assurance that the mes-
sage or file they decrypted actually came from you (or at least someone
who has access to your private key). Likewise, they can encrypt a message
or file with your public key and give it to you, and they can be sure that
only you can decrypt that message or file and see the contents.

When you sign a file with a certificate, the signing mechanism com-
putes a hash of the file’s contents using cryptographic methods. In com-
puting the hash, it disregards a reserved section of the file into which it
will insert the digital signature once is has been computed. Once the
hash has been computed, the hash is encrypted with the private key of
the publisher certificate. The encrypted version of the hash is the digital
signature. This signature and the public key from the certificate used to
encrypt the hash are inserted into the reserved location in the file. Now
anyone who receives that file can compute the file’s current hash using
the same algorithm that was used to generate the original hash. They can
then extract the digital signature and decrypt it using the public key
embedded in the file with the signature. After they have decrypted the
signature, they have the original hash that was computed by the pub-
lisher. If they compare the original hash and the hash they just com-
puted, they can confirm that no one has tampered with the file since it
was signed by the publisher, because any modifications to any part of
the file will modify the computed hash and it will be different from the
original hash.

noyes.book Page 187 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security188

This approach is used by ClickOnce to digitally sign your deployment
and application manifests when you publish your application. It is also
used by .NET for strong naming assemblies. Strong naming is just a similar
digital signature approach. In the case of ClickOnce, the digital signature is
embedded in the manifests as XML. In the case of strong naming, the digi-
tal signature is computed when an assembly is compiled, and is embedded
in the assembly manifest in binary form.

In addition to digital signatures providing a guarantee that the mani-
fests have not been tampered with since you published your application,
they also provide tamper protection for all of your application files. When
your application manifest is generated, a hash of each of the files in the
application is put into the application manifest along with the rest of the
file information. When ClickOnce deploys or updates your application, it
computes the hash of each file as it is downloaded from the server and
compares the hash to the one embedded in the downloaded application
manifest. Since the application manifest is signed and can’t be tampered
with to change the hash values for application files, there is no way for
someone to tamper with any of your application files, because ClickOnce
will refuse to launch your application if the application file hashes don’t
match after they have been downloaded.

Internet Explorer Security Settings Affecting ClickOnce

Internet Explorer has several zone security settings that will impact your
users’ ability to launch a ClickOnce application on their machines.

• Script Activation: By default, script activation is disabled for Click-
Once applications coming from the Internet zone on Windows XP
with Service Pack 2 and later platforms. This means that an Internet
Web site cannot launch a ClickOnce .application file with a script. The
setting that controls this in Internet Explorer is in the Tool > Internet
Options > Security Tab > Custom Level button > Downloads > Auto-
matic Prompting for File Downloads. If this is set to Enable, script acti-
vation of ClickOnce applications is allowed. If this is set to Disable,
script activation is disallowed. The default setting is Enable for Intra-
net and Disable for Internet.

noyes.book Page 188 Tuesday, December 5, 2006 8:01 PM

 Configuring ClickOnce Security Permissions 189

• Disable ClickOnce MIME Handler: If Downloads > File Download is
set to Disable, launching any ClickOnce application over the Web (http
or https) will result in the Security Alert message, “Your current secu-
rity settings do not allow this file to be downloaded.” By default this
setting is enabled for all zones, so this will not usually be a problem.

• Disable Managed Code: If .NET Framework-Reliant Components >
Run Components Not Signed with Authenticode is set to either Dis-
able or Prompt, ClickOnce will be disabled. This setting must be set to
Enabled for ClickOnce to work. The default value for this setting for all
zones is Enabled.

Another Internet Explorer-related setting that you may want to be
aware of is a registry key setting that determines whether users are
prompted with a download dialog when they click on a link that points to
a ClickOnce deployment manifest. The registry key in question is
HKEY_CURRENT_USER\Software\Policies\Microsoft\Internet Explorer
\Restrictions\AlwaysPromptWhenDownload. When this DWORD value is
set to 1, you will always get a file download prompt before the ClickOnce
launch process starts. This registry key is not set by default, which lets Click-
Once start the launch process immediately when a link is clicked on.

Configuring ClickOnce Security Permissions

The permissions a ClickOnce application requires to run are determined
by its application manifest. These permissions are populated by Visual
Studio when you publish your application based on the project properties.
You can configure these security permissions on the project properties edi-
tor’s Security tab. You can also modify them to a certain degree after you
have published from Visual Studio using the Mage SDK tools. I’ll cover
both approaches in this section.

Regardless of which tool you use, you have two choices at the top
level—you can request full trust or partial trust. Full trust means that you
do not want your application constrained by CAS in any way at runtime
on the client. This corresponds to the unrestricted permission set in CAS.
When you select this setting, your application code and any code it calls

noyes.book Page 189 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security190

will not be restricted in any way based on CAS. Keep in mind that CAS is
separate and distinct from user-based security. So depending on the users’
rights, they may still be prevented from doing certain things, either by
role-based security code in your application or by the operating system if
they try to access something on the system through your application that
they do not have Windows access control privileges to use. But as far as
ClickOnce and CAS are concerned, if the application has full trust, it can do
whatever it likes.

When you choose partial trust, you have to specifically select a set of
permissions that you want to include in the requested permissions for the
application. You can base this on one of the predefined zone-based permis-
sion sets, such as Local Intranet or Internet, or you can use a custom set of
permissions to request the specific permissions that correspond to the
operations and resources your application uses by design. The latter is a
better approach from a security vulnerability perspective.

Whether you use Visual Studio or Mage, what you end up with is a
specification inside your application manifest file that says to the runtime,
“My application needs these permissions to run.”

Configuring ClickOnce Security Permissions with Visual Studio
Figure 6.1 showed the Security tab of the project properties editor. This is
where you configure the set of permissions that are placed in your applica-
tion manifest at the time that you publish your application. Checking the
Enable ClickOnce Security Settings checkbox makes the rest of the options
available. This box will be checked automatically the first time you publish
your application from Visual Studio.

Enabling ClickOnce security settings also affects the way your applica-
tion runs in the debugger. Once enabled, each time you run your applica-
tion, the selected security settings will be applied to the debug executable
process, so your debug runtime environment will have the same security
restrictions as your target environment. For example, if you select Local
Intranet as the target zone for partial trust and make no modifications to
the permissions list below the partial-trust selection, and then run a debug
session and your code tries to do file I/O, you will get an exception in the

noyes.book Page 190 Tuesday, December 5, 2006 8:01 PM

 Configuring ClickOnce Security Permissions 191

debugger because the process will run with only the permissions for the
Local Intranet zone. This is extremely helpful in debugging and fixing
problems that would otherwise only occur in the deployed environment.

If you select partial trust, you can then select the target zone as Local
Intranet, Internet, or Custom. Selecting either Local Intranet or Internet
selects the permissions in the ClickOnce Security Permissions table to
match the target zone. Once those permissions are selected, you can then
customize the settings to something different than the defaults for that
zone as needed, using the zone permissions as a starting point for a custom
set of permissions. Remember that ClickOnce ignores any custom security
policy code groups, so setting fine custom permissions through the Click-
Once partial trust settings are the only way to explicitly grant specific per-
missions in a partial-trust scenario.

So, for example, if you were going to deploy an application to the local
Intranet, but the application needed to call a Web service on your network
other than the one where the application is being deployed from, you
would do the following.

1. Check the Enable ClickOnce Security Settings checkbox in the project
properties editor’s Security tab (see Figure 6.4).

2. Select This is a partial trust application.

3. Select Local Intranet in the drop-down list labeled Zone your application
will be installed from.

4. Scroll down in the grid of permissions required by the application to
find the WebPermission type.

5. In the Setting column drop-down list, select Include.

After doing this, your application will request all of the permissions in
the Local Intranet zone as well as the WebPermission permission with
unrestricted access to the Web.

As mentioned, most permission types have a number of additional
options that you can set to customize exactly what options in that per-
mission type you need. WebPermission includes the ability to set a list
of URLs that you will let your application either call out to or be called

noyes.book Page 191 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security192

on. Unfortunately, the permissions editor in the Security tab for Click-
Once does not allow you to access all the options for all of the displayed
permission types. WebPermission is an example. You can see in Figure
6.4 that the Properties button below the grid is disabled. If there are con-
figurable properties for a selected permission type, this button will be
enabled and will take you to a dialog that lets you edit the finer-grained
options for that permission type. Figure 6.5 shows an example of one of
these dialogs for the SecurityPermission type.

There are some permission types that are not shown in the grid at all.
The only way to add these permission types is to either select full trust for
the application (see Figure 6.4) or use the Mage tool to configure the per-
mission type based on its XML declaration. See the next section for more
information on how to do that.

Figure 6.4: Adding Permissions to a Selected Zone

noyes.book Page 192 Tuesday, December 5, 2006 8:01 PM

 Configuring ClickOnce Security Permissions 193

If you do not want to run your debug sessions in the ClickOnce security
zone selected, you can disable this capability by doing the following (see
Figure 6.4).

1. Open the project properties editor for your application.

2. Select the Security tab.

3. Check the Enable ClickOnce Security Settings checkbox if it is not
already checked.

4. Select This is a partial trust application if it is not already selected.

5. Click on the Advanced button at the bottom of the Security tab. This
brings up the Advanced Security Settings dialog shown in Figure 6.6.

6. Uncheck the box labeled Debug this application with the selected permis-
sion set.

Figure 6.5: Options in the Permissions Settings Dialog

Figure 6.6: Advanced Security Settings Dialog

noyes.book Page 193 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security194

Notice that you also have the options in the Advanced Security Settings
Dialog to do the following.

• Grant the application access to its site of origin (selected by default)

• Debug the application as if it were downloaded from a different URL

Granting the application access to its site of origin lets you expose a
Web service from the same site that the application is launched from that
the application calls for back-end services. You can also use this to down-
load additional files on demand. By doing this, you do not need to ask for
WebPermission specifically to make those calls. Debugging the applica-
tion as if it were downloaded from a different URL lets you test and see
what will happen with different security zones based on the URL—with-
out needing to understand the exact logic that the runtime is using to eval-
uate the URL and match it against the location-based security zones.

The settings that you select in the Security tab are saved as part of your
Visual Studio project file and will be used each time you publish your
application from ClickOnce. The appropriate entries in the application
manifest will be created when you publish.

Calculating Permissions with Visual Studio
At the bottom of the project properties editor’s Security tab, there is a Cal-
culate Permissions button (see Figure 6.4). If you click this button, Visual
Studio will do a static analysis of your code, and every assembly that your
code calls out to, in an attempt to determine what permissions your appli-
cation will require to run. After you run the permissions calculator, it will
configure the individual security permissions required for your applica-
tion to include the permissions that it determined your application needs.

Using the permissions calculator is only appropriate if you plan to
deploy your application under partial trust and are not sure what permis-
sions your application requires based on its design. The thing to be aware of
with the permissions calculator is that it makes a conservative estimate of
what permissions your application will require. Based on my experience try-
ing to use this tool, it always overestimates the permissions required by your
application. In fact, it often grossly overestimates the permissions required.

noyes.book Page 194 Tuesday, December 5, 2006 8:01 PM

 Configuring ClickOnce Security Permissions 195

As a result of this overestimation, you will be better off keeping track of
what permissions your application needs based on its design and configur-
ing only those permissions. Then test the application rigorously, running
under the debugger with ClickOnce security enabled, to ensure you did
not miss any required permissions.

If you use the permissions calculator to set the required permissions for
your application, your application manifest will likely state that many more
permissions are required than really are. This means you are removing some
of the protections that running under partial trust brings you. However, run-
ning with a set of permissions determined by the permissions calculator
under partial trust will still offer more protection to the client machine than
running under full trust. So if you are unsure what permissions you need
and don’t want to jump the security requirements all the way to full trust as
a result, go ahead and use the permissions calculator.

Configuring ClickOnce Security Permissions with Mage
It should be a fairly rare thing that you would change the permissions your
application requests after you have published from Visual Studio. After
all, the permissions required are determined by the code that executes, not
based on administrative whims. However, if you find that you need to
modify the set of permissions that your application requests without pub-
lishing a new version from Visual Studio, you have some ability to do so
with the Mage tools.

Using the command line mage.exe tool, you can only set the security to
one of the predefined zone levels of Internet, LocalIntranet, or FullTrust.
You do this by running mage with a command line switch of –TrustLevel
(or –tr for short). Because you are editing the manifest by doing this, you
will also need to re-sign the manifest with a certificate. You do this with
other command line options. The following example shows how to set the
security zone to full trust and re-sign the manifest.

mage.exe -Update MyApp.exe.manifest -TrustLevel FullTrust –CertFile

MyCert.pfx –Password SomeSecretPwd

You can use the Mage UI tool, mageui.exe, to edit the permission set-
tings in a dialog-based user interface. Start mageui.exe from a Visual Studio

noyes.book Page 195 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security196

command prompt and open the application manifest that you want to edit.
Select the Permissions Required category in the list on the left and you will
see the view shown in Figure 6.7.

You can drop down the list of permission set types on the right in Fig-
ure 6.7 to select one of the predefined zones, including Internet, Local
Intranet, and Full Trust. When you select one of these values, the Details
pane below it will display the XML PermissionSet element that will be
placed in the application manifest. Under this element, there will be indi-
vidual IPermission elements for each permission you require, except in
the case of Full Trust, which just sets the permission set to unrestricted.
You can also select a value of Custom in the permission set type list to
manually enter whatever settings you would like. This requires that you
understand the full schema of the PermissionSet element and its child
elements to determine what to put into the Details box. This schema is
beyond the scope of this book to describe in detail, but follows a common
convention with the way permission sets are defined for security configu-
ration files. Consult the MSDN Library documentation for more informa-
tion on manually creating XML permission set entries.

Figure 6.7: Setting Permissions with Mage UI

noyes.book Page 196 Tuesday, December 5, 2006 8:01 PM

 Understanding and Managing Publisher Certificates 197

Note that using the Custom permission set type and figuring out the
right XML elements and attributes to add is the only way to go beyond the
permission sets and options that are exposed to you in Visual Studio. You
could also write a custom tool to set these through the APIs exposed in the
Microsoft.Build.Tasks.Deployment namespace, but that is not a triv-
ial task either.

Understanding and Managing Publisher Certificates

The publisher certificates used to sign ClickOnce manifests are Authenti-
code Class 3 Code Signing certificates. This is just one form of an Authenti-
code certificate.2 There are many different kinds for various forms of
authentication and authorization security scenarios.

Publisher certificates are generated with a public-private key pair and
additional metadata about the publisher. The organization that creates a
certificate is called the certificate authority or certificate issuer. The orga-
nization the certificate represents is the publisher. The Windows operating
system has a built-in infrastructure for storing and authenticating certifi-
cates. There are a number of built-in certificate stores in the operating sys-
tem, and you can create additional custom stores as needed.

Certificates are based on the concept of a trust chain. If you are pre-
sented with a certificate, you can determine from the certificate who the
publisher organization is that the certificate represents, as well as who
issued that publisher the certificate. From the issuer’s certificate, you can
determine the issuer’s identity, as well as who issued the issuer their certif-
icate. You can follow this chain of issuers back to what is called a Trusted
Root Certification Authority. This chain of issuers provides a path of dis-
covery that ensures that if you can verify the identity of all of the issuers in
the chain, you have a way to track down and contact the publisher.

This way, if you deploy an application to your machine that is signed
with a publisher certificate, and that application does harmful things to
your machine, you can track down the publisher through the information
in the certificate, or through the information that is retained by the issuer

2. For an overview of Authenticode code signing, see http://msdn.microsoft.com/
workshop/security/authcode/intro_authenticode.asp.

noyes.book Page 197 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security198

when issuing the certificate. Some certificate issuers include liability insur-
ance as part of their certificate issuance services; this guarantees that if you
cannot contact a publisher that was issued a certificate by that authority (to
pursue a liability claim), the certificate issuer will assume the liability up to
some limited degree.

To support this concept, a number of companies are in the business of
verifying the identity of other organizations for the purposes of issuing
certificates to them. VeriSign and thawte are two well-known companies
who perform these services. The issued certificate (whether a code signing
or publisher certificate, or one of the many other forms of certificates)
becomes a digital representation of the organization’s identity. Certificates
from well-known and trusted certificate authorities are installed with the
operating system or can be added later, which identifies them as a trusted
issuer of other certificates. As a result, if you obtain a publisher certificate
from an application vendor, and that certificate has been issued by an
organization like VeriSign, you can be relatively certain that the company
is who they say they are (they are a legal business entity), and that the
organizational information contained in the certificate has been verified by
the issuer (which includes the location of the organization or where its
business license information can be verified).

The verification chain may be deeper than one level, however. A
Trusted Root Certification Authority can issue certificates to themselves
or other certification authorities to issue specific kinds of certificates. For
example, see Figure 6.8 for the trust chain for a code-signing certificate
for my company, Software Insight. You will see that the root VeriSign
Class 3 Public Primary CA (certificate authority) certificate was used to
issue a VeriSign Class 3 Code Signing CA certificate, which was then
used to issue my Software Insight Class 3 Code Signing publisher certifi-
cate. To issue that certificate, VeriSign had to verify my existence as a
legal business entity. They can do this through articles of incorporation
or by verifying that a legal business license has been issued by your state
or city, for example.

You do not have to purchase a certificate from a third-party certificate
issuer to use ClickOnce. In an enterprise environment, your domain
administrators can generate a certificate for themselves and configure that

noyes.book Page 198 Tuesday, December 5, 2006 8:01 PM

 Understanding and Managing Publisher Certificates 199

certificate as a Trusted Root Certification Authority (CA) on all the
machines in the enterprise, allowing them to issue publisher certificates to
your development organization with a single-level trust chain back to a
known CA. Or if you are not concerned with providing any kind of assur-
ances of identity with your ClickOnce publication, you can generate your
own publisher certificate with either Visual Studio 2005 or with command
line tools.

To make matters even more complicated, there are a number of differ-
ent file formats that are used for delivering certificates. Third-party cer-
tificate issuers usually issue a certificate in the form of a .cer or .spc file.
These certificate files usually only contain the public key portion of the
certificate, so you can freely distribute them to client machines and install
them in those machine’s certificate stores. When you purchase a certifi-
cate, you also usually receive a separate .pvk file that contains the private
key corresponding to that public key. You will need both the public and
private key portions of a certificate, in a single .pfx file format, to use it
for ClickOnce publishing. You can combine .cer or .spc file portions with

Figure 6.8: Certification Path

Trusted Root
Certification
Authority

Intermediate
Certification
Authority

Publisher

noyes.book Page 199 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security200

the .pvk portion by using the pvkimprt.exe tool that is available from
Microsoft downloads.3

There are several certificate stores on your Windows machines that you
will use with ClickOnce deployment. Any certificate you use for ClickOnce
publishing will be added to the Personal certificate store for the logged-in
user when you publish the application. Additionally, if you want to avoid
user prompting on the client machine, you will want to install your pub-
lisher certificate into the Trusted Publishers store on the client machine as
discussed in the section Trusted Publishers’ Permission Elevation later in
this chapter. If you are installing a publisher certificate into the Trusted Pub-
lishers store, you will want to make sure the certificate’s issuer is in the
Trusted Root Certification Authorities store or the Intermediate Certification
Authorities store, and that the root issuer of the trust chain is in the Trusted
Root Certification Authorities store (see Figure 6.8).

Generating or Configuring a Publisher Certificate with
Visual Studio 2005
If you publish a Windows Application project with Visual Studio without
configuring a publisher certificate ahead of time, Visual Studio will gener-
ate a self-signed publisher certificate for you. In this kind of certificate, the
identity of the issuer and the publisher are set to the logged-in Windows
identity of the user.

The public and private key portions of the certificate are placed in a file
with a .pfx file extension and the file is added to your project. The certifi-
cate is then configured as the signing certificate for ClickOnce publication,
and is also added to your Personal certificate store on the development
machine. When your application is published, the deployment and appli-
cation manifest files are signed with this certificate. The .pfx file that is gen-
erated is a password-protected file, but when Visual Studio automatically
generates the file for you the first time you publish, the password of the
generated file is set to an empty password.

You can generate your own certificates through Visual Studio (with the
option to password-protect the file), or you can select an existing certificate

3. Search for pvkimprt at www.microsoft.com/downloads.

noyes.book Page 200 Tuesday, December 5, 2006 8:01 PM

 Understanding and Managing Publisher Certificates 201

to use for signing as well. You do this through the Signing tab of your
project properties editor (see Figure 6.9).

After checking the box that is labeled Sign the ClickOnce manifests, you
can either select a certificate from the logged-in user’s Personal certificate
store on the development machine, from a .pfx file, or generate a new cer-
tificate. If you click the Select from Store button, you will see the dialog
shown in Figure 6.10 to select a certificate.

Figure 6.9: ClickOnce Signing Settings

Figure 6.10: Select a Certificate Dialog

noyes.book Page 201 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security202

You can see that there are several small challenges to using the Select
from Store option. The first is that if you test publishing an application
with ClickOnce without first configuring the Signing tab to use an existing
certificate, a new certificate is generated each time. Each of those certifi-
cates have a different public-private key pair and are distinct certificates,
but they all have the same common name, known as CN for short, which
will be your logged-in Windows account name (e.g., DOME-M200\Brian
Noyes on my current machine). As a result, it is almost impossible to tell
which one is which. The other challenge is that this dialog will not let you
resize it, and you can see that there are a lot of columns, each with long
content, so the usability of the dialog is extremely low.

An alternative to selecting a certificate from the Personal certificate
store is to just point to an existing .pfx file for a publisher certificate. This
will extract the information in the certificate and use it for signing, as well
as install it in the Personal certificate store if it is not already there. You can
see an example of this in Figure 6.10 as well—the entry that starts with
XPS600 is from a certificate generated on a different machine of mine
(named XPS600), and was automatically imported into my Personal certifi-
cate store on the current machine when I selected that .pfx file for my certif-
icate. Clicking the Select from File button on the Signing tab gives you a
standard file dialog to navigate to the location of your certificate file.

If you click the Create Test Certificate button on the Signing tab, you
will be prompted for a password as shown in Figure 6.11. The dialog does
not enforce strong passwords; you can leave it blank if desired.

After you click OK in the Create Test Certificate dialog, the process is
similar to what Visual Studio does if you do not configure a certificate and
publish the application.

• A test certificate is generated with the issuer and publisher (labeled
Issued By: and Issued To:, respectively, in most places in the UI) set to
your logged-in Windows identity.

• The certificate is placed in a .pfx file with the name <appname>_Tempo-
raryKey.pfx with the password you provided set on the file.

• The .pfx file is added to the Visual Studio project files.

• The certificate is imported into your Personal certificate store.

noyes.book Page 202 Tuesday, December 5, 2006 8:01 PM

 Understanding and Managing Publisher Certificates 203

Once you have configured a certificate through the Signing tab, that
certificate will be used for any subsequent publications of your application
to sign the ClickOnce manifests.

Installing a Certificate in a Store with Visual Studio 2005
Visual Studio lets you install a certificate into any certificate stores on your
machine if desired. As described earlier, any certificate that you configure
to sign your ClickOnce manifests by generating the file or selecting a file
will be installed into your Personal certificate store on your development
machine. Additionally, if the certificate is password protected, then you

WARNING Selecting a Certificate File Copies It to Your
Project Folder

One important thing to be aware of is that if you point to a certificate file
by using the Select from File option on the project properties editor’s
Signing tab, the file you point to will be copied to your project folder and
added to your project. A .pfx file for a publisher certificate includes both
public and private keys. If you subsequently zip up your project and
send it off to a friend, you will have compromised that certificate because
now someone else has physical access to the certificate’s private key. If
the file is password protected, as it should be, that person will have a
very difficult time using the certificate, but the possibility now exists. If it
is a self-generated test certificate, then it is no big deal. But if it is a real
company certificate, such as one purchased from VeriSign, then you
should revoke that certificate. Unfortunately, I mention this from the
vantage point of one who has done exactly this. I zipped up the code
from a demo I did using my VeriSign company certificate and forgot to
remove my certificate file from the project directory first.

Figure 6.11: Create Test Certificate Dialog

noyes.book Page 203 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security204

can use Visual Studio to manually install that certificate into other stores
on your machine.

Do the following if you want to install a signing certificate into a differ-
ent store on your machine.

1. Click on the More Details button on the Signing tab (see Figure 6.9).
This will display the certificate information dialog shown in Figure 6.12.

2. At the bottom of the dialog, click the Install Certificate button.

3. This will bring up the Certificate Import wizard shown in Figure 6.13.
(This same wizard can be accessed by running certmgr.exe and click-
ing the Import button in that tool). Click Next to start the process.

4. The second step in the wizard (see Figure 6.14) lets you select which
store the certificate will be placed into. Select the radio button labeled
Place all certificates in the following store and click the Browse button.

5. The Select Certificate Store dialog shown in Figure 6.15 will display,
and you can pick from the available stores on the machine. Select the
store you want to place the certificate into, such as the Trusted Pub-
lishers store, and click the OK button.

Figure 6.12: Certificate Information Dialog

noyes.book Page 204 Tuesday, December 5, 2006 8:01 PM

 Understanding and Managing Publisher Certificates 205

Figure 6.13: Certificate Import Wizard

Figure 6.14: Certificate Import Wizard – Store Selection

Figure 6.15: Select Certificate Store Dialog

noyes.book Page 205 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security206

6. You will return to the wizard and the selected store will be displayed
in the Certificate store field in the middle of the form (see Figure 6.16).
Click the Next button to continue.

7. The final step of the wizard (see Figure 6.17) will display, summariz-
ing the import that is about to happen. Click the Finish button to com-
plete the installation of the certificate into the selected store.

Figure 6.16: Completed Store Selection Step

Figure 6.17: Certificate Import Wizard Completion

noyes.book Page 206 Tuesday, December 5, 2006 8:01 PM

 Understanding and Managing Publisher Certificates 207

Command Line Certificate Tools
There are several command line tools that come with the .NET Framework
SDK or that you can download to assist you in generating, configuring,
and managing publisher certificates. To generate a test certificate from the
command line, you can use the makecert.exe command line tool. This tool
offers more fine-grained options for generating publisher certificates. Run
makecert.exe from a command line with the -? switch for a brief sum-
mary of options or with the -! command line switch for more detailed
options. The makecert.exe tool uses the CryptoAPI under the covers and is
available in the .NET Framework SDK binaries (\Bin) folder underneath
your Visual Studio 2005 installation (C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0\Bin path with a default installation).

To configure certificates with respect to the machine certificate stores,
you can use the certmgr.exe tool. If you run certmgr.exe without any argu-
ments, it launches a UI version of the tool as shown in Figure 6.18.

This tool provides a graphical management console for importing, export-
ing, and removing certificates from the named stores on your development
machine. Clicking the Import button shown in Figure 6.18 launches the same
wizard discussed in the previous section for installing certificates in stores.

Figure 6.18: Certificate Manager Tool

noyes.book Page 207 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security208

You can also incorporate certmgr.exe in a Windows Installer installa-
tion package and use it to configure certificates on a client machine as well
using command line options. For example, the following command line
will install a certificate in the Trusted Publishers store on a target machine
if the certmgr.exe tool is available in the command prompt PATH environ-
ment variable.

certmgr.exe –add MyCompany.cer –s TrustedPublisher

Another command line tool to be aware of that was mentioned earlier is
the pvkimprt.exe tool. This tool is available for download from Microsoft
(www.microsoft.com/downloads) or through the Platform SDK. Pvkim-
prt.exe lets you take a .cer or .spc file that just contains the public key portion
of a publisher certificate, combine it with a .pvk file that contains the private
key portion of the certificate, and generate a .pfx password-protected certifi-
cate file that contains the entire certificate. To do this, you run the tool with
a –pfx switch, also passing the .spc or .cer file path and the .pvk file path.
This will bring up a wizard that will step you through the process of pro-
viding a password and then exporting the keys to a .pfx file.

Signing Application Updates

An important security limitation to understand with ClickOnce is that you
cannot deploy updates to an application that are signed by a different pub-
lisher certificate than the one that was originally used to sign previous
deployments of the application. If ClickOnce sees that an update is avail-
able, but that the update is signed by a different publisher certificate than
the one used to sign the version currently installed on the client machine,
ClickOnce will disable the application and present the message box shown
in Figure 6.19.

Figure 6.19: Changed Publisher Certificate Message

noyes.book Page 208 Tuesday, December 5, 2006 8:01 PM

 Signing Application Updates 209

If you click the Details buttons to see the error, it will specify that the
problem is, “The deployment identity does not match the subscription.”
This behavior was designed to protect the tamper assurances that were
discussed earlier in the section ClickOnce Tamper Protection. If someone
were to gain access to your published application directory on the server,
he could introduce a virus or malware into one of the application files, and
then just regenerate and re-sign the manifests with his own certificate.
Because updates do not typically prompt users (unless elevating the per-
missions of the application beyond their current trust level), there would
be no way for users to realize that they could be introducing the compro-
mised application onto their machines. Disabling the application if the cer-
tificate has changed is designed to make it as safe as possible and not allow
updates to be signed with a different publisher certificate from the original
certificate.

As a result, if you do publish an update to an application from Visual Stu-
dio 2005 that is signed with a different certificate than the previous version,
you will be prompted as shown in Figure 6.20 to ensure this is your intent.

If you do have a previous version of a ClickOnce application that users
have installed and you need to put out a new version signed by a different
certificate (perhaps your company changed names or was acquired by a
new parent company), you will need to instruct users to launch the new
version using the full URL to the deployment manifest on the server. This
will force a fresh install of the application, and the new install will not be
related to the old version at all. Before users do this, it is recommended that
you have them uninstall the previous version first from the Add or Remove
Programs item. If they do not, they will end up with two application instal-
lations. The old one will have the original program name (e.g., My Appli-
cation), and the new one will have the old name with a – 1 appended to it
(e.g., My Application – 1). This is likely to confuse users when they go to

Figure 6.20: Visual Studio Publisher Certificate Change Warning

noyes.book Page 209 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security210

launch the application from the Start menu. Unfortunately, there is no way
to automate this process. For online-only applications this is not a problem
because if the certificate has been changed, it will just be treated as a new
application being launched, and users will be prompted with the security
warning again.

User Prompting

Despite the name ClickOnce, often users will need to click twice to get the
application deployed and running. The first click is the one that starts the
process of deployment and launching of the application. Users click on a
URL provided in an e-mail or on a Web site to start the deployment pro-
cess. If the application is configured to run offline, then users will also be
prompted because the application will create a Start menu item and an
Add or Remove Programs entry, which causes visible changes on their
machines. As a result, users are notified of this change before it occurs and
has the opportunity to refuse the application. Additionally, if the applica-
tion requires elevated permissions to run, users will also be prompted to
decide whether they should allow the application’s elevated permissions
on their machine. The kind of prompt presented to users in both of these
cases also gives an indication of whether the publisher is verifiable
through a trust chain on the machine.

Table 6.1 summarizes the prompting dialogs users will see and the associ-
ated risk levels, and Figures 6.21 through 6.26 show the range of prompting
dialogs that users will see, starting from lowest risk to highest risk to the local
machine. For any of these prompts, if users click the Install button, the instal-
lation will complete and the application will launch. If users click the Don’t
Install button, no modifications to the client machine will be made. The dif-
ferent levels of prompting are just intended to convey different degrees of
risk to users based on how well known the publisher is and whether the
application requires elevated permissions on the local machine.

Once users have been prompted and they click the Install button, they
will not be prompted again for running that application, even if updates
are installed, unless an update requests higher permissions than the cur-
rently installed version. In that case, the prompting will follow the same

noyes.book Page 210 Tuesday, December 5, 2006 8:01 PM

 User Prompting 211

logic as an initial install in determining which prompts to provide. This is
true for both installed and online-only applications. The following subsec-
tions describe those different prompts.

Low-Risk Install
Figure 6.21 shows the install prompt users will see if an application is
being launched for the first time where:

• The application is an installed application

• The application is signed by a publisher that was issued its certificate
by a Trusted Root Certification Authority known by the client
machine

• And the application is not requesting any permissions beyond what it
would be granted by default by CAS based on its launch URL

Figure 6.22 shows the More Information dialog for this deployment
scenario. You can see that the only thing the dialog is really cautioning
users about is that it will add a Start menu item and an Add or Remove
Programs item.

TABLE 6.1: Security Dialog Risk Levels

Risk Level Icon Cause

Low Green check mark Known publisher, no security permission eleva-
tion, only adding Start menu shortcut and Add
or Remove Programs item.

Medium Yellow exclamation
point

Known publisher, security permissions elevation
needed to run, may also be adding Start menu
shortcut and Add or Remove Programs item.

Medium Yellow exclamation
point

Unknown publisher, no security permission
elevation, but adding Start menu shortcut and
Add or Remove Programs item.

High Red X Unknown publisher, security permission
elevation needed to run, may also be adding
Start menu shortcut and Add or Remove
Programs item.

noyes.book Page 211 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security212

Medium-Risk Install
Figure 6.23 shows the install prompt users will see if an application is
being launched for the first time where:

• The application is an installed application

• The application is signed by a publisher that was issued its certificate
by a Trusted Root Certification Authority known by the client
machine

• And the application is requesting elevated permissions beyond what
it would be granted by default by CAS based on its launch URL

Figure 6.24 shows the More Information dialog for this deployment
scenario. You can see that in this case users are being warned that the
application requires access to “additional resources on your computer,”
meaning elevated permissions. It also adds the normal caution that it will

Figure 6.21: Low-Risk Install Prompt

Figure 6.22: Low-Risk Install More Information Dialog

noyes.book Page 212 Tuesday, December 5, 2006 8:01 PM

 User Prompting 213

add a Start menu item and an Add or Remove Programs item. However,
you can see that this dialog makes it clear that the publisher is considered
to be a known entity since its certificate was issued by a known certificate
authority (CA).

High-Risk Install
Figure 6.25 shows the install prompt users will see if an application is
being launched for the first time where:

• The application is an installed application

• The application is signed by a publisher that is unknown (meaning its
certificate was issued by an unknown certificate authority)

• And the application is requesting elevated permissions beyond what
it would be granted by default by CAS based on its launch URL

Figure 6.23: Medium-Risk Install Prompt

Figure 6.24: Medium-Risk Install More Information Dialog

noyes.book Page 213 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security214

Figure 6.26 shows the More Information dialog for this deployment sce-
nario. You can see that in this case users are being warned that the pub-
lisher of the application is unknown, and the application requires access to
“additional resources on your computer,” meaning elevated permissions.
It also adds the normal caution that it will add a Start menu item and an
Add or Remove Programs item.

The high-risk prompts shown in Figures 6.25 and 6.26 are what users
will see if you deploy a ClickOnce application using a self-generated test
certificate (created with Visual Studio or the makecert.exe tool).

User Prompting for Online-Only Applications
When users click on a link to an online-only ClickOnce application, they
will only be prompted if the application needs to elevate permissions. If

Figure 6.25: High-Risk Install Prompt

Figure 6.26: High-Risk Install More Information Dialog

noyes.book Page 214 Tuesday, December 5, 2006 8:01 PM

 Trusted Applications’ User Security Policies 215

the application does not need to elevate permissions, users will not be
prompted at all after they click on the link to the application, even if the
publisher is unknown. The application will just download and launch.

If the application does need to elevate permissions, then users will be
prompted with a dialog similar to either Figure 6.23 or 6.25, depending on
whether the publisher is known (certificate issued by a trusted root CA) or
unknown. The only difference in the prompting dialogs in this case is that
the buttons will be labeled Run and Don’t Run for the online-only applica-
tion instead of Install and Don’t Install for the installed application. If users
inspect the More Information dialog, they will see the green status for
installation, indicating that no modifications to their Start menu or Add or
Remove Programs items will be made (see Figure 6.27).

Trusted Applications’ User Security Policies

When an application gets installed or run, a user security policy is created
to record the set of permissions that have been granted to that application.
This policy can be viewed using the Microsoft .NET Framework 2.0 Con-
figuration tool. If you open this tool (from the Administrative Tools menu)
and expand the Runtime Security Policy node down to the user level, you
will see a child node under User for Trusted Applications. If you select this
and click the link in the right pane labeled View List of trusted applications,
you will see something like Figure 6.28.

Figure 6.27: Online-Only High-Risk Install More Information Dialog

noyes.book Page 215 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security216

Depending on how many different ClickOnce applications and how
many different versions of those applications have been deployed to your
machine, you may see many more entries in the list on the right. You will
get one entry in the list for each application version for which a different
set of permissions were issued. This always includes the first install or run
of a ClickOnce application, and then additional entries will be made for
subsequent versions of an application only if they elevate permissions
beyond what the previous version required.

You can inspect the permissions set for a given application version by
double-clicking on the entry in the list. This displays the Properties dialog
shown in Figure 6.29, where you can inspect and browse through the
assigned permissions.

Trusted Publishers’ Permission Elevation

The problem with the default security model for an enterprise environ-
ment is that it puts the trust decision of whether to elevate permissions or
not into the users’ hands. If an application needs elevated permissions, it
prompts the users, and if they click the Install button, the application can
elevate its permissions all the way to full trust if it wants to, effectively
removing the runtime protections that ClickOnce is capable of providing.

This is often not what the IT administrators for the enterprise want—they
want to have explicit control over the machines that they are responsible for.

Figure 6.28: Trusted Applications’ Security Policies

noyes.book Page 216 Tuesday, December 5, 2006 8:01 PM

 Trusted Publishers’ Permission Elevation 217

Many users do not have the experience to discern a true high-risk scenario
from one that is acceptable. From an IT administrator’s perspective, an
application should not run on a user’s desktop unless the administrator has
configured it to do so, either directly or implicitly through a trust relation-
ship with the publisher of the application.

There is also a downside to the default prompting model from the
users’ perspective as well. If they are going to be launching various appli-
cations from a known and trusted publisher, why should they be repeat-
edly prompted when those applications launch the first time? It would be
good to let end users establish a trust relationship with a publisher as well
to avoid unnecessary prompting.

ClickOnce supports giving the administrators more explicit control and
avoiding unnecessary prompting through a model known as trusted pub-
lishers. A trusted publisher is a publisher whose certificate has been
installed in the Trusted Publishers certificate store on a client machine.
This can be done manually using the techniques discussed early in the
chapter in the section Understanding and Managing Publisher Certificates,
or it can be done automatically through something like Microsoft Systems
Management Server or group policy.

If an application is deployed through ClickOnce to the client machine
and that application’s manifest has been signed by a trusted publisher’s

Figure 6.29: Trusted Application Permissions

noyes.book Page 217 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security218

certificate, then the runtime can use that to automatically elevate the per-
missions for the application rather than prompting the user. As a result,
the prompting model is actually even more complex than the different lev-
els of prompting discussed in the User Prompting section.

When the ClickOnce runtime determines that a user prompt is required
to elevate permissions, it will also check to determine if it is allowed to
prompt the user. The settings that drive this decision are based on the zone
that the application is being launched from. For each launch zone (My
Computer, Local Intranet, Internet, Trusted Sites, Restricted Sites), there is
a default setting that says when the runtime is allowed to prompt the user.
This setting can take on one of the following values.

• Enabled—The runtime can prompt users if needed to elevate the per-
missions for the application. However, if the application’s publisher
is a trusted publisher, then the application will automatically elevate
its permissions and users will not be prompted to install the applica-
tion (i.e., it will be a true ClickOnce application). This is the default
value for the My Computer, Local Intranet, Trusted Sites, and Inter-
net zones.

• Authenticode Required—The runtime can prompt users if needed to
elevate the application’s permissions only if the publisher certificate
for the application has a trust chain back to a Trusted Root Certifica-
tion Authority. If the publisher is unknown, the application will be
disabled. If the publisher is a trusted publisher, users will not be
prompted to install the application and the permissions will be auto-
matically elevated.

• Disabled—The application can only run if signed by a trusted pub-
lisher, in which case the permissions will automatically elevate. With
this setting, users will never be prompted and only applications from
trusted publishers will be allowed to launch through ClickOnce. This
is the default value for the Restricted Sites zone.

If you want to change the default prompting behavior for a given zone,
you will have to add a registry key with values set for the zones for which
you want to change the defaults. You will need to create a TrustManager key

noyes.book Page 218 Tuesday, December 5, 2006 8:01 PM

 Adding Restricted Code Sections 219

under the HKLM\Software\Microsoft\.NETFramework\Security key, and
another key under that named PromptingLevel. Once you have created
those keys, you add named string values under the PromptingLevel key for
each zone that you want to modify. The name of the key should match the
zone name: MyComputer, LocalIntranet, Internet, TrustedSites, or Restrict-
edSites. The value for the string value should be set to one of the three levels
discussed earlier: Enabled, Authenticode Required, or Disabled.

Using these registry settings, you can achieve a much more secure config-
uration for client machines in an enterprise environment. If you add the
named values just described and set them all to Disabled, it means that the
only ClickOnce applications that are allowed to run on users’ machines are
those that are signed by publisher certificates that have been installed in the
Trusted Publishers store on those machines. In other words, the only Click-
Once applications that get to run are those for which the administrator estab-
lished a trust relationship on the client machine with the publisher of the
application. When that is the case, the application will download, automati-
cally elevate its permissions to the level needed, and execute. Any applica-
tion not coming from a trusted publisher will not be allowed to launch
through ClickOnce. Figure 6.30 depicts this configuration in the registry.

Adding Restricted Code Sections

The set of permissions an application has is determined by the permissions
its application manifest says it requires to run and the permissions that
would be granted to it based on the zone it is launching from. However, if

Figure 6.30: User Prompting Registry Settings

noyes.book Page 219 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security220

you need to elevate permissions for certain parts of your application, you
may not want to leave your entire application vulnerable because of those
elevated permissions. For example, you may have a very limited scope to
perform on-demand updates from your application. As discussed in Chap-
ter 4, on-demand updates require full trust. As a result, you will need to
configure your application for full-trust permissions as far as ClickOnce
deployment is concerned. However, there may be other portions of your
code where you are doing things such as calling out to third-party compo-
nents, and you want to make sure that they cannot perform any operations
or access any resources other than what they are supposed to based on
their design purpose.

For example, say for a limited scope you were going to call out to a com-
ponent that is supposed to perform certain kinds of computation for you,
and perhaps it may also present a user interface in doing so or to present
error messages to users. However, by design, the component should never
do anything other than execute and present user interfaces.

You can use the capabilities of Code Access Security to lock down the
security context for a given scope of code. Listing 6.1 shows a section of
code where a component is going to be used for a limited scope of code,
and you want to ensure that the only thing that component does is to
present a user interface to users. To do this, you can use a stack walk mod-
ifier, based on the IStackWalk interface, to turn on only a particular per-
mission type.

Listing 6.1: Restricting Permissions for a Code Scope

private void OnCallUntrustedCode(object sender, EventArgs e)

{

 IStackWalk stackWalk =

 new UIPermission(PermissionState.Unrestricted);

 stackWalk.PermitOnly();

 UIOnlyComponent uoc = new UIOnlyComponent();

 uoc.DoUIStuff();

 CodeAccessPermission.RevertPermitOnly();

}

With the PermitOnly stack walk modifier in place, any code that is called
out to in that scope will be restricted based on the specifications that the stack
walk modifier puts in place. You can use stack walk modifiers to permit only

noyes.book Page 220 Tuesday, December 5, 2006 8:01 PM

 Securing the Application Based on User Roles 221

a specific permission or set of permissions as shown in Listing 6.1, deny a spe-
cific permission or set of permissions, or prevent checking for specific permis-
sions beyond the local scope of code. The latter capability is called a security
assertion and requires elevated permissions to be performed.4

Securing the Application Based on User Roles

A ClickOnce deployed application is no different than any other .NET
application when it comes to role-based security. If you want to control
what users can do with your application based on the roles they are associ-
ated with, you can use .NET principal permission demands. .NET princi-
pals can be based on a user’s logged-in identity, or they can be based on
custom authentication credentials and roles.

You can use role-based security in .NET to make security demands
through either attributes applied to methods, classes, or assemblies, or you
can make them imperatively with code. The following code shows an
example of using principal-based security demands to ensure that only
users in an appropriate role get to execute certain sections of code.

[PrincipalPermission(SecurityAction.Demand, Role = @"Managers")]

private void DoSomethingPrivileged()

{

 // Do manager stuff

 if (Thread.CurrentPrincipal.IsInRole(@"BUILTIN\Administrators"))

 {

 // Do admin stuff

 }

}

In the preceding code, only users who are associated with the Managers
role will be allowed to execute the DoSomethingPrivileged method. The
inline check using the CurrentPrincipal property on the thread lets you
check whether the user is in a particular role and execute conditional code
based on that.5

4. For more information on Code Access Security, stack walk modifiers, and permissions
control, see Programming .NET Components, Second Edition, by Juval Löwy (O’Reilly &
Associates, 2005).
5. For more information on role-based security in .NET applications, see Programming
.NET Components, Second Edition, by Juval Löwy (O’Reilly & Associates, 2005).

noyes.book Page 221 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security222

Securing Access to ClickOnce Application Files
on the Server

ClickOnce does not include any built-in provisions for restricting access to
the application files on the deployment server. If you are using ClickOnce
to deploy an application to the local Intranet, and the Windows identity of
the logged-in user can propagate to the deployment server via Windows
networking (i.e., no firewalls between the client and the deployment
server), then you can use Windows Access Control Lists (ACLs) to restrict
access at the file or folder level on the deployment server to specific users
or groups. If you do this and a user attempts to launch an application to
which she has not been granted file access rights, one of two things will
happen.

If the user has been denied access to the .application file (the deployment
manifest) and she tries to launch a ClickOnce application through a link or
URL, she will see an HTTP 401 error (access denied) in the browser. If the
user is allowed to get to the deployment manifest, but is denied access to the
application manifest or any of the application files, she will get a launch
error dialog like the one shown in Figure 6.31. The details under this dialog
will specify that there was an HTTP 401 access denied error.

If you have an application that you are deploying over the open Inter-
net or a network where you cannot rely on the logged-in identity of the
user to get passed to the deployment server, then there is no practical way
to secure access to the server files. When you deploy an application with
ClickOnce, it is a set of individual file requests from the client machine to
the deployment server. There are actually two for the deployment manifest
(due to a level of indirection supported by the runtime where one deploy-
ment manifest can point to another), one for the application manifest, and
then one for each application file. These file requests are not correlated in
any way.

Figure 6.31: Authentication Error Launch Dialog

noyes.book Page 222 Tuesday, December 5, 2006 8:01 PM

 Where Are We? 223

You can prevent users from being able to do a normal ClickOnce appli-
cation launch by using an online-only application that you have to launch
from a Web application that requires a login to access, but you can only
restrict access to the .application file in that case. The request for the .appli-
cation file will be made by the browser, but the subsequent file requests are
made by the ClickOnce runtime and will not contain any cookies or head-
ers from the previous file requests.6 Each file request is completely isolated
from the others.

Where Are We?

This chapter discussed the complex security mechanisms and options for
ClickOnce deployment. You learned about the way ClickOnce applica-
tions identify the set of permissions that they require to run, how the .NET
runtime determines what permissions they would be granted based on
their launch URL, and how permissions can be elevated through user
prompting or trusted publishers. You learned about certificates and their
role in protecting application files from tampering and in determining
trust relationships with application publishers.

The following are some of the key takeaways from this chapter.

• ClickOnce provides both install-time and runtime protections to the
client machine.

• ClickOnce checks to see if an application requires more permission
than it would be granted by default based on its launch URL. If so, it
will elevate permissions based on either user prompting (the default)
or trusted publishers.

• Manifests are signed by Class 3 Code Signing Authenticode certifi-
cates. Configuring a certificate as a trusted publisher on a client
machine will avoid user prompting for most deployment zones.

6. For more information on possible strategies to secure deployment server files and to
track application usage, see the “Administering ClickOnce Deployments” whitepaper by
Brian Noyes at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnwinforms/html/admincodep.asp.

noyes.book Page 223 Tuesday, December 5, 2006 8:01 PM

Chapter 6: ClickOnce Security224

• You can restrict access to deployment server application files based
on Access Control Lists if all users will come from the local network
and their logged-in user identities can be determined based on the
individual file requests.

In the next chapter, we will look at how to configure and deploy prereq-
uisites for your ClickOnce applications. Prerequisites include setup steps
that require administrative privileges you do not want to require your
users to have.

noyes.book Page 224 Tuesday, December 5, 2006 8:01 PM

