
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321186126
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321186126
https://plusone.google.com/share?url=http://www.informit.com/title/9780321186126
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321186126
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321186126/Free-Sample-Chapter

Balancing Agility
and Discipline

This page intentionally left blank

Balancing Agility
and Discipline
A Guide for the Perplexed

Barry Boehm
Richard Turner

Boston • San Francisco • New York • Toronto

Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, and Carnegie Mellon are registered in
the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMM Integration; Personal Software Process; PSP; SCAMPI; Team Software Process; and TSP are service marks
of Carnegie Mellon University.

Some images © 2002–2003 www.clipart.com.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging in Publication Data
Boehm, Barry

Balancing agility and discipline : a guide for the perplexed / Barry Boehm, Richard Turner.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-18612-5 (alk. paper)
1. Computer software—Development. I. Turner, Richard, 1954– II. Title.

QA76.76.D47B635 2003
005.1—dc21 2003051876

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

Printing7th October 2009
Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville, Indiana.
ISBN 0-321-18612-5

www.clipart.com
www.awprofessional.com

Contents

Foreword by Grady Booch _________________________________ xiii

Foreword by Alistair Cockburn _____________________________ xv

Foreword by Arthur Pyster ________________________________ xvii

Preface __ xix

Why We Wrote This Book _________________________________ xix

Who Should Read This Book _______________________________ xx

How to Read This Book ___________________________________ xx

Acknowledgments __ xxiii

Prelude __ xxv

Chapter 1

Discipline, Agility, and Perplexity

The Sources of Perplexity __________________________________ 5

Multiple Definitions_____________________________________ 5

Distinguishing Method Use from Method Misuse ______________ 6

Overgeneralization Based on the Most Visible Instances ________ 6

Claims of Universality __________________________________ 7

Early Success Stories ___________________________________ 8

Purist Interpretations ___________________________________ 8

Clarifying Perplexity ____________________________________ 9

The Two Approaches ______________________________________ 9

Plan-Driven Methods ___________________________________ 9

Agile Methods ___ 16

Finding Middle Ground ___________________________________ 22

v

Chapter 2

Contrasts and Home Grounds

Application Characteristics _________________________________ 26

Primary Goals___ 26

Size ___ 28

Environment __ 29

Management Characteristics ________________________________ 31

Customer Relations _____________________________________ 32

Planning and Control ___________________________________ 33

Project Communication _________________________________ 35

Technical Characteristics ___________________________________ 37

Requirements__ 37

Development __ 39

Testing ___ 42

Personnel Characteristics __________________________________ 44

Customers __ 44

Developers ___ 46

Culture __ 49

Summary ___ 51

Home Grounds __ 51

Misconceptions __ 53

Five Critical Factors ____________________________________ 54

Chapter 3

A Day in the Life

Typical Days __ 59

A Typical Day Using PSP/TSP ____________________________ 60

A Typical Day Using Extreme Programming _________________ 69

Crisis Days ___ 76

A Crisis Day with TSP/PSP _______________________________ 76

A Crisis Day with XP ___________________________________ 78

vi

Contents

Summary ___ 79

Differences ___ 79

Similarities ___ 80

Observations __ 81

Chapter 4

Expanding the Home Grounds: Two Case Studies

Using Plans to Scale Up Agile Methods:

Lease Management Example______________________________ 84

Assumption 1: The Effort to Develop or Modify a Story

Does Not Increase with Time and Story Number ____________ 85

Assumption 2: Trusting People to Get Everything Done

on Time Is Compatible with Fixed Schedules and

Diseconomies of Scale ________________________________ 86

Assumption 3: Simple Design and YAGNI Scale Up Easily

to Large Projects_____________________________________ 88

Agile Methods Scaleup: Summing Up _______________________ 89

Using Agility to Streamline Plan-Driven Methods:

USAF/TRW CCPDS-R Example __________________________ 90

Individuals and Interactions over Processes and Tools:

CCPDS-R __ 91

Working Software over Comprehensive Documentation:

CCPDS-R __ 92

Customer Collaboration over Contract Negotiation:

CCPDS-R __ 93

Responding to Change over Following a Plan: CCPDS-R _______ 94

Summary ___ 95

vii

Contents

Chapter 5

Using Risk to Balance Agility and Discipline

An Overview of the Method ________________________________ 100

An Example Family of Applications: Agent-Based

Planning Systems ______________________________________ 104

An Intermediate Application: Supply Chain Management _________ 106

Step 1: SupplyChain.com Project Risk Ratings _______________ 108

Step 2: Compare the Agile and Plan-Driven Risks _____________ 109

Step 4a: Individual Risk Resolution Strategies ________________ 113

Step 4b: Risk-Based Strategy for SupplyChain.com

System Development __________________________________ 117

Small Application: Event Planning ___________________________ 121

Step 1: Event Planning Project Risk Ratings _________________ 122

Step 2: Compare the Agile and Plan-Driven Risks _____________ 123

Steps 4a, 4b: Risk-Based Strategy for Event Planning

System Development _________________________________ 125

Very Large Application: National Information System for

Crisis Management (NISCM) _____________________________ 127

Step1: NISCM Project Risk Ratings ________________________ 129

Step 2: Compare the Agile and Plan-Driven Risks _____________ 132

Steps 3 and 4: Risk-Based Strategy for NISCM System

Development _______________________________________ 135

Summary ___ 142

Chapter 6

Conclusions

The Top Six Conclusions ___________________________________ 148

No Agile or Plan-Driven Method Silver Bullet ________________ 148

Agile and Plan-Driven Method Home Grounds _______________ 150

Future Applications Will Need Both Agility and Discipline ______ 151

Balanced Agility-Discipline Methods Are Emerging ___________ 151

viii

Contents

Build Your Method Up—Don’t Tailor It Down ________________ 152

Focus Less on Methods—More on People, Values,

Communication, and Expectations Management ____________ 152

What Can You Do Next about Balancing Agility and Discipline? ____ 156

Steps toward Balancing Software Development Agility

and Discipline ___ 157

Afterword ___ 163

Appendix A

Comparing the Methods

Scrum ___ 168

Thumbnail Sketch ______________________________________ 168

Comments __ 169

References __ 169

Adaptive Software Development (ASD) _______________________ 170

Thumbnail Sketch ______________________________________ 170

Comments __ 170

References __ 171

Lean Development (LD) ___________________________________ 171

Thumbnail Sketch ______________________________________ 171

Comments __ 172

References __ 172

Crystal ___ 173

Thumbnail Sketch ______________________________________ 173

Comments __ 174

References __ 174

eXtreme Programming (XP) ________________________________ 174

Thumbnail Sketch ______________________________________ 175

Comments __ 176

Reference___ 176

ix

Contents

Dynamic Systems Development Method (DSDM) _______________ 176

Thumbnail Sketch ______________________________________ 177

Comments __ 178

References __ 178

Rational Unified Process (RUP) _____________________________ 179

Thumbnail Sketch ______________________________________ 179

Comments __ 180

References __ 180

Team Software Process (TSP) _______________________________ 181

Thumbnail Sketch ______________________________________ 181

Comments __ 182

References __ 183

Feature-Driven Development (FDD) __________________________ 183

Thumbnail Sketch ______________________________________ 184

Comments __ 185

References __ 185

Capability Maturity Model Integration (CMMI) _________________ 186

Thumbnail Sketch ______________________________________ 186

Comments __ 187

References __ 187

Capability Maturity Model for Software (SW-CMM) _____________ 188

Thumbnail Sketch ______________________________________ 188

Comments __ 189

References __ 189

Personal Software Process (PSP)_____________________________ 190

Thumbnail Sketch ______________________________________ 190

Comments __ 191

References __ 191

Cleanroom __ 192

Thumbnail Sketch ______________________________________ 192

Comments __ 193

References __ 193

Method Comparison Table _________________________________ 194

x

Contents

Appendix B

Manifesto for Agile Software Development

Principles behind the Agile Manifesto ________________________ 196

Appendix C

Capability Maturity Models

A Short History of CMMs __________________________________ 197

CMM Concepts __ 198

Using Models to Improve Processes ________________________ 201

Appendix D

Tools for Balancing

D1. The Spiral Model Anchor Point Milestones _________________ 205

D2. Benefits Realization Analysis and the DMR

Results Chain ___ 209

Benefits Realized _______________________________________ 209

Results Chain ___ 210

D3. Schedule as an Independent Variable ______________________ 212

Shared Vision and Expectations Management ________________ 212

Feature Prioritization ___________________________________ 213

Schedule Range Estimation ______________________________ 213

Architecture and Core Capability Determination ______________ 214

Incremental Development ________________________________ 214

Change and Progress Monitoring and Control ________________ 215

Appendix E

Empirical Information

E1. The Cost of Change: Empirical Findings____________________ 217

E2. How Much Architecting Is Enough? A COCOMO II Analysis ___ 220

E3. Experiments and Studies of Agile and Plan-Driven Methods ____ 225

Overall Distribution of Project Size ________________________ 225

Process Improvement ___________________________________ 226

xi

Contents

Team Software Process and Agile Methods ___________________ 227

Pair Programming______________________________________ 230

Hybrid Agile/Plan-Driven Methods ________________________ 233

Notes ___ 235

References ___ 247

Index ___ 255

xii

Contents

Foreword
by Grady Booch

There’s a delightful irony in the fact that the very book you are holding

in your hands has an agile pair of authors yet requires three times as

many forewords as you’d find in any normal book.

Well, this is not a normal book; rather, it’s a very pragmatic book that is

not only quite approachable, but it is also immediately useful.

I have now personally lived through three generations of method wars.

The era of structured analysis and design methods initially found its

voice in methodologists such as Tom DeMarco, Ed Yourdon, Larry

Constantine, Harlan Mills, Michael Jackson, and many others. There is

an essential structured method that one can extract from their collective

experience, but in the midst of that era, there was a veritable cacophony

of competing approaches. The era of object-oriented analysis and design

methods found its voice in methodologists such as Jim Rumbaugh, Ivar

Jacobson, Peter Coad, Stephen Mellor, Watts Humphrey, myself, and

many others. Here too one can extract some essential best practices

(which is what the Rational Unified Process is all about), but still, that

era was also characterized by dueling methods, each on a path to total

world domination. Now we find ourselves in the post-dot-bomb era, and

a fresh way of building systems has arisen, with individuals such as

Kent Beck, Martin Fowler, Robert Martin, Jim Highsmith, and many

others giving voice to the movement.

I expect that this won’t be the last set of method wars I’ll live through.

Actually, it’s a sign of extreme health for our industry that there exists

such a vibrant community of practice dealing with process and the devel-

oper experience. As I often quote from Bjarne Stroustrup, our civilization

xiii

runs on software. Building quality software that has economic value

has been, is, and will remain a hard thing to do, and thus energy spent

on improving processes is energy spent on reducing the friction of soft-

ware development.

Barry and Rich are in an excellent position to examine the current

method wars from a dispassionate, calculating way. In this book, they

extract the essential practices from the more high-ceremony methods as

well as the more low-ceremony ones. Their day in the life of the devel-

oper is absolutely wonderful in highlighting the differences and similar-

ities among methods in this spectrum of ceremony.

This day in the life work alone is worth the price of this book, but they

then go on to analyze two extended case studies from the real world. As

they explain in the following section, taking a risk-driven approach is a

pragmatic means of reconciling the strengths and weaknesses of disci-

plined and agile methods.

Being a certified bibliophile and a professional geek, I have more shelf

space devoted to books on software methods than any reasonable human

should possess. Balancing Agility and Discipline has a prominent place

in that section of my library, because it has helped me sort through the

noise and smoke of the current method wars.

—Grady Booch

Chief Scientist

IBM Rational Software

xiv

Foreword

Foreword
by Alistair Cockburn

It was brave of Barry Boehm and Rich Turner to ask me to write a fore-

word for their book. They risk that as a founding agilite, I’ll take excep-

tion to their characterization of the agile position.

Actually, I agree with them. They manage to peer through the rhetoric

to uncover the strengths and weaknesses of the agile practices and to

then compare and contrast those with the strengths and weaknesses of

the plan-driven practices. They go further, showing how to borrow from

each when the situation calls for it. This is no small accomplishment.

I commend the authors for having managed it, and for making the result

readable at the same time.

A word I find interesting throughout their discussion is discipline. The

concept of discipline runs its separate way through both the plan-driven

and agile camps. My Crystal Clear methodology is as low on the disci-

pline scale as I can make it. On the other hand, eXtreme Programming

(XP) calls for high levels of discipline, as anyone who has attempted

it can attest. In fact, along with Watts Humphrey’s Personal Software

Process (PSP), I list XP as among the highest-discipline methodologies

I know. So we have both low-discipline and high-discipline examples of

agile approaches, and plan-driven and agile examples of high-discipline

methodologies.

In their thoughtful way, Barry and Rich capture this and inform us that

plan-driven and agile approaches lean on different meanings of the

word discipline:

[T]he term disciplined, whose dictionary definition includes both

“common compliance with established processes” and “self-control,”

xv

is confined to “process compliance” by CMM bureaucrats, and con-

fined to “self-control” by agile free spirits.

They remind us:

If one has strong discipline without agility, the result is bureaucracy

and stagnation. Agility without discipline is the unencumbered en-

thusiasm of a startup company before it has to turn a profit.

That is, both types of discipline are needed, in varying degrees. Part of

the difference between plan-driven and agile approaches comes with

highlighting one or the other meaning of the word discipline. Balancing

your approach is much about balancing the two meanings of the word.

That balancing is one of the things this book describes.

This is an outstanding book on an emotionally complicated topic. I

applaud the authors for the care with which they have handled the subject.

—Alistair Cockburn

President, Humans and

Technology Project Director,

Agile Development Conference

xvi

Foreword

Foreword
by Arthur Pyster

It is hard to argue against being agile and equally hard to disdain having

discipline. The challenge is finding the right mix of agility and discipline.

Many organizations have made great strides in productivity, predictabil-

ity, quality, and cost using CMM-based process improvement—an ap-

proach that fosters disciplined processes. I have helped dozens of

organizations make those strides using the Software CMM, the Systems

Engineering CMM, and most recently, the CMM Integration. When

properly applied, CMM-based process improvement works well. Of

course, I have also seen organizations use the CMM to create stifling

processes. Any tool can be misused.

For the past six years, I have worked at the Federal Aviation Admin-

istration (FAA)—the last four as Deputy Chief Information Officer.

Billions of dollars are invested annually to safely move 700,000,000

passengers throughout U.S. airspace. The systems that manage air traf-

fic share several characteristics that drive the FAA to disciplined exe-

cution of its development processes. Those systems require very high

assurance and long lead times dictated by massive capital investment by

government, airlines, manufacturers, and airports. System requirements

are constrained by international agreements that ensure air traffic con-

trol works uniformly around the world. Air traffic control systems must

be fair to all parties and must be installed while people are seven miles

in the air. Careful long-range planning, stable requirements and archi-

tecture, and detailed documentation are essential to implementing and

deploying such systems.

Nevertheless, processes for building air traffic systems can and do sup-

port aspects of agility. Ten years ago, air traffic control systems were

built with very stilted processes. Today, spiral development, incremental

xvii

development, and incremental deployment are common. Lighter-weight

processes are used early in the life cycle to prototype systems, refine

requirements, and evolve architectures. Stakeholders are involved early

and often to ensure that requirements are valid and human interfaces

are effective. I expect the FAA to continue to probe where more agile

processes can reduce cost and speed deployment, while recognizing the

demanding environment in which these systems must operate.

Balancing agility and discipline is essential in any sizable project.

The authors have done a commendable job of identifying five critical

factors—personnel, criticality, size, culture, and dynamism—for creat-

ing the right balance of flexibility and structure. Their thoughtful analy-

sis will help developers who must sort through the agile-discipline

debate, giving them guidance to create the right mix for their projects.

—Arthur Pyster

Deputy Assistant Administrator

for Information Services and

Deputy Chief Information Officer

Federal Aviation Administration

xviii

Foreword

Preface

Why We Wrote This Book

In the last few years, two ostensibly conflicting approaches to software

development have competed for hegemony. Agile method supporters

released a manifesto that shifts the focus from traditional plan-driven,

process-based methods to lighter, more adaptive paradigms. Traditional

methods have reasserted the need for strong process discipline and rig-

orous practices. True believers on both sides have raised strident, often

antagonistic, voices.

We wrote this book for the rest of us—those caught in the middle

of the method wars, simply trying to get our projects completed and

accepted within too-tight schedules and budgets. We hope to clarify the

perplexity about the roles of discipline, agility, and process in software

development. We objectively compare and contrast the traditional, plan-

driven approaches to the newer agile approaches and present an overview

of their home grounds, strengths, and weaknesses. We then describe a

risk-based approach to aid in balancing agility and discipline within a

software development project.

We hope that this is a practical book. It is intended to be neither acade-

mic nor exhaustive, but pragmatic. It is based on our own development

experiences, current and past literature, long conversations with propo-

nents of agile and plan-driven approaches, teaching students how to bal-

ance discipline and agility, and years of observing and measuring

software development in industry, government, and academia. We dis-

cuss the subject matter absent a need to choose sides. Our goal is to help

you gain the understanding and information you need to integrate the

approaches in a manner that best fits your business environment.

True believers
represent software
development
alternatives

xix

This book is for
the rest of us

Our goal is
to help you in
your business
environment

Several ways to
read the book

Who Should Read This Book

This book is for perplexed software and management professionals who

have heard the buzz about agile methods and want to separate the chaff

from the wheat. Perhaps you have a CMM- or ISO-certified organiza-

tion and want to know if and how agile methods can help you. Or per-

haps some part of your organization has adopted agile methods and you

are unsure of how they should fit in. Fundamentally, if you need to

understand how the latest software development approaches can help

meet business goals, this book is for you.

■ Software project managers and mid-level executives should read

this book to understand the agile/plan-driven controversy and

learn how best to apply the new approaches in your organizations.

■ Software developers should read this book to better understand

how your field is evolving and what it means for your career.

■ Computer science and software engineering students should read

this book to better understand how to make choices about your

own balance of agility and discipline, both in school and at work.

■ Academicians should read this book to understand some of what

your students are asking about, and how to help them make

informed decisions.

■ Proponents of both agile and plan-driven methods should read

this book to dispassionately look at your opponent’s ideas.

■ CIOs and CEOs should read this book to help you understand

what’s going on in the software world and what implications it

may have for your company.

How to Read This Book

Most of you are busy people, and “must-read” material attacks you

from all sides, 24/7. Some of you want to quickly assess the material for

The perplexed—
or just curious

xx

Preface

later reflection. Others want to know how to implement the concepts we

present. For that reason, we’ve tried to make this book easy to read

quickly but with pointers to more in-depth material.

To support the various reading needs, we’ve reused a format success-

fully employed by David Taylor in his outstanding Object Technology:

A Manager’s Guide. The margins contain a “fast track” summary of the

text. We’ve included illustrations for key concepts. We’ve also included

sidebar material that amplifies the text.

In order to meet the needs of the broadest possible audience, we have

written the main text to provide basic information and relegated much of

the technical material to appendices. Because of the authors’ empirical

backgrounds, one appendix covers the latest in empirical studies related

to agility and discipline. The following icons will appear to indicate that

additional material on the current topic is available in the appendices:

Information on tools and techniques (Appendix D)

Empirical material (Appendix E)

If time is short, use the fast track summaries to scan the total content of

the book, stopping to read things you find interesting or particularly

applicable to your needs, and following the icons for specific technical

information. If you find you need even more detailed material, see the

References section for a list of additional resources.

You can also tailor your reading through chapter selection. Reading the

first and last chapters gives a pretty good idea of the material at a famil-

iarization level. You can read the chapters in any order. Here is a quick

summary:

xxi

Preface

Margin summaries
for fast track reading

In a hurry? Use the
fast track for a quick
overview

First and last
chapters are key

More information
in the appendices

Chapter 1 sets the stage for what follows. It introduces the main

points and provides an executive summary of the book.

Chapter 2 compares the agile and plan-driven approaches and pro-

vides insight into the type of projects where each has been most

successful—their home grounds.

Chapter 3 provides an experiential introduction to the approaches

by describing how both a typical and not-so-typical day might be

spent using each approach.

Chapter 4 presents two project case studies that illustrate the limits

of pure agile and pure plan-driven implementations and the benefits

of integrating the approaches.

Chapter 5 describes a risk-based approach for making methodol-

ogy decisions that integrate agile and plan-driven practices, and

illustrates it with representative examples.

Chapter 6 summarizes the material and offers some final obser-

vations.

Appendix A provides top-level descriptions of the major agile and

plan-driven methods, highlighting their primary distinguishing fac-

tors, and a summary of those factors for comparison.

Appendices B through E provide technical and background in-

formation to support our analyses and speak to specific technical

topics.

The Notes (listed by chapter) and the References follow Appen-

dix E.

xxii

Preface

Acknowledgments

It is hard to know where to begin thanking the many people involved

with creating this book. First there are the three foreword authors, who

also reviewed the book draft and identified key improvements: Grady

Booch, Alistair Cockburn, and Arthur Pyster. We were also fortunate to

have a broad spectrum of reviewers of the full book draft whose per-

spectives provided many insightful improvement suggestions: Pekka

Abrahamsson, Kristen Baldwin, Marguerite Brown, Scott Duncan,

Peter Hantos, Denise Howard, Tony Jordano, Mikael Lindvall, Ken

Schwaber, and Laurie Williams.

We would also like to thank very much those busy leaders in the agile

and plan-driven communities who shared their time and expertise in

helping us to see the software world from many different points of

view: Scott Ambler, Ken Auer, Vic Basili, Kent Beck, Larry Bernstein,

Winsor Brown, Bob Charette, Steve Cross, Michael Crowley, Christine

Davis, Noopur Davis, Tom DeMarco, Nancy Eickelmann, Amr Elssa-

madisy, Hakan Erdogmus, Mike Falat, Martin Fowler, James Grenning,

Jim Highsmith, Tom Hilburn, George Huling, Tuomo Kahkonen, Bil

Kleb, William Krebs, Philippe Kruchten, Charles Leinbach, Wei Li,

John Manzo, Frank Maurer, Granville Miller, Karen Owens, Mark

Paulk, Gary Pollice, Dan Port, Don Reifer, Walker Royce, Gregory

Schalliol, Kurt Schneider, Sarah Sheard, Giancarlo Succi, Roland

Trauter, David Webb, Christian Wege, Laurie Williams, and William

Wood. As the views of the people listed above differ considerably and

we have tried to respect their views, our listing them does not imply that

they agree with everything in the book.

We are especially grateful to our CeBASE colleagues—Mohammed

Al-Said, LiGuo Huang, Apurva Jain, LaDonna Pierce, Meghna Shah,

xxiii

Sachin Shah, Gunjan Sharman, and Paul Sitko from the University of

Southern California Center for Software Engineering, and Patricia Costa,

Atif Memon, Forrest Shull, Roseanne Tesoriero Tvedt, and Marv Zelko-

witz from the Fraunhofer Center at the University of Maryland—for

their support in the research of agile and plan-driven methods, particu-

larly through the e-Workshops and the two agile methods workshops

held at USC. Peter Gordon and the Addison-Wesley staff were, as

always, excellent partners.

Finally, we offer love and thanks to our wives—Sharla and Jo—who not

only put up with midnight faxes, travel extensions, and the general

absent-mindedness that go with this kind of project, but also provided

perceptive reviews and editorial suggestions that improved the book

immensely. As always, they are our best inspiration and most honest

critics, and we love them for both.

xxiv

Acknowledgments

Prelude

Once upon a time, in a land steeped in

metaphor, there lived an elephant. For

many years, this reliable elephant served

his village as the principal food gatherer

and knew just what the village needed. He

established paths through the jungle that

always led him to the best roots, vegetables, nuts, and fruits. He knew

which fruits he could reach with his trunk and which ones required

some trunk shaking. His massive strength enabled him to bring back

enough food for several days, so he always anticipated the requirements

of the village and maintained adequate supplies. He was faithful to his

task, was appreciated throughout the village, and thought his life most

rewarding.

Alas, things began to change, as they often do in life and fable. The vil-

lage cooks wanted different, rarer ingredients for their cooking, things

the elephant had heard of but were not along his well-worn trail. He

busily maintained stores of food that no one wanted but couldn’t find

time to make new paths for meeting new requests. The village grew

impatient with the discouraged elephant, who just couldn’t keep up

with the demands.

Around the same time, there was a monkey in a nearby

village whose job mirrored that of the elephant. Unlike

the elephant, however, the agile monkey flitted across

the jungle grabbing fruit as he saw it, finding the low-

hanging fruit and bringing it quickly back to the village

cooks. Rather than the time-proven trails of the ele-

phant, the monkey relied on his memory and instincts

xxv

to find food and brought back only the amount needed that day. Some-

times he ran off looking for increasingly exotic foods and occasionally got

lost. But his speed and agility always proved equal to the tasks the village

set for him, and like the elephant, he was greatly appreciated.

Unfortunately, the monkey’s life changed, too. His successful village

grew larger every day. The monkey had so many requests that he was

constantly on the move, trying to remember all the needs at every loca-

tion. He had to make many more trips because he just didn’t have the

strength to carry everything requested at the same time. The village

began to get impatient with him as well, and the monkey began to doubt

he could do the job.

As luck would have it, the weary monkey and the discouraged elephant

met one day. The monkey, trying to move quickly with a large load,

noticed how much food the elephant was carrying in the panniers on his

back. The elephant was impressed with the monkey’s speed, how far he

could travel, and how easily he could gather some of the food that the

elephant struggled to reach. Both animals, proud of their skills, never-

theless acknowledged that there were obvious advantages to the other’s

abilities.

The elephant and mon-

key recognized the bene-

fits of working together

and decided to join forces.

The monkey would use

his agility to meet the new

requests to find distant

fruit, bringing it back to

xxvi

Prelude

the elephant for his village. The elephant would carry sufficient quanti-

ties of food to the monkey’s village to meet the growing needs of the

population. It took them a while to work out just how to do this, but

soon they had things going well for both villages. And so, they lived

happily ever after, secure in their mutual trust and the appreciation of

well-fed villagers.

xxvii

Prelude

This page intentionally left blank

2

Contrasts and Home Grounds

25

The complex nature of software development and the wide variety of

methods make comparison of agile and plan-driven approaches difficult

and imprecise. Nevertheless, we have found several important software

project characteristics for which there are clear differences between

agile and plan-driven methods. These are

■ Application characteristics, including primary project goals, proj-

ect size, and application environment.

■ Management characteristics, including customer relations, plan-

ning and control, and project communications.

■ Technical characteristics, including approaches to requirements

definition, development, and test.

■ Personnel characteristics, including customer characteristics,

developer characteristics, and organizational culture.

Comparison is
difficult and
imprecise

Comparing agile and
plan-driven approaches

requires study and
judgment

In this chapter we discuss how agile and plan-driven methods approach

each of these characteristics, giving examples to illustrate the differ-

ences. From that discussion, we consolidate our observations into spe-

cific home grounds for agile and plan-driven methods, and identify five

critical factors that can be used to determine how a project or organiza-

tion relates to those home grounds.

For those interested, Appendix E provides a summary of the small but

growing body of empirical data available on agile and new plan-driven

methods.

Application Characteristics

We have found a number of differences in the type of projects where

each of the approaches has been successful. One area of difference is

the appropriateness of the goals of each approach to those of the project.

Other areas include the size of the project in terms of people, complex-

ity and volume of software, and the type of business environment within

which the project is developed.

Primary Goals
The primary goals of agile methods are rapid value and responsiveness to

change. The first of the 12 Agile Manifesto principles states, “Our highest

priority is to satisfy the customer through early and continuous delivery

of valuable software.” Agile projects generally do not perform return-on-

investment analyses to determine an optimal allocation of resources to

deliver specific value. They prefer to build things quickly and find out

through experience what activity or feature will add the most value next.

This laissez-faire approach generally avoids the loss of large investments

pursued on faulty assumptions, but can lead to local or short-term opti-

mization problems that may impact the project adversely later on.

26

Chapter 2 Contrasts and Home Grounds

Agile goals are
rapid value and

responsiveness

The fourth Agile Manifesto value proposition prefers “responding to

change over following a plan.” This is a reactive posture rather than a

proactive strategy. In a world characterized by rapid changes in the mar-

ketplace, technology, or environment, such a reactive posture has con-

siderable advantages over being locked into an obsolete plan. One

downside is that reactive management with a flighty customer can result

in an unstable, chaotic project. Another potential downside is an

overemphasis on tactical over strategic objectives.

The primary goals of plan-driven methods are predictability, stability,

and high assurance. The plans, work products, and verification and val-

idation strategies of plan-driven methods support these goals. Process

improvement, as represented by the SW-CMM and CMMI, focuses on

predictability and stability by increasing process capability through

standardization, measurement, and control. Prediction is based on the

measurements of prior standard activities. Control is asserted when the

current progress is outside of expected tolerances.

For relatively stable projects, the proactive investments in process and

up-front plans by organizations implementing the CMM or CMMI can

achieve predictability, stability, and high assurance. However, when

confronted with unprecedented projects and high rates of unforeseeable

change, these organizations find that predictability and stability degrade,

and the project incurs significant expenditures in keeping processes rel-

evant and plans up to date.

For high-assurance, safety-critical projects, following a thorough, doc-

umented set of plans and specifications is the only way to meet existing

certification standards such as RTCA DO-178B. These standards require

strict adherence to process and specific types of documentation to

achieve safety or security.

Reactive posture has
advantages where
change is rapid, but
some risk

27

Application Characteristics

Plan-driven goals
are predictability,
stability, and high
assurance

Proactive posture
is effective with
stability

Plans and
specifications
are required for
certification

Size
Currently, agile processes seem to work best with small to medium

teams of people working on relatively small applications. In his land-

mark XP book, Kent Beck says, “Size clearly matters. You probably

couldn’t run an XP project with a hundred programmers. Not fifty. Nor

twenty, probably. Ten is definitely doable.”1 The general consensus is

that the tight coordination and shared knowledge generally prevents

agile methods with teams over forty.2, 3

There have been occasional successful larger agile projects with up to

250 people. The highly successful 50-person Singapore lending appli-

cation, and another successful 250-person banking application,4 are

good examples. However, the manager of both confessed, “I would

never do [a 250-person project] again. It was way too big.” The largest

project to date used Scrum to develop a corporate portfolio of related

applications involving around 800 developers at IDX, a medical infor-

mation services company.5 As shown in the 50-person XP case study in

Chapter 4, a larger agile project needs to adopt traditional plans and

specifications in order to deal with the increasingly complex, multi-

dimensional interactions among the project’s elements.

Traditional plan-driven methods scale better to large projects. The

plans, documentation, and processes provide for better communication

and coordination across large groups. However, a bureaucratic, plan-

driven organization that requires an average of one person-month just to

get a project authorized and started is not going to be very efficient on

small projects.

For the extremely large, path-breaking U.S. Army/DARPA Future

Combat Systems program, our Software Steering Committee recently

participated in a 150-person, week-long review of the completeness and

Agile works best on
smaller projects

28

Chapter 2 Contrasts and Home Grounds

See Appendix E3

Scaling up has
proven difficult

Traditional rigor is
more effective on

large projects

Plan-driven is a
necessity on large
complex projects

consistency of thousands of pages of specifications. The specifications

dealt with 34 highly complex system elements such as robotic com-

bat vehicles and integrated command-control vehicles. They were pro-

duced by multiple integrated product teams and were about to be

released for subcontractor bids. The process produced around 2,000

problem reports, many of which, if issued in their current state, would

have caused person-years of rework. We see no way to avoid an activity

of this nature on extremely large systems of systems, and absolutely

no way to handle the problem with agile standup meetings and tacit

knowledge propagation.

Environment
Agile approaches “are most applicable to turbulent, high-change envi-

ronments,” and have a world view that organizations are complex

adaptive systems, in which requirements are emergent rather than pre-

specifiable.6 However, “welcome changing requirements, even late in

development,” can be misapplied with disastrous results. One of the

authors was involved in a review of software-caused rocket vehicle fail-

ures. The main cause by far was the inadequate testing, verification, and

configuration management of last-minute changes—i.e., responding to

change over following a plan.

Agile methods concentrate on delivering a specific software product, on

time, that completely satisfies a customer. As such, the scope of concern

is focused on the product at hand and generally ignores problems that

may occur later. There is little, if any, concern with the organization

beyond the project except as supporting or interfering with the develop-

ment. This works well at the project level, but as some users have found,

“. . . early experience with elements of XP on departmental applications

produced code that didn’t integrate well with [the] company’s overall

infrastructure or scale in production.”7

29

Application Characteristics

Agile approaches
are comfortable
in high-change
environments—
with some risks

Agile focuses on the
product at hand

Agile methods have been almost entirely performed within in-house or

dedicated development environments.8 This makes it easier to have a

close relationship to local users, but harder to perform various forms of

distributed development, evolution, and usage.

Problems in applying an agile approach can manifest because it is

assumed that the user’s operational system will be flexible enough to

accommodate unplanned evolution paths.9, 10 This assumption fails in

several circumstances:

■ The need to overcome stovepipes, where several independently

evolved applications must subsequently be closely integrated.

■ “Information-sclerosis” cases, where temporary procedural work-

arounds caused by software deficiencies solidify into unchange-

able constraints on system evolution and can cause unnecessary

rework. The following comment is a typical example: “It’s nice

that you reprogrammed the software and changed those equip-

ment codes to make them more intelligible for us, but the Codes

Committee just met and established the current codes as company

standards.”

■ Bridging situations, where the new software is incrementally

replacing a large existing system. If the existing system is poorly

modularized, it is difficult to undo the old software in ways that fit

the expanding increments of new software.

■ Monolithic requirements, such as the need for critical-mass core

capabilities. For example, delivering 20 percent of an aircraft

flight control module might not be practical.

■ Continuity requirements, where you must maintain familiarity

with the system across a large, mission-critical user base. Con-

sider the safety risks in making significant monthly changes to air

traffic controllers’ operational procedures.

Agile successes
have largely been

in in-house
environments

30

Chapter 2 Contrasts and Home Grounds

Agile assumes
flexible user system

to accommodate
evolution

Plan-driven methods work best when the requirements are largely

determinable in advance (including via prototyping) and remain rela-

tively stable. Change rates on the order of 1 percent of the requirements

per month are acceptable. Unfortunately, in the increasingly frequent

situations where the rate of change is much higher than this, traditional

methods designed for stable software begin to unravel. Time-consuming

processes to ensure complete, consistent, precise, testable, and traceable

requirements will face possibly insurmountable problems keeping up

with the changes.

Plan-driven methods also cover a broader spectrum of activities than

agile methods. Often used in contracted software development, they can

address product line, organizational, and enterprise concerns that span

multiple projects. In order to better handle this broader spectrum, plan-

driven methods anticipate (plan for) future needs through architectures

and extensible designs. They develop capabilities in related disciplines

(e.g., systems engineering, human factors) and expect to impact a large

number of people at various levels within the organizational hierarchy.

Plan-driven organizations also usually exhibit a strong, quantitative

process improvement focus.

Management Characteristics

There are a number of differences in the approaches with respect to how

they are managed and to the expectations each has for the customer and

other stakeholders. Planning, control, and communication are crucial to

success, but are approached differently by the agile and plan-driven

camps.

Plan-driven methods
need stability

31

Management Characteristics

Plan-driven scope
includes system
engineering,
organization,
outsourcing

See Appendix E3

Customer Relations
Agile methods strongly depend on dedicated, collocated customer rep-

resentatives to keep the project focused on adding rapid value to the

organization. This generally works very well at the project level.

To succeed, agile customer representatives must be in synch with both

the system users they represent and the development team. As will be

seen in the lease management case study in Chapter 4, problems can

arise when the representative does not accurately reflect the needs and

desires of the users through lack of understanding or failure to keep

abreast of the user concerns. Thus the customer representative becomes

the primary stress point for agile methods.

Plan-driven methods generally depend on some form of contract be-

tween the developers and customers as the basis for customer relations.

They try to cope with foreseeable problems by working through them in

advance and formalizing the solutions in a documented agreement. This

has some advantages, particularly in stable situations. The developers

know what they have to do. The customers know what they are getting

and are better able to continue with their operational responsibilities.

This maintains their operational knowledge and increases their value

when they exercise prototypes or review progress and plans.

However, the contract makes the developer-customer interface the major

stress point for plan-driven methods. A precise contract causes startup

delays and is harder to adapt to needed changes. An imprecise contract

can create incompatible expectations, leading to adversarial relations and

lack of trust. The worst case is when a tight, fixed-price contract results in

the lawyers negotiating changes rather than the problem-solvers. Creative

award-fee or profit-sharing contracts can help, but the presence of the

contract remains a potential stress point on developer-customer trust.

Agile encourages a
dedicated collocated

customer

32

Chapter 2 Contrasts and Home Grounds

The main agile
stress point is the

interface between the
customer represen-

tative and the users

Plan-driven methods
depend on contracts

and specifications

The main plan-
driven stress point is

the interface between
the developer and

the customer

For a project to succeed, the stakeholders must trust that the developing

organization will perform the needed work for the available, agreed-to

resources. Agile developers use working software and customer partici-

pation to instill trust in their track record, the systems they’ve devel-

oped, and the expertise of their people. This is one of the reasons agile

projects have been primarily used for in-house development. It takes

time to build up the level of trust required for the customer and devel-

oper to minimize contractual safeguards and detailed specifications. In

many software development sectors, that length of time is simply not

available.

Plan-driven people count on their process maturity to provide confi-

dence in their work. CMM appraisals are often used in source selection

for large system implementation or for sourcing decisions, but one

shouldn’t assume documented plans guarantee the project will follow

them. Although customers often feel secure when contracting with a

SW-CMM Level 5 organization for software development, there have

been a number of cases where the trust was misplaced. In several in-

stances, particularly with offshore software organizations, customers

have discovered that the “Level 5” software teams they hired were in

fact raw, untrained new hires with little knowledge of CMM practices.

Trust, in both plans and people, can have its limits.

Planning and Control
In the agile world, planning is seen as a means to an end rather than

a means of recording in text. Agilists estimate that their projects spend

about 20 percent of their time planning or replanning. The agile projects’

speed and agility come largely from deliberate group planning efforts

that enable operation on the basis of tacit interpersonal knowledge rather

than explicit documented knowledge as represented in plans and specifi-

cations. Many of the agile practices—pair programming, daily standup

Agile developers use
working software to
build customer trust

33

Management Characteristics

Plan-driven
developers use
established process
maturity to build
customer trust

Agilists see planning
as a means to an end

all-hands meetings, shared code ownership, collocated developers and

customers, team planning—are as much about developing the team’s

shared tacit knowledge base as they are about getting work done. When

unforeseen changes come, the team members can call upon their shared

vision of the project’s goals and their shared understanding of the soft-

ware content to quickly develop and implement a revised solution. As

the project scales up, however, this becomes increasingly difficult.

Plan-driven methods use plans to anchor their processes and provide

broad-spectrum communication. Plans make up a large portion of the

required documentation in most plan-driven approaches. Plan-driven

methods rely heavily on documented process plans (schedules, mile-

stones, procedures) and product plans (requirements, architecture, stan-

dards) to keep everyone coordinated. Individual plans are often produced

for specific activities and then integrated into “master plans.”

Considerable effort is spent on maintaining historical data so that plan-

ning projections can be more accurate. The fundamental measure of

progress is tracking of progress against plans. Planning is done and

adjusted constantly. Plans make explicit the expectations and relation-

ships between various project efforts, and between the project and other

independently evolving systems. Remember, however, that for rapidly

evolving systems, the more detailed the plans, the more expensive and

time consuming the rework.

With respect to distinctions in how agile and traditional methods

process plans, Kent Beck, cocreator of XP, agreed with the distinctions

in the following e-mail to us:

I think the phrase “plan driven” is the key. I would characterize XP as “planning
driven” in contrast. What XP teams find valuable is the collaboration, elicitation,

34

Chapter 2 Contrasts and Home Grounds

Plan-driven
methods use plans

to communicate
and coordinate

Both use past
performance to

inform planning

Agile is “planning
driven,” rather than

“plan-driven”

and balancing of priorities in the planning act itself. The plans that result have a
short half-life, not because they are bad plans, but because their underlying
assumptions have a short half-life.

Project Communication
Agile methods rely heavily on tacit, interpersonal knowledge for their

success. They cultivate the development and use of tacit knowledge,

depending on the understanding and experience of the people doing the

work and their willingness to share it. Knowledge is specifically gath-

ered through team planning and project reviews (an activity agilists

refer to as “retrospection”). It is shared across the organization as expe-

rienced people work on more tasks with different people.

Agile methods generally rely on more frequent, person-to-person com-

munication. As stated in the Agile Manifesto, emphasis is given to

“individuals and interactions.” Few of the agile communication chan-

nels are one-way, showing a preference for collaboration. Standup

meetings, pair programming, and the planning game are all examples of

the agile communication style and its investments in developing shared

tacit knowledge.

Relying completely on tacit knowledge is like performing without a

safety net. While things go well, you avoid the extra baggage and setup

effort, but there may be situations that will make you wish for that net.

Assuming that everyone’s tacit knowledge is consistent across a large

team is risky, and as people start rotating off the team, the risk gets higher.

At some point, a group’s ability to function exclusively on tacit knowl-

edge will run up against well-known scalability laws for group commu-

nication. For a team with N members, there are N(N–1)/2 different

interpersonal communication paths to keep up to date. Even broadcast

35

Management Characteristics

Agile methods
depend on tacit
knowledge

Communication is
person-to-person
and frequent

Relying on tacit
knowledge can
be risky

Tacit knowledge is
difficult to scale

techniques, such as standup group meetings and hierarchical team-of-

teams techniques, run into serious scalability problems. Consider the

previously discussed Future Combat Systems subcontractor specifica-

tion reviews as an example of a limiting case.

Plan-driven methods rely heavily on explicit documented knowledge.

With plan-driven methods, communication tends to be one-way. Com-

munication is generally from one entity to another rather than between

two entities. Process descriptions, progress reports, and the like are

nearly always communicated as unidirectional flow.

We should note that this distinction between “agile-tacit” and “plan-

driven-explicit” is not absolute. Agile methods’ source code and test

cases certainly qualify as explicit documented knowledge, and even the

most rigorous plan-driven method does not try to get along without

some interpersonal communication to ensure consistent, shared under-

standing of documentation intent and semantics.

When agile methods employ documentation, they emphasize doing the

minimum essential amount. Unfortunately, most plan-driven methods

suffer from a “tailoring-down” syndrome, which is sadly reinforced by

most government procurement regulations. These plan-driven methods

are developed by experts, who want them to provide users with guid-

ance for most or all foreseeable situations. The experts therefore make

them very comprehensive, but “tailorable-down” for less critical or less

complex situations. The experts understand tailoring the methods and

often provide guidelines and examples for others to use.

Unfortunately, less expert and less self-confident developers, customers,

and managers tend to see the full-up set of plans, specifications, and

standards as a security blanket. At this point a sort of Gresham’s Law

36

Chapter 2 Contrasts and Home Grounds

Plan-driven
approaches use

explicit, documented
knowledge

Agile and plan-
driven methods use

both kinds of
knowledge

Agile adds docu-
mentation when

needed while plan-
driven methods

generally subtract
what is not needed

Once specified,
removing documen-

tation is difficult

(“Bad money drives out good money”) takes over, and the least-expert

participant generally drives the project to use the full-up set of docu-

ments rather than an appropriate subset. While the nonexperts rarely

read the ever-growing stack of documents, they will maintain a false

sense of security in the knowledge they have followed best practice to

ensure project predictability and control. Needless to say, the expert

methodologists are then frustrated with how their tailorable methods are

used—and usually verbally abused—by developers and acquirers alike.

This process has been going on for decades, in the United States from

MIL-STD-1679 through -2167, -2167A, and -498, and through IEEE/

EIA-016 and 12207. It is currently seen in nongovernment methods

such as RUP, TSP, and one of the authors’ methods, MBASE. Both

authors thank the agilists for making it clear that a better approach to

plan-driven methods is needed.

Technical Characteristics

Technical characteristics have been the focus of much of the debate as

to the effectiveness of agile and plan-driven methods. This section looks

at how each of the approaches handles requirements elicitation and

management, development activities, and testing.

Requirements
Most agile methods express requirements in terms of adjustable, infor-

mal stories. Agile methods count on their rapid iteration cycles to deter-

mine needed changes in the desired capability and to fix them in the

next iteration. Determining the highest-priority set of requirements to

be included in the next iteration is done collaboratively by the cus-

tomers and developers. The customers express their strongest needs and

the developers assess what combinations of capabilities are feasible for

37

Technical Characteristics

Shortfalls of tailor-
down methods
have been known
for decades

Agile uses informal,
user-prioritized
stories as
requirements

inclusion in the next development iteration (typically on the order of a

month). Negotiations establish the contents of the next iteration.

Plan-driven methods generally prefer formally baselined, complete,

consistent, traceable, and testable specifications. For some time, the

plan-driven world has been aware of collaborative requirements deter-

mination11 but has been slow to respond. Because it was developed

when the accepted practice was for the systems engineers to identify,

define, and hand off the software requirements, the SW-CMM states,

“Analysis and allocation of the system requirements is not the responsi-

bility of the software engineering group but is a prerequisite for their

work.”12

The plan-driven world has also been much slower than the agile world

to assimilate new concepts such as prioritized requirements and evolu-

tionary requirements. Some progress is being made with the introduc-

tion of the CMMI product suite because it extends beyond that of the

SW-CMM. CMMI includes integrated teaming, requirements develop-

ment, and risk management, all of which support the use of risk-driven,

evolving requirements specifications over the traditional “complete”

requirements specifications and their limitations.

Risk-driven approaches assert it is better not to specify elements where

the risks of specifying them are larger than the risks of not specify-

ing them.13 For example, prematurely specifying a detailed graphical

user interface runs the risk of breakage due to changing requirements,

systems that are not responsive to the users, and solutions that can’t

evolve as the understanding of the system and its operational concept

matures. The only risk in not specifying it is that it may take a few

more passes with an automated interface creation tool. So, risk-driven

approaches would rather you not specify the user interface early on.

38

Chapter 2 Contrasts and Home Grounds

Plan-driven
methods prefer

specific, formalized
requirements

Prioritization has
not been widely used

in plan-driven
approaches

Risk-driven
approaches are
similar to agile

The opposite case might apply to a mission-critical function or security

requirement.

On the other hand, the plan-driven world is considerably ahead of the

agile world in dealing with quality or nonfunctional requirements such

as reliability, throughput, real-time deadline satisfaction, or scalability.

These become increasingly important for large, mission-critical systems

and are a source of expensive architecture breakers when an initial simple

design doesn’t scale up. Most agilists participating in a recent Center

for Empirically Based Software Engineering (CeBASE)* eWorkshop

on this topic tended to consider a quality attribute as just another feature

to be easily dealt with. Most plan-driven developers consider quality

attributes as a range of system-level properties affecting many features

and extremely difficult to “add on.” We’ll discuss this more in the next

section.

Development
The primary difference between agile and plan-driven development

practices deal with the design and architecture of the software. Agile

methods advocate simple design, one that emerges as functionality is

implemented. Simple design can be characterized by XP’s goal to

“always have the simplest design that runs the current test suite.”14

Agilists encourage the developer to make the design simpler at every

opportunity. Taken to its logical conclusion, this means if your design

has capabilities that are beyond the current user stories or that anticipate

new features, you should expend extra effort to remove them. Of

course, the idea is not to have them there in the first place.

39

Technical Characteristics

Plan-driven
methods handle
nonfunctional
requirements better

Agile advocates
simple design

*CeBASE is an NSF-sponsored collaborative research institute led by the University of Mary-
land’s Fraunhofer Center for Experimental Software Engineering and the University of Southern
California’s Center for Software Engineering. Its mission is to strengthen and propagate the results
of empirical research in software engineering (http://www.cebase.org/).

http://www.cebase.org/

The basis for advocating simple design rests on two fundamental asser-

tions. The first is that the cost of rework to change the software (“refactor-

ing” in agile language) to support new, possibly unanticipated, capabilities

will remain low over time. The second fundamental assumption is that

the application situation will change so rapidly that any code added to

support future capabilities will never be used.

The assertion concerning low-cost rework is based on the hypothesis

that constant refactoring yields constant improvement, so there will be a

constant, low rate of change rather than a few large, expensive redesigns.

Unfortunately, this seems to be a fragile proposition. Experiences where

the cost to change has remained low over time tend to be anecdotal,

associated with smaller applications, and usually involve expert pro-

grammers who are able to quickly refactor the design and correct

defects. But the only sources of empirical data we have encountered

have come from less-expert early adopters who found that even for

small applications, the percentage of effort spent on refactoring and

correcting defects increases with the number of requirement stories.15, 16

Experience to date also indicates that low-cost refactoring cannot be

depended upon as projects scale up. The most serious problems that

arise with simple design are problems known as “architecture break-

ers.” These highly expensive problems can occur when early, simple

design decisions result in foreseeable changes that cause breakage in

the design beyond the ability of refactoring to handle. Here are some

examples of architecture breakers.

■ An early commitment to a fourth-generation language and its

infrastructure that works beautifully when the application and

user base are small, but is impossible to scale up as the application

and user base become large.

Simple design
depends on low-
cost rework and

rapid change

40

Chapter 2 Contrasts and Home Grounds

Low-cost rework is
not guaranteed with

agile methods

See Appendix E1

Low-cost rework
doesn’t scale

■ Escalating reliability, throughput, response time, or other quality

attributes during development, or the addition of functionality

within a tightly specified, real-time control loop that cannot be

accommodated within the design. Frequently, the best performing

architecture has only a limited range with respect to the level of

quality specified.17, 18

■ Deferred implementation of special conditions or functions, such as

multinational and multilingual operations, fault tolerance through

processor failover, or the need to handle extra-long messages, that

significantly impact many parts of the software.

The second assumption concerning rapid change addresses program-

ming efficiency. The thought here is that adding hooks for future func-

tionality unnecessarily complicates the design and increases the effort to

develop subsequent increments. Within the XP and other agile commu-

nities, this concept is known as You Aren’t Going to Need It (YAGNI).

YAGNI works fine when future requirements are largely unpredictable,

but can be highly inefficient where there is a reasonable understanding of

future needs. In situations where future requirements are predictable,

YAGNI both throws away valuable architectural support for foreseeable

requirements and frustrates customers who want developers to believe

their priorities and evolution requirements are worth accommodating.

Plan-driven methods use planning and architecture-based design to

accommodate foreseeable change. This effort allows the designers to

organize the system to take advantage of software reuse across product

lines and can have a major impact on rapid development.

In one division, Hewlett-Packard was able to reduce its software

development cycle time from 48 months to 12 months over 5 years, by

developing plug-and-play reusable software modules.19 Significantly,

41

Technical Characteristics

Simple design
implies YAGNI—
You Aren’t Going
to Need It

Plan-driven methods
advocate architecture
to anticipate changes

HP had excellent
results with product
line architecture

Hewlett-Packard also found that its reuse economic model needed to

add costs for adapting product line assets to unforeseeable change.20

These included cost factors for architectural update, component obso-

lescence, and adaptive maintenance of components to stay consistent

with changing external interfaces. Even with these added costs, soft-

ware product lines have been highly successful for HP and many other

organizations.21, 22, 23

Thus, for the levels of predictability and dependability that are primary

objectives of plan-driven methods, a significant amount of effort goes

into analyzing and defining a robust architecture that will accommodate

the system’s envisioned life cycle usage envelope. For small and rapidly

changing applications, this level of architecture investment, sometimes

referred to as Big Design Up Front (BDUF), will be overkill. Several

agile methods use some level of architecting: Crystal, DSDM, FDD,

and Lean Development, for example. Scrum’s consideration of its

requirement backlog helps avoid misinformed simple design.

While simple design and architectural design are definitely conflicting

approaches, there are some agile development practices that can readily

and productively be adopted for plan-driven projects. Examples are

evolutionary and incremental development, continuous integration, and

pair programming.

Testing
Testing is one way of validating that the customers have specified the

right product and verifying that the developers have built the product

right. It requires that the code be developed and executed, which means

that for long developments, problems will not be discovered until late

in the development cycle, when they are expensive to fix. Agile meth-

ods address this problem by organizing the development into short

42

Chapter 2 Contrasts and Home Grounds

Architecture can
waste resources in
rapidly changing

environments

See Appendix E2

Other agile practices
can support plan-
driven approaches

Agile methods
develop tests before

code, and test
incrementally

increments, and by applying pair programming or other review tech-

niques to remove more code defects as they are being generated. They

also develop executable tests to serve in place of requirements and to

enable earlier and continuous regression testing. Automated testing

support is recommended by most agile methods. This approach has a

number of significant advantages.

■ It ensures that the requirements are testable.

■ It avoids a great deal of documentation for requirements, require-

ment/test matrices, and test case definitions.

■ It enables incremental build-and-test, with earlier identification of

defects and misinterpreted stories.

■ It helps modularize the applications structure and provides a

safety net for refactoring.

■ It helps form an explicit working knowledge of the application.24

However, there are some risks inherent to the test-first approach.25

■ Rapid change causes expensive breakage in the tests.

■ Rapid change causes mismatches and race problems between the

code and the tests.

■ Lack of applications or testing expertise may produce inadequate

test coverage.

Plan-driven methods address the expensive late-fix problem by devel-

oping and consistency-checking requirements and architecture specifi-

cations early in the development process. They also invest in automated

test suites to support the considerable planning and preparation before

running tests. This creates a good deal of documentation that may

undergo breakage due to changing requirements, but the documentation

rework effort will usually be less than the test rework effort, particularly

with automated test suites. On the other hand, late testing misses much

See Appendix E1

43

Technical Characteristics

Plan-driven methods
test to specifications

of the agile early-testing advantages cited above. Plan-driven methods

also frequently manifest an independent (and often adversarial) testing

bureaucracy that can be entirely divorced from developer and customer,

and so may spend a good proportion of scarce project resources deter-

mining if the product matches the letter of the specifications rather than

operational intent and customer need.

Personnel Characteristics

While there has been significant discussion of the technical differences

between agile and plan-driven approaches, we believe that some of the

most fundamental differences lie in the people issues. The customers,

developers, and organizational cultures have a significant influence on

the success of most projects. In this section we discuss how the ap-

proaches are reliant on specific characteristics in each of these areas.

Customers
In the “Customer Relations” section above, we concluded that the major

difference between agile and plan-driven methods was that agile meth-

ods strongly emphasize having dedicated and collocated customer repre-

sentatives, while plan-driven methods count on a good deal of up-front,

customer-developer work on contractual plans and specifications. For

agile methods, the greatest risk is that insistence on a dedicated, collo-

cated customer representative will cause the customer organization to

supply the person that is most expendable. This risk establishes the need

for criteria to determine the adequacy of customer representatives.

In our critical success factor analysis of over 100 e-services projects

at USC, we have found that success depends on having customer rep-

resentatives who are Collaborative, Representative, Authorized, Com-

mitted, and Knowledgeable (CRACK) performers. If the customer

44

Chapter 2 Contrasts and Home Grounds

There is significant
risk in unsuitable

customer
representatives

representatives are not collaborative, they will sow discord and frustra-

tion, resulting in the loss of team morale. If they are not representative,

they will lead the developers to deliver unacceptable products. If they

are not authorized, they will incur delays seeking authorization or, even

worse, lead the project astray by making unauthorized commitments.

If they are not committed, they won’t do the necessary homework and

won’t be there when the developers need them most. Finally, if they

are not knowledgeable, they will cause delays, unacceptable products,

or both.

This summary of customer impact on the landmark C3 project, consid-

ered to be the first XP project, is a good example of the need for

CRACK customer representatives.

The on-site customer in this project had a vision of the perfect system she
wanted to develop. She was able to provide user stories that were easy to esti-
mate. Moreover, she was with the development team every day, answering any
business questions the developer had.

Half-way [through] the project, several things changed, which eventually led
to the project being cancelled. One of the changes was the replacement of the on-
site customer, showing that the actual way in which the customer is involved is
one of the key success factors in an XP project. The new on-site customer was
present most of the time, just like the previous on-site customer, and available to
the development team for questions. Unfortunately, the requirements and user
stories were not as crisp as they were before.26

Plan-driven methods also need CRACK customer representatives and

benefit from full-time, on-site participation. Good planning artifacts,

however, enable them to settle for part-time CRACK representatives

who provide further benefits by keeping active in customer operations.

The greatest customer challenge for plan-driven methods is to keep

project control from falling into the hands of overly bureaucratic

45

Personnel Characteristics

Chrysler provides
an example

Plan-driven methods
also need CRACK
customers, but not
full-time

USC found customer
representatives need
to be Collaborative,
Representative,
Authorized,
Committed, and
Knowledgeable
(CRACK)

contract managers who prioritize contract compliance above getting

project results.

A classic example of customer bureaucracy is provided in Robert

Britcher’s book, The Limits of Software,27 describing his experience on

perhaps the world’s biggest failed software project: the FAA/IBM

Advanced Automation System for U.S. national air traffic control. Due

to many bureaucratic and other problems, including responding to

change over following a plan, the project was overrunning by years and

billions of dollars. One of the software development groups came up

with a way of reducing the project’s commitment to a heavyweight

brand of software inspections that were slowing the project down by

consuming too much staff effort in paperwork and redundant tasks. The

group came up with a lightweight version of the inspection process. It

was comparably successful in finding defects, but with much less time

and effort. Was the group rewarded for doing this? No, the contracting

bureaucracy sent them a cease-and-desist letter faulting them for con-

tract noncompliance and ordering them to go back to the heavyweight

inspections. This is the kind of plan-driven bureaucracy that agilists jus-

tifiably deride.

Developers
Critical people-factors for agile methods include amicability, talent,

skill, and communication.28 An independent assessment identifies this

as a potential problem for agile methods: “There are only so many Kent

Becks in the world to lead the team. All of the agile methods put a pre-

mium on having premium people . . .”29 Figure 2-1 distinguishes the

most effective operating points of agile and plan-driven projects.30, 31

Both operate best with a mix of developer skills and understanding, but

agile methods tend to need a richer mix of higher-skilled people.

46

Chapter 2 Contrasts and Home Grounds

FAA example of
bureaucratic plan-

driven approach

Agile developers
need more than
technical skills

When you have such people available on your project, statements like

“A few designers sitting together can produce a better design than each

could produce alone” are valid. If not, you’re more likely to get design-

by-committee, with the opposite effect. The plan-driven methods of

course do better with great people, but are generally more able to plan

the project and architect the software so that less-capable people can

contribute with low risk. A significant consideration here is the un-

avoidable statistic that 49.999 percent of the world’s software develop-

ers are below average (slightly more precisely, below median).

It is important to be able to classify the type of personnel required for

success in the various methods. Alistair Cockburn has addressed levels

of skill and understanding required for performing various method-

related functions, such as using, tailoring, adapting, or revising a method.

47

Personnel Characteristics

Plan-driven
methods need fewer
highly talented
people than agile

We modify
Cockburn’s levels
to meet our needs

Figure 2-1 Balancing Optimizing and Adapting Dimensions
(from Cockburn and Highsmith)

High

Low

Light Heavy
Optimizing

(Process, Documentation)

A
da

pt
in

g
(S

ki
ll,

 U
nd

er
st

an
di

ng
)

Typical
Agile

Methodology

Typical
Rigorous

MethodologyX

X

Drawing on the three levels of understanding in Aikido (Shu-Ha-Ri), he

has identified three levels of software method understanding that help sort

out what various levels of people can be expected to do within a given

method framework.32 Modifying his work to meet our needs, we have

split his Level 1 to address some distinctions between agile and plan-

driven methods, and added an additional level to address the problem of

method-disrupters. Our version is provided in Table 2-1.

Level –1 people should be rapidly identified and reassigned to work

other than performing on either agile or plan-driven teams.

48

Chapter 2 Contrasts and Home Grounds

Reassign Level -1s

Table 2-1 Levels of Software Method Understanding and Use (after Cockburn)

Level Characteristics

3 Able to revise a method (break its rules) to fit an unprecedented new
situation

2 Able to tailor a method to fit a precedented new situation

1A With training, able to perform discretionary method steps (e.g., siz-
ing stories to fit increments, composing patterns, compound refac-
toring, complex COTS integration). With experience, can become
Level 2.

1B With training, able to perform procedural method steps (e.g., coding
a simple method, simple refactoring, following coding standards and
CM procedures, running tests). With experience, can master some
Level 1A skills.

–1 May have technical skills, but unable or unwilling to collaborate or
follow shared methods.

Level 1B people are average-and-below, less-experienced, hard-working

developers. They can function well in performing straightforward soft-

ware development in a stable situation. But they are likely to slow down

an agile team trying to cope with rapid change, particularly if they form

a majority of the team. They can form a well-performing majority of a

stable, well-structured plan-driven team.

Level 1A people can function well on agile or plan-driven teams if there

are enough Level 2 people to guide them. When agilists refer to being

able to succeed on agile teams with ratios of five Level 1 people per

Level 2 person, they are generally referring to Level 1A people.

Level 2 people can function well in managing a small, precedented

agile or plan-driven project but need the guidance of Level 3 people on

a large or unprecedented project. Some Level 2s have the capability to

become Level 3s with experience. Some do not.

Culture
In an agile culture, the people feel comfortable and empowered when

there are many degrees of freedom available for them to define and work

problems. This is the classic craftsman environment, where each person

is expected and trusted to do whatever work is necessary to the success

of the project. This includes looking for common or unnoticed tasks and

completing them.

In a plan-driven culture, the people feel comfortable and empowered

when there are clear policies and procedures that define their role in the

enterprise. This is more of a production-line environment where each

person’s tasks are well-defined. The expectation is that they will accom-

plish the tasks to specification so that their work products will easily

49

Personnel Characteristics

Level 1As need
guidance but can
work well on
agile teams

Level 2s can manage
precedented projects
but need Level 3
guidance on
unprecedented
projects

Agilists like many
degrees of freedom

Plan-driven people
need clear process
and roles

Level 1Bs need
considerable guid-
ance, work well
in plan-driven
environment

integrate into others’ work products with limited knowledge of what

others are actually doing.

These cultures get reinforced as people tend to self-select for their pre-

ferred culture, and as people within the culture get promoted to higher

levels of management. Once a culture is well established, it is difficult

and time consuming to change. This cultural inertia may be the most sig-

nificant challenge to the integration of agile and plan-driven approaches.

To date, agile culture change has had a bottom-up, revolutionary flavor.

Failing projects with no hope of success have been the usual pilots,

supported by an “it can’t hurt” attitude from management and a “no

challenge is too hard” adrenalin-charged response from practitioners.

Successes have been extraordinary in many cases and have been used to

defend migration to less troubled projects.

Early CMM adopters faced similar challenges, although there was early

involvement of middle management. The concept of culture change

evolved rapidly and is now well understood by the managers and Soft-

ware Engineering Process Groups (SEPGs). These have been the main

change agents in evolving their organizations from following impro-

vised, ad hoc processes toward following plan-driven, CMM-compliant

processes.

The new CMMI upgrades the SW-CMM in more agile directions, with

new process areas for integrated teaming, risk management, and overall

integrated systems and software engineering. A number of organizations

are welcoming this opportunity to add more agility to their organizational

culture. But others that retain a more bureaucratic interpretation of the

SW-CMM are facing the challenge of “change-averse change agents”

who have become quite comfortable in their bureaucratic culture.

50

Chapter 2 Contrasts and Home Grounds

Cultural inertia is a
significant challenge

Agile culture
change has a
revolutionary

flavor

CMM faced culture
change issues early

CMMI improves
CMM, but

is a culture
change in itself

Summary

This chapter has provided a lot of information on a number of character-

istics. In the following section we summarize the material and provide a

graphic way to use the characteristics to describe the agility/plan-driven

profile of a project or organization in terms of five factors.

Home Grounds
Table 2-2 summarizes the comparisons in the four areas of Chapter 2 by

showing the “home grounds” for agile and plan-driven methods—the

sets of conditions under which they are most likely to succeed. The more

a particular project’s conditions differ from the home ground conditions,

51

Summary

Home grounds can
also characterize
projects

Table 2-2 Agile and Plan-Driven Method Home Grounds

Characteristics Agile Plan-Driven

Application

Primary Goals Rapid value; responding Predictability, stability, high
to change assurance

Size Smaller teams and projects Larger teams and projects

Environment Turbulent; high change; Stable; low-change;
project-focused project/organization focused

Management

Customer Dedicated on-site As-needed customer
Relations customers; focused on interactions; focused on

prioritized increments contract provisions

Planning and Internalized plans; Documented plans,
Control qualitative control quantitative control

Communication Tacit interpersonal Explicit documented
knowledge knowledge

(continued)

the more risk there is in using one approach in its pure form and the more

valuable it is to blend in some of the complementary practices from the

opposite method. In Chapter 4 we will provide case studies showing how

an agile and a plan-driven project were able to succeed outside their

52

Chapter 2 Contrasts and Home Grounds

Table 2-2 Continued

Characteristics Agile Plan-Driven

Technical

Requirements Prioritized informal stories Formalized project, capability,
and test cases; undergoing interface, quality, foreseeable
unforeseeable change evolution requirements

Development Simple design; short Extensive design; longer
increments; refactoring increments; refactoring
assumed inexpensive assumed expensive

Testing Executable test cases Documented test plans and
define requirements procedures

Personnel

Customers Dedicated, collocated CRACK* performers, not
CRACK* performers always collocated

Developers At least 30% full-time 50% Cockburn Level 3s early;
Cockburn Level 2 and 3 10% throughout; 30% Level
experts; no Level 1B or -1 1Bs workable; no Level -1s**
personnel**

Culture Comfort and empowerment Comfort and empowerment
via many degrees of freedom via framework of policies and
(thriving on chaos) procedures (thriving on order)

* Collaborative, Representative, Authorized, Committed, Knowledgeable
** These numbers will particularly vary with the complexity of the application

home grounds. Chapter 5 illustrates a risk-driven approach for tailoring

balanced agile/plan-driven strategies for non–home ground projects.

Misconceptions
Table 2-3 is an attempt to counter several misconceptions about agile

and plan-driven methods. Many of these are caused by people misrepre-

senting their use of agile and plan-driven methods. A good example was

presented in Chapter 1 where a team claimed to follow XP, but on fur-

ther investigation had simply stopped documenting their software.33

Such misconceptions propel agile and plan-driven advocates into a lot

of unnecessary, polarized arguments and add to the perplexity that we

are trying to help our readers sort out.

53

Summary

People misrepresent
both approaches

Table 2-3 Misconceptions and Realities about Agile and
Plan-Driven Methods

Misconceptions Realities

Plan-Driven Methods

Plan-driven methods are Overly bureaucratic cultures and methods
uniformly bureaucratic can stultify software development

Having documented plans Not necessarily
guarantees compliance with plans

Plan-driven methods can succeed Plan-driven methods can succeed with a
with a lack of talented people smaller percentage of talented people

High maturity guarantees success Explicit, documented plans provide more
of a safety net than tacit plans

There are no penalties in applying Plan-driven methods work best in
plan-driven methods when change accommodating foreseeable change
is unforeseeable

Misconceptions hurt
everyone

(continued)

Five Critical Factors
As a “summary of summaries,” we have concluded that there are five

critical factors involved in determining the relative suitability of agile or

plan-driven methods in a particular project situation. These factors,

described in Table 2-4, are the project’s size, criticality, dynamism, per-

sonnel, and culture factors. As we shall see in Chapters 4 and 5, a pro-

ject which is a good fit to agile or plan-driven for four of the factors, but

not the fifth, is a project in need of risk assessment and likely some mix

of agile and plan-driven methods.

The five critical factors associated with the agile and plan-driven home

grounds from Table 2-4 are summarized graphically in Figure 2-2. Of

the five axes in the polar graph, Size and Criticality are similar to the

54

Chapter 2 Contrasts and Home Grounds

Decision factors
are size, criticality,

dynamism, per-
sonnel, and culture

Table 2-3 Continued

Misconceptions Realities

Agile Methods

Agile methods don’t plan Agile methods get much of their speed
and agility through creating and exploiting
tacit knowledge

Agile methods require uniformly Agile methods work best when there is
talented people a critical mass of highly talented people

involved

Agile methods can make the slope Agile methods can reduce the slope of
of the cost-to-change vs. time the cost-to-change vs. time curve
curve uniformly flat

YAGNI is a universally safe YAGNI helps handle unforeseeable
assumption, and won’t alienate change, but is risky when change is
your customers foreseeable

Size, criticality, and
culture map easily to

home grounds

55

Summary

Table 2-4 The Five Critical Agility/Plan-Driven Factors

Factor Agility Discriminators Plan-Driven Discriminators

Size Well-matched to small Methods evolved to handle
products and teams. Reliance large products and teams.
on tacit knowledge limits Hard to tailor down to small
scalability. projects.

Criticality Untested on safety-critical Methods evolved to handle
products. Potential difficulties highly critical products. Hard
with simple design and lack to tailor down to low-criticality
of documentation. products.

Dynamism Simple design and continuous Detailed plans and Big Design
refactoring are excellent for Up Front excellent for highly
highly dynamic environments, stable environment, but a
but a source of potentially source of expensive rework for
expensive rework for highly highly dynamic environments.
stable environments.

Personnel Requires continuous presence Needs a critical mass of
of a critical mass of scarce scarce Cockburn Level 2 and 3
Cockburn Level 2 or 3 experts. experts during project defini-
Risky to use non-agile Level 1B tion, but can work with fewer
people. later in the project —unless

the environment is highly
dynamic. Can usually
accommodate some
Level 1B people.

Culture Thrives in a culture where Thrives in a culture where
people feel comfortable people feel comfortable and
and empowered by having empowered by having their
many degrees of freedom. roles defined by clear policies
(Thriving on chaos) and procedures. (Thriving

on order)

factors used by Alistair Cockburn to distinguish between the lighter-

weight Crystal methods (toward the center of the graph) and heavier-

weight Crystal methods (toward the periphery). The Culture axis

reflects the reality that agile methods will succeed better in a culture

that “thrives on chaos”34 than one that “thrives on order,” and vice versa.

The other two axes are asymmetrical in that both agile and plan-driven

methods are likely to succeed at one end, and only one of them is likely

to succeed at the other. For Dynamism, agile methods are at home with

both high and low rates of change, but plan-driven methods prefer low

rates of change.

56

Chapter 2 Contrasts and Home Grounds

Dynamism reflects
the rate of change,
primarily a plan-

driven issue

Figure 2-2 Dimensions Affecting Method Selection

Personnel

Dynamism
(% Requirements-change/month)

Culture
(% Thriving on chaos vs. order)

Size
(Number of personnel)

Criticality
(Loss due to impact of defects)

50
30

10
5 1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential
Funds Discretionary

Funds Comfort

Single
Life

Many
Lives

(% Level 1B) (% Level 2 and 3)

0

10

20

30

40

Agile
Plan-Driven

The Personnel scale refers to the extended Cockburn method skill rating

scale discussed earlier in the chapter. Here the asymmetry is that while

plan-driven methods can work well with both high and low skill levels,

agile methods require a richer mix of higher-level skills (see Figure 2-1).

For example, a plan-driven project with 15 percent Level 2 and 3 people

and 40 percent Level 1B people would initially use more than 15 per-

cent Level 2 and 3 people to plan the project, but reduce the number

thereafter. An agile project would have everybody working full-time,

and the 15 percent Level 2s and 3s would be swamped trying to mentor

the 40 percent Level 1Bs and the remaining Level 1As while trying to

get their own work done as well.

By rating a project along each of the five axes, you can visibly evaluate

its home ground relationships. If all the ratings are near the center, you

are in agile method territory. If they are at the periphery, you will best

succeed with a plan-driven approach. If you are mostly in one or the

other, you need to treat the exceptions as sources of risk and devise risk

management approaches to address them.

Personnel addresses
mix of Level 2 and 3
and Level 1B
developers

57

Summary

A typical example of
personnel mix

Rating shows home
ground relationship
graphically

This page intentionally left blank

Index

255

A
Acceptance tests, 74, 78
A-Churn risks, 102, 108, 110, 112, 116, 119, 122, 124,

127, 131, 133, 136, 138, 145
Ada, 90–94
Advanced Automation System (FAA), 23, 46
Agent-based planning systems, 104–106
Agile Alliance, 16
Agile Manifesto

communication and, 35
described, 2–3, 16–17, 195–196
responsiveness to change and, 26–27

Agile methods. See also Agile Manifesto; Agility
application characteristics and, 25, 27–37
characteristics of, 17–18
described, 2–7
examples of, 21–22, 59–89
finding middle ground and, 22–24
five critical factors associated with, 54–57
high-change environments and, 29–31
history of, 18
key concepts for, 18–19
management characteristics and, 25, 31–37
misconceptions about, 53–54
personnel characteristics and, 25, 44–50
primary goals of, 26–31
purist interpretations and, 8
revolutionary character of, 50
risk-based methods and, 99–146
studies of, 225–233
technical characteristics and, 25, 37–44
wide adoption of, 4

AgilePlus, 146, 233
Agile Software Development (Cockburn), 153–155
Agile Software Development Ecosystems (Highsmith),

153
Agility. See also Agile Manifesto; Agile methods

discipline and, balancing, 99–146, 156–158
finding middle ground and, 22–24
need for, in future applications, 151
role of, 1–24
use of the term, 5

Air Force (United States), 15, 90–95, 188
Anchor point milestones, 101, 104, 117, 205–209
Applications, characteristics of, 25, 27–37
Architecture, 13, 15

BDUF and, 42
“breakers,” 40, 86
case studies and, 85–86, 89, 91, 93–95
day-in-the-life examples and, 77
described, 13
determining the optimum quantity of, 220–225
reduced development cycle time and, 41–42
risk-based methods and, 107, 115, 141–143
robust, 77
SAIV process model and, 214
traditional development and, 2
wasted resources and, 42

Army (United States), 28–29, 106. See also Future
Combat Systems (United States Army)

A-Scale risks, 102, 110, 115, 119, 122, 124, 127, 131,
133, 136, 138, 145

ASD (Adaptive Software Development), 21, 166,
170–171, 194

A-Skill risks, 102, 110, 119, 122, 124, 126, 127, 133,
136, 138, 145

AT&T/Lucent Architecture Review Board technique,
207

A-YAGNI risks, 102, 108, 110, 112, 115, 119, 122,
124, 127, 131, 133, 136, 138, 145

B
“Bad smells,” use of the term, 84–85, 88–87, 97, 104
Barely sufficient, use of the term, 18
Bate, Roger, 15
Bayer, Sam, 170
BDUF (Big Design Up Front), 42, 55, 219, 222
Beck, Kent, 21, 46

Agile Manifesto and, 195
on the cost of change, 217, 219
on courage, 81
development of XP by, 175, 176
on the phrase “planning driven,” 34–35
on team size, 28

Beedle, Mike, 21, 195
Bennekum, Arie van, 195
Boehm, B., 101
Boeing, 227–228
BRA (Benefits Realization Analysis), 209–212
Britcher, Robert, 46
Brooks, Fred, 18, 148, 151
Browser wars, 22

C
C3 (Chrysler Comprehensive Compensation) project,

8, 45
Carnegie-Mellon University, 188. See also SEI

(Software Engineering Institute)
CCPDS-R (Command Center and Processing

Display System-Replacement), 90–95, 99, 116,
179, 219

CeBASE (Center for Empirically Based Software
Engineering), 39, 218, 205

Change
cost of, 94–95, 217–220
dynamism and, 56
embracing, 4, 17, 19
personnel characteristics and, 50
responding to, 94–95
risk-based methods and, 102, 109, 115–116,

131–132, 163
SAIV process model and, 215
speed of, 23, 56, 163
testing and, 43

Chaordic, use of the term, 16
Chaos

order and, unification of, 16
thriving on, 56

Charette, Bob, 171
Checklist mentality, 13
Chrysler Corporation, 21. See also C3 (Chrysler

Comprehensive Compensation) project
Cleanroom, 8, 15, 167, 192–194
CMMI (Capability Maturity Model Integration),

15, 27, 198, 201, 203
described, 3, 186–187
method comparisons and, 166, 167, 186–187, 194
personnel characteristics and, 50
purist interpretations and, 8
requirements and, 38

CMMs (Capability Maturity Models), 5, 6, 23, 33,
50, 197–203

Coach role, 71, 79
Coad, Peter, 22, 184
Cockburn, Alistair, 21, 47–48, 55, 57

Agile Manifesto and, 195
Agile Software Development, 153–155
development of Crystal by, 173
skill levels, 61, 69–70, 97, 118, 156, 169–170,

173–174, 185

256

Index

COCOMO (Constructive Cost Model), 93–94, 152,
213, 220

COCOMO II (Constructive Cost Model II), 205, 213,
220–225

process improvement and, 226–228
risk-based methods and, 141–142, 152

Code Science, 146, 233
Collins, Jim, 2, 156
Communication, 34–37, 175

case studies and, 87–88
Cockburn on, 155
overall importance of, 46–49, 152, 154–155, 161

Complexity, 148–149, 151
Conformity, 148–149, 151
Continuous

improvement, 20, 40
testing, 93

Contractors, 139–144
Contracts, 32–33, 90–94
Control process, 11, 33–35
Core capability determination, 214
Cost

of change, 94–95, 217–220
overruns, 24

COTS, 48, 207
product coordination, 130
risk-based methods and, 107–108, 113–114,

118–121, 126, 130, 138, 156
Courage, importance of, 81, 175
CRACK (Collaborative, Representative, Authorized,

Committed, and Knowledgeable) performers,
44–46, 87

day-in-the-life examples and, 79
risk-based methods and, 114, 116–119, 121–122,

135
Creativity, 16, 157
Critical factors, 44–45, 54–57
Criticality, 54–57, 160
Crosby, P. B., 3, 12, 188

Crystal, 56, 151, 152
architecture and, 42
described, 21, 173–174
method comparisons and, 166, 167, 173–174, 194

Culture, organizational, 20, 156–161
characteristics of, 25
classification of, as a critical factor, 54–57
inertia and, 50
personnel characteristics and, 49–50

Cunningham, Ward, 21, 175, 195
Curtis, Bill, 152, 153
Customer(s). See also Customer relations

approaches to, differences in, 80
characteristics of, 25
close relationships with, importance of, 19–20
contracts and, 32
day-in-the-life examples and, 69, 71, 72, 80
expectations management and, 155–156
feedback from, 72, 87, 175
Interface Managers, 61
“is always right” adage, 87
quality assurance and, 5

Customer relations. See also Customers
case studies and, 86–87
overview of, 32–33
personnel characteristics and, 44–46

Cycles, development, 11, 16, 41–44, 80. See also
Iterative cycles

BDUF and, 42
mentality of sufficiency and, 18
risk-based methods and, 120, 149
testing and, 42–44
waterfall, 11, 149, 170

D
Daimler Chrysler Corporation, 21. See also C3

(Chrysler Comprehensive Compensation)
project

257

Index

DARPA Future Combat Systems program (United
States Army), 28–29, 36, 106, 138

Data collection tools, 62, 65
DeLuca, Jeff, 22, 184
DeMarco, T., 152
Deming, W. Edward, 3, 12, 188
Department of Defense (United States). See DoD

(United States Department of Defense)
Design

architecture-based, 41
BDUF (Big Design Up Front) and, 42, 55, 219, 222
Managers, 61
risk-based methods and, 115
simple, 18, 39–42, 84, 88, 115, 175–176

Developers, characteristics of, 25, 46–49
Discipline

agility and, balancing, 99–146, 156–158
expectations management and, 155
finding middle ground and, 23
need for, 2, 151
role of, 1–24
use of the term, 5

Diseconomies of scale, 86–88, 115
DMR Consulting Group, 114, 209–212
Documentation, 6, 10–11, 17, 19, 70. See also

Contracts
case studies and, 92–93
minimizing, 19, 20, 36–37
project communication and, 36–37
risk-based methods and, 116–117
standards and, 27
testing and, 43

DoD (United States Department of Defense), 14–15,
155, 207

CMMs and, 197, 198
CCPDS-R project and, 90–95
-STD-498 standard, 10, 14, 37
-STD-1521 standard, 10, 14
-STD-1679 standard, 37

-STD-2167A standard, 37, 90, 92–93
-STD-2167 standard, 10, 14, 37

DSDM (Dynamic Systems Development Method),
151, 167

architecture and, 42
Consortium, 177
described, 176–178
method comparisons and, 166, 167, 176–178, 194

Dynamism, 54–57, 158, 160

E
Early adopters, 7, 40
E-Cmplx risks, 102, 110, 114–115, 119, 124, 127, 130,

133, 136, 145
E-Coord risks, 102, 110, 108, 114–115, 119, 122, 124,

127, 130, 133, 136, 138, 145
ECP (Engineering Change Proposal), 94
Elssamadisy, Amr, 84, 85, 89
Emergence attribute, 17
Environmental risks. See also Risks

E-Cmplx risks, 102, 110, 114–115, 119, 124, 127,
130, 133, 136, 145

E-Cord risks, 102, 110, 108, 114–115, 119, 122,
124, 127, 130, 133, 136, 138, 145

E-Tech risks, 102, 108, 110, 113–114, 119, 122,
124, 127, 129–130, 133, 136, 138, 145

Event planning applications, 121–128, 142, 145
Evolution, 30, 38
Exit criteria, 104
Expectations management, 152, 155–156, 161,

212–213
eXtreme Programming (XP)

AgilePlus and, 233
case studies and, 84–89
characteristics of, 79–81
cost of change and, 217–220
customer relations and, 45
day-in-the-life examples for, 59, 69–76, 79–81

258

Index

described, 21, 174–176
expectations management and, 155
focus on the product at hand and, 29
hacking and, 6
method comparisons and, 167, 174–176, 185, 194
overgeneralization and, 6–7
“planning driven” processes and, 34–35
process improvement and, 230
purist interpretations and, 8
risk-based methods and, 105, 126, 146, 155
simple design and, 39
team size and, 28
YAGNI concept and, 41

Extreme Programming Explained (Beck), 217

F
FAA (United States Federal Aviation Administration),

23, 46, 91
Factory patterns, 88
Fast cycle/frequent delivery, 17
Feature(s)

-Driven Development (FDD), 22, 42, 151, 167,
183–185, 194

prioritization, 212, 213
Ferguson, Jack, 15
“Field of Dreams” syndrome, 109–210
Fowler, Martin, 195
Freedom, degrees of, 49
Future Combat Systems (United States Army), 28–29,

36, 106, 138

G
Garmus, David, 226
General Electric, 14
Globalization, 106
Good to Great (Collins), 2, 156–157
GPs (Generic Practices), 199

Grant-Sackman experiments, 152–153
Grenning, James, 195
Gresham’s Law, 36–37
GUIs (graphical user interfaces), 76, 93, 116, 132

H
Hacking, agile methods and, equation of, 6
Hefley, Bill, 153
Hewlett-Packard, 41–42
High assurance, goal of, 27
Highsmith, Jim, 21, 47, 153, 170, 195, 226
Hitachi, 10, 14
Home ground(s), 25–57, 83–98

critical factors and, 54–57
risk-based methods and, 102, 111, 123–124, 134,

150, 157–161
use of the term, 22

Humphrey, Watts, 15, 81, 153, 181, 197
PSP and, 190
SW-CMM and, 188

Hunt, Andrew, 195

I
IBM (International Business Machines), 10, 15, 46,

179, 192
Implementation Managers, 61
Improve process, 11
Incremental development, 17, 214–215
Individualism, 16
Inertia, cultural, 50
Information

hiding, 115
-sclerosis” cases, 30

Information Paradox, The (Thorp), 210
Inspection process, 46, 66–68, 77
Institute of Electrical and Electronics Engineers

(IEEE), 14, 37

259

Index

Integration testing, 68–69
International Space Station, 23
Internet Explorer browser (Microsoft), 22
Inventory management, 59–82
Invisibility, 148
IOC (Initial Operational Capability) milestone, 213,

214–215, 206–209
IPPD (integrated process and product development),

186
ISO (International Standards Organization), 14, 198,

201
IT (information technology)

BRA (Benefits Realization Analysis) and, 210–212
claims of universality and, 7
day-in-the-life examples and, 65

Iterative cycles, 72, 74–75, 85–86
described, 17
requirements and, 37–38
risk-based methods and, 119

J
Jeffries, Ron, 21, 175, 195
Jones, J. D., 171
Juran, J. M., 3, 12, 188

K
Karten, Naomi, 161
Kern, Jon, 195
Knowledge. See also Tacit knowledge

explicit documented, 36
types of, 36

KPAs (Key Process Areas), 188–189, 198–200
Kruchten, Philippe, 23

L
Laissez-faire approaches, 26
Late-fix problem, 43

LCA (Life Cycle Architecture) milestone, 104,
206–208, 207–209

LCO (Life Cycle Objectives) milestone, 206–209
LD (Lean Development), 42, 151, 166–167, 171–172,

194
Lead-bullet techniques, 148, 149
Lease management, 84–89, 99, 105
Legacy systems, 60
Life cycles, development, 11, 16, 41–44, 80. See also

Iterative cycles
BDUF and, 42
mentality of sufficiency and, 18
risk-based methods and, 120, 149
testing and, 42–44
waterfall, 149, 170

Lightweight processes, 17
Limits of Software, The (Britcher), 46
Lister, T., 152
Lockheed Martin, 227–228

M
Management, 13–14, 16

characteristics of, 25, 31–37
cultural change and, 20
expectations, 152, 155–156, 161, 212–213
pair programming and, 20
risk and, 24
supply chain, 106–121, 127, 145

Managing Technical People (Humphrey), 153
Marick, Brian, 195
Martin, Robert C., 6, 195
Maturity. See also CMMI (Capability Maturity

Model Integration); CMMs (Capability Maturity
Models)

organizational, 12
software process, 3, 32–33

MBASE (Model-Based Architecting and Software
Engineering) process, 37, 101–102, 118, 120, 205

260

Index

Measure process, 11
Meetings, 33–35, 65, 77–79
Mellor, Steve, 195
Metrics, 79, 94
Middle ground, finding, 22–24
Middleware, 93, 94–95
Milestones, 101, 117, 205–209

IOC (Initial Operational Capability) milestone,
213, 214–215, 206–209

LCA (Life Cycle Architecture) milestone, 104,
206–208, 207–209

LCO (Life Cycle Objectives) milestone, 206–209
Miller, Sally, 153
Mills, Harlan, 15, 192
Misconceptions, 53–54, 97
MITRE Corporation, 197
Motorola, 228

N
National Defense Industrial Association (NDIA),

15, 198
National Information System for Crisis Management

(NISCM), 127–145
National Science Foundation, 218
Netscape Web browser, 22
NSO (National Survivability Office), 127–129, 135,

139

O
OO (object-oriented programming), 62
Organizational culture, 20, 156–161

characteristics of, 25
classification of, as a critical factor, 54–57
inertia and, 50
personnel characteristics and, 49–50

Overgeneralization, 6–7

P
Pair programming, 18–20, 33–35, 230–233

day-in-the-life examples and, 70, 72–73, 78
risk-based methods and, 119
testing and, 43
XP and, 175

PAs (Process Areas), 199, 203
Paulk, Mark, 15
P-Change risks, 102, 109–110, 113, 116–117, 119,

122, 124, 127, 131, 133, 136, 138, 145
PDR (Preliminary Design Review), 92–93
P-Emerge risks, 102, 109–110, 116–117, 119, 122,

124, 127, 131, 133, 137, 145
People Capability Maturity Model (CMM), 7,

152–153, 161, 186, 188
Peopleware (DeMarco and Lister), 152
Perform process, 11
Perplexity, 1–24
Personnel, 7, 156–161

case studies and, 85, 93, 95
characteristics of, 25, 44–50
classification of, as a critical factor, 54–57
highly-talented, 47
risk-based methods and, 102, 109, 116, 122, 127
skill levels of, 47–48
turnover, 102, 108, 110, 112, 116, 119, 122, 124,

127, 131, 133, 136, 138, 145
Phillips, Mike, 15
Plan-driven methods, 2–3, 6–16, 51–54. See also

Planning
application characteristics and, 25, 27–37
case studies for, 83, 90–95
characteristics of, 10–13
day-in-the-life examples and, 59–82
described, 9–16
examples of, 14–15
finding middle ground and, 22–24
key concepts for, 12–13
large projects and, 28–29

261

Index

Plan-driven methods (continued)
management characteristics and, 25, 31–37
misconceptions about, 53–54
personnel characteristics and, 25, 44–50
primary goals of, 27
purist interpretations and, 8
requirements and, 37–38
risk-based methods and, 99–146
stability and, 31
streamlining, 90–95
studies of, 225–233
technical characteristics and, 25, 37–44

Planning. See also Plan-driven methods
day-in-the-life examples and, 62, 70–71
Managers, 61, 69
as a means to an end, 33–34
project communication and, 35
traditional development and, 2

PMAT parameter, 226–227
Pragmatism, 22, 95
Predictability, 12, 27
Preparedness, importance of, 81
Prioritization, 38
Proactive strategies, 27
Process(es). See also KPAs (Key Process Areas)

Areas (PAs), 199, 203
capability, described, 12
compliance, 5, 6
groups, 12–13
improvement, 11–12, 226–230
maturity, 3, 32–33
specificity of, 80

Program Managers, 135–136
Programmers, role of, 61, 69–70, 71
Project Managers, 118
Prototypes, 16, 31–32, 60, 62, 75
P-Skill risks, 102, 110, 119, 127, 133, 137, 138, 145
PSP (Personal Software Process), 167, 181, 183, 194

day-in-the-life examples for, 59–69, 76–77, 79, 81
described, 15, 190–191

expectations management and, 155
training and, 60–61

P-Speed risks, 102, 109–110, 116–117, 119, 122, 127,
132–133, 136, 139, 145

Psychology of Computer Programming (Weinberg),
152

Purist interpretations, 8

Q
Quality

process improvement and, 12
/Process Managers, 61, 63
profiles, 66
use of the term, 5

R
Rational Corporation, 179
Reactive postures, 27
Rechtin, E., 222
Refactoring, 6, 40, 43

day-in-the-life examples and, 74, 75, 78
described, 18
risk-based methods and, 122, 107

Regression
analysis, 221
testing, 43

Reliability, 41
Repeatability, 3, 12
Reports, 36, 69, 72, 76, 78, 80
REQ scripts, 64
Requirements, 31, 39, 76–79, 80

finding middle ground and, 22
risk-based methods and, 102, 107
SAIV process model and, 215
technical characteristics and, 37–39
testing and, 43

RESL (Architecture and Risk Resolution) factor,
142, 221–225

262

Index

Results Chain (DMR Consulting Group), 114, 209–212
Retrospective review, 19
Reuse, 14, 41–42, 78
Reviews, 35, 69, 92–93, 207
Risk. See also Risk-based methods

agent-based planning systems and, 104–106
analysis, 100–104
balancing agility and discipline with, 99–146
case studies and, 90–93
categories of, 102–103
customer representatives and, 44–45
determining planning levels with, 111–113
entrepreneurship, 171
exposure profiles/ratings, 110–113, 132–134,

123–125
key role of, 24
management, 13, 50, 57, 118
mitigation, 119–120
overspecification, 116–117
reactive postures and, 27
requirements and, 38
resolution, 102–103, 113–117
test-first approach and, 43

Risk-based methods. See also Risk
agent-based planning systems and, 104–106
described, 99–146
five-step process to develop, 100–104
NISCM and, 127–143
supply chain management and, 106–121

Robust architecture, 77
Role(s)

Reports, 69
well-described, 80

Roos, D., 171
Royce, Walker, 90
RTCA DO-178B standards, 27
RUP (Rational Unified Process), 37, 101, 118, 120,

144, 152
anchor points and, 101
CCPDS-R and, 90

described, 179–181
method comparisons and, 166, 167, 178, 179–181,

194

S
SAIV (Schedule As Independent Variable) process

model, 139, 212–215
Sales reporting, 59–82
Scalability, 20, 35–36, 39

risk-based methods and, 105, 131
SAIV process model and, 213

Schalliol, Gregory, 84, 85, 89
Schedule(s), 75–77, 81, 213

case studies and, 84, 86–87, 94
range estimation, 213
risk-based methods and, 130, 132, 134
slip, 24, 215

Schwaber, Ken, 21, 168, 195
Scrum

described, 21, 168–169
method comparisons and, 167, 168–169, 194
risk-based methods and, 126
team size and, 28

SEI (Software Engineering Institute), 15, 181, 186,
188, 197, 227

Self
-assessment, 156
-organizing attribute, 17

SEPGs (Software Engineering Process Groups), 13, 50
Sheard, Sarah, 7
Siemens, 10
Silver-bullet concept, 7, 148–149, 154
Simple design, 18, 39–42, 84, 88, 115, 175–176
Size, 28, 54–57, 107, 160, 225–226
Software Productivity Consortium, 7
Software Project Management (Royce), 90
Software systems architecture, 13, 15

BDUF and, 42
“breakers,” 40, 86

263

Index

Software systems architecture (continued)
case studies and, 85–86, 89, 91, 93–95
day-in-the-life examples and, 77
described, 13
determining the optimum quantity of, 220–225
reduced development cycle time and, 41–42
risk-based methods and, 107, 115, 141–143
SAIV process model and, 214
traditional development and, 2
wasted resources and, 42

Specifications, 29, 38. See also Standards
risk-based methods and, 140, 116–117, 141–142
testing and, 43

Spiral model anchor point milestones, 101, 104, 117,
205–209

Stability, goal of, 27, 31
Standards, 10, 11, 14. See also Specifications

case studies and, 90, 91
IEEE, 14, 37
ISO, 14, 198, 201
project communication and, 37
safety-critical projects and, 27

Stories. See also Story cards
expressing requirements in terms of, 37, 40
modifying, 37, 85–86

Story cards, 70–71, 73–74, 84, 85–88. See also Stories
Stovepipes, 30
Stress testing, 74–75
Subcontractors, 139–141
Success

balancing agility and discipline and, 156–161
characteristics of, 2
Collins on, 2
customer relations and, 45
requirements for, 13–16, 19

Sufficiency, mentality of, 18
Supply chain management, 106–121, 127, 145
Support Managers, 61
Sutherland, Jeff, 21, 168, 195

SW-CMM (Capability Maturity Model for Software).
See also CMMs (Capability Maturity Models)

CMMs and, 198–203
described, 2–3, 188–189
method comparisons and, 167, 186, 187–190, 194
personnel characteristics and, 50
primary goals and, 27
process improvement and, 226–227
PSP and, 190
requirements and, 38
traditional approaches and, 2–3

Swim lanes, 117–119

T
Tacit knowledge, 17, 19–20, 33–37

case studies and, 85, 86, 89
risk-based methods and, 116, 131, 148

Tailor-down methods, 36–37, 55, 152
Team(s). See TSP (Team Software Process)

importance of, 152–153
leaders, 61, 69
personnel characteristics and, 50
planning and, 34
risk-based methods and, 107, 152–153, 160
size of, 28, 54–57, 107, 160, 225–226

Technical characteristics, 25, 37–44
Telos, 227–228
Test(s). See also Testing

acceptance, 74, 78
cases, 43, 73
-driven development, 19
-first approach, 43, 80, 175–176
integration, 68–69
Managers, 61
matrices, 43
regression, 43
stress, 74–75

Tester role, 71

264

Index

Testing. See also Tests
automated, 43
case studies and, 93
day-in-the-life examples and, 61, 73, 80
described, 42–44
early, 43, 44
risk-based methods and, 117

Thomas, Dave, 195
Thorp, John, 210
ThoughtWorks project, 94, 105, 149. See also Lease

management
Throughput, 41
Timeboxing, 115, 139
Time-to-market, crucial role of, 2
Time-tracking systems, 64–65
Tracker role, 71, 75
Traditional development, 2–5, 9–16, 84
Training, 11, 16, 60–61, 69–70
Trust, 32–33, 84, 86–87
TRW CCPDS-R. See CCPDS-R (Command Center

Processing Display System Replacement)
TSP (Team Software Process)

characteristics of, 79–81
day-in-the-life examples for, 60–69, 76–81
described, 15, 181–183
inspection script, 66–68
method comparisons and, 166, 167, 178, 181–183,

194
process improvement and, 228, 230
risk-based methods and, 144
role scripts, 62, 63
tailor-down methods and, 37
training and, 60–61

Turnkey supply chain management, 106–121

U
UML (Unified Modeling Language), 22, 77, 179
Unit tests, 75, 86

Universality, claims of, 7
University of Maryland, 218
USAF/ESC (United States Air Force Electronic

Systems Center), 90–95
USC Center for Software Engineering, 44–45, 101,

205, 212, 213, 218–219

V
Validation, 10–11, 13, 27, 93
Values, importance of, 154, 161
Verification, 10–11, 13, 27
Vision, shared, 212–213

W
Waterfall development cycle, 11, 149, 170
Weinberg, G., 152
Win-win outcomes, 91, 154, 205, 213
Womack, J., 171
Workstations, setup of, 70

X
XBreed process, 126
XP (eXtreme Programming)

AgilePlus and, 233
case studies and, 84–89
characteristics of, 79–81
cost of change and, 217–220
customer relations and, 45
day-in-the-life examples for, 59, 69–76, 79–81
described, 21, 174–176
expectations management and, 155
focus on the product at hand and, 29
hacking and, 6
method comparisons and, 167, 174–176, 185, 194
overgeneralization and, 6–7
“planning driven” processes and, 34–35

265

Index

XP (continued)
process improvement and, 230
purist interpretations and, 8
risk-based methods and, 105, 126, 146, 155
simple design and, 39
team size and, 28
YAGNI concept and, 41

Y
YAGNI (“You Aren’t Going to Need It”) concept, 18,

41. See also A-YAGNI risks
case studies and, 84, 88, 89, 94
FDD and, 185

266

Index

	Contents
	Foreword
	Foreword
	Foreword
	Preface
	Why We Wrote This Book
	Who Should Read This Book
	How to Read This Book

	Acknowledgments
	Prelude
	Chapter 2 Contrasts and Home Grounds
	Application Characteristics
	Primary Goals
	Size
	Environment

	Management Characteristics
	Customer Relations
	Planning and Control
	Project Communication

	Technical Characteristics
	Requirements
	Development
	Testing

	Personnel Characteristics
	Customers
	Developers
	Culture

	Summary
	Home Grounds
	Misconceptions
	Five Critical Factors

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

