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Preface

This book is the result of nearly two decades of minor frustrations, serious bugs,
late nights, and weekends spent involuntarily at the keyboard. This collection
consists of 99 of some of the more common, severe, or interesting C++ gotchas,
most of which I have (I’m sorry to say) experienced personally.

The term “gotcha” has a cloudy history and a variety of definitions. For purposes of
this book, we’ll define C++ gotchas as common and preventable problems in C++
programming and design. The gotchas described here run the gamut from minor
syntactic annoyances to basic design flaws to full-blown sociopathic behavior.

Almost ten years ago, I started including notes about individual gotchas in my
C++ course material. My feeling was that pointing out these common miscon-
ceptions and misapplications in apposition to correct use would inoculate the
student against them and help prevent new generations of C++ programmers
from repeating the gotchas of the past. By and large, the approach worked, and I
was induced to collect sets of related gotchas for presentation at conferences.
These presentations proved to be popular (misery loves company?), and I was
encouraged to write a “gotcha” book.

Any discussion of avoiding or recovering from C++ gotchas involves other sub-
jects, most commonly design patterns, idioms, and technical details of C++ lan-
guage features.

This is not a book about design patterns, but we often find ourselves referring to
patterns as a means of avoiding or recovering from a particular gotcha. Conven-
tionally, the pattern name is capitalized, as in “Template Method” pattern or
“Bridge” pattern. When we mention a pattern, we describe its mechanics briefly if
they’re simple but delegate detailed discussion of patterns to works devoted to
them. Unless otherwise noted, a fuller description of a pattern, as well as a richer
discussion of patterns in general, may be found in Erich Gamma et al.’s Design
Patterns. Descriptions of the Acyclic Visitor, Monostate, and Null Object patterns
may be found in Robert Martin’s Agile Software Development.

From the perspective of gotchas, design patterns have two important properties.
First, they describe proven, successful design techniques that can be customized
in a context-dependent way to new design situations. Second, and perhaps more
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important, mentioning the application of a particular pattern serves to document
not only the technique applied but also the reasons for its application and the
effect of having applied it.

For example, when we see that the Bridge pattern has been applied to a design, we
know at a mechanical level that an abstract data type implementation has been
separated into an interface class and an implementation class. Additionally, we
know this was done to separate strongly the interface from the implementation,
so changes to the implementation won’t affect users of the interface. We also
know this separation entails a runtime cost, how the source code for the abstract
data type should be arranged, and many other details.

A pattern name is an efficient, unambiguous handle to a wealth of information
and experience about a technique. Careful, accurate use of patterns and pattern
terminology in design and documentation clarifies code and helps prevent gotchas
from occurring.

C++ is a complex programming language, and the more complex a language, the
more important is the use of idiom in programming. For a programming lan-
guage, an idiom is a commonly used and generally understood combination of
lower-level language features that produces a higher-level construct, in much the
same way patterns do at higher levels of design. Therefore, in C++ we can discuss
copy operations, function objects, smart pointers, and throwing an exception
without having to specify these concepts at their lowest level of implementation.

It’s important to emphasize that an idiom is not only a common combination of
language features but also a common set of expectations about how these com-
bined features should behave. What do copy operations mean? What can we
expect to happen when an exception is thrown? Much of the advice found in this
book involves being aware of and employing idioms in C++ coding and design.
Many of the gotchas listed here could be described simply as departing from a
particular C++ idiom, and the accompanying solution to the problem could
often be described simply as following the appropriate idiom (see Gotcha #10).

A significant portion of this book is spent describing the nuances of certain areas
of the C++ language that are commonly misunderstood and frequently lead to
gotchas. While some of this material may have an esoteric feel to it, unfamiliarity
with these areas is a source of problems and a barrier to expert use of C++. These
“dark corners” also make an interesting and profitable study in themselves. They
are in C++ for a reason, and expert C++ programmers often find use for them in
advanced programming and design.
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Another area of connection between gotchas and design patterns is the similar
importance of describing relatively simple instances. Simple patterns are impor-
tant. In some respects, they may be more important than technically difficult pat-
terns, because they’re likely to be more commonly employed. The benefits
obtained from the pattern description will, therefore, be leveraged over a larger
body of code and design.

In much the same way, the gotchas described in this book cover a wide range 
of difficulty, from a simple exhortation to act like a responsible professional
(Gotcha #12) to warnings to avoid misunderstanding the dominance rule under
virtual inheritance (Gotcha #79). But, as in the analogous case with patterns,
acting responsibly is probably more commonly applicable on a day-to-day basis
than is the dominance rule.

Two common themes run through the presentation. The first is the overriding
importance of convention. This is especially important in a complex language
like C++. Adherence to established convention allows us to communicate effi-
ciently and accurately with others. The second theme is the recognition that
others will maintain the code we write. The maintenance may be direct, so that
our code must be readily and generally understood by competent maintainers,
or it may be indirect, in which case we must ensure that our code remains cor-
rect even as its behavior is modified by remote changes.

The gotchas in this book are presented as a collection of short essays, each of which
describes a gotcha or set of related gotchas, along with suggestions for avoiding 
or correcting them. I’m not sure any book about gotchas can be entirely cohesive,
due to the anarchistic nature of the subject. However, the gotchas are grouped into
chapters according to their general nature or area of (mis)applicability.

Additionally, discussion of one gotcha inevitably touches on others. Where it
makes sense to do so—and it generally does—I’ve made these links explicit.
Cohesion within each item is sometimes at risk as well. Often it’s necessary,
before getting to the description of a gotcha, to describe the context in which it
appears. That description, in turn, may require discussion of a technique, idiom,
pattern, or language nuance that may lead us even further afield before we return
to the advertised gotcha. I’ve tried to keep this meandering to a minimum, but it
would have been dishonest, I think, to attempt to avoid it entirely. Effective pro-
gramming in C++ involves intelligent coordination of so many disparate areas
that it’s impractical to imagine one can examine its etiology effectively without
involving a similar eclectic collection of topics.

It’s certainly not necessary—and possibly inadvisable—to read this book straight
through, from Gotcha #1 to Gotcha #99. Such a concentrated dose of mayhem
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may put you off programming in C++ altogether. A better approach may be to
start with a gotcha you’ve experienced or that sounds interesting and follow links
to related gotchas. Alternatively, you may sample the gotchas at random.

The text employs a number of devices intended to clarify the presentation. First,
incorrect or inadvisable code is indicated by a gray background, whereas correct and
proper code is presented with no background. Second, code that appears in the text
has been edited for brevity and clarity. As a result, the examples as presented often
won’t compile without additional, supporting code. The source code for nontrivial
examples is available from the author’s Web site: www.semantics.org. All such code 
is indicated in the text by an abbreviated pathname near the code example, as in 
➤➤ gotcha00/somecode.cpp.

Finally, a warning: the one thing you should not do with gotchas is elevate them
to the same status as idioms or patterns. One of the signs that you’re using pat-
terns and idioms properly is that the pattern or idiom appropriate to the design
or coding context will arise “spontaneously” from your subconscious just when
you need it.

Recognition of a gotcha is analogous to a conditioned response to danger: once
burned, twice shy. However, as with matches and firearms, it’s not necessary to suf-
fer a burn or a gunshot wound to the head personally to learn how to recognize
and avoid a dangerous situation; generally, all that’s necessary is advance warning.
Consider this collection a means to keep your head in the face of C++ gotchas.

Stephen C. Dewhurst

Carver, Massachusetts

July 2002
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6 ❘ Memory and Resource
Management

C++ offers tremendous flexibility in managing memory, but few C++ program-
mers fully understand the available mechanisms. In this area of the language,
overloading, name hiding, constructors and destructors, exceptions, static and
virtual functions, operator and non-operator functions all come together to pro-
vide great flexibility and customizability of memory management. Unfortunately,
and perhaps unavoidably, things can also get a bit complex.

In this chapter, we’ll look at how the various features of C++ are used together in
memory management, how they sometimes interact in surprising ways, and how
to simplify their interactions.

Inasmuch as memory is just one of many resources a program manages, we’ll also
look at how to bind other resources to memory so we can use C++’s sophisticated
memory management facilities to manage other resources as well.

Gotcha #60: Failure to Distinguish Scalar and Array Allocation

Is a Widget the same thing as an array of Widgets? Of course not. Then why are
so many C++ programmers surprised to find that different operators are used to
allocate and free arrays and non-arrays?

We know how to allocate and free a single Widget. We use the new and delete
operators:

Widget *w = new Widget( arg );

// . . . 

delete w;

Unlike most operators in C++, the behavior of the new operator can’t be modi-
fied by overloading. The new operator always calls a function named operator
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new to (presumably) obtain some storage, then may initialize that storage. In the
case of Widget, above, use of the new operator will cause a call to an operator
new function that takes a single argument of type size_t, then will invoke a
Widget constructor on the uninitialized storage returned by operator new to
produce a Widget object.

The delete operator invokes a destructor on the Widget and then calls a func-
tion named operator delete to (presumably) deallocate the storage formerly
occupied by the now deceased Widget object.

Variation in behavior of memory allocation and deallocation is obtained by over-
loading, replacing, or hiding the functions operator new and operator delete,
not by modifying the behavior of the new and delete operators.

We also know how to allocate and free arrays of Widgets. But we don’t use the new
and delete operators:

w = new Widget[n];

// . . . 

delete [] w;

We instead use the new [] and delete [] operators (pronounced “array new”
and “array delete”). Like new and delete, the behavior of the array new and array
delete operators cannot be modified. Array new first invokes a function called
operator new[] to obtain some storage, then (if necessary) performs a default
initialization of each allocated array element from the first element to the last.
Array delete destroys each element of the array in the reverse order of its initializa-
tion, then invokes a function called operator delete[] to reclaim the storage.

As an aside, note that it’s often better design to use a standard library vector
rather than an array. A vector is nearly as efficient as an array and is typically
safer and more flexible. A vector can generally be considered a “smart” array,
with similar semantics. However, when a vector is destroyed, its elements are
destroyed from first to last: the opposite order in which they would be destroyed
in an array.

Memory management functions must be properly paired. If new is used to obtain
storage, delete should be used to free it. If malloc is used to obtain storage, free
should be used to free it. Sometimes, using free with new or malloc with delete
will “work” for a limited set of types on a particular platform, but there is no
guarantee the code will continue to work:

int *ip = new int(12);

// . . . 
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free( ip ); // wrong!

ip = static_cast<int *>(malloc( sizeof(int) ));

*ip = 12;

// . . . 

delete ip; // wrong!

The same requirement holds for array allocation and deletion. A common error is
to allocate an array with array new and free it with non-array delete. As with mis-
matched new and free, this code may work by chance in a particular situation
but is nevertheless incorrect and is likely to fail in the future:

double *dp = new double[1];

// . . . 

delete dp; // wrong!

Note that the compiler can’t warn of an incorrect non-array deletion of an array,
since it can’t distinguish between a pointer to an array and a pointer to a single
element. Typically, array new will insert information adjacent to the memory
allocated for an array that indicates not only the size of the block of storage but
also the number of elements in the allocated array. This information is examined
and acted upon by array delete when the array is deleted.

The format of this information is probably different from that of the information
stored with a block of storage obtained through non-array new. If non-array
delete is invoked upon storage allocated by array new, the information about size
and element count—which are intended to be interpreted by an array delete—
will probably be misinterpreted by the non-array delete, with undefined results.
It’s also possible that non-array and array allocation employ different memory
pools. Use of a non-array deletion to return array storage allocated from the array
pool to the non-array pool is likely to end in disaster.

delete [] dp; // correct

This imprecision regarding the concepts of array and non-array allocation also
show up in the design of member memory-management functions:

class Widget {

public:

void *operator new( size_t );

void operator delete( void *, size_t );

// . . . 

};
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The author of the Widget class has decided to customize memory management of
Widgets but has failed to take into account that array operator new and delete
functions have different names from their non-array counterparts and are there-
fore not hidden by the member versions:

Widget *w = new Widget( arg ); // OK

// . . . 

delete w; // OK

w = new Widget[n];  // oops!

// . . . 

delete [] w; // oops!

Because the Widget class declares no operator new[] or operator delete[]
functions, memory management of arrays of Widgets will use the global ver-
sions of these functions. This is probably incorrect behavior, and the author of
the Widget class should provide member versions of the array new and delete
functions.

If, to the contrary, this is correct behavior, the author of the class should clearly
indicate that fact to future maintainers of the Widget class, since otherwise
they’re likely to “fix” the problem by providing the “missing” functions. The best
way to document this design decision is not with a comment but with code:

class Widget {

public:

void *operator new( size_t );

void operator delete( void *, size_t );

void *operator new[]( size_t n )

{ return ::operator new[](n); }

void operator delete[]( void *p, size_t )

{ ::operator delete[](p); }

// . . . 

};

The inline member versions of these functions cost nothing at runtime and
should convince even the most inattentive maintainer not to second-guess the
author’s decision to invoke the global versions of array new and delete functions
for Widgets.
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Gotcha #61: Checking for Allocation Failure

Some questions should just not be asked, and whether a particular memory allo-
cation has succeeded is one of them.

Let’s look at how life used to be in C++ when allocating memory. Here’s some
code that’s careful to check that every memory allocation succeeds:

bool error = false;

String **array = new String *[n];

if( array ) {

for( String **p = array; p < array+n; ++p ) {

String *tmp = new String;

if( tmp )

*p = tmp;

else {

error = true;

break;

}

}

}

else

error = true;

if( error )

handleError();

This style of coding is a lot of trouble, but it might be worth the effort if it were
able to detect all possible memory allocation failures. It won’t. Unfortunately, the
String constructor itself may encounter a memory allocation error, and there is
no easy way to propagate that error out of the constructor. It’s possible, but not a
pleasant prospect, to have the String constructor put the String object in some
sort of acceptable error state and set a flag that can be checked by users of the
class. Even assuming we have access to the implementation of String to imple-
ment this behavior, this approach gives both the original author of the code and
all future maintainers yet another condition to test.

Or neglect to test. Error-checking code that’s this involved is rarely entirely cor-
rect initially and is almost never correct after a period of maintenance. A better
approach is not to check at all:

String **array = new String *[n];

for( String **p = array; p < array+n; ++p )

*p = new String;
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This code is shorter, clearer, faster, and correct. The standard behavior of new is to
throw a bad_alloc exception in the event of allocation failure. This allows us to
encapsulate error-handling code for allocation failure from the rest of the pro-
gram, resulting in a cleaner, clearer, and generally more efficient design.

In any case, an attempt to check the result of a standard use of new will never
indicate a failure, since the use of new will either succeed or throw an exception:

int *ip = new int;

if( ip ) { // condition always true

// . . . 

}

else {

// will never execute

}

It’s possible to employ the standard “nothrow” version of operator new that will
return a null pointer on failure:

int *ip = new (nothrow) int;

if( ip ) { // condition almost always true

// . . . 

}

else {

// will almost never execute

}

However, this simply brings back the problems associated with the old semantics
of new, with the added detriment of hideous syntax. It’s better to avoid this
clumsy backward compatibility hack and simply design and code for the exception-
throwing new.

The runtime system will also handle automatically a particularly nasty problem
in allocation failure. Recall that the new operator actually specifies two function
calls: a call to an operator new function to allocate storage, followed by an invo-
cation of a constructor to initialize the storage:

Thing *tp = new Thing( arg );

If we catch a bad_alloc exception, we know there was a memory allocation error,
but where? The error could have occurred in the original allocation of the storage
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for Thing, or it could have occurred within the constructor for Thing. In the first
case we have no memory to deallocate, since tp was never set to anything. In the
second case, we should return the (uninitialized) memory to which tp refers to the
heap. However, it can be difficult or impossible to determine which is the case.

Fortunately, the runtime system handles this situation for us. If the original allo-
cation of storage for the Thing object succeeds but the Thing constructor fails
and throws any exception, the runtime system will call an appropriate operator
delete (see Gotcha #62) to reclaim the storage.

Gotcha #62: Replacing Global New and Delete

It’s almost never a good idea to replace the standard, global versions of operator
new, operator delete, array new, or array delete, even though the standard per-
mits it. The standard versions are typically highly optimized for general-purpose
storage management, and user-defined replacements are unlikely to do better.
(However, it’s often reasonable to employ member memory-management opera-
tions to customize memory management for a specific class or hierarchy.)

Special-purpose versions of operator new and operator delete that implement
different behavior from the standard versions will probably introduce bugs, since
the correctness of much of the standard library and many third-party libraries
depends on the default standard implementations of these functions.

A safer approach is to overload the global operator new rather than replace it.
Suppose we’d like to fill newly allocated storage with a particular character pattern:

void *operator new( size_t n, const string &pat ) {

char *p = static_cast<char *>(::operator new( n ));

const char *pattern = pat.c_str();

if( !pattern[0] )

pattern = "\0"; // note: two null chars

const char *f = pattern;

for( int i = 0; i < n; ++i ) {

if( !*f )

f = pattern;

p[i] = *f++;

}

return p;

}
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This version of operator new accepts a string pattern argument that is copied
into the newly allocated storage. The compiler distinguishes between the stan-
dard operator new and our two-argument version through overload resolution.

string fill( "<garbage>" );

string *string1 = new string( "Hello" ); // standard version

string *string2 =

new (fill) string( "World!" ); // overloaded version

The standard also defines an overloaded operator new that takes, in addition to
the required size_t first argument, a second argument of type void *. The
implementation simply returns the second argument. (The throw() syntax is an
exception-specification indicating that this function will not propagate any
exceptions. It may be safely ignored in the following discussion, and in general.)

void *operator new( size_t, void *p ) throw()

{ return p; }

This is the standard “placement new,” used to construct an object at a specific
location. (Unlike with the standard, single-argument operator new, however,
attempting to replace placement new is illegal.) Essentially, we use it to trick the
compiler into calling a constructor for us. For example, for an embedded applica-
tion, we may want to construct a “status register” object at a particular hardware
address:

class StatusRegister {

// . . . 

};

void *regAddr = reinterpret_cast<void *>(0XFE0000);

// . . . 

// place register object at regAddr

StatusRegister *sr = new (regAddr) StatusRegister;

Naturally, objects created with placement new must be destroyed at some point.
However, since no memory is actually allocated by placement new, it’s important
to ensure that no memory is deleted. Recall that the behavior of the delete
operator is to first activate the destructor of the object being deleted before call-
ing an operator delete function to reclaim the storage. In the case of an object
“allocated” with placement new, we must resort to an explicit destructor call to
avoid any attempt to reclaim memory:

sr->~StatusRegister(); // explicit dtor call, no operator delete
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Placement new and explicit destruction are clearly useful features, but they’re just
as clearly dangerous if not used sparingly and with caution. (See Gotcha #47 for
one example from the standard library.)

Note that while we can overload operator delete, these overloaded versions
will never be invoked by a standard delete-expression:

void *operator new( size_t n, Buffer &buffer ); // overloaded new

void operator delete( void *p,

Buffer &buffer ); // corresponding delete

// . . . 

Thing *thing1 = new Thing; // use standard operator new

Buffer buf;

Thing *thing2 = new (buf) Thing; // use overloaded operator new

delete thing2; // incorrect, should have used overloaded delete

delete thing1; // correct, uses standard operator delete

Instead, as with an object created with placement new, we’re forced to call the
object’s destructor explicitly, then explicitly deallocate the former object’s storage
with a direct call to the appropriate operator delete function:

thing2->~Thing(); // correct, destroy Thing

operator delete( thing2, buf ); // correct, use overloaded delete

In practice, storage allocated by an overloaded global operator new is often erro-
neously deallocated by the standard global operator delete. One way to avoid
this error is to ensure that any storage allocated by an overloaded global operator
new obtains that storage from the standard global operator new. This is what
we’ve done with the first overloaded implementation above, and our first version
works correctly with standard global operator delete:

string fill( "<garbage>" );

string *string2 = new (fill) string( "World!" );

// . . . 

delete string2; // works

Overloaded versions of global operator new should, in general, either not allo-
cate any storage or should be simple wrappers around the standard global
operator new.

Often, the best approach is to avoid doing anything at all with global scope memory-
management operator functions, but instead customize memory management on a
class or hierarchy basis through the use of member operators new, delete, array new,
and array delete.
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We noted at the end of Gotcha #61 that an “appropriate” operator delete would
be invoked by the runtime system in the event of an exception propagating out of
an initialization in a new-expression:

Thing *tp = new Thing( arg );

If the allocation of Thing succeeds but the constructor for Thing throws an
exception, the runtime system will invoke an appropriate operator delete to
reclaim the uninitialized memory referred to by tp. In the case above, the appro-
priate operator delete would be either the global operator delete(void *)
or a member operator delete with the same signature. However, a different
operator new would imply a different operator delete:

Thing *tp = new (buf) Thing( arg );

In this case, the appropriate operator delete is the two-argument version cor-
responding to the overloaded operator new used for the allocation of Thing;
operator delete( void *, Buffer &), and this is the version the runtime sys-
tem will invoke.

C++ permits much flexibility in defining the behavior of memory management,
but this flexibility comes at the cost of complexity. The standard, global versions
of operator new and operator delete are sufficient for most needs. Employ
more complex approaches only if they are clearly necessary.

Gotcha #63: Confusing Scope and Activation of Member new and delete

Member operator new and operator delete are invoked when objects of the
class declaring them are created and destroyed. The actual scope in which the
allocation expression occurs is immaterial:

class String {

public:

void *operator new( size_t ); // member operator new

void operator delete( void * ); // member operator delete

void *operator new[]( size_t ); // member operator new[]

void operator delete [] ( void * ); // member operator delete[]

String( const char * = "" );

// . . . 

};
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void f() {

String *sp = new String( "Heap" ); // uses String::operator new

int *ip = new int( 12 ); // uses ::operator new

delete ip; // uses :: operator delete

delete sp; // uses String::delete

}

Again: the scope of the allocation doesn’t matter; it’s the type being allocated that
determines the function called:

String::String( const char *s )

: s_( strcpy( new char[strlen(s)+1], s ) )

{}

The array of characters is allocated in the scope of class String, but the allocation
uses the global array new, not String’s array new; a char is not a String. Explicit
qualification can help:

String::String( const char *s )

: s_( strcpy( reinterpret_cast<char *>

(String::operator new[](strlen(s)+1 )),s ) )

{}

It would be nice if we could say something like String::new char[strlen(s)+1]
to access String’s operator new[] through the new operator (parse that!), but
that’s illegal syntax. (Although we can use ::new to access a global operator
new and operator new[] and ::delete to access a global operator delete or
operator delete[].)

Gotcha #64: Throwing String Literals

Many authors of C++ programming texts demonstrate exceptions by throwing
character string literals:

throw "Stack underflow!";

They know this is a reprehensible practice, but they do it anyway, because it’s a
“pedagogic example.” Unfortunately, these authors often neglect to mention to
their readers that actually following the implicit advice to imitate the example
will spell mayhem and doom.

Gotcha #64: Throwing String Literals ❘ 177



Never throw exception objects that are string literals. The principal reason is that
these exception objects should eventually be caught, and they’re caught based on
their type, not on their value:

try {

// . . . 

}

catch( const char *msg ) {

string m( msg );

if( m == "stack underflow" ) // . . . 

else if( m == "connection timeout" ) // . . . 

else if( m == "security violation" ) // . . . 

else throw;

}

The practical effect of throwing and catching string literals is that almost no
information about the exception is encoded in the type of the exception object.
This imprecision requires that a catch clause intercept every such exception and
examine its value to see if it applies. Worse, the value comparison is also highly
subject to imprecision, and it often breaks under maintenance when the capital-
ization or formatting of an “error message” is modified. In our example above,
we’ll never recognize that a stack underflow has occurred.

These comments also apply to exceptions of other predefined and standard types.
Throwing integers, floating point numbers, strings, or (on a really bad day) sets
of vectors of floats will give rise to similar problems. Simply stated, the prob-
lem with throwing exception objects of predefined types is that once we’ve caught
one, we don’t know what it represents, and therefore how to respond to it. The
thrower of the exception is taunting us: “Something really, really bad happened.
Guess what!” And we have no choice but to submit to a contrived guessing game
at which we’re likely to lose.

An exception type is an abstract data type that represents an exception. The
guidelines for its design are no different from those for the design of any abstract
data type: identify and name a concept, decide on an abstract set of operations for
the concept, and implement it. During implementation, consider initialization,
copying, and conversions. Simple. Use of a string literal to represent an exception
makes about as much sense as using a string literal as a complex number. Theo-
retically it might work, but practically it’s going to be tedious and buggy.

What abstract concept are we trying to represent when we throw an exception
that represents a stack underflow? Oh. Right.
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class StackUnderflow {};

Often, the type of an exception object communicates all the required information
about an exception, and it’s not uncommon for exception types to dispense with
explicitly declared member functions. However, the ability to provide some
descriptive text is often handy. Less commonly, other information about the
exception may also be recorded in the exception object:

class StackUnderflow {

public:

StackUnderflow( const char *msg = "stack underflow" );

virtual ~StackUnderflow();

virtual const char *what() const;

// . . . 

};

If provided, the function that returns the descriptive text should be a virtual
member function named what, with the above signature. This is for orthogonal-
ity with the standard exception types, all of which provide such a function. In
fact, it’s often a good idea to derive an exception type from one of the standard
exception types:

class StackUnderflow : public std::runtime_error {

public:

explicit StackUnderflow( const char *msg = "stack underflow" )

: std::runtime_error( msg ) {}

};

This allows the exception to be caught either as a StackUnderflow, as a more gen-
eral runtime_error, or as a very general standard exception (runtime_error’s
public base class). It’s also often a good idea to provide a more general, but non-
standard, exception type. Typically, such a type would serve as a base class for all
exception types that may be thrown from a particular module or library:

class ContainerFault {

public:

virtual ~ContainerFault();

virtual const char *what() const = 0;

// . . . 

};
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class StackUnderflow

: public std::runtime_error, public ContainerFault {

public:

explicit StackUnderflow( const char *msg = "stack underflow" )

: std::runtime_error( msg ) {}

const char *what() const

{ return std::runtime_error::what(); }

};

Finally, it’s also necessary to provide proper copy and destruction semantics for
exception types. In particular, the throwing of an exception implies that it must
be legal to copy construct objects of the exception type, since this is what the run-
time exception mechanism does when an exception is thrown (see Gotcha #65),
and the copied exception must be destroyed after it has been handled. Often, we
can allow the compiler to write these operations for us (see Gotcha #49):

class StackUnderflow

: public std::runtime_error, public ContainerFault {

public:

explicit StackUnderflow( const char *msg = "stack underflow" )

: std::runtime_error( msg ) {}

// StackUnderflow( const StackUnderflow & );

// StackUnderflow &operator =( const StackUnderflow & );

const char *what() const

{ return std::runtime_error::what(); }

};

Now, users of our stack type can choose to detect a stack underflow as a Stack-
Underflow (they know they’re using our stack type and are keeping close watch),
as a more general ContainerFault (they know they’re using our container library
and are on the qui vive for any container error), as a runtime_error (they know
nothing about our container library but want to handle any sort of standard runtime
error), or as an exception (they’re prepared to handle any standard exception).

Gotcha #65: Improper Exception Mechanics

Issues of general exception-handling policy and architecture are still subject to
debate. However, lower-level guidelines concerning how exceptions should be
thrown and caught are both well understood and commonly violated.
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When a throw-expression is executed, the runtime exception-handling mecha-
nism copies the exception object to a temporary in a “safe” location. The location
of the temporary is highly platform dependent, but the temporary is guaranteed
to persist until the exception has been handled. This means that the temporary
will be usable until the last catch clause that uses the temporary has completed,
even if several different catch clauses are executed for that temporary exception
object. This is an important property because, to put it bluntly, when you throw
an exception, all hell breaks loose. That temporary is the calm in the eye of the
exception-handling maelstrom.

This is why it’s not a good idea to throw a pointer.

throw new StackUnderflow( "operator stack" );

The address of the StackUnderflow object on the heap is copied to a safe loca-
tion, but the heap memory to which it refers is unprotected. This approach also
leaves open the possibility that the pointer may refer to a location that’s on the
runtime stack:

StackUnderflow e( "arg stack" );

throw &e;

Here, the storage to which the pointer exception object is referring may no longer
exist when the exception is caught. (By the way, when a string literal is thrown, the
entire array of characters is copied to the temporary, not just the address of the first
character. This information is of little practical use, because we should never throw
string literals. See Gotcha #64.) Additionally, a pointer may be null. Who needs this
additional complexity? Don’t throw pointers, throw objects:

StackUnderflow e( "arg stack" );

throw e;

The exception object is immediately copied to a temporary by the exception-
handling mechanism, so the declaration of e is really not necessary. Convention-
ally, we throw anonymous temporaries:

throw StackUnderflow( "arg stack" );

Use of an anonymous temporary clearly states that the StackUnderflow object is
for use only as an exception object, since its lifetime is restricted to the throw-
expression. While the explicitly declared variable e will also be destroyed when
the throw-expression executes, it is in scope, and accessible, until the end of the
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block containing its declaration. Use of an anonymous temporary also helps to
stem some of the more “creative” attempts to handle exceptions:

static StackUnderflow e( "arg stack" );

extern StackUnderflow *argstackerr;

argstackerr = &e;

throw e;

Here, our clever coder has decided to stash the address of the exception object
for use later, probably in some upstream catch clause. Unfortunately, the
argstackerr pointer doesn’t refer to the exception object (which is a temporary
in an undisclosed location) but to the now destroyed object used to initialize it.
Exception-handling code is not the best location for the introduction of obscure
bugs. Keep it simple.

What’s the best way to catch an exception object? Not by value:

try {

// . . . 

}

catch( ContainerFault fault ) {

// . . . 

}

Consider what would happen if this catch clause successfully caught a thrown
StackUnderflow object. Slice. Since a StackUnderflow is-a ContainerFault, we
could initialize fault with the thrown exception object, but we’d slice off all the
derived class’s data and behavior. (See Gotcha #30.)

In this particular case, however, we won’t have a slicing problem, because Con-
tainerFault is, as is proper in a base class, abstract (see Gotcha #93). The catch
clause is therefore illegal. It’s not possible to catch an exception object, by value, as
a ContainerFault.

Catching by value allows us to expose ourselves to even more obscure problems:

catch( StackUnderflow fault ) {

// do partial recovery . . . 

fault.modifyState(); // my fault

throw; // re-throw current exception

}
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It’s not uncommon for a catch clause to perform a partial recovery, record the state
of the recovery in the exception object, and re-throw the exception object for addi-
tional processing. Unfortunately, that’s not what’s happening here. This catch
clause has performed a partial recovery, recorded the state of the recovery in a local
copy of the exception object, and re-thrown the (unchanged) exception object.

For simplicity, and to avoid all these difficulties, we always throw anonymous
temporary objects, and we catch them by reference.

Be careful not to reintroduce value copy problems into a handler. This occurs
most commonly when a new exception is thrown from a handler rather than a re-
throw of the existing exception:

catch( ContainerFault &fault ) {

// do partial recovery . . . 

if( condition )

throw; // re-throw

else {

ContainerFault myFault( fault );

myFault.modifyState(); // still my fault

throw myFault; // new exception object

}

}

In this case, the recorded changes will not be lost, but the original type of the
exception will be. Suppose the original thrown exception was of type Stack-
Underflow. When it’s caught as a reference to ContainerFault, the dynamic
type of the exception object is still StackUnderflow, so a re-thrown object has
the opportunity to be caught subsequently by a StackUnderflow catch clause as
well as a ContainerFault clause. However, the new exception object myFault is
of type ContainerFault and cannot be caught by a StackUnderflow clause. It’s
generally better to re-throw an existing exception object rather than handle the
original exception and throw a new one:

catch( ContainerFault &fault ) {

// do partial recovery . . . 

if( !condition )

fault.modifyState();

throw;

}
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Fortunately, the ContainerFault base class is abstract, so this particular manifes-
tation of the error is not possible; in general, base classes should be abstract.
Obviously, this advice doesn’t apply if you must throw an entirely different type
of exception:

catch( ContainerFault &fault ) {

// do partial recovery . . . 

if( out_of_memory )

throw bad_alloc(); // throw new exception

fault.modifyState();

throw; // re-throw

}

Another common problem concerns the ordering of the catch clauses. Because
the catch clauses are tested in sequence (like the conditions of an if-elseif, rather
than a switch-statement) the types should, in general, be ordered from most spe-
cific to most general. For exception types that admit to no ordering, decide on a
logical ordering:

catch( ContainerFault &fault ) {

// do partial recovery . . . 

fault.modifyState(); // not my fault

throw;

}

catch( StackUnderflow &fault ) {

// . . . 

}

catch( exception & ) {

// . . . 

}

The handler-sequence above will never catch a StackUnderflow exception,
because the more general ContainerFault exception occurs first in the sequence.

The mechanics of exception handling offer much opportunity for complexity, but
it’s not necessary to accept the offer. When throwing and catching exceptions,
keep things simple.
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Gotcha #66: Abusing Local Addresses

Don’t return a pointer or reference to a local variable. Most compilers will warn
about this situation; take the warning seriously.

Disappearing Stack Frames

If the variable is an automatic, the storage to which it refers will disappear on return:

char *newLabel1() {

static int labNo = 0;

char buffer[16]; // see Gotcha #2

sprintf( buffer, "label%d", labNo++ );

return buffer;

}

This function has the annoying property of working on occasion. After return,
the stack frame for the newLabel1 function is popped off the execution stack,
releasing its storage (including the storage for buffer) for use by a subsequent
function call. However, if the value is copied before another function is called, the
returned pointer, though invalid, may still be usable:

char *uniqueLab = newLabel1();

char mybuf[16], *pmybuf = mybuf;

while( *pmybuf++ = *uniqueLab++ );

This is not the kind of code a maintainer will put up with for very long. The
maintainer might decide to allocate the buffer off the heap:

char *pmybuf = new char[16];

The maintainer might decide not to hand-code the buffer copy:

strcpy( pmybuf, uniqueLab );

The maintainer might decide to use a more abstract type than a character buffer:

std::string mybuf( uniqueLab );

Any of these modifications may cause the local storage referred to by uniqueLab
to be modified.
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Static Interference

If the variable is static, a later call to the same function will affect the results of
earlier calls:

char *newLabel2() {

static int labNo = 0;

static char buffer[16];

sprintf( buffer, "label%d", labNo++ );

return buffer;

}

The storage for the buffer is available after the function returns, but any other use
of the function can affect the result:

//case 1

cout << "first: " << newLabel2() << ' ';

cout << "second: " << newLabel2() << endl;

// case 2

cout << "first: " << newLabel2() << ' '

<< "second: " << newLabel2() << endl;

In the first case, we’ll print different labels. In the second case, we’ll probably (but
not necessarily) print the same label twice. Presumably, someone who was inti-
mately aware of the unusual implementation of the newLabel2 function wrote
case 1 to break up the label output into separate statements, to take that flawed
implementation into account. A later maintainer is unlikely to be as familiar with
the implementation vagaries of newLabel2 and is likely to merge the separate
output statements into one, causing a bug. Worse, the merged output statement
could continue to exhibit the same behavior as the separate statements and
change unpredictably in the future. (See Gotcha #14.)

Idiomatic Difficulties

Another danger is lurking as well. Keep in mind that users of a function generally
do not have access to its implementation and therefore have to determine how to
handle a function’s return value from a reading of the function declaration. While
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a comment may provide this information (see Gotcha #1), it’s also important that
the function be designed to encourage proper use.

Avoid returning a reference that refers to memory allocated within the function.
Users of the function will invariably neglect to delete the storage, causing mem-
ory leaks:

int &f()

{ return *new int( 5 ); }

// . . . 

int i = f(); // memory leak!

The correct code has to convert the reference to an address or copy the result and
free the memory. Not on my shift, buddy:

int *ip = &f(); // one horrible way

int &tmp = f(); // another

int i = tmp;

delete &tmp;

This is a particularly bad idea for overloaded operator functions:

Complex &operator +( const Complex &a, const Complex &b )

{ return *new Complex( a.re+b.re, a.im+b.im ); }

// . . . 

Complex a, b, c;

a = b + c + a + b; // lots of leaks!

Return a pointer to the storage instead, or don’t allocate storage and return by
value:

int *f() { return new int(5); }

Complex operator +( Complex a, Complex b )

{ return Complex( a.re+b.re, a.im+b.im ); }

Idiomatically, users of a function that returns a pointer expect that they might
be responsible for the eventual deletion of the storage referred to by the
pointer and will make some effort to determine whether this is actually the
case (say, by reading a comment). Users of a function that returns a reference
rarely do.
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Local Scope Problems

The problems we encounter with lifetimes of local variables can occur not only
on the boundaries between functions but also within the nested scopes of an
individual function:

void localScope( int x ) {

char *cp = 0;

if( x ) {

char buf1[] = "asdf";

cp = buf1; // bad idea!

char buf2[] = "qwerty";

char *cp1 = buf2;

// . . . 

}

if( x-1 ) {

char *cp2 = 0; // overlays buf1?

// . . . 

}

if( cp )

printf( cp ); // error, maybe . . . 

}

Compilers have a lot of flexibility in how they lay out the storage for local vari-
ables. Depending on the platform and compiler options, the compiler may overlay
the storage for buf1 and cp2. This is legal, because buf1 and cp2 have disjoint
scope and lifetime. If the overlay does occur, buf1 will be corrupted, and the
behavior of the printf may be affected (it probably just won’t print anything). For
the sake of portability, it’s best not to depend on a particular stack frame layout.

The Static Fix

When faced with a difficult bug, sometimes the problem “goes away” with an
application of the static storage class specifier:

// . . . 

char buf[MAX];

long count = 0;

// . . . 
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int i = 0;

while( i++ <= MAX )

if( buf[i] == '\0' ) {

buf[i] = '*';

++count;

}

assert( count <= i );

// . . . 

This code has a poorly written loop that will sometimes write past the end of the
buf array into count, causing the assertion to fail. In the wild thrashing that
sometimes accompanies attempts to bug fix, the programmer may declare count
to be a local static, and the code will then work:

char buf[MAX];

static long count;

// . . . 

count = 0;    

int i = 0;

while( i++ <= MAX )

if( buf[i] == '\0' ) {

buf[i] = '*';

++count;

}

assert( count <= i );

Many programmers, not willing to question their good luck in fixing the problem
so easily, will leave it at that. Unfortunately, the problem has not gone away; it has
just been moved somewhere else. It’s lying in wait, ready to strike at a future time.

Making the local variable count static has the effect of moving its storage out of
the stack frame of the function and into an entirely different region of memory,
where static objects are located. Because it has moved, it will no longer be over-
written. However, not only is count now subject to the problems mentioned
under “Static Interference” above; it’s also likely that another local variable—or a
future local variable—is being overwritten. The proper solution is, as usual, to fix
the bug rather than hide it:

char buf[MAX];

long count = 0;

// . . . 
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for( int i = 1; i < MAX; ++i )

if( buf[i] == '\0' ) {

buf[i] = '*';

++count;

}

// . . . 

Gotcha #67: Failure to Employ Resource Acquisition Is Initialization

It’s a shame that many newer C++ programmers don’t appreciate the wonderful
symmetry of constructors and destructors. For the most part, these are program-
mers who were reared on languages that tried to keep them safe from the vagaries
of pointers and memory management. Safe and controlled. Ignorant and happy.
Programming precisely the way the designer of the language has decreed that one
should program. The one, true way. Their way.

Happily, C++ has more respect for its practitioners and provides much flexibility
as to how the language may be applied. This is not to say we don’t have general
principles and guiding idioms (see Gotcha #10). One of the most important of
these idioms is the “resource acquisition is initialization” idiom. That’s quite a
mouthful, but it’s a simple and extensible technique for binding resources to
memory and managing both efficiently and predictably.

The order of execution of construction and destruction are mirror images of each
other. When a class is constructed, the order of initialization is always the same:
the virtual base class subobjects first (“in the order they appear on a depth-first
left-to-right traversal of the directed acyclic graph of base classes,” according to
the standard), followed by the immediate base classes in the order of their
appearance on the base-list in the class’s definition, followed by the non-static
data members of the class, in the order of their declaration, followed by the body
of the constructor. The destructor implements the reverse order: destructor body,
members in the reverse order of their declarations, immediate base classes in the
inverse order of their appearance, and virtual base classes. It’s helpful to think of
construction as pushing a sequence onto a stack and destruction as popping the
stack to implement the reverse sequence. The symmetry of construction and
destruction is considered so important that all of a class’s constructors perform
their initializations in the same sequence, even if their member initialization lists
are written in different orders (see Gotcha #52).
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As a side effect or result of initialization, a constructor gathers resources for the
object’s use as the object is constructed. Often, the order in which these resources
are seized is essential (for example, you have to lock the database before you write
it; you have to get a file handle before you write to the file), and typically, the
destructor has the job of releasing these resources in the inverse order in which
they were seized. That there may be many constructors but only a single destruc-
tor implies that all constructors must execute their component initializations in
the same sequence.

(This wasn’t always the case, by the way. In the very early days of the language, the
order of initializations in constructors was not fixed, which caused much diffi-
culty for projects of any level of complexity. Like most language rules in C++, this
one is the result of thoughtful design coupled with production experience.)

This symmetry of construction and destruction persists even as we move from the
object structure itself to the uses of multiple objects. Consider a simple trace class:

➤➤ gotcha67/trace.h

class Trace {

public:

Trace( const char *msg )

: m_( msg ) { cout << "Entering " << m_ << endl; }

~Trace()

{ cout << "Exiting " << m_ << endl; }

private:

const char *m_;

};

This trace class is perhaps a little too simple, in that it makes the assumption that
its initializer is valid and will have a lifetime at least as long as the Trace object,
but it’s adequate for our purposes. A Trace object prints out a message when it’s
created and again when it’s destroyed, so it can be used to trace flow of execution:

➤➤ gotcha67/trace.cpp

Trace a( "global" );

void loopy( int cond1, int cond2 ) {

Trace b( "function body" );

it: Trace c( "later in body" );

if( cond1 == cond2 )

return;
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if( cond1-1 ) {

Trace d( "if" );

static Trace stat( "local static" );

while( --cond1 ) {

Trace e( "loop" );

if( cond1 == cond2 )

goto it;

}

Trace f( "after loop" );

}

Trace g( "after if" );

}

Calling the function loopy with the arguments 4 and 2 produces the following:

Entering global

Entering function body

Entering later in body

Entering if

Entering local static

Entering loop

Exiting loop

Entering loop

Exiting loop

Exiting if

Exiting later in body

Entering later in body

Exiting later in body

Exiting function body

Exiting local static

Exiting global   

The messages show clearly how the lifetime of a Trace object is associated with
the current scope of execution. In particular, note the effect the goto and return
have on the lifetimes of the active Trace objects. Neither of these branches is
exemplary coding practice, but they’re the kinds of constructs that tend to appear
as code is maintained.
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void doDB() {

lockDB();

// do stuff with database . . . 

unlockDB();

}

In the code above, we’ve been careful to lock the database before access and
unlock it when we’ve finished accessing it. Unfortunately, this is the kind of care-
ful code that breaks under maintenance, particularly if the section of code
between the lock and unlock is lengthy:

void doDB() {

lockDB();

// . . . 

if( i_feel_like_it )

return;

// . . . 

unlockDB();

}

Now we have a bug whenever the doDB function feels like it; the database will
remain locked, and this will no doubt cause much difficulty elsewhere. Actually,
even the original code was not properly written, because an exception might have
been thrown after the database was locked but before it was unlocked. This would
have the same effect as any branch past the call to unlockDB: the database would
remain locked.

We could try to fix the problem by taking exceptions explicitly into account and
by giving stern lectures to maintainers:

void doDB() {

lockDB();

try {

// do stuff with database . . . 

}

catch(  . . .  ) {

unlockDB();

throw;

}

unlockDB();

}
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This approach is wordy, low-tech, slow, hard to maintain, and will cause you to be
mistaken for a member of the Department of Redundancy Department. Properly
written, exception-safe code usually employs few try blocks. Instead, it uses
resource acquisition is initialization:

class DBLock {

public:

DBLock() { lockDB(); }

~DBLock() { unlockDB(); }

};

void doDB() {

DBLock lock;

// do stuff with database . . . 

}

The creation of a DBLock object causes the database lock resource to be seized.
When the DBLock object goes out of scope for whatever reason, the destructor
will reclaim the resource and unlock the database. This idiom is so commonly
used in C++, it often passes unnoticed. But any time you use a standard string,
vector, list, or a host of other types, you’re employing resource acquisition is
initialization.

By the way, be wary of two common problems often associated with the use of
resource handle classes like DBLock:

void doDB() {

DBLock lock1; // correct

DBLock lock2(); // oops!

DBLock(); // oops!

// do stuff with database . . . 

}

The declaration of lock1 is correct; it’s a DBLock object that comes into scope just
before the terminating semicolon of the declaration and goes out of scope at the
end of the block that contains its declaration (in this case, at the end of the func-
tion). The declaration of lock2 declares it to be a function that takes no argu-
ment and returns a DBLock (see Gotcha #19). It’s not an error, but it’s probably
not what was intended, since no locking or unlocking will be performed.
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The following line is an expression-statement that creates an anonymous tempo-
rary DBLock object. This will indeed lock the database, but because the anonymous
temporary goes out of scope at the end of the expression (just before the semi-
colon), the database will be immediately unlocked. Probably not what you want.

The standard auto_ptr template is a useful general-purpose resource handle for
objects allocated on the heap. See Gotchas #10 and #68.

Gotcha #68: Improper Use of auto_ptr

The standard auto_ptr template is a simple and useful resource handle with
unusual copy semantics (see Gotcha #10). Most uses of auto_ptr are straight-
forward:

template <typename T>

void print( Container<T> &c ) {

auto_ptr< Iter<T> > i( c.genIter() );

for( i->reset(); !i->done(); i->next() ) {

cout << i->get() << endl;

examine( c );

}

// implicit cleanup . . . 

}

This is a common use of auto_ptr to ensure that the storage and resources of a
heap-allocated object are freed when the pointer that refers to it goes out of scope.
(See Gotcha #90 for a more complete rendering of the Container hierarchy.) The
assumption above is that the memory for the Iter<T> returned by genIter has
been allocated from the heap. The auto_ptr< Iter<T> > will therefore invoke the
delete operator to reclaim the object when the auto_ptr goes out of scope.

However, there are two common errors in the use of auto_ptr. The first is the
assumption that an auto_ptr can refer to an array.

void calc( double src[], int len ) {

double *tmp = new double[len];

// . . . 

delete [] tmp;

}
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The calc function is fragile, in that the allocated tmp array will not be recovered
in the event that an exception occurs during execution of the function or if
improper maintenance causes an early exit from the function. A resource handle
is what’s required, and auto_ptr is our standard resource handle:

void calc( double src[], int len ) {

auto_ptr<double> tmp( new double[len] );

// . . . 

}

However, an auto_ptr is a standard resource handle to a single object, not to an
array of objects. When tmp goes out of scope and its destructor is activated, a
scalar deletion will be performed on the array of doubles that was allocated with
an array new (see Gotcha #60), because, unfortunately, the compiler can’t tell the
difference between a pointer to an array and a pointer to a single object. Even
more unfortunately, this code may occasionally work on some platforms, and the
problem may be detected only when porting to a new platform or when upgrad-
ing to a new version of an existing platform.

A better solution is to use a standard vector to hold the array of doubles. A stan-
dard vector is essentially a resource handle for an array, a kind of “auto_array,”
but with many additional facilities. At the same time, it’s probably a good idea to
get rid of the primitive and dangerous use of a pointer formal argument mas-
querading as an array:

void calc( vector<double> &src ) {

vector<double> tmp( src.size() );

// . . . 

}

The other common error is to use an auto_ptr as the element type of an STL
container. STL containers don’t make many demands on their elements, but they
do require conventional copy semantics.

In fact, the standard defines auto_ptr in such a way that it’s illegal to instantiate
an STL container with an auto_ptr element type; such usage should produce a
compile-time error (and probably a cryptic one, at that). However, many current
implementations lag behind the standard.

In one common outdated implementation of auto_ptr, its copy semantics are
actually suitable for use as the element type of a container, and they can be used
successfully. That is, until you get a different or newer version of the standard
library, at which time your code will fail to compile. Very annoying, but usually a
straightforward fix.
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A worse situation occurs when the implementation of auto_ptr is not fully stan-
dard, so that it’s possible to use it to instantiate an STL container, but the copy
semantics are not what is required by the STL. As described in Gotcha #10, copy-
ing an auto_ptr transfers control of the pointed-to object and sets the source of
the copy to null:

auto_ptr<Employee> e1( new Hourly );

auto_ptr<Employee> e2( e1 );  // e1 is null

e1 = e2; // e2 is null

This property is quite useful in many contexts but isn’t what is required of an STL
container element:

vector< auto_ptr<Employee> > payroll;

// . . . 

list< auto_ptr<Employee> > temp;

copy( payroll.begin(), payroll.end(), back_inserter(temp) );

On some platforms this code may compile and run, but it probably won’t do what
it should. The vector of Employee pointers will be copied into the list, but after
the copy is complete, the vector will contain all null pointers!

Avoid the use of auto_ptr as an STL container element, even if your current plat-
form allows you to get away with it.
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migrating type-qualifiers, 52
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mix-in classes, 281. See also interface
classes.

mnemonic names, 3
Monostate pattern, 203–204
multiple inheritance, casting, 98–100

N
named return value optimization

(NRV), 161
namespace

anonymous, 55
and #define, 62

naming conventions
access protection, 23
mnemonic names, 3
self-documenting code, 3
simplicity, 23
specifying ownership, 254–255
variable type in variable name, 23

NDEBUG, mysterious failures, 67
nonvirtual base class destructor

addresses of base class subobjects,
206–208

exceptions, 208–209
undefined behavior, 205
virtual static member functions,

205–206
NRV (named return value optimiza-

tion), 161
null
dynamic_cast result, 117
pointers, 25
references, 11

Null Object pattern, 282, 284, 294
numeric literals vs. constants, 4–6



O
object-oriented to non-object-oriented

communication, 202
objects, temporary lifetime, 110–111
old-style casts, 102–103, 278
Oldham, Jeffrey, xv
operator delete, 206
operator new

allocation failure, 172
replacing, 173–176
scalar allocation, 168–170
scope and activation, 176–177

operator overloading, 258–264
operator precedence, 261–262
operators

, (comma operator), 39–40
?: (conditional operator), 40
-> (arrow operator), 58–60
&& (logical operator), 40
|| (logical operator), 40
<<< (Sergeant operator), 48–49
C++ base language, 14–17
cast, 24–25
cast vs. conversion, 24–25
conversion, 24–25, 90–94
evaluation order, 39–41
function lookup, 56–58
index operator, predefined, 16–17
logical, 14–15
lvalue, result of conditional operator,

15–16
new [] operator, 39
operator function lookup, 56–58
overloading

-> (arrow operator), 58–60
evaluation order, 41
operator function lookup, 56–58
operators, 56–58
precedence, 41
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precedence, 17, 39–40
predefined index operator, 16–17

overloading
-> (arrow operator), 58–60
ambiguities, 5
in class design, 258–262
vs. default initialization, 8–9
vs. hiding and overriding, 224–230
increment/decrement operators, 264
infix notation, 56–58
operators, 56–58, 258–264
virtual functions, 214–215

overriding
definition, 232
invisible functions, 228
mechanisms, 230–236
vs. overloading and hiding, 224–230

ownership. See aggregation vs.
acquaintance.

P
parallel hierarchies, 274–275
parentheses (( )), allocating arrays, 35
passing arguments, 126
patterns

Acyclic Visitor, 306
Bridge, 21–22
Command, 281–285
Composite, 281, 283–284
Decorator, 212, 281
Factory Method, 229, 274–275
Monostate, 203–204
Null Object, 282, 284, 294
Prototype, 223, 229, 282–283
Proxy, 294
Singleton, 7–8, 152, 204
Strategy, 291–292



Template Method, 212–214
Visitor, 215, 227, 306

pencil cup, battleship in, 295
personal questions (about an object’s

type), 116, 200, 275, 299–301
pimpl idiom. See Bridge pattern.
placement new

evaluation order of arguments, 39
invoking constructor, 127, 138, 155
replacing global new and delete, 174

platform dependence
conversions, 76
literals vs. constants, 5

POD (Plain Old Data) classes, 136
point of declaration of an enumerator, 54
pointer formal arguments, 49
pointer-to-const conversion, 81–82
pointer-to-multidimensional array, 87–88
pointer-to-pointer-to-base conversion,

86–87
pointer-to-pointer-to-const conversion,

82–86
pointers

containers of, 255–258
converting, 82–86
to functions, 13
to incomplete class types, 100–101
to local variables, 185
to members, 9
to members, converting, 120–123
ownership, 255–258
to pointers to derived classes, 86–87
precedence problems, 43–44
vs. references, 10–13
throwing, 181

polymorphism
algorithms, variant and invariant,

212–214
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component coupling, 202
design firewalls, 202
dominance, 236–239
dynamic binding, 200
flexibility of template methods, 212–214
hiding

nonvirtual functions, 209–212
vs. overloading and overriding,

224–230
nonvirtual base class destructor

addresses of base class subobjects,
206–208

exceptions, 208–209
undefined behavior, 205
virtual static member functions,

205–206
object-oriented to non-object-oriented

communication, 202
overloading

vs. hiding and overriding, 224–230
virtual functions, 214–215. See also

default initialization.
overriding

definition, 232
mechanism, 230–236
vs. overloading and hiding, 224–230

switching on type codes, 200
type codes, 199–204
virtual assignment, 220–224
virtual copy construction, 223
virtual functions

calling in a nonvirtual manner, 211
calling in constructors and

destructors, 218–220
default argument initializers,

216–217. See also overloading,
virtual functions.

overloading, 214–215. See also default
initialization.



portability
#if, 69–70
null pointers, 25

precedence
, (comma operator), 39–40
?: (conditional operator), 40
&& (logical operator), 40
|| (logical operator), 40
and associativity, 42, 44–45
fixing, 39–41
index operators, 17
levels of precedence, 42
new [] operator, 39
operator overloading, 41
operators, 39–40, 261–262
overview, 36–37
pointers, 43–44

predefined index operator, 16–17
preprocessor
assert macro, 72–74
assertions, side effects, 72–74
class implementation, varying with #if,

70–71
constant-expressions, 67
debug code, in executable modules, 67
debugging, 66–69
#define literals, 61–63
#define pseudofunctions, 64–66
#if

debugging, 66–69
platform independence, 69
portability, 69–70
in the real world, 71–72
varying class implementation, 70–71

literals, defining, 61–63
NDEBUG, mysterious failures, 67
pseudofunctions, defining, 64–66
scope, #define literals, 61–63

preprocessor macros, side effects, 16
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programmers
adolescent behavior, 31–33
ethical duties, 32–33
unnecessary cleverness, 29–31

Programming in C++, 3
protected access, 277–280
protocol classes, 281. See also interface

classes.
Prototype pattern, 223, 229, 282–283
Proxy pattern, 294
pseudofunctions, defining, 64–66
public inheritance, 281–285
pure virtual base classes, 24
pure virtual functions, calling, 212

Q
qualification conversions, 82–86
qualification of function typedef, 52
question mark colon (?:) conditional

operator, 15–16, 40

R
readability. See also comments;

maintenance.
formatting code, 29–31
unnecessary cleverness, 29–31

recompilation, avoiding, 21, 283
reference counting, 257
reference counting inclusions, 152–153.

See also Schwarz counter.
reference data members, 245–247
reference type name, ignoring qualifiers, 10
references

as aliases, 10–13, 112–115



to arrays, 12
binding to functions, 13
binding to lvalue, 11
casting objects, 12–13
const type-qualifier, 10–11
conversions, 112–115
to functions, 13
to incomplete class types, 100–101
initializing, 112–115
to local variables, 185
null, 11
vs. pointers, 10–13
return values for functions, 11–12
underusing, 10–13
volatile qualifiers, 10–11

reinterpret_cast, 76, 100–101, 146
remote changes (bugs caused by), 77, 101,

103, 105
resource acquisition is initialization, 28,

190–195
resource handle. See resource acquisition

is initialization.
resource management. See memory and

resource management.
resources, freeing heap-allocated 

objects, 195
return value optimization (RVO),

158–162
reuse

code, 281–285
global variables, 6
white-box. See inheritance.

runtime static initialization, ordering,
150–153

runtime type queries, 299–301
RVO (return value optimization),

158–162
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S
Saks, Dan, xv, xvi
scalars, freeing, 167–170
Schwarz, Jerry, 152
Schwarz counter, 152–153. See also

reference counting inclusions.
scope
#define literals, 61–63
local scope problems, 187
restriction, variables, 45–48

scoping variables, initialization, 129–132
self-documenting code

avoiding comments, 2
naming conventions, 3

self-initialization, 53–55
Semantics, xiv
Sergeant operator (<<<), 48–49
set/get interfaces, 241–245
Singleton pattern, 7–8, 152, 204
slicing

derived class objects, 79–81
hierarchy design, 286

smart pointer idiom, 59, 282
social commentary

adolescent behavior, 31–33
array/initializer confusion, 36
capability queries, 302
increment/decrement operators, 267
old-style casts, 102
operator overloading, 258
personal questions of an object,

299–300
unnecessary cleverness, 29

Software Engineering Code of Ethics..., 32
square brackets ([ ]), allocating 

arrays, 35



Stark, Kathy, 3
static casts, 103–105, 278
static members in constructors,

initializing, 163–165
static types, 55
static variables, runtime static initializa-

tion problems, 151
static_cast, 103–105, 278
Strategy pattern, 291–292
string literal temporary for throw

expression, 181
string literals, throwing, 177–181
Stroustrup, Bjarne, 295
Strunk, William, 26
subexpressions, evaluation order, 37–39
Sutter, Herb, xvi
switch-statement structure, 18
switch-statements, 17
switching on type codes, 200, 292–295
syntax

arrays
confused with initializers, 35–36
migrating type-qualifiers, 52

associativity
and precedence, 42
problems, 44–45

const member functions, 248
const pointers, 50
const type-qualifier, migrating, 52
declaration-specifiers, ordering, 50–51
evaluation order

, (comma operator), 39–40
?: (conditional operator), 40
&& (logical operator), 40
|| (logical operator), 40
fixing, 39–41
new operator, 39
operator overloading, 41

Index ❘ 323

overview, 36–37
placement new, 39
subexpressions, 37–39

extern types, 55
function/object ambiguity, 51
infix notation, 56–58
initialization

initializers, confused with arrays,
35–36

self-initialization, 53–55
initializers, confused with arrays, 35–36
lexical analysis, 49
maximal munch, 48–49
migrating type-qualifiers, 52
new [] operator, 39
operator function lookup, 56–58
operator overloading

evaluation order, 41
operator function lookup, 56–58

overloading
-> (arrow operator), 58–60
infix notation, 56–58
operators, 56–58

placement new, evaluation order, 39
pointer formal arguments, 49
pointers, precedence problems, 43–44
precedence problems

and associativity, 42, 44–45
levels of precedence, 42
pointers, 43–44

scope restriction, variables, 45–48
self-initialization, 53–55
for statement

variable scope restriction, 45–48
vs. while statement, 47

static types, 55
subexpressions, evaluation order, 37–39
templates, instantiating, 49



token identification, 48–49
type-qualifiers, migrating, 52
types, linkage-specifiers, 55
variables, scope restriction, 45–48
volatile type-qualifiers,

migrating, 52
while statement vs. for statement, 47

T
Template Method pattern, 212–214
template methods, flexibility, 212–214
templated copy operations, 268–270
templates, instantiating, 49
temporaries, conversions, 112–115
temporary objects, 110–111
terminology. See diction.
throw expression, 181
throwing

anonymous temporaries, 181–182
pointers, 181
string literals, 177–180

thunks, 235
token identification, 48–49
type-based control structures, 292–295
type codes, 199–204, 292–295
type-qualifiers
const

migrating, 52
references, 10–11

volatile

migrating, 52
references, 10–11

types
converting. See casting; void *.
linkage-specifiers, 55
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U
unnecessary cleverness, 29–31
uses. See acquaintance.

V
value semantics, 286
variables

encoding type in name, 23
scope restriction, 45–48

vectors vs. arrays, 36, 168, 196
vertical lines (||) logical operator, 40
virtual assignment, 220–224
virtual base default, initializing,

142–147
virtual constructor idiom, 223. See also

Prototype pattern.
virtual copy construction, 223
virtual functions

calling in a nonvirtual manner, 211
calling in constructors and destructors,

218–220
default argument initializers,

216–217
overloading, 214–215
pure, calling, 212

virtual static member functions,
205–206

visibility vs. access protection, 19–23
Visitor pattern, 215, 227, 306
void *, 75–78. See also casting.
volatile type-qualifier

migrating, 52
references, 10–11

vptr (pointer to a vtbl), 231
vtbl (virtual function table), 231–236



W
while statement vs. for statement, 47
White, E.B., 26
white-box reuse. See inheritance.
Wilson, Matthew, xv
word choice. See diction.
Writings from The New Yorker, 26

Z
Zolman, Leor, xv
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