

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Lippman, Stanley B.
C++ primer / Stanley B. Lippman, Josée Lajoie, Barbara E. Moo. — 4th ed.

p. cm.
Includes index.
ISBN 0-201-72148-1 (pbk. : alk. paper)
1. C++ (Computer program language) I. Lajoie, Josée. II. Moo, Barbara E. III. Title.

QA76.73.C153L57697 2005
005.13’3–dc22 2004029301

Copyright c© 2005 Objectwrite Inc., Josée Lajoie and Barbara E. Moo

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-201-72148-1

January201011th Printing
Text printed in the United States on recycled paper at in Stoughton, Massachusetts.Courier Stoughton

www.awprofessional.com

Preface

C++ Primer, Fourth Edition, provides a comprehensive introduction to the C++ lan-
guage. As a primer, it provides a clear tutorial approach to the language, enhanced
by numerous examples and other learning aids. Unlike most primers, it also pro-
vides a detailed description of the language, with particular emphasis on current
and effective programming techniques.

Countless programmers have used previous editions of C++ Primer to learn
C++. In that time C++ has matured greatly. Over the years, the focus of the
language—and of C++ programmers—has grown beyond a concentration on run-
time efficiency to focus on ways of making programmers more efficient. With the
widespread availability of the standard library, it is possible to use and learn C++
more effectively than in the past. This revision of the C++ Primer reflects these new
possiblities.

Changes to the Fourth Edition

In this edition, we have completely reorganized and rewritten the C++ Primer to
highlight modern styles of C++ programming. This edition gives center stage to
using the standard library while deemphasizing techniques for low-level program-
ming. We introduce the standard library much earlier in the text and have reformu-
lated the examples to take advantage of library facilities. We have also streamlined
and reordered the presentation of language topics.

In addition to restructuring the text, we have incorporated several new el-
ements to enhance the reader’s understanding. Each chapter concludes with a
Chapter Summary and glossary of Defined Terms, which recap the chapter’s most
important points. Readers should use these sections as a personal checklist: If you
do not understand a term, restudy the corresponding part of the chapter.

We’ve also incorporated a number of other learning aids in the body of the text:

• Important terms are indicated in bold; important terms that we assume are
already familiar to the reader are indicated in bold italics. Each term appears
in the chapter’s Defined Terms section.

• Throughout the book, we highlight parts of the text to call attention to im-
portant aspects of the language, warn about common pitfalls, suggest good
programming practices, and provide general usage tips. We hope that these
notes will help readers more quickly digest important concepts and avoid
common pitfalls.

xix

xx Preface

• To make it easier to follow the relationships among features and concepts,
we provide extensive forward and backward cross-references.

• We have provided sidebar discussions that focus on important concepts and
supply additional explanations for topics that programmers new to C++ of-
ten find most difficult.

• Learning any programming language requires writing programs. To that
end, the primer provides extensive examples throughout the text. Source
code for the extended examples is available on the Web at the following URL:

http://www.awprofessional.com/cpp_primer

What hasn’t changed from earlier versions is that the book remains a compre-
hensive tutorial introduction to C++. Our intent is to provide a clear, complete
and correct guide to the language. We teach the language by presenting a series of
examples, which, in addition to explaining language features, show how to make
the best use of C++. Although knowledge of C (the language on which C++ was
originally based) is not assumed, we do assume the reader has programmed in a
modern block-structured language.

Structure of This Book

C++ Primer provides an introduction to the International Standard on C++, cover-
ing both the language proper and the extensive library that is part of that standard.
Much of the power of C++ comes from its support for programming with abstrac-
tions. Learning to program effectively in C++ requires more than learning new
syntax and semantics. Our focus is on how to use the features of C++ to write pro-
grams that are safe, that can be built quickly, and yet offer performance comparable
to the sorts of low-level programs often written in C.

C++ is a large language and can be daunting to new users. Modern C++ can be
thought of as comprising three parts:

• The low-level language, largely inherited from C

• More advanced language features that allow us to define our own data types
and to organize large-scale programs and systems

• The standard library, which uses these advanced features to provide a set of
useful data structures and algorithms

Most texts present C++ in this same order: They start by covering the low-level
details and then introduce the the more advanced language features. They explain
the standard library only after having covered the entire language. The result, all
too often, is that readers get bogged down in issues of low-level programming or
the complexities of writing type definitions and never really understand the power
of programming in a more abstract way. Needless to say, readers also often do not
learn enough to build their own abstractions.

In this edition we take a completely different tack. We start by covering the
basics of the language and the library together. Doing so allows you, the reader, to

http://www.awprofessional.com/cpp_primer

Preface xxi

write significant programs. Only after a thorough grounding in using the library—
and writing the kinds of abstract programs that the libary allows—do we move on
to those features of C++ that will enable you to write your own abstractions.

Parts I and II cover the basic language and library facilities. The focus of these
parts is to learn how to write C++ programs and how to use the abstractions from
the library. Most C++ programmers need to know essentially everything covered
in this portion of the book.

In addition to teaching the basics of C++, the material in Parts I and II serves an-
other important purpose. The library facilities are themselves abstract data types
written in C++. The library can be defined using the same class-construction fea-
tures that are available to any C++ programmer. Our experience in teaching C++ is
that by first using well-designed abstract types, readers find it easier to understand
how to build their own types.

Parts III through V focus on how we can write our own types. Part III intro-
duces the heart of C++: its support for classes. The class mechanism provides
the basis for writing our own abstractions. Classes are also the foundation for
object-oriented and generic programming, which we cover in Part IV. The Primer
concludes with Part V, which covers advanced features that are of most use in
structuring large, complex systems.

Acknowledgments

As in previous editions of this Primer, we’d like to extend our thanks to Bjarne
Stroustrup for his tireless work on C++ and for his friendship to these authors
throughout most of that time. We’d also like to thank Alex Stepanov for his original
insights that led to the containers and algorithms that form the core of the standard
library. Finally, our thanks go to the C++ Standards committee members for their
hard work in clarifying, refining, and improving C++ over many years.

We also extend our deep-felt thanks to our reviewers, whose helpful comments
on multiple drafts led us to make improvements great and small throughout the
book: Paul Abrahams, Michael Ball, Mary Dageforde, Paul DuBois, Matt Green-
wood, Matthew P. Johnson, Andrew Koenig, Nevin Liber, Bill Locke, Robert Mur-
ray, Phil Romanik, Justin Shaw, Victor Shtern, Clovis Tondo, Daveed Vandevoorde,
and Steve Vinoski.

This book was typeset using LATEX and the many packages that accompany the
LATEX distribution. Our well-justified thanks go to the members of the LATEX com-
munity, who have made available such powerful typesetting tools.

The examples in this book have been compiled on the GNU and Microsoft com-
pilers. Our thanks to their developers, and to those who have developed all the
other C++ compilers, thereby making C++ a reality.

Finally, we thank the fine folks at Addison-Wesley who have shepherded this
edition through the publishing process: Debbie Lafferty, our original editor, who
initiated this edition and who had been with the Primer from its very first edition;
Peter Gordon, our new editor, whose insistence on updating and streamlining the
text have, we hope, greatly improved the presentation; Kim Boedigheimer, who
keeps us all on schedule; and Tyrrell Albaugh, Jim Markham, Elizabeth Ryan, and
John Fuller, who saw us through the design and production process.

C H A P T E R 1
G E T T I N G S T A R T E D

CONTENTS

Section 1.1 Writing a Simple C++ Program 2
Section 1.2 A First Look at Input/Output 5
Section 1.3 A Word About Comments 10
Section 1.4 Control Structures 11
Section 1.5 Introducing Classes 20
Section 1.6 The C++ Program 25
Chapter Summary . 28
Defined Terms . 28

This chapter introduces most of the basic elements of C++: built-in,
library, and class types; variables; expressions; statements; and func-
tions. Along the way, we’ll briefly explain how to compile and exe-
cute a program.

Having read this chapter and worked through the exercises, the
reader should be able to write, compile, and execute simple pro-
grams. Subsequent chapters will explain in more detail the topics
introduced here.

1

2 Getting Started

Learning a new programming language requires writing programs. In this
chapter, we’ll write a program to solve a simple problem that represents a com-
mon data-processing task: A bookstore keeps a file of transactions, each of which
records the sale of a given book. Each transaction contains an ISBN (International
Standard Book Number, a unique identifier assigned to most books published
throughout the world), the number of copies sold, and the price at which each
copy was sold. Each transaction looks like

0-201-70353-X 4 24.99

where the first element is the ISBN, the second is the number of books sold, and the
last is the sales price. Periodically the bookstore owner reads this file and computes
the number of copies of each title sold, the total revenue from that book, and the
average sales price. We want to supply a program do these computations.

Before we can write this program we need to know some basic features of C++.
At a minimum we’ll need to know how to write, compile, and execute a simple
program. What must this program do? Although we have not yet designed our
solution, we know that the program must

• Define variables

• Do input and output

• Define a data structure to hold the data we’re managing

• Test whether two records have the same ISBN

• Write a loop that will process every record in the transaction file

We’ll start by reviewing these parts of C++ and then write a solution to our book-
store problem.

1.1 Writing a Simple C++ Program
Every C++ program contains one or more functions, one of which must be named
main. A function consists of a sequence of statements that perform the work of the
function. The operating system executes a program by calling the function named
main. That function executes its constituent statements and returns a value to the
operating system.

Here is a simple version of main does nothing but return a value:

int main()
{

return 0;
}

The operating system uses the value returned by main to determine whether the
program succeeded or failed. A return value of 0 indicates success.

The main function is special in various ways, the most important of which are
that the function must exist in every C++ program and it is the (only) function that
the operating system explicitly calls.

Section 1.1 Writing a Simple C++ Program 3

We define main the same way we define other functions. A function definition
specifies four elements: the return type, the function name, a (possibly empty)
parameter list enclosed in parentheses, and the function body. The main function
may have only a restricted set of parameters. As defined here, the parameter list
is empty; Section 7.2.6 (p. 243) will cover the other parameters that can be defined
for main.

The main function is required to have a return type of int, which is the type
that represents integers. The int type is a built-in type, which means that the
type is defined by the language.

The final part of a function definition, the function body, is a block of statements
starting with an open curly brace and ending with a close curly:

{
return 0;

}

The only statement in our program is a return, which is a statement that termi-
nates a function.

Note the semicolon at the end of the return statement. Semicolons
mark the end of most statements in C++. They are easy to overlook,
but when forgotten can lead to mysterious compiler error messages.

When the return includes a value such as 0, that value is the return value of
the function. The value returned must have the same type as the return type of the
function or be a type that can be converted to that type. In the case of main the
return type must be int, and the value 0 is an int.

On most systems, the return value from main is a status indicator. A return
value of 0 indicates the successful completion of main. Any other return value
has a meaning that is defined by the operating system. Usually a nonzero return
indicates that an error occurred. Each operating system has its own way of telling
the user what main returned.

1.1.1 Compiling and Executing Our Program
Having written the program, we need to compile it. How you compile a program
depends on your operating system and compiler. For details on how your particu-
lar compiler works, you’ll need to check the reference manual or ask a knowledge-
able colleague.

Many PC-based compilers are run from an integrated development environ-
ment (IDE) that bundles the compiler with associated build and analysis tools.
These environments can be a great asset in developing complex programs but re-
quire a fair bit of time to learn how to use effectively. Most of these environments
include a point-and-click interface that allows the programmer to write a program
and use various menus to compile and execute the program. Learning how to use
such environments is well beyond the scope of this book.

Most compilers, including those that come with an IDE, provide a command-
line interface. Unless you are already familiar with using your compiler’s IDE,

4 Getting Started

it can be easier to start by using the simpler, command-line interface. Using the
command-line interface lets you avoid the overhead of learning the IDE before
learning the language.

Program Source File Naming Convention

Whether we are using a command-line interface or an IDE, most compilers expect
that the program we want to compile will be stored in a file. Program files are
referred to as source files. On most systems, a source file has a name that consists
of two parts: a file name—for example, prog1—and a file suffix. By convention,
the suffix indicates that the file is a program. The suffix often also indicates what
language the program is written in and selects which compiler to run. The system
that we used to compile the examples in this book treats a file with a suffix of .cc
as a C++ program and so we stored this program as

prog1.cc

The suffix for C++ program files depends on which compiler you’re running. Other
conventions include

prog1.cxx
prog1.cpp
prog1.cp
prog1.C

INVOKING THE GNU OR MICROSOFT COMPILERS

The command used to invoke the C++ compiler varies across compilers and operating
systems. The most common compilers are the GNU compiler and the Microsoft Visual
Studio compilers. By default the command to invoke the GNU compiler is g++:

$ g++ prog1.cc -o prog1

where $ is the system prompt. This command generates an executable file named
prog1 or prog1.exe, depending on the operating system. On UNIX, executable files
have no suffix; on Windows, the suffix is .exe. The -o prog1 is an argument to the
compiler and names the file in which to put the executable file. If the -o prog1 is
omitted, then the compiler generates an executable named a.out on UNIX systems
and a.exe on Windows.

The Microsoft compilers are invoked using the command cl:

C:\directory> cl -GX prog1.cpp

where C:directory> is the system prompt and directory is the name of the cur-
rent directory. The command to invoke the compiler is cl, and -GX is an option that
is required for programs compiled using the command-line interface. The Microsoft
compiler automatically generates an executable with a name that corresponds to the
source file name. The executable has the suffix .exe and the same name as the source
file name. In this case, the executable is named prog1.exe.

For further information consult your compiler’s user’s guide.

Section 1.2 A First Look at Input/Output 5

Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in
a console window (such as a shell window on a UNIX system or a Command
Prompt window on Windows). Assuming that our main program is in a file
named prog1.cc, we might compile it by using a command such as:

$ CC prog1.cc

where CC names the compiler and $ represents the system prompt. The output of
the compiler is an executable file that we invoke by naming it. On our system, the
compiler generates the executable in a file named a.exe. UNIX compilers tend to
put their executables in a file named a.out. To run an executable we supply that
name at the command-line prompt:

$ a.exe

executes the program we compiled. On UNIX systems you sometimes must also
specify which directory the file is in, even if it is in the current directory. In such
cases, we would write

$./a.exe

The “.” followed by a slash indicates that the file is in the current directory.
The value returned from main is accessed in a system-dependent manner. On

both UNIX and Windows systems, after executing the program, you must issue an
appropriate echo command. On UNIX systems, we obtain the status by writing

$ echo $?

To see the status on a Windows system, we write

C:\directory> echo %ERRORLEVEL%

EXE R C I S E S SE C TI ON 1.1.1

Exercise 1.1: Review the documentation for your compiler and determine what file
naming convention it uses. Compile and run the main program from page 2.

Exercise 1.2: Change the program to return -1. A return value of -1 is often treated
as an indicator that the program failed. However, systems vary as to how (or even
whether) they report a failure from main. Recompile and rerun your program to see
how your system treats a failure indicator from main.

1.2 A First Look at Input/Output
C++ does not directly define any statements to do input or output (IO). Instead, IO
is provided by the standard library. The IO library provides an extensive set of

6 Getting Started

facilities. However, for many purposes, including the examples in this book, one
needs to know only a few basic concepts and operations.

Most of the examples in this book use the iostream library, which handles
formatted input and output. Fundamental to the iostream library are two types
named istream and ostream, which represent input and output streams, respec-
tively. A stream is a sequence of characters intended to be read from or written to
an IO device of some kind. The term “stream” is intended to suggest that the char-
acters are generated, or consumed, sequentially over time.

1.2.1 Standard Input and Output Objects
The library defines four IO objects. To handle input, we use an object of type
istream named cin (pronounced “see-in”). This object is also referred to as the
standard input. For output, we use an ostream object named cout (pronounced
“see-out”). It is often referred to as the standard output. The library also defines
two other ostream objects, named cerr and clog (pronounced “see-err” and
“see-log,” respectively). The cerr object, referred to as the standard error, is typi-
cally used to generate warning and error messages to users of our programs. The
clog object is used for general information about the execution of the program.

Ordinarily, the system associates each of these objects with the window in
which the program is executed. So, when we read from cin, data is read from the
window in which the program is executing, and when we write to cout, cerr, or
clog, the output is written to the same window. Most operating systems give us
a way of redirecting the input or output streams when we run a program. Using
redirection we can associate these streams with files of our choosing.

1.2.2 A Program that Uses the IO Library
So far, we have seen how to compile and execute a simple program, although that
program did no work. In our overall problem, we’ll have several records that
refer to the same ISBN. We’ll need to consolidate those records into a single total,
implying that we’ll need to know how to add the quantities of books sold.

To see how to solve part of that problem, let’s start by looking at how we might
add two numbers. Using the IO library, we can extend our main program to ask
the user to give us two numbers and then print their sum:

#include <iostream>
int main()
{

std::cout << "Enter two numbers:" << std::endl;

int v1, v2;
std::cin >> v1 >> v2;

std::cout << "The sum of " << v1 << " and " << v2
<< " is " << v1 + v2 << std::endl;

return 0;
}

Section 1.2 A First Look at Input/Output 7

This program starts by printing

Enter two numbers:

on the user’s screen and then waits for input from the user. If the user enters

3 7

followed by a newline, then the program produces the following output:

The sum of 3 and 7 is 10

The first line of our program is a preprocessor directive:

#include <iostream>

which tells the compiler that we want to use the iostream library. The name
inside angle brackets is a header. Every program that uses a library facility must
include its associated header. The #include directive must be written on a single
line—the name of the header and the #include must appear on the same line. In
general, #include directives should appear outside any function. Typically, all
the #include directives for a program appear at the beginning of the file.

Writing to a Stream

The first statement in the body of main executes an expression. In C++ an ex-
pression is composed of one or more operands and (usually) an operator. The
expressions in this statement use the output operator (the << operator) to print the
prompt on the standard output:

std::cout << "Enter two numbers:" << std::endl;

This statement uses the output operator twice. Each instance of the output oper-
ator takes two operands: The left-hand operand must be an ostream object; the
right-hand operand is a value to print. The operator writes its right-hand operand
to the ostream that is its left-hand operand.

In C++ every expression produces a result, which typically is the value gener-
ated by applying an operator to its operands. In the case of the output operator,
the result is the value of its left-hand operand. That is, the value returned by an
output operation is the output stream itself.

The fact that the operator returns its left-hand operand allows us to chain to-
gether output requests. The statement that prints our prompt is equivalent to

(std::cout << "Enter two numbers:") << std::endl;

Because (std::cout << "Enter two numbers:") returns its left operand,
std::cout, this statement is equivalent to

std::cout << "Enter two numbers:";
std::cout << std::endl;

8 Getting Started

endl is a special value, called a manipulator, that when written to an output
stream has the effect of writing a newline to the output and flushing the buffer
associated with that device. By flushing the buffer, we ensure that the user will see
the output written to the stream immediately.

Programmers often insert print statements during debugging. Such
statements should always flush the stream. Forgetting to do so may
cause output to be left in the buffer if the program crashes, leading to
incorrect inferences about where the program crashed.

Using Names from the Standard Library

Careful readers will note that this program uses std::cout and std::endl
rather than just cout and endl. The prefix std:: indicates that the names cout
and endl are defined inside the namespace named std. Namespaces allow pro-
grammers to avoid inadvertent collisions with the same names defined by a library.
Because the names that the standard library defines are defined in a namespace,
we can use the same names for our own purposes.

One side effect of the library’s use of a namespace is that when we use a name
from the library, we must say explicitly that we want to use the name from the std
namespace. Writing std::cout uses the scope operator (the :: operator) to say
that we want to use the name cout that is defined in the namespace std. We’ll see
in Section 3.1 (p. 78) a way that programs often use to avoid this verbose syntax.

Reading From a Stream

Having written our prompt, we next want to read what the user writes. We start
by defining two variables named v1 and v2 to hold the input:

int v1, v2;

We define these variables as type int, which is the built-in type representing in-
tegral values. These variables are uninitialized, meaning that we gave them no
initial value. Our first use of these variables will be to read a value into them, so
the fact that they have no initial value is okay.

The next statement

std::cin >> v1 >> v2;

reads the input. The input operator (the >> operator) behaves analogously to the
output operator. It takes an istream as its left-hand operand and an object as its
right-hand operand. It reads from its istream operand and stores the value it read
in its right-hand operand. Like the output operator, the input operator returns its
left-hand operand as its result. Because the operator returns its left-hand operand,
we can combine a sequence of input requests into a single statement. In other
words, this input operation is equivalent to

std::cin >> v1;
std::cin >> v2;

Section 1.2 A First Look at Input/Output 9

The effect of our input operation is to read two values from the standard input,
storing the first in v1 and the second in v2.

Completing the Program

What remains is to print our result:

std::cout << "The sum of " << v1 << " and " << v2
<< " is " << v1 + v2 << std::endl;

This statement, although it is longer than the statement that printed the prompt,
is conceptually no different. It prints each of its operands to the standard output.
What is interesting is that the operands are not all the same kinds of values. Some
operands are string literals, such as

"The sum of "

and others are various int values, such as v1, v2, and the result of evaluating the
arithmetic expression:

v1 + v2

The iostream library defines versions of the input and output operators that ac-
cept all of the built-in types.

When writing a C++ program, in most places that a space appears we
could instead use a newline. One exception to this rule is that spaces
inside a string literal cannot be replaced by a newline. Another excep-
tion is that spaces are not allowed inside preprocessor directives.

KEY CONCEPT: INITIALIZED AND UNINITIALIZED VARIABLES

Initialization is an important concept in C++ and one to which we will return through-
out this book.

Initialized variables are those that are given a value when they are defined. Unini-
tialized variables are not given an initial value:

int val1 = 0; // initialized
int val2; // uninitialized

It is almost always right to give a variable an initial value, but we are not required to
do so. When we are certain that the first use of a variable gives it a new value, then
there is no need to invent an initial value. For example, our first nontrivial program
on page 6 defined uninitialized variables into which we immediately read values.

When we define a variable, we should give it an initial value unless we are certain
that the initial value will be overwritten before the variable is used for any other
purpose. If we cannot guarantee that the variable will be reset before being read, we
should initialize it.

10 Getting Started

EXE R C I S E S SE C TI ON 1.2.2

Exercise 1.3: Write a program to print “Hello, World” on the standard output.

Exercise 1.4: Our program used the built-in addition operator, +, to generate the sum
of two numbers. Write a program that uses the multiplication operator, *, to generate
the product of two numbers.

Exercise 1.5: We wrote the output in one large statement. Rewrite the program to use
a separate statement to print each operand.

Exercise 1.6: Explain what the following program fragment does:

std::cout << "The sum of " << v1;
<< " and " << v2;
<< " is " << v1 + v2
<< std::endl;

Is this code legal? If so, why? If not, why not?

1.3 A Word About Comments
Before our programs get much more complicated, we should see how C++ handles
comments. Comments help the human readers of our programs. They are typically
used to summarize an algorithm, identify the purpose of a variable, or clarify an
otherwise obscure segment of code. Comments do not increase the size of the
executable program. The compiler ignores all comments.

In this book, we italicize comments to make them stand out from the
normal program text. In actual programs, whether comment text is
distinguished from the text used for program code depends on the so-
phistication of the programming environment.

There are two kinds of comments in C++: single-line and paired. A single-line
comment starts with a double slash (//). Everything to the right of the slashes on
the current line is a comment and ignored by the compiler.

The other delimiter, the comment pair (/* */), is inherited from the C language.
Such comments begin with a /* and end with the next */. The compiler treats
everything that falls between the /* and */ as part of the comment:

#include <iostream>

/* Simple main function: Read two numbers and write their sum */
int main()
{

// prompt user to enter two numbers
std::cout << "Enter two numbers:" << std::endl;

int v1, v2; // uninitialized
std::cin >> v1 >> v2; // read input
return 0;

}

Section 1.4 Control Structures 11

A comment pair can be placed anywhere a tab, space, or newline is permitted.
Comment pairs can span multiple lines of a program but are not required to do so.
When a comment pair does span multiple lines, it is often a good idea to indicate
visually that the inner lines are part of a multi-line comment. Our style is to begin
each line in the comment with an asterisk, thus indicating that the entire range is
part of a multi-line comment.

Programs typically contain a mixture of both comment forms. Comment pairs
generally are used for multi-line explanations, whereas double slash comments
tend to be used for half-line and single-line remarks.

Too many comments intermixed with the program code can obscure the code.
It is usually best to place a comment block above the code it explains.

Comments should be kept up to date as the code itself changes. Programmers
expect comments to remain accurate and so believe them, even when other forms
of system documentation are known to be out of date. An incorrect comment is
worse than no comment at all because it may mislead a subsequent reader.

Comment Pairs Do Not Nest

A comment that begins with /* always ends with the next */. As a result, one
comment pair cannot occur within another. The compiler error message(s) that
result from this kind of program mistake can be mysterious and confusing. As an
example, compile the following program on your system:

#include <iostream>

/*
* comment pairs /* */ cannot nest.
* ‘‘cannot nest’’ is considered source code,
* as is the rest of the program
*/

int main()
{

return 0;
}

When commenting out a large section of a program, it can seem easiest to put
a comment pair around a region that you want to omit temporarily. The trouble
is that if that code already has a comment pair, then the newly inserted comment
will terminate prematurely. A better way to temporarily ignore a section of code
is to use your editor to insert single-line comment at the beginning of each line of
code you want to ignore. That way, you need not worry about whether the code
you are commenting out already contains a comment pair.

1.4 Control Structures
Statements execute sequentially: The first statement in a function is executed first,
followed by the second, and so on. Of course, few programs—including the one
we’ll need to write to solve our bookstore problem—can be written using only
sequential execution. Instead, programming languages provide various control

12 Getting Started

EXE R C I S E S SE C TI ON 1.3

Exercise 1.7: Compile a program that has incorrectly nested comments.

Exercise 1.8: Indicate which, if any, of the following output statements, are legal.

std::cout << "/*";
std::cout << "*/";
std::cout << /* "*/" */;

After you’ve predicted what will happen, test your answer by compiling a program
with these three statements. Correct any errors you encounter.

structures that allow for more complicated execution paths. This section will take
a brief look at some of the control structures provided by C++. Chapter 6 covers
statements in detail.

1.4.1 The while Statement
A while statement provides for iterative execution. We could use a while to
write a program to sum the numbers from 1 through 10 inclusive as follows:

#include <iostream>

int main()
{

int sum = 0, val = 1;
// keep executing the while until val is greater than 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val

}
std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;

return 0;
}

This program when compiled and executed will print:

Sum of 1 to 10 inclusive is 55

As before, we begin by including the iostream header and define a main
function. Inside main we define two int variables: sum, which will hold our
summation, and val, which will represent each of the values from 1 through 10.
We give sum an initial value of zero and start val off with the value one.

The important part is the while statement. A while has the form

while (condition) while_body_statement;

A while executes by (repeatedly) testing the condition and executing the associ-
ated while_body_statement until the condition is false.

Section 1.4 Control Structures 13

A condition is an expression that is evaluated so that its result can be tested. If
the resulting value is nonzero, then the condition is true; if the value is zero then
the condition is false.

If the condition is true (the expression evaluates to a value other than zero) then
while_body_statement is executed. After executing while_body_statement, the condi-
tion is tested again. If condition remains true, then the while_body_statement is again
executed. The while continues, alternatively testing the condition and executing
while_body_statement until the condition is false.

In this program, the while statement is:

// keep executing the while until val is greater than 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

The condition in the while uses the less-than-or-equal operator (the <= operator)
to compare the current value of val and 10. As long as val is less than or equal
to 10, we execute the body of the while. In this case, the body of the while is a
block containing two statements:

{
sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

A block is a sequence of statements enclosed by curly braces. In C++, a block may
be used wherever a statement is expected. The first statement in the block uses the
compound assignment operator, (the += operator). This operator adds its right-
hand operand to its left-hand operand. It has the same effect as writing an addition
and an assignment:

sum = sum + val; // assign sum + val to sum

Thus, the first statement adds the value of val to the current value of sum and
stores the result back into sum.

The next statement

++val; // add 1 to val

uses the prefix increment operator (the ++ operator). The increment operator adds
one to its operand. Writing ++val is the same as writing val = val + 1.

After executing the while body we again execute the condition in the while.
If the (now incremented) value of val is still less than or equal to 10, then the
body of the while is executed again. The loop continues, testing the condition
and executing the body, until val is no longer less than or equal to 10.

Once val is greater than 10, we fall out of the while loop and execute the
statement following the while. In this case, that statement prints our output,
followed by the return, which completes our main program.

14 Getting Started

KEY CONCEPT: INDENTATION AND FORMATTING OF C++ PROGRAMS

C++ programs are largely free-format, meaning that the positioning of curly braces,
indentation, comments, and newlines usually has no effect on the meaning of our
programs. For example, the curly brace that denotes the beginning of the body of main
could be on the same line as main, positioned as we have done, at the beginning of the
next line, or placed anywhere we’d like. The only requirement is that it be the first
nonblank, noncomment character that the compiler sees after the close parenthesis
that concludes main’s parameter list.

Although we are largely free to format programs as we wish, the choices we make
affect the readability of our programs. We could, for example, have written main on a
single, long line. Such a definition, although legal, would be hard to read.

Endless debates occur as to the right way to format C or C++ programs. Our belief
is that there is no single correct style but that there is value in consistency. We tend
to put the curly braces that delimit functions on their own lines. We tend to indent
compound input or output expressions so that the operators line up, as we did with
the statement that wrote the output in the main function on page 6. Other indentation
conventions will become clear as our programs become more complex.

The important thing to keep in mind is that other ways to format programs are
possible. When choosing a formatting style, think about how it affects readability
and comprehension. Once you’ve chosen a style, use it consistently.

1.4.2 The for Statement
In our while loop, we used the variable val to control how many times we it-
erated through the loop. On each pass through the while, the value of val was
tested and then in the body the value of val was incremented.

The use of a variable like val to control a loop happens so often that the lan-
guage defines a second control structure, called a for statement, that abbreviates
the code that manages the loop variable. We could rewrite the program to sum the
numbers from 1 through 10 using a for loop as follows:

#include <iostream>

int main()
{

int sum = 0;

// sum values from 1 up to 10 inclusive
for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val

std::cout << "Sum of 1 to 10 inclusive is "
<< sum << std::endl;

return 0;
}

Prior to the for loop, we define sum, which we set to zero. The variable val is
used only inside the iteration and is defined as part of the for statement itself. The
for statement

Section 1.4 Control Structures 15

for (int val = 1; val <= 10; ++val)
sum += val; // equivalent to sum = sum + val

has two parts: the for header and the for body. The header controls how often
the body is executed. The header itself consists of three parts: an init-statement, a
condition, and an expression. In this case, the init-statement

int val = 1;

defines an int object named val and gives it an initial value of one. The init-
statement is performed only once, on entry to the for. The condition

val <= 10

which compares the current value in val to 10, is tested each time through the
loop. As long as val is less than or equal to 10, we execute the for body. Only
after executing the body is the expression executed. In this for, the expression uses
the prefix increment operator, which as we know adds one to the value of val.
After executing the expression, the for retests the condition. If the new value of
val is still less than or equal to 10, then the for loop body is executed and val is
incremented again. Execution continues until the condition fails.

In this loop, the for body performs the summation

sum += val; // equivalent to sum = sum + val

The body uses the compound assignment operator to add the current value of val
to sum, storing the result back into sum.

To recap, the overall execution flow of this for is:

1. Create val and initialize it to 1.

2. Test whether val is less than or equal to 10.

3. If val is less than or equal to 10, execute the for body, which adds val to
sum. If val is not less than or equal to 10, then break out of the loop and
continue execution with the first statement following the for body.

4. Increment val.

5. Repeat the test in step 2, continuing with the remaining steps as long as the
condition is true.

When we exit the for loop, the variable val is no longer accessible. It
is not possible to use val after this loop terminates. However, not all
compilers enforce this requirement.

In pre-Standard C++ names defined in a for header were accessible
outside the for itself. This change in the language definition can sur-
prise people accustomed to using an older compiler when they instead
use a compiler that adheres to the standard.

16 Getting Started

COMPILATION REVISITED

Part of the compiler’s job is to look for errors in the program text. A compiler cannot
detect whether the meaning of a program is correct, but it can detect errors in the form
of the program. The following are the most common kinds of errors a compiler will
detect.

1. Syntax errors. The programmer has made a grammatical error in the C++ lan-
guage. The following program illustrates common syntax errors; each comment
describes the error on the following line:

// error: missing ’)’ in parameter list for main
int main ({

// error: used colon, not a semicolon after endl
std::cout << "Read each file." << std::endl:

// error: missing quotes around string literal
std::cout << Update master. << std::endl;

// ok: no errors on this line
std::cout << "Write new master." << std::endl;

// error: missing ’;’ on return statement
return 0

}

2. Type errors. Each item of data in C++ has an associated type. The value 10,
for example, is an integer. The word “hello” surrounded by double quotation
marks is a string literal. One example of a type error is passing a string literal
to a function that expects an integer argument.

3. Declaration errors. Every name used in a C++ program must be declared before
it is used. Failure to declare a name usually results in an error message. The
two most common declaration errors are to forget to use std:: when accessing
a name from the library or to inadvertently misspell the name of an identifier:

#include <iostream>

int main()
{

int v1, v2;
std::cin >> v >> v2; // error: uses "v" not "v1"

// cout not defined, should be std::cout
cout << v1 + v2 << std::endl;
return 0;

}

An error message contains a line number and a brief description of what the com-
piler believes we have done wrong. It is a good practice to correct errors in the se-
quence they are reported. Often a single error can have a cascading effect and cause
a compiler to report more errors than actually are present. It is also a good idea to
recompile the code after each fix—or after making at most a small number of obvious
fixes. This cycle is known as edit-compile-debug.

Section 1.4 Control Structures 17

EXE R C I S E S SE C TI ON 1.4.2

Exercise 1.9: What does the following for loop do? What is the final value of sum?

int sum = 0;
for (int i = -100; i <= 100; ++i)

sum += i;

Exercise 1.10: Write a program that uses a for loop to sum the numbers from 50 to
100. Now rewrite the program using a while.

Exercise 1.11: Write a program using a while loop to print the numbers from 10
down to 0. Now rewrite the program using a for.

Exercise 1.12: Compare and contrast the loops you wrote in the previous two exer-
cises. Are there advantages or disadvantages to using either form?

Exercise 1.13: Compilers vary as to how easy it is to understand their diagnostics.
Write programs that contain the common errors discussed in the box on 16. Study
the messages the compiler generates so that these messages will be familiar when you
encounter them while compiling more complex programs.

1.4.3 The if Statement
A logical extension of summing the values between 1 and 10 is to sum the values
between two numbers our user supplies. We might use the numbers directly in our
for loop, using the first input as the lower bound for the range and the second
as the upper bound. However, if the user gives us the higher number first, that
strategy would fail: Our program would exit the for loop immediately. Instead,
we should adjust the range so that the larger number is the upper bound and the
smaller is the lower. To do so, we need a way to see which number is larger.

Like most languages, C++ provides an if statement that supports conditional
execution. We can use an if to write our revised sum program:

#include <iostream>

int main()
{

std::cout << "Enter two numbers:" << std::endl;
int v1, v2;
std::cin >> v1 >> v2; // read input

// use smaller number as lower bound for summation
// and larger number as upper bound
int lower, upper;
if (v1 <= v2) {

lower = v1;
upper = v2;

} else {
lower = v2;
upper = v1;

}

18 Getting Started

int sum = 0;

// sum values from lower up to and including upper
for (int val = lower; val <= upper; ++val)

sum += val; // sum = sum + val

std::cout << "Sum of " << lower
<< " to " << upper
<< " inclusive is "
<< sum << std::endl;

return 0;
}

If we compile and execute this program and give it as input the numbers 7 and 3,
then the output of our program will be

Sum of 3 to 7 inclusive is 25

Most of the code in this program should already be familiar from our earlier
examples. The program starts by writing a prompt to the user and defines four
int variables. It then reads from the standard input into v1 and v2. The only new
code is the if statement

// use smaller number as lower bound for summation
// and larger number as upper bound
int lower, upper;
if (v1 <= v2) {

lower = v1;
upper = v2;

} else {
lower = v2;
upper = v1;

}

The effect of this code is to set upper and lower appropriately. The if condition
tests whether v1 is less than or equal to v2. If so, we perform the block that imme-
diately follows the condition. This block contains two statements, each of which
does an assignment. The first statement assigns v1 to lower and the second as-
signs v2 to upper.

If the condition is false—that is, if v1 is larger than v2—then we execute the
statement following the else. Again, this statement is a block consisting of two
assignments. We assign v2 to lower and v1 to upper.

1.4.4 Reading an Unknown Number of Inputs
Another change we might make to our summation program on page 12 would be
to allow the user to specify a set of numbers to sum. In this case we can’t know how
many numbers we’ll be asked to add. Instead, we want to keep reading numbers
until the program reaches the end of the input. When the input is finished, the
program writes the total to the standard output:

Section 1.4 Control Structures 19

EXE R C I S E S SE C TI ON 1.4.3

Exercise 1.14: What happens in the program presented in this section if the input val-
ues are equal?

Exercise 1.15: Compile and run the program from this section with two equal values
as input. Compare the output to what you predicted in the previous exercise. Explain
any discrepancy between what happened and what you predicted.

Exercise 1.16: Write a program to print the larger of two inputs supplied by the user.

Exercise 1.17: Write a program to ask the user to enter a series of numbers. Print a
message saying how many of the numbers are negative numbers.

#include <iostream>

int main()
{

int sum = 0, value;
// read till end-of-file, calculating a running total of all values read
while (std::cin >> value)

sum += value; // equivalent to sum = sum + value
std::cout << "Sum is: " << sum << std::endl;

return 0;
}

If we give this program the input

3 4 5 6

then our output will be

Sum is: 18

As usual, we begin by including the necessary headers. The first line inside
main defines two int variables, named sum and value. We’ll use value to hold
each number we read, which we do inside the condition in the while:

while (std::cin >> value)

What happens here is that to evaluate the condition, the input operation

std::cin >> value

is executed, which has the effect of reading the next number from the standard
input, storing what was read in value. The input operator (Section 1.2.2, p. 8)
returns its left operand. The condition tests that result, meaning it tests std::cin.

When we use an istream as a condition, the effect is to test the state of the
stream. If the stream is valid—that is, if it is still possible to read another input—
then the test succeeds. An istream becomes invalid when we hit end-of-file or
encounter an invalid input, such as reading a value that is not an integer. An
istream that is in an invalid state will cause the condition to fail.

20 Getting Started

Until we do encounter end-of-file (or some other input error), the test will suc-
ceed and we’ll execute the body of the while. That body is a single statement
that uses the compound assignment operator. This operator adds its right-hand
operand into the left hand operand.

ENTERING AN END-OF-FILE FROM THE KEYBOARD

Operating systems use different values for end-of-file. On Windows systems we enter
an end-of-file by typing a control-z—simultaneously type the “ctrl” key and a “z.” On
UNIX systems, including Mac OS-X machines, it is usually control-d.

Once the test fails, the while terminates and we fall through and execute the
statement following the while. That statement prints sum followed by endl,
which prints a newline and flushes the buffer associated with cout. Finally, we
execute the return, which as usual returns zero to indicate success.

EXE R C I S E S SE C TI ON 1.4.4

Exercise 1.18: Write a program that prompts the user for two numbers and writes
each number in the range specified by the two numbers to the standard output.

Exercise 1.19: What happens if you give the numbers 1000 and 2000 to the program
written for the previous exercise? Revise the program so that it never prints more than
10 numbers per line.

Exercise 1.20: Write a program to sum the numbers in a user-specified range, omitting
the if test that sets the upper and lower bounds. Predict what happens if the input is
the numbers 7 and 3, in that order. Now run the program giving it the numbers 7 and
3, and see if the results match your expectation. If not, restudy the discussion on the
for and while loop until you understand what happened.

1.5 Introducing Classes
The only remaining feature we need to understand before solving our bookstore
problem is how to write a data structure to represent our transaction data. In C++
we define our own data structure by defining a class. The class mechanism is one
of the most important features in C++. In fact, a primary focus of the design of C++
is to make it possible to define class types that behave as naturally as the built-in
types themselves. The library types that we’ve seen already, such as istream and
ostream, are all defined as classes—that is, they are not strictly speaking part of
the language.

Complete understanding of the class mechanism requires mastering a lot of
information. Fortunately, it is possible to use a class that someone else has written
without knowing how to define a class ourselves. In this section, we’ll describe a
simple class that we can use in solving our bookstore problem. We’ll implement

Section 1.5 Introducing Classes 21

this class in the subsequent chapters as we learn more about types, expressions,
statements, and functions—all of which are used in defining classes.

To use a class we need to know three things:

1. What is its name?

2. Where is it defined?

3. What operations does it support?

For our bookstore problem, we’ll assume that the class is named Sales_item and
that it is defined in a header named Sales_item.h.

1.5.1 The Sales_item Class
The purpose of the Sales_item class is to store an ISBN and keep track of the
number of copies sold, the revenue, and average sales price for that book. How
these data are stored or computed is not our concern. To use a class, we need not
know anything about how it is implemented. Instead, what we need to know is
what operations the class provides.

As we’ve seen, when we use library facilities such as IO, we must include the
associated headers. Similarly, for our own classes, we must make the definitions
associated with the class available to the compiler. We do so in much the same
way. Typically, we put the class definition into a file. Any program that wants to
use our class must include that file.

Conventionally, class types are stored in a file with a name that, like the name
of a program source file, has two parts: a file name and a file suffix. Usually the file
name is the same as the class defined in the header. The suffix usually is .h, but
some programmers use .H, .hpp, or .hxx. Compilers usually aren’t picky about
header file names, but IDEs sometimes are. We’ll assume that our class is defined
in a file named Sales_item.h.

Operations on Sales_item Objects

Every class defines a type. The type name is the same as the name of the class.
Hence, our Sales_item class defines a type named Sales_item. As with the
built-in types, we can define a variable of a class type. When we write

Sales_item item;

we are saying that item is an object of type Sales_item. We often contract the
phrase “an object of type Sales_item” to “a Sales_item object” or even more
simply to “a Sales_item.”

In addition to being able to define variables of type Sales_item, we can per-
form the following operations on Sales_item objects:

• Use the addition operator, +, to add two Sales_items

• Use the input operator, >>, to read a Sales_item object

22 Getting Started

• Use the output operator, <<, to write a Sales_item object

• Use the assignment operator, =, to assign one Sales_item object to another

• Call the same_isbn function to determine if two Sales_items refer to the
same book

Reading and Writing Sales_items

Now that we know the operations that the class provides, we can write some sim-
ple programs to use this class. For example, the following program reads data
from the standard input, uses that data to build a Sales_item object, and writes
that Sales_item object back onto the standard output:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item book;

// read ISBN, number of copies sold, and sales price
std::cin >> book;

// write ISBN, number of copies sold, total revenue, and average price
std::cout << book << std::endl;

return 0;
}

If the input to this program is

0-201-70353-X 4 24.99

then the output will be

0-201-70353-X 4 99.96 24.99

Our input said that we sold four copies of the book at $24.99 each, and the output
indicates that the total sold was four, the total revenue was $99.96, and the average
price per book was $24.99.

This program starts with two #include directives, one of which uses a new
form. The iostream header is defined by the standard library; the Sales_item
header is not. Sales_item is a type that we ourselves have defined. When we
use our own headers, we use quotation marks (" ") to surround the header name.

Headers for the standard library are enclosed in angle brackets (< >).
Nonstandard headers are enclosed in double quotes (" ").

Inside main we start by defining an object, named book, which we’ll use to
hold the data that we read from the standard input. The next statement reads into
that object, and the third statement prints it to the standard output followed as
usual by printing endl to flush the buffer.

Section 1.5 Introducing Classes 23

KEY CONCEPT: CLASSES DEFINE BEHAVIOR

As we go through these programs that use Sales_items, the important thing to keep
in mind is that the author of the Sales_item class defined all the actions that can
be performed by objects of this class. That is, the author of the Sales_item data
structure defines what happens when a Sales_item object is created and what hap-
pens when the addition or the input and output operators are applied to Sales_item
objects, and so on.

In general, only the operations defined by a class can be used on objects of the class
type. For now, the only operations we know we can peeform on Sales_item objects
are the ones listed on page 21.

We’ll see how these operations are defined in Sections 7.7.3 and 14.2.

Adding Sales_items

A slightly more interesting example adds two Sales_item objects:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item item1, item2;

std::cin >> item1 >> item2; // read a pair of transactions
std::cout << item1 + item2 << std::endl; // print their sum

return 0;
}

If we give this program the following input

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00

our output is

0-201-78345-X 5 110 22

This program starts by including the Sales_item and iostream headers.
Next we define two Sales_item objects to hold the two transactions that we wish
to sum. The output expression does the addition and prints the result. We know
from the list of operations on page 21 that adding two Sales_items together
creates a new object whose ISBN is that of its operands and whose number sold
and revenue reflect the sum of the corresponding values in its operands. We also
know that the items we add must represent the same ISBN.

It’s worth noting how similar this program looks to the one on page 6: We read
two inputs and write their sum. What makes it interesting is that instead of reading
and printing the sum of two integers, we’re reading and printing the sum of two
Sales_item objects. Moreover, the whole idea of “sum” is different. In the case
of ints we are generating a conventional sum—the result of adding two numeric
values. In the case of Sales_item objects we use a conceptually new meaning for
sum—the result of adding the components of two Sales_item objects.

24 Getting Started

EXE R C I S E S SE C TI ON 1.5.1

Exercise 1.21: The Web site (http://www.awprofessional.com/cpp_primer)
contains a copy of Sales_item.h in the Chapter 1 code directory. Copy that file to
your working directory. Write a program that loops through a set of book sales trans-
actions, reading each transaction and writing that transaction to the standard output.

Exercise 1.22: Write a program that reads two Sales_item objects that have the
same ISBN and produces their sum.

Exercise 1.23: Write a program that reads several transactions for the same ISBN.
Write the sum of all the transactions that were read.

1.5.2 A First Look at Member Functions
Unfortunately, there is a problem with the program that adds Sales_items. What
should happen if the input referred to two different ISBNs? It doesn’t make sense
to add the data for two different ISBNs together. To solve this problem, we’ll first
check whether the Sales_item operands refer to the same ISBNs:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item item1, item2;

std::cin >> item1 >> item2;
// first check that item1 and item2 represent the same book
if (item1.same_isbn(item2)) {

std::cout << item1 + item2 << std::endl;
return 0; // indicate success

} else {
std::cerr << "Data must refer to same ISBN"

<< std::endl;
return -1; // indicate failure

}
}

The difference between this program and the previous one is the if test and its
associated else branch. Before explaining the if condition, we know that what
this program does depends on the condition in the if. If the test succeeds, then
we write the same output as the previous program and return 0 indicating success.
If the test fails, we execute the block following the else, which prints a message
and returns an error indicator.

What Is a Member Function?

The if condition

// first check that item1 and item2 represent the same book
if (item1.same_isbn(item2)) {

http://www.awprofessional.com/cpp_primer

Section 1.6 The C++ Program 25

calls a member function of the Sales_item object named item1. A member
function is a function that is defined by a class. Member functions are sometimes
referred to as the methods of the class.

Member functions are defined once for the class but are treated as members
of each object. We refer to these operations as member functions because they
(usually) operate on a specific object. In this sense, they are members of the object,
even though a single definition is shared by all objects of the same type.

When we call a member function, we (usually) specify the object on which the
function will operate. This syntax uses the dot operator (the “.” operator):

item1.same_isbn

means “the same_isbn member of the object named item1.” The dot operator
fetches its right-hand operand from its left. The dot operator applies only to objects
of class type: The left-hand operand must be an object of class type; the right-hand
operand must name a member of that type.

Unlike most other operators, the right operand of the dot (“.”) opera-
tor is not an object or value; it is the name of a member.

When we use a member function as the right-hand operand of the dot operator,
we usually do so to call that function. We execute a member function in much the
same way as we do any function: To call a function, we follow the function name
by the call operator (the “()” operator). The call operator is a pair of parentheses
that encloses a (possibly empty) list of arguments that we pass to the function.

The same_isbn function takes a single argument, and that argument is an-
other Sales_item object. The call

item1.same_isbn(item2)

passes item2 as an argument to the function named same_isbn that is a member
of the object named item1. This function compares the ISBN part of its argument,
item2, to the ISBN in item1, the object on which same_isbn is called. Thus, the
effect is to test whether the two objects refer to the same ISBN.

If the objects refer to the same ISBN, we execute the statement following the
if, which prints the result of adding the two Sales_item objects together. Oth-
erwise, if they refer to different ISBNs, we execute the else branch, which is a
block of statements. The block prints an appropriate error message and exits the
program, returning -1. Recall that the return from main is treated as a status indi-
cator. In this case, we return a nonzero value to indicate that the program failed to
produce the expected result.

1.6 The C++ Program
Now we are ready to solve our original bookstore problem: We need to read a
file of sales transactions and produce a report that shows for each book the total
revenue, average sales price, and the number of copies sold.

26 Getting Started

EXE R C I S E S SE C TI ON 1.5.2

Exercise 1.24: Write a program that reads several transactions. For each new transac-
tion that you read, determine if it is the same ISBN as the previous transaction, keeping
a count of how many transactions there are for each ISBN. Test the program by giv-
ing multiple transactions. These transactions should represent multiple ISBNs but the
records for each ISBN should be grouped together.

We’ll assume that all of the transactions for a given ISBN appear together. Our
program will combine the data for each ISBN in a Sales_item object named
total. Each transaction we read from the standard input will be stored in a sec-
ond Sales_item object named trans. Each time we read a new transaction we’ll
compare it to the Sales_item object in total. If the objects refer to the same
ISBN, we’ll update total. Otherwise we’ll print the value in total and reset it
using the transaction we just read.

#include <iostream>
#include "Sales_item.h"

int main()
{

// declare variables to hold running sum and data for the next record
Sales_item total, trans;

// is there data to process?
if (std::cin >> total) {

// if so, read the transaction records
while (std::cin >> trans)

if (total.same_isbn(trans))
// match: update the running total
total = total + trans;

else {
// no match: print & assign to total
std::cout << total << std::endl;
total = trans;

}
// remember to print last record
std::cout << total << std::endl;

} else {
// no input!, warn the user
std::cout << "No data?!" << std::endl;
return -1; // indicate failure

}

return 0;
}

This program is the most complicated one we’ve seen so far, but it uses only
facilities that we have already encountered. As usual, we begin by including the
headers that we use: iostream from the library and Sales_item.h, which is
our own header.

Section 1.6 The C++ Program 27

Inside main we define the objects we need: total, which we’ll use to sum
the data for a given ISBN, and trans, which will hold our transactions as we read
them. We start by reading a transaction into total and testing whether the read
was successful. If the read fails, then there are no records and we fall through to
the outermost else branch, which prints a message to warn the user that there
was no input.

Assuming we have successfully read a record, we execute the code in the if
branch. The first statement is a while that will loop through all the remaining
records. Just as we did in the program on page 18, our while condition reads a
value from the standard input and then tests that valid data was actually read. In
this case, we read a Sales_item object into trans. As long as the read succeeds,
we execute the body of the while.

The body of the while is a single if statement. We test whether the ISBNs are
equal, and if so we add the two objects and store the result in total. If the ISBNs
are not equal, we print the value stored in total and reset total by assigning
trans to it. After execution of the if, we return to the condition in the while,
reading the next transaction and so on until we run out of records.

Once the while completes, we still must write the data associated with the last
ISBN. When the while terminates, total contains the data for the last ISBN in the
file, but we had no chance to print it. We do so in the last statement of the block
that concludes the outermost if statement.

EXE R C I S E S SE C TI ON 1.6

Exercise 1.25: Using the Sales_item.h header from the Web site, compile and exe-
cute the bookstore program presented in this section.

Exercise 1.26: In the bookstore program we used the addition operator and not the
compound assignment operator to add trans to total. Why didn’t we use the com-
pound assignment operator?

28 Defined Terms

CH A P T E R SU M M A R Y
This chapter introduced enough of C++ to let the reader compile and execute sim-
ple C++ programs. We saw how to define a main function, which is the function
that is executed first in any C++ program. We also saw how to define variables,
how to do input and output, and how to write if, for, and while statements.
The chapter closed by introducing the most fundamental facility in C++: the class.
In this chapter we saw how to create and use objects of a given class. Later
chapters show how to define our own classes.

DEFINED TERMS

argument A value passed to a function
when it is called.

block Sequence of statements enclosed in
curly braces.

buffer A region of storage used to hold
data. IO facilities often store input (or out-
put) in a buffer and read or write the buffer
independently of actions in the program.
Output buffers usually must be explicitly
flushed to force the buffer to be written. By
default, reading cin flushes cout; cout is
also flushed when the program ends nor-
mally.

built-in type A type, such as int, defined
by the language.

cerr ostream object tied to the standard
error, which is often the same stream as the
standard output. By default, writes to cerr
are not buffered. Usually used for error
messages or other output that is not part of
the normal logic of the program.

cin istream object used to read from the
standard input.

class C++ mechanism for defining our
own data structures. The class is one of the
most fundamental features in C++. Library
types, such as istream and ostream, are
classes.

class type A type defined by a class. The
name of the type is the class name.

clog ostream object tied to the standard
error. By default, writes to clog are

buffered. Usually used to report informa-
tion about program execution to a log file.

comments Program text that is ignored by
the compiler. C++ has two kinds of com-
ments: single-line and paired. Single-line
comments start with a //. Everything from
the // to the end of the line is a comment.
Paired comments begin with a /* and in-
clude all text up to the next */.

condition An expression that is evaluated
as true or false. An arithmetic expression
that evaluates to zero is false; any other
value yields true.

cout ostream object used to write to the
standard output. Ordinarily used to write
the output of a program.

curly brace Curly braces delimit blocks.
An open curly ({) starts a block; a close
curly (}) ends one.

data structure A logical grouping of data
and operations on that data.

edit-compile-debug The process of get-
ting a program to execute properly.

end-of-file System-specific marker in a file
that indicates that there is no more input in
the file.

expression The smallest unit of computa-
tion. An expression consists of one or more
operands and usually an operator. Expres-
sions are evaluated to produce a result. For
example, assuming i and j are ints, then
i + j is an arithmetic addition expression

Defined Terms 29

and yields the sum of the two int values.
Expressions are covered in more detail in
Chapter 5.

for statement Control statement that pro-
vides iterative execution. Often used to step
through a data structure or to repeat a calcu-
lation a fixed number of times.

function A named unit of computation.

function body Statement block that de-
fines the actions performed by a function.

function name Name by which a function
is known and can be called.

header A mechanism whereby the defini-
tions of a class or other names may be made
available to multiple programs. A header is
included in a program through a #include
directive.

if statement Conditional execution based
on the value of a specified condition. If the
condition is true, the if body is executed. If
not, control flows to the statement following
the else if there is one or to the statement
following the if if there is no else.

iostream library type providing stream-
oriented input and output.

istream Library type providing stream-
oriented input.

library type A type, such as istream, de-
fined by the standard library.

main function Function called by the op-
erating system when executing a C++ pro-
gram. Each program must have one and
only one function named main.

manipulator Object, such as std::endl,
that when read or written “manipulates”
the stream itself. Section A.3.1 (p. 825) cov-
ers manipulators in more detail.

member function Operation defined by a
class. Member functions ordinarily are
called to operate on a specific object.

method Synonym for member function.

namespace Mechanism for putting names
defined by a library into a single place.
Namespaces help avoid inadvertent name
clashes. The names defined by the C++ li-
brary are in the namespace std.

ostream Library type providing stream-
oriented output.

parameter list Part of the definition of a
function. Possibly empty list that speci-
fies what arguments can be used to call the
function.

preprocessor directive An instruction to
the C++ preprocessor. #include is a pre-
processor directive. Preprocessor direc-
tives must appear on a single line. We’ll
learn more about the preprocessor in Sec-
tion 2.9.2.

return type Type of the value returned by
a function.

source file Term used to describe a file that
contains a C++ program.

standard error An output stream intended
for use for error reporting. Ordinarily, on a
windowing operating system, the standard
output and the standard error are tied to the
window in which the program is executed.

standard input The input stream that ordi-
narily is associated by the operating system
with the window in which the program ex-
ecutes.

standard library Collection of types and
functions that every C++ compiler must
support. The library provides a rich set
of capabilities including the types that sup-
port IO. C++ programmers tend to talk
about “the library,” meaning the entire
standard library or about particular parts
of the library by referring to a library
type. For example, programmers also re-
fer to the “iostream library,” meaning the
part of the standard library defined by the
iostream classes.

30 Defined Terms

standard output The output stream that
ordinarily is associated by the operating
system with the window in which the pro-
gram executes.

statement The smallest independent unit
in a C++ program. It is analogous to a sen-
tence in a natural language. Statements in
C++ generally end in semicolons.

std Name of the namespace used by the
standard library. std::cout indicates that
we’re using the name cout defined in the
std namespace.

string literal Sequence of characters en-
closed in double quotes.

uninitialized variable Variable that has no
initial value specified. There are no unini-
tialized variables of class type. Variables
of class type for which no initial value is
specified are initialized as specified by the
class definition. You must give a value to an
uninitialized variable before attempting to
use the variable’s value. Uninitialized vari-
ables can be a rich source of bugs.

variable A named object.

while statement An iterative control state-
ment that executes the statement that is the
while body as long as a specified condition
is true. The body is executed zero or more
times, depending on the truth value of the
condition.

() operator The call operator: A pair
of parentheses “()” following a function
name. The operator causes a function to be
invoked. Arguments to the function may be
passed inside the parentheses.

++ operator Increment operator. Adds
one to the operand; ++i is equivalent to i
= i + 1.

+= operator A compound assignment op-
erator. Adds right-hand operand to the left
and stores the result back into the left-hand
operand; a += b is equivalent to a = a + b.

. operator Dot operator. Takes two oper-
ands: the left-hand operand is an object and

the right is the name of a member of that ob-
ject. The operator fetches that member from
the named object.

:: operator Scope operator. We’ll see
more about scope in Chapter 2. Among
other uses, the scope operator is used to
access names in a namespace. For exam-
ple, std::cout says to use the name cout
from the namespace std.

= operator Assigns the value of the right-
hand operand to the object denoted by the
left-hand operand.

<< operator Output operator. Writes the
right-hand operand to the output stream
indicated by the left-hand operand: cout
<< "hi" writes hi to the standard output.
Output operations can be chained together:
cout << "hi << "bye" writes hibye.

>> operator Input operator. Reads from
the input stream specified by the left-hand
operand into the right-hand operand: cin
>> i reads the next value on the stan-
dard input into i. Input operations can be
chained together: cin >> i >> j reads first
into i and then into j.

== operator The equality operator. Tests
whether the left-hand operand is equal to
the right-hand.

!= operator Assignment operator. Tests
whether the left-hand operand is not equal
to the right-hand.

<= operator The less-than-or-equal opera-
tor. Tests whether the left-hand operand is
less than or equal to the right-hand.

< operator The less-than operator. Tests
whether the left-hand operand is less than
the right-hand.

>= operator Greater-than-or-equal opera-
tor. Tests whether the left-hand operand is
greater than or equal to the right-hand.

> operator Greater-than operator. Tests
whether the left-hand operand is greater
than the right-hand.

Index

Bold face numbers refer to the page on which the term was first defined.
Numbers in italic refer to the “Defined Terms” section in which the term is defined.

... (ellipsis parameter), 244
/* */ (block comment), 10, 28
// (single-line comment), 10, 28
_ _DATE_ _ , 221
_ _FILE_ _ , 221
_ _LINE_ _ , 221
_ _TIME_ _ , 221
_ _cplusplus, 803
\0 (null character), 40
\Xnnn (hexadecimal escape sequence), 40
\n (newline character), 40
\t (tab character), 40
{ } (curly brace), 3, 28
#define, 71
#ifdef, 71
#ifundef, 71
#include, 7
~classname, see destructor
L’c’ (wchar_t literal), 40
ctrl-d (Unix end-of-file), 20
ctrl-z (Windows end-of-file), 20
; (semicolon), 3

class definition, 440
++ (increment), 13, 30, 146, 190

and dereference, 163
iterator, 98, 108, 312
overloaded operator, 527
pointer, 114
prefix yields lvalue, 162
reverse iterator, 412

-- (decrement), 190
and dereference, 163
iterator, 312
overloaded operator, 527
prefix yields lvalue, 162
reverse iterator, 412

* (dereference), 98, 108, 146, 389
iterator, 98

on map yields pair, 362
overloaded operator, 524
pointer, 119
yields lvalue, 99, 120

& (address-of), 115, 146, 511
-> (arrow operator), 164

class member access, 445
overloaded operator, 525

->* (pointer to member arrow), 783
[] (subscript), 87, 108, 146

bitset, 105
deque, 325
map, 363
string, 87
vector, 94, 325
and multi-dimensioned array, 142
and pointer, 124
array, 113
overloaded operator, 522

reference return, 522
valid subscript range, 88
yields lvalue, 88

() (call operator), 25, 30, 226, 280
overloaded operator, 530

:: (scope operator), 8, 30, 78, 108
base class members, 569
class member, 85, 445
container defined type, 317
member function definition, 262
to override name lookup, 449

= (assignment), 13, 30, 159
and conversion, 179
and equality, 161
class assignment operator, 476
container, 328
overloaded operator, 483, 520

and copy constructor, 484
check for self-assignment, 490

843

844 Index

Message, 490
multiple inheritance, 737
reference return, 483, 521
rule of three, 485
use counting, 495, 498
valuelike classes, 501

pointer, 120
string, 86
to signed, 37
to unsigned, 37
yields lvalue, 160

+= (compound assignment), 13, 30, 161
string, 86
iterator, 313
overloaded operator, 511
Sales_item, 521

+ (addition), 150
string, 86
iterator, 101, 313
pointer, 123
Sales_item, 517

- (subtraction), 150
iterator, 101, 313
pointer, 123

* (multiplication), 150
/ (division), 150
% (modulus), 151
== (equality), 30, 154

string, 85
algorithm, 421
container, 322
container adaptor, 350
iterator, 98, 312
string, 347

!= (inequality), 30, 154
container, 322
container adaptor, 350
iterator, 98, 312
string, 347

< (less-than), 30, 153
overloaded and containers, 520
used by algorithm, 420

<= (less-than-or-equal), 13, 30, 153
> (greater-than), 30, 153
>= (greater-than-or-equal), 30, 153
>> (input operator), 8, 30

Sales_item, 516
istream_iterator, 408
string, 81, 108
overloaded operator, 515

must be nonmember, 514

precedence and associativity, 158
<< (output operator), 7, 30

bitset, 106
ostream_iterator, 408
string, 81, 108
formatting, 514
overloaded operator, 513

must be nonmember, 514
precedence and associativity, 158
Sales_item, 514

>> (right-shift), 155, 190
<< (left-shift), 155, 190
&& (logical AND), 152

operand order of evaluation, 172
overloaded operator, 511

|| (logical OR), 152
operand order of evaluation, 172
overloaded operator, 511

& (bitwise AND), 156, 189
Query, 610

! (logical NOT), 153
| (bitwise OR), 156, 190

example, 290
Query, 610

^ (bitwise XOR), 156, 190
~ (bitwise NOT), 155, 189

Query, 610
, (comma operator), 168, 189

example, 289
operand order of evaluation, 172
overloaded operator, 511

?: (conditional operator), 165, 189
operand order of evaluation, 172

+ (unary plus), 150
- (unary minus), 150
\nnn (octal escape sequence), 40
ddd.dddL or ddd.dddl (long double lit-

eral), 39
numEnum or numenum (double literal),

39
numF or numf (float literal), 39
numL or numl (long literal), 39
numU or numu (unsigned literal), 39
class member:constant expression, see bit-

field

A
abnormal termination, stream buffers, 292
abort, 692, 748
absInt, 530

Index 845

abstract base class, 596, 621
example, 609

abstract data type, 78, 429, 473
abstraction, data, 432, 474
access control, 65

in base and derived classes, 570
local class, 796
nested class, 787
using declarations to adjust, 573

access label, 65, 73, 432, 473
private, 65, 432
protected, 562, 622
public, 65, 432

Account, 468
accumulate, 396, 823
Action, 783
adaptor, 348, 353

container, 348
function, 533, 535, 553
iterator, 399

addition (+), 150
string, 86
iterator, 101, 313
pointer, 123
Sales_item, 517

address, 35, 73
address-of (&), 115, 146

overloaded operator, 511
adjacent_difference, 824
adjacent_find, 813
algorithm, 392, 424

_copy versions, 400, 421
_if versions, 421
element type constraints, 394
independent of container, 393
iterator argument constraints, 397, 415
iterator category and, 416, 418
naming convention, 420–421
overloaded versions, 420
parameter pattern, 419–420
passing comparison function, 403
read-only, 396
structure, 419
that reorders elements, 421
that writes elements, 398
type independence, 394, 396
using function object as argument,

531
with two input ranges, 420

algorithm header, 395
alias, namespace, 720, 750

allocator, 755, 755–759, 805
allocate, 759

compared to operator new, 761
construct, 755, 758

compared to placement new, 762
deallocate, 759

compared to operator delete,
761

destroy, 755, 759
compared to calling destructor, 763

operations, 756
alternative operator name, 46
ambiguous

conversion, 541–544
multiple inheritance, 734

function call, 269, 272, 280
multiple base classes, 738

overloaded operator, 550
AndQuery, 609

definition, 618
eval function, 619

anonymous union, 795, 805
app (file mode), 296
append, string, 342
argc, 244
argument, 25, 28, 226, 227, 280

array type, 238
C-style string, 242
const reference type, 235
conversion, 229

with class type conversion, 541
copied, 230

uses copy constructor, 478
default, 253
iterator, 238, 242
multi-dimensioned array, 241
passing, 229
pointer to const, 231
pointer to nonconst, 231
reference parameter, 233
template, see template argument
to main, 243
to member function, 260
nonconst reference parameter, 235
type checking, 229

ellipsis, 244
of array type, 239
of reference to array, 240
with class type conversion, 541

argument deduction, template, 637
argument list, 226

846 Index

argv, 244
arithmetic

iterator, 100, 107, 312, 313
pointer, 123, 146

arithmetic operator
and compound assignment, 162
function object, 533
overloaded operator, 517

arithmetic type, 34, 73
conversion, 180, 188

from bool, 182
signed to unsigned, 36

conversion to bool, 182
array, 40, 73, 110–114

and pointer, 122
argument, 238
as initializer of vector, 140
assignment, 112
associative, 388
conversion to pointer, 122, 181

and template argument, 639
copy, 112
default initialization, 111

uses copy constructor, 478
uses default constructor, 460

definition, 110
elements and destructor, 485
function returning, 228
initialization, 111
multi-dimensioned, 141–144

and pointer, 143
definition, 142
initialization, 142
parameter, 241
subscript operator, 142

of char initialization, 112
parameter, 238–244

buffer overflow, 242
convention, 241–243
reference type, 240

size calculation, 309
and sizeof, 167
subscript operator, 113

arrow operator (->), 164
auto_ptr, 704
class member access, 445
generic handle, 670
overloaded operator, 525

assert preprocessor macro, 221, 223
assign

container, 328

string, 340
assignment

vs. initialization, 49
memberwise, 483, 503

assignment (=), 13, 30, 159, 502
and conversion, 179
and copy constructor, 484
check for self-assignment, 490
container, 328
for derived class, 586
Message, 490
multiple inheritance, 737
overloaded operator, 476, 483, 520

reference return, 483, 521
pointer, 120
rule of three, 485

exception for virtual destructors,
588

string, 86
synthesized, 483, 503
to base from derived, 578
to signed, 37
to unsigned, 37
use counting, 495, 498
usually not virtual, 588
valuelike classes, 501
yields lvalue, 160

associative array, see map, 388
associative container, 356, 388

assignment (=), 328
begin, 369
clear, 359
constructors, 360
count, 377
element type constraints, 309, 323
empty, 359
equal_range, 379
erase, 359
find, 377
insert, 364
key type constraints, 360
lower_bound, 377
operations, 358
overriding the default comparison,

604
rbegin, 412
rend, 412
returning an, 381
reverse_iterator, 412
size, 359
supports relational operators, 359

Index 847

swap, 329
types defined by, 361
upper_bound, 377

associativity, 149, 170, 188
overloaded operator, 507

at
deque, 325
vector, 325

ate (file mode), 296
auto_ptr, 702, 748

constructor, 703
copy and assignment, 704
default constructor, 705
get member, 705
operations, 703
pitfalls, 707
reset member, 706
self-assignment, 705

automatic object, 255, 280
see also local variable
see also parameter
and destructor, 485

B
back

queue, 352
sequential container, 324

back_inserter, 399, 406, 424
bad, 289
bad_alloc, 175, 219
bad_cast, 219, 774
bad_typeid, 776
badbit, 289
base, 414
base class, 285, 302, 558, 621

see also virtual function
abstract, 596, 621

example, 609
access control, 561, 571
assignment operator, usually not vir-

tual, 588
can be a derived class, 566
constructor, 581

calls virtual function, 589
not virtual, 588

conversion from derived, 567
access control, 579

definition, 560
destructor

calls virtual function, 589

usually virtual, 587
friendship not inherited, 575
handle class, 599
member operator delete, 764
member hidden by derived, 593
multiple, see multiple base class
must be complete type, 566
no conversion to derived, 580
object initialized or assigned from de-

rived, 578
scope, 590
static members, 576
user, 563
virtual, 751

see virtual base class
Basket, 605

total function, 606
Bear, 731

as virtual base, 741
begin, 353

map, 369
set, 372
vector, 97
container, 317

best match, 269, 280
see also function matching

bidirectional iterator, 417, 424
list, 417
map, 417
set, 417

binary (file mode), 296
binary function object, 533
binary operator, 148, 188
binary_search, 814
BinaryQuery, 609

definition, 617
bind1st, 535
bind2nd, 535
binder, 535, 552
binding, dynamic, 559, 621

requirements for, 566
bit-field, 798, 805

access to, 798
bitset, 101, 101–106, 107

any, 104
count, 104
flip, 105

compared to bitwise NOT, 155
none, 104
reset, 105
set, 105

848 Index

size, 104
test, 105
to_ulong, 105
compared to bitwise operator, 156
constructor, 101–103
header, 101
output operator, 106
subscript operator, 105

bitwise AND (&), 156, 189
example, 610

bitwise exclusive or (^), 156, 190
bitwise NOT (~), 155, 189

example, 610
bitwise operator, 154–159

and compound assignment, 162
compared to bitset, 156
compound assignment, 157
example, 290
operand, 155

bitwise OR (|), 156, 190
example, 290, 610

block, 3, 13, 28, 193, 223
try, 216, 217, 224, 750
as target of if, 196
function, 227

block scope, 193
body, function, 3, 29, 226, 281
book finding program

using equal_range, 379
using find, 377
using upper_bound, 378

bookstore program, 26
exception classes, 698

bool, 35
and equality operator, 154
conversion to arithmetic type, 182
literal, 39

boolalpha manipulator, 826
brace, curly, 3, 28
break statement, 212, 223

and switch, 201–203
buffer, 8, 28

flushing, 290
buffer overflow, 114

and C-style string, 132
array parameter, 242

built-in type, 3, 28, 34–37
class member default initialization,

264
conversion, 179
initialization of, 51

Bulk_item
class definition, 564
constructor, 581
constructor using default arguments,

582
derived fromDisc_item, 584
interface, 558
member functions, 559

byte, 35, 73

C
C++

calling C function from C++, 801
compiling C and C++, 803
using C linkage, 802

.C file, 4

.cc file, 4

.cpp file, 4

.cp file, 4
C library header, 90
C with classes, 430
C-style cast, 186
C-style string, 112, 130, 130–134, 145

and char*, 131
and string literal, 140
compared to string, 134, 138
definition, 130
dynamically allocated, 138
initialization, 130
parameter, 242
pitfalls with generic programs, 671

c_str, 140
example, 294

CachedObj
add_to_freelist, 771
operator delete, 770
operator new, 769
allocation explained, 769
definition, 767
definition of static members, 771
design, 766
illustration, 767
inheriting from, 768

call operator (()), 25, 30, 226, 280
execution flow, 226
overloaded operator, 530

calling C function from C++, 801
candidate function, 270, 280

and function templates, 679
namespaces, 728

Index 849

overloaded operator, 549
capacity

string, 336
vector, 331

case label, 201, 201–204, 223
default, 203

cassert header, 221
cast, 183, 188

checked, see dynamic_cast
old-style, 186

catch clause, 216, 217, 223, 693, 749
catch(...), 696, 748
example, 217
exception specifier, 693
matching, 693
ordering of, 694
parameter, 693

category, iterator, 425
cctype, 88–89, 107

header, 88
cerr, 6, 28
char, 34

literal, 40
char string literal, see string literal
character

newline (\n), 40
nonprintable, 40, 75
null (\0), 40
printable, 88
tab (\t), 40

checked cast, see dynamic_cast
CheckedPtr, 526
children’s story program, 400

revisited, 531
cin, 6, 28

by default tied to cout, 292
cl, 4
class, 20, 28, 63, 73, 473

static member, 474
abstract base, 621

example, 609
access labels, 65, 432
as friend, 465
base, 285, 302, see base class, 621
concrete, 433
conversion, 552

multiple conversions lead to am-
biguities, 546

conversion constructor, 461
function matching, 547
with standard conversion, 540

data member, 64, 74
const vs. mutable, 443
const, initialization, 455
constraints on type, 438
definition, 435
initialization, 454
mutable, 443
reference, initialization, 455
static, 469

data member definition, 65
default access label, 433
default inheritance access label, 574
definition, 64, 430–440

and header, 264, 437
derived, 285, 302, see derived class,

621
destructor definition, 486
direct base, see immediate base class,

621
explicit constructor, 462
forward declaration, 438
generic handle, 667, 683
handle, see handle class, 599, 622
immediate base, 566, 622
indirect base, 566, 622
local, see local class, 806
member, 64, 73, 430
member access, 445
member function, 25, 29, see mem-

ber function
member:constant expression, see bit-

field
multiple inheritance, see multiple base

class
nested, see nested class, 806
nonvirtual function, calls resolved at

compile time, 569
operator delete, see member op-

erator
operator new, see member opera-

tor new
pointer member

copy control, 492–501
copy control strategies, 499
default copy behavior, 493

pointer to member, 780
definition, 781

pointer to member function, defini-
tion, 782

preventing copies, 481
private member, 431

850 Index

inheritance, 561
private member, 75
protected member, 562
public member, 75, 431

inheritance, 561
static member, 467

as default argument, 471
data member as constant expres-

sion, 471
example, 468
inheritance, 576

template member, see member tem-
plate

type member, 435
undefined member, 482
user, 433, 563
virtual base, 751
virtual function, calls resolved at run

time, 569
class, keyword, 64

compared to typename, 631
in template parameter, 630
in variable definition, 440

class keyword, 473
class declaration, 438, 473

of derived class, 566
class derivation list, 563, 621

access control, 570
default access label, 574
multiple base classes, 731
virtual base, 742

class scope, 65, 444, 473
friend declaration, 466
inheritance, 590–595
member definition, 445
name lookup, 447
static members, 470
virtual functions, 594

class template, 90, 107, 627, 683
see also template parameter
see also template argument
see also instantiation
compiler error detection, 634
declaration, 629
definition, 627
error detection, 635
explicit template argument, 636
export, 645
friend

declaration dependencies, 658
explicit template instantiation, 657

nontemplate class or function, 656
template class or function, 656

member function, 653
defined outside class body, 651
instantiation, 653

member specialization, 677
member template, see member tem-

plate
nontype template parameter, 655
static member, 665

accessed through an instantiation,
666

definition, 666
type includes template argument(s),

628, 637
type-dependent code, 634
uses of template parameter, 649

class template specialization
definition, 675
member, declaration, 677
member defined outside class body,

676
namespaces, 730

class type, 20, 28, 65
class member default initialization,

264
conversion, 183
initialization of, 52
object definition, 439
parameter and overloaded operator,

507
variable vs. function declaration, 460

cleanup, object, see destructor
clear, 289, 290

associative container, 359
example, 290, 295
sequential container, 327

clog, 6, 28
close, 294
comma operator (,), 168, 189

example, 289
operand order of evaluation, 172
overloaded operator, 511

comment, 10, 28
block (/* */), 10, 28
single-line (//), 10, 28

compare
plain function, 624
string, 347
template version, 625

instantiatied with pointer, 671

Index 851

specialization, 672
compilation

and header, 67
conditional, 220
inclusion model for templates, 644
needed when class changes, 434
needed when inline function changes,

258
separate, 67, 76

of templates, 643
separate model for templates, 644

compiler
extension, 112
flag for inclusion compilation model,

645
GNU, 4
Microsoft, 4
template errors diagnosed at link time,

635
compiler extension, 145
compiling C and C++, 803
composition vs. inheritance, 573
compound assignment (e.g.,+=), 13, 30, 161

string, 86
bitwise operator, 157
iterator, 313
overloaded operator, 511, 518
Sales_item, 521

compound expression, 168, 188
compound statement, 193, 223
compound type, 58, 73, 145
compute, 542

overloaded version, 545
concatenation

Screen operations, 441
string, 86
string literal, 41

concrete class, 433
initialization, 464

condition, 13, 28
and conversion, 179
assignment in, 161
in do while statement, 211
in for statement, 15, 207
in if statement, 18, 195
in logical operator, 152
in while statement, 205
stream type as, 19, 183, 288
string input operation as, 82

condition state, 287, 302
conditional compilation, 220

conditional operator (?:), 165, 189
operand order of evaluation, 172

console window, 6
const, 57

and dynamically allocated array, 136
conversion to, 182, 231

and template argument, 639
iterator vs. const_iterator, 100
object scope, 57, 69
overloading and, 267, 275
parameter, 231
pointer, 128
reference, 59

initialization, 60
const object, constructor, 453
const data member

static data member, 470
compared to mutable, 443
initialization, 455

const member function, 261, 262, 280,
431, 473

overloaded, 442
reference return, 442
static, 469

const pointer, see also pointer to const
conversion from nonconst, 182

const reference
argument, 235
conversion from nonconst, 182
parameter, 235

overloading, 275
return type, 249

const void*, 127, 145
const_cast, 183, 184
const_iterator, 99, 415

compared to const iterator, 100
container, 316

const_reference, 317
const_reverse_iterator, 412

container, 316
constant expression, 62, 74

and header file, 69
array index, 110
bit-field, 798
enumerator, 62
nontype template parameter, 633
static data member, 471

construction, order of, 456, 749
derived objects, 581, 582
multiple base classes, 732
virtual base classes, 746

852 Index

constructor, 49, 74, 262, 281, 431
const objects, 453
conversion, 461, 474

function matching, 547
with standard conversion, 540

copy, 476–482, 502
base from derived, 578
multiple inheritance, 737

default, 52, 74, 262, 281, 458–461, 474
default argument in, 458
derived class, 581

initializes immediate base class, 583
initializes virtual base, 744

execution flow, 454
explicit, 462, 474

copy-initialization, 477
for associative container, 360
for sequential container, 307–309
function try block, 696
in constructor initializer list, 457
inheritance, 581
initializer, 452
may not be virtual, 588
object creation, 452
order of construction, 456

derived objects, 581, 582
multiple base classes, 732
virtual base classes, 746

overloaded, 452
pair, 357
resource allocation, 700
synthesized copy, 479, 503
synthesized default, 264, 281, 459, 474
virtual inheritance, 744

constructor initializer list, 263, 281, 431,
453–458, 474

compared to assignment, 454
derived classes, 582
function try block, 696
initializers, 457
multiple base classes, 733
sometimes required, 455
virtual base class, 745

container, 90, 107, 306, 353
see also sequential container
see also associative container
and generic algorithms, 393
as element type, 311
assignment (=), 328
associative, 356, 388
begin, 317

clear, 327
const_iterator, 316
const_reference, 317
const_reverse_iterator, 316
element type constraints, 309, 323
elements and destructor, 485
elements are copies, 318
empty, 323
end, 317
erase, 402
has bidirectional iterator, 417
inheritance, 597
insert, 319
iterator, 316
rbegin, 317, 412
reference, 317
rend, 317, 412
returning a, 381
reverse_iterator, 316, 412
sequential, 306, 354
size, 323
size_type, 316
supports relational operators, 321
swap, 329
types defined by, 316

continue statement, 214, 223
example, 290

control, flow of, 192, 224
conversion, 178, 188

ambiguous, 541–544
and assignment, 159
argument, 229

with class type conversion, 541
arithmetic type, 180, 188
array to pointer, 122, 238

and template argument, 639
class type, 183, 535, 552

design considerations, 544
example, 537
multiple conversions lead to am-

biguities, 546
operator, 537, 537–540, 552
operator and function matching,

545
used implicitly, 538
with standard conversion, 539

constructor, 461
function matching, 547
with standard conversion, 540

derived to base, 567, 580
access control, 579

Index 853

enumeration type to integer, 182
from istream, 183
function matching of template and

nontemplate functions, 681
function to pointer, 277

and template argument, 639
implicit, 189
inheritance, 577
integral promotion, 180
multi-dimensioned array to pointer,

143
multiple inheritance, 734
nontemplate type argument, 640
of return value, 246
rank for function matching, 272
rank of class type conversions, 545
signed type, 180
signed to unsigned, 36
template argument, 638
to const pointer, 127
to const, 182

and template argument, 639
parameter matching, 231

virtual base, 743
conversion constructor, 474
copy, 815
copy constructor, 476, 476–482, 502

and assignment operator, 484
argument passing, 478
base from derived, 578
for derived class, 586
initialization, 478
Message, 489
parameter, 480
pointer members, 480
rule of three, 485

exception for virtual destructors,
588

synthesized, 479, 503
use counting, 495, 497
valuelike classes, 500

copy control, 476, 502
handle class, 601
inheritance, 584–590
message handling example, 489
multiple inheritance, 737
of pointer members, 499

copy-initialization, 48
using constructor, 477

copy_backward, 816
count, use, 495, 503

count, 812
book finding program, 377
map, 367
multimap, 377
multiset, 377
set, 372

count_if, 404, 812
with function object argument, 532

cout, 6, 28
by default tied to cin, 292

cstddef header, 104, 123
cstdlib header, 247
cstring header, 132
curly brace, 3, 28

D
dangling else, 198, 223
dangling pointer, 176, 188

returning pointer to local variable,
249

synthesized copy control, 494
data abstraction, 432, 474

advantages, 434
data hiding, 434
data structure, 20, 28
data type, abstract, 473
dec manipulator, 827
decimal literal, 38
declaration, 52, 74

class, 438, 473
class template member specialization,

677
dependencies and template friends,

658
derived class, 566
export, 645
forward, 438, 474
function, 251

exception specification, 708
function template specialization, 672,

673
member template, 661
template, 629
using, 78, 108, 720, 750

access control, 573
class member access, 574
overloaded inherited functions, 593

declaration statement, 193, 224
decrement (--), 190

iterator, 312

854 Index

overloaded operator, 526
prefix yields lvalue, 162
reverse iterator, 412

deduction, template argument, 637
default argument, 253

and header file, 254
function matching, 270
in constructor, 458
initializer, 254
overloaded function, 267
virtual functions, 570

default case label, 203, 224
default constructor, 52, 74, 262, 281, 458–

461, 474
Sales_item, 263
string, 52, 81
default argument, 458
synthesized, 264, 281, 459, 474
used implicitly, 459
variable definition, 460

definition, 52, 74
array, 110
base class, 560
C-style string, 130
class, 64, 430–440
class data member, 65, 435
class static member, 469
class template, 627
static member, 666

class template specialization, 675
member defined outside class body,

676
class type object, 439
derived class, 563
destructor, 486
dynamically allocated array, 135
dynamically allocated object, 174
function, 3
inside an if condition, 196
inside a switch expression, 203
inside a while condition, 205
map, 360, 373
multi-dimensioned array, 142
namespace, 712

can be discontiguous, 714
member, 716

of variable after case label, 204
overloaded operator, 482
pair, 356
pointer, 115
pointer to function, 276

static data member, 470
variable, 48

delete, 145, 176, 188, 806
compared to operatordelete, 760
const object, 178
execution flow, 760
member operator, 806
member operator

and inheritance, 764
interface, 764

memory leak, 177, 485
null pointer, 176
runs destructor, 485

delete [], 135
and dynamically allocated array, 137

deque, 353
as element type, 311
assign, 328
assignment (=), 328
at, 325
back, 324
begin, 317
clear, 327
const_iterator, 316
const_reference, 317
const_reverse_iterator, 316
constructor from element count, uses

copy constructor, 478
constructors, 307–309
difference_type, 316
element type constraints, 309, 323
empty, 323
end, 317
erase, 326

invalidates iterator, 326
front, 324
insert, 319

invalidates iterator, 320
iterator, 316
iterator supports arithmetic, 312
performance characteristics, 334
pop_back, 326
pop_front, 326
push_back, 318

invalidates iterator, 321
push_front, 318

invalidates iterator, 321
random-access iterator, 417
rbegin, 317, 412
reference, 317
relational operators, 321

Index 855

rend, 317, 412
resize, 323
reverse_iterator, 316, 412
size, 323
size_type, 316
subscript ([]), 325
supports relational operators, 313
swap, 329
types defined by, 316
value_type, 317

dereference (*), 98, 108, 146, 389
and increment, 163
auto_ptr, 704
iterator, 98
on map iterator yields pair, 362
overloaded operator, 524
pointer, 119
yields lvalue, 99, 120

derivation list, class, 563, 621
access control, 570
default access label, 574

derived class, 285, 302, 558, 621
see also virtual function
access control, 561, 572
as base class, 566
assgined or copied to base object, 578
assignment (=), 586
constructor, 581

calls virtual function, 589
for remote virtual base, 744
initializes immediate base class, 583

constructor initializer list, 582
conversion to base, 567

access control, 579
copy constructor, 586
default derivation label, 574
definition, 563
destructor, 587

calls virtual function, 589
friendship not inherited, 576
handle class, 599
member operator delete, 764
member hides member in base, 593
multiple base classes, 731
no conversion from base, 580
scope, 590
scope (::) to access base class mem-

ber, 569
static members, 576
using declaration

inherited functions, 593

member access, 574
with remote virtual base, 742

derived object
contains base part, 565
multiple base classes, contains base

part for each, 732
design

CachedObj, 766
class member access control, 563
class type conversions, 544
consistent definitions of equality and

relational operators, 520
is-a relationship, 573
Message class, 486
namespace, 714
of handle classes, 599
of header files, 67
export, 646
inclusion compilation model, 644
separate compilation model, 645

optimizing new and delete, 764
using freelist, 766

overloaded operator, 510–513
overview of use counting, 495
Query classes, 609–611
Queue, 647
resource allocation is initialization,

700–701
Sales_item handle class, 599
TextQuery class, 380
vectormemory allocation strategy,

756
writing generic code, 634

pointer template argument, 671
destruction, order of, 749

derived objects, 587
multiple base classes, 733
virtual base classes, 747

destructor, 476, 484, 502
called during exception handling, 691
container elements, 485
definition, 486
derived class, 587
explicit call to, 762
implicitly called, 484
library classes, 709
Message, 491
multiple inheritance, 737
order of destruction, 485

derived objects, 587
multiple base classes, 733

856 Index

virtual base classes, 747
resource deallocation, 700
rule of three, 485

exception for virtual destructors,
588

should not throw exception, 692
synthesized, 485, 486
use counting, 495, 497
valuelike classes, 500
virtual, multiple inheritance, 736
virtual in base class, 587

development environment, integrated, 3
difference_type, 101, 107, 316
dimension, 110, 145
direct base class, see immediate base class,

621
direct-initialization, 48

using constructor, 477
directive, using, 721, 751

pitfalls, 724
Disc_item, 583

class definition, 583
discriminant, 794, 806
divides<T>, 534
division (/), 150
do while statement, 210

condition in, 211
domain_error, 219
dot operator (.), 25, 30

class member access, 445
double, 37

literal (numEnum or numenum), 39
long double, 37
notation outptu format control, 830
output format control, 828

duplicate word program, 400–404
revisited, 531

dynamic binding, 559, 621
in C++, 569
requirements for, 566

dynamic type, 568, 622
dynamic_cast, 183, 773, 806

example, 773
throws bad_cast, 774
to pointer, 773
to reference, 774

dynamically allocated, 145
const object, 177
array, 134, 134–139
delete, 137
definition, 135

initialization, 136
of const, 136

C-style string, 138
memory and object construction, 754
object, 174
auto_ptr, 702
constructor, 453
destructor, 485
exception, 700

E
edit-compile-debug, 16, 28

errors at link time, 635
else, see if statement

dangling, 198, 223
empty

string, 83, 107
vector, 93, 107
associative container, 359
container, 323
priority_queue, 352
queue, 352
stack, 351

encapsulation, 432, 474
advantages, 434

end, 353
map, 369
set, 372
vector, 97
container, 317

end-of-file, 19, 28, 835
entering from keyboard, 20

Endangered, 731
endl, 8

manipulator flushes the buffer, 291
ends, manipulator flushes the buffer, 291
enum keyword, 62
enumeration, 62, 74

conversion to integer, 182
function matching, 274

enumerator, 62, 74
conversion to integer, 182

environment, integrated development, 3
eof, 289
eofbit, 289
equal, 814
equal member function, 778
equal_range, 814

associative container, 379
book finding program, 379

Index 857

equal_to<T>, 534
equality (==), 30, 154

string, 85
algorithm, 421
and assignment, 161
container, 322
container adaptor, 350
iterator, 98, 312
overloaded operator, 512, 518

consistent with equality, 520
string, 347

erase
associative container, 359
container, 402
invalidates iterator, 326
map, 368
multimap, 376
multiset, 376
sequential container, 326
set, 372
string, 340

error, standard, 6
escape sequence, 40, 74

hexadecimal (\Xnnn), 40
octal (\nnn), 40

evaluation
order of, 149, 189
short-circuit, 152

exception, raise, see throw
exception

class, 216, 224
class hierarchy, 698
constructor, 220
extending the hierarchy, 697
header, 219
what member, 218, 697

exception handling, 215–220, 749
see also throw
see also catch clause
and terminate, 219
compared to assert, 221
exception in destrutor, 692
finding a catch clause, 693
function try block, 696, 749
handler, see catch clause
library class destructors, 709
local objects destroyed, 691
specifier, 217, 224, 693, 749

nonreference, 693
reference, 694
types related by inheritance, 694

stack unwinding, 691
uncaught exception, 692
unhandled exception, 219

exception object, 690, 749
array or function, 689
initializes catch parameter, 693
must be copyable, 689
pointer to local object, 690
rethrow, 695

exception safety, 700, 749
exception specification, 706, 749

throw(), 708
function pointers, 711
unexpected, 708
violation, 708
virtual functions, 710

executable file, 4
EXIT_FAILURE, 247
EXIT_SUCCESS, 247
explicit constructor, 462, 474

copy-initialization, 477
export, 645

and header design, 646
keyword, 645, 683

exporting C++ to C, 802
expression, 7, 28, 148, 189

and operand conversion, 179
compound, 168, 188
constant, 62, 74
throw, 689, 750

expression statement, 192, 224
extended_compute, 542
extension, compiler, 145
extern, 53
extern ’C’, see linkage directive
extern const, 57

F
factorial program, 250
fail, 289
failbit, 289
file

executable, 4
object, 68
source, 4, 29

file mode, 296, 302
combinations, 298
example, 299

file static, 719, 749
fill, 816

858 Index

fill_n, 815
find, 392, 812

book finding program, 377
map, 368
multimap, 377
multiset, 377
set, 372
string, 344

find last word program, 414
find_first_of, 812
find_first_not_of, string, 346
find_end, 812
find_first_of, 396, 812

string, 345
find_if, 421, 812
find_last_not_of, string, 346
find_last_of, string, 346
find_val program, 234
fixed manipulator, 830
float, 37

literal (numF or numf), 39
floating point

notation output format control, 830
output format control, 828

floating point literal, see double literal
flow of control, 192, 224
flush, manipulator flushes the buffer, 291
Folder, see Message
for statement, 29, 207

condition in, 207
execution flow, 208
expression, 207
for header, 207
initialization statement, 207
scope, 15

for statementfor statement, 14
for_each, 813
format state, 825
forward declaration of class type, 438
forward iterator, 417, 424
fp_compute, 542
free store, 135, 145
freelist, 766, 806
friend, 465, 474

class, 465
class template

explicit template instantiation, 657
nontemplate class or function, 656
template class or function, 656

function template, example, 659
inheritance, 575

member function, 466
overloaded function, 467
overloaded operator, 509
scope considerations, 466

namespaces, 727
template example, 658

friend keyword, 465
front

queue, 352
sequential container, 324

front_inserter, 406, 424
compared to inserter, 406

fstream, 285, 293–299, 302
see also istream
see also ostream
close, 294
constructor, 293
file marker, 838
file mode, 296

combinations, 298
example, 299

file random access, 838
header, 285, 293
off_type, 839
open, 293
pos_type, 839
random IO sample program, 840
seek and tell members, 838–842

function, 2, 29, 225, 281
equal member, 778
inline, 257, 281
candidate, 270, 280
conversion to pointer, 277

and template argument, 639
function returning, 228
inline and header, 257
member, 25, 29, see member function,

474
nonvirtual, calls resolved at compile

time, 569
overloaded, 265, 281

compared to redeclaration, 266
friend declaration, 467
scope, 268
virtual, 593

pure virtual, 596, 622
example, 609

recursive, 249, 281
viable, 270, 282
virtual, 559, 566–570, 622

assignment operator, 588

Index 859

calls resolved at run time, 568
compared to run-time type iden-

tification, 777
default argument, 570
derived classes, 564
destructor, 587
destructor and multiple inheritance,

736
exception specifications, 710
in constructors, 589
in destructor, 589
introduction, 561
multiple inheritance, 735
no virtual constructor, 588
overloaded, 593
overloaded operator, 615
overriding run-time binding, 570
return type, 564
run-time type identification, 772
scope, 594
to copy unknown type, 602
type-sensitive equality, 778

function adaptor, 533, 535, 553
bind1st, 535
bind2nd, 535
binder, 535
negator, 535
not1, 535
not2, 535

function body, 3, 29, 226, 281
function call

ambiguous, 269, 272
execution flow, 226
overhead, 257
through pointer to function, 278
through pointer to member, 784
to overloaded operator, 509
to overloaded postfix operator, 529
using default argument, 253

function declaration, 251
and header file, 252
exception specification, 708

function definition, 3
function matching, 269, 281

and overloaded function templates,
679–682

examples, 680
argument conversion, 269
conversion operator, 545
conversion rank, 272

class type conversions, 545

enumeration parameter, 274
integral promotion, 273
multiple parameters, 272
namespaces, 727
of member functions, 436
overloaded operator, 547–551

function name, 3, 29
function object, 531, 553

algorithms, 531
example, 534

binary, 533
library defined, 533
unary, 533

function pointer, 276–279
and template argument deduction,

640
definition, 276
exception specifications, 711
function returning, 228
initialization, 277
overloaded functions, 279
parameter, 278
return type, 278
typedef, 276

function prototype, 251, 281
function return type, 226, 227, 281

const reference, 249
no implicit return type, 228
nonreference, 247

uses copy constructor, 478
reference, 248
reference yields lvalue, 249
void, 245

function scope, 227
function table, 785

pointer to member, 785
function template, 625, 683

see also template parameter
see also template argument
see also instantiation
as friend, 659
compiler error detection, 634
declaration, 629
error detection, 635
explicit template argument, 642

and function pointer, 643
specifying, 642

export, 645
inline, 626
instantiation, 637
template argument deduction, 637

860 Index

type-dependent code, 634
function template specialization

compared to overloaded function, 673
declaration, 672, 673
example, 672
namespaces, 730
scope, 674

function try block, 696, 749

G
g++, 4
gcd program, 226
generate, 816
generate_n, 815
generic algorithm, see algorithm
generic handle class, 667, 683
generic memory management, see CachedObj
generic programming, 95, 624

and pointer template argument, 671
type-independent code, 634

getline, 82, 107
example, 300, 386

global namespace, 716, 750
global scope, 54, 74
global variable, lifetime, 254
GNU compiler, 4
good, 289
goto statement, 214, 224
greater-than (>), 30, 153
greater-than-or-equal (>=), 30, 153
greater<T>, 534
greater_equal<T>, 534
GT6 program, 403
GT_cls, 532
guard header, 71, 74

H
.h file, 21
Handle, 667

int instantiation, 668
operations, 668
Sales_item instantiation, 669

handle class, 599, 622
copy control, 601
copying unknown type, 602
design, 599
generic, 667, 683
that hides inheritance hierarchy, 610
using a, 603

handler, see catch clause
has-a relationship, 573
HasPtr

as a smart pointer, 495
using synthesized copy control, 493
with value semantics, 499

header, 7, 29, 67, 74
bitset, 101
cctype, 88, 107
cstddef, 104
iomanip, 829
string, 80
vector, 90
algorithm, 395
and constant expression, 69
and library names, 810
C library, 90
cassert, 221
class definition, 264, 437
cstddef, 123
cstdlib, 247
cstring, 132
default argument, 254
deque, 307
design, 67
export, 646
inclusion compilation model, 644
namespace members, 714
separate compilation model, 645

exception, 219
fstream, 285, 293
function declaration, 252
inline function, 257
inlinemember function definition,

437
iostream, 285
iterator, 399
list, 307
map, 360, 375
new, 219
numeric, 395
programmer-defined, 67–72
queue, 349
Sales_item, 21, 67, 264
set, 373, 375
sstream, 285, 300
stack, 349
stdexcept, 217, 219
type_info, 219
using declaration, 80
utility, 356

Index 861

vector, 307
header file, naming convention, 264
header guard, 71, 74
heap, 135, 145
hex manipulator, 827
hexadecimal, literal (0Xnum or 0xnum),

38
hexadecimal escape sequence (\Xnnn), 40
hides, names in base hidden by names in

derived, 592
hierarchy, inheritance, 558, 566, 622
high-order bits, 102, 107

I
IDE, 3
identification, run-time type, 772–780, 807
identifier, 46, 74

naming convention, 47
reserved, 47

if statement, else branch, 224
if statement, 17, 29, 195, 224

compared to switch, 199
dangling else, 198
else branch, 18, 197

ifstream, 285, 293–299
see also istream
close, 294
constructor, 293
file marker, 838
file mode, 296

combinations, 298
example, 299

file random access, 838
off_type, 839
open, 293
pos_type, 839
random IO sample program, 840
seek and tell members, 838–842

immediate base class, 566, 622
implementation, 63, 74, 432
implementation inheritance, 573
implicit this pointer, overloaded opera-

tor, 508
implicit conversion, see conversion, 189
implicit return, 245

from main allowed, 247
implicit this pointer, 260, 281, 431, 440

in and overloaded operator, 483
static member functions, 469

in (file mode), 296

include, see #include
includes, 822
inclusion compilation model, 644, 683
incomplete type, 438, 474

restriction on use, 438, 566, 693
increment (++), 13, 30, 146, 190

reverse iterator, 412
and dereference, 163
iterator, 98, 108, 312
overloaded operator, 526
pointer, 114
prefix yields lvalue, 162

indentation, 14, 197
index, 87, 107
indirect base class, 566, 622
inequality (!=), 30, 154

iterator, 98
container, 322
container adaptor, 350
iterator, 312
overloaded operator, 512, 519
string, 347

inheritance, 284, 302
containers, 597
conversions, 577
default access label, 574
friends, 575
handle class, 599
implementation, 573
interface, 573
iostream diagram, 285
multiple, see multiple base class, 731
private, 622
static members, 576
virtual, 741, 751

inheritance hierarchy, 558, 566, 622
inheritance vs. composition, 573
initialization, 9

vs. assignment, 49
array, 111
array of char, 112
built-in type, 51
C-style string, 130
class data member, 454
class member of built-in type, 264
class member of class type, 264
class type, 52, 452
const static data member, 470
dynamically allocated array, 136
dynamically allocated object, 174
map, 373

862 Index

memberwise, 479, 503
multi-dimensioned array, 142
objects of concrete class type, 464
pair, 356
parameter, 229
pointer, 117–119
pointer to function, 277
return value, 247
value, 92, 108
variable, 48, 50, 76

initialization vs. assignment, 456
initialized, 48, 75
initializer list, constructor, 263, 281, 431,

453–458, 474
inline function, 257, 281

and header, 257
function template, 626
member function, 437

and header, 437
inner_product, 823
inplace_merge, 816
input, standard, 6
input (>>), 8, 30

Sales_item, 516
istream_iterator, 408
string, 81, 108
overloaded operator, 515

error handling, 516–517
must be nonmember, 514

precedence and associativity, 158
input iterator, 416, 424
insert

inserter, 406
invalidates iterator, 320
map, 364
multimap, 376
multiset, 376
return type fromset::insert, 373
sequential container, 319
set, 373
string, 340

insert iterator, 399, 405, 425
inserter, 406
inserter, 425

compared to front_inserter, 406
instantiation, 625, 684

class template, 628, 636, 654
member function, 653
nontype parameter, 655
type, 637

error detection, 635

function template, 637
from function pointer, 640
nontemplate argument conversion,

640
nontype template parameter, 633
template argument conversion, 638

member template, 663
nested class template, 788, 791
on use, 636
static class member, 665

int, 34
literal, 38

Integral, 539
integral promotion, 180, 189

function matching, 273
integral type, 34, 75
integrated development environment, 3
interface, 63, 75, 432
interface inheritance, 573
internal manipulator, 832
interval, left-inclusive, 314, 354
invalid_argument, 219
invalidated iterator, 315, 353
IO stream, see stream
iomanip header, 829
iostate, 289
iostream, 6, 29, 285

see also istream
see also ostream
header, 285
inheritance hierarchy, 740
seek and tell members, 838

is-a relationship, 573
isalnum, 88
isalpha, 88
ISBN, 2
isbn_mismatch, 699

destructor explained, 709
iscntrl, 88
isdigit, 88
isgraph, 88
islower, 88
isprint, 88
ispunct, 88
isShorter program, 235, 403
isspace, 88
istream, 6, 29, 285

see also manipulator
condition state, 287
flushing input buffer, 290
format state, 825

Index 863

gcount, 837
get, 834

multi-byte version, 836
returns int, 835, 836

getline, 82, 836
getline, example, 300
ignore, 837
inheritance hierarchy, 740
input (>>), 8

precedence and associativity, 158
no containers of, 310
no copy or assign, 287
peek, 834
put, 834
putback, 835
read, 837
seek and tell members, 838
unformatted operation, 834

multi-byte, 837
single-byte, 834

unget, 835
write, 837

istream_iterator, 407, 425
and class type, 410
constructors, 408
input iterator, 417
input operator (>>), 408
limitations, 411
operations, 409
used with algorithms, 411

istringstream, 285, 299–301
see also istream
word per line processing, 300, 370
str, 301
word per line processing, 386

isupper, 88
isxdigit, 88
Item_base

class definition, 560
constructor, 580
interface, 558
member functions, 559

iter_swap, 816
iterator, 95, 95–101, 107, 311–316, 354

argument, 238
arrow (->), 164
bidirectional, 417, 424
compared to reverse iterator, 413, 414
destination, 399, 419
equality, 98, 312
forward, 417, 424

generic algorithms, 394
inequality, 98, 312
input, 416, 424
insert, 399, 405, 425
invalidated, 315, 353
invalidated by
assign, 328
erase, 326
insert, 321
push_back, 321
push_front, 321
resize, 324

off-the-end, 97, 394, 425
operations, 311
output, 416, 425
parameter, 238, 242
random-access, 417, 425
relational operators, 313
reverse, 405, 412–415, 425
stream, 425

iterator, 362, 374
container, 316

iterator header, 399
iterator arithmetic, 100, 107, 312, 313

relational operators, 313
iterator category, 416–418, 425

algorithm and, 416, 418
bidirectional iterator, 417
forward iterator, 417
hierarchy, 417
input iterator, 416
output iterator, 416
random-access iterator, 417

iterator range, 314, 314–316, 354
algorithms constraints on, 397, 415
erase, 327
generic algorithms, 394
insert, 320

K
key_type, 388

associative containers, 362
keyword

enum, 62
friend, 465
namespace, 712
protected, 562
template, 625
try, 217
union, 793

864 Index

virtual, 559
export, 645

keyword table, 46
Koenig lookup, 726

L
label

case, 201, 201–204, 223
access, 65, 73, 432, 473
statement, 214

labeled statement, 214, 224
left manipulator, 832
left-inclusive interval, 314, 354
left-shift (<<), 155, 190
length_error, 219
less-than (<), 30, 153

overloaded and containers, 520
used by algorithm, 420

less-than-or-equal (<=), 13, 30, 153
less<T>, 534
less_equal<T>, 534
lexicographical_compare, 823
library, standard, 5, 29
library names to header table, 810
library type, 29
lifetime, object, 254, 281
link time errors from template, 635
linkage directive, 801, 806

C++ to C, 802
compound, 802
overloaded function, 803
parameter or return type, 804
pointer to function, 803
single, 801

linking, 68, 75
list, 354

as element type, 311
assign, 328
assignment (=), 328
back, 324
begin, 317
bidirectional iterator, 417
clear, 327
const_iterator, 316
const_reference, 317
const_reverse_iterator, 316
constructor from element count, uses

copy constructor, 478
constructors, 307–309
element type constraints, 309, 323

empty, 323
end, 317
erase, 326
front, 324
insert, 319
iterator, 316
merge, 423
performance characteristics, 334
pop_back, 326
pop_front, 326
push_back, 318
push_front, 318
rbegin, 317, 412
reference, 317
relational operators, 321
remove, 423
remove_if, 423
rend, 317, 412
resize, 323
reverse, 423
reverse_iterator, 316, 412
size, 323
size_type, 316
specific algorithms, 421
splice, 423
swap, 329
types defined by, 316
unique, 423
value_type, 317

literal, 37, 37–42, 75
bool, 39
char, 40
decimal, 38
double (numEnum or numenum), 39
float (numF or numf), 39
hexadecimal (0Xnum or 0xnum), 38
int, 38
long (numL or numl), 38
long double (ddd.dddL or ddd.dddl),

39
multi-line, 42
octal (0num), 38
string, 9, 30, 40
unsigned (numU or numu), 39
wchar_t, 40

local class, 796, 806
access control, 796
name lookup, 797
nested class in, 797
restrictions on, 796

local scope, 54, 75

Index 865

local static object, 255, 281
local variable, 227, 281

destructor, 485
lifetime, 254
reference return type, 248

logic_error, 219
logical AND (&&), 152

operand order of evaluation, 172
overloaded operator, 511

logical NOT (!), 153
logical operator, 152

function object, 533
logical OR (||), 152

operand order of evaluation, 172
overloaded operator, 511

logical_and<T>, 534
logical_not<T>, 534
logical_or<T>, 534
long, 34

literal (numL or numl), 38
long double, 37
long double, literal (ddd.dddL or ddd.dddl),

39
lookup, name, 447, 474

and templates, 647
before type checking, 269, 593

multiple inheritance, 738
class member declaration, 447
class member definition, 448, 450
class member definition, examples,

449
collisions under inheritance, 591
depends on static type, 590

multiple inheritance, 735
inheritance, 590, 595
local class, 797
multiple inheritance, 737

ambiguous names, 738
namespace names, 724

argument-dependent lookup, 726
nested class, 791
overloaded virtual functions, 593
virtual inheritance, 743

low-order bits, 102, 107
lower_bound, 814

associative container, 377
book finding program, 378

lvalue, 45, 75
assignment, 160
dereference, 99
function reference return type, 249

prefix decrement, 162
prefix increment, 162
subscript, 88

M
machine-dependent

bitfield layout, 798
char representation, 36
division and modulus result, 151
end-of-file character, 20
iostate type, 288
linkage directive language, 802
nonzero return from main, 247
pre-compiled headers, 67
random file access, 837
reinterpret_cast, 185
representation of enum type, 274
return from exception what oper-

ation, 220
signed and out-of-range value, 37
signed types and bitwise operators,

155
size of arithmetic types, 34
template compilation optimization,

645
terminate function, 219
type_info members, 779
vectormemory allocation size, 331
volatile implementation, 799

magic number, 56, 75
main, 2, 29

arguments to, 243
not recursive, 251
return type, 3
return value, 2–5, 247
returns 0 by default, 247

make_pair, 358
make_plural program, 248
manip, 542
manipulator, 8, 29, 825

boolalpha, 826
dec, 827
fixed, 830
hex, 827
internal, 832
left, 832
noboolalpha, 827
noshowbase, 828
noshowpoint, 832
noskipws, 833

866 Index

nouppercase, 828
oct, 827
right, 832
scientific, 830
setfill, 832
setprecision, 829
setw, 832
showbase, 827
showpoint, 831
skipws, 833
uppercase, 828
boolalpha, 826
change format state, 825
dec, 827
endl flushes the buffer, 291
ends flushes the buffer, 291
fixed, 830
flush flushes the buffer, 291
hex, 827
internal, 832
left, 832
noboolalpha, 827
noshowbase, 828
noshowpoint, 832
noskipws, 833
nouppercase, 828
oct, 827
right, 832
scientific, 830
setfill, 832
setprecision, 829
setw, 832
showbase, 827
showpoint, 831
skipws, 833
unitbuf flushes the buffer, 291
uppercase, 828

map, 356, 388
as element type, 311
assignment (=), 328
begin, 369
bidirectional iterator, 417
clear, 359
constructors, 360
count, 367
definition, 360
dereference yields pair, 362
element type constraints, 309
empty, 359
end, 369
equal_range, 379

erase, 359, 368
find, 368
header, 360
insert, 364
iterator, 362
key type constraints, 360
key_type, 362
lower_bound, 377
mapped_type, 362, 388
operations, 358
overriding the default comparison,

604
rbegin, 412
rend, 412
return type from insert, 365
reverse_iterator, 412
size, 359
subscript operator, 363
supports relational operators, 359
swap, 329
upper_bound, 377
value_type, 361

mapped_type, map, multimap, 362
match, best, 269, 280
max, 822
max_element, 822
member, see also class member

mutable data, 474
pointer to, 780, 807

member function, 25, 29, 431, 474
const, 280
equal, 778
as friend, 466
base member hidden by derived, 593
class template, 653

defined outside class body, 651
instantiation, 653

const, 261, 262
defined outside class body, 261, 431
definition, 258–262

in class scope, 445
name lookup, 448
name lookup, examples, 449

function template, see member tem-
plate

implicitly inline, 259
inline, 437

and header, 437
overloaded, 436
overloaded on const, 442
overloaded operator, 483, 508

Index 867

pointer to, definition, 782
returning *this, 442
static, 467
this pointer, 469

undefined, 482
member operator delete, 764, 806

and inheritance, 764
example, 769
CachedObj, 770
interface, 764

member operator delete [], 765
member operator new, 764, 806

example, 769
CachedObj, 769
interface, 764

member operator new [], 765
member template, 660, 684

declaration, 661
defined outside class body, 662
examples, 660
instantiation, 663
template parameters, 663

memberwise assignment, 483, 503
memberwise initialization, 479, 503
memory exhaustion, 175
memory leak, 177, 485

after exception, 700
memory management, generic, see CachedObj
merge, 816

list, 423
Message, 486–491

assignment operator, 490
class definition, 488
copy constructor, 489
design, 486
destructor, 491
put_Msg_in_Folder, 489
remove_Msg_from_Folder, 491

method, see member function, 29
Microsoft compiler, 4
min, 822
min_element, 822
minus<T>, 534
mismatch, 814
mode, file, 296, 302
modulus (%), 151
modulus<T>, 534
multi-dimensioned array, 141–144

and pointer, 143
conversion to pointer, 143
definition, 142

initialization, 142
parameter, 241
subscript operator, 142

multi-line literal, 42
multimap, 375, 388

assignment (=), 328
begin, 369
clear, 359
constructors, 360
count, 377
dereference yields pair, 362
element type constraints, 309
empty, 359
equal_range, 379
erase, 359, 376
find, 377
has no subscript operator, 376
insert, 376
iterator, 362, 376
key type constraints, 360
key_type, 362
lower_bound, 377
mapped_type, 362
operations, 358, 376
overriding the default comparison,

604
rbegin, 412
rend, 412
return type from insert, 365
reverse_iterator, 412
size, 359
supports relational operators, 359
swap, 329
upper_bound, 377
value_type, 361

multiple base class, 750
see also virtual base class
ambiguities, 738
ambiguous conversion, 734
avoiding potential name ambiguities,

738
conversions, 734
definition, 731
destructor usually virtual, 736
name lookup, 737
object composition, 732
order of construction, 732
scope, 737
virtual functions, 735

multiple inheritance, see multiple base class,
731

868 Index

multiplication (*), 150
multiplies<T>, 534
multiset, 375, 388

assignment (=), 328
begin, 372
clear, 359
constructors, 372
count, 377
element type constraints, 309
end, 372
equal_range, 379
erase, 359, 376
find, 377
insert, 376
iterator, 376
key type constraints, 360
lower_bound, 377
Sales_item, 605
operations, 358, 376
overriding the default comparison,

604
rbegin, 412
rend, 412
return type from insert, 373
reverse_iterator, 412
supports relational operators, 359
swap, 329
upper_bound, 377

example, 607
value_type, 372

mutable data member, 443, 474

N
\n (newline character), 40
name lookup, 447, 474

and templates, 647
before type checking, 269, 593

multiple inheritance, 738
class member declaration, 447
class member definition, 448, 450
class member definition, examples,

449
collisions under inheritance, 591
depends on static type, 590

multiple inheritance, 735
inheritance, 590, 595
local class, 797
multiple inheritance, 737

ambiguous names, 738
namespace names, 724

argument-dependent lookup, 726
nested class, 791
overloaded virtual functions, 593
virtual inheritance, 743

name resolution, see name lookup
namespace, 8, 29, 712, 750

class friend declaration scope, 727
cplusplus_primer, 714
definition, 712
design, 714
discontiguous definition, 714
function matching, 727
global, 716
member, 713
member definition, 716

outside namespace, 716
restrictions, 716

nested, 717
scope, 713–717
unnamed, 718

local to file, 718
replace file static, 719

namespace keyword, 712
namespace alias, 720, 750
namespace pollution, 712, 750
naming convention

header file, 264
source file, 264

NDEBUG, 220
negate<T>, 534
negator, 535, 553
nested class, 786, 806

access control, 787
class defined outside enclosing class,

789
in class template, 788
in local class, 797
member defined outside class body,

788
name lookup, 791
QueueItem example, 787
relationship to enclosing class, 787,

790
scope, 786
static members, 790
union, 794

nested namespace, 717
nested type, see nsted class786
new, 145, 174, 189, 806

compared to operator new, 760
execution flow, 760

Index 869

header, 219
member operator, 806
member operator, interface, 764
placement, 761, 807

compared to construct, 762
new [], 135
new failure, 175
next_permutation, 821
noboolalpha manipulator, 827
NoDefault, 459
nonconst reference, 60

parameter, 232
limitations, 235

nonportable, 42
nonprintable character, 40, 75
nonreference

parameter, 230
uses copy constructor, 478

return type, 247
uses copy constructor, 478

nontype template parameter, 625, 628, 632,
684

see also template parameter
class template, 655
must be constant expression, 633

nonvirtual function, calls resolved at com-
pile time, 569

noshowbase manipulator, 828
noshowpoint manipulator, 832
noskipws manipulator, 833
not equal, see inequality
not1, 535
not2, 535
not_equal_to<T>, 534
NotQuery, 609

definition, 616
eval function, 620

nouppercase manipulator, 828
nth_element, 818
NULL, 118
null pointer, 118

delete of, 176
null statement, 192, 224
null-terminated array, see C-style string
number, magic, 56, 75
numeric header, 395
numeric literal

float (numF or numf), 39
long (numL or numl), 39
long double (ddd.dddL or ddd.dddl),

39

unsigned (numU or numu), 39

O
object, 46, 75

automatic, 255, 280
function, 553
is not polymorphic, 569
local static, 255, 281
temporary, 247

object cleanup, see destructor
object creation

constructor, 452
order of construction, 456

derived objects, 581, 582
multiple base classes, 732
virtual base classes, 745

order of destruction, 485
derived objects, 587
multiple base classes, 733
virtual base classes, 747

object file, 68
object lifetime, 254, 281

and destructor, 485
compared to scope, 254

object-oriented programming, 285, 302, 622
key ideas in, 558–560

oct manipulator, 827
octal, literal (0num), 38
octal escape sequence (\nnn), 40
off-the-end iterator, 97, 394, 425

istream_iterator, 408
off-the-end pointer, 125
ofstream, 285, 293–299

see also ostream
close, 294
constructor, 293
file marker, 838
file mode, 296

combinations, 298
example, 299

file random access, 838
off_type, 839
open, 293
pos_type, 839
random IO sample program, 840
seek and tell members, 838–842

open, 293
open_file, example of, 370, 383
open_file program, 299
operand, 148, 189

870 Index

order of evaluation
comma operator, 172
conditional operator, 172
logical operator, 172

operator, 148, 189
sizeof, 167
typeid, 775, 807
addition (+), 150
string, 86
iterator, 101, 313
pointer, 123

address-of (&), 115
arrow (->), 164

class member access, 445
assignment (=), 13, 30, 159

and conversion, 179
and equality, 161
container, 328
multiple inheritance, 737
pointer, 120
string, 86
to signed, 37
to unsigned, 37
yields lvalue, 160

binary, 148, 188
bitwise AND (&), 156
bitwise exclusive or (^), 156
bitwise not (~), 155
bitwise OR (|), 156
bitwise OR (|), example, 290
call (()), 30, 226
comma (,), 168

operand order of evaluation, 172
comma (,), example, 289
compound assginment (e.g.,+=), it-

erator, 313
compound assignment (e.g.,+=), 13,

30, 161
string, 86
arithmetic, 162
bitwise, 162

conditional (?:), 165
operand order of evaluation, 172

decrement (--)
iterator, 312
prefix yields lvalue, 162
reverse iterator, 412

dereference (*), 98
and increment, 163
iterator, 98
on map yields pair, 362

pointer, 119
yields lvalue, 99, 120

division (/), 150
dot (.), 25, 30

class member access, 445
equality (==), 30, 154
string, 85
algorithm, 421
container, 322
container adaptor, 350
iterator, 98, 312
string, 347

greater-than (>), 30, 153
greater-than-or-equal (>=), 30, 153
increment (++), 13, 30

and dereference, 163
iterator, 98, 312
pointer, 114
prefix yields lvalue, 162
reverse iterator, 412

inequality (!=), 30, 154
container, 322
container adaptor, 350
iterator, 98, 312
string, 347

input (>>), 8, 30
Sales_item, 516
istream_iterator, 408
string, 81
precedence and associativity, 158

left-shift (<<), 155, 190
less-than (<), 30, 153

used by algorithm, 420
less-than-or-equal (<=), 13, 30, 153
logical AND (&&), 152

operand order of evaluation, 172
logical NOT (!), 153
logical OR (||), 152

operand order of evaluation, 172
modulus (%), 151
multiplication (*), 150
output (<<), 7, 30
bitset, 106
ostream_iterator, 408
string, 81
precedence and associativity, 158

overloaded, 189, 482, 503
pointer to member

arrow (->*), 783
dot (.*), 783

right-shift (>>), 155, 190

Index 871

scope (::), 8, 30, 78
class member, 85, 445
container defined type, 317
member function definition, 262
to override name lookup, 449

shift, 155, 190
sizeof, 167
subscript ([])
bitset, 105
deque, 325
map, 363
string, 87
vector, 94, 325
and multi-dimensioned array, 142
and pointer, 124
array, 113
valid subscript range, 88
yields lvalue, 88

subtraction (-), 150
iterator, 101, 313
pointer, 123

unary, 148, 189
unary minus (-), 150
unary plus (+), 150

operator alternative name, 46
operator delete function, 760, 806

compared to deallocate, 761
compared to delete expression, 760

operator delete member, 764
and inheritance, 764
example, 769
CachedObj, 770
interface, 764

operator delete [] member, 765
operator new function, 760, 806

compared to allocate, 761
compared to new expression, 760

operator new member, 764
example, 769
CachedObj, 769
interface, 764

operator new [] member, 765
operator overloading, see overloaded op-

erator
options to main, 243
order of construction, 456, 749

derived objects, 581, 582
multiple base classes, 732
virtual base classes, 746

order of destruction, 485, 749
derived objects, 587

multiple base classes, 733
virtual base classes, 747

order of evaluation, 149, 189
comma operator, 172
conditional operator, 172
logical operator, 172

ordering, strict weak, 360, 389
OrQuery, 609

definition, 618
eval function, 619

ostream, 6, 29, 285
see also manipulator
condition state, 287
floatfield member, 831
flushing output buffer, 290
format state, 825
inheritance hierarchy, 740
no containers of, 310
no copy or assign, 287
not flushed if program crashes, 292
output (<<), 7

precedence and associativity, 158
precision member, 829
seek and tell members, 838
tie member, 292
unsetf member, 831

ostream_iterator, 407, 425
and class type, 410
constructors, 408
limitations, 411
operations, 410
output iterator, 417
output operator (<<), 408
used with algorithms, 411

ostringstream, 285, 299–301
see also ostream
str, 301

out (file mode), 296
out_of_range, 219, 325
out_of__stock, 699
output, standard, 6
output (<<), 7, 30

bitset, 106
ostream_iterator, 408
string, 81, 108
overloaded operator, 513

formatting, 514
must be nonmember, 514

precedence and associativity, 158
Sales_item, 514

output iterator, 416, 425

872 Index

overflow, 150
overflow_error, 219
overload resolution, see function match-

ing
overloaded function, 265, 281

using declarations, 728
using directive, 729
compared to redeclaration, 266
compared to template specialization,

673
friend declaration, 467
linkage directive, 803
namespaces, 727
scope, 268
virtual, 593

overloaded member function, 436
on const, 442

overloaded operator, 189, 482, 503
<< (output operator), 513
* (dereference), 524
& (address-of), 511
-> (arrow operator), 525
[] (subscript), 522

reference return, 522
() (call operator), 530
= (assignment), 476, 483, 520

and copy constructor, 484
check for self-assignment, 490
Message, 490
reference return, 483, 521
rule of three, 485
use counting, 495, 498
valuelike classes, 501

>> (input operator), 515
error handling, 516–517
must be nonmember, 514

<< (output operator)
formatting, 514
must be nonmember, 514
Sales_item, 514

&& (logical AND), 511
|| (logical OR), 511
, (comma operator), 511
addition (+), Sales_item, 517
ambiguous, 550
arithmetic operators, 517
as virtual function, 615
binary operator, 508
candidate functions, 549
compound assignment (e.g.,+=), 511
Sales_item, 521

consistency between relational and
equality operators, 520

definition, 482, 506
design, 510–513
equality operators, 512, 518
explicit call to, 509
explicit call to postfix operators, 529
function matching, 547–551
member and this pointer, 483
member vs. nonmember function,

508, 512
postfix increment (++) and decrement

(--) operators, 528
precedence and associativity, 507
prefix increment (++) and decrement

(--) operators, 527
relational operators, 511, 520
require class-type parameter, 507
unary operator, 508

overloading, see overloaded function
operator, see overloaded operator

P
pair, 356, 388

as return type from map::insert,
365

as return type from set::insert,
373

default constructor, 357
definition, 356
initialization, 356
make_pair, 358
operations, 357
public data members, 357

Panda, 731
virtual inheritance, 741

parameter, 226, 227, 281
array and buffer overflow, 242
array type, 238–244
C-style string, 242
const, 231
const reference, 235

overloading, 275
ellipsis, 244
function pointer, 278

linkage directive, 804
initialization of, 229
iterator, 238, 242
library container, 237
lifetime, 255

Index 873

local copy, 230
matching, 229

ellipsis, 244
template specialization, 673
with class type conversion, 541

multi-dimensioned array, 241
nonconst reference, 232
nonreference type, 230

uses copy constructor, 478
of member function, 260
vector type, 237
passing, 229
pointer to const, 231

overloading, 275
pointer to function, 278

linkage directive, 804
pointer to nonconst, 231
pointer type, 231, 239
reference

to array type, 240
to pointer, 236

template, see template parameter
and main, 243
type checking

and template argument, 638
of reference to array, 240

parameter list, 3, 29, 226, 228
member function definition, 446

parentheses, override precedence, 169
partial specialization, 678, 684
partial_sort, 818
partial_sort_copy, 818
partial_sum, 824
partition, 817
placement new, 761, 807

compared to construct, 762
plus<T>, 534
pointer, 114, 114–126, 146

array, 122
arrow (->), 164
as initializer of vector, 140
as parameter, 231
assignment, 120
char*, see C-style string
class member copy control, 492–501

copy constructor, 480
destructor, 485
strategies, 499

compared to iterator, 114
compared to reference, 121
const, 128

const pointer to const, 129
container constructor from, 308
conversion from derived to base, 567
conversion from derived to multiple

base, 734
conversion to bool, 182
conversion to void, 181
dangling, 176, 188

synthesized copy control, 494
declaration style, 116–117
definition, 115
delete, 176
dynamic_cast, example, 773
function returning, 228
implicit this, 260, 281
initialization, 117–119
is polymorphic, 569
multi-dimensioned array, 143
new, 174
null, 118
off-the-end, 125
pitfalls with generic programs, 671
reference parameter, 236
relational operator, 132
return type and local variable, 249
smart, 495, 503, 553

handle class, 599
overloaded-> (arrow operator) and
* (dereference), 524

overloaded (++) and (*), 526
subscript operator, 124
to pointer, 122
typedef, 129
typeid operator, 776
uninitialized, 117
volatile, 800

pointer arithmetic, 123, 146
pointer to const, 127

argument, 231
conversion from nonconst, 127
parameter, 231

overloading, 275
pointer to function, 276–279

definition, 276
exception specifications, 711
function returning, 228
initialization, 277
linkage directive, 803
overloaded functions, 279
parameter, 278
return type, 278

874 Index

typedef, 276
pointer to member, 780, 807

and typedef, 783
arrow (->*), 783
definition, 781
dot (.*), 783
function pointer, 782
function table, 785

pointer to nonconst
argument, 231
parameter, 231

polymorphism, 558, 622
compile time polymorphism via tem-

plates, 624
run time polymorphism in C++, 569

pop
priority_queue, 352
queue, 352
stack, 351

pop_back, sequential container, 326
pop_front, sequential container, 326
portable, 797
postfix decrement (--)

overloaded operator, 528
yields rvalue, 163

postfix increment (++)
and dereference, 163
overloaded operator, 528

precedence, 124, 146, 149, 168, 189
of assignment, 160
of conditional, 166
of dot and derefernece, 164
of increment and dereference, 163
of IO operator, 158
of pointer to member and call oper-

ator, 782
overloaded operator, 507
pointer parameter declaration, 241

precedence table, 170
predicate, 402, 425
prefix decrement (--), 163

overloaded operator, 527
yields lvalue, 162

prefix increment (++)
and dereference, 163
overloaded operator, 527
yields lvalue, 162

preprocessor, 70, 75
directive, 7, 29
macro, 221, 224
variable, 71

prev_permutation, 821
preventing copies of class objects, 481
print_total, 559

explained, 568
printable character, 88
printValues program, 240, 242, 243
priority_queue, 348, 354

constructors, 349
relational operator, 350

private
class, 496
copy constructor, 481
inheritance, 571
member, 75, 474

private access label, 65, 432
inheritance, 561

private inheritance, 622
program

factorial, 250
find_val, 234
gcd, 226
isShorter, 235
make_plural, 248
open_file, 299
printValues, 240, 242, 243
ptr_swap, 237
rgcd, 250
swap, 233, 245
vector capacity, 331
book finding

using equal_range, 379
using find, 377
using upper_bound, 378

bookstore, 26
bookstore exception classes, 698
CachedObj, 766
duplicate words, 400–404

revisited, 531
find last word, 414
GT6, 403
Handle class, 667
int instantiation, 668
operations, 668
Sales_item instantiation, 669

isShorter, 403
message handling classes, 486
Query

design, 609–611
interface, 610
operations, 607

Queue, 648

Index 875

copy_elems member, 652
destroy member, 651
pop member, 651
push member, 652

random IO example, 840
restricted word count, 374
Sales_item handle class, 599
Screen class template, 655
TextQuery, 383

class definition, 382
design, 380
interface, 381

vector, capacity, 331
vowel counting, 200
word count, 363
word transformation, 370
ZooAnimal class hierarchy, 731

programmer-defined header, 67–72
programming

generic, 95, 624
object-oriented, 285, 302, 622

promotion, integral, 180, 189
protected, inheritance, 571, 622
protected access label, 562, 622
protected keyword, 562
prototype, function, 251, 281
ptr_swap program, 237
ptrdiff_t, 123, 146
public

inheritance, 571, 622
member, 75, 474

public access label, 65, 432
inheritance, 561

pure virtual function, 596, 622
example, 609

push
priority_queue, 352
queue, 352
stack, 351

push_back, 94, 108
vector, 94
back_inserter, 399
sequential container, 318

push_front
front_inserter, 406
sequential container, 318

put_Msg_in_Folder, 489

Q
Query, 610

& (bitwise AND), 610
definition, 614

~ (bitwise NOT), 610
definition, 614

| (bitwise OR), 610
definition, 614

<< (output operator), 615
definition, 613
design, 609–611
interface, 610
operations, 607

Query_base, 609
definition, 612
member functions, 609

Queue
<< (output operator), 659
assign, 662
copy_elems member, 652, 662
definition, 648
design, 647
destroy member, 651
final class definition, 664
interface, 627
member template declarations, 661
operations, 627
pop member, 651
push, specialized, 677
push member, 652
template version, char*, 675

queue, 348, 354
constructors, 349
relational operator, 350

QueueItem, 648
as nested class, 787

constructor, 789
definition, 788

friendship, 658
CachedObj, 768

allocation explained, 769

R
Raccoon as virtual base, 741
RAII, see resource allocation is initializa-

tion
raise, 750
raise exception, see throw
random file IO, 838
random-access iterator, 417, 425

deque, 417
string, 417

876 Index

vector, 417
random_shuffle, 820
range

iterator, 314, 314–316, 354
left-inclusive, 314

range_error, 219
rbegin, container, 317, 412
rdstate, 290
recursive function, 249, 281
refactoring, 583, 622
referece, 317
reference, 58, 75

and pointer, 121
const reference, 59

initialization, 60
conversion from derived to base, 567
conversion from derived to multiple

base, 734
dynamic_cast operator, example,

774
is polymorphic, 569
nonconst reference, 60
parameter, 232–237
pointer parameter, 236
return type, is lvalue, 249
return type and class object, 440
return type and local variable, 249
return value, 248
to array parameter, 240

reference count, see use count
reference data member, initialization, 455
reference to const, see const reference
reinterpret_cast, 183, 185
relational operator, 153

string, 85
associative container, 359
container, 321
container adaptor, 350
function object, 533
overloaded operator, 511, 520

consistent with equality, 520
pointer, 132

remove, 819
list, 423

remove_copy, 820
remove_copy_if, 820
remove_if, 819

list, 423
remove_Msg_from_Folder, 491
rend, container, 317, 412
replace, 400, 816

string, 342
replace_copy, 400, 815
replace_copy_if, 815
replace_if, 816
reserve

string, 336
vector, 331

reserved identifier, 47
resize, sequential container, 323
Resource, 700
resource allocation is initialization, 700–

701
auto_ptr, 702

restricted word count program, 374
result, 148, 189
rethrow, 695, 750
return, container, 381
return statement, 245–251

from main, 247
implicit, 245
local variable, 247, 249

return type, 3, 29, 226, 227
const reference, 249
function, 281
function pointer, 278
linkage directive, 804
member function definition, 446
no implicit return type, 228
nonreference, 247

uses copy constructor, 478
of virtual function, 564
pointer to function, 278
reference, 248
reference yields lvalue, 249
void, 245

return value
conversion, 246
copied, 247

reverse, 819
list, 423

reverse iterator, 405, 412–415, 425
-- (decrement), 412
++ (increment), 412
base, 414
compared to iterator, 413, 414
example, 414
requires -- (decrement), 413

reverse_copy, 819
reverse_iterator, 412

container, 316
rfind, string, 346

Index 877

rgcd program, 250
right manipulator, 832
right-shift (>>), 155, 190
rotate, 819
rotate_copy, 820
rule of three, 485, 503

exception for virtual destructors, 588
run time, 75

error, 38
run-time type identification, 772–780, 807

classes with virtual functions, 772
compared to virtual functions, 777
dynamic_cast, 773

example, 773
throws bad_cast, 774
to poiner, 773
to reference, 774

type-sensitive equality, 778
typeid, 775

and virtual functions, 775
example, 776
returns type_info, 776

runtime_error, 217, 219
constructor from string, 218

rvalue, 45, 75

S
safety, exception, 700
Sales_item, 21

addition (+), 23, 517
throws exception, 217, 699

class definition, 64, 258–265
compare function, 604
compound assignment (e.g.,+=), 521
conversion, 461
default constructor, 263
equality operators (==), (!=), 519
explicit constructor, 462
handle class, 599
clone function, 602
constructor, 601, 602
definition, 600
design, 599
multiset of, 605
using generic Handle, 669

header, 21, 67, 264
input (>>), 516
istream constructor, 452
no relational operators, 520
operations, 21

output (<<), 514
avg_price definition, 261
same_isbn, 24, 258
string constructor, 452

scientific manipulator, 830
scope, 54, 75

const object, 57, 69
block, 193
class, 65, 444, 473
compared to object lifetime, 254
for statement, 15
friend declaration, 466
function, 227
function template specialization, 674
global, 54, 74
local, 54, 75
multiple inheritance, 737
namespace, 713–717
statement, 194
template parameter, 629
using declaration, 720
using directive, 721

example, 722
name collisions, 723

scope (::)
base class members, 569
namespace member, 750

scope operator (::), 8, 30, 78, 108
class member, 85, 445
container defined type, 317
member function definition, 262
namespace member, 713
to override class-specific memory al-

location, 765
to override name lookup, 449

Screen, 435
class template, 655
concatenating operations, 441
display, 442
do_display, 442
friends, 465
get definition, 446
get members, 436
get_cursor definition, 446
CachedObj, 768
Menu function table, 785
move members, 441
set members, 441
simplified, 781
size_type, 435

ScreenPtr, 523

878 Index

arrow operator (->), 525
dereference (*), 524
use counted, 523

ScrPtr, 523
search, 813
search_n, 813
self-assignment

auto_ptr, 705
check, 490
use counting, 498

semantics, value, 499, 503
semicolon (;), 3
semicolon (;), class definition, 440
sentinel, 97, 108
separate compilation, 67, 76

inclusion model for templates, 644
of templates, 643
separate compilation model for tem-

plates, 645, 684
sequence, escape, 74
sequence (\Xnnn), hexadecimal escape, 40
sequential container, 306, 354

assign, 328
assignment (=), 328
back, 324
clear, 327
const_iterator, 316
const_reverse_iterator, 316
constructor from element count

uses copy constructor, 478
uses element default constructor,

460
constructors, 307–309
deque, 306
element type constraints, 309, 323
empty, 323
erase, 326
front, 324
insert, 319
iterator, 316
list, 306
operations, 316–330
performance characteristics, 333
pop_back, 326
pop_front, 326
priority_queue, 348
push_back, 318
push_front, 318
queue, 348
rbegin, 412
rend, 412

resize, 323
returning a, 381
reverse_iterator, 316, 412
size, 323
size_type, 316
stack, 348
supports relational operators, 321
swap, 329
types defined by, 316
value_type, 317
vector, 306

set, 356, 388
as element type, 311
assignment (=), 328
begin, 372
bidirectional iterator, 417
clear, 359
constructors, 372
count, 372
element type constraints, 309
empty, 359
end, 372
equal_range, 379
erase, 359, 372
find, 372
insert, 373
iterator, 374
key type constraints, 360
lower_bound, 377
operations, 358
overriding the default comparison,

604
rbegin, 412
rend, 412
return alternatives, 381
return type from insert, 373
reverse_iterator, 412
size, 359
supports relational operators, 359
swap, 329
upper_bound, 377
value_type, 372

set_difference, 822
set_intersection, 619, 822
set_symmetric_difference, 822
set_union, 822
setfill manipulator, 832
setprecision manipulator, 829
setstate, 289, 290
setw manipulator, 832
shift operator, 155, 190

Index 879

short, 34
short-circuit evaluation, 152

overloaded operator, 508
shorterString, 248
showbase manipulator, 827
showpoint manipulator, 831
signed, 35, 76

conversion to unsigned, 36, 180
size, 108

string, 83
vector, 93
associative container, 359
priority_queue, 352
queue, 352
sequential container, 323
stack, 351

size_t, 104, 108, 146
and array, 113

size_type, 84, 108
string, 84
vector, 93
container, 316

sizeof operator, 167
skipws manipulator, 833
sliced, 579, 622
SmallInt, 536, 550

conversion operator, 537
smart pointer, 495, 503, 553

handle class, 599
overloaded -> (arrow operator) and

* (dereference), 524
overloaded (++) and (*), 526

sort, 401, 817
source file, 4, 29

naming convention, 264
specialization

class template
definition, 675
member defined outside class body,

676
partial, 678
partial specialization, 684

class template member, 677
declaration, 677

function template
compared to overloaded function,

673
declaration, 672, 673
example, 672
scope, 674

template, namespaces, 730

specifier, type, 48, 76
splice, list, 423
sstream

header, 285, 300
str, 301

stable_partition, 817
stable_sort, 403, 817
stack, 348, 354

constructors, 349
relational operator, 350

stack unwinding, 691, 750
standard error, 6, 29
standard input, 6, 29
standard library, 5, 29
standard output, 6, 30
state, condition, 302
statement, 2, 30

break, 212, 223
continue, 214, 223
do while, 210
for, 29, 207
goto, 214, 224
if, 17, 29, 195, 224
return, 245–251
switch, 199, 224
while, 12, 30, 204, 224
compound, 193, 223
declaration, 193, 224
expression, 192, 224
for statementfor, 14
labeled, 214, 224
null, 192, 224
return, local variable, 247, 249

statement block, see block
statement label, 214
statement scope, 194
statementfor statement, for, 14
static (file static), 719
static class member, 467, 474

as default argument, 471
class template, 665

accessed through an instantiation,
666

definition, 666
const data member, initialization,

470
const member function, 469
data member, 469

as constant expression, 471
inheritance, 576
member function, 467

880 Index

this pointer, 469
static object, local, 255, 281
static type, 568, 622

determines name lookup, 590
multiple inheritance, 735

static type checking, 44, 76
argument, 229
function return value, 246

static_cast, 183, 185
std, 8, 30
stdexcept header, 217, 219
store, free, 135, 145
str, 301
strcat, 133
strcmp, 133
strcpy, 133
stream

istream_iterator, 407
ostream_iterator, 407
flushing buffer, 290
iterator, 405, 407–412

and class type, 410
limitations, 411
used with algorithms, 411

not flushed if program crashes, 292
type as condition, 19

stream iterator, 425
strict weak ordering, 360, 389
string, C-style, see C-style string
string, 80–89

addition, 86
addition to string literal, 87
and string literal, 81, 140
append, 342
are case sensitive, 344
as sequential container, 335
assign, 340
assignment (=), 86
c_str, 140
c_str, example, 294
capacity, 336
compare, 347
compared to C-style string, 134
compound assignment, 86
concatenation, 86
constructor, 80, 338–339
default constructor, 52
empty, 83
equality (==), 85
equality operator, 347
erase, 340

find, 344
find_first_not_of, 346
find_first_of, 345
find_last_not_of, 346
find_last_of, 346
getline, 82
getline, example, 300
header, 80
input operation as condition, 82
input operator, 81
insert, 340
output operator, 81
random-access iterator, 417
relational operator, 85, 347
replace, 342
reserve, 336
rfind, 346
size, 83
size_type, 84
subscript operator, 87
substr, 342

string literal, 9, 30, 40
addition to string, 87
and string library type, 81, 140
and C-style string, 140
concatenation, 41

stringstream, 285, 299–301, 302
see also istream
see also ostream
str, 301

strlen, 133
strncat, 133
strncpy, 133
struct, see also class

default access label, 433
default inheritance access label, 574

struct, keyword, 66, 76, 474
in variable definition, 440

structure, data, 20, 28
Studio, Visual, 4
subscript ([]), 87, 108, 146, 389

bitset, 105
deque, 325
map, 363
string, 87
vector, 94, 325
and multi-dimensioned array, 142
and pointer, 124
array, 113
overloaded operator, 522

reference return, 522

Index 881

valid subscript range, 88
yields lvalue, 88

subscript range
string, 88
vector, 96
array, 114

substr, string, 342
subtraction (-), 150

iterator, 101, 313
pointer, 123

swap, 329, 816
container, 329

swap program, 233, 245
swap_ranges, 816
switch statement, 199, 224

default label, 203
and break, 201–203
case label, 201
compared to if, 199
execution flow, 201
expression, 203
variable definition, 204

synthesized assignment (=), 483, 503
multiple inheritance, 737
pointer members, 493

synthesized copy constructor, 479, 503
multiple inheritance, 737
pointer members, 493
virtual base class, 747

synthesized copy control, volatile, 800
synthesized default constructor, 264, 281,

459, 474
inheritance, 581

synthesized destructor, 485, 486
multiple inheritance, 737
pointer members, 493

T
\t (tab character), 40
table of library name and header, 810
template

see also class template
see also function template
see also instantiation
class, 90, 107
class member, see member template
link time errors, 635
overview, 624

template keyword, 625
template argument, 625, 684

and function argument type check-
ing, 638

class template, 628
conversion, 638
deduction, 684

from function pointer, 640
deduction for class template mem-

ber function, 653
deduction for function template, 637
explicit and class template, 636
explicit and function template, 642

and function pointer, 643
specifying, 642

pointer, 671
template argument deduction, 637
template class, see class template
template function, see function template
template parameter, 625, 628–633, 684

and member templates, 663
name, 628

restrictions on use, 629
nontype parameter, 625, 628, 632, 684

class template, 655
must be constant expression, 633

scope, 629
type parameter, 625, 628, 630, 684
uses of inside class definition, 649

template parameter list, 625, 684
template specialization, 672, 684

class member declaration, 677
compared to overloaded function, 673
definition, 675
example, 672
function declaration, 672, 673
member defined outside class body,

676
member of class template, 677
parameter matching, 673
partial specialization, 678, 684
scope, 674

template<>, see template specialization
temporary object, 247
terminate, 219, 219, 224, 692, 750
TextQuery

class definition, 382
main program using, 383
program design, 380
program interface, 381
revisited, 609

this pointer
implicit, 260, 281

882 Index

implicit parameter, 431, 440
in overloaded operator, 483
overloaded operator, 508
static member functions, 469

three, rule of, 485, 503
throw, 216, 216, 224, 689, 750

example, 217, 290
execution flow, 218, 691
pointer to local object, 690
rethrow, 695

tolower, 88
top

priority_queue, 352
stack, 351

toupper, 88
transform, 815
transformation program, word, 370
translation unit, see source file
trunc (file mode), 296
try block, 216, 217, 224, 750
try keyword, 217
type

abstract data, 78, 473
arithmetic, 34, 73
built-in, 3, 28, 34–37
class, 20, 28, 65
compound, 58, 73, 145
dynamic, 568, 622
function return, 281
incomplete, 438, 474
integral, 34, 75
library, 29
nested, see nsted class786
return, 3, 29, 226, 227
static, 568, 622

determines name lookup, 590
name lookup and multiple inher-

itance, 735
type checking, 44

argument, 229
with class type conversion, 541

ellipsis parameter, 244
name lookup, 269
reference to array argument, 240

type identification, run-time, 772–780, 807
type specifier, 48, 76
type template parameter, 628, 630, 684

see also template parameter
type_info, 807

header, 219
name member, 780

no copy or assign, 780
operations, 779
returned from typeid, 776

typedef
and pointer, 129
and pointer to member, 783
pointer to function, 276

typedef, 61, 76
typeid operator, 775, 807

and virtual functions, 775
example, 776
returns type_info, 776

typename, keyword
compared to class, 631
in template parameter, 630
inside template definition, 632

U
U_Ptr, 496
unary function object, 533
unary minus (-), 150
unary operator, 148, 189
unary plus (+), 150
uncaught exception, 692
undefined behavior, 41, 76

dangling pointer, 176
synthesized copy control, 494

invalidated iterator, 315
uninitialized class data member, 459
uninitialized pointer, 117
uninitialized variable, 51

underflow_error, 219
unexpected, 708, 750
uninitialized, 8, 30, 51, 76
uninitialized pointer, 117
uninitialized_copy, 755, 759
uninitialized_fill, 755
union, 792, 807

anonymous, 795, 805
as nested type, 794
example, 794
limitations on, 793

union keyword, 793
unique, 402, 819

list, 423
unique_copy, 412, 820
unitbuf, manipulator flushes the buffer,

291
unnamed namespace, 718, 750

local to file, 718

Index 883

replace file static, 719
unsigned, 35, 76

conversion to signed, 36, 180
literal (numU or numu), 39

unsigned char, 36
unwinding, stack, 691, 750
upper_bound, 814

associative container, 377
book finding program, 378
example, 607

uppercase manipulator, 828
use count, 495, 503

design overview, 495
generic class, 667
held in companion class, 496
pointer to, 600
self-assignment check, 498

user, 433, 563
using declaration, 78, 108, 720, 750

access control, 573
class member access, 574
in header, 80
overloaded function, 728
overloaded inherited functions, 593
scope, 720

using directive, 721, 751
overloaded function, 729
pitfalls, 724
scope, 721

example, 722
name collisions, 723

utility header, 356

V
value initialization, 92, 108

map subscript operator, 363
vector, 92
and dynamically allocated array, 136
dequedeque, 309
listlist, 309
of dynamically allocated object, 175
and resize, 324
sequential container, 309
vectorvector, 309

value semantics, 499, 503
value_type, 389

map, multimap, 361
sequential container, 317
set, multiset, 372

varargs, 244

variable, 8, 30, 43–55
define before use, 44
defined after case label, 204
definition, 48
definitions and goto, 215
initialization, 48, 50, 76

constructor, 452
local, 227, 281
scope, 55

Vector, 757
capacity, 757
memory allocation strategy, 757
push_back, 758
reallocate, 758
size, 757
using operator new and delete,

761
using explicit destructor call, 763
using placement new, 762

vector, 90–95, 354
argument, 237
as element type, 311
assign, 328
assignment (=), 328
at, 325
back, 324
begin, 97, 317
capacity, 331
clear, 327
const_iterator, 99, 316
const_reference, 317
const_reverse_iterator, 316
constructor from element count, uses

copy constructor, 478
constructor taking iterators, 140
constructors, 91–92, 307–309
difference_type, 316
element type constraints, 309, 323
empty, 93, 323
end, 97, 317
erase, 326, 402

invalidates iterator, 326
front, 324
header, 90
initialization from pointer, 140
insert, 319

invalidates iterator, 320
iterator, 97, 316
iterator supports arithmetic, 312
memory allocation strategy, 756
memory management strategy, 330

884 Index

parameter, 237
performance characteristics, 334
pop_back, 326
push_back, 94, 318

invalidates iterator, 321
random-access iterator, 417
rbegin, 317, 412
reference, 317
relational operators, 321
rend, 317, 412
reserve, 331
resize, 323
reverse_iterator, 316, 412
size, 93, 323
size_type, 93, 316
subscript ([]), 325
subscript operator, 94
supports relational operators, 313
swap, 329
type, 91
types defined by, 316
value_type, 317

vector capacity program, 331
viable function, 270, 282

with class type conversion, 545
virtual base class, 741, 751

ambiguities, 743
conversion, 743
defining base as, 742
derived class constructor, 744
name lookup, 743
order of construction, 746
stream types, 741

virtual function, 559, 566–570, 622
assignment operator, 588
calls resolved at run time, 568
compared to run-time type identifi-

cation, 777
default argument, 570
derived classes, 564
destructor, 587

multiple inheritance, 736
exception specifications, 710
in constructors, 589
in destructor, 589
introduction, 561
multiple inheritance, 735
no virtual constructor, 588
overloaded, 593
overloaded operator, 615
overriding run-time binding, 570

pure, 596, 622
example, 609

return type, 564
run-time type identification, 772
scope, 594
static, 469
to copy unknown type, 602
type-sensitive equality, 778

virtual inheritance, 741, 751
virtual keyword, 559
Visual Studio, 4
void, 34, 76

return type, 245
void*, 119, 146

const void*, 127, 145
volatile, 800, 807

pointer, 800
synthesized copy control, 800

vowel counting program, 200

W
wcerr, 286
wchar_t, 34

literal, 40
wchar_t streams, 286
wcin, 286
wcout, 286
weak ordering, strict, 360, 389
wfstream, 286
what, see exception
while statement, 12, 30, 204, 224

condition in, 205
whitespace, 81
wide character streams, 286
wifstream, 286
window, console, 6
Window_Mgr, 465
wiostream, 286
wistream, 286
wistringstream, 286
wofstream, 286
word, 35, 76
word count program, 363

restricted, 374
word per line processing

istringstream, 386
istringstreamistringstream, 370

istringstream, 300
word transformation program, 370
WordQuery, 609

Index 885

definition, 616
wostream, 286
wostringstream, 286
wrap around, 38
wstringstream, 286

X
\Xnnn (hexadecimal escape sequence), 40

Z
ZooAnimal, using virtual inheritance, 741
ZooAnimal class hierarchy, 731

	Preface
	Chapter 1 Getting Started
	1.1 Writing a Simple C++ Program
	1.1.1 Compiling and Executing Our Program

	1.2 A First Look at Input/Output
	1.2.1 Standard Input and Output Objects
	1.2.2 A Program that Uses the IO Library

	1.3 A Word About Comments
	1.4 Control Structures
	1.4.1 The while Statement
	1.4.2 The for Statement
	1.4.3 The if Statement
	1.4.4 Reading an Unknown Number of Inputs

	1.5 Introducing Classes
	1.5.1 The Sales_itemClass
	1.5.2 A First Look at Member Functions

	1.6 The C++ Program
	Chapter Summary
	Defined Terms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

