CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction to Computer Forensics</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Tracking an Offender</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>The Basics of Hard Drives and Storage Media</td>
<td>65</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Encryption and Forensics</td>
<td>83</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Data Hiding</td>
<td>105</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Hostile Code</td>
<td>129</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Your Electronic Toolkit</td>
<td>149</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Investigating Windows Computers</td>
<td>177</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Introduction to Unix for Forensic Examiners</td>
<td>207</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Compromising a Unix Host</td>
<td>245</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Investigating a Unix Host</td>
<td>263</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Introduction to the Criminal Justice System</td>
<td>311</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Conclusion</td>
<td>325</td>
</tr>
<tr>
<td>Appendix</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>Internet Data Center Response Plan</td>
<td>327</td>
</tr>
<tr>
<td>B</td>
<td>Incident Response Triage Questionnaire</td>
<td>353</td>
</tr>
<tr>
<td>C</td>
<td>How to Become a Unix Guru</td>
<td>363</td>
</tr>
<tr>
<td>D</td>
<td>Exporting a Windows 2000 Personal Certificate</td>
<td>367</td>
</tr>
<tr>
<td>E</td>
<td>How to Crowbar Unix Hosts</td>
<td>375</td>
</tr>
<tr>
<td>F</td>
<td>Creating a Linux Boot CD</td>
<td>377</td>
</tr>
<tr>
<td>G</td>
<td>Contents of a Forensic CD</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Annotated Bibliography</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>385</td>
</tr>
</tbody>
</table>
Billions of dollars are lost annually to crime, and computers are increasingly involved. It is clear that law enforcement agencies need to investigate digital evidence, but does it make sense to encourage a bunch of computer administrators to become junior g-men? Do we really need amateur digital sleuths? In a word, yes. Bad things are happening on computers and to computers, and the organizations responsible for these computers have a need to find out what exactly happened. You probably cannot pick up the phone and bring in law enforcement officials every time something anomalous happens on one of your servers and expect them to send out a team of forensic specialists, and even if you could, your corporate executives may not want that. All major corporations have internal security departments that are quite busy performing internal investigations. However, the security professionals who typically fill this role are accustomed to dealing with theft and safety issues and are often ill-prepared to deal with computer crime.

This book is inspired by the needs of the people who attend the author’s seminars on computer forensics. If for no other reason than these sold-out seminars, we know that there is a big demand for greater expertise in digital investigations. System administrators and corporate security staff are the people we’ve designed the book for. Most of the seminar attendees are fairly skilled in the use and maintenance of Microsoft environments. Some of them are Unix specialists, but many students have expressed a strong desire to learn more about Unix. Once a corporation discovers that they know someone who can investigate Windows incidents, it is assumed that he or she knows everything about computers, and it is usually only a matter of time until this person is pressured into taking a look at a suspect Unix system.

Our students come from a wide variety of backgrounds and have diverse investigatory needs and desires. We try to accommodate these varying agendas in this book, to which we bring our experience in investigation and incident response. Warren Kruse is a former police officer who regularly performs computer forensic examinations inside and outside of Lucent Technologies. Jay Heiser is an information security consultant who has been on the response teams for numerous hacked Internet servers. To the maximum extent possible, this book contains everything useful that we’ve learned from performing investigations and teaching others to do so for themselves. We know what questions will be asked, and this book is designed to answer them. It is a practical guide to the techniques used by real people to investigate real computer crimes.
How to Read This Book

This book can be read cover to cover, as a complete introductory course in computer forensics. However, it is also meant to serve as a handbook, and we expect many readers to be familiar with some of the subjects we cover. For that reason, each chapter is a complete unit and can be read when convenient or necessary. You probably specialize in one or more of the areas covered in this text. However, we believe that the information presented in this book is at the minimum required level of legal and computer literacy, and we urge you to become knowledgeable in all of the areas we cover: legal, procedural, and technical.

A brief description of the information covered in each chapter is provided in the sections that follow.

Introduction to Computer Forensics

Chapter 1 outlines the basic process of evidence collection and analysis, which is the meat of computer forensics. Even those readers with a background in law enforcement will find new techniques in this chapter that are specific to computer forensics.

Tracking an Offender

The Internet is pervasive, and a high percentage of your investigations will involve either incoming or outgoing Internet traffic. The material in Chapter 2 will help you interpret the clues inside of email messages and news postings. It will also start you on the path toward becoming an Internet detective, using standard Internet services to perform remote investigations.

The Basics of Hard Drives and Storage Media

For the computer sleuth, hard drives are the most significant containers of evidence. Chapter 3 provides an understanding of both their logical and their physical configurations. It covers partitions and low-level formatting, filesystems, and hardware drive interfaces.

Encryption and Forensics

Cryptography has become ubiquitous in the virtual world of the Internet. A skilled investigator must have a solid understanding of the technology and goals of modern
cryptography. It is relevant both in understanding evidence and, interestingly, in the preservation of evidence. Many investigators lack a necessary level of crypto-literacy, so Chapter 4 provides a broad introduction to encryption with special emphasis on its significance and application in computer forensics. We also discuss common encoding and archiving formats (such as uuencode and PKZIP) that can complicate your keyword searches. As digital signature technology grows in legal significance and finds new uses, forensic investigators will be expected to understand its limitations and must have a firm grasp of the ways in which a digital identity can be stolen. The digital timestamping of forensic evidence will soon become standard procedure in digital investigations. If you already have a background in these encryption concepts, then you may wish to skim this chapter.

Data Hiding

Being able to find hidden data is a crucial investigative skill. Even if you are highly crypto-literate, you still may not be aware of steganography (the art of hiding information by embedding covert messages within other messages) and other data-hiding techniques. Continuing the subject of encryption, Chapter 5 describes the use of specific password-cracking tools that we have successfully used during our investigations. This chapter categorizes and describes the ways that data can be hidden—not just by encryption—and provides practical guidance on how to find and read hidden data.

Hostile Code

Being able to identify and understand the implications of criminal tools is a skill that every investigator needs. Given that hostile code can be arcane and that few readers have a background in it, Chapter 6 provides an introduction to the topic and an overview of the types and capabilities of digital criminal tools that the investigator may encounter. We’ve included a couple of war stories involving the recent use of “hacker tools” on corporate PCs, which is becoming increasingly common.

Your Electronic Toolkit

Although forensic-specific tools have a certain James Bond–like appeal—and we cover these products—a large percentage of your work will be done with system tools that were not specifically created for the unique needs of forensic investigation. Chapter 7 will introduce you to a wide variety of utility types and specific brand name tools, along with instructions in their use in a digital investigation.
Investigating Windows Computers

Microsoft Windows, in all its various flavors, is the most widely used family of operating systems. While Chapter 8 assumes some background in Windows, you don’t need to be a Microsoft Certified Systems Engineer in order to apply the techniques and tricks we discuss. Emphasis is placed on Windows NT 4.0 and Windows 9x, but several important new Windows 2000 features, such as the Encrypting File System, are covered. An experienced investigator soon learns that nothing is too obsolete to be in daily use somewhere, so the chapter concludes with Windows 3.1–specific material.

Introduction to Unix for Forensic Examiners

For those readers with no prior Unix experience, Chapter 9 provides an introduction with special emphasis on Unix characteristics that are most significant for the forensic investigator. Experienced Unix users can skim or skip this chapter.

Compromising a Unix Host

Chapter 10 is intended as background material for the investigation of hacked Internet hosts. It describes the process that Unix attackers typically use and provides an understanding of the goals of typical system hackers.

Investigating a Unix Host

While emphasizing the investigation of hacked Unix hosts, Chapter 11 describes techniques that are applicable to all forms of Unix investigation. It contains a detailed set of Unix-specific techniques and processes that use common Unix utilities for collecting and evaluating evidence. It also contains instructions on using a Unix boot CD to capture information over a network when you can’t attach hardware directly to a suspect system.

Introduction to the Criminal Justice System

The final chapter explains what you need to do after you have begun collecting evidence and provides an overview of the criminal justice process. Legal concepts such as affidavits, subpoenas, and warrants are described. You will be a more effective interface between your organization and law enforcement agents if you understand
what they do and how both investigations and prosecutions are structured by the legal system.

Appendixes

As in most books, the appendixes in this one contain information that doesn’t fit neatly anywhere else. They are standalone guides to specific needs.

Appendix A, Internet Data Center Response Plan, defines a process for handling computer security incidents in Internet Data Centers.

Appendix B, Incident Response Triage, provides a list of general questions that should be asked during the investigation of a computer crime incident.

Appendix C, How to Become a Unix Guru, provides self-study suggestions for forensic examiners who want to improve their ability to investigate Unix hosts.

Appendix D, Exporting a Windows 2000 Personal Certificate, graphically depicts the process of exporting a Personal Certificate from a Windows 2000 computer. Investigators should practice this process to prepare themselves for incidents involving the Encrypted File System.

Appendix E, How to Crowbar Unix Hosts, describes the process of gaining administrative access to a Unix system by booting it from a floppy or CD.

Appendix F, Creating a Linux Boot CD, provides several suggestions on techniques and technology sources that are useful in the creation of bootable Linux CDs that can be used to crowbar Unix or NT systems. Booting from a Linux CD can also provide a trusted environment useful for examining or collecting evidence when it is not feasible to remove the hard drive from a system.

Appendix G, Contents of a Forensic CD, provides a shopping list of useful tools that should be considered the minimum set of forensic utilities that an examiner brings during an incident response.
In this age of pervasive connectivity, it is unrealistic to expect cyber crime incidents to be isolated to a single system. Like characters in a William Gibson novel, cyber sleuths often have to track offenders across the digital matrix. While the techniques of network forensics are still largely undeveloped, it would be a disservice to devote an entire book to computer forensics without any discussion of Internet methods that you can use to find leads to suspect computers.

When tracking cyber offenders across the Internet, you use many of the same software tools that system and network administrators use to monitor and test network connectivity. Many of these programs are included in modern operating systems, and you may already be familiar with them. Even if you are already comfortable with the tools we discuss in this chapter, you may not have considered their use during an investigation. Unfortunately, many of our most common Internet application protocols make no provisions for strongly authenticating the transmitter of a communication. Services like email and Usenet are based on simple text-based initiation protocols and basically use the honor system. This complicates investigations because you cannot necessarily trust the identification information contained within Internet messages. The better you understand the underlying protocols and processes, the better you can evaluate the validity of the names and Internet addresses associated with Internet communications.

Internet Fundamentals

This book is intended to be an introduction to computer investigations, not to TCP/IP. If you want to be an effective network tracker, you need a thorough understanding of the Internet protocol suite. Many books are available on this subject. W. Richard Stevens’ three-volume set, *TCP/IP Illustrated*, published by Addison-Wesley (1993, 1995, 1996), is considered one of the definitive references. The more comprehensive and detailed your understanding of Internet technology, the greater your skill at investigating network-enabled crime.
The Internet and many private networks run a set of protocols commonly referred to as TCP/IP, which stands for Transmission Control Protocol/Internet Protocol. The label “TCP/IP” is a convenient abbreviation for a set of related network protocols, the development of which effectively started in the late 1960s and is ongoing today. More precisely referred to as “the Internet protocol suite,” it is a set of communication conventions that a device must implement in order to participate on the Internet. TCP/IP is not specific to any operating system, programming language, or network hardware. It is an equal opportunity set of standards that enables Macs, Windows, Unix, routers, switches, and a variety of mainframe environments to communicate with each other. It is not specific to network topology, meaning that Ethernet, token ring, and wireless networks can also interoperate. This universal interoperability is a prerequisite to both modern computer crime and investigations.

Plenty of books and essays exhaustively discuss the Open Systems Interconnection (OSI) seven-layer Network Reference model, so we won’t spend a great deal of time on it. The model is illustrated in Figure 2-1. The original seven-layer model was conceived as an abstraction that didn’t apply to any currently existing technology—especially not the burgeoning suite of Internet protocols—and the exact labeling of Internet services and protocols within this model continues to be a matter of tremendous debate (especially the session and presentation layers). But it is a debate of no consequence because after all, the Internet still functions whatever abstract labels are assigned to its protocols. The important lesson to learn from this model is that certain infrastructural services provide the foundation for the actual file sharing and distributed applications that are the reason the network exists in the first place. These services are stacked on top of each other like Lego building pieces.

Figure 2-1 OSI seven-layer model
blocks. Its relevance to forensic investigations is that you cannot interpret evidence without understanding its place within the hierarchy of stacked services. Let’s look at a concrete example to see how this layering works.

You might not have realized that when you send and receive email, you are dealing with three different addresses, each within a different network layer. Every network interface has a unique hardware address burned into it at the factory. This address is called the MAC (media access control) address. (We discuss an unusual use Microsoft makes of this address in Chapter 8.) This address enables all of the devices on a LAN segment—those devices that can see each other’s network traffic—to refer to each other. At the network layer, devices recognize traffic intended for themselves on the basis of the MAC addresses incorporated within the chunks of data on the network, which are called packets. It is entirely impractical for every device on the Internet to refer to devices outside of their LAN segment by this hardware address, so when a computer joins the Internet, it has a numeric IP address assigned to it. An IP address is usually written as a series of four numbers in the range 0–255, separated by dots, such as 192.168.0.55.

Certain IP addresses, or ranges of addresses, are reserved for special purposes. For example, IP addresses that end with 0 denote a network address, such as 192.168.0.0. An IP address that ends with 255 denotes a broadcast address, such as 192.168.0.255. “Private addresses” in the 192.168.0.0 to 192.168.255.255 range may be used on internal networks. These addresses “are intended for intra-enterprise communications, without any intention to ever directly connect to other enterprises or the Internet itself.” When tracking offenders, if you locate an address within this range, don’t pack your bags for California (the location of the Internet Assigned Numbers Authority); you have to determine the suspects’ external IP address to locate them.

An Internet address actually contains two parts. The network portion is unique among all the networks interconnected to the LAN segment (which often means the entire Internet), and the host section is unique among all the devices using the same network portion. The effect is that all IP addresses on the Internet are both unique and identifiable as being within a specific network. Private networks use addressing that is unique within their networks, but any two private networks can use the same “address space” as long as they are not interconnected to each other.

The uniqueness of addresses and the distinction between network and host portions of the address make it practical for routers to know where to route to. Entire books have been written about routing. For our simplified purposes, routers are

1. From RFC 1918. (For more information on private addresses, see http://www.isi.edu/in-notes/rfc1918.txt.)
devices that automatically forward your data packets to another network when the
destination is not your network. Routers base their decision on where to forward
your packet on current conditions and their programmed instructions—routers do
whatever is most expedient, which means that the route between any two points can
change. This is completely different from the Public Switched Telephone Network
(PSTN). When you make a telephone call, the switches within the PSTN sequen-
tially establish a circuit from end to end, and it is maintained throughout the dura-
tion of the call. On the Internet, it may often seem as if you are using a circuit, but
the actual path taken by each individual packet is dependent upon the whims of the
intermediate routers.

The network part of an Internet address is assigned by the Internet Assigned
Numbers Authority (IANA) to each network owner, and the host part is assigned to
individual hosts and devices by the network owner. The network may be run by an
organization (business or government agency), or it may be run by an Internet ser-
vice provider (ISP) to provide Internet access to its customers. In the latter case, the
IP addresses may be used by individuals or multiple organizations. Because IP
addresses are used for routing, when a device is moved to a new network, it often
requires a new address.

IP address can be statically or dynamically assigned. Computers that are
assigned a static IP address always use the same IP address until it is manually
changed to a new address, which is becoming increasingly less convenient in a time
of constant reorganizations and mobile computers. Dynamic addresses are autom-
atically assigned to a computer when it registers itself on a network using a protocol
called Dynamic Host Configuration Protocol (DHCP) or Windows Internet Naming
Service (WINS), a Microsoft protocol that is rapidly becoming obsolete. For network
administrators, DHCP neatly solves the tedium and confusion of manually assign-
ing constantly moving Internet devices. Virtually all ISPs use DHCP to assign
addresses to their dial-up customers, and many permanently connected home users
have dynamically assigned addresses that can change whenever their cable modems
are powered off and on. Use of DHCP is definitely on the increase, but unfortunately,
DHCP makes detective work a little more difficult.

Reading Obfuscated IP Addresses

Those who send spam, unsolicited commercial junk mail, usually try to keep
their true identities secret—otherwise, they would be overwhelmed by dis-
gruntled Internet citizens who wish to retaliate. In addition to using a bogus
return email address, they often include obfuscated URLs. Instead of having
a human-readable name, or the dotted-decimal format such as 135.17.243.191,
a URL may appear in 10 Digit Integer Format (base 256), so it appears like
this: http://2280853951.
It’s fairly easy to convert a number in this format back into the normal quad format so that you can research the ownership of a Web site.

1. Open Windows Calculator in scientific mode (in the Calculator window, choose View | Scientific).
2. Convert 2280853951 to hexadecimal format = 87F311BF.
3. Now convert each pair to decimal notation and add the dots:
 - 87 = 135
 - F3 = 243
 - 11 = 17
 - BF = 191
 - 135.17.243.191

Dotted Quad to 10 Digit Decimal (base 256):
Dotted Quad format: A.B.C.D = 10 Digit Decimal #
A(256³) + B(256²) + C(256¹) + D =

Example:
185.127.185.152 =
185(256³) + 127(256²) + 185(256¹) + 152 =
3103784960 + 8323072 + 47360 + 152 = 3112155544

Or if you hate math like we do, the easiest way to convert is to let ping or traceroute do it for you. Running ping or traceroute on the 10 Digit Decimal Number will resolve its Dotted Decimal notation, showing you the dotted quad format equivalent. For example:

C:\>ping 2280853951
Pinging 135.17.243.191 with 32 bytes of data:

In case you were worried that we hadn’t figured out what to do with media address control (MAC) addresses, don’t worry, we still need them. Remember that devices on the same LAN segment are somewhat on a first-name basis. They don’t refer to each other by the formal IP addresses used on the Internet. However, the MAC address is used only at the hardware layer, so when a process or application “up the stack” specifies another device on a network segment by IP address, it has to be translated into a MAC address. This is done by looking it up in the ARP table, which is automatically created by the Address Resolution Protocol. ARP is just one
of a number of network services that run in the background, invisible to most users but essential to the operation of a network. Networked computers can be quite chatty, constantly comparing notes on routing tables, network conditions, and each other’s presence.

There is a common belief that because MAC addresses are burned into the network interface card (NIC), they never can be changed. The MAC address can be changed by using the ifconfig command in Unix. Given that MAC addresses are sometimes used to identify the source of hostile activity, it should also come as no surprise that programs are available that can randomly change a MAC address. Don’t automatically assume that a piece of equipment is useless as evidence because its MAC is different than you expected. The MAC you are seeking may have been changed through software, or the NIC may have been changed.

You probably already have used the most common tool for network debugging, ping. (By the way, the name is not an acronym; it is a reference to the underwater echolocation system called SONAR.) ping is a simple, yet greatly valuable program, that uses Internet Control Message Protocol’s ECHO_REQUEST datagram. This datagram sends a request to the target machine and listens for an ICMP response. You can use ping to determine when a machine is alive and sometimes the DNS name of the machine. If you want to continuously keep checking for a “live” machine, you can use a program like What’s Up Gold. With this program and others, you can input the IP address, and at preset intervals, it automatically checks to ensure that a specific service on a specific host is still reachable. Be aware that ping is a relatively noisy process—it is easily detected by the remote system. Assume that a moderately savvy Internet criminal may be monitoring all forms of connection to his or her host, so don’t ping someone when you don’t want that person to know about it.

Domain Name Service (DNS)

We expect computers to refer to each other by numbers—not by name. Unfortunately, most humans don’t do as well with numbers and prefer to use names that can be easily remembered, spoken, and typed, such as www.cia.gov or www.amazon.com. To accommodate this difference between humans and machine, the Domain Name Service (DNS) was developed. Internet DNS is effectively a huge global database, usable from any point in the Internet and capable of mapping human-readable names such as www.lucent.com to a corresponding numeric IP address. This process is called *domain name resolution*. Use of domain names and associated IP address

ranges is controlled by the Internet Corporation for Assigned Names and Numbers (ICANN) through accredited registrars. The owner of each domain is responsible for placing all host names and corresponding IP addresses on a name server so that outsiders can resolve their names. Most name servers also support reverse lookups, which is the process of providing the human-readable domain name that corresponds to a specific numeric IP address. Many Internet applications perform reverse lookups as a simple security measure, checking to ensure that the IP address associated with an incoming connection attempt is associated with a registered domain name—a weak but useful test.

The domain name server responsible for a particular domain may resolve any query with any IP address. The IP address may not be one within an IP address range assigned to that organization, and that doesn't matter. The owners of a particular domain, such as rubblebbq.com, may choose to host their Web site at someone else’s facility. In this case, the specific machine, www.billybob.com, won’t have an IP address contiguous with the rest of rubblebbq.com. This provides a great deal of flexibility, allowing organizations to move their machines from network to network, changing Web host service providers or ISPs without having to change their human-readable domain names.

Another type of network tool that will be useful to you in tracking an offender is one that can be manually used to resolve a domain name. The classic tool for this purpose, nslookup, is available on Unix, Windows NT, and Windows 2000. You can use nslookup to perform both forward and reverse lookups, resolving the IP address associated with a specific host name or obtaining the name associated with a numeric address.

In order to use a domain name, the owner must register it with the appropriate authority—a task that is usually facilitated by an ISP or one of several online services. At the time of registration—and ideally whenever it is changed—the owner of the domain is required to include name and contact information for a domain administrator. This person is expected to respond to email messages or telephone calls regarding activities associated with his or her domain. It should come as no surprise that these people are frequently not easy to contact. The whois utility can be used to obtain contact information on a specific domain from a server maintained by the appropriate Internet naming authority. Remember that whois information is furnished by the person who provided the registration information. It isn’t really verified for accuracy; either through deliberate deception or an innocent mistake, it is possible to register an address and include inaccurate or totally false contact names, addresses, and phone numbers.

After pinging a system that we’re researching (from a computer that is not going to resolve to our company in case the suspect is watching his or her network), we like to perform a whois just to see what comes up, keeping in mind that the information can be bogus. You don’t have to have a whois utility on your workstation because several sites enable you to perform a whois over the Web. One of the most popular is the Sam Spade Web site. Another popular and reliable Web-based whois service is provided by Network Solutions.

After we perform a whois, we like to follow up with an inverse name server lookup to see what it provides and compare the results to the whois output. The inverse lookup can be accomplished on a Unix or Linux machine (or with software such as NetScanTools Pro for Windows) with either the nslookup or the dig –x command, and Sam Spade provides reverse lookup services also. You can use dig on an IP address like this:

```
dig –x @123.456.789.000
```

or

```
dig –x %domainname.com
```

dig is an alternative to nslookup, but we usually run nslookup again just to compare the results to all the previous queries.

After we have obtained contact information using the tools previously described, we usually run traceroute (or tracert) to see what route the packets are taking to get to their destination. Like ping, this handy utility sends your packets to the computer you are examining, so don’t use it if you don’t want to tip off the suspect that you are watching. We use the results from traceroute to help confirm or question the results of whois (see the example in Figure 2-2). For example, if the site is registered to the Netherlands but traceroute takes a few hops and stops at an ISP in Philadelphia, we might suspect that something is amiss. Be aware that many corporations have their Web sites hosted by an ISP, and not necessarily an ISP in their home town—or even their home country.

We're almost done with our discussion of Internet addresses—we just have one more layer to discuss: application addresses. Email, Web browsing, ICQ, and Internet Relay Chat (IRC) are just a few of the services that have their own application-specific addressing. When you send email, you know to use a two-part address that includes both a mailbox and a domain, such as wkruse@computer-forensic.com. You can't send email to wkruse, nor can you just send it to computer-forensic.com—you need to specify both in order for a message to reach a destination.

Another ubiquitous form of Internet addressing that includes both domain- and

<table>
<thead>
<tr>
<th>Number</th>
<th>Time</th>
<th>Time</th>
<th>Time</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240 ms</td>
<td>231 ms</td>
<td>220 ms</td>
<td>208.164.95.36</td>
</tr>
<tr>
<td>2</td>
<td>260 ms</td>
<td>230 ms</td>
<td>211 ms</td>
<td>lonukr1-e0.ins.com [208.164.95.1]</td>
</tr>
<tr>
<td>3</td>
<td>330 ms</td>
<td>371 ms</td>
<td>380 ms</td>
<td>svlcar1-s3-30.ins.com [192.168.200.129]</td>
</tr>
<tr>
<td>4</td>
<td>511 ms</td>
<td>491 ms</td>
<td>420 ms</td>
<td>192.168.210.2</td>
</tr>
<tr>
<td>5</td>
<td>460 ms</td>
<td>411 ms</td>
<td>461 ms</td>
<td>svlcar3-fe0.ins.com [192.168.100.3]</td>
</tr>
<tr>
<td>6</td>
<td>451 ms</td>
<td>411 ms</td>
<td>491 ms</td>
<td>charon-inner.ins.com [199.0.207.49]</td>
</tr>
<tr>
<td>7</td>
<td>501 ms</td>
<td>651 ms</td>
<td>510 ms</td>
<td>svlcar6-e0.ins.com [199.0.207.34]</td>
</tr>
<tr>
<td>8</td>
<td>431 ms</td>
<td>450 ms</td>
<td>511 ms</td>
<td>bordercore1-serial5-0-0-13.SanFrancisco.cw.net [166.48.12.53]</td>
</tr>
<tr>
<td>9</td>
<td>420 ms</td>
<td>441 ms</td>
<td>491 ms</td>
<td>corerouter1.SanFrancisco.cw.net [204.70.9.131]</td>
</tr>
<tr>
<td>10</td>
<td>510 ms</td>
<td>501 ms</td>
<td>501 ms</td>
<td>corerouter2.WestOrange.cw.net [204.70.9.139]</td>
</tr>
<tr>
<td>11</td>
<td>521 ms</td>
<td>511 ms</td>
<td>511 ms</td>
<td>hs-core7-loopback.WestOrange.cw.net [166.49.67.97]</td>
</tr>
<tr>
<td>12</td>
<td>501 ms</td>
<td>501 ms</td>
<td>571 ms</td>
<td>savvis-communications-hou.WestOrange.cw.net [166.49.67.106]</td>
</tr>
<tr>
<td>13</td>
<td>551 ms</td>
<td>511 ms</td>
<td>561 ms</td>
<td>216.90.236.210</td>
</tr>
<tr>
<td>14</td>
<td>581 ms</td>
<td>560 ms</td>
<td>491 ms</td>
<td>204.179.152.52</td>
</tr>
</tbody>
</table>

Trace complete.

Figure 2-2 Example traceroute output

Application Addresses

We're almost done with our discussion of Internet addresses—we just have one more layer to discuss: application addresses. Email, Web browsing, ICQ, and Internet Relay Chat (IRC) are just a few of the services that have their own application-specific addressing. When you send email, you know to use a two-part address that includes both a mailbox and a domain, such as wkruse@computer-forensic.com. You can’t send email to wkruse, nor can you just send it to computer-forensic.com—you need to specify both in order for a message to reach a destination.

Another ubiquitous form of Internet addressing that includes both domain- and
application-specific information is the Universal Resource Locators (URLs) used with Web browsers. For instance, the URL http://www.lucent.com/services provides three types of information. The letters “http://” indicate the application protocol, which in this case is Hypertext Transfer Protocol (HTTP). “www.lucent.com,” of course, represents a specific numeric IP address, and “services” points to a specific page.

Stalking the Stalker

When using programs such as ping, and some of the scanning tools, keep in mind that their use may easily tip off even a novice computer crook that he or she is under investigation. In the online world of spy versus spy, you often use the same tools to track an intruder that an intruder uses. Clever attackers are like careful scouts. Those who suspect that they are being tracked will try to cover their tracks (see Chapter 10), and they also sometimes will backtrack to see if someone is following them. Skillful hackers carefully monitor systems they’ve compromised for signs of unwelcome attention. If your goal is to track and catch your prey, you don’t want to be blasting away at the suspect’s box—especially from machines that easily resolve back to your company’s name. To use the SONAR analogy, there are both passive and active surveillance techniques. ping and traceroute are active and cannot be hidden from the object of the scan. While pings cannot be hidden from the object of the ping, it is easy enough to perform the scans from a system that isn’t obviously associated with your organization. You can maintain a few accounts with a dial-up ISP for just this purpose. When it’s time to start investigating, unplug the workstation, set it for DHCP, dial your ISP, and you’re off the company network. The intruder who has been breaking into CorpNet does not suddenly see CorpNet probing back.

A Dial-Up Session

Now that you have an understanding of some Internetworking basics, let’s take a look at how a typical Internet dial-up session works (see Figure 2-3). When you dial to an ISP with a modem, you might use a layer 3 protocol called Point to Point Protocol (PPP). Referring back to Figure 2-1, layer 3 is the network layer, and in the case of a dial-up connection, PPP replaces IP. Connectivity is not automatic, though. A dial-up session must first be authenticated, and then an IP address is assigned. The modem at the ISP’s Point of Presence (POP) is directly connected to—or even a component within—a router that is designed to accommodate PPP connections. When a connection attempt occurs, the dial-up router first prompts the user for a login name and password. A single ISP may have hundreds of POPs spread over an entire continent—
it is certainly not practical for each dial-up router to maintain a list of all users and their encrypted passwords. A centralized directory contains this list, and the RADIUS protocol is used to support the authentication request between the dial-up routers and the centralized user directory.

After a user is authenticated to the ISP, an IP address is dynamically assigned to that user with DHCP. Although it is possible for individual subscribers to have their own permanently assigned IP addresses, such an inefficient use of valuable IP address space is virtually unheard of. The IP address is almost always associated with a DNS name, allowing reverse lookups. The name will be something generic, such as ppp589.city.isp.com.

RADIUS is used not just for authentication; it is also used for accounting. The RADIUS server is normally the only ISP device that maintains records that can be used to track an offender, so it is very important to your investigation. The server normally maintains records of every login attempt, both successful and unsuccessful, and also every logoff or session end. This information is necessary so the ISP can keep track of subscriber connection time. The information associated with a RADIUS session also includes the IP address assigned to a specific login during a session, and ISPs often use caller ID to keep track of the telephone number used to originate the session. This allows the ISP to determine which login name was using a specific IP address at a specific time, but the association of this login with a specific individual is only as good as the authentication mechanism. Most dial-up accounts authenticate with reusable passwords, and it is common for cyber criminals to guess
or otherwise steal passwords (most subscribers have no way of knowing that their accounts are sometimes being abused by someone else). America Online (AOL) users have been especially prone to ID theft, and AOL is just one of many ISPs that provide free trial accounts that are frequently associated with phony names.

Because the RADIUS logs are used for accounting purposes, an ISP has to maintain them for at least a one-month billing cycle. In practice, ISPs keep them for periods of up to a year in order to respond to customer complaints about billing mistakes. Even relatively small ISPs are used to responding to court orders that require providing the Internet equivalent of a trap and trace record. According to Lucent consultant Aaron Higbee, who has worked with the abuse departments of several large Internet service providers:

ISP do not like abusers because their mischief affects the bottom line and gives the ISP a black eye within the Internet community. If you want to identify an abuser, these are the necessary steps:

1. Document the abuse with dates, time, time zone, and logs.
2. Send the logs as a complaint to abuse@isp.com.
3. Follow up your email with a phone call. (Do not call a tech support or customer service line.) Ask for the legal department’s fax number or ask to speak directly with the abuse/security department.
4. Fax the same logs to the legal staff and let them know that you will follow up your complaint with a court-ordered subpoena for any and all subscriber information including all captured caller IDs.

You must assume the subscriber information is fraudulent unless the account has a bill payment history and the session in question can be pinpointed as originating in the same calling area as the rest of the subscriber’s usage history. If you are lucky, the caller ID will be captured for the session you are interested in. You then subpoena the local phone company for subscriber information for the phone number that was captured in the caller ID. Sometimes reverse telephone lookup sites like http://www.anywho.com/telq.html can give you clues as to who you are tracking, but the definitive answer will come from the subpoenaed subscriber information.

You might think the biggest problem with obtaining information from ISPs would be the result of the terms of service and confidentiality agreements that most service providers have with their customers. But to the contrary, most service providers are willing to assist you because they do not want anyone misusing their system. In a prominent privacy case several years ago, AOL was sued by a subscriber who accused the company of illegally providing sensitive personal information to a law enforcement agency, so ISPs are now very sensitive to the correct legal procedures.

When you obtain the information from the service provider, keep in mind that the subscriber information can be completely bogus. There is little to no authentication
for any of the information associated with the subscriber. The value of the information is in determining the telephone number that was used to connect to the ISP. If you can obtain the phone number and the date and time that a session was set up, you are yet another step closer to finding your suspect. You can then start the subpoena process again and try to find other connections originating from that same phone number. This still might not lead directly to your suspect, but you’re getting closer and closer to a suspect who thought he or she was well hidden by the free service.

Tracing Email and News Postings

Before heading down the messaging path and looking for tracks in the sand, let’s quickly discuss how these messaging services operate. News groups and email are cousins. Descending from original siblings on pre-Internet Unix systems, they have continued to evolve in parallel, with much sharing of genetic material. Both services have the following attributes:

- Simple Internet application protocols that use text commands
- Store-and-forward architecture allowing messages to be shuttled through a series of intermediate systems
- Message body composed entirely of printable characters (7-bit, not 8-bit)
- Human-readable message headers indicating the path between sender and receiver

You’ll need the assistance of systems administrators, perhaps on every system the message transited, and they won’t be able to help you unless they have logging information on their messaging hosts. If the originator wants to cover his or her tracks, determining the real sender of either bogus news postings or suspicious email can be challenging. News is probably a bit easier, but email is more common today, so let’s start with it.

Tracking Email

An email program such as Outlook, Notes, or Eudora is considered a client application, which means that it is network-enabled software that is intended to interact with a server. In the case of email, it is normal to interact with two different servers: one for outgoing and one for incoming mail. When you want to read email, your client connects to a mail server using one of three different protocols:
• Post Office Protocol (POP, not to be confused with Point of Presence)
• Internet Mail Access Protocol (IMAP)
• Microsoft’s Mail API (MAPI)

For the purposes of investigation, the protocol used to gather incoming email from a server is of minimal interest. The most important thing to understand about these different protocols is that their use affects where mail messages are stored (as depicted in Table 2-1). All incoming mail is initially stored on a mail server, sorted by that mail server into individual mailboxes for access by the addressee. POP users have the choice of either downloading a copy of their mail from their server, or downloading it and subsequently allowing it to be automatically deleted. Email that has been read or stored for future use is stored on the computer that is running the email client. IMAP and MAPI users have the option of leaving all their mail on their mail server.

There are two major advantages to leaving email stored on the server. First, all of the stored email for an entire organization can be easily backed up from a central location. Second, it provides users the flexibility of accessing their mailboxes from multiple client machines: office, home, through the Web, and so forth. The implica-

<table>
<thead>
<tr>
<th>Post Office Service</th>
<th>Protocol</th>
<th>Relevance to Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming message store only</td>
<td>POP</td>
<td>Must access workstation in order to trace mail.</td>
</tr>
<tr>
<td>Storage of all messages</td>
<td>Open: MAPI</td>
<td>Copies of both incoming and outgoing messages may be stored on server or workstation (and server/workstation backup tapes).</td>
</tr>
<tr>
<td>(optional)</td>
<td>Proprietary: Microsoft MAPI Lotus Notes</td>
<td></td>
</tr>
<tr>
<td>Web-based: send and receive</td>
<td>HTTP</td>
<td>Incoming and outgoing messages are stored on server, possibly with optional manual download to workstation. Facilitates identity spoofing.</td>
</tr>
</tbody>
</table>
tions of this to the investigator is that POP mail users always use their local
machine for their email archives: copies of outgoing mail, mail stored in folders
for future reference, deleted mail that hasn’t been purged, all are stored on the in-
dividual’s workstation. Organizations that provide IMAP or MAPI service, or a pro-
prietary service like Lotus Notes, probably store email on the server, although
individual users may or may not have the option of storing their email locally.

Outgoing email uses a completely different protocol called Simple Mail Transfer
Protocol (SMTP). Unlike the protocols used to retrieve mail from a post office, SMTP
doesn’t require any authentication—it is much like tossing a message into a mail
slot at the post office. Servers that accept mail and relay it to other mail servers are
sometimes called mail transfer agents (MTAs), and they also use SMTP. Your ISP
will give you the name of the mail server that you should use for outgoing mail, often
something along the lines of smtp.bobsisp.com. The SMTP server that the ISP uses
relays messages to their destinations. Either the destination server recognizes a
message as being addressed to one of its local users, and places it into the appropri-
ate mailbox for that user, or based on a set of rules, it relays the message on further.

SMTP is a very simple protocol. Like many Internet protocols, such as HTTP, it
consists of a few simple text-based commands or keywords. One of the first tricks an
Internet hacker learns is how to manually send an email message by telneting to
port 25, the SMTP port. Not only is it a fun trick to become a human email for-
warder, but it also enables you to put any information you want into the headers
of the email message you are sending—including fake origination and return
addresses. Actually, you needn’t do this manually if you want to fake email. When
you configure your personal email client, you tell it what return address to put on
your outgoing mail. You can always change that configuration, but if you want to
send only a single message coming from Pres@whitehouse.gov, it is much easier to
use one of several GUI-based hacker tools that enable you to quickly send a message
with your choice of return addresses.

SMTP mail has no strong authentication and without using PGP or S/MIME
(Secure Multipurpose Internet Mail Extensions) to add a digital signature, the level
of trust associated with a mail message is pretty low. The following steps (our input
is in boldface) show how incredibly easy it is to fake the return address in an Inter-
net mail message:

[root@njektd /root]# telnet localhost 25
Trying 127.0.0.1...
Connected to njektd.com.
Escape character is '^]'.
220 njektd.com ESMTP Sendmail 8.9.3/8.9.3; Tue, 5 Dec 2000 17:37:02 -0500
helo
250 OK
mail from: teswt@test.com
250 teswt@test.com... Sender ok
rcpt to: you@domain.com
250 you@domain.com... Recipient ok
data
354
Haha-this is a spoofed mail message!
.
250 RAA25927 Message accepted for delivery
quit
221 njektd.com closing connection
Connection closed by foreign host.

The results of this spoofed mail message are shown in Figure 2-4. The test.com domain is just one we made up for demonstration purposes, but the email client reports whatever information it was provided.

As we'll discuss later in this chapter, some identification information is associated with the mail header that is a bit harder to spoof. As recorded in the following mail header, we were indeed logged in as 208.164.95.173:

Received: from dhcp-95–173.ins.com ([208.164.95.173]) by
dtctxexchims01.ins.com with SMTP (Microsoft Exchange Internet Mail Service Version 5.5.2653.13)
 id YM4CM2VP; Sun, 10 Dec 2000 08:46:30 -0600
From: teswt@test.com
Date: Sun, 10 Dec 2000 09:46:46 -0500 (EST)
Message-Id: 200012101446.JAA06830@horh1.emsr.lucent.com

When relaying a message from another relay host, current versions of SMTP also keep track of the IP address of the system connecting to them, and they add that IP address to the header of the message. If you want to show that a mail message originated from a specific computer, the best way to do so is to investigate the entire path that appears in the extended header information.

Although SMTP servers won't perform any authentication when receiving mail from the client, most Internet mail servers are configured to accept mail for relay
only when that mail originates from a specific range of IP addresses. If an ISP does not place any limits on which systems can connect to the ISP’s mail server, allowing it to be used as a free relay station, it won’t take spammers long to find it. To reduce the amount of spam mail that originates with their mail servers, most ISPs allow relay connections only from IP addresses within the range that they assign to their own subscribers. Authentication based just on IP address is very weak, but for the purposes of preventing unauthorized use of SMTP servers, it is adequate.

It should come as no surprise that Web-based email is not only available, but is becoming increasingly popular. The Internet browser is rapidly becoming the universal front end. Web-based email enables users to access all of their email—both incoming and saved messages—through a Web browser. Not only does this free the user from installing and configuring an email client on his or her workstation, but it also means that the user can easily access email from any workstation virtually anywhere in the world. Undoubtedly, many people are accessing free Web-based email from work for their personal use.

It also shouldn’t come as a surprise that free email services are being used by some people to hide their identities. For the novice computer criminal, these services appear to be an easy way to hide their identity, and by adding at least one more server and involving another service provider, it certainly does complicate the association of a mail account with a specific person. The only way to find out who the ISP thinks is using a specific email address is to obtain a subpoena for the account information. If you are working with law enforcement agencies, they can obtain a subpoena to facilitate their investigation, or you can obtain a subpoena from a lawsuit (for more information, see Chapter 12). Fortunately, some providers of free email service are including the originator’s IP address in the header information.
Previously, you would have to subpoena the email provider and then the originating ISP to determine the originator. We recommend issuing a subpoena for the email logs from the email provider, but at the same time, you can also subpoena the originating ISP.

Reading the Mail Trail

When you are investigating a case involving email, you have to decipher email headers. If you have never viewed a header before, it might first appear to be gibberish, but once you get the hang of it and understand how SMTP works, it makes sense. The first annoyance you encounter is that most client email programs hide the header information from the user. Depending on the mail client you’re using, you may have to do a little bit of digging to get to the header. In most programs, if you click File | Properties, an option to view the header is displayed. If your particular program provides a different way to access header information, consult the Help menu and documentation or try the company’s Web site for instructions.

Most users don’t want to be bothered with deciphering email headers, which encourages the email software vendors to make access to it as obscure as possible. Let’s look at Microsoft Outlook Express. It is a popular email program for many reasons, including the fact that it comes free with Internet Explorer and recent versions of Windows.

As shown in Figure 2-5, the header information is available in Outlook Express by clicking on File and then Properties, which displays the dialog box that looks like that shown in Figure 2-6.

The General Tab for the properties in Outlook Express displays some basics about the message such as the subject of the message, the apparent sender, and the date and time sent and received. Click on the Details tab to display the information like that shown in Figure 2-6. By examining the headers of this message, it is clear that both the From address (test@testing.org) and the Reply-To address are fake addresses (another_test@test.org). This is a real message that we sent from the Internet, but before sending the message, we first changed the From address to “HTCIA NE Chapter.” The From address is completely arbitrary—it contains whatever the sender configures into their email program.

The most important tracks are found at the top of the message. In this case, the first line shows the computer that the message was originally sent from. While the name of the PC, “mypc,” can easily be spoofed, the IP address that mypc was assigned when we logged on to the ISP is much more difficult to spoof. While it is not impossible to spoof an IP address, we are not aware of a case in which one has been spoofed to counterfeit email. The practical details involved in spoofing an IP address make it virtually impossible in an email transaction, which involves several round trips between the SMTP server and the connecting system. (Do be aware, though,
Figure 2-5 Outlook Express File menu

Figure 2-6 Outlook Express Message Properties window
that the actual sender of the message could have cracked the system from which it was sent, and logged on as somebody else.) In this case, the email was sent from a computer in the same domain, monmouth.com, as the SMTP server that relayed the mail, shell.monmouth.com. Do a whois on the IP address and see if you get something that matches the purported domains of both the originating client and the relay server. Then follow up using the Dig w/AXFR advanced query, as shown in Figure 2-8, using NetscanTools.

In contrast to Outlook Express, Microsoft Outlook (included with Microsoft Office) places the full email header information in an obscure position. As shown in Figure 2-9, to view the header information, you click on View and then Options. Clicking on Message Header seems to be a more obvious way to access header information—a mistake that we make all the time—but all that does is hide the To, From, and Subject lines from the message itself. It does not show you the detailed header information that you need to track an intruder. By clicking on Options, you access the Message Options window shown in Figure 2-10.
Figure 2-8 Using NetScanTools to investigate an IP address

Figure 2-9 Outlook View menu
You’ve probably already noticed “Joe Anonymous” in the Have replies sent to field. We faked this deliberately to illustrate how you cannot believe everything you read. The only way to extract this information from this window is to select it all (hint: try Control-A), copy it, and then paste it into a text document, which we’ve done in the following:

Received: from hoemlsrv.firewall.lucent.com ([192.11.226.161]) by
nj7460exch002h.wins.lucent.com with SMTP (Microsoft Exchange
Internet Mail Service Version 5.5.2448.0) id W4VCF23A; Sat, 20
Nov 1999 21:19:10 -0500
Received: from auemail2.firewall.lucent.com ([192.11.223.163]) by
il0015exch001h.wins.lucent.com with SMTP (Microsoft Exchange
Internet Mail Service Version 5.5.2650.21)
id LDSMCOTS; Thu, 31 May 2001 21:12:56 -0500
Received: from auemail2.firewall.lucent.com (localhost [127.0.0.1])
by auemail2.firewall.lucent.com (Switch-2.1.3/Switch-2.1.0) with ESMTP
id F512Baa03317

Figure 2-10 Viewing a message header in Microsoft Outlook
This header is longer than it was in our first example. This time, the message was relayed through four different servers. Each time an SMTP server accepts a message, it places a new Received header at the top of message before forwarding it on to another server or a user mailbox. In the first message, we intentionally sent the message from our ISP account to our ISP account. The second message originated externally and then was relayed through the Lucent firewall and to the mail server used to host our mailbox. But even with the extra headers, it is still apparent that the original message was received from: “mypc,” and our address at the time was: ?onmouth.com [209.191.51.149]. The lines in the header tell a story about where the email message has been, when it was there, and when it was delivered to its destination. It may be a contrived story, but it is still a story. Virtually any of the headers with the exception of the topmost one could be bogus—it is up to you to verify each one of them and determine the actual history of the message.
The last example that we will look at is from Eudora, another popular email client. Eudora hides the header information by default, like the rest of the client programs, but as you can see from the Eudora Lite example in Figure 2-11, the full header is only a mouse-click away. A helpful piece of information is X-Sender, which shows the mail server and the account the message was sent from. One of the quirky characteristics of Eudora is that the icon is labeled “Blah, Blah, Blah.” Strange label, but it provides the information we need. When you click on the Blah button, your email message changes from that shown in Figure 2-11 to something that looks like that shown in Figure 2-12.

When you are conducting an investigation involving email, even if the computer’s name is bogus, you have the IP address that the user was assigned. If you trust the ISP, or the company that the address resolves to, you can ask for their assistance in identifying your suspect. They probably won’t disclose the information to you immediately, but by noting that IP address, along with the exact date and time that the message was sent, you can ask the ISP to save the logs until you have a chance to get a court order. As long as the logs are still available, the ISP or other organization should be able to identify the user that was assigned that IP address at the time the message was sent.

Look at the two headers the arrows are pointing to in Figure 2-13. Compare the domain name in the Received header, “monmouth.com,” to the domain in the From header, “test.org.” Because they do not match, we can assume that the user configured

his or her email incorrectly or that the user is trying to hide his or her identity. A message can be injected anywhere in the chain of Received headers—you can be sure that only the topmost one is accurate. Do an nslookup against each domain—especially the purportedly original domain—and see if they exist. Do a whois against each of those domains to find out who the administrator is and contact that person. Keep in mind that if the administrator is the originator of a phony or illegal message, he or she probably won’t be inclined to cooperate.

When you are investigating a case on behalf of a victim, but you can’t visit the victim or otherwise obtain the original message on your own, it is possible for the victim to email you a copy of it. You must give the victim very specific instructions on the appropriate way to send the mail to you—especially if the victim usually deletes messages right after receiving them. Ask the victim to send the message as an attachment and not to forward the message. Forwarding replaces the suspect’s information with your victim’s information. You might want to ask your victim not to delete the original message until he or she hears from you.
Figure 2-13 Extended email header with discrepancies in originator fields
SMTP Server Logs

All email servers have the ability to maintain logging information. If available, these logs are usually a more reliable source of information than the mail headers. Because of the high volume of email traffic, the ISP may not store records for very long. SMTP server logs are important tools, used by both ISPs and user organizations to troubleshoot email problems and track down the unauthorized use of mail. The only way to completely verify the path of the mail is for the administrator of each host to check the logs to find that they both sent the message to the recipient as indicated and that their host received it from a specific IP address. If you are lucky, you can follow the chain all the way back to an original IP address. Examination of the original system, which might need to be cross-referenced against RADIUS logs and phone records, is the only way to prove that a specific message existed at a specific place. Accessing this workstation usually requires a court order, but once a perpetrator is confronted with having the incriminating evidence on his or her personal computer, a confession is often not far behind.

Usenet

Usenet is a vast, distributed bulletin board, consisting of thousands of hierarchically arranged topics contributed to and read by millions of people worldwide. It was originally developed during a time in which Unix computers used modems for external connectivity. Email and even individual files could be sent between noncontiguous UNIX computers, as long as you knew the intervening series of connecting systems and chained their names within the destination mail address (such as ober! doebling!seismo!krampus!kirk). Usenet still takes advantage of this same point-to-point model, although now it uses the Internet as a transport backbone. As shown in Figure 2-14, when a post is made, it is transmitted through a chain of news servers.
Those reading and posting news have a choice of using a traditional news reader, a web-based service, or an email gateway.
and then it is diffused back out through all of the servers in the world that subscribe
to the same newsgroup.

Usenet has adapted itself well to changes in Internet technology, resulting in a
nearly seamless integration of traditional news readers with email and Web inter-
faces. Today, Usenet users have their choice of news clients, email or Web interfaces,
both for posting and for reading news messages (see Figure 2-15). Some Usenet mail
gateways are also configured as email distribution listservers, enabling Internet cit-
izens to have all the postings for a certain newsgroup delivered directly to their
mailboxes, either a message at a time or collected periodically into digests. The
implications to you as the tracker is that your attempt to research the origin of a
news message may involve multiple types of servers.

If you are not familiar with Usenet, and have not configured a client to read
postings, the best place to start is the original Internet archive for Usenet, the
DejaNews archives provided by Google.7 An example search is shown in Figure 2-16.

Inappropriate material is probably the most significant use of news that you are likely to encounter in an investigation. Unfortunately, huge amounts of pornographic pictures are disseminated through news, and it is common for some corporate employees to download this material, exposing their employers to the risk of sexual harassment lawsuits. Pictures, and other binaries, will be found in the uuencode format (see Chapter 4).

Usenet can provide a forum where you can publicly ask technical questions. You may also want to search archived news postings to see if you can find anything related to one of your suspects or an organization involved in your investigation. Some suspects may be active news posters. Searching for their names on a server such as Google may give you valuable clues to their activities and interests. At times, news postings are directly relevant to an investigation. It is not unheard of for disgruntled employees to try to damage the reputation of their company by making news posts containing harmful information. In some cases, it is possible to trace these inappropriate postings to IP addresses actually within the corporation.

Tracking Usenet Posts

Just like when you are tracking email, you are dependent not only upon the cooperation of all the news server administrators relevant to the message that you are tracking, but you are also dependent upon their having adequate logs. News volume tends to be very high, so the information in the logs is extremely volatile. It is not unusual for a busy Usenet site to turn over their logs every day, so if you want to track a posting, your chances of success are slim if you can’t do it within 24 hours. The process you follow will be very similar to tracking a mail message, and some ISP abuse department staffers feel that news is easier to trace because, after some practice, the bogus header information is relatively easy to discern. Just like when tracking email, you work your way back from the recipient and verify each of the machine names in the path. Either you’ll find a bogus connection point, which is probably where the message was inserted, or you’ll actually verify that the message apparently did transit all of the hosts shown. If the origination host has a record of the poster, you can either subpoena that organization for more information or notify their abuse department.

Let’s take a look at the header of a news posting. The following one is an example of a pornographic post that has spent quite a lot of time zipping around the Internet:

```
From: "YourMate" binkie1@xxx.com
Newsgroups: alt.binaries.dominion.erotica,
           alt.binaries.dominion.erotica.female, alt.binaries.erotica,
           alt.binaries.erotica.amateur.female, alt.binaries.erotica.blondes,
           alt.binaries.erotica.centerfolds
```
are the hosts that purportedly relayed this message. The next-to-last host, news.xxx.com, is apparently the news server at an ISP, while the final hostname looks like a dial-up account at that same ISP.

Note that on the preceding header, the domain name in the From field is consistent with the domain name in the NNTP-Posting-Host and Path fields. If it were not, you would know immediately that someone was attempting to cover his or her tracks. If they do match, you probably still need to verify the intermediate hosts, but you can start with the origination point. If they don’t match, you need to figure out which parts of the path are real and which are bogus. It often helps to obtain other copies of the same message from other servers (either Google or servers belonging to friends of yours) and compare the paths. Whatever part of the paths is consistent among the different news hosts probably contains the actual host at which the message was inserted.

Like mail hosts, Network News Transfer Protocol (NNTP) hosts may or may not accept posts from people outside of their organization. You can test this by telneting to port 119 on that host. If you cannot connect to that host or you receive a message that posts are not accepted, odds are lower that a bogus post was made using that host as the news server. However, if you receive a message that indicates you can connect, it means that other people can connect to that host also. The chances are reduced that the administrator will really know who is using the NNTP server. Such a session may look like this:

C:> telnet ferkel.piglet.com 119
200 NNTP Service Microsoft® Internet Services 5.00.7515
Version: 5.0.7515 Posting Allowed

or this:

$ telnet news.isp.com 119
200 mercury2.isp.com Netscape-Collabra/3.52 17222 NNRP ready (posting ok).

But if the host does not accept posts, it may look something like this:

$ telnet nntp.mindspring.com 119
502 You are not in my access file. Goodbye.

NetBIOS

For historical reasons, Windows computers often use a protocol called NetBIOS. Although originally used only within LANs, NetBIOS has been extended so that it
can run over TCP/IP, allowing organizations to provide Windows file- and print-sharing services across a WAN. A helpful command to identify a user over a network using NetBIOS is nbtstat. nbtstat is a standard component on all current Windows platforms, and a Linux version is also available.8

From your remote computer you can run this command against either the suspect’s IP address:

nbtstat -a 123.456.789.000

or against a specific machine name:

nbtstat -A suspect.computer.com

nbtstat displays protocol statistics and current TCP/IP connections using NBT (NetBIOS over TCP/IP). If the remote computer is reachable over the network, you can receive the following information:

NBTSTAT [-a RemoteName] [-A IP address] [-c] [-n] [-r] [-R] [-s] [S] [interval]
-a (adapter status) Lists the remote machine’s name table given its name
-A (Adapter status) Lists the remote machine’s name table given its IP address.
-c (cache) Lists the remote name cache including the IP addresses
-n (names) Lists local NetBIOS names.
-r (resolved) Lists names resolved by broadcast and via WINS
-R (Reload) Purges and reloads the remote cache name table
-S (Sessions) Lists sessions table with the destination IP addresses
-s (sessions) Lists sessions table converting destination IP addresses to host names via the hosts file.

Interval: Redisplays selected statistics, pausing interval seconds between each display. Press Ctrl+C to stop redisplaying statistics.

If a user is logged into the computer, you receive output similar to that shown in Figure 2-17. As you can see, it provides the machine name, the Windows NT domain the computer is registered in (in this case, a domain named “security”), and the MAC address. Since the MAC address is unique, it is a positive method of identifying a computer after it has been seized. Unless the NIC is swapped out, you have a promising lead that this is the computer you’re looking for. nbtstat is a handy command because it enables you to associate a user with an IP address and then copy and paste that information into a document that you can print.

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985–2000 Microsoft Corp.

C:\>date
The current date is: Sat 04/07/2001
Enter the new date: (mm-dd-yy)
C:\>time
The current time is: 22:39:54.90
Enter the new time:
C:\>nbtstat -a krusingonnt
NetBIOS Remote Machine Name Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJ7460WGKRUSE</td>
<td><00></td>
<td>UNIQUE</td>
</tr>
<tr>
<td>SECURITY</td>
<td><00></td>
<td>GROUP</td>
</tr>
<tr>
<td>NJ7460WGKRUSE</td>
<td><20></td>
<td>UNIQUE</td>
</tr>
<tr>
<td>NJ7460WGKRUSE</td>
<td><03></td>
<td>UNIQUE</td>
</tr>
<tr>
<td>SECURITY</td>
<td><1E></td>
<td>GROUP</td>
</tr>
<tr>
<td>SECURITY</td>
<td><1D></td>
<td>UNIQUE</td>
</tr>
<tr>
<td>..MSBROWSE_</td>
<td><01></td>
<td>GROUP</td>
</tr>
<tr>
<td>WGKRUSE</td>
<td><03></td>
<td>UNIQUE</td>
</tr>
</tbody>
</table>

MAC Address = 00-60-1D-04-45-14

Figure 2-17 nbtstat output
We mostly use the nbtstat command from within our network since nbtstat issues a User Datagram Protocol (UDP) request and is blocked by default on many firewalls. Don’t be surprised if you can ping the system, but an nbtstat returns “host not found” on a computer you know to be a Windows platform.

Third-Party Programs

If you have the budget, you can purchase additional programs that will do any of the previously discussed commands for you, usually with a convenient GUI. Two of the tools we use most often are Neotrace and Netscan Pro (the latter was shown previously in Figure 2-8). Both can do a traceroute for you, but Neotrace overlays a map and attempts to geographically plot the traceroute. This is a sexy feature, but its utility is questionable. It appears to map based on the zip code that the domain names are registered to. It would be more useful if the map could accurately show where the intermediate routers are located, but it should be apparent to you by now that this information is not available. Both programs are chock-full of capabilities. The NetScanTools Pro version obviously has a few more features, but for tracking purposes either will do nicely.

NetBIOS Tool

Essential NetTools (shown in Figure 2-18) is a set of network tools that are especially useful when investigating Microsoft networks. It includes
• **NBScan**: A fast multithreaded NetBIOS scanner for locating computers that are sharing resources on the network. Instead of having to manually check each system on the network individually (nbtstat –a 135.17.243.1, nbtstat –a 135.17.243.2, and so forth), simply enter a beginning address and an ending address and let NBScan run nbtstat for you.

• **NATShell**: A user-friendly interface for the popular NetBIOS Auditing Tool (NAT) network-auditing utilities.

• **NetStat**: Displays all of a computer’s network connections and monitors external connections to a computer’s shared resources.

You will find this handy set of utilities useful when you examine networks using Windows file-sharing or Samba on Unix.9

Whois Help

SmartWhois10 automates the process of querying multiple whois databases and can retrieve information from more than 20 servers all over the world (see Figures 2-19 and 2-20).

9. Samba is an open source software suite that provides Netbios-based file and print services on Unix systems to allow them to act as servers for Windows systems. See http://www.samba.org for more information.

10. Essential NetTools and SmartWhois are both made by TamoSoft and can be purchased from their Web site, www.tamos.com. Thirty-day evaluations are free; after that, you must purchase the programs. Their prices are reasonable.
SmartWhois is designed to help inexperienced researchers find whatever information is registered on the Internet for specific IP addresses, so it comes with the most popular whois servers configured by default. Experienced users can define their own choices, making this a useful tool even for those who are accustomed to running whois from the command line.

Confirming Success

After you physically locate what you believe to be your suspect’s computer, verify that its IP and machine name match that of your suspect. If the suspect computer is a Windows 9X computer, use winipcfg from either the Run box (accessible by choosing Start | Run) or from a command prompt. The initial output is shown in Figure 2-21. A drop-down window at the top of the IP configuration enables you to choose the network adapters that you want to display configuration for. In Figure 2-21, we are looking at the PPP (Point to Point Protocol) dial-up adapter, which is the default whenever PPP is configured. To access any of the other adapters, such as the network card, just drop down the list by clicking on the down arrow. Whatever you do, do not click on the Release All button! If the computer is using DHCP, clicking on
Release All wipes out the IP address, and depending on the network’s configuration, you most likely will not get the same address back if you click on Renew All. Click the More Info button to access the information shown in Figure 2-22.

Figure 2-21 Initial winipcfg window

Figure 2-22 Extended winipcfg information
In the window shown in Figure 2-22, we not only see the IP address and the MAC address, but also the computer’s name (in the Host Name field), and whether or not the computer is using DCHP (if static, meaning that the IP address was manually configured instead of being automatically obtained from the DHCP server, the Lease Obtained and Lease Expires fields will be blank). If there are IP addresses next to the Primary or the Secondary WINS Server fields, you can probably check them to see if the IP address was logged at the time of the incident.

Intrusion Detection Systems (IDS)

Intrusion detection systems, usually abbreviated IDS, are automated mechanisms that are intended to monitor specific subsystems, providing an alarm when a suspected unauthorized event is detected. Although IDS has many practical problems, the programs are increasingly popular, and in 2000, at least one Internet intruder was captured and brought to justice with the assistance of an IDS. At the time of this writing, IDS isn’t necessarily a technology that every forensic technician needs to be familiar with, but during the next few years, it not only could become a standard tool in the detection of Internet intrusions, but could be routinely used to gather evidence used for successful prosecutions.

IDS is applied in one of two places: It is either network based or host based. Network-based systems are a specialized form of network sniffer. A network IDS sits on a network segment, viewing all traffic sent to every host on the segment, looking for evidence of unauthorized activity. It is common practice to have a single centralized intrusion detection engine that provides logging, and alarm functions based on the data provided by multiple remote sensors, each located on a different LAN segment. Even on switched networks, at least one port on the switch can usually be configured to provide all of the data being sent to each of the individual ports, which is where the sensor may be placed.

Host-based IDS places the detection capability on a single host, although the trend in host-based IDS is also to centralize the logging and alerting functions. Most business units resist having some other business unit looking over their shoulder and prefer not to have another organization place security software on their computers. Host-based IDS also tends to be more expensive because more devices have to be monitored. Although they are not as convenient to install and operate as network-based IDS, the host-based systems are generally more accurate, having fewer false positives and catching a higher percentage of actual misuses.

Intrusion detection systems are usually categorized as detecting either specific events or changes in patterns. Both types have their advantages and disadvantages. Event detection systems monitor for specific sequences of events, or sequences, that are characteristic of attempts to gain unauthorized access to a system. A simple example is a system that alerts when a specific number of failed login attempts have
occurred. Commercial network-based IDS might alert when it detects a sequence of characters used to perform a buffer overflow attack against a Linux lpd daemon. These systems are dependent upon an up-to-date database of attack patterns. Although they may be able to log any arbitrary event type, they cannot alarm on events that are not in their database. Most commercial network IDS products at the time of this writing are of this type, and like the users of anti-virus software, the users of these products regularly download updated attack fingerprint databases from the publisher. Host-based IDS, such as the Tripwire product discussed in Chapter 11, work by regularly checking the consistency of system files, alerting whenever a security-relevant file has been changed. It is usually not practical to perform such a check on every host within an organization, but on those hosts that do have their files checked for consistency, intrusions are virtually always detected.

The other IDS model, the one that detects changes in patterns, is sort of an artificial intelligence thing. The theory is that instead of limiting a detection engine just to the population of known attack types, you create a system that is sufficiently sophisticated to recognize anomalous behavior and alert whenever something happens that is outside of normal parameters. For instance, say a specific person normally accessed his or her account between the hours of 9 a.m. and 7 p.m. An IDS tracks and learns this normal behavior, and if the user were to access the account in the middle of the night, the IDS would notify the security administrator that an unusual event had occurred. Obviously, such a system is more prone to false alerts than one that is based on hostile event fingerprints, but it has the significant advantage of being able to detect brand-new attack forms. Research on such systems has been ongoing for at least ten years, and most commercial products rely on fingerprint databases.

While the idea of capturing cyber criminals in the act should be an appealing one to most computer forensic types, widespread use of such products won’t have a huge effect on what investigators do. The biggest advantage to the investigator is that IDS systems provide new and convenient forms of event logging. Once an attack or illegal activity is suspected, the logging or recording function on an IDS can be used to monitor and record the suspect’s behavior.

Information Sources on IDS

If you are interested in doing some further research in IDS, several excellent books are available. Stephen Northcutt’s, *Network Intrusion Detection* is the best hands-on guide for an analyst. In fact, it’s a helpful book for a number of network security issues, and you should probably read it if you want to learn more about network protocol attacks and their analysis. Rebecca Bace’s *Intrusion Detection* (Indianapolis: Macmillan Technology Series, 2000) is more theoretical, like a college textbook, making it a nice contrast to Northcutt’s book. She describes the philosophy and architec-
ture of IDS more comprehensively and provides a complete overview of the last ten years of relevant IDS research.

If you would like to use a network Intrusion Detection System but can’t afford one of the commercial applications, you should take a look at Snort.11

Web Resources for Researching Internet Inhabitants

International Registries

Three international organizations are responsible for the administration of IP addresses within their region, so they should be considered definitive sources. Each of these organizations has a Web site that provides a whois interface, in addition to other information helpful in locating the owner of a specific IP address:

- **American Registry for Internet Numbers (ARIN):** Western Hemisphere, http://www.arin.net/whois/arinwhois.html
- **Asia Pacific Network Information Centre (APNIC):** Asia-Pacific, http://www.apnic.net

Network Diagnostic and Research Sites

- **Adhoc IP Tools:** This site is a veritable Swiss Army knife of Internet tools, providing front ends to a wide variety of research services (whois, nslookup, ping, DNS dig, and others), all accessed from a single page: http://home.ag.org/iptools.htm.
- **Sam Spade:** Also provides a wide variety of research tools, http://www.samspace.com.
- **Internet Service Provider lookup:** Enables you to search for ISPs by name, providing a summary of their business characteristics, http://www.webisplist.com.
- **Dragon Star:** Provides an index, relating IP network numbers to network names and identities. It also includes a handy explanation of the IP address numbering scheme and describes the difference between Class A, B, and C networks, http://ipindex.dragonstar.net/index.html.

News and Email Abuse Information

- **The spamfaq or “Figuring out fake Email & Posts”:** This site, maintained by Gandalf@digital.net, is the most comprehensive source we’re aware of. It has detailed instructions on how to track both email and news, how to read the message headers in a dozen different mail clients, and how to reach the appropriate abuse contact. It also has a huge number of additional links. It isn’t edited well, but it is worth your time if you really need to understand message headers, http://ddi.digital.net/~gandalf/spamfaq.html.

- **Fighting Email Spammers:** A site maintained by Todd Burgess, it is an excellent source of information on tracking email, http://eddie.cis.uoguelph.ca/~tburgess/local/spam.html.

- **Fight Spam on the Internet:** Another site with a number of links on the subject of unsolicited email, http://spam.abuse.net/.

- **Reading EMail Headers:** A detailed explanation of the function of dozens of different email headers, http://www.stopspam.org/email/headers/headers.html.
INDEX

A
Access control circumvention, 141–143
AccessData, 111, 114
Accounting, 296, 298
Addresses
 application, 33–32
 IP, 22–28
 media access control (MAC), 25, 22–28
 private, 25
 registries, 63
 uniqueness of, 22–26
Address Resolution Protocol (ARP), 22–28
Advanced ZIP Password Recovery (AZPR), 114
AFind, 164
Aimpw, 145
America Online (AOL), 34, 135, 141, 247
Antivirus (AV) software, 128, 146
Application addresses, 33–32
Application Developer/Administrator (AA), 330
Application Owner (AO), 323–330
Application Programming Interface (API), 70
Archive file, 101, 102, 242–243
ASCII (American Standard Code for Information Interchange), 83, 100
Asymmetric encryption, 91
AT&T, 207
Attachments, email, 47
attrib command, 119
Auditing, 292–296
Authentication of evidence, 13
AutoComplete, 183, 1854

B
Back doors, 252–255
Back Orifice, 133, 142
Backups, 11–15, 174
Bash (Bourne Again Shell), 211
Berkeley R utilities, 298
BinHex, 101
'Bios, 145
Bit stream, 15
Block device, 212–220
Blocks, 73
Blowfish, 90
Bombs, logic and time, 139
Bootable Business Card, 114
Bootable Recovery Disk, 151
Boot sector, analysis of, 16
Bots, 137
Bourne shell, 210
Breaking, 84
Brute force attack, 84, 144
BSD, 202–208
Buffer overflow attack, 141–143
Business Records Exception, 323–322

C
CAB, 102
CAIN tool, 85, 110, 141–145, 191
Caldera, 208
Caligula MS Word virus, 135
Carrier, 123
Carvey, Harlan, 122
Case folder, 11
cat, 285, 286
CD, contents of forensic, 373–380
CD-R Diagnostics, 156, 157
CD-Rs, 151–158
CD Universe, 9
CERT, 297
Certificate authority (CA), 99–98
Certificate Policy (CP), 98
Certificate Revocation List (CRL), 98
Certification practice statements (CPS), 98
Certs (digital certificates), 96
Chain of custody, 6, 9–9, 315
Checksums, 89, 241
Citrix WinFrame, 133
Client application, 35
Clusters, 73
Codes, 83, 101–101, 344
 analysis of hostile, 282–283, 303–303
Cohen, Fred, 167, 169
Collision free, 89
Compression, 101–103
Compromise, 85
Computationally infeasible, 88
Computer crime, categories of, 2
INDEX

Computer forensics
- defined, 3–3
- goals of, 4
- history of, 3
- steps in, 3, 2–20
Computers, search of personally owned, 323–321
Connection laundering, 248
Conversions Plus, 151–153
Core dumps, 303–305
Courtroom presentation, tips for, 12–20
cp, 285
C programming language, 238
Cracking, 84
CRCMD5, 13, 150, 169
crontab, 303–303
Crowbarring Unix hosts, 373–376
CrucialADS, 122
Crucial Security, 122
Cryptanalysis, 84
Cryptographer, 84
Cryptography
- defined, 84
- integrity services, 89–90
- privacy services, 99–99
- steganography, 121–127
Cryptologists, 84
Cryptology, 84
C shell, 22–211
Cyclic redundancy checks, 89
Cylinder, 67

D
Data center application profile, 334, 353–351
Data hiding
- See also Passwords
- changing file’s extension, 111–118
- changing system environment, 121–128
- encryption, using and cracking, 105, 101–113
- finding, 111–120
- methods for, 101–107
- off of the computer, 121–123
- steganography, 121–127
- streams, 121–122
Data in unallocated spaces, finding, 77–77
Data mining, 134
Data recovery services, 77–78
Data Viz, 151
dd, 242–244, 273, 282–286
Deleted files, retrieving, 17
Denial-of-service, 131–139, 276, 343–343
DES, 90
/dev, 303
Dial-up service, 33–35
Dictionaries, 144
diff, 242–241
dig, 30
Digests, 51
DigiStamp, 100
Digital certificates 99–99

Digital notary, 91–100
Digital signatures, 99–94
Digital timestamping, 91–100
Digital watermarks, 121–127
Directories, 72
- analysis of, 303–301, 303–304
- hidden, 303–301
- user, 304
Directory listing, analysis of, 11–16
Directory service, 98
Disks
- unerase, 156
- wiping, 163
DiskScrub, 163, 169
DiskSig, 150, 169
Distributed denial-of-service (DDoS), 138
Distributed Network Attack (DNA) program, 111–112
Documentation, collecting evidence and, 12
Domain name resolution, 28
Domain Name Service (DNS), 23–30
Dot files, Unix, 307
Drive-imaging programs, 161–163
dtSearch, 151–161
Dynamically linked libraries (DLLs), 121–128
Dynamic Host Configuration Protocol (DHCP), 26

E
Elliptic curve, 92
Email
- analysis of, 306
- attachments, 47
- bombs, 139
- compared to news groups, 35
- deciphering headers, 44–48
- faking return addresses, 33–38
- signatures, 191–195
- tracking, 34–48
- Web-based, 39
- Web resources, 64
- Windows, 191–195
Emergency Response Core Team (ERCT), 329
EnCase, 17, 76, 107, 117, 118, 171–174
Encoding, 83, 101
Encrypted file system (EFS), 202–204
Encryption
- asymmetric, 91
- compression, 101–103
- defined, 88–84
- digital signatures, 99–94
- methods for attacking encrypted text, 88–88
- private key, 99–95
- public key, 99–92, 94
- secret key, 99–91
- session key, 94
- symmetric, 90
- trusted third parties, 99–96
- using and cracking, 105, 101–113
Enhanced Integrated Drive Electronics (EIDE), 66
Environment variables, 212–214
Eudora, 35, 46
Evidence
 analysis of, 12–20
 authenticating, 13
 checklists, 11–19
 information resources, 21
 log, 8
 presenting, in court, 12–20
 preservation of, 19, 315
 rule of best, 313–319
 techniques for collecting, 262–269
Evidence, acquiring
 chain of custody, 6, 9–9
 collection process, 9
 comparison of approaches to, 7
 documenting, 12
 identification, 1–11
 photographs, taking, 11–11
 pulling the plug versus not pulling the plug, 6–6
 storage, 12
 transportation, 11–12
Exabyte Mammoth drives, 174
Executable files, 304
Explore/RunMRU, 186

F
Farmer, Dan, 164, 167, 263, 269
fdisk, 151, 222–221, 282–285
FDISK, 68, 76
Federal Computer Fraud and Abuse Act, 323
file, 232–233
File Allocation Table (FAT), 16, 72
FileList, 170
Files, hidden, 303–301
FileStat, 164
Filesysten, 77–74, 212–221
 analysis of, 282–298
 block device, 212–220
 copying, 282–295
 device number, 219
 imaging, 282–289
 permissions, 212–219
File viewers, 151–153
Filter_we, 170
find, 222–230, 233, 297
Firewall Administrator (FA), 332
Forensic-Computers.com, 80, 171–176
Forensics, defined, 1
Forensic Toolkit, 122, 161–164
ForensiX, 161–169, 266
Format, 68, 73
Foundstone, 122
FreeBSD, 208

G
Gammaprog, 145
GetFree, 170
GetSlack, 170
GetTime, 170
Ghost, 161–163
GIF, 102
Gnome, 300
Google, 51
greve-robber tool, 165
Greenwich mean time (GMT), 221
grep, 222–228
Guidance Software, 17, 174
GUIDs (Globally Unique Identifiers), 171–180

H
Hacking Exposed (Scambray, McClure, and Kurtz), 122
Hard drives
 controllers, 66–67
 copying, 282–285
 defined, 65
 erasing, 77–78
 finding data in unallocated spaces, 77–77
 kits, 174
 in laptops, 78–81
 operating systems, 77–72
 parameters, 66–68
 partition table, viewing and operating, 67–70
 soft configuration on, 68
 tools for partition-viewing, 151
Hard link, 228
Hardware, 171–176
Hash function, 89, 90
Hash table, 89
Hash value, 13, 89–90
Hex editor, 16, 17
HFind, 164
Higbee, Aaron, 34
High Technology Crime Investigation Association (HTCIA), 312
HKEY_CURRENT_USER, 183
HKEY_LOCAL_MACHINE, 187
HKEY_USERS, 183
Hostile code (malware), 6
 access exploits, 141–143
 antivirus (AV) software, 128, 146
 bombs, logic and time, 139
 bots, 137
 categories of, 131–132
 cracking programs, 141–145
 defined, 121–130
 denial-of-service, 131–139
 to hide tracks, 140
 purpose of, 131–136
 resource/identity theft, 131–137
 Trojan horse, 141–142
 vulnerability scanners, 141–144
Hostile processes, signs of, 279
Howard, John D., 242–247
Hypertext Transfer Protocol (HTTP), 32, 275, 295
Hypnopaedia, 145
INDEX

I
icq bombs, 139
ICSA Labs, 146
Identification of evidence, 1–11
Identity theft, 131–137
I Love You/Lovebug worm, 131, 141
Image MaSSter, 11–15, 81, 141, 175
Image tape, creating an, 15
Imaging filesystems, 282–289
Incident response, 2
 data center application profile, 334, 353–351
 form, 353–361
 goals of, 323–328
 priorities, 332, 335
 roles and responsibilities of organizations
 involved in, 323–333
 steps in, 333–349
 what to record, 353–352
Information resources
 See also Web resources
 for hostile code, 141–148
 on intrusion detection systems, 66–63
Inodes,
 Inode list, 214
 Inode table, 72, 212–215
INSO, 117
Integrated Drive Electronics (IDE), 66
Intelligent Computer Solutions (ICS), 175
Internet, basics of, 22–28
Internet Assigned Numbers Authority (IANA), 26
Internet Corporation for Assigned Names and Numbers (ICANN), 29
Internet Explore Key, 112, 181–188
Internet Explorer, 116, 117
Internet Mail Access Protocol (IMAP), 36
Internet service providers (ISPs)
 logs of, 9, 247
 obtaining information from, 33–35
Interviewing suspects, 314
Intrusion detection systems (IDS), 66–63
Inverse lookup, 30
Iomega Zip Guest, 15
IP address, 25
 reading obfuscated, 22–27
 registries, 63
ISS, 143

J
Jetform, 10
John the Ripper, 145
Joy, Bill, 363
JPEG, 102

K
KDE, 300
Kernel attacks, 121–128
Key-cracking programs, 88–85
Key escrow, 88
Key recovery, 88
Keyword searches, 11–17, 303–308
Klaus, Christopher, 143
Korn, David, 211
Korn shell (ksh), 211
Kurtz, George, 122

L
Laptops, hard drives in, 78–81
Large Block Addressing (LBA), 68
Lazarus tool, 161–167
Legal issues
 court orders, obtaining, 322
 criminal versus civil courts, 323–324
 dollar loss valuations, 315
 grand jury versus preliminary hearing, 315
 information protection laws, 323
 law enforcement, working with tips, 313–318, 313–320
 legal access issues, 323–322
 notifying agencies, 312
 preservation of evidence, 19, 315
 recidivism, 316
 rule of best evidence, 313–319
 search warrants and probable cause, 313–314
 subpoenas, 314
 testifying as an expert witness, 322
 wiretap laws, 323–323
Lightweight Directory Access Protocol (LDAP), 216
Link, 215
Linux
 boot CD, creating a, 373–378
 crowbarring, 375
 ForensiX, 161–169
Linux kernel, 111–114
 attacks, 121–128
Log editors, 254
Logic bombs, 139
Logs
 analysis of, 292–295
 legal issues regarding, 323–322
 logon, 292–295
 signs of suspicious, 292–293
 usefulness of, 291
Loopback device, 289
L0phtCrack, 88–85, 112, 113, 144
L0pht Heavy Industries, 144
LostPassword.com, 112
lsof, 278

M
MacOpener, 151
mactime, 292–291
Mail API (MAPI), 36
Mail bombs, 139
Mailboxes, 36
Mail server, 36
Mail transfer agents (MTAs), 37
Malware. See Hostile code (malware)
Manchurian Candidate syndrome, 264
man pages, 222–236
Maresware’s Disk_crc, 150
Master drive, 66
McClure, Stuart, 122
MD5, 13, 15, 89, 90, 282–289
Media access control (MAC), 25, 22–28
Melissa virus, 131, 141, 177
Memory, copying system, 272–274
Message digest, 89
Microsoft, 36
 See also Windows 95 and 98; Windows NT;
 Windows3.1; Windows 2000
filesystem, 77–73
format, 73
Office, 107
operating system, 72
Outlook, 35, 42, 151–161
Outlook Express, 44–42
streams, 121–122
Systems Management Server, 133
Word, 77–75, 101–107
mkfs, 73
Morse Code, 83
mount, 222–224, 282–284
Mount directory, 224
Mounting, 73
Mount point, 224
MPEG, 102
MSNBC, 9–9
Mssqlpwd, 145
M-Sweep, 170
Multimedia Internet Mail Extension (MIME), 101
N
NATShell, 58
NBScan, 58
nbtstat, 55–57, 58
Neotrace, 57
Nessus, 141–144
NetBIOS, 55–57
 Auditing Tool (NAT), 58
 over TCP/IP (NBT), 55
 tool, 55–58
NetBus, 133, 142
netcat, 248, 267, 262–269, 286
NetScanTools Pro, 30, 42, 57
netstat, 58, 272–275
Net Threat Analyzer, 170
NetTools, 55–58
Network Administrator (NA), 333–332
Network Associates, 95
Network connections, analysis of, 272–276
Network Information System (NIS), 212–217
Network interface card (NIC), 28
Network News Transfer Protocol (NNTP), 54
Network scanning, 134
Network sniffing, 131–135
Network Solutions, 30
New session, 156
News groups
 compared to email, 35
 Usenet, 45–54
New Technologies Inc. (NTI), 13, 17, 150, 163,
 161–170
Nmap, 143
Northwest Airlines, 321
Norton Utilities, 17, 156
Notes, 35
nslookup, 29, 30
ntaccess, 114
NTFS. See Windows NT File System
NTFSDOS, 195
NTLast, 164
ntpassword, 111–114
O
Office, 107
OnTrack, 78
OpenBSD, 208
Open Systems Interconnection (OSI), 24
Operating environment, 14
Operating systems, 77–72
Order of volatility, 262–281
Outlook, 35, 42, 151–161
Outlook Express, 44–42
P
Packet mode, 156
Packets, 25
Pager bombs, 139
PalmCrack, 145
Parity bits, 89
Partinfo, 67–70, 151
PartitionMagic, 67–70, 151
Partition table
 analysis of, 15
 viewing and operating, 67–70, 151
Partition types, 69
Passwords
 changing, 111–116
 cracking, 141–145
 encrypting, 88–88
 possible locations for, 109
 recovery tools, 111–113
 reusable, 33–34, 111–111
 sniffers, 131–135
pcAnywhere, 133
pcat, 281
Perl (Practical Extraction and Report Language),
 122, 240
PGP, 37
PGPPASS, 145
Photographing evidence, 11–11
ping, 27, 28, 32
PkCrack, 145
PKCS #7, 94
Platters, 68
INDEX

Point of Presence (POP), 32
Point to Point Protocol (PPP), 32
Post Office Protocol (POP), 36
PowerQuest
 Partinfo, 67–70
 PartitionMagic, 67–70
Pretty Good Privacy (PGP), 99–96
Private key, 99–95
/proc, 272–279
Process accounting, 296
Process identity (PID), 272–280
Process information utilities, 277
Process status commands, 278
ps, 277, 278
PST file, 181–186
PTable, 170
Public key encryption, 99–92, 94
Public Key Infrastructure (PKI), 92, 99–99
Public Switched Telephone Network (PSTN), 26
PWLTtool, 191–192

Q
Quick View Plus (QVP), 16, 117, 151, 152

R
RADIUS (Remote Authentication Dial-In User Service), 33–34, 247
 on evidence, 21
RC5, 90
Read/write head, 67
RedHat, 208
Registry, Windows, 181–188
Reid and Associates, John E., 314
Remote copy (rcp), 298
Remote login (rlogin), 298
Remote shell (rsh), 267, 268, 298
Repudiation, 92
Researching Internet inhabitants, Web resources for, 66–64
Resource theft, 131–137
Reverse lookups, 29
Rivest, Shamir, and Adleman (RSA), 90, 91, 94
Rootkits, 127, 138, 252–260
Rootshell, 283
Rosenblatt, Ken, 322
Roth, Dave, 122
Routers, 22–26
Running processes, analysis of, 272–281

S
SAFESuite, 143
Samba, 58
Sam Spade, 30
SANS Institute, 139
SATAN (System Administrator’s Tool for Analyzing Networks), 134, 143
Scambray, Joel, 122
script, 227
Script kiddie, 84
Secret key encryption, 99–91
Secure Multipurpose Internet Mail Extensions (S/MIME), 37
Secure shell (scp), 268
Security Account Manager (SAM), 112, 113
Security Consultant (SC), 333–333
Security Investigator (SI), 333
Seized, 170
Session key, 94
Set group ID (SGID), 212–218, 302
Set user ID (SUID), 212–218, 302
Sfmd, 122, 164
SHA, 13, 89, 90
Shells, 202–211, 267, 268, 303–306
Shell scripts, 202–210
ShowFL, 170
Simple Mail Transfer Protocol (SMTP), 37
 server logs, 49
Slack space
 analysis of, 11–18
 defined, 73, 74
Slave drive, 66
Slaves, 138
Slurpie, 145
Small Computer Systems Interface (SCSI), 66–67
SmartWhois, 55–59
Smith, David, 177
Software, forensic
 See also under name of program
 CD-Rs, examining, 151–158
disk wiping, 163
 drive-imaging, 161–163
 file viewers, 151–153
 hard drive tools, 151
 images, examining, 151–155
text searches, 151–161
tips before using, 141–150
 unerase tools, 156
Solaris, 127, 128, 207
crowbarring, 373–376
SONAR, 32
Sony, digital camera, 11
Steganography, 121–127
Steganos, 124, 125
Stevens, W. Richard, 23
S-Tools, 121–126
Storage of evidence, 12
 strings, 232–236
Subdirectories, analysis of, 11–16
SubSeven.Trojan, 141
sum, 241
subblock, 221
Surety, 100
Swap space, 209
Symantec pcAnywhere, 133
Symbolic link, 215, 228
Symmetric encryption, 90
SysInternals, 122
syslog, 291
System auditing, 292–296
System compromise, levels of, 265
System environment, hiding data by changing, 121–128
System Owner/Administrator (SA), 333–331
Systems Management Server (SMS), 133
System V, 207

T

tar archive file, 242–243, 282–288
Tarball, 241
TCPDump, 134
TCP/IP (Transmission Control Protocol/Internet Protocol), 23, 24
TCP/IP Illustrated (Stevens), 23
TCP Wrapper, 292–295
tesh, 211
Text filters, 232–238
Text searches, 151–161
TextSearch Plus, 170
The Coroner’s Toolkit (TCT), 128, 161–167, 266, 281
ThumbsPlus, 151–155
TIFF, 102
Time, UNIX, 221
Time bombs, 139
Timestamping, 13, 91–100
/tmp, 301
tomsrtbt, 114
touch, 232–240
Traceback, 138
traceroute, 27, 33–31, 57
tracert, 30
Tracks, 67
Transporting evidence, 11–12
Triple DES (3DES), 90
Tripwire, 13, 62, 264, 266, 297
Trojan horse, 141–142, 255
TruSecure, 146
Trust relationships, 293–300

U

Unallocated space
 analysis of, 11–18
 finding data in, 77–77
Unerase tools, 17, 156
Universal Coordinated Time, 221
Universal Resource Locators (URLs), 33–32
University of California, Berkeley, 207
Unix
 archives, 242–243
 comparison tools, 242–241
 components, 202–214
 dd, 242–244
 dot files, 307
 file command, 119
 filesystem, 72, 73, 212–221
 file time attributes, 221
format, 73
history of, 202–208
how to learn, 363–365
logon logs, 294
man pages and commands, 222–236
mount, 222–224
operating system, 77–72
programming language, 232–240
text filters, 232–238
Unix host attacks
 attackers, characteristics of, 245, 246
 back door creation, 252–255
 chain of, 242–248, 249
 covering of tracks, 252–254
 goals of, 242–250
 initial compromise, 251
 intelligence gathering, 252–251
 inventory, 255
 locating potential victims, 250
 log editors, 254
 privilege escalation, 251
 reconnaissance, 252–253
 rootkits, 252–260
 signs of, 279
 summary of attack types and characteristic evidence, 249
Unix host attacks, what to examine
 accounting, 296, 298
 auditing, 292–296
 core dumps, 303–305
 directories and files, 303–301, 303–304
 email, 306
 filesystem, 282–298
 hostile codes, 282–283, 303–303
 keywords, 303–308
 levels of attacks, 264
 Manchurian Candidate syndrome, 264
 order of volatility, 262–281
 process accounting, 296
 shells, 303–306
 system compromise, levels of, 265
 techniques for collecting evidence, 262–269
 trust relationships, 293–300
Unix to Unix Copy (UUCP), 101
UnixWare, 207
Usenet, 45–54
deciphering headers, 55–53
tracking posts, 55–54
User Datagram Protocol (UDP), 57
utmp, 254
UUCP (Unix to Unix Copy), 101

V

vCards, 194
Venema, Wietse, 164, 263, 269, 293
vi, 363
Video display, 272–273
Viewers, file, 151–153
Viruses
 antivirus (AV) software, 128, 146
 Caligula MS Word virus, 135
 Melissa, 131, 141, 177
Volatility, order of, 262–281
Vulnerability scanners, 141–144

W
Weaver, Robert, 324
Webcracker, 145
Web resources
 See also Information resources
 on analysis, 309
 on evidence, 21
 for hostile code, 148
 for researching Internet inhabitants, 66–64
 on training, 21
Wells, Joe, 146
What's Up Gold, 28
whois, 23–30
 SmartWhois, 55–59
WildList Organization International, 146
Windows Internet Naming Service (WINS), 26
Windows 95 and 98
 email, 193
 email signatures, 191–195
 investigating, 171–182
 registry, 181–188
 what to look for, 181–192
Windows NT, 111–113
 changing passwords, 111–116
 investigating, 191–197
 kernel attacks, 121–128
 rootkits, 127
 streams, 121–122
Windows NT File System (NTFS), 15, 191–197
 streams, 121–122
Windows 3.1, investigating, 202–205
Windows 2000, 121
 dynamic disks, 198
 encrypted file system, 202–204
 exporting private key, 363–373
 investigating, example of, 192–204
 persistent connections, 202–201
 registry, 183, 184
 system administration tools, 192–200
 user home directories, 201
winpefg, 56–61
Win32 Perl Scripting: The Administrator's Handbook (Roth), 122
WinZip, 101, 102, 114, 182, 243
Wiretap laws, 323–323
Word
 backup copies, 101–109
 Caligula MS Word virus, 135
 Word 97, slack space in, 77–75
 Worms, 131, 141
 Wotsit's Format, 111–119
 wtmp, 254
X
 xargs, 230
 X.509, 98
 X Windows System, 272
Z
 Zipcrack, 145
 Zip Guest, 15
 ZipPassword, 114
 Zombies, 138